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WITH SYMMETRY

JORIS VANKERSCHAVER

Abstract. We introduce a suitable generalization of the momentum map for nonholonomic
field theories and prove a covariant form of the nonholonomic momentum equation. We
show that these covariant objects coincide with their counterparts in mechanics by making
the transition to the Cauchy formalism.

1. Introduction

In this note, we study nonholonomic field theories with symmetry. Our goal is to show that the
results obtained in the context of mechanical systems, such as the nonholonomic momentum
map and the associated Noether theorem, have a natural counterpart in covariant field theory.
We will mainly be concerned with the so-called multisymplectic approach to field theories (see
[7, 8, 14] and the references therein).

In section 2 we review the multisymplectic treatment of first-order Lagrangian field theories,
with special emphasis, in subsection 2.3, on the inclusion of nonholonomic constraints into
this picture. The rest of the paper is then devoted to studying the action of a symmetry
group: as a warming-up, we treat in section 3 the case where no constraints are present. We
review the covariant Noether theorem in a way suitable for generalization to the constrained
case. In section 4, we introduce constraints into the framework and we study the implications
for the Noether theorem. Finally, in section 5 we break covariance to make the link with the
geometric structures known from nonholonomic mechanical systems with symmetry.

2. Lagrangian first-order field theories

2.1. Notations. Let π : Y → X be a fibre bundle of rank m, with (n + 1)-dimensional
orientable base space X. In addition, we will fix a volume form µ on X. Typically, X will
represent space-time and the sections of π will be the field configurations that we wish to
study. For example, in electromagnetism, Y is the cotangent bundle T ∗X and the fields are
1-forms representing the electromagnetic potential. For other physically relevant examples,
we refer to [8].

From time to time, it will be handy to consider coordinate expressions of the objects involved:
to this end, we choose a coordinate system (x1, . . . , xn+1) on X such that µ is locally given by
µ := dn+1x = dx1∧· · ·∧dxn+1. On Y , we will choose a coordinate system (xµ, ya) adapted to
the projection π (where a = 1, . . . ,m). On the first jet bundle J1π we then have the induced
coordinate system (xµ, ya, ya

µ). We will denote the projection of J1π onto Y by π1,0, and that
onto X by π1 (such that π1 = π ◦ π1,0). The bundle of π1-vertical (resp. π1,0-vertical) vectors
on J1π will be denoted by V π1 (resp. V π1,0).
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For later use we also mention here a particular vector-valued (n+ 1)-form Sµ on J1π, called
the vertical endomorphism (see [14]). In coordinates, Sµ reads

Sµ = (dya − ya
νdx

ν) ∧ dnxµ ⊗
∂

∂ya
µ

,

where dnxµ is a short-hand notation for ∂
∂xµ dn+1x.

2.2. The Cartan form. Given a regular first-order Lagrangian L, one can construct the
associated Cartan (n+1)-form ΘL and the multisymplectic form ΩL = −dΘL. The coordinate
expression of ΘL is given by

ΘL =
∂L

∂ya
µ

(dya − ya
νdx

ν) ∧ dnxµ + Ldn+1x.

We will not dwell into the precise intrinsic definition of these objects any further, but instead
we refer the reader to [7, 8, 14] and the references therein.

In this note, we will mainly consider the so-called De Donder-Weyl equation (see [14]): a
connection Υ on π1 with horizontal projector h is said to be a solution of the De Donder-
Weyl equation if

(1) ihΩL = nΩL.

If h is a solution of (1) and L a regular Lagrangian, then a section ψ of π1 is an integral section
of h if ψ = j1φ for a section φ of π (implying that Υ is semi-holonomic) and, in addition, j1φ
satisfies the Euler-Lagrange equations:

(2)
d

dxµ

(
∂L

∂ya
µ

(j1φ)
)
− ∂L

∂ya
(j1φ) = 0.

See [2] for a proof of this statement.

2.3. Nonholonomic constraints. In this section, we will briefly show how to derive the
nonholonomic equations of motion for a system with Lagrangian L and a set of constraints
represented by a submanifold C. For a more detailed treatment, we refer to [2, 15].

Let C be a k-codimensional submanifold of J1π, with π1,0(C) = Y and such that (π1,0)|C :
C → Y is a subbundle of π1,0. The submanifold C will represent some external (nonholonomic)
constraints imposed on the system. Assume that C is locally given by the vanishing of k inde-
pendent functions ϕα and consider the subset F of ∧n+1(T ∗J1π) spanned by Φα = S∗µ(dϕα),
where Sµ is the vertical endomorphism on J1π. In coordinates, we have

Φα =
∂ϕα

∂ya
µ

(dya − ya
νdx

ν) ∧ dnxµ.

The (n+ 1)-forms Φα are linearly independent because of the initial assumption that (π1,0)|C
is a subbundle of π1,0. Hence, F is a subbundle of ∧n+1(T ∗J1π).

In the presence of nonholonomic constraints, the field equations become

(3)
d

dxµ

(
∂L

∂ya
µ

(j1φ)
)
− ∂L

∂ya
= λαµ

∂ϕα

∂ya
µ

,
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together with the constraint that j1φ ∈ C (see [2]). Accordingly, the unconstrained De
Donder-Weyl equations are replaced by the following conditions along C:

(4) ihΩL − nΩL ∈ I(F ) and Imh ⊂ TC,

where I(F ) is the ideal generated by F . The terms on the right-hand side of (3) and (4)
represent the constraint forces that keep the section j1φ constrained to C. The unknown
multipliers λαµ should be determined from the condition that j1φ ∈ C.

Remark 2.1. In general, the constraints represented by the submanifold C are nonlinear. Lin-
ear constraints can be treated as a special case of this formalism by considering a distribution
D on Y and taking C to be

C =
{
j1xφ ∈ J1π : ImTxφ ⊂ Dφ(x)

}
.

If D is annihilated by the k one-forms Aα
ady

a +Bα
µdx

µ, then C is given by the vanishing of the
kn functions ϕα

µ = Aα
ay

a
µ + Bα

µ . Whenever D is integrable, these constraint functions can be
written as total derivatives with respect to xµ of functions on Y , in which case the constraints
can reasonably be said to be holonomic. This case is treated in far greater detail in [12]. �

2.4. Connections on π1. In this section, we will prove a number of straightforward proper-
ties of connections on π1 that will be useful later on. The reader is referred to [14] for a more
comprehensive treatment.

We recall that a connection Υ on π1 is said to be semi-holonomic if the associated horizontal
projector h satisfies ihθ = 0 for each contact one-form θ. In coordinates, if

h = dxµ ⊗
(

∂

∂xµ
+ Γa

µ

∂

∂ya
+ Γa

µν

∂

∂ya
ν

)
,

semi-holonomicity implies that Γa
µ = ya

µ. This implies that any integral section of h is auto-
matically the prolongation of a section of π.

Lemma 2.2. For each semi-holonomic connection Υ with horizontal projector h, the following
holds:

ihΘL = nΘL + Lµ.

Proof: We give the proof in coordinates. For any connection h, we have

ihd
n+1x = (n+ 1)dn+1x and ihd

nxµ = ndnxµ.

Therefore,

ihΘL =
∂L

∂ya
ν

ihθ
a ∧ dnxν + n

∂L

∂ya
ν

θa ∧ dnxν + (n+ 1)Ldn+1x,

where we have introduced the contact forms θa = dya − ya
µdx

µ. If h is semi-holonomic, the
first term on the right-hand side is zero and we obtain the desired expression. �

This lemma can be seen as the jet-bundle analogue of the well-known fact in Lagrangian
mechanics that iXθL = ∆(L) for any second-order vector field X, where θL is the Cartan
one-form corresponding to L, and ∆ the Liouville vector field.

Lemma 2.3. Let X be a vertical vector field on Y and X(1) its prolongation to J1π. If Υ is
a semi-holonomic connection on π1 with horizontal projector h, then the Frölicher-Nijenhuis
bracket [X(1),h] is a vector-valued one-form taking values in V π1,0.
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Proof: If X = Xa ∂
∂ya , then

X(1) = Xa ∂

∂ya
+

(
∂Xa

∂xµ
+
∂Xa

∂yb
yb

µ

)
∂

∂ya
µ

.

(see e.g. [14]) For the bracket, we have that [X(1),h] = LX(1)h and a straightforward calcu-
lation then shows that this is a semi-basic vector-valued one-form taking values in V π1. We
now focus on the coefficient of dxµ ⊗ ∂

∂ya , which is just

X(1)(Γa
µ)−

(
∂Xa

∂xµ
+ Γb

µ

∂Xa

∂yb

)
.

This coefficient is easily seen to vanish when Γa
µ = ya

µ, i.e. when h is semi-holonomic, which
completes the proof. �

As a corollary, we note that this lemma implies that the contraction of [X(1),h] with a semi-
basic form (in particular with ΘL) vanishes.

3. Symmetry in the absence of nonholonomic constraints

Let G be a Lie group acting on Y by bundle automorphisms Φg over the identity in X. The
assumption that G acts vertically is probably superfluous, but for the sake of clarity we will
assume it nevertheless.

The Lie group G acts on J1π by prolonged bundle automorphisms, i.e. j1Φg(j1xφ) = j1x(Φg◦φ).
Now, let L ∈ C∞(J1π) be a G-invariant Lagrangian. The action of G on J1π is called
Lagrangian if, for each ξ ∈ g, there exists an n-form Jξ (depending linearly on ξ) such that
iξJ1π

ΩL = dJξ, where ξJ1π denotes the infinitesimal generator corresponding to ξ. In this case,
the map J : J1π → ∧n(T ∗J1π)⊗ g∗ defined by 〈J, ξ〉 := Jξ is called the covariant momentum
map for the action Φ.

In general, we can also consider actions of G on J1π that are not prolonged actions of an
action on Y , but in this note we will nevertheless restrict ourselves to this special case. It is
easy to see that Lagrangian actions satisfy LξJ1π

ΩL = 0; for prolonged actions we have in
addition that LξJ1π

ΘL = 0 (see lemma 3.1).

If G acts on J1π by prolonged bundle automorphisms, then for each ξ ∈ g the infinitesimal
generator ξJ1π on J1π is the prolongation of the infinitesimal generator ξY on Y . From now
on, we will denote ξJ1π by ξ(1).

Lemma 3.1. The Cartan (n+ 1)-form ΘL is invariant with respect to the action of G lifted
to J1π:

Lξ(1)ΘL = 0.

Proof: See [8, p. 45]. �

For a prolonged action, there always exists a covariant momentum map which is explicitly
given by

Jξ = iξ(1)ΘL.

(see [8, p. 45]). The importance of the covariant momentum map lies in the covariant Noether
theorem, first proved in [8].



THE MOMENTUM MAP FOR NONHOLONOMIC FIELD THEORIES WITH SYMMETRY 5

Proposition 3.2 (Covariant Noether theorem). Let Υ be a connection on π1 such that the
associated horizontal projector h is a solution of the unconstrained De Donder-Weyl equation
(1). For every ξ ∈ g, the momentum map Jξ is constant on integral sections of h:

dhJξ = 0.

Proof: In this proof, as well as in the remainder of this note, we make frequent use of some
elementary properties of the Frölicher-Nijenhuis bracket. For the sake of completeness, we
have summarized these properties in the appendix.

We have

dhJξ = dhiξ(1)ΘL

= (ihd− dih)iξ(1)ΘL

= ihLξ(1)ΘL − ihiξ(1)dΘL − dihiξ(1)ΘL.(5)

In the last expression, the first term vanishes because of lemma 3.1. The second term can be
rewritten by using the field equations (note that h(ξ(1)) = 0 as ξ(1) is π1-vertical):

ihiξ(1)dΘL = iξ(1)ihdΘL = −niξ(1)ΩL,

whereas for the last term we have, using lemma 2.3,

dihiξ(1)ΘL = diξ(1)ihΘL

= diξ(1) (nΘL + Lµ) .

Now, iξ(1)(Lµ) = 0 and so we obtain

dhJξ = niξ(1)ΩL − ndiξ(1)ΘL = −nLξ(1)ΘL = 0,

again due to the invariance of ΘL. �

Remark 3.3. In [8, p. 45], the authors prove a slightly different Noether theorem. They
show that, if φ is a solution of the field equations, then d(j1φ)∗Jξ = 0. It is not hard to prove
that, for any k-form α on J1π, (j1φ)∗dhα = d(j1φ)∗α if and only if j1φ is an integral section
of h. Proposition 3.2 therefore implies that d(j1φ)∗Jξ = 0. The proof of the Noether theorem
in [8] is more straightforward; our proof has the advantage that it will be easily extendible to
the case where nonholonomic constraints are present. �

4. The constrained momentum map

In this section, we study the case of a constrained field theory, with regular Lagrangian L
and constraint submanifold C satisfying the assumptions of section 2.3. The constrained De
Donder-Weyl equations are then given by (4).

Suppose now that in addition to these nonholonomic constraints, there is also a symmetry
group G acting on J1π by prolonged bundle automorphisms, such that both the Lagrangian
L and the constraint manifold C are G-invariant, i.e.

L ◦ j1Φg = L as well as j1Φg(C) ⊂ C
for all g ∈ G. In general, as in the case of nonholonomic mechanics (see [1, 4, 5]), it will
no longer be true that these symmetries give rise to conserved quantities; the precise link
will be made clear by the nonholonomic momentum equation or constrained Noether theorem
(theorem 4.1). Our treatment extends the one in [5]; we refer to that paper, as well as to
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[1, 4] and the references therein, for more information about the nonholonomic momentum
equation in mechanics.

We first introduce the following distribution:

E(γ) = {v ∈ TγJ
1π : iv(S∗µdϕα) = 0 for each α = 1, . . . , k} where γ ∈ C.

For a given γ ∈ C we consider all elements ξ of the Lie algebra g such that ξ(1)(γ) ∈ E(γ).
The set of all such ξ we denote by gγ . We take gE to be the disjoint union of all these spaces
gγ and we assume that gE can be given the structure of a bundle over C.

With these elements in mind, we define the constrained momentum map as a map Jn.h. : C →
∧n(J1π)⊗ gE , constructed as follows. With every section ξ of gE , one may associate a vector
field ξ̃ on J1π by putting ξ̃(γ) = (ξ(γ))J1π(γ). Remark that ξ̃ is a section of E . We then
define Jn.h.

ξ
along C as

Jn.h.
ξ

= iξ̃ΘL.

The importance of the nonholonomic momentum map lies in the nonholonomic momentum
equation:

Theorem 4.1 (Nonholonomic momentum equation). Let Υ be a connection on π1 such that
the associated horizontal projector h is a solution of the constrained De Donder-Weyl equation.
Assume furthermore that G is a Lie group acting on J1π in the way described above. Then
the nonholonomic momentum map satisfies the following equation:

dhJ
n.h.
ξ

= Lξ̃(Lµ) along C.

Proof: Equation (5) from the proof of proposition 3.2 can be used without modification:

dhJ
n.h.
ξ

= ihLξ̃ΘL − ihiξ̃dΘL − dihiξ̃ΘL

= ihLξ̃ΘL + iξ̃(nΩL + ζ)− nLξ̃ΘL + niξ̃dΘL.

In this expression, we have substituted the constrained De Donder-Weyl equation: ζ is an
element of I(F ). As ζ can be written as ζ = λαµdx

µ ∧ fα (see [15]), with fα taking values in
the bundle F , we may conclude that iξ̃ζ = 0. Therefore, we end up with

dhJ
n.h.
ξ̃

= ihLξ̃ΘL − nLξ̃ΘL

= Lξ̃ihΘL − i[ξ̃,h]ΘL − nLξ̃ΘL

= Lξ̃(Lµ),

where we have used the remark following lemma 2.3 to conclude that i[ξ̃,h]ΘL = 0. �

We finish by noting that in the case where ξ̃ can be written as ξ(1) (for example, when ξ is a
constant section), we may conclude from the G-invariance of L that dhJn.h.

ξ̃
= 0. In general,

though, this will not be the case.

5. The Cauchy formalism

Up until now, all of our results have been derived in a purely covariant setting where all of
the coordinates on the base space X are treated on an equal footing. In particular, there
is no distinguised time coordinate. We will now assume that the Euler-Lagrange equations
associated to the Lagrangian L describe an (hyperbolic) initial-value problem. In this case,
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it is meaningful to single out a global direction of time and break covariance by making the
transition to the space of Cauchy data. We can then rephrase the field equations accordingly
as a time-dependent mechanical system on an infinite-dimensional configuration space (see
[6, 9, 13]).

This is done by fixing a particular diffeomorphism Ψ : R × M → X, where M is an n-
dimensional manifold (and where we tacitly assume that the topology of X is such that Ψ
can indeed be globally defined), thus singling out a “splitting” of X into space and time. To
avoid the technical matters arising when considering the behaviour of the field “at infinity”,
we assume that M is compact. We define the space X̃ to consist of all embeddings τ of M
into X such that there exists a t ∈ R for which τ = Ψ(t, ·). Hence, there is a one-to-one cor-
respondence between R and X̃. This correspondence, or the existence of the diffeomorphism
Ψ, induces a distinguished vector field T on X, defined at x ∈ X, by

T(x) =
d

ds
Ψ(s, u)

∣∣∣
s=t
, where x = Ψ(t, u).

For the sake of convenience, we will assume that M is equipped with a volume form µM such
that µ := dt ∧ µM is a volume form for X, where t is a global coordinate labelling X̃.

We define the space of Cauchy data (denoted by Z̃) as the space of embeddings κ : M ↪→ J1π

for which there exists a section φ of π and an element τ of X̃ such that κ = j1φ ◦ τ . For more
information on this space (which can be given the structure of a smooth manifold in some
suitable sense), we refer the reader to [3, 9, 11, 13]. There exists a convenient way of viewing
the tangent bundle of Z̃: a tangent vector v ∈ TκZ̃ can be seen as a section of Γ(κ∗TJ1π) (a
vector field along κ). There exist similar interpretations of TX̃ and T Ỹ .

A vector field V on J1π induces a vector field Ṽ on Z̃ by composition: Ṽ (κ) = V ◦κ. Similarly,
an (n+ k)-form α on J1π induces a k-form α̃ on Z̃ by integration:

(6) α̃(κ)(Ṽ1, . . . , Ṽk) =
∫

M
κ∗iṼ1∧···∧Ṽk

α.

By use of this correspondence, the multisymplectic form ΩL and the volume form µ induce
respectively a two-form Ω̃L and a one-form µ̃ on Z̃, whereas the Lagrangian L can be seen to
induce a function on Z̃:

L̃(κ) =
∫

M
κ∗iT(Lµ).

Strictly speaking, on the right-hand side of this expression one should replace T by an arbi-
trary vector field V on J1π projecting down to T, but since Lµ is semi-basic, the contraction
does not depend on V but only on T.

Remark 5.1. It has been shown that the covariant field equations induce a dynamical system
Γ on Z̃ whose determining equations are formally identical to those of a time-dependent
mechanical system with an infinite-dimensional configuration space (see [9, 13]):

(7) iΓΩ̃L = 0 and iΓµ̃ = 1.

In [15], we showed that in the case of nonholonomic field theory, the induced dynamical system
on Z̃ is determined by

(8) iΓΩ̃L

∣∣
C̃ ∈ F̃ and Γ ∈ T C̃,
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where F̃ is a codistribution induced by F and C̃ is the subset of Z̃ induced by C and defined
as

C̃ = {κ ∈ Z̃ : Imκ ⊂ C}.
In both the constrained and the unconstrained case, a connection Υ solving the covariant field
equations induces a vector field Γ on Z̃ which is a solution of the corresponding dynamical
system on Z̃. In the unconstrained case, this dynamical system is given by (7), whereas in
the constrained case the equations of motion are given by (8). The precise relation between
h and Γ is

(9) Γ(κ) = h(Tj1φ(T)) ◦ κ,
where we have decomposed κ as κ = j1φ ◦ τ . With some abuse of notation, we will also write
Γ = h(T). �

In the next sections, we will exhibit the structures on Z̃ induced by the (nonholonomic)
momentum map and we will show how the covariant momentum equation give rises to a
momentum equation on Z̃ which is formally identical to the one encountered in nonholonomic
mechanics (see for example [4, 5]).

By (6), the component Jξ : J1π → ∧n(J1π) of the covariant momentum map induces a map
J̃ξ ∈ C∞(Z̃) on the space of Cauchy data:

J̃ξ(κ) =
∫

M
κ∗Jξ.

In the constrained case, there is a similar definition for the map J̃n.h.
ξ in the Cauchy formalism,

induced by the component Jn.h.
ξ of the constrained momentum map. Note that Jn.h.

ξ is defined
along C.

5.1. The unconstrained case. We now turn to proving the analogue of Noether’s theorem
in the Cauchy framework. There are essentially two ways in which one could approach this
problem: either by directly defining the action of G on Z̃ and using the standard techniques
known from mechanics, or by showing that the covariant Noether theorem leads in a straight-
forward way to the Noether theorem on the space of Cauchy data. We choose to follow the
second approach, as it allows us to postpone to the very end all of the technical matters
associated with the calculus on infinite-dimensional manifolds.

Proposition 5.2. Let Υ be a connection in π1 such that the associated horizontal projector
h is a solution of the De Donder-Weyl equation (1). Let J̃ be the momentum map associated
to the covariant momentum map J . Then Noether’s theorem holds: Γ(J̃ξ) = 0 for all ξ ∈ g,
where Γ is a solution to the equations of motion (7) in the Cauchy formalism.

Proof: We will use the following characterisation of the exterior derivative dJ̃ξ in terms of
dJξ: 〈

Ṽ , dJ̃ξ

〉
(κ) =

∫
M
κ∗(iṼ dJξ),

for an arbitrary vector field Ṽ on Z̃. For a proof, we refer to [13, prop. 3.3.9] or to the
expressions used in [9, lemma 5.1].

The embedding κ : M ↪→ J1π can be written as κ = j1φ ◦ τ . Without loss of generality,
we may take φ to be a solution of the field equations. This lies at the heart of the Cauchy
analysis: κ specifies the values of the fields and their derivatives on a hypersurface and due
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to the (supposed) hyperbolicity of the equations of motion, the subsequent evolution is then
fixed (and given by j1φ). Formally, let t 7→ c(t) be an integral curve of Γ such that c(0) = κ.
Then j1xφ = [c(t)](u), where x = Φ(t, u).

We then have, noting that h(T) = Tj1φ(T),〈
Γ, dJ̃ξ

〉
(κ) =

∫
M
κ∗(iΓdJξ) =

∫
M
τ∗(j1φ)∗(ih(T)dJ) =

∫
M
τ∗iT((j1φ)∗dJ).

As we pointed out in the remark following proposition 3.2, one can check that (j1φ)∗dhα =
d(j1φ)∗α if and only if j1φ is an integral section of h. We conclude that

(10)
〈
Γ, dJ̃ξ

〉
(κ) =

∫
M
τ∗iT((j1φ)∗dhJξ).

As the ξ-component Jξ of the covariant momentum map satisfies Noether’s theorem, i.e.
dhJξ = 0, we have that Γ(J̃ξ) = 0. This establishes the theorem of Noether in the Cauchy
framework. �

5.2. The constrained case. Quite surprisingly, much of the material developed in the pre-
ceding section carries over quite naturally to the constrained case. In particular, for the
nonholonomic momentum map, equation (10) still holds:〈

Γ, dJ̃n.h.
ξ

〉
(κ) =

∫
M
τ∗iT((j1φ)∗dhJn.h.

ξ
), for κ ∈ C,

where we attribute a similar meaning to all terms involved: h is a solution of the constrained
De Donder-Weyl equation, j1φ is an integral section of the corresponding connection and
Γ = h(T). Note that Γ is now a solution of (8).

Now, if Jn.h.
ξ

satisfies the nonholonomic momentum equation, then

(11)
〈
Γ, dJ̃n.h.

ξ

〉
(κ) =

∫
M
τ∗iT((j1φ)∗Lξ(Lµ)).

In the following proposition, we further elaborate the right-hand side. We recall that the
vector field ξ̃ on J1π naturally induces a vector field ξ̂ on Z̃ by putting ξ̂(κ) = ξ̃ ◦ κ.

Proposition 5.3. Let Υ be a connection on π1 such that along the constraint submanifold
C the associated horizontal projector h satisfies the constrained De Donder-Weyl equation.
Assume a Lie group G acts in the way described above and let J̃n.h. be the momentum map
associated to the covariant momentum map Jn.h.. Then J̃n.h. satisfies the nonholonomic
momentum equation: for all ξ ∈ gE ,

Γ(J̃n.h.
ξ

) = ξ̂(L̃) along C.

Proof: We rewrite the right-hand side of (11) by performing exactly the opposite manipula-
tions as we did to obtain eq. (10). This leads to〈

Γ, dJ̃n.h.
ξ

〉
(κ) =

∫
M
κ∗ih(T)Lξ̃(Lµ) =

∫
M
κ∗Lξ̃(ih(T)(Lµ)) +

∫
M
κ∗i[h(T),ξ̃](Lµ).

The last term vanishes as Lµ is semi-basic and [h(T), ξ̃] is π1-vertical (ξ̃ is π1-vertical). By
lemma 3.3.9 of [13], we see that the first term on the right-hand side equals∫

M
κ∗Lξ̃(ih(T)(Lµ)) = Lξ̂(L̃),
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and this proves the momentum equation in the Cauchy formalism. �
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Appendix: elementary properties of the Frölicher-Nijenhuis bracket

In this section, we review some properties of the Frölicher-Nijenhuis bracket and the various
derivations associated to vector-valued forms on a manifold. For a detailed treatment of the
Frölicher-Nijenhuis bracket, we refer the reader to [10, 14].

Let M be a manifold. A vector-valued one-form h is a section of TM ⊗ T ∗M . Associated to
h is a derivation ih (of type i∗ and degree 0), defined by

(12) (ihα)(v0, . . . , vk) =
k∑

i=0

(−1)iα(h(vi), v0, . . . , v̂i, . . . , vk) for α ∈ Ωk+1(M).

We then define dh as dh = ih ◦ d− d ◦ ih; this is a derivation of type d∗ and degree 1.

Vector-valued forms of higher degree are defined accordingly as sections of the tensor product
TM ⊗ ∧k(T ∗M). A vector-valued k-form R can easily be seen to give rise to a derivation iR
of degree k − 1 (by virtue of a generalization of eq. 12) as well as a derivation dR of degree
k. A vector-valued form of degree zero is simply a vector field, and the associated derivations
are in this case the contraction iX and the Lie derivative LX .

The Frölicher-Nijenhuis bracket of a vector-valued r-form R and a vector-valued s-form S is
then defined as the unique vector-valued (r + s)-form [R,S] for which

dR ◦ dS − (−1)rsdS ◦ dR = d[R,S].

We have deliberately been vague about the nature of this bracket: most of the time we will
only need the bracket of a vector field X with a vector-valued one-form h (which will be the
horizontal projector of a connection). In this case, it is not hard to prove that

[X,h] = LXh.

The following lemma collects the properties of the Frölicher-Nijenhuis bracket that we will
be needing in the body of the text. They can be suitably generalized and form part of a
well-investigated calculus, for which we refer to [10].

Lemma 5.4. Let X be a vector field on M and h a vector-valued one-form. Then, for any
k-form α on M , the following holds:

(1) iXihα = ihiXα+ ih(X)α;
(2) ihLXα = LXihα− i[X,h]α.
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Proof: Let α be a 2-form (the case of a k-form α is completely similar) and Y a vector field
on M . Then

(iXihα)(Y ) = α(h(X), Y )− α(h(Y ), X)

= (ih(X)α)(Y ) + (ihiXα)(Y ),

which confirms the first property.

The second property (a special case of lemma 8.6 in [10]) can be proved directly by noting
that a derivation is completely determined by its action on functions and one-forms. For a
function f both sides of the relation (2) vanish and for a one-form α we have for the left-hand
side

(ihLXα)(Y ) = (LXα)(h(Y )) = LX(α(h(Y )))− α([X,h(Y )])

= LX(α(h(Y )))− α((LXh)(Y ))− α(h([X,Y ])).

Taking together the first and third term, we obtain LX(ihα)(Y ), whereas the second term is
just i[X,h]α(Y ). �
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