
Formal Methods

unifying Computing Science and Systems Theory

Raymond Boute — INTEC, Ghent University Berkeley, 2004/10/12

Overview

1. Introduction: motivation and approach

2. The formalism, part A: language

3. The formalism, part B: formal rules

4. Examples I: Systems Theory

5. Examples II: Computing Science

6. Examples III: Common Aspects

7. Conclusions — A formalism for Electrical and Computer engineering

0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55750482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Next topic

1. Introduction: motivation and approach)

• Motivation: formal methods / techniques

• Common practice in formal calculation

• Approach: Functional Mathematics (Funmath)

2. The formalism, part A: language

3. The formalism, part B: formal rules

4. Examples I: Systems Theory

5. Examples II: Computing Science

6. Examples III: Common Aspects

7. Conclusions — A formalism for Electrical and Computer engineering

1

1 Introduction: motivation and approach

1.0 Motivation: formal methods / techniques

• Formal Methods: not just “using math”, but doing it formally

– “formal” = manipulating expressions on the basis of their form

– “informal” = manipulating expressions on the basis of their meaning

• Why use formal methods?

– Usual arguments: precision, reliability of design etc. well-known

– Equally (or more) important: guidance in expression manipulation

UT FACIANT OPUS SIGNA

(“Let the symbols do the work”)

(Maxim of the conferences on Mathematics of Program Construction)

Provides help in thinking: acquiring feeling for the shape of formulas

→ an additional kind of / added dimension to intuition!

2

1.1 Common practice in formal calculation

• Well-developed in long-standing areas of mathematics (algebra, analysis, etc.)

From: Blahut / data compacting

1

n

∑

x

pn(x|θ)ln(x)

≤ 1

n

∑

x

pn(x|θ)[1− log qn(x)]

=
1

n
+

1

n
L(pn;qn) + Hn(θ)

=
1

n
+

1

n
d(pn,G) + Hn(θ)

≤ 2

n
+ Hn(θ)

From: Bracewell / transforms

F (s) =

∫ +∞

−∞
e−|x|e−i2πxsdx

= 2

∫ +∞

0

e−x cos 2πxs dx

= 2 Re

∫ +∞

0

e−xei2πxsdx

= 2 Re
−1

i2πs − 1

=
2

4π2s2 + 1
.

The only shortcoming w.r.t. the “formal norm” is the absence of justifications.

3

Major defect: not in logical reasoning. This causes a serious style breach .

“The notation of elementary school arithmetic, which nowadays everyone

takes for granted, took centuries to develop. There was an intermediate
stage called syncopation, using abbreviations for the words for addition,

square, root, etc. For example Rafael Bombelli (c. 1560) would write

R. c. L. 2 p. di m. 11 L for our 3
√

2 + 11i.

Many professional mathematicians to this day use the quantifiers (∀,∃)
in a similar fashion,

∃δ > 0 s.t. |f(x) − f(x0)| < ǫ if |x − x0| < δ, for all ǫ > 0,

in spite of the efforts of [Frege, Peano, Russell] [. . .]. Even now, mathe-
matics students are expected to learn complicated (ǫ-δ)-proofs in analy-

sis with no help in understanding the logical structure of the arguments.
Examiners fully deserve the garbage that they get in return.”

(P. Taylor, “Practical Foundations of Mathematics”)

• Increasingly worse as we get closer to the necessities in Computing Science

(calculating with logic expressions, set expressions etc.) (Examples to follow)

4

1.2 Approach: Functional Mathematics (Funmath)

• Unifying formalism for continuous and discrete mathematics

– Formalism = notation (language) + formal manipulation rules

• Characteristics

– Principle: functions as first-class objects and basis for unification

– Language: very simple (4 constructs only)

Synthesizes common notations, without their defects

Synthesizes new useful forms of expression, in particular: “point-free”,

e.g. square = times ◦ duplicate versus square x = x times x

– Formal rules: calculational

5

Next topic

1. Introduction: motivation and approach)

2. The formalism, part A: language

• Rationale: the need for defect-free notation

• Funmath language design

3. The formalism, part B: formal rules

4. Examples I: Systems Theory

5. Examples II: Computing Science

6. Examples III: Common Aspects

7. Conclusions — A formalism for Electrical and Computer engineering

6

2 The formalism, part A: language

2.0 Rationale: the need for defect-free notation

Examples of defects in mathematical conventions

Examples A: defects in often-used conventions relevant to systems theory

• Ellipsis, i.e., dots (. . .) as in a0 + a1 + · · · + an

Common use violates Leibniz’s principle (substitution of equals for equals)

Example: ai = i2 and n = 7 yields 0 + 1 + · · · + 49 (probably not intended!)

• Summation sign
∑

not as well-understood as often assumed.

Example: error in Mathematica:
∑n

i=1

∑m
j=i 1 = n·(2·m−n+1)

2

Taking n := 3 and m := 1 yields 0 instead of the correct sum 1.

• Confusing function application with the function itself

Example: y(t) = x(t) ∗ h(t) where ∗ is convolution.

Causes incorrect instantiation, e.g., y(t − τ) = x(t − τ) ∗ h(t − τ)

7

Examples B: ambiguities in conventions for sets

• Patterns typical in mathematical writing:
(assuming logical expression p, arbitrary expression p

Patterns {x ∈ X | p} and {e | x ∈ X}
Examples {m ∈ Z | m < n} and {n · m | m ∈ Z}

The usual tacit convention is that ∈ binds x. This seems innocuous, BUT

• Ambiguity is revealed in case p or e is itself of the form y ∈ Y .

Example: let Even := {2 · m | m ∈ Z} in

Patterns {x ∈ X | p} and {e | x ∈ X}
Examples {n ∈ Z | n ∈ Even} and {n ∈ Even | n ∈ Z}

Both examples match both patterns, thereby illustrating the ambiguity.

• Worse: such defects prohibit even the formulation of calculation rules!
Formal calculation with set expressions rare/nonexistent in the literature.

Underlying cause: overloading relational operator ∈ for binding of a dummy.
This poor convention is ubiquitous (not only for sets), as in ∀x ∈ R . x2 ≥ 0.

8

2.1 Funmath language design

Basis: function (= domain + mapping)
Language syntax : 4 constructs: identifier, application, abstraction, tupling

0. Identifier: any symbol or string except a few keywords.

Identifiers are introduced by bindings

• General form: i :X ∧. p , read “i in X satisfying p”

Here i is the (tuple of) identifier(s), X a set and p a proposition.

Optional: filter ∧. p (or with p), e.g., n : N is same as n : Z∧. n ≥ 0

Identifiers from i should not appear in expression X.

• Identifiers can be

variables: in an abstraction of the form binding . expression

constants: declared by a definition of the form def binding

Well-established symbols, such as B, ⇒, R, +, serve as predefined constants.

9

1. Function application:

• Default form: f x for function f and argument e

• Other affix conventions: by dashes in the binding, e.g., — ⋆ — for infix.

• Role of parentheses: never used as operators.

Only for parsing (overruling/emphasizing affix conventions/precedence).

Precedence rules for making parentheses optional are the usual ones.

If f is a function-valued function, f x y stands for (f x) y

• Special application forms for any infix operator ⋆

– Partial application is of the form a ⋆ or ⋆ b, and is defined by

(a ⋆) b = a ⋆ b = (⋆ b) a

– Variadic application is of the form a ∗ b ∗ c etc., always defined by

a ∗ b ∗ c = F (a, b, c)

for a suitably defined elastic extension F of ⋆.

10

2. Abstraction:

• General form: b . e where

b is a binding and

e an expression, extending after “ . ” as far as parentheses permit.

Intuitive meaning: v : X ∧. p . e denotes a function

Domain = the set of v in X satisfying p;

Mapping: maps v to e.

• Trivial example (constant functions): if v not free in e, we define • by

X • e = v :X . e . Example: (Z • 3) 7 = 3.

• Syntactic sugar: e | b stands for b . e and v :X | p stands for v :X ∧. p . v .

• We shall see how abstractions help synthesizing familiar expressions

such as
∑

i : 0 ..n . qi and {m · n | m : Z} and {m : Z | m < n} .

11

3. Tupling:

• 1-dimensional form: e, e′, e′′ (any length)

Intuitive meaning: function with

Domain: D (e, e′, e′′) = {0, 1, 2}
Mapping: (e, e′, e′′) 0 = e and (e, e′, e′′) 1 = e′ and (e, e′, e′′) 2 = e′′.

• Parentheses are not part of tupling: as optional in (m, n) as in (m + n).

• The empty tuple is ε and for singleton tuples we define τ with τ e = 0 7→ e.

• Matrices are 2-dimensional tuples.

Legend: here we used two special cases of •:

defining ε by ε := ∅ • e (any e) for the empty function

defining 7→ by d 7→ e = ι d • e for one-point functions.

12

Next topic

1. Introduction: motivation and approach)

2. The formalism, part A: language

3. The formalism, part B: formal rules

• Rules for equational and calculational reasoning

• Rules for calculating with propositions and sets

• Rules for calculating with functions and generic functionals

• Rules for calculating with predicates and quantifiers

4. Examples I: Systems Theory

5. Examples II: Computing Science

6. Examples III: Common Aspects

7. Conclusions — A formalism for Electrical and Computer engineering

13

3 The formalism, part B: formal rules

3.0 Rules for equational and calculational reasoning

• Calculational reasoning: Generalizes the usual chaining of calculation steps to

e0 R0 〈Justification0〉 e1

R1 〈Justification1〉 e2 etc.

where Ri, Ri+1 are mutually transitive, e.g., =, ≤ (arithmetic), ≡, ⇒ (logic).

• General inference rule: For any theorem p,

Instantiation: from p, infer p[ve .

Note: [ve or [v := e] expresses substitution of e for v, for instance,
(x + y = y + x)[x, y := 3, z + 1] stands for 3 + (z + 1) = (z + 1) + 3.

• Equational reasoning: basic rules are reflexivity, symmetry, transitivity and

Leibniz’s principle: from e = e′, infer d[ve= d[ve′

14

3.1 Rules for calculating with propositions and sets

• Proposition calculus Usual propositional operators ¬, ≡, ⇒, ∧, ∨. Notes:

– For practical use, an extensive set of rules is needed (see e.g. Gries)

– Note: ≡ is associative, ⇒ is not. We read p ⇒ q ⇒ r as p ⇒ (q ⇒ r).

– Binary algebra is embedded in arithmetic. Logic constants are 0 and 1.

– Leibniz’s principle can be rewritten e = e′ ⇒ d[ve= d[ve′.

• Calculating with sets The basic operator is ∈.

– The rules are derived ones (set calculus from proposition calculus), e.g.,

Set intersection ∩ is defined by x ∈ X ∩ Y ≡ x ∈ X ∧ x ∈ Y
Cartesian product × is defined by x, y ∈ X ×Y ≡ x ∈ X ∧ y ∈ Y

After defining {—}, we can prove y ∈ {x :X | p} ≡ y ∈ X ∧ p[xp

– Set equality is defined via

Leibniz’s principle: X = Y ⇒ (x ∈ X ≡ x ∈ Y), and the converse:
Extensionality : from x ∈ X ≡ x ∈ Y (with new x), infer X = Y .

15

3.2 Rules for calculating with functions and generic functionals

• General rules for functions

– Equality is defined (taking domains into account) via

Leibniz’s principle f = g ⇒ D f = D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x)

Extensionality
p ⇒ D f = D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x)

p ⇒ f = g

– Abstraction encapsulates substitution. Formal axioms:

Domain axiom: d ∈ D (v :X ∧. p . e) ≡ d ∈ X ∧ p[vd
Mapping axiom: d ∈ D (v :X ∧. p . e) ⇒ (v : X ∧. p . e) d = e[vd

Equality is characterized via function equality (exercise).

16

• Generic functionals

– Goals:

(a) Removing restrictions in common functionals from mathematics.

Example: composition f ◦ g; common definition requires R g ⊆ D f

(b) Making often-used implicit functionals from systems theory explicit.

x t

y t

@@

��
��
��
+ x t + y t

Usual notations: (x + y) t = x t + y t (overloading +)
or: (x ⊕ y) t = x t + y t (special symbol)

– Design principle: defining the domain of the result function in such a way
that the image definition does not involve out-of-domain applications.

This applies to goal (a), goal (b) and new designs (discussed next).

17

– Design illustrating goal (a): composition (◦)
For any functions f , g,

f ◦ g = x :D g ∧. g x ∈ D f . f (g x)

Observation: D (f ◦ g) = {x :D g | g x ∈ D f}.
– Design illustrating goal (b): (Duplex) direct extension (̂)

For any functions ⋆ (infix), f , g,

f ⋆̂ g = x :D f ∩ D g ∧. (f x, g x) ∈ D (⋆) . f x ⋆ g x

Example: given f : N→R and g : Z→C we get D (f +̂ g) = N.

Often we need half direct extension: for function f , any e,

f
↼
⋆ e = f ⋆̂ (D f • e) and e

⇀
⋆ f = (D f • e) ⋆̂ f

Typical algebraic property: x
⇀
⋆ f = (x ⋆) ◦f

Simplex direct extension () is defined by

f g = f ◦ g

18

• Generic functionals (continued:) some other important generic functionals

– Function merge (∪·) is defined in 2 parts to fit the line:

x ∈ D (f ∪· g) ≡ x ∈ D f ∪ D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x)
x ∈ D (f ∪· g) ⇒ (f ∪· g) x = (x ∈ D f) ? f x g x

– Filtering (↓) introduces/eliminates arguments: (here P is a predicate)

f ↓ P = x :D f ∩ D P ∧. P x . f x

A particularization is the familiar restriction (⌉): f ⌉X = f ↓ (X • 1).

We extend ↓ to sets: x ∈ (X ↓ P) ≡ x ∈ X ∩ D P ∧ P x.

Writing ab for a ↓ b and using partial application, this yields formal rules

for useful shorthands like f<n and Z>0.

– Function compatibility (c©) is a relation on functions:

f c© g ≡ f ⌉D g = g ⌉D f

Algebraic property: f = g ≡ D f = D g ∧ f c© g.

19

3.3 Rules for calculating with predicates and quantifiers

Goal: formally calculating with quantifiers as fluently as with derivatives/integrals.
Practical use requires a large collection of calculation rules.

Here only give the axioms and most important derived rules.

• Axioms and forms of expression

– Basic axioms: quantifiers (∀, ∃) are predicates on predicates defined by

∀P ≡ P = D P • 1 and ∃P ≡ P 6= D P • 0

– Forms of expression

Taking for P an abstraction yields familiar forms like ∀x : R . x ≥ 0.

Taking for P a pair p, q of boolean expressions yields ∀ (p, q) ≡ p ∧ q.

So ∀ is an elastic extension of ∧, and we define p ∧ q ∧ r ≡ ∀ (p, q, r)

20

• Derived rules

Relating ∀/∃ by duality (or generalized De Morgan’s law)

¬∀P = ∃ (¬P) or, in pointwise form, ¬ (∀ v :S . p) ≡ ∃ v :S .¬ p

Distributivity rules (each has a dual, not stated here):

Name of the rule Point-free form Letting P := v : S . p with v 6∈ ϕq

Distributivity ∨/∀ q ∨ ∀P ≡ ∀ (q
⇀∨ P) q ∨ ∀ (v : S . p) ≡ ∀ (v : S . q ∨ p)

L(eft)-distrib. ⇒/∀ q ⇒ ∀P ≡ ∀ (q
⇀⇒ P) q ⇒ ∀ (v : S . p) ≡ ∀ (v : S . q ⇒ p)

R(ight)-distr. ⇒/∃ ∃P ⇒ q ≡ ∀ (P
↼⇒ q) ∃ (v : S . p) ⇒ q ≡ ∀ (v : S . p ⇒ q)

P(seudo)-dist. ∧/∀ q ∧ ∀P ≡ ∀ (q
⇀∧ P) q ∧ ∀ (v : S . p) ≡ ∀ (v : S . q ∧ p)

Note: ∧/∀ assumes D P 6= ∅. The general form is (p ∧ ∀P) ∨ D P = ∅ ≡ ∀ (p
⇀∧ P)

As in algebra, the nomenclature is very helpful for familiarization and use.
Distributivity ∨/∀ generalizes q ∨ (r ∧ s) ≡ (q ∨ r) ∧ (q ∨ s)

L(eft)-distrib. ⇒/∀ generalizes q ⇒ (r ∧ s) ≡ (q ⇒ r) ∧ (q ⇒ s)
R(ight)-distr. ⇒/∃ generalizes (r ∨ s) ⇒ q ≡ (r ⇒ q) ∧ (s ⇒ q)

P(seudo)-dist. ∧/∀ generalizes q ∧ (r ∧ s) ≡ (q ∧ r) ∧ (q ∧ s)

21

• Derived rules (continued)

Some additional laws

Name Point-free form Letting P := v : S . p with v 6∈ ϕq
Distrib. ∀/∧ ∀ (P ∧̂ Q) ≡ ∀P ∧ ∀Q ∀ (v : S . p ∧ q) ≡ ∀ (v : S . p) ∧ ∀ (v : S . q)
One-point rule ∀P

=e ≡ e ∈ D P ⇒ P e ∀ (v :S . v = e ⇒ p) ≡ e ∈ S ⇒ p[ve
Trading ∀ ∀PQ ≡ ∀ (Q ⇒̂ P) ∀ (v : S ∧. q . p) ≡ ∀ (v : S . q ⇒ p)
Transp./Swap ∀ (∀ ◦R) = ∀ (∀ ◦RT) ∀ (v : S . ∀w : T . p) ≡ ∀ (w :T . ∀ v :S . p)

Note: ∀/∧ assumes D P = DQ. Without this condition, ∀P ∧ ∀Q ⇒ ∀ (P ∧̂ Q).

Just one derivation example:

∀P ∧ ∀Q
≡ 〈Def. ∀〉 P = D P • 1 ∧ Q = DQ • 1

⇒ 〈Leibniz〉 ∀ (P ∧̂ Q) ≡ ∀ (D P • 1 ∧̂ DQ • 1)
≡ 〈Def. 〉̂ ∀ (P ∧̂ Q) ≡ ∀x :D P ∩ DQ . (DP • 1) x ∧ (DQ • 1) x
≡ 〈Def. •)〉 ∀ (P ∧̂ Q) ≡ ∀x :D P ∩ DQ . 1 ∧ 1

≡ 〈∀ (X • 1)〉 ∀ (P ∧̂ Q)

22

3.4 Wrapping up the rule package for function(al)s

• Function range We define the range operator R by

e ∈ R f ≡ ∃x :D f . f x = e .

Consequence: ∀P ⇒ ∀ (P ◦ f) and D P ⊆ R f ⇒ (∀ (P ◦ f) ≡ ∀P)

Pointwise form: ∀ (y :R f . p) ≡ ∀ (x :D f . p[yf x) (“dummy change”).

• Set comprehension

Basis: we define {—} as fully interchangeable with R.

Consequence: defect-free set notation:

– Expressions like {2, 3, 5} and {2 ·m | m : Z} have familiar form & meaning

– All desired calculation rules follow from predicate calculus via R.

– In particular, we can prove e ∈ {v : X | p} ≡ e ∈ X ∧ p[ve (exercise).

23

• Function typing

– The familiar function arrow (→) suffices for “coarse” typing

f ∈ X → Y ≡ D f = X ∧R f ⊆ Y .

– A more refined type is the Functional Cartesian Product (×):
for any set-valued function T ,

f ∈×T ≡ D f = D T ∧ ∀x :D f ∩ D T . f x ∈ T x .

Consequences: ×(X, Y) = X ×Y and ×(X • Y) = X →Y

– Convention: writing X ∋x→Y as a shorthand for ×x :X . Y ,

where Y may depend on x.

(More about this will follow)

24

Next topic

1. Introduction: motivation and approach)

2. The formalism, part A: language

3. The formalism, part B: formal rules

4. Examples I: Systems Theory

• Analysis: calculation replacing syncopation — an example

• Transform methods

• Characterization of properties of systems

• Tolerances on specifications

5. Examples II: Computing Science

6. Examples III: Common Aspects

7. Conclusions — A formalism for Electrical and Computer engineering

25

4 Examples I: Systems Theory

4.0 Analysis: calculation replacing syncopation — an example

def ad : (R→B)→ (R→B) with ad P v ≡ ∀ ǫ : R>0 . ∃x : RP . |x − v| < ǫ
def open : (R→B)→B with

open P ≡ ∀ v : RP . ∃ ǫ : R>0 . ∀x :R . |x − v| < ǫ ⇒ P x
def closed : (R→B)→B with closedP ≡ open (¬P)

Example: proving the closure property closedP ≡ ad P = P .

closedP

≡ 〈Definit. closed〉 open (¬P)
≡ 〈Definit. open〉 ∀ v : R¬P . ∃ ǫ : R>0 . ∀x :R . |x − v| < ǫ ⇒ ¬P x

≡ 〈Trading sub ∀〉 ∀ v : R .¬P v ⇒ ∃ ǫ : R>0 . ∀x : R . |x − v| < ǫ ⇒ ¬P x
≡ 〈Contrapositive〉 ∀ v : R .¬∃ (ǫ : R>0 . ∀x :R . P x ⇒ ¬ (|x − v| < ǫ)) ⇒ P v

≡ 〈Duality, twice〉 ∀ v : R . ∀ (ǫ : R>0 . ∃x : R . P x ∧ |x − v| < ǫ) ⇒ P v
≡ 〈Definition ad〉 ∀ v : R . ad P v ⇒ P v

≡ 〈P v ⇒ ad P v〉 ∀ v : R . ad P v ≡ P v (proving P v ⇒ ad P v is near-trivial)

26

4.1 Transform methods

• Emphasis: formally correct use of functionals

Avoiding common defective notations like F{f(t)} and writing Ff ω instead

Ff ω =
∫ +∞
−∞ e−j·ω·t · f t · dt

F ′g t = 1
2·π ·

∫ +∞
−∞ ej·ω·t · g ω · dω

Clear and unambiguous bindings allow formal calculation.

• Example: formalizing Laplace transforms via Fourier transforms.

Auxiliary function: ℓ— : R→R→R with ℓσ t = (t < 0) ? 0 e−σ·t

We define the Laplace-transform L f of a function f by:

L f (σ + j · ω) = F (ℓσ ·̂ f) ω

for real σ and ω, with σ such that ℓσ ·̂ f has a Fourier transform.

With s := σ + j · ω we obtain

L f s =
∫ +∞

0 f t · e−s·t · dt .

27

• Calculation example: the inverse Laplace transform

Specification of L′: L′ (L f) t = f t for all t ≥ 0

(weakened where ℓσ ·̂ f is discontinous).

Calculation of an explicit expression: For t as specified,

L′ (L f) t = 〈Specification〉 f t

= 〈a = 1 · a〉 eσ·t · ℓσ t · f t

= 〈Definition ̂〉 eσ·t · (ℓσ ·̂ f) t

= 〈Weakened〉 eσ·t · F ′ (F (ℓσ ·̂ f)) t

= 〈Definition F ′〉 eσ·t · 1
2·π ·

∫ +∞
−∞ F (ℓσ ·̂ f) ω · ej·ω·t · dω

= 〈Definition L〉 eσ·t · 1
2·π ·

∫ +∞
−∞ L f (σ + j · ω) · ej·ω·t · dω

= 〈Const. factor〉 1
2·π ·

∫ +∞
−∞ L f (σ + j · ω) · e(σ+j·ω)·t · dω

= 〈s := σ + j·ω〉 1
2·π·j ·

∫ σ+j·∞
σ−j·∞ L f s · es·t · ds

28

4.2 Characterization of properties of systems

• Definitions and conventions

Define SA = T→A for value space A and time domain T. Then

– A signal is a function of type SA

– A system is a function of type SA →SB.

Note: the response of s :SA →SB to input signal x :SA at time t : T is s x t.
Recall: s x t is read (s x) t, not to be confused with s (x t).

29

• Characteristics Let s :SA →SB. Then:

– System s is

memoryless iff ∃ f— : T→A→B . ∀x :SA . ∀ t : T . s x t = ft (x t)

– Let T be additive, and the shift function σ— be defined by

στ x t = x (t + τ) for any t and τ in T and any signal x. Then s is

time-invariant iff ∀ τ : T . s ◦στ = στ ◦ s

– Let now s :SR →SR. Then system s is linear iff

∀ (x, y) :S2
R

. ∀ (a, b) :R2 . s (a
⇀· x +̂ b

⇀· y) = a
⇀· s x +̂ b

⇀· s y.

Equivalently, extending s to SC →SC in the evident way, system s is

linear iff ∀ z :SC . ∀ c : C . s (c
⇀· z) = c

⇀· s z

– A system is LTI iff it is both linear and time-invariant.

30

• Response of LTI systems

Define the parametrized exponential E— : C→T→C with Ec t = ec·t

Then we have:

Theorem: if s is LTI then s Ec = s Ec 0
⇀· Ec

Proof: we calculate s Ec (t + τ) to exploit all properties.

s Ec (t + τ) = 〈Definition σ〉 στ (s Ec) t

= 〈Time inv. s〉 s (στ Ec) t

= 〈Property Ec〉 s (Ec τ
⇀· Ec) t

= 〈Linearity s〉 (Ec τ
⇀· s Ec) t

= 〈Defintion
⇀〉 Ec τ · s Ec t

Substituting t := 0 yields s Ec τ = s Ec 0 · Ec τ or, using
⇀

,
s Ec τ = (s Ec 0

⇀· Ec) τ , so s Ec = sEc 0
⇀· Ec by function equality.

The 〈Property Ec〉 is στ Ec = Ec τ
⇀· Ec (easy to prove).

Note that this proof uses only the essential hypotheses.

31

4.3 Tolerances on specifications (origin of our × operator)

a. Tolerances for functions: formalizing a convention in communications:

A tolerance function T specifies for every domain value x the set T x of
allowable function values. Note: D T also taken as the domain specification.

Example: radio frequency filter characteristic and its formalization

6

-

Gain

Frequency�
�
�
�
�
�
�
�
� A

A
A
A
A
A
A
A
A�

�
�
�
�
�
�� A

A
A
A
A
A
AA

6

?

���� T x

� f xs

x

Example Formalization

D f = D T

x ∈ D f ∩ D T ⇒ f x ∈ T x

b. Generalized Functional Cartesian Product ×: for any family T of sets,

Definition: f ∈×T ≡ D f = D T ∧ ∀x :D f ∩ D T . f x ∈ T x
equivalently: ×T = {f :D T → ⋃

T | ∀x :D f ∩ D T . f x ∈ T x}

32

Next topic

1. Introduction: motivation and approach)

2. The formalism, part A: language

3. The formalism, part B: formal rules

4. Examples I: Systems Theory

5. Examples II: Computing Science

• From data structures to query languages

• Formal semantics of programming languages

6. Examples III: Common Aspects

7. Conclusions — A formalism for Electrical and Computer engineering

33

5 Examples II: Computing Science

5.0 From data structures to query languages

a. Aggregate data types (all aggregates are functions!) Some typical cases:

• List types: An = ×(n • A) and A∗ =
⋃

n : N . An and so on

• Record types: defining, for any F : Fam (FamT),

RecordF = ×(
⋃
· F)

Example:

Let Person :=Record (name 7→A
∗, age 7→N)

Then person : Person satisfies person name ∈ A∗ and person age ∈ N.

34

b. Overloading and polymorphism

• Aspects to be covered: disambiguation and refined typing

• Two main operators: (for family T of function types to be combined)

– Parametrized (Church style): simply ×T

– Unparametrized (Curry style): function type merge

def ⊗ : Fam (P F)→P F with ⊗T = {⋃· F | F :×T ∧. c©F}

Note: for families F and G of functions: F ⊗ G = ⊗ (F, G) or

F ⊗ G = {f ∪· g | f, g : F ×G∧. f c© g}

35

c. Relational databases

• Formal description: by declarations (here explained by example)

def CID :=Record (code 7→Code, name 7→A
∗, inst 7→ Staff , prrq 7→Code∗)

Code Name Instructor Prerequisites

CS100 Basic Mathematics for CS R. Barns none

MA115 Introduction to Probability K. Jason MA100
CS300 Formal Methods in Engineering R. Barns CS100, EE150

· · · · · · · · ·

• Query operators: all the usual ones are subsumed by generic functionals

– The usual selection-operator (σ) by σ (S, P) = S ↓ P .

– The usual projection-operator (π) by π (S, F) = {r ⌉F | r :S} .

– The usual join-operator (⊲⊳) by S ⊲⊳ T = S ⊗ T .

Observation: S ⊲⊳ T = {s∪· t | (s, t) : S ×T ∧. s c© t}
Moreover, ⊲⊳ is assiciative, although ∪· is not.

36

5.1 Formal semantics of programming languages

a. An analogy: colliding balls (”Newton’s Cradle”)

mm

�
�

�

mm mm mm mm

f f

m

L
L
L
L

�
�

�
�

side
view

jm mM

�
�

��

State s := v, V (velocities); 8s before and s′ after collision. Lossless collision:

R (8s, s′) ≡ m · 8v + M · 8V = m · v′ + M · V ′

∧ m · 8v2 + M · 8V 2 = m · v′2 + M · V ′2

Letting a := M/m, assuming v′ 6= 8v and V ′ 6= 8V (discarding trivial case):

R (8s, s′) ≡ v′ = −a−1
a+1

· 8v + 2·a
a+1

· 8V ∧ V ′ = 2
a+1

· 8v + a−1
a+1

· 8V

Crucial point: mathematics is not used as just a “compact language”; rather:
the calculations yield insights that are hard to obtain by intuition.

37

b. Program equations for a simple language (Dijkstra’s guarded commands)

State change expressed by R :C → S
2 →B, termination by T : C →S→B.

Syntax: command c State change R c (s, s′)
v := e s′ = s[ve
skip s′ = s

abort 0
c′ ; c′′ ∃ t • R c′ (s, t) ∧ R c′′ (t, s′)

if i : I . bi -> c′i fi ∃ i : I . bi ∧ R c′i (s, s
′)

Syntax: command c Termination T c s

v := e 1

skip 1
abort 0
c′ ; c′′ T c′ s ∧ ∀ t • R c′ (s, t) ⇒ T c′′ t

if i : I . bi -> c′i fi ∃ b ∧ ∀ i : I . bi ⇒ T c′i s

Iteration command c is do b -> c′ od ; dynamics if ¬ b -> skip b -> (c′ ; c) fi

38

c. Calculationally deriving various “axiomatic” semantics

• Abbreviations: in the sequel, we shall
– often write s • e for s : S . e (since the domain is always S);

– often use either s, s′ or 8s, s instead of 8s, s′ (just dummies!).

• Ante-/postcondition semantics via equations (no “special logics”)

Let predX = X →B for any set X, so predS is the set of state predicates.

Anteconditions A (“before”) & postconditions P (“after”) are of this type.

We define Hoare triples by functions of type predS ×C × predS →B

We express termination for given antecondition by Term :C → predS →B

{A} c {P} ≡ ∀ 8s • ∀ s′ • A 8s ∧ R c (8s, s′) ⇒ P s′ “partial correctness”

[A] c [P] ≡ {A} c {P} ∧ Term cA “total correctness”
Term cA ≡ ∀ s • A s ⇒ T c s “termination”

Intuitive justification: given antecondition A, all that is known about the

relation between 8s and s′ is A 8s and R c (8s, s′). So this must imply P s′.

39

• Calculate all properties of interest Predicate calculus, no special logics!

Example: weakest antecondition semantics (Dijkstra style). Definitions:
– Weakest liberal antecondition: weakest A satisfying {A} c {P}
– Weakest antecondition: weakest A satisfying [A] c [P]

Calculational derivation of an expression for such antecondx: push A out

[A] c [P]
≡ 〈Def. [A] c [P]〉 {A} c {P} ∧ Term cA

≡ 〈Def. {A} c {P}〉 ∀ (s • ∀ s′ • A s ∧ R c (s, s′) ⇒ P s′) ∧ Term cA
≡ 〈Def. Term cA〉 ∀ (s • ∀ s′ • A s ∧ R c (s, s′) ⇒ P s′) ∧ ∀ (s • A ⇒ T c s)

≡ 〈Distr. ∀/∧〉 ∀ s • ∀ (s′ • A s ∧ R c (s, s′) ⇒ P s′) ∧ (A s ⇒ T c s)
≡ 〈Shunt ∧/⇒〉 ∀ s • ∀ (s′ • A s ⇒ R c (s, s′) ⇒ P s′) ∧ (A s ⇒ T c s)
≡ 〈Ldist. ⇒/∀〉 ∀ s • (A s ⇒ ∀ s′ • R c (s, s′) ⇒ P s′) ∧ (A s ⇒ T c s)

≡ 〈Ldist. ⇒/∧〉 ∀ s • A s ⇒ ∀ (s′ • R c (s, s′) ⇒ P s′) ∧ T c s

So [A] c [P] ≡ ∀ s • A s ⇒ ∀ (s′ • R c (s, s′) ⇒ P s′) ∧ T c s. Hence define

def wla :C → predS → predS with wla c P s ≡ ∀ s′ • R c (s, s′) ⇒ P s′

def wa :C → predS → predS with wa c P s ≡ wla c P s ∧ T c s

40

d. Results and more analogies

• From the preceding, we obtain by functional predicate calculus:

wa [[v := e]] P s ≡ P (s[ve)

wa [[c′ ; c′′]] ≡ wa c′ ◦wa c′′

wa [[if i : I . bi -> c′i fi]]P s ≡ ∃ b ∧ ∀ i : I . bi ⇒ wa c′i P s

wa [[do b -> c′ od]]P s ≡ ∃n : N . wn (¬ b ∧ P s) defining w by
w q ≡ (¬ b ∧ P s) ∨ (b ∧ wa c′ (s • q) s)

Warning: due to a syntactic shortcut, s = tuple of all program variables.

• Remark: practical rules for loops (invariants, bound functions) similarly

• Analogies: Green functions (for linear device d), Fourier transforms

wla c P s ≡ ∀ s′ : S . R c (s, s′) ⇒ P s′

Rsp d f x = I x′ : R . G d (x, x′) · f x′ (linear d)
Rsp d f t = I t′ : R . h d (t − t′) · f t′ (for LTI d)

F f ω = I t : R . exp(−j · ω · t) · f t

41

Next topic

1. Introduction: motivation and approach)

2. The formalism, part A: language

3. The formalism, part B: formal rules

4. Examples I: Systems Theory

5. Examples II: Computing Science

6. Examples III: Common Aspects

• Example: Automata as systems

7. Conclusions — A formalism for Electrical and Computer engineering

42

6 Examples III: Common aspects

Example: Automata as systems

• Motivation and chosen topic

Automata: classical common ground between computing and systems theory.

Even here formalization yields unification and new insights.

Topic: sequentiality and the derivation of properties by predicate calculus.

• Sequences Let n = {m : N | m < n} for n : N′ where N
′ = N ∪ ι∞.

A sequence is any function whose domain is n for some n : N′

– Operators Concatenation (++), e.g., (0, 7, e) ++ (3, d) = 0, 7, e, 3, d.

Append (−<): x−< a = x ++ τ a. Length (#): #x = n ≡ D x = n

– List types For set A, define An by An = n→A, e.g., (0, 1, 1, 0) ∈ B
4.

Also, A∗ =
⋃

n : N . An (lists).

• Discrete systems: signals of type A∗ (or B∗), and systems of type A∗→B∗.

43

• Sequentiality Define ≤ on A∗ (or B∗ etc.) by x ≤ y ≡ ∃ z :A∗ . y = x ++ z.

System s is non-anticipatory or sequential iff x ≤ y ⇒ s x ≤ s y

Function r : (A∗)2 →B∗ is a residual behavior of s iff s (x ++ y) = s x ++ r (x, y)

Theorem: s is sequential iff it has a residual behavior function.

Proof: we start from the sequentiality side.

∀ (x, y) : (A∗)2 . x ≤ y ⇒ s x ≤ s y
≡ 〈Definit. ≤〉 ∀ (x, y) : (A∗)2 . ∃ (z :A∗ . y = x ++ z) ⇒ ∃ (u :B∗ . s y = s x ++ u)

≡ 〈Rdst ⇒/∃〉 ∀ (x, y) : (A∗)2 . ∀ (z :A∗ . y = x ++ z ⇒ ∃u :B∗ . s y = s x ++ u)
≡ 〈Nest, swp〉 ∀x :A∗ . ∀ z : A∗ . ∀ (y :A∗ . y = x ++ z ⇒ ∃u : B∗ . s y = s x ++ u)
≡ 〈1-pt, nest〉 ∀ (x, z) : (A∗)2 . ∃u :B∗ . s (x ++ z) = s x ++ u

≡ 〈Compreh.〉 ∃ r : (A∗)2 →B∗ . ∀ (x, z) : (A∗)2 . s (x ++ z) = s x ++ r (x, z)

We used the function comprehension axiom: for any relation R : X ×Y →B,

∀ (x :X . ∃ y : Y . R (x, y)) ≡ ∃ f : X →Y . ∀x :X . R (x, f x)

44

• Derivatives and primitives The preceding framework leads to the following.

– Observation: An rb function is unique (exercise).

– We define the derivation operator D on sequential systems by

D s ε = ε and D s (x−< a) = s x ++ D s (x−< a)

With the rb function r of s, D s (x−< a) = r (x, τ a).

– Primitivation I is defined for any g : A∗→B∗ by

I g ε = ε and I g (x−< a) = I g x ++ g (x ++ a)

– Properties (note a striking analogy from analysis)

s (x−< a) = s x ++ D s (x−< a) s x = s ε ++ I (D s) x

f (x + h) ≈ f x + D f x · h f x = f 0 + I (D f) x

In the second row, D is derivation as in analysis, and I g x =
∫ x

0 g y · d y.

– The state space is {y : A∗ . r (x, y) | x :A∗} .

45

Next topic

1. Introduction: motivation and approach)

2. The formalism, part A: language

3. The formalism, part B: formal rules

4. Examples I: Systems Theory

5. Examples II: Computing Science

6. Examples III: Common Aspects

7. Conclusions — A formalism for Electrical and Computer engineering

46

7 Final considerations

• What we have shown

– A formalism with a very simple language and powerful formal rules

– Notational and methodological unification of CS and systems theory

– Unification also encompassing a large part of mathematics.

• Ramifications

– Scientific: obvious

– Educational: unified basis for ECE (Electrical and Computer Engineering)

• Problems to be recognized

– Students find logic difficult (cause: de-emphasis on proofs in education)

– Conservatism of colleagues possibly larger problem (even censorship).

• Conclusion Long-term advantages outweigh temporary “mathphobic” trends.

47

