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Chapter 1

Introduction

Mathematical morphology (MM) is a theory for the analysis of spatial structures, based
on set-theoretical notions and on the concept of translation. In the sixties G. Matheron
and J. Serra [41] introduced the concept of MM, both inspired by the study of the
geometry of porous media. Porous media are binary in the sense that a point of a
porous medium either belongs to a pore or to the matrix surrounding the pores.
Matheron and Serra developed a theory for analysing binary images. The matrix can
be considered as the set of object points and the pores as the complement of this set. As
a consequence, image objects can be processed with simple operations such as union,
intersection, complement and translation. MM was thus originally developed for binary
images only. And so Matheron and Serra gave the basis for MM as a new approach
in image analysis. Nowadays MM has many applications in image analysis such as
edge detection, noise removal, object recognition, pattern recognition, image segmen-
tation and image magnification in a.o. geosciences, materials science, the biological
and medical world [71, 74]. The basic tools of MM are the morphological operators,
which transform an image A we want to analyse, using a structuring element B into
a new image P (A, B) in order to obtain additional information about the objects in A
like shape, size, orientation, image measurements. Apart from the threshold and umbra
approach, binary morphology can be extended to morphology for greyscale images
using fuzzy set theory, called fuzzy morphology. The application of morphological op-
erators to colour images is not straightforward. And this is what this work is concerned
with.

In chapter 2 we begin with the representation of digital images and some definitions
about fuzzy sets, fuzzy logical operators, L-fuzzy sets, L-fuzzy logical operators, L-
fuzzy relations and L-fuzzy relational images we will need further in this thesis. In the
third chapter we explain how the human eye is build and how the human eye perceives
light and so colour. We then describe additive and subtractive colour mixing to repro-
duce colour and give the difference between the terms colour model and colour space.
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Lastly, we study the colour models RGB, CMY and CMYK, YUV, YIQ and YCbCr,
HSV and HSL, CIEXYZ, CIEYxy, L*a*b* and L*u*v* in chapter 3. The definition of
the fundamental morphological operators dilation and erosion is introduced in chapter
4. We consider the binary morphological operators as well as the greyscale morpho-
logical operators based on the threshold and umbra approach and on fuzzy logic. Next
we give an overview and a short description of the existing extensions of MM to
colour we found in the literature. A first way to apply the morphological operators
for greyscale images to colour images is the component-based approach of processing
the morphological operators on each of the colour components separately. But this ap-
proach often leads to artefacts because the connection between the colour components
is not taken into account. Therefore we have searched for a vector ordering of colours,
where we have considered the RGB, HSV and L*a*b* colour model. Subsequently, we
have defined associated minimum and maximum operators and new operations +, −
and ∗ between colours so that we could extend the greyscale morphological operators
to new vector-based operators acting on colour images. The problem of looking for a
vector ordering for colour or multivariate morphological image processing is not new
and is being developed since the early 90’s. What is new here is the used approach,
namely through the umbra approach and fuzzy set theory. Experimental results show
that we get very good results. At last, in chapter 5 we have applied our new approach
to colour morphology to magnify images. Image magnification has many applications
such as simple spatial magnification of images (e.g. printing low-resolution documents
on high-resolution printer devices, digital zoom in digital cameras), geometrical trans-
formation (e.g. rotation), etc. Different image magnification methods have already
been proposed in the literature, a.o. [2, 6, 20, 27, 32, 34, 38, 42, 54, 76, 78], but we
have found only one paper [1] about techniques for the enlargement of images making
use of MM. Because the existing methods usually suffer from one or more artefacts
such as staircasing and blurring, we have developed a new image interpolation method,
based on MM, to magnify images, binary images as well as colour images, with sharp
edges. Whereas a simple blow up of the image will introduce jagged edges (staircasing
effect), called ‘jaggies’, our method avoids these jaggies by detecting jagged edges in
the trivial nearest neighbour interpolated image, making use of the hit-or-miss trans-
formation, so that the edges become smoother. Experiments show that our method per-
forms very well for the interpolation of ‘sharp’ images, like logos, cartoons and maps,
for binary images as well as for colour images. Finally we propose an extension of our
morphological interpolation method to magnify colour images with ‘vague’ edges. We
demonstrated quite good results on this topic and an improvement w.r.t. the state-of-
the-art.
Some parts of this thesis have already been published in a book [15] and in international
journals [14, 16], and have been presented on (international) conferences [13, 14, 16].
Contributions to other people’s work have been published in book chapters [69], inter-
national journals [30, 46, 48, 49, 60, 61, 62, 64, 65, 66, 68] and proceedings of (inter-
national) conferences [29, 31, 45, 47, 50, 63, 67, 82, 83, 84, 86, 85].



Chapter 2

Basic Notions

In this chapter we start with a brief explanation how digital images can be represented,
and give some basic definitions from fuzzy set theory.

2.1 Representation of Images

A digital image I is represented by a two-dimensional array, where an ordered pair
(i, j) denotes the position of a pixel or picture element I(i, j) in the image I . The
resolution of an image is the number of pixels per unit area, and is usually measured in
pixels per inch. We distinguish three different kinds of digital images: binary, greyscale
and colour images.

Binary images assume only two possible pixel values, e.g. 0 and 1, respectively cor-
responding to black and white. Usually white represents the foreground or the ob-
jects in an image, whereas black represents the background. Mathematically, a two-
dimensional binary image can be represented as a mapping f from a universe U of
pixels (usually U is a finite subset of R

2, in practice it will even be a subset of Z
2) into

{0, 1}, which is completely determined by f −1({1}), i.e., the set of white pixels, so
that f can be identified with the set f−1({1}), a subset of U , the so-called domain of
the image. This way a two-dimensional binary image I can be represented as a crisp
subset of U , with

u ∈ I ⇔ u is a white pixel
u /∈ I ⇔ u is a black pixel,

for all u in U .
Greyscale images are images that contain, except black and white, also pixels with
intermediate values between black and white, called grey values. A two-dimensional
greyscale image I can be represented as a mapping from a universe U of pixels to the
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universe of grey values [0, 1], where 0 corresponds to black, 1 to white and in between
we have all shades of grey, where for every u ∈ U holds that

I(u) = 1 ⇔ u is a white pixel of I
I(u) = 0 ⇔ u is a black pixel of I
I(u) ∈ ]0, 1[ ⇔ u is a grey pixel of I.

Colour images are represented as mappings from a universe U of pixels to a ‘colour
interval’ that can be for example the product interval [0, 1] × [0, 1] × [0, 1] (for the
RGB colour model). So a digital colour image in RGB is represented as a two-
dimensional array of (three-dimensional) vectors that defines the red, green and blue
colour component for each pixel. Colour can be modelled in different colour models;
more information about colour and colour models can be found in chapter 3.

2.2 Fuzzy Set Theory

An extensive study of fuzzy set theory can be found in [28]. For more information
about L-fuzzy set theory we also refer to [12].

2.2.1 Fuzzy Sets

Given a universe X and a (crisp) set A in X (A ⊆ X).
The set A can then be represented by a characteristic mapping

kA : X → {0, 1}
x �→ 1 if x ∈ A
x �→ 0 if x /∈ A.

This way kA(x) can be interpreted as the membership degree of x in the set A in X ,
for all x ∈ X . In this case there are only two possible membership degrees: kA(x) = 0
if the element x does not belong to the set A and kA(x) = 1 if x belongs to A. Instead
of a sharp boundary, L. Zadeh introduced in 1965 [88] a gradual transition from non-
membership to membership, allowing partial degrees of membership. Mathematically
this idea is translated into a fuzzy set. A fuzzy set A in a universe X is characterised
by a X − [0, 1] mapping, the so-called membership function,

χA : X → [0, 1]
x �→ χA(x), ∀x ∈ X,

where for all x in X , χA(x) denotes the degree in which x belongs to the fuzzy set A.
χA(x) = 0 means that x does not belong to the fuzzy set A at all, χA(x) = 1 means
that x belongs to A perfectly and between those two extremes there is a gradual transi-
tion from non-membership to membership. Furthermore we will denote the member-
ship degree χA(x) as A(x), where we no longer make a distinction between fuzzy sets
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universe Xuniverse X

A(x)

universe Xuniverse X

A(x)

Figure 2.1: Graphical representation of a fuzzy set A in a universe X.

on the one hand and membership functions on the other hand. An example of a fuzzy
set A in a universe X is shown in figure 2.1. The class of all fuzzy sets in X is denoted
as F(X).

Consider A1 ∈ F(X) and A2 ∈ F(X). The cartesian product A1 × A2 of A1 and
A2 is defined as the fuzzy set

A1 × A2 : X × X → [0, 1]
(x, y) �→ min{A1(x), A2(y)}, ∀(x, y) ∈ X × X.

The notion of cartesian product of two fuzzy sets in the same universe can be extended
to a finite number of fuzzy sets. Let Ai ∈ F(X) with i ∈ {1, . . . , n}, then

A1 × . . . × An : Xn → [0, 1]
(x1, . . . , xn) �→ min{Ai(xi) | i ∈ {1, . . . , n}},

for all (x1, . . . , xn) ∈ Xn.
When we consider two fuzzy sets in different universes A1 ∈ F(X1) and A2 ∈ F(X2),
we define

A1 × A2 : X1 × X2 → [0, 1]
(x1, x2) �→ min{A1(x1), A2(x2)}, ∀(x1, x2) ∈ X1 × X2.

2.2.2 Fuzzy Logical Operators

Now we will extend the logical operations negation (¬), conjunction (∧), disjunction
(∨) and implication (⇒) to fuzzy logic, that is, to operators that apply to elements of
the unit interval [0, 1] and that have a result in [0, 1]. The restriction of these fuzzy lo-
gical operators to {0, 1} have to coincide with the corresponding two-valued operators.
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In order to give a useful meaning on these operators further conditions concerning the
monotonous character and some boundary conditions are required.

Definition 2.1. A conjunctor C on [0, 1] is an increasing [0, 1]× [0, 1]− [0, 1] mapping
satisfying C(0, 0) = C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1. A triangular norm (or
t-norm) T on [0, 1] is a commutative and associative conjunctor on [0, 1] satisfying
T (1, a) = T (a, 1) = a, ∀a ∈ [0, 1].

Definition 2.2. A negator N on [0, 1] is a decreasing [0, 1]− [0, 1] mapping satisfying
N (0) = 1 and N (1) = 0. An involutive negator N on [0, 1] is a negator that satisfies
the extra condition N (N (a)) = a for all a in [0, 1].

Definition 2.3. A disjunctor D on [0, 1] is an increasing [0, 1] × [0, 1] − [0, 1] map-
ping satisfying D(1, 0) = D(0, 1) = D(1, 1) = 1 and D(0, 0) = 0. A triangular
conorm (or t-conorm) S on [0, 1] is a commutative and associative disjunctor on [0, 1]
satisfying S(0, a) = S(a, 0) = a, ∀a ∈ [0, 1].

Definition 2.4. An implicator I on [0, 1] is a [0, 1]× [0, 1]− [0, 1] mapping satisfying
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0, and what is more, I is decreasing
in its first, and increasing in its second component.

The standard negator Ns on [0, 1], defined as Ns(a) = 1 − a for all a in [0, 1], is an
involutive negator.
The best known conjunctors C on [0, 1] are the triangular norms TM (minimum), TP

(algebraic product) and TW (Lukasiewicz triangular norm) with

TM (a, b) = min(a, b),
TP (a, b) = a · b,
TW (a, b) = max(0, a + b − 1), ∀(a, b) ∈ [0, 1]2.

A graphical representation of the t-norms TM , TP and TW is illustrated in figure 2.2. It
is shown that TW ≤ TP ≤ TM .
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Figure 2.2: Graphical representation of the different t-norms, from left to right, the t-norm TM ,
the t-norm TP and the t-norm TW .

The best known disjunctors D on [0, 1] are the triangular conorms SM (maximum), SP
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(probabilistic sum) and SW (Lukasiewicz triangular conorm) with

SM (a, b) = max(a, b),
SP (a, b) = a + b − a · b,
SW (a, b) = min(1, a + b), ∀(a, b) ∈ [0, 1]2.

A graphical representation of the t-conorms SM , SP and SW is given in figure 2.3. It
is shown that SM ≤ SP ≤ SW .
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Figure 2.3: Graphical representation of the different t-conorms, from left to right, the t-conorm
SM , the t-conorm SP and the t-conorm SW .

The best known implicators I on [0, 1] are the Kleene-Dienes implicator IKD, the
Reichenbach implicator IR and the Lukasiewicz implicator IW with

IKD(a, b) = max(1 − a, b),
IR(a, b) = 1 − a + a · b,
IW (a, b) = min(1, 1 − a + b), ∀(a, b) ∈ [0, 1]2.

A graphical representation of the implicators IKD, IR and IW is shown in figure 2.4.
It holds that IKD ≤ IR ≤ IW .
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Figure 2.4: Graphical representation of the different implicators, from left to right, the implica-
tor IKD , the implicator IR and the implicator IW .

2.2.3 L-Fuzzy Sets

Definition 2.5. A binary relation ≤ over a set P is a (partial) order relation if and
only if
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1. (∀a ∈ P)(a ≤ a), i.e., ≤ is reflexive

2. (∀(a, b) ∈ P2)(a ≤ b ∧ b ≤ a ⇒ a = b), i.e., ≤ is antisymmetric

3. (∀(a, b, c) ∈ P3)(a ≤ b ∧ b ≤ c ⇒ a ≤ c), i.e., ≤ is transitive.

A set P equipped with an order relation ≤ is called a partially ordered set (or poset),
and noted as (P ,≤). a ≥ b stands for b ≤ a.

Definition 2.6. A poset (P ,≤) satisfying (∀(a, b) ∈ P 2)(a ≤ b∨b ≤ a), i.e., ≤ is total
or linear, is called a chain or a totally (or linearly) ordered set. In a totally ordered
set every two elements are comparable.

Definition 2.7. Let (P ,≤) be a poset, A ⊆ P and b ∈ P . We then define
b is an upper bound of A if and only if (∀a ∈ A)(a ≤ b).
b is a lower bound of A if and only if (∀a ∈ A)(b ≤ a).

A is bounded above (in (P ,≤)) iff (∃b ∈ P)(b is an upper bound of A).
A is bounded below (in (P ,≤)) iff (∃b ∈ P)(b is a lower bound of A).
A is bounded (in (P ,≤)) iff A is bounded above and bounded below (in (P ,≤)).

b is the greatest element of A iff b ∈ A and b is an upper bound of A.
b is the smallest element of A iff b ∈ A and b is a lower bound of A.
From the antisymmetric property one easily finds that the existence of a greatest elem-
ent implies its uniqueness. If the greatest element exists, it will be denoted 1 and the
smallest element, if it exists, will be denoted 0.

b is the supremum of A iff b is the smallest upper bound of A; b = sup(A).
b is the infimum of A iff b is the greatest lower bound of A; b = inf(A).

Definition 2.8. A poset (L,≤) is called a lattice if inf(a, b) and sup(a, b) exist for all
a, b ∈ L. We will use the notations a ∧ b (a meet b) and a ∨ b (a join b) for inf(a, b)
and sup(a, b) respectively.

Definition 2.9. A lattice (L,≤) is bounded if there exist a greatest (1) and a smallest
(0) element, i.e.,

(∀a ∈ L)(0 ≤ a ≤ 1)
or

(∀a ∈ L)(1 ∧ a = a and 0 ∨ a = a).

Definition 2.10. A lattice (L,≤) is complete if every non-empty subset of L has a
supremum and an infimum.

Consider a bounded lattice (L,≤L) with smallest element denoted by 0 and greatest
element by 1, join operator∨ and meet operator∧. In 1967 Goguen [21] introducedL-
fuzzy sets, where the membership function has values in a lattice (L,≤L). An L-fuzzy
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set A in a universe X is characterised by a X − L mapping, called the membership
function of A, and shortly denoted by A,

A : X → L
x �→ A(x), ∀x ∈ X.

For all x in X , A(x) expresses the membership degree of x in the L-fuzzy set A, the
degree in which x belongs to A. The class of all L-fuzzy sets in X is denoted as
FL(X). The fuzzy logical operators on [0, 1] can now be extended to L-fuzzy logical
operators.

2.2.4 L-Fuzzy Logical Operators

Definition 2.11. A conjunctor C on L is an increasing L×L−L mapping satisfying
C(0, 0) = C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1. A semi-norm C on L is a conjunctor
on L satisfying (∀a ∈ L)(C(1, a) = C(a, 1) = a). A triangular norm (or t-norm) T
on L is a commutative and associative conjunctor on L satisfying T (1, a) = a for all
a ∈ L.

Definition 2.12. A negatorN onL is a decreasingL−Lmapping satisfyingN (0) = 1
and N (1) = 0. N is called involutive if N (N (a)) = a for all a in L.

Definition 2.13. A disjunctor D on L is an increasing L × L − L mapping satisfying
D(1, 0) = D(0, 1) = D(1, 1) = 1 and D(0, 0) = 0. A semi-conorm D on L is a
disjunctor on L satisfying (∀a ∈ L)(D(0, a) = D(a, 0) = a). A triangular conorm
(or t-conorm) S on L is a commutative and associative disjunctor on L satisfying
S(0, a) = a for all a ∈ L.

Definition 2.14. An implicator I on L is an L2 − L mapping satisfying I(0, 0) =
I(0, 1) = 1 and I(1, a) = a for all a in L. Moreover I is decreasing in its first,
and increasing in its second component. An implicator I on L is an edge-implicator if
(∀a ∈ L)(I(1, a) = a).

Property 2.15. Let C be a conjunctor on L. It holds:

(∀a ∈ L)(C(0, a) = C(a, 0) = 0).

Proof
C(0, 0) = C(0, 1) = C(1, 0) = 0 and C is increasing in its first and second component.

�
Property 2.16. Let I be an implicator on L. It holds:

(∀a ∈ L)(I(0, a) = I(a, 1) = 1).

Proof
I(0, 0) = I(0, 1) = 1 and I(1, a) = a for all a in L, and I is decreasing in its first
and increasing in its second component.
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�

If T is a t-norm on L, the mapping IT defined, for all a and b in L, by

IT (a, b) = sup{λ | λ ∈ L and T (a, λ) ≤L b}

is an implicator, called the R-implicator of T . If the t-norm T is left-continuous, then
we call the R-implicator IT of T a residual implicator. If S is a t-conorm and N a
negator on L, the mapping IS,N defined by

IS,N (a, b) = S(N (a), b),

for all a and b in L, is an implicator, called the S-implicator induced by S and N . If
T is a t-norm and N an involutive negator on L, the mapping I T ,N defined by

IT ,N (a, b) = N (T (a,N (b))),

for all a and b in L, is an implicator, called the S-implicator induced by T and N .
We illustrate this with some examples on the unit interval: the three well-known t-
norms and t-conorms on the lattice ([0, 1],≤) are TM , TP and TW , and SM , SP and
SW respectively. The residual implicators of TM , TP and TW are given by

ITM (a, b) =
{

1 if a ≤ b
b otherwise

,

ITP (a, b) =
{

1 if a ≤ b
b
a otherwise

,

ITW (a, b) = min(1 − a + b, 1), ∀(a, b) ∈ [0, 1]2;

and the S-implicators induced by TM , TP and TW (and SM , SP and SW ) and the
standard negator NS are

ITM ,NS (a, b) = max(1 − a, b),
ITP ,NS (a, b) = 1 − a + a · b,
ITW ,NS (a, b) = min(1 − a + b, 1), ∀(a, b) ∈ [0, 1]2.

So (TM , IKD), (TP , IR) and (TW , IW ) are induced conjunctors and implicators on
[0, 1].

Definition 2.17 (Complement, intersection, union). Let L be a bounded lattice, N a
negator, T a t-norm and S a t-conorm on L. If A and B are L-fuzzy sets in X , then
coNA, A ∩T B and A ∪S B are L-fuzzy sets in X , defined for all x in X as

coNA(x) = N (A(x))
A ∩T B(x) = T (A(x), B(x))
A ∪S B(x) = S(A(x), B(x)).



2.2 Fuzzy Set Theory 13

The Zadeh-intersection A ∩TM B and Zadeh-union A ∪SM B are noted as A ∩ B and
A ∪ B. For coNsA we shortly write coA.

For a family (Ai)i∈I of L-fuzzy sets in X we define⋂
i∈I

Ai(x) = inf
i∈I

Ai(x)

⋃
i∈I

Ai(x) = sup
i∈I

Ai(x)

for all x in X .

It holds that (FL(X),∩,∪) is a lattice with the ordering defined for all A and B in
FL(X) as

A ⊆ B ⇔ (∀x ∈ X)(A(x) ≤L B(x)).

2.2.5 L-Fuzzy Relations and L-Fuzzy Relational Images

Definition 2.18 (L-fuzzy relations). Let X and Y be two universes. An L-fuzzy rela-
tion R from X to Y is an L-fuzzy set on X × Y , i.e., a (X × Y ) − L mapping. An
L-fuzzy relation R on X is an L-fuzzy relation from X to X .

Definition 2.19. Let R be an L-fuzzy relation from X to Y . For x ∈ X we define the
R-afterset of x as the L-fuzzy set

xR : Y → L
y �→ R(x, y), ∀y ∈ Y.

For y ∈ Y we define the R-foreset of y as the L-fuzzy set

Ry : X → L
x �→ R(x, y), ∀x ∈ X.

Definition 2.20 (Relational images). Let R be a relation from a universe X to a
universe Y and A a (crisp) subset of X . The direct image of A under R is given by

R ↑ A = {y | y ∈ Y ∧ (∃x ∈ X) (x ∈ A ∧ (x, y) ∈ R)} .

The direct image of A is a subset of Y that contains all elements of Y that are connected
with (at least) one element of A. So we can also write (in terms of R-foresets)

R ↑ A = {y | y ∈ Y ∧ A ∩ Ry �= ∅} .

The superdirect image R ↓ A of A under R is defined as the set of all elements of Y
that are connected with all elements of A, thus

R ↓ A = {y | y ∈ Y ∧ Ry ⊆ A},

or
R ↓ A = {y | y ∈ Y ∧ (∀x ∈ X) ((x, y) ∈ R ⇒ x ∈ A)}.
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The definition of images of crisp sets under crisp relations can be extended to images
of L-fuzzy sets under L-fuzzy relations.

Definition 2.21 (L-fuzzy relational images). Let L be a complete lattice, and X and
Y two universes. For a triangular norm T on L and an implicator I on L, an L-fuzzy
relation R from X to Y and an L-fuzzy set A in X , the direct image R ↑L A and the
subdirect image R ↓L A of A under R are the L-fuzzy sets in Y defined as

R ↑L A (y) = sup
x∈X

T (A(x), R(x, y))

R ↓L A (y) = inf
x∈X

I(R(x, y), A(x)),

for all y in Y .

We will normally make use of the simple notations above for direct and subdirect
image. But when we work with more than one triangular norm or more than one
implicator on L at the same time, we will make a distinction by adding the symbol of
the triangular norm and implicator respectively in the notations of the direct image and
subdirect image respectively to show which logical operator is used at that moment.

Property 2.22 (Monotonicity). [12] Let L be a complete lattice, T , T1 and T2 t-norms
on L and I, I1 and I2 implicators on L. If R, R1 and R2 are L-fuzzy relations from
X to Y and A, A1 and A2 are L-fuzzy sets in X , then it holds

1. If R1 ⊆ R2, then

(a) R1 ↑L A ⊆ R2 ↑L A

(b) R1 ↓L A ⊇ R2 ↓L A

2. If A1 ⊆ A2, then

(a) R ↑L A1 ⊆ R ↑L A2

(b) R ↓L A1 ⊆ R ↓L A2

3. If T1 ⊆ T2 and I1 ⊆ I2, then

(a) R ↑L,T1 A ⊆ R ↑L,T2 A

(b) R ↓L,I1 A ⊆ R ↓L,I2 A

Property 2.23 (Interaction with TM -intersection of L-fuzzy sets). [12] Consider a
complete lattice L, a t-norm T on L and an implicator I on L. If R is an L-fuzzy
relation in X and A and B are two L-fuzzy sets in X , then it holds

R ↑L (A ∩ B) ⊆ (R ↑L A) ∩ (R ↑L B)
R ↓L (A ∩ B) ⊆ (R ↓L A) ∩ (R ↓L B).
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Generalisation to a finite family (Ai)i∈I of L-fuzzy sets in X leads to

R ↑L (
⋂
i∈I

Ai) ⊆
⋂
i∈I

(R ↑L Ai)

R ↓L (
⋂
i∈I

Ai) ⊆
⋂
i∈I

(R ↓L Ai).

Property 2.24 (Interaction with TM -intersection of L-fuzzy relations). [12] Let L
be a complete lattice, T a t-norm on L and I an implicator on L. If R 1 and R2 are
L-fuzzy relations from X to Y and A is an L-fuzzy set in X , then it holds

(R1 ∩ R2) ↑L A ⊆ (R1 ↑L A) ∩ (R2 ↑L A)
(R1 ∩ R2) ↓L A ⊇ (R1 ↓L A) ∪ (R2 ↓L A).

For a finite family (Ri)i∈I of L-fuzzy relations from X to Y we get

(
⋂
i∈I

Ri) ↑L A ⊆
⋂
i∈I

(Ri ↑L A)

(
⋂
i∈I

Ri) ↓L A ⊇
⋃
i∈I

(Ri ↓L A),

and

(
⋂
i∈I

Ri) ↓L A ⊇
⋂
i∈I

(Ri ↓L A).

Property 2.25 (Interaction with SM -union of L-fuzzy sets). [12] Consider a com-
plete lattice L, a t-norm T on L and an implicator I on L. If R is an L-fuzzy relation
in X and A and B are L-fuzzy sets in X , then it holds

(R ↑L A) ∪ (R ↑L B) ⊆ R ↑L (A ∪ B)
(R ↓L A) ∪ (R ↓L B) ⊆ R ↓L (A ∪ B).

Generalisation to a finite family (Ai)i∈I of L-fuzzy sets in X leads to
⋃
i∈I

(R ↑L Ai) ⊆ R ↑L (
⋃
i∈I

Ai)

⋃
i∈I

(R ↓L Ai) ⊆ R ↓L (
⋃
i∈I

Ai).

Property 2.26 (Interaction with SM -union of L-fuzzy relations). [12] Let L be a
complete lattice, T a t-norm on L and I an implicator on L. If R1 and R2 are L-fuzzy
relations from X to Y and A is an L-fuzzy set in X , then it holds

(R1 ∪ R2) ↑L A ⊇ (R1 ↑L A) ∪ (R2 ↑L A)
(R1 ∪ R2) ↓L A ⊆ (R1 ↓L A) ∩ (R2 ↓L A).
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For a finite family (Ri)i∈I of L-fuzzy relations from X to Y we get

(
⋃
i∈I

Ri) ↑L A ⊇
⋃
i∈I

(Ri ↑L A)

(
⋃
i∈I

Ri) ↓L A ⊆
⋂
i∈I

(Ri ↓L A),

and

(
⋃
i∈I

Ri) ↓L A ⊆
⋃
i∈I

(Ri ↓L A).

Property 2.27 (Interaction with complement). [12] Consider a complete lattice L,
a triangular norm T on L, an involutive negator N on L and IT ,N the induced S-
implicator, then it holds for every L-fuzzy relation R from X to Y and every L-fuzzy
set A in X that

coN (R ↑L A) = R ↓L (coNA)
R ↑L (coNA) = coN (R ↓L A).

Property 2.28 (Image of universe and empty set). [12] Let L be a complete lattice,
T a triangular norm on L and I an implicator on L. For every L-fuzzy relation R from
X to Y it holds

R ↑L ∅ = ∅ and R ↓L X = Y.

Property 2.29 (Expansion and restriction). [12] Let L be a complete lattice, T a
t-norm on L and I an implicator on L. If R is a reflexive L-fuzzy relation in X , i.e.,
(∀x ∈ X)(R(x, x) = 1), and A an L-fuzzy set in X , then

R ↓L A ⊆ A ⊆ R ↑L A.



Chapter 3

Colour and Colour Models

In this chapter we first examine the structure of the human eye and study what colour
really is to understand how the human eye perceives colour. We describe two methods
to reproduce colour: additive and subtractive colour mixing. Finally we give a short
summary of different colour models: RGB, CMY and CMYK, YUV, YIQ and YCbCr,
HSV and HSL, CIEXYZ, CIEYxy, L*a*b* and L*u*v*.

3.1 Perception and Reproduction of Colour

3.1.1 Perception of Colour

The human eye

Figure 3.1: Image of the human eye.
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In figure 3.1 [51] we see a sketch of the human eye. The pupil is an opening in the eye.
All light that reaches the light sensitive parts of the eye has to pass through the pupil.
The iris is a circular muscle that controls the size of the pupil. According to the size of
the pupil, more or less light can enter the eye. By contracting and relaxing the iris, the
eye can adapt to different light conditions like day and night.
The cornea is a protective, transparent layer that covers both the pupil and the iris, and
it is the first lens of the human vision system. The inner lens, the second lens of the
human eye, is a transparent body that is able to contract and relax. The shape of the
inner lens can change and allows the eye to adapt to a large range of distances. This
inner lens also focuses incoming light radiations, that is, all light coming from the same
physical point of space is brought together (focused) in one single point on the retina.
The retina consists of several layers with each a specific task, like for example receiving
light or converting incoming light in electrical signals. The fovea is called the centre of
the retina. This tiny area is responsible for our central, sharpest vision. Now, the retina
contains two kinds of light sensitive receptors, also called photoreceptors, cones and
rods, which ‘translate’ incoming light in electrical signals. The fovea contains no rods,
but the compactness of the cones is largest in the fovea. The electrical signals produced
by the cones and rods are then sent along the optic nerve to a part of the brain behind
the head for further processing. The optic nerve fibres exit the eye in a small spot on
the retina, called blind spot. The blind spot has no photoreceptors at all.

What is colour?

Light consists of electromagnetic waves. There is a complete spectrum of electromag-
netic radiation, from radio waves to gamma rays.

Figure 3.2: The electromagnetic spectrum.
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The different kinds of electromagnetic radiation can be characterised by their frequency
or by their wavelength, where both are connected by the equation

c = f.λ

with f the frequency expressed in s−1, λ the wavelength expressed in nm (1nm =
10−9m) and c the speed of light (c = 3 × 108ms−1). The human eye observes these
different frequencies/wavelengths as different colours. Only a little part of the whole
electromagnetic spectrum can be perceived by the human eye: visible colours for
humans appear with a wavelength between about 400 nm and 700 nm in the electro-
magnetic spectrum, the so-called visible light. We call this part of the electromagnetic
spectrum the visible spectrum too. In figure 3.2 [79] the electromagnetic spectrum is
shown, going from radio waves with long wavelengths (10 7 − 1011nm) to the short
gamma rays (10−4nm).

As we have seen, the retina contains two different light receptors, cones and rods. Rods
care for the dark vision, visibility in darkness, and are very sensitive for light. They
only see in grey values, so they cannot distinguish colour, and cannot give us a sharp
vision. Cones on the other hand are less sensitive for light than rods, but detect colour.
They care for our sharp vision and visibility by daylight. There are three types of cones
that are sensitive, especially for red, green and blue light: each cone type contains a
light sensitive pigment that is sensitive over a range of wavelengths; the α-cones are
sensitive in the blue part of the electromagnetic spectrum, the β-cones in the green part
and the γ-cones in the yellow-green to red part. Note that because the compactness of
the cones is largest in the fovea, this area of the retina has the highest visual sensitivity
for colour perception.
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Figure 3.3: Absorption spectrum of the α-, β- and γ-cones.

Figure 3.3 [53] gives the absorption spectrum of the three types of cones, so we get
an idea of the ‘spectral sensitivity’ of the cones, that is, how many light on a certain
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wavelength is absorbed by the cones. We see that the α-cones are less sensitive than
the other two types of cones and that one single wavelength can activate more than one
type of cone.
Light that reaches a little environment on the retina that contains three kinds of cones
is converted in three signals (one for each type of cone). The eye is trichromatic,
i.e., an incoming light spectrum is seen as a point in a three-dimensional space. This
trichromatic character of the eye is very important in image processing. It implies that
each visible light point for humans (and thus every pixel in colour images) can be com-
pletely described by three numbers. The giant range of colours that can be seen by
humans can be obtained by adding the right amounts of red, green and blue colour to-
gether or by adding two of these three colours together and subtracting the other (more
information: see section 3.2.5). These signals coming from the cones are then sent to
our brain where they are translated in a colour. When all wavelengths of the visible
spectrum reach our eye at the same time, we see white. White is not a colour at all, but
the mixture of all visible colours. That is why visible light is also called white light.
Black is not a colour either, but corresponds with the total absence of wavelengths of
the visible light spectrum.

We may conclude that the question ‘what is colour?’ is subjective. Colours are created
in our brain as a reaction on light. Colour is how the human eye and brain observe
different wavelengths of light.

Although the eye senses colour according to red, green and blue light (trichromacy),
higher visual processes in the brain code colour according to the opponent process
theory, using the opponent pairs red-green, blue-yellow and black-white. Humans
perceive colour as having four distinct colour hues corresponding to the perceptually
sensation of red, green, yellow and blue. We know that yellow can be produced by the
additive mixing of red and green, but in our brain yellow is perceived as being qualita-
tively different from each of the two components red and green. The opponent process
theory says that all colours can be described as containing red or containing green, but
never as containing both red and green simultaneously. We can never see a colour that
appears red and green at the same time, the colours red and green can never be per-
ceived together. The same observation has been done for the colours blue and yellow.
The opponent process theory also states that one cannot say this of any other pair of
colours. Thus, classifying a colour as either red or green, and then independently as
blue and yellow, gives a complete description of that colour.
The best way to arrange colours is in a wheel. The opponent process theory says that
our sensation of colour is organised along two axes. The position along the first axis
encodes the redness or greenness of the colour. The second independent axis encodes
the blueness or yellowness of the colour. The complete colour sensation is the red-
green and blue-yellow coordinates of that colour. Sometimes a third axis is added to
the opponent colour wheel that describes the brightness (whiteness to blackness) of the
colour. Opponent process theory also implies that there should be ‘pure’ colours: a red
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and a green that has no blue or yellow in it, and a blue and a yellow that has no red or
green in it. Only red, green, blue and yellow can be made pure. There is for example
no pure orange, because orange always looks like a mix of red and yellow. This theory
also explains the existence of some intermediate hues (e.g. red-yellow, yellow-green,
green-blue and blue-red) and the absence of other intermediate hues (e.g. red-green
and yellow-blue).
Simultaneous contrast also demonstrates a red-green and blue-yellow association.
Simultaneous contrast is a colour appearance phenomenon that causes the ‘colour ap-
pearance’ of a colour element to shift when the colour of the background changes. This
change in colour tends to follow the opponent colour theory. For example, a thin, grey,
colourless line running over a red background appears slightly green, while running
over a blue background it appears slightly yellow.

Colour blindness

We give a short description of colour blindness.
It is not exactly known how colour blindness arises. It is possible that by colour blind
people one or more types of cones are not or in a smaller amount presented in the
retina. It is also possible that all cones are presented in the retina, but that they function
less good or totally not, or that the signals coming from the cones are not passed in the
right way to the brain. Anyhow, one particular colour or more than one is perceived
less intense whereby certain colours can no longer be distinguished. Red-green colour
blindness is by far the most common form of colour blindness and causes problems
in distinguishing reds and greens. Colour blindness is generally a hereditary disease.
Colour blind people can see better in the dark.

There are many different types and degrees of colour blindness, called colour defi-
ciences.

Monochromacy Monochromacy occurs in two forms: rod monochromacy (also
called achromatopsia) and cone monochromacy.

• Rod monochromacy
Only black, white and shades of grey can be seen. These colour blind people
are truly colour blind because any colour cannot be perceived (complete absence
of any colour sensation), and they even have difficulties with seeing in bright
daylight. There can be three causes:
- there are no cones at all in the retina, only rods
- the cones have no or non-working colour sensitive photo pigments
- the signals coming from the cones are not translated in the brain.

• Cone monochromacy
Only one type of cones is active. These people see some colour, e.g. people with
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blue cone monochromacy cannot perceive any colour except blue so that they
have a feeling of seeing colour, but cannot distinguish colour hues too.

Dichromacy It is known that by dichromacy one of the three kinds of cones is miss-
ing and is replaced by one of the other two cone types. These colour blind people are
able to match all colours using only two primaries rather than the normal three (trichro-
macy). Therefore they are blind to certain colour differences that normal individuals
can see.

• Protanopia: red photo pigment is missing and is replaced by green photo pig-
ment. This way it almost becomes impossible to make distinction between reds,
yellows and greens. Short wavelengths are seen as blue. Red colours seem to
be darker than for a normal viewer, and so that reds may be confused with black
or dark grey. These people learn to distinguish reds from yellows and greens
primarily on the basis of different degrees of brightness (lightness), not on any
perceptible hue difference.

• Deuteranopia: green photo pigment is missing and is replaced by red photo pig-
ment. Like by protanopia this leads to an inability in distinguishing between
reds, yellows and greens. The brightness of red is preserved.

Because distinctions between red and green are based on the activity of the β- and
γ-cones, both protanopia and deuteranopia are termed red-green colour blindness.
There is almost no perceptible difference between red, orange, yellow and green: these
colours appear to be the same colour. Both, protanopia and deuteranopia colour blind
people see the world in shades of white, grey, black, blue and yellow.

• Tritanopia: blue photo pigment is missing and is replaced by red and green photo
pigment. These colour blind people are insensitive to yellows and blues, but see
the world in shades of white, grey, black, red and green.

Anomalous trichromacy All cones are active but there is a disturbed quantity of one
or more of the three cones’ colour sensitive pigments. Therefore the sensitivity for
light has shifted, and so these people will mix the primaries in different proportions.
For example, for a given spectral yellow light protanomalous observers will need more
red light in a red-green mixture while deuteranomalous observers need more green than
a normal observer.

• Protanomaly or red-weakness: abnormal red sensitivity (disturbed quantity of
red-sensitive cones (γ-photo pigment)). Any redness seen in a colour by a normal
observer is seen more weakly, both in terms of its colouring power (saturation)
and brightness. Red, orange, yellow, yellow-green and green appear somewhat
shifted in hue towards green, and all appear paler than for a normal observer. The
redness component that a normal observer sees in a violet or lavender colour is
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so weakened that maybe it would not be detected by a protanomalous observer,
and so only the blue component will be seen. A colour that one calls ‘violet’
may look like another shade of blue.

• Deuteranomaly or green-weakness: abnormal green sensitivity (deviation of the
quantity of green-sensitive cones (β-photo pigment)). Small differences in hues
in the red, orange, yellow and green part of the visible spectrum are difficult to
see: they appear somewhat shifted towards red, but there is no loss of brightness.
Also violet, lavender, purple and blue appear as similar colours.

• Tritanomaly or blue-weakness: abnormal blue-yellow sensitivity (disturbed
quantity of blue-sensitive cones (α-photo pigment)). For a tritanomalous ob-
server it will be difficult to distinguish between yellow and blue.

3.1.2 Reproduction of Colour

Additive and subtractive colour mixing

Additive colour mixing is the method to create a new colour by adding two or three
colours together, the additive primaries or additive primary colours. These primary
colours are usually red, green and blue. Additive colours are produced by a combin-
ation of spectrum colours that are optical coloured by putting the colours very close to
each other or by showing the colours very fast the one after the other so that the eye
can no longer distinguish these colours at a normal view distance, but will mix or add
them together to get a composed colour effect. This way the human eye observes two
or more colours as one (new) colour.

Additive colour mixing works as follows:

1. Equal amounts of two primary colours in full intensity create a secondary colour:

1 red + 1 blue = magenta
1 blue + 1 green = cyan
1 green + 1 red = yellow.

2. Equal amounts of the three primary colours in full intensity create white:

1 red + 1 blue + 1 green = white.

3. Unequal amounts of two or three primary colours (in full intensity or not) create
different colours, for example,

2 red + 1 green = orange
1 red + 2 green = lime.

Other colours can be obtained in this way.



24 Colour and Colour Models

One of the most famous applications of additive colour mixing can be found in the
television screen. The television screen is a mosaic that consists of thousands of tiny
groups of phosphor dots. Each group contains three different kinds of phosphor dots:
one kind of phosphor dots, the red phosphor dots, emits red light, the blue phosphor
dots emit blue light and the green phosphor dots emit green light. The phosphor dots
convert energy of the electrons on the cathode tube inside the television into radiation
so that they can emit light. If there is no energy that the phosphor dots can convert,
they do not radiate and then we observe the tiny group of phosphor dots as black. If the
three kinds of phosphor dots (red, green and blue) in the tiny group radiate clearly all
together at the same time, we observe the group as white. Different colours depend on
how bright the red, green and blue phosphor dots radiate, e.g. we see cyan if both the
blue and green phosphor dots radiate together. In figure 3.4 [70] a tiny group phosphor
dots in the TV screen is illustrated.

Figure 3.4: A tiny group phosphor dots in the television screen.

Subtractive colour mixing uses paints, pigments, inks or natural dyes to create colour
by absorbing some wavelengths of white light and reflecting or transmitting others.
We see subtractive colours when pigments in an object absorb certain wavelengths of
white light while reflecting or transmitting the rest. This happens all the time around
us: when light reaches an object, the object absorbs some wavelengths of the light and
reflects or transmits others. The wavelengths in the reflected or transmitted light make
up the colour we see. As more ink is added, less and less light is reflected, which
finally would be seen as black. When there is a total absence of ink, the light being
reflected from a white surface is perceived as white. Consider as example a red apple.
If white light reaches the red apple, all colours of the white light are absorbed by the
surface of the apple except the colour red, which is reflected. The red light radiations
reach our eyes and our brain observes the apple as a red apple. Another example: the
leaves of green plants contain the pigment chlorophyll, which absorbs the blue and red
colours of the spectrum and reflects the green colours. If an object absorbs all colours
it receives, our brain will see the colour of that object as black.

This method forms the base for photographic filters, colour print productions like al-
most all films and colour paper, and photomechanical reproduction in colour. The
pigments in colour filters and inks used for colour productions or in photomechanical



3.2 Colour Models and Colour Spaces 25

reproduction of colour are cyan, magenta and yellow.

Cyan, magenta, yellow are the complementary colours of red, green, blue and are called
the subtractive primaries because of the following:
White light is composed of all wavelengths of the visible spectrum, which we can
obtain by mixing equal amounts of the additive primaries red, green and blue in full
intensity. A paint that absorbs one additive primary colour has the combined colour
of the two other primaries. This combined colour is the complement of the absorbed
colour abstracted of white light. We get

ABSORBED UNCHANGED COMBINED
PRIMARY COLOUR PRIMARY COLOUR COLOUR

red blue and green cyan
green blue and red magenta
blue red and green yellow.

Now, cyan, magenta and yellow will subtract respectively red, green and blue of sun-
light by absorbing this colour instead of reflecting it. Cyan, magenta and yellow to-
gether subtract all colour of white light, which results in black.

3.2 Colour Models and Colour Spaces

A colour model is an abstract mathematical model that describes how colours can be
represented as tuples of numbers, usually as 3- or 4-tuples. A colour in a colour model
can be specified by using coordinates or attributes. These coordinates do not tell us
what the colour looks like, but represent where the colour is located in the particular
colour model. The colours that can be represented using a particular colour model de-
fine then a colour space.

Colour models are used to specify, create and visualize colours so that they can be
reproduced and processed in a clear way. Dependent on the application why colours
are used for, different models have been developed for the characterisation and visu-
alisation of colours. The set of all colours that can be produced on a device is called
the colour gamut. Because of physical difference in how different devices produce
colours, each scanner, display, printer, etc. has a different range of colours it can repre-
sent. There are colours that can be viewed on the screen but that cannot be reproduced
in print, and conversely, some colours can be printed but not be seen on the screen.
Colour output devices can be classified into three types: additive, subtractive and hy-
brid. Additive colour systems produce colour through the combination of differently
coloured light. Colour in subtractive systems is produced through a process of remov-
ing (subtracting) unwanted spectral components from ‘white’ light. Subtractive colour
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systems produce colour on transparent or reflective media, which have to be illumin-
ated by white light for viewing. Hybrid colour systems use a combination of additive
and subtractive processes to produce colour.

3.2.1 RGB Colour Model

The three additive primary colours red, green and blue form the base of the additive
colour model RGB: a colour in RGB is obtained by adding the three colours red, green
and blue in different combinations together. Every colour in the RGB colour model is
totally determined by its three colour components R, G and B. Figure 3.5 shows the
additive mixing of red, green and blue.

Figure 3.5: Additive mixing of the three RGB primary colours.

This way a colour can be defined as a vector in a three-dimensional space, which can
be represented as a unit cube using a Cartesian coordinate scheme, see figure 3.6.
Every point in the cube (or vector with as starting point the origin) represents then a
colour. Red, green and blue are the primary colours; cyan, magenta and yellow are the
secondary colours. The greyscale spectrum, which consists of colours with the same
amount of every RGB primary colour, lies on the line between the black and white top.

The colours that can be obtained in the RGB colour model are dependent on the way
the colours ‘red’, ‘green’ and ‘blue’ are defined. So there exist different colour spaces
based on the RGB colour model. Well-used RGB colour spaces are sRGB (stand-
ard RGB) and Adobe RGB. sRGB was developed by Hewlett-Packard and Microsoft
Corporation using a simple and robust device independent colour definition to handle
colour in operating systems, device drivers and the Internet. The Adobe RGB colour
space was designed by Adobe Systems to encompass most of the colours achievable
on CMYK colour printers, but by using RGB primary colours on a device such as the
computer display.
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Figure 3.6: A representation of the RGB colour model expressed in Cartesian coordinates.

The RGB colour model has been developed because it is very close related to the man-
ner how the human eye, with the α-, β- and γ-cones in the retina, observes colour. But
in this model red, green and blue can only be added together and not subtracted, so that
not all colours visible by the human eye can be obtained. This is a disadvantage.
The RGB colour model is used in television and computer displays, colour camera’s
and scanners.

3.2.2 CMY and CMYK Colour Model

The CMY colour model is a subtractive colour model, where a colour is described as
a result of light being absorbed (subtracted) by printing inks with cyan, magenta and
yellow as subtractive primary colours. In figure 3.7 we see the subtractive mixing of
cyan, magenta and yellow to form red, green and blue and finally black by abstracting
these three primaries from white.
The subtractive CMY and additive RGB colours are called complementary colours.
Each pair subtractive colours creates an additive colour and conversely. That is why
RGB and CMY are opposite colour models. Notice that the colours in the RGB colour
model are brighter than those in the CMY colour model. In RGB a larger part of the
visible spectrum can be reached. This is because the RGB model uses added light while
the CMY model uses reflected light to create colours.

We have seen that pure cyan, magenta and yellow pigments together absorb all colour
of white light and produce black. But practically it is impossible to create black with
these three colours: because of impurities in inks not all coloured light will be absorbed
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Figure 3.7: Subtractive mixing of the CMY primary colours.

by pure cyan, magenta and yellow pigments together so that these three colours do not
produce black but a dark brown. That is why in practice black is added as fourth
primary colour. We talk about four-colour process printing and call this the CMYK
colour model.

The CMY and CMYK colour model are used in photographic colour filters, colour
printers and photomechanical reproduction in colour.
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Now we give some definitions related to light and colour we will need further on.

Hue is the attribute of a visual sensation according to which an area appears to be
similar to one, or to the proportions of two, of the perceived colours red, yellow, green
and blue. As a consequence of the opponent process theory we know that the colours
red, yellow, green and blue are ‘pure’. Black, white and the grey values in between are
called ‘neutral colours’ because they have no hue.

The saturation of a colour indicates how much white light is presented in the colour.
Red and pink for example are two different saturations of the same colour hue red.
Pure colours are completely saturated, they contain no white light. If we add white
to a pure colour, we get a lighter, less intense, desaturated colour. Pastel colours are
less saturated because they are mixed with white. Colours that are not saturated are
grey values. Saturation is sometimes called colour intensity too. In figure 3.8 [87] the
change in saturation for the hue red is shown.

Figure 3.8: Change in saturation for the colour hue red, from 0% (right) to 100% (left).

Brightness is defined as the human visual sensation by which an area exhibits more
or less light/appears to emit more or less light/seems to be more or less clear. The
brightness of an object depends on the way the object (surface) is lighted, that is, how
more light, how intenser/brighter the colour. Only colours perceived to belong to an
area seen in isolation from other colours exhibit brightness. When we consider a colour
as a related colour (a colour perceived to belong to an area seen in relation to other
colours), the observed brightness of a point of the coloured object depends then not
only on the light intensity in that point but also on the light intensity in other points of
the area or background. So we define the term lightness as the relative brightness of
an area compared to the brightness of an equally illuminated white surface. Brightness
refers to the absolute perception of the amount of light of the colour element of interest,
while lightness can be seen as the relative brightness. Only related colours exhibit
lightness.

Lightness =
Brightness

Brightness(white)

The lightness of the used background can cause a difference in the lightness of the
object. This we call the lightness contrast effect, and is illustrated in figure 3.9.
Each small grey square has the same physical brightness (intensity), that is, our eyes
receive exactly the same amount of light from each of them. So we expect that they
all would be the same value of grey, that our eyes observe them all as the same grey



30 Colour and Colour Models

Figure 3.9: The lightness contrast effect.

value. But the grey square at the dark grey background seems to be much brighter than
the grey square at the light grey background: the darker the background, the lighter the
little grey square appears.
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3.2.3 YUV, YIQ and YCbCr Colour Model

These colour models are called the television transmission colour models. The YUV
and YIQ model are used in colour television broadcasting (YUV in Europe and YIQ
in the USA). These colour models are a recoding of RGB that are used for the coding
of colour images in TV and in colour video, and are also very useful for transmitting
television signals for black-white TV. The YCbCr colour model is independent of cod-
ing systems for TV signals and is used for the representation of TV images in digital
systems.

These colour models are based on the fact that the human eye is more sensitive for
changes in brightness than for changes in hue or saturation. The Y-component is iden-
tical to the Y-component in the CIE XYZ colour model (see section 3.2.5) and contains
information about the brightness of an image, while the other components encode in-
formation about the colour, that is, hue and saturation. Because the eye is most sensitive
for changes in brightness, these models use a larger range for the Y-component than
for the U- or V-component (I- or Q-component and Cb- or Cr-component): the data
rate can be shared as follows: Y:U:V 4:2:2 or Y:U:V 4:1:1. The Y-component contains
all information needed for black-white television, that is, the Y-component gives the
greyscale image of a colour image. Figure 3.10 illustrates this.

Figure 3.10: The original colour image (left) and the greyscale image expressed in the Y-
component (right).

3.2.4 HSV and HSL Colour Model

These two colour models use equivalent axes in their representation of colour. In the
HSV colour model a colour is defined by the three components hue, saturation and
value and in the HSL (also called HSI) colour model the three quantities hue, satur-
ation and luminance (= intensity) are used to characterise a colour.

We have seen (opponent process theory) that all colour hues can be arranged in an
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opponent colour wheel along two axes (red-green and blue-yellow) so that all colours
along the red-green axis contain some red on one side of the wheel, while all the colours
on the other side contain some green, and so that all colours along the blue-yellow axis
have some blue on one half of the wheel, while the colours that remain in the opposite
half of the wheel appear yellowish. This way we can range the hue component from
0 to 2π, which usually begins and ends by red. Saturation indicates the colour purity
(lack of white in the colour). Values for the saturation component range from 0% if
the colour is not saturated (grey values) to 100% if the colour is completely saturated
(pure colours). The intensity component of a colour in the HSL colour model gives the
intensity (brightness/lightness) of that colour and varies from 0 to 1, where the corres-
ponding colours become increasingly brighter. Maximum intensity is sensed as pure
white, minimum intensity as pure black. The other colour model HSV differs in the
formulae for the values of the intensity. Fully saturated colours with different hues have
the same value V = 1 in HSV and the same lightness L = 0.5 in HSL. Nevertheless,
this is not always true in human perception, e.g., fully saturated yellow is always lighter
than fully saturated blue. In the HSL colour model we find the brightest, most intense
colour at a lightness value of exactly half of the maximum. Colours with a lightness
percentage smaller than half of the maximum lightness value are darker while colours
with a percentage larger than the maximum are lighter. In figure 3.11 and 3.12 [87] we
illustrate a graphical representation of the HSV and HSL colour model respectively.
Both the HSV and HSL colour model are used in computer graphics applications.

Figure 3.11: A graphical representation of the HSV colour model.
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Figure 3.12: A graphical representation of the HSL colour model.

3.2.5 CIE Colour Models

All colour models we have seen until now express colour in a device dependent way.
The additive colour models we have described, e.g. the RGB, YUV and YIQ colour
model, are a.o. used for television or computer screens. Additive colours depend on
the kind of screen that is used. Colours in the subtractive colour models we mentioned,
e.g. CMYK colours, vary with printer, ink and paper characteristics.
That is why the CIE (Commission Internationale de l’Eclairage) has created a number
of (both additive and subtractive) colour models that are device independent. Colours
can be specified in the CIE-based colour models in a way that is independent of the
characteristics of any particular display or reproduction device. The CIE colour speci-
fication system provides a standard method for specifying a colour under controlled
viewing conditions, that is, the CIE system standardises three key elements of colour
perception: light, object and eye. We would not go here into more detail, but the
interested reader can find more information in [58].

CIE XYZ colour model

The CIE XYZ colour model is special because it is based on direct measurements of the
human eye. The CIE has done experiments to determine how primary colours should
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be mixed to reproduce colours. The experiments showed that to produce some colours,
a component of light has to be subtracted. When we add two primaries together, the
saturation decreases. For this reason it can be impossible to produce a maximal sat-
urated colour by adding two colours together. For example, if we use the CIE RGB
primaries at 700, 546.1 and 435.8 nm respectively, and we want to obtain a colour
with a wavelength of about 500 nm, we see in figure 3.13 [87] that blue and green is
needed. But adding blue and green together will produce a desaturated 500 nm colour
so that red has to be added to the colour we want to produce, to saturate it. If S 500 nm
represents the saturated 500 nm colour we want to obtain, then we get

S 500 nm + R = G + B

or

S 500 nm = G + B − R.

The negative value means that the spectral colour red has to be subtracted.
It is interesting to note that because TV and computer screens use additive mixtures
of red, green and blue light, they cannot produce colours with wavelengths around
500 nmCIERGB.

Figure 3.13: The colour matching functions for the CIE RGB primaries.

To avoid the problem of having negative components, the CIE has introduced three
supersaturated (not physically reproducible) tristimulus values X, Y and Z , which
quantify a colour by defining the amounts of the CIE R, G and B primaries required to
match the colour by a standard observer under a particular light source so that additively
mixing of the three ‘imaginary’ colours X, Y and Z can produce all human perceivable
colours. These positive X, Y, Z values form the first CIE colour model, the CIE XYZ
colour model. But this colour model is difficult to use because X , Y and Z separately
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do not correspond to real colours. The X, Y, Z values are called the standard colour
coordinates. All CIE based colour models are deduced of the XYZ model. The Y
tristimulus value is a parameter of the brightness of a colour. Figure 3.14 [87] shows
the colour matching functions for the CIE XYZ tristimulus values.

Figure 3.14: The colour matching functions for the CIE XYZ tristimulus values.

CIE Yxy colour model

Since the human eye has three types of colour sensors, a full plot of all visible colours
is a three-dimensional figure. However, the concept of colour can be divided into two
parts: intensity and chrominance (= hue and saturation), the part that carries ‘colour’.
Chrominance requires intensity to make it visible. For example, the colour white is
a bright colour, while the colour grey is considered to be a less bright version of that
same white. In other words, the chrominance of white and grey are the same, while
their brightness differs. A colour does not change if the intensity changes. CIE has
defined a colour model for representing colours (into two dimensions) independent of
the ‘intensity’ of the colour. A useful two-dimensional representation of colours is
obtained when the tristimulus values are normalized to lie in the unit plane, the plane
over which the tristimulus values sum up to unity. The coordinates of the normalized
tristimulus vectors are called chromaticity coordinates and a plot of colours on the
unit plane using these coordinates is called a chromaticity diagram. The most com-
monly used chromaticity diagram is the CIE xy chromaticity diagram. The CIE xyz
chromaticity coordinates can be obtained from the X, Y, Z tristimulus values in the
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CIE XYZ colour model as follows

x = X/(X + Y + Z)
y = Y/(X + Y + Z)
z = Z/(X + Y + Z).

Only two of these three coordinates are independent; one use x and y at most. Thus, a
colour (independent of intensity) can be specified by its coordinates (x, y). A colour,
dependent on intensity, can then be specified by the triple (x, y, Y ). Colours of objects
(or printing inks) of course depend on the intensity (of the light source) as well.

Figure 3.15 [87] shows the CIE xy chromaticity diagram, where colours are points,
obtained from the CIE XYZ colour model with D65 as used illuminant (see L*a*b*
and L*u*v* colour model). A property of the chromaticity diagram is that a point
that is an additive mixture of two colours always lies on the connection line of the
chromaticity points of these two colours. This property is important for the measure of
colour in colour displays, TV and the lightning industry.

Figure 3.15: The xy chromaticity diagram.

Now, it is desirable if a distance on a chromaticity diagram corresponds to the de-
gree of difference between two colours. The idea of measuring the difference between
two colours was developed by D.L. MacAdam and summarized in the concept of a
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MacAdam ellipse [40]. A MacAdam ellipse is the region on a chromaticity diagram
that contains all colours that are indistinguishable to the average human eye, from the
colour at the centre of the ellipse. As such it defines the concept of distance. Each
of the ellipses are, by definition, circles of equal radius, and the only reason that they
appear to be ellipses of different sizes in the CIE xy chromaticity diagram (see figure
3.16 [87]) is because the CIE xy space is warped (with respect to this metric). Based on
the work of MacAdam, the CIE provided two perceptually uniform colour models for
practical applications: the CIE L*u*v* and CIE L*a*b* colour model, both of which
were designed to have an equal distance in the colour model corresponding to equal
differences in colour, as measured by MacAdam.

Figure 3.16: MacAdam ellipses plotted on the xy chromaticity diagram.

L*a*b* (CIELAB) and L*u*v* (CIELUV) colour model

There is one problem with the representation of colours in the XYZ and Yxy colour
model: the presentation is not linear; colours that are close to each other in the XYZ or
Yxy space can be perceived very differently for the human eye and colours that seem to
be the same for the human eye can lie far from each other in these colour models. The
L*a*b* and the L*u*v* colour model are transformations of the XYZ colour model
designed to obtain a linear colour model, that is, to have a uniform correspondence
between geometric distances and perceptual distances between colours that are seen
under the same light source; equal Euclidean distances correspond to roughly equal



38 Colour and Colour Models

perceived colour differences. We get uniform colour models where small colour dif-
ferences (changes) can be quantified by the Just Noticeable Colour Difference or JND
(the distance between two almost indistinguishable colours). The most important and
common light source is daylight, which is represented as illuminant D65 and D50 for
the surface colour industries (textiles, paint and plastics) and the graphic arts indus-
try respectively. Artificial light sources are also widely used such as white fluorescent
light (illuminant F) and incandescent light (illuminant A). Both colour models L*a*b*
and L*u*v* represent colours relative to a reference white point, which is defined as
the whitest light that can be generated by a given device represented in terms of the
XYZ colour model. Because the L*u*v* and L*a*b* colour model represent colours
relative to this definition of white light, they are not completely device independent:
two numerically equal colours are truly identical only if they are measured relative to
the same white point.

Figure 3.17 [75] gives a graphical representation of the L*a*b* colour model.

Figure 3.17: Graphical representation of the L*a*b* colour model.

Both colour models L*a*b* and L*u*v* use a common lightness scale L*, which de-
pends only on the value Y. The vertical axis L* in the centre of both colour models
represents the lightness where the values for the lightness range from 0 (black) to 100
(white). Both colour models use different uniform colour axes: the colour axes a*
versus b* and u* versus v* (red-green versus yellow-blue) are based on the fact that
a colour cannot be red and green at the same time or both blue and yellow because
these colours are opposite (opposite colour theory). At every colour axis values go
from positive to negative. At the a* and u* axis the positive values give the amount of
red and the negative values the amount of green, while at the b* and v* axis yellow is
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positive and blue negative. For these axes 0 is neutral grey.

L*a*b* is a colour model that is used to represent subtractive colour systems, and is
therefore used in different colour imaging and printing industries like in the textile,
while L*u*v* is a colour model that is used to represent additive colour systems and is
very useful in applications with additive mixture of light in the display industry like in
videos and PCs.

More information about the reception and reproduction of colour can be found in [19],
[55], [58], [72] and [73]. For colour blindness we refer to [17] and [87]. An extensive
release about digital colour imaging can be found in [73].



40 Colour and Colour Models



Chapter 4

Colour Morphology

In the first and second section of this chapter we repeat the definition of the basic
operators dilation, erosion, closing and opening for binary and greyscale morphology.
For a detailed study of binary and greyscale morphology we refer to [9, 10, 11, 25,
26, 44, 57]. Thereafter, a state-of-the-art literature study of colour morphology shows
that there already exist some nice extensions of MM to colour. To apply morphological
operators to colour images we need the concept of a supremum and infimum, and thus,
of an ordering in the used colour model. After having described the ‘trivial’ approach of
processing the morphological operators on each of the colour components separately,
we will present in this work a new vector-based approach for the extension of MM
for greyscale images to colour morphology. We will extend the basic morphological
operators dilation and erosion based on the threshold, umbra and fuzzy set approach to
colour images. Colour images can be modelled using different colour models; here our
approach is described in the RGB [15, 16], HSV [15] and L*a*b* [15] colour model.
We look at colours as a whole, namely as vectors, and order these colour vectors in
each of the three colour models, and so colour morphological operators are presented
accordingly. The colour models RGB, HSV and L*a*b* become with this new ordering
and associated minimum and maximum operators a complete lattice on which we have
defined a negator, some t-norms and implicators. Experimental results show that our
method provides an improvement on the component-based approach of morphological
operators applied to colour images and achieves similar or better results than those
obtained by other methods.

4.1 Binary Morphology

Consider a binary image A and a binary structuring element B, which is also an
image but very small in comparison with A and has to be chosen by the morphologist.
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The translation Ty(B) of B by a vector y ∈ R
2 is defined as

Ty(B) = {x ∈ R
2 | x − y ∈ B};

the reflection of B is defined as −B = {−x ∈ R
2 | x ∈ B}.

Definition 4.1. Let A be a binary image and B a binary structuring element.
The binary dilation D(A, B) of A by B is the binary image given by

D(A, B) = {y ∈ R
2 | Ty(B) ∩ A �= ∅}.

The binary erosion E(A, B) of A by B is defined as

E(A, B) = {y ∈ R
2 | Ty(B) ⊆ A}.

If A is a binary image and B is a binary structuring element, the binary closing
C(A, B) and the binary opening O(A, B) of A by B are the binary images

C(A, B) = E(D(A, B),−B)
O(A, B) = D(E(A, B),−B).

Equivalent expressions for D(A, B) and E(A, B) are

D(A, B) = {y ∈ R
2 | (∃b ∈ B)(y + b ∈ A)}

=
⋃
b∈B

T−b(A),

E(A, B) = {y ∈ R
2 | (∀b ∈ B)(y + b ∈ A)}

=
⋂
b∈B

T−b(A).

For the closing C(A, B) and opening O(A, B) we can also write

C(A, B) = {y ∈ R
2 | (∀z ∈ R

2)(y ∈ Tz(B) ⇒ Tz(B) ∩ A �= ∅)}
O(A, B) = {y ∈ R

2 | (∃z ∈ R
2)(y ∈ Tz(B) ∧ Tz(B) ⊆ A)}.

The binary dilation and erosion have a beautiful geometrical interpretation, see figure
4.1. The dilation D(A, B) contains all points y in R

2 for which the translation Ty(B)
of the structuring element B has a non-empty intersection with the image A. A point
y belongs to the dilation D(A, B) if and only if the translation Ty(B) and A hit each
other. The binary erosion E(A, B) consists of all points y ∈ R

2 for which the trans-
lation Ty(B) of B is contained in A. A point y belongs to the erosion E(A, B) if and
only if the translation Ty(B) and co(A) do not hit. For an example we refer to figure
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Figure 4.1: Geometrical interpretation of the binary dilation (left) and the binary erosion (right).
The centre of the structuring element B coincides with the origin of the coordinate system.

4.2. The closing C(A, B) consists of all points y ∈ R
2 for which any translation of B

that contains y has a non-empty intersection with A. The opening O(A, B) consists of
all points y ∈ R

2 for which any translation of B that contains y is contained in A.
When we use the following structuring element B given by (the underlined element
corresponds to the origin of coordinates)

B =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ ,

we get the following results for the binary dilation and erosion
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Figure 4.2: At the top: the original binary image A, at the bottom: the binary dilation D(A, B)
(left) and the binary erosion E(A,B) (right). You see that the dilation enlarges the objects in
the image, while the erosion reduces them.

Property 4.2. [43] Let A be a binary image and B a binary structuring element, then
it holds that

E(A, B) ⊆ D(A, B) and O(A, B) ⊆ C(A, B).

If B contains the origin (i.e., 0 ∈ B), then is

E(A, B) ⊆ O(A, B) ⊆ A ⊆ C(A, B) ⊆ D(A, B).

With this property the binary image D(A, B)−E(A, B) can serve as an edge-image of
the original image A, which we call the morphological gradient GB(A) of A. Analo-
gously we have defined the external morphological gradient G B

e (A) and the internal
morphological gradient GB

i (A) of A, which will give us the extern and inner edge-
image of A respectively. Figure 4.3 illustrates this.

Application 4.3. Let A be a binary image and B a binary structuring element. The
morphological gradient GB is defined as

GB(A) = D(A, B)\E(A, B).

If B contains the origin, we define the extern morphological gradient GB
e as

GB
e (A) = D(A, B)\A,
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Figure 4.3: At the top: the morphological gradient GB(A) of A, at the bottom: the extern
morphological gradient GB

e (A) (left) and the intern morphological gradient GB
i (A) (right) of

A.

and the intern morphological gradient GB
i as

GB
i (A) = A\E(A, B).

4.2 Greyscale Morphology

4.2.1 Greyscale Morphology Based on the Threshold Approach

Consider a greyscale image A represented as a R
2 − [0, 1] mapping and a binary struc-

turing element B modelled as a crisp subset of R
2.

The support dA of A is defined as the set dA = {x ∈ R
2 | A(x) > 0};

the reflection of A is the R
2−[0, 1] mapping−A characterised by (−A)(x) = A(−x),

for all x in R
2.

Definition 4.4. Let A be a greyscale image and B a binary structuring element. The
t-dilation Dt(A, B) and the t-erosion Et(A, B) are the greyscale images given by

Dt(A, B)(y) = sup
x∈Ty(B)

A(x) for y ∈ R
2,

Et(A, B)(y) = inf
x∈Ty(B)

A(x) for y ∈ R
2.



46 Colour Morphology

The t-closing Ct(A, B) and the t-opening Ot(A, B) are then defined as

Ct(A, B) = Et(Dt(A, B),−B),
Ot(A, B) = Dt(Et(A, B),−B).

For the t-closing and t-opening we can also write

Ct(A, B) = inf
z∈Ty(−B)

(
sup

x∈Tz(B)

A(x)
)
,

Ot(A, B) = sup
z∈Ty(−B)

(
inf

x∈Tz(B)
A(x)

)
.

Property 4.5. [12] Property 4.2 also applies to greyscale morphology based on the
threshold approach.

Application 4.6. The t-morphological gradient GB
t , extern t-morphological gradient

GB
t,e and intern t-morphological gradient GB

t,i can be defined analogously as in the
case of binary morphology.

Figure 4.4 gives an example of the t-morphological operators dilation and erosion, and
the t-morphological gradient.
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Figure 4.4: At the top: the original greyscale image A (left) and the t-morphological gradient
GB

t (A) (right), at the bottom: the t-dilation Dt(A, B) (left) and the t-erosion Et(A,B) (right).
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4.2.2 Greyscale Morphology Based on the Umbra Approach

Let A be a greyscale image and B a greyscale structuring element, both modelled
as R

2 − R mappings. In practice we can restrict to R
2 − [0, 1] mappings because

the interval [0, 1] corresponds to the universe of grey values, but the theory considers
R

2 − R mappings. The support of A is defined as dA = {x ∈ R
2 | A(x) > −∞}.

Definition 4.7. Let A be a greyscale image and B a greyscale structuring element. The
u-dilation Du(A, B) and the u-erosion Eu(A, B) are the greyscale images defined as

Du(A, B)(y) = sup
x∈Ty(dB)

A(x) + B(x − y) for y ∈ R
2,

Eu(A, B)(y) = inf
x∈Ty(dB)

A(x) − B(x − y) for y ∈ R
2.

Let A be a greyscale image and B a greyscale structuring element, the u-closing
Cu(A, B) and the u-opening Ou(A, B) are the greyscale images given by

Cu(A, B) = Eu(Du(A, B),−B),
Ou(A, B) = Du(Eu(A, B),−B).

Explicit expressions for the u-closing and u-opening are, for all y ∈ R
2,

Cu(A, B)(y) = inf
z∈Ty(−dB)

( sup
x∈Tz(dB)

(
(
A(x) + B(x − z)

)
− B(y − z)))

Ou(A, B)(y) = sup
z∈Ty(−dB)

( sup
x∈Tz(dB)

(
(
A(x) − B(x − z)

)
+ B(y − z))).

Property 4.8. [43] Property 4.2 for binary images holds on for greyscale morphology
based on the umbra approach. The condition 0 ∈ B has to be replaced by B(0) ≥ 0.

Application 4.9. Again, the definition of the u-morphological gradient G B
u , extern u-

morphological gradient GB
u,e and intern u-morphological gradient GB

u,i are similar
to those for greyscale morphology based on the threshold approach.

4.2.3 Fuzzy Mathematical Morphology

Since greyscale images can be modelled as R
2 − [0, 1] mappings, we can identify

greyscale images with fuzzy sets and extend binary morphology to greyscale morph-
ology using fuzzy set theory.

Definition 4.10. Let A be a greyscale image and B a greyscale structuring element
(both seen as fuzzy sets), C a conjunctor on [0, 1] and I an implicator on [0, 1]. The
fuzzy dilation DC(A, B) and the fuzzy erosion EI(A, B) are the fuzzy sets defined as

DC(A, B)(y) = sup
x∈Ty(dB)

C(B(x − y), A(x)) for y ∈ R
2,

EI(A, B)(y) = inf
x∈Ty(dB)

I(B(x − y), A(x)) for y ∈ R
2.
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The fuzzy closing CC,I(A, B) and the fuzzy opening OC,I(A, B) are the fuzzy sets
given by

CC,I(A, B) = EI(DC(A, B),−B),
OC,I(A, B) = DC(EI(A, B),−B).

Property 4.11. [43] Because TM ≥ TP ≥ TW and IKD ≤ IR ≤ IW , we obtain

DTM (A, B) ⊇ DTP (A, B) ⊇ DTW (A, B)

and

EIKD(A, B) ⊆ EIR(A, B) ⊆ EIW (A, B),

for every greyscale image A and greyscale structuring element B.

Application 4.12. Edge detection can be done in the same way as before.

Figure 4.5 and figure 4.6 illustrate the fuzzy dilation and fuzzy erosion using the fol-
lowing greyscale structuring element

B(i, j, 1) = B(i, j, 2) = B(i, j, 3) =
1

255

⎛
⎝ 200 220 200

220 255 220
200 220 200

⎞
⎠ , 1 ≤ i, j,≤ 3.
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Figure 4.5: At the top: the original greyscale image A (left) and the fuzzy dilation DTM (A, B)
(right), at the bottom: the fuzzy dilation DTP (A,B) (left) and the fuzzy dilation DTW (A, B)
(right).
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Figure 4.6: At the top: the original greyscale image A (left) and the fuzzy erosion EIKD (A, B)
(right), at the bottom: the fuzzy erosion EIR(A,B) (left) and the fuzzy erosion EIW (A, B)
(right).
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4.3 Colour Morphology

So far we have studied greyscale morphology based on the threshold approach, on the
umbra approach and on fuzzy set theory, on the unit interval [0, 1]. Notice that [0, 1]
with the ordinary ordering is a lattice, even more, it is a complete lattice.

Colour images can be represented (possibly after scaling) as R
2 − [0, 1]× [0, 1]× [0, 1]

mappings. A first way to extend mathematical morphology for greyscale images to
colour images is the component-based approach. Mathematical morphology can be
naturally extended to colour morphology by processing the morphological operators
on each of the colour components separately, where we get again a complete lattice
with the product ordering.

• Given the complete lattices (L1,≤1), (L2,≤2), . . . , (Ld,≤d). Define L = L1×
L2 × . . . × Ld, that is, L contains all d-tuples (x1, x2, . . . , xd) with xk ∈ Lk

for k = 1, 2, . . . , d. Define the relation ≤ on L, for all (x1, x2, . . . , xd) and
(y1, y2, . . . , yd) in L, by

(x1, x2, . . . , xd) ≤ (y1, y2, . . . , yd) iff xk ≤k yk, ∀k = 1, . . . , d.

We call this ordering the product ordering. (L,≤) is a complete lattice.

• Consider a t-norm T1 on a complete lattice (L1,≤1) and a t-norm T2 on a com-
plete lattice (L2,≤2). The direct product T1 × T2 of T1 and T2 defined, for all
(x1, x2) and (y1, y2) in L1 × L2, as

T1 × T2((x1, x2), (y1, y2)) = (T1(x1, y1), T2(x2, y2))

is a t-norm on the product lattice (L′,≤) = (L1 × L2,≤).

• Let I1 be an implicator on a complete lattice (L1,≤1) and I2 an implicator on a
complete lattice (L2,≤2). The direct product I1 × I2 of I1 and I2 defined, for
all (x1, x2) and (y1, y2) in L1 × L2, as

I1 × I2((x1, x2), (y1, y2)) = (I1(x1, y1), I2(x2, y2))

is an implicator on the product lattice (L′,≤) = (L1 × L2,≤).

A major disadvantage of this approach is that the existing correlations between the
different colour components are not taken into account and this often leads to disturbing
artefacts. Another approach is to treat the colour at each pixel as a vector. Because we
need the concept of a supremum and infimum to define morphological operators, we
first have to define an ordering between these colour vectors. We have considered the
three most common used colour models RGB, HSV and L*a*b*.

A colour in the RGB colour model is obtained by adding the three colours red, green
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and blue in different combinations. Therefore a colour can be defined as a vector in
a three-dimensional space that can be represented as a unit cube using a Cartesian
coordinate scheme. This way every point in the cube represents a vector (colour).
The greyscale spectrum is characterised by the line between the black top Bl with
coordinates (0, 0, 0) and the white top Wh(1, 1, 1).

In the HSV colour model a colour is characterised by the three quantities hue, satur-
ation and value. Because of the opposite colour theory all colour hues can be arranged
in an opponent colour wheel along two axes (red-green and blue-yellow) that begins
and ends by the same colour. So we can range the hue component in a circle from
0 to 2π, which usually begins and ends by red. Values for the saturation component
range from 0 if the colour is not saturated (grey values) to 1 if the colour is completely
saturated (pure colours). The value component in the HSV colour model varies from
0 (black) to 1 (white), where the colours become increasingly brighter. While adding
black to a certain colour, the value of the colour will decrease. The value axis begins by
black, ends by white and in between we get all shades of grey. The three-dimensional
colour model HSV is usually represented as a cone.

The colour models L*a*b* and L*u*v* use a common lightness scale L*. The vertical
axis L* in the centre of both colour models represents the lightness/brightness of a
colour where the values range from 0 (black) to 1 (white), with in between grey values.
Both colour models use different uniform colour axes: the colour axes a* versus b*
and u* versus v* (red-green versus yellow-blue) are based on the fact that a colour
cannot be red and green at the same time or both blue and yellow because these colours
are opposite (opposite colour theory). At every colour axis values range from positive
to negative. At the a* and u* axis the positive values give the amount of red and the
negative values the amount of green, while at the b* and v* axis yellow is positive and
blue negative. For these axes 0 is neutral grey.

Remark that in practice only a finite number of colours can be obtained in a colour
model. Since each colour component is usually stored as 8 bits (one byte), i.e., the
values of each colour component range in the interval

[
0, 28 − 1

]
, a colour in a three-

dimensional colour model is stored as a 24-bit colour. The values of each colour
component by storage usually range in the interval [0, 255], but we can always scale
them to the interval [0, 1]. So we always work with finite colour models.

4.3.1 State-of-the-Art Overview of Colour Morphology

Because there is no unambiguous way to order two or more colours, there exist differ-
ent techniques to order colour. The most common used techniques are the component-
wise ordering, also called marginal ordering, reduced ordering, partial ordering
and conditional ordering, also called lexicographical ordering.
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In marginal ordering each colour component is ordered independently and the op-
erations are applied to each colour component of the image. But this approach does
not exploit the correlation between the different colour components and because of this
new colours can be introduced in an image.
In reduced ordering a single value is given to each multivariate value. So to each
colour (vector) ci in the considered colour model is a scalar value d i = d(ci), normally
d : R

3 → R, added. After di has been obtained for each i, the vectors c1, . . . , cn are
ordered based on d1, . . . , dn as follows:

c(1) ≤ . . . ≤ c(n),

where c(r) is the vector corresponding with the scalar value d (r), the rth smallest elem-
ent of the set {d1, d2, . . . , dn}. The output vector at each point in the image is, by
definition of this ordering, one of the vectors in the original image so there is no possi-
bility of introducing new colour vectors into the image. Usually some type of distance
metric is used to perform reduced ordering. The output will of course depend on the
used scalar-valued function, where characteristics of the human visual system, such as
luminance, can be used as metric.
In partial ordering the colour vectors are partitioned into groups, which are then
ordered.
In conditional ordering the colours are ordered using one component initially. In case
multiple colours have the same initial component values, a second component is used
to order the colours, and so on. Let c = {c1, c2, . . . , cn} and c′ = {c′1, c′2, . . . , c′n} be
two colour vectors in the considered colour model (n ∈ N). An example of a lexico-
graphical order can be

c < c′ if

⎧⎨
⎩

c1 < c′1 or
c1 = c′1 and c2 < c′2 or
c1 = c′1 and c2 = c′2 . . . cn < c′n

.

This way we get a total ordering. This approach makes sense when a priority can be
placed on the components, but this is of course not the case when dealing with the RGB
colour model.

In [56] the authors show that the generalisation of morphological operations to com-
plete lattices is necessary for a mathematically coherent application of morphological
operators to greyscale images. A computer implementation of mathematical morph-
ology will work with digital images defined on a finite grid where the set of grey values
is a bounded finite set of integers. A computation of grey values can thus give a value
outside of this bounded set so that one gets an arithmetic overflow. The conclusion of
their analysis is that the problem of grey value overflow can be dealt with correctly only
by taking the complete lattice structure of the set of greyscale images into account.
In [77] the authors demonstrate that an artificial total ordering on multivariate data is
the only way to use morphological operators on multivariate images while introducing
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no new pixel values.

A number of possible orders for colour vectors in the RGB colour model have been
proposed in [5, 8, 18, 33, 59]. In [5] an α-modulus lexicographical order in the RGB
and HSL colour model is proposed, where the choice of the value for α controls the
degree of influence of the first component with regard to the others, and makes the
lexicographical order thus more flexible:

c <α c′ if

⎧⎨
⎩

(c1/α) < (c′1/α) or
(c1/α) = (c′1/α) and c2 < c′2 or
(c1/α) = (c′1/α) and c2 = c′2 . . . cn < c′n

.

Because in the RGB colour model no colour R, G or B plays a dominant role, the
maximum and minimum of the three RGB values for every pixel are first calculated.
The authors propose an α-modulus lexicographical order where the first component is
given by, for every colour c in RGB,

I(c) = β ·(0.3 · cr + 0.6 · cg + 0.1 · cb)+(1−β)·(max(cr, cg, cb) − min(cr, cg, cb)) .

The function I is a combination of the RGB components and the max−min of the
components, weighted by β. The other components for ordering are the red, then the
green and finally the blue component. After deep test, the authors have found that
the value β = 0.8 gives very good visual effects. This order is called I − RGBα.
In [8] a reduced ordering in RGB is proposed. The used measurement functions
are linear combinations of the tristimulus values, e.g. the luminance image d(c) =

0.299 · cr +0.587 · cg +0.114 · cb, and the Euclidean norm d(c) =
√

(c2
r + c2

g + c2
b). If

two different colour values are ordered equally, the output can be chosen based on the
position in the structuring element window, but no further analysis or example of this
condition is made. New morphological operations are defined. The dilation selects that
colour with the largest measure di and the erosion selects that colour with the smallest
di. In [18] a new approach for the ordering of the RGB model is presented and applied
to mathematical morphology, where the adaptation of a linear growing self-organizing
network to the three-dimensional colour model allows the definition of an order rela-
tionship among colours. In [33] new colour morphological operators are defined after
ordering the RGB colour vectors by using the first principal component analysis. On
the basis of this reduced ordering, new infimum and supremum are determined. Using
the new infimum and supremum, the fundamental erosion and dilation operators are
defined. In [59] a new set of morphological operators for RGB colour images based on
a combination of reduced and conditional ordering is proposed. The RGB colours are
transformed into the C − Y colour model, a colour television model. The distance to a
reference colour vector, determined by its hue, provides the primary ordering criterion.
The defined colour dilation will tend to move towards this reference colour, while the
colour erosion will tend to move away from it. But the reference colour must have
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maximum luminance and maximum saturation to obtain a total ordering of colour vec-
tors, so we can speak of red dilation and blue erosion for example, but white or black
cannot be used as reference colour vector. This is of course a disadvantage.

A number of possible orders [3, 35, 36, 37, 39] for colour vectors in the HSV and
related colour models is proposed. In [3] the extension of morphological operators
by using lexicographical orderings on the HSL system has been explored. A unified
framework to consider different ways of defining morphological colour operators in a
luminance, saturation and hue colour representation has been introduced. A new ap-
proach to colour mathematical morphology using a fuzzy model has been reported in
[36]. It is based on a new vector ordering scheme in the HSV colour model that uses
fuzzy if-then rules. The corresponding vector morphological operators of erosion and
dilation are vector-preserving because no vector (colour) that is not present in the input
data is generated and they produce unique results in every case. Moreover, the pro-
posed operators possess the same basic properties like their greyscale counterparts. In
[35] a new design and implementation of a fuzzy hardware structure for morphological
colour image processing based on this new method has been proposed. In [37, 39]
new partial colour vector orderings in the HSV colour model are presented. The new
ordering is given, for two colours c1(h1, s1, v1) and c2(h2, s2, v2), by

c1 < c1 ⇔
{

v1 < v2 or
v1 = v2 and s1 > s2

.

c1 ≤ c1 ⇔
{

v1 < v2 or
v1 = v2 and s1 ≥ s2

.

c1 = c1 ⇔
{

v1 = v2 and s1 = s2 .

The subtraction of two colours is defined as

c1 − c2 = c(h1, s1 − s2, v1 − v2),

where s1 − s2 = 0 if s1 − s2 < 0 and v1 − v2 = 0 if v1 − v2 < 0.
The addition of two colours is defined as

c1 + c2 = c(h1, s1 + s2, v1 + v2),

where s1 + s2 = 1 if s1 − s2 > 1 and v1 − v2 = 1 if v1 − v2 > 1. New infimum
and supremum operators are defined, and so corresponding vector morphological u-
operators, which are hue preserving.

In image analysis one often has to treat data distributed on the unit circle. Because hue
is angle-valued and has no order of importance and no dominant position, it cannot be
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ordered trivially. Some methods to apply mathematical morphology to data on the unit
circle have been proposed. In [24] three possible approaches to apply morphological
operators to circular data is presented. In the first approach a local origin, obviously
variable at each image point, is chosen. The second approach considers grouping of
circular data. A simple criterion to group data is introduced and basic morphological
operators are defined so that they act only if a structuring element contains grouped
data. The third approach defines a labelling on the unit circle to index the angles. If
every pixel in the image is assigned a label, then we have an indexed partition of the
image. If during the analysis of a set of data or an image, one has to choose an arbitrary
origin before applying an operator, then one of these approaches can be used. In [22]
morphological operators for the HSL colour model are presented. Some lexicographic-
al vector orders are suggested. The first two orders use the two components luminance
and saturation in the first position. The third order is a new saturation-weighted hue
order, which uses the hue component in the first position, where the saturation values
are used to weight the hue values. Paper [52] contains definitions for erosion and dila-
tion for angle-valued images. The fundamental idea is to define a structuring element
with a given hue or hues. From each image neighbourhood of the structuring element,
the erosion returns the hue value that is closest to the hue of the corresponding struc-
turing element member and the dilation returns the hue value that is farthest to the hue
of the corresponding structuring element member.

In [23] the use of mathematical morphology in the L*a*b* colour model is discussed.
A total lexicographical order on the colour vectors is imposed using a weighting func-
tion based on an electrostatic potentional. This weighting function assigns a lower
weight to colour vectors near the colours with maximum chroma, and higher weights
to colour vectors near the lightness axis.

In [4] the distance-based and lexicographical-based approaches are generalised, in
order to propose an algorithmic framework allowing the extension of morphological
operators to colour images for different colour representations (e.g. RGB, HSL and
L*a*b*) and metric distances to a reference colour. The proposed approach is a com-
bination of reduced and conditional ordering: the reduced ordering is based on the
distance to a reference colour, e.g. in the L*a*b* colour model the perceptual differ-
ence between two colours is given by their Euclidean distance and as reference one can
choose white, followed by a lexicographical ordering used to resolve any ambiguities,
e.g. in L*a*b*: first the L*-component, followed by the a*-component and then the
b*-component. And so standard morphological colour operators are derived.

Having presented these orders, which ordering is best applicable will depend on the
practical image analysis tasks. The choice depends mainly on the properties of the
images to be processed and on the information the user wants to extract from these
images.
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4.3.2 New HSV and L*a*b* Colour Vector Ordering

In the RGB colour model

On the RGB cube in figure 4.7 [7] we see that colours lying close to black are ‘dark’
colours while colours lying close to white are ‘light’ colours. We can observe the

Figure 4.7: Representation of the RGB colour model.

colour hue red for example (we can also choose green or blue). If we start at the white
top (with coordinates (1, 1, 1)) and go along the diagonal to the red top (1, 0, 0) and
from there on along the edge to the black top (0, 0, 0), we see that we go from ‘light’
red over the most ‘bright’ colour red to ‘dark’ red. Inspired by this observation we will
sort the colours in the RGB colour model from ‘dark’ colours (close to black) to ‘light’
colours (close to white), with respect to their distance to black and white. So we can
define three relations R<, R> and R= on RGB, given, for all colours c(rc, gc, bc) and
c′(rc′ , gc′ , bc′) in RGB, by

(c, c′) ∈ R< ⇔ d(c, Bl) < d(c′, Bl) or
(d(c, Bl) = d(c′, Bl) and d(c, Wh) > d(c′, Wh))

⇔ (c lies strict closer to black than c′) or (c lies as far
from black as c′ and c lies strict farther from white than c′)

(c, c′) ∈ R> ⇔ d(c, Wh) < d(c′, Wh) or
(d(c, Wh) = d(c′, Wh) and d(c, Bl) > d(c′, Bl))

⇔ (c lies strict closer to white than c′) or (c lies as far
from white as c′ and c lies strict farther from black than c ′)

(c, c′) ∈ R= ⇔ (d(c, Bl) = d(c′, Bl)) and (d(c, Wh) = d(c′, Wh)),

with d the Euclidean distance, i.e., d(c, Bl) =
√

(rc − 0)2 + (gc − 0)2 + (bc − 0)2.
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1. With the relation R< colours are first ordered from vectors with smallest distance
to black to vectors with largest distance to black. The smaller the distance to black,
the lower the colour is ranked. This way the RGB cube is sliced into different parts
of spheres around the black top. Colours that are part of the same sphere (around
the black top) are then ordered according to their distance with respect to white, from
colours with largest distance to white to colours with smallest distance to white. So we
will ‘cut’ the spheres around the black top with spheres with the white top as centre.
2. With the relation R> we look at the distance with respect to white to know which
one of two colours is ranked highest in the RGB colour model. The colour with the
smallest distance to white is ordered higher than the other colour. If the distance to
white is equal, i.e., if both colours lie on the same sphere centred in the white top, we
select that colour lying farthest from black. Again, the RGB cube is sliced into parts of
spheres, but now first towards the white top and then towards the black top.
3. Finally in the relation R= we combine both relations R< and R> to say that colours
that have the same distance to the black top and the same distance to the white top, and
thus lie on a circle (as profile of two spheres) in the RGB cube, are ranked equally.

Figure 4.8 shows how the RGB cube is sliced into spheres around the black top and
white top.

Inspired by our idea to look at the black top to determine the ‘darkest’ colour, and thus
the smallest colour, and to look at the white top to determine the ‘lightest’ colour, and
thus the largest colour, we have investigated the cases HSV and L*a*b*.
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Figure 4.8: At the top: the RGB cube is first sliced into different parts of spheres around the
black top for the relation R< or around the white top for the relation R> and then respectively
cut with spheres with the white top or the black top as centre, at the bottom: for the relation R=

we combine the relations R< and R> so that colours lie on a circle.
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In the HSV colour model

We denote a colour c in the HSV colour model as c(hc, sc, vc), with hc ∈ [0, 2π] and
sc, vc ∈ [0, 1]. Remark that when c is a shade of grey, the hue component h c is not
defined, and we will put hc = 0.

We want to order the colour vectors in the HSV colour model with respect to black and
white, so we get:

1. Because the value component V of each colour in HSV gives us the ‘grey level’
of that colour, we can first order colours by looking at their V -value. A large
V -value for a colour means that the colour lies closer to white than to black, and
is thus a ‘light’ colour, while a colour with a small V -value lies closer to black
than to white, and is thus a ‘dark’ colour. The smaller the value component, the
smaller the colour is seen.

2. If the value component is equal, we look at the saturation component S of both
colours. An S-value of 1 indicates that the colour is completely saturated and
contains no white light, i.e., the colour is pure. An S-value of 0 indicates that the
colour is a grey value. If V > 1/2, we sort the colours from colours with largest
S-value to colours with smallest S-value, because the S-value of white is equal
to 0 and in this part of the cone the colours are lying close to white and the larger
the S-value, the less white light is present in the colour, so the ‘darker’ the colour
will be. If V < 1/2, we reverse the order of the S-value and sort the colours
from colours with smallest S-value to colours with largest S-value, because the
S-value of black is also equal to 0 and in this part of the cone the colours are lying
close to black. If for two colours V = 1/2, we look at the saturation component
and the hue component H to rank these colours. Because we want our ordering
to be compatible with the complement co, see section 4.3.4, we have considered
the S-value together with the cosinus and sinus of the hue angle.

3. Finally, if two colours have the same V -value, with V �= 1/2, and the same S-
value, we look at the hue component H to order these colours. All colour hues
are considered to be equally important so that we really have to choose one out
of these two colours to be the smallest (or largest) colour. Therefore we have
introduced an ordering ≤h to rank the hue angles.

This gives us an ordering ≤HSV of colour vectors in the HSV colour model, defined
for two colours c(hc, sc, vc) and c′(hc′ , sc′ , vc′), as:

c <HSV c′ ⇔ vc < vc′ or
(vc = vc′ > 1/2 and sc > sc′) or
(vc = vc′ < 1/2 and sc < sc′) or
(vc = vc′ = 1/2 and sc cos(hc) < sc′ cos(hc′)) or
(vc = vc′ = 1/2 and sc cos(hc) = sc′ cos(hc′) and

sc sin(hc) < sc′ sin(hc′)) or
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(vc = vc′ �= 1/2 and sc = sc′ and hc <h hc′)
c >HSV c′ ⇔ c′ <HSV c

⇔ vc > vc′ or
(vc = vc′ > 1/2 and sc < sc′) or
(vc = vc′ < 1/2 and sc > sc′) or
(vc = vc′ = 1/2 and sc cos(hc) > sc′ cos(hc′)) or
(vc = vc′ = 1/2 and sc cos(hc) = sc′ cos(hc′) and

sc sin(hc) > sc′ sin(hc′)) or
(vc = vc′ �= 1/2 and sc = sc′ and hc >h hc′)

c =HSV c′ ⇔ (vc = vc′ and sc = sc′ and hc = hc′)
c ≤HSV c′ ⇔ c <HSV c′ or c =HSV c′,

where ≤h = <h ∪ =, with <h defined as

if: ((hc ∈ [0, π [ and hc′ ∈ [0, π [ ) or (hc ∈ [0, π [ and hc′ ∈ [π, 2π [ )) and hc < hc′

then: hc <h hc′

if: hc ∈ [π, 2π [ and hc′ ∈ [π, 2π [ and 2π − hc < 2π − hc′ (or thus hc > hc′)

then: hc <h hc′ .

Properties of ≤h

We know show that

(∀c, c′ ∈ HSV )(hc ≤h hc′ and hc′ ≤h hc ⇒ hc = hc′)

Proof

Suppose that hc �= hc′ .

1) From (hc ∈ [0, π [ and hc′ ∈ [0, π [ ) and hc <h hc′ it follows that hc < hc′ .
From (hc ∈ [0, π [ and hc′ ∈ [0, π [ ) and hc′ <h hc it follows that hc′ < hc,
and hence a contradiction.

2) From (hc ∈ [0, π [ and hc′ ∈ [π, 2π [ ) and hc <h hc′ it follows that hc < hc′ .
The case (hc ∈ [0, π [ and hc′ ∈ [π, 2π [ ) and hc′ <h hc is impossible.

3) From (hc ∈ [π, 2π [ and hc′ ∈ [π, 2π [ ) and hc <h hc′ it follows that hc > hc′ .
From (hc ∈ [π, 2π [ and hc′ ∈ [π, 2π [ ) and hc′ <h hc it follows that hc′ > hc,
and hence a contradiction.

⇒ hc = hc′ .

�
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And what is more

(∀c, c′, c′′ ∈ HSV )(hc ≤h hc′ and hc′ ≤h hc′′ ⇒ hc ≤h hc′′)

Proof

Let hc = hc′ and hc′ ≤h hc′′ , then it holds that hc ≤h hc′′ .
Suppose that hc �= hc′ .

1) (hc ∈ [0, π [ and hc′ ∈ [0, π [ ) and hc < hc′

1.1) From hc′′ ∈ [0, π [ and hc′ ≤h hc′′ it follows that hc′ ≤ hc′′ .

⇒ hc < hc′′

1.2) From hc′′ ∈ [π, 2π [ and hc′ ≤h hc′′ it follows that hc′ ≤ hc′′

⇒ hc < hc′′

2) (hc ∈ [0, π [ and hc′ ∈ [π, 2π [ ) and hc < hc′

2.1) hc′′ ∈ [0, π [ , impossible

2.2) From hc′′ ∈ [π, 2π [ and hc ∈ [0, π [ it follows that hc < hc′′

3) (hc ∈ [π, 2π [ and hc′ ∈ [π, 2π [ ) and hc > hc′

3.1) hc′′ ∈ [0, π [ , impossible

3.2) From hc′′ ∈ [π, 2π [ and hc′ ≤h hc′′ it follows that hc′ ≥ hc′′

⇒ hc > hc′′

⇒ hc ≤h hc′′ .

�

Properties of ≤HSV

We examine some properties of our new ordering ≤HSV .

1. Reflexive: (∀a ∈ HSV )(a ≤HSV a). OK.

2. Antisymmetric: (∀a, b ∈ HSV )(a ≤HSV b and b ≤HSV a
?⇒ a =HSV b)

Proof

Suppose that a �=HSV b.

1) va < vb and b <HSV a
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From the definition of <HSV would follow:

(a) vb < va, a contradiction

(b) va = vb, a contradiction

2) va = vb > 1
2 and sa > sb and b <HSV a

From the definition of <HSV would follow:

(a) sb > sa, a contradiction

(b) sa = sb, a contradiction

3) va = vb < 1
2 and sa < sb and b <HSV a

From the definition of <HSV would follow:

(a) sb < sa, a contradiction

(b) sa = sb, a contradiction

4) va = vb = 1
2 and sa cos(ha) < sb cos(hb) and b <HSV a

From the definition of <HSV would follow:

(a) sb cos(hb) < sa cos(ha), a contradiction

(b) sa cos(ha) = sb cos(hb), a contradiction

5) va = vb = 1
2 and sa cos(ha) = sb cos(hb) and sa sin(ha) < sb sin(hb) and

b <HSV a

From the definition of <HSV would follow: sb sin(hb) < sa sin(ha), a contra-
diction

6) va = vb �= 1
2 and sa = sb and ha <h hb and b <HSV a

From the definition of <HSV would follow: hb <h ha, a contradiction

⇒ va = vb and sa = sb and ha = hb

⇒ a =HSV b.

�

3. Transitive: (∀a, b, c ∈ HSV )(a ≤HSV b and b ≤HSV c
?⇒ a ≤HSV c)

Proof

Let a =HSV b, and b ≤HSV c, then it holds that a ≤HSV c.
So suppose that a �=HSV b.
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1) va < vb and b ≤HSV c.

From the definition of <HSV would follow: vb ≤ vc

⇒ va < vc

⇒ a ≤HSV c.

2) va = vb > 1
2 and sa > sb and b ≤HSV c

From the definition of <HSV would follow:

(a) vb < vc

⇒ va < vc

(b) vb = vc and sb ≥ sc

⇒ va = vc and sa > sc

⇒ a ≤HSV c.

3) va = vb < 1
2 and sa < sb and b ≤HSV c

From the definition of <HSV would follow:

(a) vb < vc

⇒ va < vc

(b) vb = vc and sb ≤ sc

⇒ va = vc and sa < sc

⇒ a ≤HSV c.

4) va = vb = 1
2 and sa cos(ha) < sb cos(hb) and b ≤HSV c

From the definition of <HSV would follow:

(a) vb < vc

⇒ va < vc

(b) vb = vc and sb cos(hb) ≤ sc cos(hc)

⇒ va = vc and sa cos(ha) < sc cos(hc)

⇒ a ≤HSV c.

5) va = vb = 1
2 and sa cos(ha) = sb cos(hb) and sa sin(ha) < sb sin(hb) and

b ≤HSV c

From the definition of <HSV would follow:
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(a) vb < vc

⇒ va < vc

(b) vb = vc and sb cos(hb) < sc cos(hc)

⇒ va = vc and sa cos(ha) < sc cos(hc)

(c) vb = vc and sb cos(hb) = sc cos(hc) and sb sin(hb) ≤ sc sin(hc)

⇒ va = vc and sa cos(ha) = sc cos(hc) and sa sin(ha) < sc sin(hc)

⇒ a ≤HSV c.

6) va = vb �= 1
2 and sa = sb and ha <h hb and b ≤HSV c

From the definition of <HSV would follow:

(a) vb < vc

⇒ va < vc

(b) vb = vc > 1
2 and sb > sc

⇒ va = vc and sa > sc

or

(b′) vb = vc < 1
2 and sb < sc

⇒ va = vc and sa < sc

(c) vb = vc �= 1
2 and sb = sc and hb ≤h hc

⇒ va = vc �= 1
2 and sa = sc and ha <h hc

⇒ a ≤HSV c.

�

In the L*a*b* and L*u*v* colour model

Here we will only consider the L*a*b* colour model, but the same reasoning can be
done for the L*u*v* colour model. A colour c in the L*a*b* colour model can be
represented as c(L∗

c , a
∗
c , b

∗
c), with L∗

c ∈ [0, 1] and a∗
c , b

∗
c ∈ [−1, 1].

When we order the colours in the L*a*b* colour model by looking at black and white
(just as in the RGB colour model), we can first consider the lightness component of
the colours, in the same way as described for the value component in the HSV colour
model. Secondly, we calculate the hue and chroma of the colours (by converting the
rectangular axes a* and b* into polar coordinates)

h∗
ab = arctan(b∗/a∗) (hue)

C∗
ab =

√
a∗2 + b∗2 (chroma).
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Figure 4.9: Hue and chroma in a graphical representation of the L*a*b* colour model.

In figure 4.9 the hue and chroma are shown in a graphical representation of the L*a*b*
colour model. Chroma is defined as the colourfulness of an area judged as a pro-
portion of the brightness of a similarly illuminated reference white [58]. Hue is not
defined for shades of grey, but we will put the hue of a shade of grey equal to zero.
The scales h∗ and C∗ together with the lightness L∗ correspond to perceptual colour
appearance. Analogous with the saturation component in the HSV colour model we
can order colours with the same L∗-value according to their C ∗-component and h∗-
component. If the colours have the same L∗-value, with L∗ �= 1/2, and the same
C∗-value, then we look at the h∗-value to rank these colours. Again, we have defined
a new ordering ≤h∗ to order colours w.r.t. their h∗-values.
Summarized, a new colour ordering ≤L∗a∗b∗ in L*a*b* is defined as

c <L∗a∗b∗ c′ ⇔ L∗
c < L∗

c′ or
(L∗

c = L∗
c′ > 1/2 and C∗

c > C∗
c′) or

(L∗
c = L∗

c′ < 1/2 and C∗
c < C∗

c′) or
(L∗

c = L∗
c′ = 1/2 and C∗

c cos(h∗
c) < C∗

c′ cos(h∗
c′)) or

(L∗
c = L∗

c′ = 1/2 and C∗
c cos(h∗

c) = C∗
c′ cos(h∗

c′) and
C∗

c sin(h∗
c) < C∗

c′ sin(h∗
c′)) or

(L∗
c = L∗

c′ �= 1/2 and C∗
c = C∗

c′ and h∗
c <h∗ h∗

c′)
c >L∗a∗b∗ c′ ⇔ c′ <L∗a∗b∗ c

⇔ L∗
c > L∗

c′ or
(L∗

c = L∗
c′ > 1/2 and C∗

c < C∗
c′) or

(L∗
c = L∗

c′ < 1/2 and C∗
c > C∗

c′) or
(L∗

c = L∗
c′ = 1/2 and C∗

c cos(h∗
c) > C∗

c′ cos(h∗
c′)) or

(L∗
c = L∗

c′ = 1/2 and C∗
c cos(h∗

c) = C∗
c′ cos(h∗

c′) and
C∗

c sin(h∗
c) > C∗

c′ sin(h∗
c′)) or

(L∗
c = L∗

c′ �= 1/2 and C∗
c = C∗

c′ and h∗
c >h∗ h∗

c′)
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c =L∗a∗b∗ c′ ⇔ (L∗
c = L∗

c′ and C∗
c = C∗

c′ and h∗
c = h∗

c′),
c ≤L∗a∗b∗ c′ ⇔ c <L∗a∗b∗ c′ or c =L∗a∗b∗ c′,

for two colours c(L∗
c , a

∗
c , b

∗
c) and c′(L∗

c′ , a
∗
c′ , b

∗
c′) or equivalent c(L∗

c , C
∗
c , h∗

c) and
c′(L∗

c′ , C
∗
c′ , h

∗
c′), where ≤h∗ = <h∗ ∪ =, with <h∗ defined as

if: ((h∗
c ∈ [0, π [ and h∗

c′ ∈ [0, π [ ) or (h∗
c ∈ [0, π [ and h∗

c′ ∈ [π, 2π [ )) and h∗
c < h∗

c′

then: h∗
c <h∗ h∗

c′

if: h∗
c ∈ [π, 2π [ and h∗

c′ ∈ [π, 2π [ and 2π − h∗
c < 2π − h∗

c′ (or thus h∗
c > h∗

c′)

then: h∗
c <h∗ h∗

c′ .

Properties of ≤h∗

We now show that

(∀c, c′ ∈ L∗a∗b∗)(h∗
c ≤h∗ h∗

c′ and h∗
c′ ≤h∗ h∗

c ⇒ h∗
c = h∗

c′)

Proof

Suppose that h∗
c �= h∗

c′ .

1) From (h∗
c ∈ [0, π [ and h∗

c′ ∈ [0, π [ ) and h∗
c <h∗ h∗

c′ it follows that h∗
c < h∗

c′ .
From (h∗

c ∈ [0, π [ and h∗
c′ ∈ [0, π [ ) and h∗

c′ <h∗ h∗
c it follows that h∗

c′ < h∗
c ,

and hence a contradiction.

2) From (h∗
c ∈ [0, π [ and h∗

c′ ∈ [π, 2π [ ) and h∗
c <h∗ h∗

c′ it follows that h∗
c < h∗

c′ .
The case (h∗

c ∈ [0, π [ and h∗
c′ ∈ [π, 2π [ ) and h∗

c′ <h∗ h∗
c is impossible.

3) From (h∗
c ∈ [π, 2π [ and h∗

c′ ∈ [π, 2π [ ) and h∗
c <h∗ h∗

c′ it follows that h∗
c > h∗

c′ .
From (h∗

c ∈ [π, 2π [ and h∗
c′ ∈ [π, 2π [ ) and h∗

c′ <h∗ h∗
c it follows that h∗

c′ > h∗
c ,

and hence a contradiction.

⇒ h∗
c = h∗

c′ .

�

And what is more,

(∀c, c′, c′′ ∈ L∗a∗b∗)(h∗
c ≤h∗ h∗

c′ and h∗
c′ ≤h∗ h∗

c′′ ⇒ h∗
c ≤h∗ h∗

c′′)

Proof

Let h∗
c = h∗

c′ and h∗
c′ ≤h∗ h∗

c′′ , then it holds that h∗
c ≤h∗ h∗

c′′ .
Suppose that h∗

c �= h∗
c′ .
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1) (h∗
c ∈ [0, π [ and h∗

c′ ∈ [0, π [ ) and h∗
c < h∗

c′

1.1) From h∗
c′′ ∈ [0, π [ and h∗

c′ ≤h∗ h∗
c′′ it follows that h∗

c′ ≤ h∗
c′′

⇒ h∗
c < h∗

c′′

1.2) From h∗
c′′ ∈ [π, 2π [ and h∗

c′ ≤h∗ h∗
c′′ it follows that h∗

c′ ≤ h∗
c′′

⇒ h∗
c < h∗

c′′

2) (h∗
c ∈ [0, π [ and h∗

c′ ∈ [π, 2π [ ) and h∗
c < h∗

c′

2.1) h∗
c′′ ∈ [0, π [ , impossible

2.2) From h∗
c′′ ∈ [π, 2π [ and h∗

c ∈ [0, π [ it follows that h∗
c < h∗

c′′

3) (h∗
c ∈ [π, 2π [ and h∗

c′ ∈ [π, 2π [ ) and h∗
c > h∗

c′

3.1) h∗
c′′ ∈ [0, π [ , impossible

3.2) From h∗
c′′ ∈ [π, 2π [ and h∗

c′ ≤h∗ h∗
c′′ it follows that h∗

c′ ≥ h∗
c′′

⇒ h∗
c > h∗

c′′

⇒ h∗
c ≤h∗ h∗

c′′ .

�

Properties of ≤L∗a∗b∗

We examine some properties of our new ordering ≤L∗a∗b∗ .

1. Reflexive: (∀α ∈ L∗a∗b∗)(α ≤L∗a∗b∗ α). OK.

2. Antisymmetric: (∀α, β ∈ L∗a∗b∗)(α ≤L∗a∗b∗ β and β ≤L∗a∗b∗ α
?⇒ α =L∗a∗b∗

β)

Proof

Suppose that α �=L∗a∗b∗ β.

1) L∗
α < L∗

β and β <L∗a∗b∗ α

From the definition of <L∗a∗b∗ would follow:

(a) L∗
β < L∗

α, a contradiction

(b) L∗
α = L∗

β , a contradiction

2) L∗
α = L∗

β > 1
2 and C∗

α > C∗
β and β <L∗a∗b∗ α
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From the definition of <L∗a∗b∗ would follow:

(a) C∗
β > C∗

α, a contradiction

(b) C∗
α = C∗

β , a contradiction

3) L∗
α = L∗

β < 1
2 and C∗

α < C∗
β and β <L∗a∗b∗ α

From the definition of <L∗a∗b∗ would follow:

(a) C∗
β < C∗

α, a contradiction

(b) C∗
α = C∗

β , a contradiction

4) L∗
α = L∗

β = 1
2 and C∗

α cos(h∗
α) < C∗

β cos(h∗
β) and β <L∗a∗b∗ α

From the definition of <L∗a∗b∗ would follow:

(a) C∗
β cos(h∗

β) < C∗
α cos(h∗

α), a contradiction

(b) C∗
α cos(h∗

α) = C∗
β cos(h∗

β), a contradiction

5) L∗
α = L∗

β = 1
2 and C∗

α cos(h∗
α) = C∗

β cos(h∗
β) and C∗

α sin(h∗
α) < C∗

β sin(h∗
β)

and β <L∗a∗b∗ α

From the definition of <HSV would follow: C∗
β sin(h∗

β) < C∗
α sin(h∗

α), a con-
tradiction

6) L∗
α = L∗

β �= 1
2 and C∗

α = C∗
β and h∗

α <h∗ h∗
β and β <L∗a∗b∗ α

From the definition of <L∗a∗b∗ would follow: h∗
β <h∗ h∗

α, a contradiction

⇒ L∗
α = L∗

β and C∗
α = C∗

β and h∗
α = h∗

β

⇒ α =L∗a∗b∗ β.

�

3. Transitive: (∀α, β, γ ∈ L∗a∗b∗)(α ≤L∗a∗b∗ β and β ≤L∗a∗b∗ γ
?⇒ α ≤L∗a∗b∗ γ)

Proof

Let α =L∗a∗b∗ β and β ≤L∗a∗b∗ γ, then it holds that α ≤L∗a∗b∗ γ.
Suppose that α �=L∗a∗b∗ β.

1) L∗
α < L∗

β and β ≤L∗a∗b∗ γ

From the definition of <L∗a∗b∗ would follow: L∗
β ≤ L∗

γ

⇒ L∗
α < L∗

γ
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⇒ α ≤L∗a∗b∗ γ.

2) L∗
α = L∗

β > 1
2 and C∗

α > C∗
β and β ≤L∗a∗b∗ γ

From the definition of <L∗a∗b∗ would follow:

(a) L∗
β < L∗

γ

⇒ L∗
α < L∗

γ

(b) L∗
β = L∗

γ and C∗
β ≥ C∗

γ

⇒ L∗
α = L∗

γ and C∗
α > C∗

γ

⇒ α ≤L∗a∗b∗ γ.

3) L∗
α = L∗

β < 1
2 and C∗

α < C∗
β and β ≤L∗a∗b∗ γ

From the definition of <L∗a∗b∗ would follow:

(a) L∗
β < L∗

γ

⇒ L∗
α < L∗

γ

(b) L∗
β = L∗

γ and C∗
β ≤ C∗

γ

⇒ L∗
α = L∗

γ and C∗
α < C∗

γ

⇒ α ≤L∗a∗b∗ γ.

4) L∗
α = L∗

β = 1
2 and C∗

α cos(h∗
α) < C∗

β cos(h∗
β) and β ≤L∗a∗b∗ γ

From the definition of <L∗a∗b∗ would follow:

(a) L∗
β < L∗

γ

⇒ L∗
α < L∗

γ

(b) L∗
β = L∗

γ and C∗
β cos(h∗

β) ≤ C∗
γ cos(h∗

γ)

⇒ L∗
α < L∗

γ and C∗
α cos(h∗

α) < C∗
γ cos(h∗

γ)

⇒ α ≤L∗a∗b∗ γ.

5) L∗
α = L∗

β = 1
2 and C∗

α cos(h∗
α) = C∗

β cos(h∗
β) and C∗

α sin(h∗
α) < C∗

β sin(h∗
β)

and β ≤L∗a∗b∗ γ

From the definition of <L∗a∗b∗ would follow:

(a) L∗
β < L∗

γ

⇒ L∗
α < L∗

γ

(b) L∗
β = L∗

γ and C∗
β cos(h∗

β) < C∗
γ cos(h∗

γ)

⇒ L∗
α = L∗

γ and C∗
α cos(h∗

α) < C∗
γ cos(h∗

γ)
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(c) L∗
β = L∗

γ and C∗
β cos(h∗

β) = C∗
γ cos(h∗

γ) and C∗
β sin(h∗

β) ≤ C∗
γ sin(h∗

γ)

⇒ L∗
α = L∗

γ and C∗
α cos(h∗

α) = C∗
γ cos(h∗

γ) and C∗
α sin(h∗

α) <
C∗

γ sin(h∗
γ)

⇒ α ≤L∗a∗b∗ γ.

6) L∗
α = L∗

β �= 1
2 and C∗

α = C∗
β and h∗

α <h∗ h∗
β and β ≤L∗a∗b∗ γ

From the definition of <L∗a∗b∗ would follow:

(a) L∗
β < L∗

γ

⇒ L∗
α < L∗

γ

(b) L∗
β = L∗

γ > 1
2 and C∗

β > C∗
γ

⇒ L∗
α = L∗

γ and C∗
α > C∗

γ

or

(b′) L∗
β = L∗

γ < 1
2 and C∗

β < C∗
γ

⇒ L∗
α = L∗

γ and C∗
α < C∗

γ

(c) L∗
β = L∗

γ �= 1
2 and C∗

β = C∗
γ and h∗

β ≤h∗ h∗
γ

⇒ L∗
α = L∗

γ �= 1
2 and C∗

α = C∗
γ and h∗

α <h∗ h∗
γ

⇒ α ≤L∗a∗b∗ γ.

�

4.3.3 Associated Minimum and Maximum Operators

Based on the vector ordering for colours introduced in the previous section in the HSV
and L*a*b* colour model, we now define new minimum and maximum operators.

The HSV colour model

The poset (HSV,≤HSV ) is a totally ordered set; for every two colours c and c ′ in HSV
it holds, by definition of the order relation ≤HSV , that c ≤HSV c′ or c′ ≤HSV c, so
that minHSV (c, c′) ∈ HSV and maxHSV (c, c′) ∈ HSV for all c, c′ ∈ HSV.

The minimum (maximum) of a set S of n colours c1(h1, s1, v1), . . . , cn(hn, sn, vn) in
HSV is the colour cα ∈ S wherefore cα ≤HSV ci (cα ≥HSV ci), for all i = 1 . . . n.
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The L*a*b* colour model

The poset (L∗a∗b∗,≤L∗a∗b∗) is a totally ordered set; for every two colours c and c ′

in L*a*b* it holds, by definition of the order relation ≤L∗a∗b∗ , that c ≤L∗a∗b∗ c′ or
c′ ≤L∗a∗b∗ c, so that minL∗a∗b∗(c, c′) ∈ L∗a∗b∗ and maxL∗a∗b∗(c, c′) ∈ L∗a∗b∗ for
all c, c′ ∈ L∗a∗b∗.

The minimum (maximum) of a set S of n colours c1(L∗
1, a

∗
1, b

∗
1), . . . , cn(L∗

n, a∗
n, b∗n)

in L*a*b* is the colour cα ∈ S wherefore cα ≤L∗a∗b∗ ci (cα ≥L∗a∗b∗ ci), for all
i = 1 . . . n.

4.3.4 New (+), (−) and (∗) Operations between Colours

Apart from a colour ordering, minimum and maximum operators, we also have to de-
fine the operations + and − between two colours in order to extend the morphological
operators to colour images.

• For the definition of the sum c + c′ of two colours c and c′ in the RGB, HSV or
L*a*b* colour model, we drew our inspiration from the fact that we want the dilation
to suppress dark colours and intensify light colours, and the erosion to suppress light
colours and intensify dark colours. In the definition of the u-dilation we see an addition
of colours, and in the definition of the u-erosion we see a subtraction of colours. If we
add white to a colour, we want the colour to become ‘lighter’, e.g. adding white to
red has to give us ‘light’ red, while if we add black to a colour, we want the colour to
become ‘darker’, e.g. adding black to red has to give us ‘dark’ red.
• In the RGB colour model we want the definition of the complement co of a colour
to fulfil the property that the RGB and CMY colours are complementary colours, thus
co(red) = cyan, co(green) = magenta, co(blue) = yellow and vice versa. For both the
HSV and L*a*b* colour model we took into account the fact that (black, white), (red,
green) and (blue, yellow) are opponent colour pairs according to the opponent process
theory. And we have defined our complement so that the complement of a shade of
grey is again a shade of grey.
• At last we define the difference c − c′ between the colours c and c′ so that the u-
dilation and u-erosion fullfill the duality property (see section 4.3.5).

New (+) and (−) Operations between Colours

In RGB

If c(rc, gc, bc) and c′(rc′ , gc′ , bc′) are two colours in RGB, we define the complement
co(c) of c, the sum c + c′ of c and c′, and the difference c − c′ between c and c′ as:

• (co(c))(r, g, b)
def
= 1RGB − c with r

def
= 1 − rc, g

def
= 1 − gc, b

def
= 1 − bc;
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• (c+RGB c′)(r, g, b) with r
def
= (rc+rc′)/2, g

def
= (gc+gc′)/2, b

def
= (bc+bc′)/2;

• c −RGB c′
def
= co(co(c) +RGB c′) = co((1RGB − c) +RGB c′) = 1RGB −

((1RGB − c) +RGB c′) = c +RGB (1RGB − c′) = c +RGB co(c′).

Notice that co(co(c)) = 1RGB − (1RGB − c) = c.

In HSV

We define the complement co of a colour c(hc, sc, vc) and the operations + and −
between two colours c(hc, sc, vc) and c′(hc′ , sc′ , vc′) in HSV as:

• (co(c))(h, s, v)
def
= 1HSV − c(hc, sc, vc) with

h
def
= hc, s

def
= sc, v

def
= 1 − vc, if c is a shade of grey

h
def
= (hc + π) mod 2π, s

def
= sc, v

def
= 1 − vc, otherwise;

• (c +HSV c′)(h, s, v) with

1. h
def
= hc, s

def
= (sc + sc′)/2, v

def
= (vc + vc′)/2, if c′ is a shade of grey

(analogous if c is a shade of grey)

2. h
def
= (hc + hc′)/2, s

def
= (sc + sc′)/2, v

def
= (vc + vc′)/2, otherwise;

• (c −HSV c′)(h, s, v)
def
= co(co(c) +HSV c′)(h, s, v) with

1. h
def
= (((hc + π) mod 2π) + π) mod 2π = hc, s

def
= sc+sc′

2 ,

v
def
= 1− 1−vc+vc′

2 = vc+1−vc′
2 , if c′ is a shade of grey (analogous if c is a

shade of grey)

2. h
def
= (( (hc+π) mod 2π)+hc′

2 + π) mod 2π, s
def
= sc+sc′

2 , v
def
= vc+1−vc′

2 ,
otherwise.

Notice that co(co(c))(h, s, v) = 1HSV − (1HSV − c(hc, sc, vc)) with

h
def
= (((hc + π) mod 2π) + π) mod 2π = hc, s

def
= sc, v

def
= 1 − (1 − vc) = vc,

thus co(co(c))(h, s, v) = c(hc, sc, vc).

We now prove that our new ordering ≤HSV is compatible with the complement co:

for all c, c′ in HSV : c ≤HSV c′
?⇔ co(c) ≥HSV co(c′).

Proof
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1
vc < vc′ ⇔ 1 − vc > 1 − vc′ .

2
vc = vc′ > 1

2 ∧ sc > sc′ ⇔ 1 − vc = 1 − vc′ < 1
2 ∧ sc > sc′ .

3
vc = vc′ < 1

2 ∧ sc < sc′ ⇔ 1 − vc = 1 − vc′ > 1
2 ∧ sc < sc′ .

4

vc = vc′ = 1
2 ∧ sc cos(hc) < sc′ cos(hc′)

?⇔ 1 − vc = 1 − vc′ = 1
2 ∧

sc cos(hco(c)) > sc′ cos(hco(c′)),

thus

sc cos(hc) < sc′ cos(hc′)
?⇔ sc cos(hco(c)) > sc′ cos(hco(c′)).

It holds that

sc cos(hc) < sc′ cos(hc′) ⇔ −sc cos(hc) > −sc′ cos(hc′)
⇔ sc cos((hc + π) mod 2π) >

sc′ cos((hc′ + π) mod 2π)
⇔ sc cos(hco(c)) > sc′ cos(hco(c′)),

where we have used the property that

cos(x + π) = cos(x − π) = − cos(x)

and
(x + π) mod 2π = x − π or x + π

for all x ∈ [0, 2π].

5

vc = vc′ = 1
2 ∧ sc cos(hc) = sc′ cos(hc′) ∧ sc sin(hc) < sc′ sin(hc′)

?⇔
1 − vc = 1 − vc′ = 1

2 ∧ sc cos(hco(c)) = sc′ cos(hco(c′)) ∧ sc sin(hco(c)) >
sc′ sin(hco(c′)),

thus
sc cos(hc) = sc′ cos(hc′) ∧ sc sin(hc) < sc′ sin(hc′)

?⇔

sc cos(hco(c)) = sc′ cos(hco(c′)) ∧ sc sin(hco(c)) > sc′ sin(hco(c′)).
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It holds that

sc cos(hc) = sc′ cos(hc′) ⇔ −sc cos(hc) = −sc′ cos(hc′)
⇔ sc cos((hc + π) mod 2π) =

sc′ cos((hc′ + π) mod 2π)
⇔ sc cos(hco(c)) = sc′ cos(hco(c′))

and

sc sin(hc) < sc′ sin(hc′) ⇔ −sc sin(hc) > −sc′ sin(hc′)
⇔ sc sin((hc + π) mod 2π) >

sc′ sin((hc′ + π) mod 2π)
⇔ sc sin(hco(c)) > sc′ sin(hco(c′)),

where we have used the property that

sin(x + π) = sin(x − π) = − sin(x)

and
(x + π) mod 2π = x − π or x + π

for all x ∈ [0, 2π].

6

vc = vc′ �= 1/2 ∧ sc = sc′ ∧ hc <h hc′
?⇔ 1 − vc = 1 − vc′ �= 1/2 ∧
sc = sc′ ∧ hco(c) >h hco(c′),

thus
hc <h hc′

?⇔ hco(c) >h hco(c′).

A. hc ∈ [0, π[

i. hc′ ∈ [0, π[
From hc <h hc′ and hc ∈ [0, π[ and hc′ ∈ [0, π[ it follows that hc < hc′ .
By definition of co we get: hco(c) = (hc + π) ∈ [π, 2π[ and hco(c′) =
(hc′ + π) ∈ [π, 2π[ and hence from hc < hc′ we get (hc + π) < (hc′ + π),
i.e., hco(c) >h hco(c′). The other direction is completely analogous.

ii. hc′ ∈ [π, 2π[
From hc <h hc′ and hc ∈ [0, π[ and hc′ ∈ [π, 2π[ it follows that hc < hc′ .
By definition of co we get: hco(c) = (hc + π) ∈ [π, 2π[ and hco(c′) =
(hc′ +π) mod 2π = (hc′ −π) ∈ [0, π[ and hence from hco(c′) ∈ [0, π[ and
hco(c) ∈ [π, 2π[ we get hco(c′) < hco(c), i.e., hco(c′) <h hco(c). The other
direction is completely analogous.

B. hc ∈ [π, 2π[
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i. hc′ ∈ [0, π[, impossible

ii. hc′ ∈ [π, 2π[
From hc <h hc′ and hc ∈ [π, 2π[ and hc′ ∈ [π, 2π[ it follows that hc >
h′

c′ . By definition of co we get: hco(c) = (hc − π) ∈ [0, π[ and hco(c′) =
(hc′ − π) ∈ [0, π[ and hence from hc > hc′ we get (hc − π) > (hc′ − π),
i.e., hco(c) >h hco(c′). The other direction is completely analogous.

�

In L*a*b*

If c(L∗
c , C

∗
c , h∗

c) and c′(L∗
c′ , C

∗
c′ , h

∗
c′) are two colours in the L*a*b* colour model, then

we define the complement co of the colour c and the operations + and − between c
and c′ as

• (co(c))(L∗, C∗, h∗)
def
= 1L∗a∗b∗ − c(L∗

c , C
∗
c , h∗

c) with

L∗ def
= 1 − L∗

c , h
∗ def

= h∗
c , C

∗ def
= C∗

c , if c is a shade of grey

L∗ def
= 1 − L∗

c , h
∗ def

= (h∗
c + π) mod 2π, C∗ def

= C∗
c , otherwise;

• (c +L∗a∗b∗ c′)(L∗, C∗, h∗) with

1. L∗ def
= (L∗

c + L∗
c′)/2, h∗ def

= h∗
c , C

∗ def
= (C∗

c + C∗
c′)/2, if c′ is a shade of

grey (analogous if c is a shade of grey)

2. L∗ def
= (L∗

c +L∗
c′)/2, h∗ def

= (h∗
c +h∗

c′)/2, C∗ def
= (C∗

c +C∗
c′)/2, otherwise;

• (c −L∗a∗b∗ c′)(L∗, C∗, h∗)
def
= co(co(c) +L∗a∗b∗ c′)(L∗, C∗, h∗) with

1. h∗ def
= (((h∗

c + π) mod 2π) + π) mod 2π = h∗
c , C

∗ def
= C∗

c +C∗
c′

2 ,

L∗ def
= 1 − 1−L∗

c+L∗
c′

2 = L∗
c+1−L∗

c′
2 , if c′ is a shade of grey (analogous if c

is a shade of grey)

2. h
def
= (( (h∗

c+π) mod 2π)+h∗
c′

2 + π) mod 2π, C∗ def
= C∗

c +C∗
c′

2 ,

L∗ def
= L∗

c+1−L∗
c′

2 , otherwise.

Notice that co(co(c))(L∗, C∗, h∗) = 1L∗a∗b∗ − (1L∗a∗b∗ − c(L∗
c , C

∗
c , h∗

c)) with

h∗ def
= (((h∗

c +π) mod 2π)+π) mod 2π = h∗
c , C

∗ def
= C∗

c , L∗ def
= 1−(1−L∗

c) = L∗
c ,

thus co(co(c))(L∗, C∗, h∗) = c(L∗
c , C

∗
c , h∗

c).

We now prove that our new ordering ≤L∗a∗b∗ is compatible with the complement co:

for all c, c′ in L∗a∗b∗ : c ≤L∗a∗b∗ c′
?⇔ co(c) ≥L∗a∗b∗ co(c′).
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Proof

1
L∗

c < L∗
c′ ⇔ 1 − L∗

c > 1 − L∗
c′ .

2
L∗

c = L∗
c′ > 1

2 ∧ C∗
c > C∗

c′ ⇔ 1 − L∗
c = 1 − L∗

c′ < 1
2 ∧ C∗

c > C∗
c′ .

3
L∗

c = L∗
c′ < 1

2 ∧ C∗
c < C∗

c′ ⇔ 1 − L∗
c = 1 − L∗

c′ > 1
2 ∧ C∗

c < C∗
c′ .

4

L∗
c = L∗

c′ = 1
2 ∧ C∗

c cos(h∗
c) < C∗

c′ cos(h∗
c′)

?⇔ 1 − L∗
c = 1 − L∗

c′ = 1
2 ∧

C∗
c cos(h∗

co(c)) > C∗
c′ cos(h∗

co(c′)),

thus

C∗
c cos(h∗

c) < C∗
c′ cos(h∗

c′)
?⇔ C∗

c cos(h∗
co(c)) > C∗

c′ cos(h∗
co(c′)).

It holds that

C∗
c cos(h∗

c) < C∗
c′ cos(h∗

c′) ⇔ −C∗
c cos(h∗

c) > −C∗
c′ cos(h∗

c′)
⇔ C∗

c cos((h∗
c + π) mod 2π) >

C∗
c′ cos((h∗

c′ + π) mod 2π)
⇔ C∗

c cos(h∗
co(c)) > C∗

c′ cos(h∗
co(c′)),

where we have used the property that

cos(x + π) = cos(x − π) = − cos(x)

and
(x + π) mod 2π = x − π or x + π

for all x ∈ [0, 2π].

5

L∗
c = L∗

c′ = 1
2 ∧ C∗

c cos(h∗
c) = C∗

c′ cos(h∗
c′) ∧ C∗

c sin(h∗
c) < C∗

c′ sin(h∗
c′)

?⇔ 1 − L∗
c = 1 − L∗

c′ = 1
2 ∧ C∗

c cos(h∗
co(c)) = C∗

c′ cos(h∗
co(c′))∧

C∗
c sin(h∗

co(c)) > C∗
c′ sin(h∗

co(c′)),

thus
C∗

c cos(h∗
c) = C∗

c′ cos(h∗
c′) ∧ C∗

c sin(h∗
c) < C∗

c′ sin(h∗
c′)

?⇔
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C∗
c cos(h∗

co(c)) = C∗
c′ cos(h∗

co(c′)) ∧ C∗
c sin(h∗

co(c)) > C∗
c′ sin(h∗

co(c′)).

It holds that

C∗
c cos(h∗

c) = C∗
c′ cos(h∗

c′) ⇔ −C∗
c cos(h∗

c) = −C∗
c′ cos(h∗

c′)
⇔ C∗

c cos((h∗
c + π) mod 2π) =

C∗
c′ cos((h∗

c′ + π) mod 2π)
⇔ C∗

c cos(h∗
co(c)) = C∗

c′ cos(h∗
co(c′))

and

C∗
c sin(h∗

c) < C∗
c′ sin(h∗

c′) ⇔ −C∗
c sin(h∗

c) > −C∗
c′ sin(h∗

c′)
⇔ C∗

c sin((h∗
c + π) mod 2π) >

C∗
c′ sin((h∗

c′ + π) mod 2π)
⇔ C∗

c sin(h∗
co(c)) > C∗

c′ sin(h∗
co(c′)),

where we have used the property that

sin(x + π) = sin(x − π) = − sin(x)

and
(x + π) mod 2π = x − π or x + π

for all x ∈ [0, 2π].

6

L∗
c = L∗

c′ �= 1/2 ∧ C∗
c = C∗

c′ ∧ h∗
c <h∗ h∗

c′
?⇔ 1 − L∗

c = 1 − L∗
c′ �= 1/2 ∧

C∗
c = C∗

c′ ∧ h∗
co(c) >h∗ h∗

co(c′),

thus
h∗

c <h∗ h∗
c′

?⇔ h∗
co(c) >h∗ h∗

co(c′).

A. h∗
c ∈ [0, π[

i. h∗
c′ ∈ [0, π[
From h∗

c <h∗ h∗
c′ and h∗

c ∈ [0, π[ and h∗
c′ ∈ [0, π[ it follows that h∗

c < h∗
c′ .

By definition of co we get: h∗
co(c) = (h∗

c + π) ∈ [π, 2π[ and h∗
co(c′) =

(h∗
c′ +π) ∈ [π, 2π[ and hence from h∗

c < h∗
c′ we get (h∗

c +π) < (h∗
c′ +π),

i.e., h∗
co(c) >h∗ h∗

co(c′). The other direction is completely analogous.

ii. h∗
c′ ∈ [π, 2π[
From h∗

c <h∗ h∗
c′ and h∗

c ∈ [0, π[ and h∗
c′ ∈ [π, 2π[ it follows that h∗

c < h∗
c′ .

By definition of co we get: h∗
co(c) = (h∗

c + π) ∈ [π, 2π[ and h∗
co(c′) =

(h∗
c′ +π) mod 2π = (h∗

c′ −π) ∈ [0, π[ and hence from h∗
co(c′) ∈ [0, π[ and

h∗
co(c) ∈ [π, 2π[ we get h∗

co(c′) < h∗
co(c), i.e., h∗

co(c′) <h∗ h∗
co(c). The other

direction is completely analogous.
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B. h∗
c ∈ [π, 2π[

i. h∗
c′ ∈ [0, π[, impossible

ii. h∗
c′ ∈ [π, 2π[
From h∗

c <h∗ h∗
c′ and h∗

c ∈ [π, 2π[ and h∗
c′ ∈ [π, 2π[ it follows that h∗

c >
h∗

c′ . By definition of co we get: h∗
co(c) = (h∗

c − π) ∈ [0, π[ and h∗
co(c′) =

(h∗
c′ − π) ∈ [0, π[ and hence from h∗

c > h∗
c′ we get (h∗

c − π) > (h∗
c′ − π),

i.e., h∗
co(c) >h∗ h∗

co(c′). The other direction is completely analogous.

�

New (∗) Operation between Colours

To apply the fuzzy mathematical morphological operators to a colour image in HSV or
L*a*b* we also need to define the product ∗ of two colours.

In RGB

Because we consider all three colour components R, G and B to be equally import-
ant we will usually take a symmetric greyscale structuring element as 3-dimensional
structuring element in RGB, i.e.,

B(i, j, 1) = B(i, j, 2) = B(i, j, 3) =

⎛
⎝ cB1 cB11 cB1

cB11 1 cB11

cB1 cB11 cB1

⎞
⎠ , 1 ≤ i, j,≤ 3.

According to the distance to the centre pixel we give a certain weight cB1 or cB11 , thus a
certain grade of importance, to each observed colour in the window, where c B11 ≥ cB1 .
But we can also choose for example a structuring element of the form

B(i, j, 1) =

⎛
⎝ ◦ • ◦

• 1 •
◦ • ◦

⎞
⎠ , B(i, j, 2) = B(i, j, 3) =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ , 1 ≤ i, j,≤ 3,

to give a weight to the R-component only, so that the G- and B-component remain
unchanged. We then define the product ∗ of a colour c(r c, gc, bc) and a colour
cB(rcB , gcB , bcB ) of the chosen structuring element B componentwisely as

(c ∗ cB)(r, g, b) with r
def
= rc · rcB , g

def
= gc · gcB , b

def
= bc · bcB .

In HSV

To get a 3-dimensional structuring element in the HSV colour model we can transform
the structuring element B chosen in RGB into HSV. If we want to define a multiplica-
tion ∗ between a colour c in HSV and a colour cBHSV of a structuring element BHSV

in HSV, we always have to scale the values of the H-, S- and V -component of the
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colour cBHSV to the interval [0, 1] (note c∗BHSV
) to give a weight to the colour c. This

way we can also choose immediately a structuring element B ∗
HSV , for example,

B∗
HSV (i, j, 1) = B∗

HSV (i, j, 2) =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ , B∗

HSV (i, j, 3) =

⎛
⎝ ◦ • ◦

• 1 •
◦ • ◦

⎞
⎠ ,

1 ≤ i, j,≤ 3, to attach importance to the value component only. So we define the
product ∗ of a colour c(hc, sc, vc) and a colour c∗BHSV

(hc∗BHSV
, sc∗BHSV

, vc∗BHSV
) of

the chosen structuring element B∗
HSV as

(c ∗ c∗BHSV
)(h, s, v) with h

def
= hc · hc∗

BHSV
, s

def
= sc · sc∗

BHSV
, v

def
= vc · vc∗

BHSV
.

Some t-norms on the lattice (HSV,≤HSV ) are

Tmin(γ, δ) = minHSV (γ, δ)

T∗(γ, δ) = γ ∗ δ, ∀γ, δ ∈ HSV .

TheS-implicators induced by Tmin (and T∗) and the standard negatorNs(c) = 1HSV −
c, for all c ∈ HSV , on (HSV,≤HSV ) are then given by

ITmin,Ns(γ, δ) = maxHSV (1HSV − γ, δ)

IT∗,Ns(γ, δ) = 1HSV − (γ ∗ (1HSV − δ)), ∀γ, δ ∈ HSV .

In L*a*b*

In the L*a*b* colour model we proceed analogously as in the HSV colour model.
Two t-norms on the lattice (L∗a∗b∗,≤L∗a∗b∗) are Tmin(γ, δ) = minL∗a∗b∗(γ, δ) and
T∗(γ, δ) = γ ∗ δ defined for all γ and δ in L∗a∗b∗. The S-implicators induced by
Tmin (and T∗) and the standard negator Ns(c) = 1L∗a∗b∗ − c, for all c ∈ L∗a∗b∗, on
(L∗a∗b∗,≤L∗a∗b∗) are

ITmin,Ns(γ, δ) = maxL∗a∗b∗(1L∗a∗b∗ − γ, δ)

IT∗,Ns(γ, δ) = 1L∗a∗b∗ − (γ ∗ (1L∗a∗b∗ − δ)), ∀γ, δ ∈ L∗a∗b∗.

Summarized:

For HSV:

(HSV,≤HSV ) is a poset, and what is more, by definition it holds that

(∀c, c′ ∈ HSV )(c ≤HSV c′ or c′ ≤HSV c),
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so that (HSV,≤HSV ) is a totally ordered set (maxHSV (a, b) and minHSV (a, b) exist
for all a, b ∈ HSV ), and thus a lattice. The greatest element in (HSV,≤HSV ) is
1 = (0, 0, 1) and the smallest element is 0 = (0, 0, 0), so we get a bounded complete
lattice. We will sometimes drop the index HSV.

Since colour images in the HSV colour model can be modelled as R
2−(HSV,≤HSV )

mappings and because (HSV,≤HSV ) is a complete lattice, we can identify colour
images in HSV with L-fuzzy sets on R

2, with (L,≤L) = (HSV,≤HSV ), and thus
define for a family (Ai)n

i=1 of colour images in HSV

n⋂
i=1

Ai(x) = min
i=1...n

Ai(x), ∀x ∈ R
2,

n⋃
i=1

Ai(x) = max
i=1...n

Ai(x), ∀x ∈ R
2,

so that (FHSV (X),∩HSV ,∪HSV ) is a lattice with the ordering defined for all A, B ∈
FHSV (X) as

A ⊆HSV B ⇔ (∀x ∈ R
2)(A(x) ≤HSV B(x)).

Let N be a negator on HSV, T a t-norm and S a t-conorm on HSV. Consider a colour
image A in HSV and a family (Ai)n

i=1 of colour images in HSV, then we define

coNA(x) = N (A(x)), ∀x ∈ R
2,

n⋂
i=1

T Ai(x) = T (A1(x), A2(x), . . . , An(x)), ∀x ∈ R
2,

n⋃
i=1

S Ai(x) = S(A1(x), A2(x), . . . , An(x)), ∀x ∈ R
2.

For L*a*b*:

(L∗a∗b∗,≤L∗a∗b∗) is a poset, and what is more, by definition it holds that

(∀c, c′ ∈ L∗a∗b∗)(c ≤L∗a∗b∗ c′ or c′ ≤L∗a∗b∗ c),

so that (L∗a∗b∗,≤L∗a∗b∗) is a totally ordered set (maxL∗a∗b∗(a, b) and
minL∗a∗b∗(a, b) exist for all a, b ∈ L∗a∗b∗), and thus a lattice. The greatest element in
(L∗a∗b∗,≤L∗a∗b∗) is 1 = (1, 0, 0) and the smallest element is 0 = (0, 0, 0), so we get
a bounded complete lattice. We will sometimes drop the index L∗a∗b∗.

Since colour images in the L*a*b* colour model can be modelled as
R

2 − (L∗a∗b∗,≤L∗a∗b∗) mappings and because (L∗a∗b∗,≤L∗a∗b∗) is a complete lat-
tice, we can identify colour images in L*a*b* with L-fuzzy sets on R

2, with
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(L,≤L) = (L∗a∗b∗,≤L∗a∗b∗), and thus define for a family (Ai)n
i=1 of colour images

in L∗a∗b∗

n⋂
i=1

Ai(x) = min
i=1...n

Ai(x), ∀x ∈ R
2,

n⋃
i=1

Ai(x) = max
i=1...n

Ai(x), ∀x ∈ R
2,

so that (FL∗a∗b∗(X),∩L∗a∗b∗ ,∪L∗a∗b∗) is a lattice with the ordering defined for all
A, B ∈ FL∗a∗b∗(X) as

A ⊆L∗a∗b∗ B ⇔ (∀x ∈ R
2)(A(x) ≤L∗a∗b∗ B(x)).

Let N be a negator on L*a*b*, T a t-norm and S a t-conorm on L*a*b*. For a colour
image A in L*a*b* and a family (Ai)n

i=1 of colour images in L*a*b* we define

coNA(x) = N (A(x)), ∀x ∈ R
2,

n⋂
i=1

T Ai(x) = T (A1(x), A2(x), . . . , An(x)), ∀x ∈ R
2,

n⋃
i=1

SAi(x) = S(A1(x), A2(x), . . . , An(x)), ∀x ∈ R
2.

4.3.5 New Vector-based Approach to Colour Morphology

We extend the basic morphological operators dilation and erosion for greyscale images
based on the threshold and fuzzy approach to colour images modelled in HSV and
L*a*b*. And we have even tried to extend the ‘theoretical’ u-operators dilation and
erosion to useful unambiguous operators for colour images.
We have taken into account the important remark we found in paper [56] that states
that a generalisation of morphological operations to complete lattices is necessary for
a mathematically coherent application of morphological operators to greyscale images.
Any computer implementation of mathematical morphology only works with digital
images defined on a finite grid and whose grey values range in a finite interval in R, thus
the set of grey values is bounded, so that a computation of grey values can give a value
outside this set, in other words, one can get an arithmetic overflow. A careless approach
to this problem can lead to operators looking at first sight like dilations and erosions,
but which do not have their usual algebraic properties and behave in fact differently.
This problem of greylevel overflow can be solved by using complete lattices. And
because we want to extend the greyscale morphological operators to morphological
operators acting on colour images, so that greyscale morphology becomes a restriction
of colour morphology, we have looked for complete lattices in our extension to colour.
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Extension of greyscale morphology to colour morphology in HSV

• Threshold approach

Let A be a colour image, represented as a R
2 − (HSV,≤HSV ) mapping, and B a

binary structuring element (⊆ R
2).

Definition 4.13. Let A be a colour image in HSV and B a binary structuring elem-
ent. The threshold ‘colour’ dilation 	Dt(A, B) and the threshold ‘colour’ erosion
	Et(A, B) are the colour images given by

	Dt(A, B)(y)
def
= HSV max

x∈Ty(B)
A(x) for y ∈ R

2,

	Et(A, B)(y)
def
= HSV min

x∈Ty(B)
A(x) for y ∈ R

2.

Property 4.14.

	Dt(0, B) =HSV 0 and 	Et(1, B) =HSV 1
	Dt(A, ∅) =HSV 0 and 	Et(A, ∅) =HSV 1.

Proof

	Dt(0, B)(y)
def
= HSV max

x∈Ty(B)
0(x) =HSV 0 =HSV 0(y), ∀y ∈ R

2.

	Et(1, B)(y)
def
= HSV min

x∈Ty(B)
1(x) =HSV 1 =HSV 1(y), ∀y ∈ R

2.

	Dt(A, ∅)(y)
def
= HSV max

x∈Ty(∅)
A(x) =HSV max ∅ =HSV 0 =HSV 0(y), ∀y ∈ R

2.

	Et(A, ∅)(y)
def
= HSV min

x∈Ty(∅)
A(x) =HSV min ∅ =HSV 1 =HSV 1(y), ∀y ∈ R

2.

�

Property 4.15 (Duality dilation-erosion).

	Dt(A, B) =HSV co( 	Et(co(A), B))
	Et(A, B) =HSV co( 	Dt(co(A), B)).
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Proof

co( 	Et(co(A), B))(y)
def
= HSV 1HSV − 	Et(co(A), B)(y)

def
= HSV 1HSV − min

x∈Ty(B)
co(A)(x)

(∗)
=HSV max

x∈Ty(B)
1HSV − (1HSV − A(x))

=HSV max
x∈Ty(B)

A(x)

=HSV
	Dt(A, B)(y), for all y ∈ R

2.

↪→ (∗) For two colours c and c′ in HSV we get

1HSV − minHSV (c, c′) =HSV 1HSV − c′ (suppose c′ ≤HSV c)
=HSV maxHSV (1HSV − c,1HSV − c′).

co( 	Dt(co(A), B))(y)
def
= HSV 1HSV − 	Dt(co(A), B)(y)

def
= HSV 1HSV − max

x∈Ty(B)
co(A)(x)

(∗)
=HSV min

x∈Ty(B)
1HSV − (1HSV − A(x))

=HSV min
x∈Ty(B)

A(x)

=HSV
	Et(A, B)(y), for all y ∈ R

2.

↪→ (∗) For two colours c and c′ in HSV we get

1HSV − maxHSV (c, c′) =HSV 1HSV − c (suppose c′ ≤HSV c)
=HSV minHSV (1HSV − c,1HSV − c′).

�

Property 4.16 (Monotonicity). If A and B are two colour images in HSV, and C and
C′ are two binary structuring elements, then it holds that

A ⊆HSV B ⇒ 	Dt(A, C) ⊆HSV
	Dt(B, C) and

	Et(A, C) ⊆HSV
	Et(B, C)

C ⊆ C′ ⇒ 	Dt(A, C) ⊆HSV
	Dt(A, C′) and

	Et(A, C) ⊇HSV
	Et(A, C′).
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Proof

A ⊆HSV B ⇔ A(z) ≤HSV B(z), ∀z ∈ R
2

⇒ max
z∈Ty(C)

A(z) ≤HSV max
z∈Ty(C)

B(z), ∀z ∈ R
2

⇒ 	Dt(A, C) ⊆HSV
	Dt(B, C),

A ⊆HSV B ⇔ A(z) ≤HSV B(z), ∀z ∈ R
2

⇒ min
z∈Ty(C)

A(z) ≤HSV min
z∈Ty(C)

B(z), ∀z ∈ R
2

⇒ 	Et(A, C) ⊆HSV
	Et(B, C).

C ⊆ C′ ⇔ (∀x ∈ R
2)(x ∈ C ⇒ x ∈ C′)

⇒ (∀x ∈ R
2)(x ∈ Ty(C) ⇒ x ∈ Ty(C′)), ∀y ∈ R

2

⇒ Ty(C) ⊆ Ty(C′), ∀y ∈ R
2

⇒ max
x∈Ty(C)

A(x) ≤HSV max
x∈Ty(C′)

A(x), ∀y ∈ R
2

⇒ 	Dt(A, C) ⊆HSV
	Dt(A, C′),

C ⊆ C′ ⇔ (∀x ∈ R
2)(x ∈ C ⇒ x ∈ C′)

⇒ (∀x ∈ R
2)(x ∈ Ty(C) ⇒ x ∈ Ty(C′)), ∀y ∈ R

2

⇒ Ty(C) ⊆ Ty(C′), ∀y ∈ R
2

⇒ min
x∈Ty(C)

A(x) ≥HSV min
x∈Ty(C′)

A(x), ∀y ∈ R
2

⇒ 	Et(A, C) ⊇HSV
	Et(A, C′).

�

Property 4.17 (Inclusion).

	Et(A, B) ⊆HSV
	Dt(A, B).

Proof
By definition of ≤HSV it holds that for all y in R

2

min
x∈Ty(B)

A(x) ≤HSV max
x∈Ty(B)

A(x).

�

Property 4.18.

0 ∈ B ⇒ A ⊆HSV
	Dt(A, B) and 	Et(A, B) ⊆HSV A.
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Proof

0 ∈ B ⇒ y ∈ Ty(B), ∀y ∈ R
2

⇒ 	Dt(A, B)(y)
def
= HSV max

x∈Ty(B)
A(x) ≥HSV A(y), ∀y ∈ R

2

⇒ A ⊆HSV
	Dt(A, B),

0 ∈ B ⇒ y ∈ Ty(B), ∀y ∈ R
2

⇒ 	Et(A, B)(y)
def
= HSV min

x∈Ty(B)
A(x) ≤HSV A(y), ∀y ∈ R

2

⇒ 	Et(A, B) ⊆HSV A.

�

Property 4.19 (Interaction with intersection and union). Consider a family (A i)n
i=1

of colour images in HSV and a family (Bi)n
i=1 of binary structuring elements.

For the t-‘colour’ dilation it holds that

	Dt(
n⋂

i=1

Ai, B) ⊆HSV

n⋂
i=1

	Dt(Ai, B)

	Dt(A,

n⋂
i=1

Bi) ⊆HSV

n⋂
i=1

	Dt(A, Bi);

	Dt(
n⋃

i=1

Ai, B) =HSV

n⋃
i=1

	Dt(Ai, B)

	Dt(A,

n⋃
i=1

Bi) =HSV

n⋃
i=1

	Dt(A, Bi).

Proof

1. (∀j ∈ {1, . . . , n})(
⋂n

i=1 Ai ⊆HSV Aj)

4.16⇒ (∀j ∈ {1, . . . , n})( 	Dt(
⋂n

i=1 Ai, B) ⊆HSV
	Dt(Aj , B))

⇒ 	Dt(
⋂n

i=1 Ai, B) ⊆HSV

⋂n
i=1

	Dt(Ai, B).

2. (∀j ∈ {1, . . . , n})(
⋂n

i=1 Bi ⊆HSV Bj)

4.16⇒ (∀j ∈ {1, . . . , n})( 	Dt(A,
⋂n

i=1 Bi) ⊆HSV
	Dt(A, Bj))

⇒ 	Dt(A,
⋂n

i=1 Bi) ⊆HSV

⋂n
i=1

	Dt(A, Bi).
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3.

	Dt(
n⋃

i=1

Ai, B)(y) =HSV max
x∈Ty(B)

(
n⋃

i=1

Ai)(x)

=HSV max
x∈Ty(B)

max
i=1...n

Ai(x)

=HSV max
i=1...n

max
x∈Ty(B)

Ai(x)

=HSV

n⋃
i=1

	Dt(Ai, B)(y), ∀y ∈ R
2.

4.

	Dt(A,

n⋃
i=1

Bi)(y) =HSV max
x∈Ty(∪n

i=1Bi)
A(x)

(∗)
=HSV max

x∈∪n
i=1Ty(Bi)

A(x)

=HSV max
i=1...n

max
x∈Ty(Bi)

A(x)

=HSV

n⋃
i=1

	Dt(A, Bi)(y), ∀y ∈ R
2.

↪→ (∗)
Ty(∪n

i=1Bi) = {x ∈ R
2 | x − y ∈ ∪n

i=1Bi}
= {x ∈ R

2 | x − y ∈ B1 ∨ . . . ∨ x − y ∈ Bn}
= {x ∈ R

2|x − y ∈ B1} ∪ . . . ∪ {x ∈ R
2|x − y ∈ Bn}

= ∪n
i=1Ty(Bi)

�
For the t-‘colour’ erosion it holds that

	Et(
n⋂

i=1

Ai, B) =HSV

n⋂
i=1

	Et(Ai, B)

	Et(A,

n⋂
i=1

Bi) ⊇HSV

n⋃
i=1

	Et(A, Bi);

	Et(
n⋃

i=1

Ai, B) ⊇HSV

n⋃
i=1

	Et(Ai, B)

	Et(A,

n⋃
i=1

Bi) =HSV

n⋂
i=1

	Et(A, Bi).

Proof
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1.

	Et(
n⋂

i=1

Ai, B)(y) =HSV min
x∈Ty(B)

(
n⋂

i=1

Ai)(x)

=HSV min
x∈Ty(B)

min
i=1...n

Ai(x)

=HSV min
i=1...n

min
x∈Ty(B)

Ai(x)

=HSV

n⋂
i=1

	Et(Ai, B)(y), ∀y ∈ R
2.

2. (∀j ∈ {1, . . . , n})(
⋂n

i=1 Bi ⊆HSV Bj)

4.16⇒ (∀j ∈ {1, . . . , n})( 	Et(A,
⋂n

i=1 Bi) ⊇HSV
	Et(A, Bj))

⇒ 	Et(A,
⋂n

i=1 Bi) ⊇HSV

⋃n
i=1

	Et(A, Bi).

3. (∀j ∈ {1, . . . , n})(Aj ⊆HSV

⋃n
i=1 Ai)

4.16⇒ (∀j ∈ {1, . . . , n})( 	Et(Aj , B) ⊆HSV
	Et(

⋃n
i=1 Ai, B))

⇒
⋃n

i=1
	Et(Ai, B) ⊆HSV

	Et(
⋃n

i=1 Ai, B).

4.

	Et(A,

n⋃
i=1

Bi)(y) =HSV min
x∈Ty(∪n

i=1Bi)
A(x)

=HSV min
x∈∪n

i=1Ty(Bi)
A(x)

=HSV min
i=1...n

min
x∈Ty(Bi)

A(x)

=HSV

n⋂
i=1

	Et(A, Bi)(y), ∀y ∈ R
2.

�

Property 4.20. Let A be a colour image in HSV and B and C two binary structuring
elements, then

	Dt( 	Dt(A, B), C) =HSV
	Dt( 	Dt(A, C), B)

	Et( 	Et(A, B), C) =HSV
	Et( 	Et(A, C), B).
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Proof
On the one hand we have

	Dt( 	Dt(A, B), C)(y) =HSV max
x∈Ty(C)

	Dt(A, B)(x)

=HSV max
x∈Ty(C)

max
z∈Tx(B)

A(z)

=HSV max{A(z) | (∃x ∈ Ty(C))(z ∈ Tx(B))}, ∀y ∈ R
2.

And on the other hand we get

	Dt( 	Dt(A, C), B)(y) =HSV max
x∈Ty(B)

	Dt(A, C)(x)

=HSV max
x∈Ty(B)

max
z∈Tx(C)

A(z)

=HSV max{A(z) | (∃x ∈ Ty(B))(z ∈ Tx(C))}, ∀y ∈ R
2.

So

(∃x ∈ Ty(C))(z ∈ Tx(B)) ?⇔ (∃x ∈ Ty(B))(z ∈ Tx(C))

(∃x ∈ R
2)(x − y ∈ C ∧ z − x ∈ B) ?⇔ (∃x ∈ R

2)(x − y ∈ B ∧ z − x ∈ C).

Put p = z + y − x, then x − y = z − p and z − x = p − y, thus

(∃x ∈ R
2)(x − y ∈ C ∧ z − x ∈ B) !⇔ (∃p ∈ R

2)(z − p ∈ B ∧ p − y ∈ C).

The other expression can be proven analogously.

�

• Fuzzy approach

The support dA of a colour image A in HSV is defined as the set

dA = {x ∈ R
2 | A(x) >HSV 0}.

Definition 4.21. Let A be a colour image and B a colour structuring element (both
seen as (HSV,≤HSV )-fuzzy sets), C a conjunctor and I an implicator on (HSV ,
≤HSV ). The fuzzy ‘colour’ dilation 	DC(A, B) and the fuzzy ‘colour’ erosion
	EI(A, B) are the (HSV,≤HSV )-fuzzy sets defined as

	DC(A, B)(y)
def
= HSV max

x∈Ty(dB)
C(B(x − y), A(x)) for y ∈ R

2,

	EI(A, B)(y)
def
= HSV min

x∈Ty(dB)
I(B(x − y), A(x)) for y ∈ R

2.
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Notice that we can write

max
x∈Ty(dB)

C(B(x − y), A(x)) =HSV max
x∈R2

C(RB(x, y), A(x)),

min
x∈Ty(dB)

I(B(x − y), A(x)) =HSV min
x∈R2

I(RB(x, y), A(x)),

for all y in R
2, whereby

RB : R
2 × R

2 → (HSV,≤HSV ),

RB = B ◦ V with V defined as V (x, y) = x − y = (x1, x2) − (y1, y2) = (x1 −
y1, x2 − y2), ∀(x, y) ∈ (R2)2 so that RB(x, y) = B(x − y).

With every structuring element B we can associate a (HSV,≤HSV )-fuzzy relation
RB on R

2. We will now prove some properties of the new fuzzy colour morphological
operators. Some of them can be deduced from the properties of L-fuzzy relational
images, proved in [12]. The only difference is that here we do not always require that
the conjunctor C is a triangular norm.

Property 4.22. [12] Let T be a t-norm and I be an implicator on (HSV,≤HSV ),
then it holds:

	DT (0, B) =HSV 0 and 	EI(1, B) =HSV 1.

If B(0) =HSV 1, then it holds:

	DT (1, B) =HSV 1 and 	EI(0, B) =HSV 0.

Proof
For all y in R

2:

max
x∈Ty(dB)

T (B(x − y),0(x))
def
= max

x∈Ty(dB)
T (B(x − y),0) 2.15= 0 = 0(y),

min
x∈Ty(dB)

I(B(x − y),1(x))
def
= min

x∈Ty(dB)
I(B(x − y),1) 2.16= 1 = 1(y).

If B(0) =HSV 1, then we get for all y ∈ R
2

max
x∈Ty(dB)

T (B(x − y),1) ≥HSV T (B(y − y),1) = T (1,1) = 1 = 1(y),

min
x∈Ty(dB)

I(B(x − y),0) ≤HSV I(B(y − y),0) = I(1,0) = 0 = 0(y).

�
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Property 4.23 (Duality dilation-erosion). [12] Let T be a t-norm on HSV, N an
involutive negator on HSV and IT ,N the correspondingS-implicator. For every colour
image A and colour structuring element B we have

coN 	DT (A, B) =HSV
	EIT ,N (coNA, B)

	DT (coNA, B) =HSV coN ( 	EIT ,N (A, B)).

Property 4.24 (Monotonicity). [Generalisation of [12]] If A and B are two colour
images, C and C ′ two colour structuring elements, C1 and C2 two conjunctors and I1

and I2 two implicators on HSV, then it holds that

A ⊆HSV B ⇒ 	DC(A, C) ⊆HSV
	DC(B, C) and

	EI(A, C) ⊆HSV
	EI(B, C)

C ⊆HSV C′ ⇒ 	DC(A, C) ⊆HSV
	DC(A, C′) and

	EI(A, C) ⊇HSV
	EI(A, C′)

C1 ⊆HSV C2 ⇒ 	DC1(A, C) ⊆HSV
	DC2(A, C)

I1 ⊆HSV I2 ⇒ 	EI1(A, C) ⊆HSV
	EI2(A, C)

Proof

A ⊆HSV B ⇔ A(x) ≤HSV B(x), ∀x ∈ R
2

⇒ C(C(x − y), A(x)) ≤HSV C(C(x − y), B(x)), ∀x, y ∈ R
2

(C is increasing)

⇒ max
x∈Ty(dC)

C(C(x − y), A(x)) ≤HSV

max
x∈Ty(dC)

C(C(x − y), B(x)), ∀y ∈ R
2

⇒ 	DC(A, C) ⊆HSV
	DC(B, C).

Analogously for A ⊆HSV B ⇒ 	EI(A, C) ⊆HSV
	EI(B, C).

C ⊆HSV C′ ⇔ C(x − y) ≤HSV C′(x − y), ∀x, y ∈ R
2

⇒ C(C(x − y), A(x)) ≤HSV C(C′(x − y), A(x)), ∀x, y ∈ R
2

(C is increasing)

⇒ max
x∈Ty(dC)

C(C(x − y), A(x)) ≤HSV

max
x∈Ty(dC′)

C(C′(x − y), A(x)), ∀y ∈ R
2

⇒ 	DC(A, C) ⊆HSV
	DC(A, C′).
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Analogously for C ⊆HSV C′ ⇒ 	EI(A, C) ⊇HSV
	EI(A, C′).

C1 ⊆HSV C2 ⇒ C1(B(x − y), A(x)) ≤HSV C2(B(x − y), A(x)), ∀x, y ∈ R
2

⇒ max
x∈Ty(dB)

C1(B(x − y), A(x)) ≤HSV

max
x∈Ty(dB)

C2(B(x − y), A(x)), ∀y ∈ R
2

⇒ 	DC1(A, B) ⊆HSV
	DC2(A, B).

I1 ⊆HSV I2 ⇒ I1(B(x − y), A(x)) ≤HSV I2(B(x − y), A(x)), ∀x, y ∈ R
2

⇒ min
x∈Ty(dB)

I1(B(x − y), A(x)) ≤HSV

min
x∈Ty(dB)

I2(B(x − y), A(x)), ∀y ∈ R
2

⇒ 	EI1(A, B) ⊆HSV
	EI2(A, B).

�

Property 4.25 (Inclusion). [Generalisation of [12]] Let C be a seminorm and I an
edge-implicator on HSV. Consider a colour image A and a ‘normalized’ colour struc-
turing element B, that is, (∀y ∈ R

2)(∃z ∈ R
2)(B(z − y) =HSV 1). It holds that

	EI(A, B) ⊆HSV
	DC(A, B).

Proof

	EI(A, B)(y)
def
= HSV min

x∈Ty(dB)
I(B(x − y), A(x))

≤HSV I(B(z − y), A(z))
=HSV I(1, A(z))
=HSV A(z)
=HSV C(1, A(z))
=HSV C(B(z − y), A(z))
≤HSV max

x∈Ty(dB)
C(B(x − y), A(x))

def
= HSV

	DC(A, B)(y), ∀y ∈ R
2.

�

Property 4.26. [Generalisation of [12]] Let C be a seminorm and I an edge- implica-
tor on HSV. For every colour image A and every colour structuring element B, it holds
that

B(0) =HSV 1 ⇒ A ⊆HSV
	DC(A, B) and 	EI(A, B) ⊆HSV A.
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Proof

	DC(A, B)(y)
def
= HSV max

x∈Ty(dB)
C(B(x − y), A(x))

≥HSV C(B(y − y), A(y))
=HSV C(1, A(y))
=HSV A(y), ∀y ∈ R

2.

	EI(A, B)(y)
def
= HSV min

x∈Ty(dB)
I(B(x − y), A(x))

≤HSV I(B(y − y), A(y))
=HSV I(1, A(y))
=HSV A(y), ∀y ∈ R

2.

�
From property 4.24 it follows that

Property 4.27 (Interaction with intersection and union). [Generalisation of [12]]
Consider a family (Ai)n

i=1 of colour images and a family (Bi)n
i=1 of colour structuring

elements. For the C-‘colour’ dilation it holds that

	DC(
n⋂

i=1

Ai, B) ⊆HSV

n⋂
i=1

	DC(Ai, B)

	DC(A,

n⋂
i=1

Bi) ⊆HSV

n⋂
i=1

	DC(A, Bi);

	DC(
n⋃

i=1

Ai, B) ⊇HSV

n⋃
i=1

	DC(Ai, B)

	DC(A,

n⋃
i=1

Bi) ⊇HSV

n⋃
i=1

	DC(A, Bi).

For the I-‘colour’ erosion it holds that

	EI(
n⋂

i=1

Ai, B) ⊆HSV

n⋂
i=1

	EI(Ai, B)

	EI(A,

n⋂
i=1

Bi) ⊇HSV

n⋃
i=1

	EI(A, Bi);

	EI(
n⋃

i=1

Ai, B) ⊇HSV

n⋃
i=1

	EI(Ai, B)

	EI(A,

n⋃
i=1

Bi) ⊆HSV

n⋂
i=1

	EI(A, Bi).
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But we can prove more, i.e.,

	DC(A,

n⋃
i=1

Bi) =HSV

n⋃
i=1

	DC(A, Bi)

	EI(A,

n⋃
i=1

Bi) =HSV

n⋂
i=1

	EI(A, Bi);

	DC(
n⋃

i=1

Ai, B) =HSV

n⋃
i=1

	DC(Ai, B)

	EI(
n⋂

i=1

Ai, B) =HSV

n⋂
i=1

	EI(Ai, B).

Proof

	DC(A,

n⋃
i=1

Bi)(y)
def
= HSV max

x∈Ty(d∪n
i=1Bi

)
C(

n⋃
i=1

Bi(x − y), A(x))

(∗)
=HSV max

x∈Ty(∪n
i=1dBi

)
C( max

i=1...n
Bi(x − y), A(x)).

And since a conjunctor C is increasing, we get:

	DC(A,

n⋃
i=1

Bi)(y) =HSV max
x∈∪i=1...nTy(dBi

)
max

i=1...n
C(Bi(x − y), A(x))

=HSV max
i=1...n

( max
x∈Ty(dB1)

C(B1(x − y), A(x)), . . . ,

max
x∈Ty(dBn )

C(Bn(x − y), A(x)))

=HSV

n⋃
i=1

	DC(A, Bi)(y), ∀y ∈ R
2.

↪→ (∗)

Ty(d∪n
i=1Bi) = {x ∈ R

2 | x − y ∈ d∪n
i=1Bi}

= {x ∈ R
2 | ∪n

i=1 Bi(x − y) > 0}
= {x ∈ R

2 | maxi=1...n Bi(x − y) > 0}
= {x ∈ R

2 | B1(x − y) > 0 ∨ . . . ∨ Bn(x − y) > 0}
= {x ∈ R

2 | x − y ∈ dB1 ∨ . . . ∨ x − y ∈ dBn}
= {x ∈ R

2 | x − y ∈ ∪n
i=1dBi}

= Ty(∪n
i=1dBi)
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Analogously,

	EI(A,

n⋃
i=1

Bi)(y)
def
= HSV min

x∈Ty(d∪n
i=1Bi

)
I(

n⋃
i=1

Bi(x − y), A(x))

=HSV min
x∈Ty(∪n

i=1dBi
)
I( max

i=1...n
Bi(x − y), A(x)).

And since an implicator I is decreasing in its first argument, we get:

	EI(A,

n⋃
i=1

Bi)(y) =HSV min
x∈∪n

i=1Ty(dBi
)

min
i=1...n

I(Bi(x − y), A(x))

=HSV min
i=1...n

( min
x∈Ty(dB1)

I(B1(x − y), A(x)), . . . ,

min
x∈Ty(dBn)

I(Bn(x − y), A(x)))

=HSV

n⋂
i=1

	EI(A, Bi)(y), ∀y ∈ R
2.

Analogously,

	DC(
n⋃

i=1

Ai, B)(y)
def
= HSV max

x∈Ty(dB)
C(B(x − y),

n⋃
i=1

Ai(x))

def
= HSV max

x∈Ty(dB)
C(B(x − y), max

i=1...n
Ai(x)).

And since a conjunctor C is increasing, we get:

	DC(
n⋃

i=1

Ai, B)(y) =HSV max
x∈Ty(dB)

max
i=1...n

C(B(x − y), Ai(x))

=HSV max
i=1...n

( max
x∈Ty(dB)

C(B(x − y), A1(x)), . . . ,

max
x∈Ty(dB)

C(B(x − y), An(x)))

=HSV

n⋃
i=1

	DC(Ai, B)(y), ∀y ∈ R
2.

Analogously,

	EI(
n⋂

i=1

Ai, B)(y)
def
= HSV min

x∈Ty(dB)
I(B(x − y),

n⋂
i=1

Ai(x))

def
= HSV min

x∈Ty(dB)
I(B(x − y), min

i=1...n
Ai(x)).
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And since an implicator I is increasing in its second argument, we get:

	EI(
n⋂

i=1

Ai, B)(y) =HSV min
x∈Ty(dB)

min
i=1...n

I(B(x − y), Ai(x))

=HSV min
i=1...n

( min
x∈Ty(dB)

I(B(x − y), A1(x)), . . . ,

min
x∈Ty(dB)

I(B(x − y), An(x)))

=HSV

n⋂
i=1

	EI(Ai, B)(y), ∀y ∈ R
2.

�

• Umbra approach

Definition 4.28. Let A be a colour image and B a colour structuring element (both
represented as R

2 − (HSV,≤HSV ) mappings). The umbra ‘colour’ dilation
	Du(A, B) and the umbra ‘colour’ erosion 	Eu(A, B) are the colour images given by

	Du(A, B)(y)
def
= HSV max

x∈Ty(dB)
A(x) ⊕ B(x − y) for y ∈ R

2,

	Eu(A, B)(y)
def
= HSV min

x∈Ty(dB)
A(x) � B(x − y) for y ∈ R

2,

where ⊕ and � are colour mix operators.

The question now is how to define the colour mix operators ⊕ and �, both acting on
colours in HSV and giving as result a colour in HSV. Because we want to obtain a
complete lattice we require [56] that the dilation preserves the smallest element 0 and
the erosion preserves the largest element 1 in HSV.

Definition 4.29. Let c and c′ be two colours in HSV. We define the colour mix operators
⊕ and � for c and c′ as

c ⊕ c′
def
= HSV

{
0HSV if c =HSV 0HSV

c +HSV c′ otherwise
,

c � c′
def
= HSV

{
1HSV if c =HSV 1HSV

c −HSV c′ otherwise
.

Property 4.30.

	Du(0, B) =HSV 0 and 	Eu(1, B) =HSV 1.

Proof

	Du(0, B)(y)
def
= HSV max

x∈Ty(dB)
0(x) ⊕ B(x − y) =HSV 0 =HSV 0(y), ∀y ∈ R

2.
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	Eu(1, B)(y)
def
= HSV min

x∈Ty(dB)
1(x) � B(x − y) =HSV 1 =HSV 1(y), ∀y ∈ R

2.

�

Property 4.31 (Duality dilation-erosion).

	Du(A, B) =HSV co( 	Eu(co(A), B))
	Eu(A, B) =HSV co( 	Du(co(A), B)).

Proof
We first prove that 	Du(A, B) =HSV co( 	Eu(co(A), B)).

1) If A �=HSV 0 we get:

co( 	Eu(co(A), B))(y) = 1HSV − 	Eu(1HSV − A, B)(y)
= 1HSV − min

x∈Ty(dB)
(1HSV − A)(x) � B(x − y)

= max
x∈Ty(dB)

1HSV − (1HSV − (A(x) +HSV B(x − y)))

= max
x∈Ty(dB)

A(x) +HSV B(x − y)

= 	Du(A, B)(y), ∀y ∈ R
2.

2) If A =HSV 0 we get:

co( 	Eu(co(A), B))(y) =HSV 1HSV − 	Eu(1HSV − 0HSV , B)(y)

=HSV 1HSV − 	Eu(1HSV , B)(y)
=HSV 1HSV − min

x∈Ty(dB)
1HSV (x) � B(x − y)

=HSV 1HSV − 1HSV

=HSV 0HSV

=HSV
	Du(A, B)(y), ∀y ∈ R

2.

Combination of the cases above gives us that for every colour image A and every
colour structuring element B in HSV hold that 	Du(A, B) =HSV co( 	Eu(co(A), B)).

We now prove that 	Eu(A, B) =HSV co( 	Du(co(A), B)).
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1) If A �=HSV 1 we get:

co( 	Du(co(A), B))(y) = 1HSV − 	Du(1HSV − A, B)(y)
= 1HSV − max

x∈Ty(dB)
(1HSV − A)(x) ⊕ B(x − y)

= min
x∈Ty(dB)

1HSV − ((1HSV − A)(x) ⊕ B(x − y))

= min
x∈Ty(dB)

A(x) −HSV B(x − y)

= 	Eu(A, B)(y), ∀y ∈ R
2.

2) If A =HSV 1 we get:

co( 	Du(co(A), B))(y) =HSV 1HSV − 	Du(1HSV − 1HSV , B)(y)

=HSV 1HSV − 	Du(0HSV , B)(y)
=HSV 1HSV − max

x∈Ty(dB)
0HSV (x) ⊕ B(x − y)

=HSV 1HSV − 0HSV

=HSV 1HSV

=HSV
	Eu(A, B)(y), ∀y ∈ R

2.

Combination of the cases above gives us that for every colour image A and every
colour structuring element B in HSV hold that co( 	Du(co(A), B)) =HSV

	Eu(A, B).

�

Extension of greyscale morphology to colour morphology in L*a*b*

We extend the basic morphological operators dilation and erosion for greyscale
images based on the threshold, umbra and fuzzy approach to colour images modelled
in L*a*b*. For proofs we refer to the corresponding properties in HSV.

• Threshold approach

Let A be a colour image, represented as a R
2 − (L∗a∗b∗,≤L∗a∗b∗) mapping, and B a

binary structuring element (⊆ R
2). The support of A is defined as

{x ∈ R
2 | A(x) >L∗a∗b∗ 0}.

Definition 4.32. Let A be a colour image and B a binary structuring element. The
threshold ‘colour’ dilation 	Dt(A, B) and the threshold ‘colour’ erosion 	Et(A, B)



100 Colour Morphology

are the colour images given by

	Dt(A, B)(y)
def
= L∗a∗b∗ max

x∈Ty(B)
A(x) for y ∈ R

2,

	Et(A, B)(y)
def
= L∗a∗b∗ min

x∈Ty(B)
A(x) for y ∈ R

2.

Property 4.33.

	Dt(0, B) =L∗a∗b∗ 0 and 	Et(1, B) =L∗a∗b∗ 1
	Dt(A, ∅) =L∗a∗b∗ 0 and 	Et(A, ∅) =L∗a∗b∗ 1.

Property 4.34 (Duality dilation-erosion).

	Dt(A, B) =L∗a∗b∗ co( 	Et(co(A), B))
	Et(A, B) =L∗a∗b∗ co( 	Dt(co(A), B)).

Property 4.35 (Monotonicity). If A and B are two colour images, and C and C ′ are
two binary structuring elements, then it holds that

A ⊆L∗a∗b∗ B ⇒ 	Dt(A, C) ⊆L∗a∗b∗
	Dt(B, C) and

	Et(A, C) ⊆L∗a∗b∗
	Et(B, C)

C ⊆ C′ ⇒ 	Dt(A, C) ⊆L∗a∗b∗
	Dt(A, C′) and

	Et(A, C) ⊇L∗a∗b∗
	Et(A, C′).

Property 4.36 (Inclusion).

	Et(A, B) ⊆L∗a∗b∗
	Dt(A, B).

Property 4.37.

0 ∈ B ⇒ A ⊆L∗a∗b∗
	Dt(A, B) and 	Et(A, B) ⊆L∗a∗b∗ A.

Property 4.38 (Interaction with intersection and union). Consider a family (A i)n
i=1

of colour images and a family (Bi)n
i=1 of binary structuring elements.

For the t-‘colour’ dilation it holds that

	Dt(
n⋂

i=1

Ai, B) ⊆L∗a∗b∗

n⋂
i=1

	Dt(Ai, B)

	Dt(A,

n⋂
i=1

Bi) ⊆L∗a∗b∗

n⋂
i=1

	Dt(A, Bi);

	Dt(
n⋃

i=1

Ai, B) =L∗a∗b∗

n⋃
i=1

	Dt(Ai, B)

	Dt(A,

n⋃
i=1

Bi) =L∗a∗b∗

n⋃
i=1

	Dt(A, Bi).
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For the t-‘colour’ erosion it holds that

	Et(
n⋂

i=1

Ai, B) =L∗a∗b∗

n⋂
i=1

	Et(Ai, B)

	Et(A,

n⋂
i=1

Bi) ⊇L∗a∗b∗

n⋃
i=1

	Et(A, Bi);

	Et(
n⋃

i=1

Ai, B) ⊇L∗a∗b∗

n⋃
i=1

	Et(Ai, B)

	Et(A,
n⋃

i=1

Bi) =L∗a∗b∗

n⋂
i=1

	Et(A, Bi).

Property 4.39. Let A be a colour image and B and C two binary structuring elements,
then

	Dt( 	Dt(A, B), C) =L∗a∗b∗
	Dt( 	Dt(A, C), B)

	Et( 	Et(A, B), C) =L∗a∗b∗
	Et( 	Et(A, C), B).

• Fuzzy approach

The support dA of a colour image A in L*a*b* is defined as the set

dA = {x ∈ R
2 | A(x) >L∗a∗b∗ 0}.

Definition 4.40. Let A be a colour image and B a colour structuring element (both
seen as (L∗a∗b∗,≤L∗a∗b∗)-fuzzy sets), C a conjunctor on (L∗a∗b∗,≤L∗a∗b∗) and I an
implicator on (L∗a∗b∗,≤L∗a∗b∗). The fuzzy ‘colour’ dilation 	DC(A, B) and the fuzzy
‘colour’ erosion 	EI(A, B) are the (L∗a∗b∗,≤L∗a∗b∗)-fuzzy sets defined as

	DC(A, B)(y)
def
= L∗a∗b∗ max

x∈Ty(dB)
C(B(x − y), A(x)) for y ∈ R

2,

	EI(A, B)(y)
def
= L∗a∗b∗ min

x∈Ty(dB)
I(B(x − y), A(x)) for y ∈ R

2.

Notice that we can write

max
x∈Ty(dB)

C(B(x − y), A(x)) =L∗a∗b∗ max
x∈R2

C(RB(x, y), A(x)),

min
x∈Ty(dB)

I(B(x − y), A(x)) =L∗a∗b∗ min
x∈R2

I(RB(x, y), A(x)),

for all y in R
2, whereby

RB : R
2 × R

2 → (L∗a∗b∗,≤L∗a∗b∗),
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RB = B ◦ V with V defined as V (x, y) = x − y = (x1, x2) − (y1, y2) = (x1 −
y1, x2 − y2), ∀(x, y) ∈ (R2)2 so that RB(x, y) = B(x − y).

With every structuring element B we can associate a (L∗a∗b∗,≤L∗a∗b∗)-fuzzy relation
RB on R

2.

Property 4.41. [12] Let T be a t-norm and I be an implicator on (L ∗a∗b∗,≤L∗a∗b∗),
then it holds:

	DT (0, B) =L∗a∗b∗ 0 and 	EI(1, B) =L∗a∗b∗ 1.

If B(0) = 1, then it holds:

	DT (1, B) =L∗a∗b∗ 1 and 	EI(0, B) =L∗a∗b∗ 0.

Property 4.42 (Duality dilation-erosion). [12] Let T be a t-norm on L ∗a∗b∗, N an
involutive negator and IT ,N the corresponding S-implicator on L∗a∗b∗. For every
colour image A and colour structuring element B we have

coN 	DT (A, B) =L∗a∗b∗
	EIT ,N (coNA, B)

	DT (coNA, B) =L∗a∗b∗ coN ( 	EIT ,N (A, B)).

Property 4.43 (Monotonicity). [Generalisation of [12]] If A and B are two colour
images, C and C ′ two colour structuring elements, C1 and C2 two conjunctors and I1

and I2 two implicators on L∗a∗b∗, then it holds that

A ⊆L∗a∗b∗ B ⇒ 	DC(A, C) ⊆L∗a∗b∗
	DC(B, C) and

	EI(A, C) ⊆L∗a∗b∗
	EI(B, C)

C ⊆L∗a∗b∗ C′ ⇒ 	DC(A, C) ⊆L∗a∗b∗
	DC(A, C′) and

	EI(A, C) ⊇L∗a∗b∗
	EI(A, C′)

C1 ⊆L∗a∗b∗ C2 ⇒ 	DC1(A, C) ⊆L∗a∗b∗
	DC2(A, C)

I1 ⊆L∗a∗b∗ I2 ⇒ 	EI1(A, C) ⊆L∗a∗b∗
	EI2(A, C).

Property 4.44 (Inclusion). [Generalisation of [12]] Let C be a seminorm on L*a*b*
and I an edge-implicator on L*a*b*. Consider a colour image A and a ‘normalized’
colour structuring element B, that is, (∀y ∈ R

2)(∃z ∈ R
2)(B(z − y) =L∗a∗b∗ 1). It

holds that
	EI(A, B) ⊆L∗a∗b∗

	DC(A, B).

Property 4.45. [Generalisation of [12]] Let C be a seminorm on L*a*b* and I an
edge-implicator on L*a*b*. For every colour image A and every colour structuring
element B, it holds that

B(0) =L∗a∗b∗ 1 ⇒ A ⊆L∗a∗b∗
	DC(A, B) and 	EI(A, B) ⊆L∗a∗b∗ A.
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Property 4.46 (Interaction with intersection and union). [Generalisation of [12]]
Consider a family (Ai)n

i=1 of colour images and a family (Bi)n
i=1 of colour structuring

elements. For the C-‘colour’ dilation it holds that

	DC(
n⋂

i=1

Ai, B) ⊆L∗a∗b∗

n⋂
i=1

	DC(Ai, B)

	DC(A,
n⋂

i=1

Bi) ⊆L∗a∗b∗

n⋂
i=1

	DC(A, Bi);

	DC(
n⋃

i=1

Ai, B) =L∗a∗b∗

n⋃
i=1

	DC(Ai, B)

	DC(A,

n⋃
i=1

Bi) =L∗a∗b∗

n⋃
i=1

	DC(A, Bi).

For the I-‘colour’ erosion it holds that

	EI(
n⋂

i=1

Ai, B) =L∗a∗b∗

n⋂
i=1

	EI(Ai, B)

	EI(A,

n⋂
i=1

Bi) ⊇L∗a∗b∗

n⋃
i=1

	EI(A, Bi);

	EI(
n⋃

i=1

Ai, B) ⊇L∗a∗b∗

n⋃
i=1

	EI(Ai, B)

	EI(A,

n⋃
i=1

Bi) =L∗a∗b∗

n⋂
i=1

	EI(A, Bi).

• Umbra approach

Definition 4.47. Let A be a colour image and B a colour structuring element (both
represented as R

2 − (L∗a∗b∗,≤L∗a∗b∗) mappings). The umbra ‘colour’ dilation
	Du(A, B) and the umbra ‘colour’ erosion 	Eu(A, B) are the colour images given by

	Du(A, B)(y)
def
= L∗a∗b∗ max

x∈Ty(dB)
A(x) ⊕ B(x − y) for y ∈ R

2,

	Eu(A, B)(y)
def
= L∗a∗b∗ min

x∈Ty(dB)
A(x) � B(x − y) for y ∈ R

2,

where ⊕ and � are colour mix operators.

Definition 4.48. Let c and c′ be two colours in L*a*b*. We define the colour mix
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operators ⊕ and � for c and c′ as

c ⊕ c′ =L∗a∗b∗

{
0L∗a∗b∗ if c =L∗a∗b∗ 0L∗a∗b∗

c +L∗a∗b∗ c′ otherwise
,

c � c′ =L∗a∗b∗

{
1L∗a∗b∗ if c =L∗a∗b∗ 1L∗a∗b∗

c −L∗a∗b∗ c′ otherwise
.

Property 4.49.

	Du(0, B) =L∗a∗b∗ 0 and 	Eu(1, B) =L∗a∗b∗ 1.

Property 4.50 (Duality dilation-erosion).

	Du(A, B) =L∗a∗b∗ co( 	Eu(co(A), B))
	Eu(A, B) =L∗a∗b∗ co( 	Du(co(A), B)).

4.3.6 Experimental Results

Consider now a colour image C, modelled in the HSV or L*a*b* colour model, and
a one- or three-dimensional structuring element BHSV or BL∗a∗b∗ . For the extension
of the greyscale morphological operators to morphological operators acting on colour
images we get

1. The t-‘colour’ morphological operators (threshold approach):
We calculate the maximum and minimum of the set of colours of the image
C contained in a m × m window (structuring element) around a chosen cen-
tral colour pixel. The t-‘colour’ dilation and t-‘colour’ erosion are the original
colours of the pixels where this maximum, respectively minimum, is obtained.

2. The u-‘colour’ morphological operators (umbra approach):
First we mix the colours (addition for the u-dilation, subtraction for the u-
erosion) of the original image C with the colours of our chosen structuring elem-
ent B in the considered window. Secondly we determine the maximum and
minimum of this new set of colours for the u-‘colour’ dilation and u-‘colour’
erosion. The u-‘colour’ dilation and u-‘colour’ erosion are the new colours of the
pixels where this maximum, respectively minimum, is obtained. But we can also
look for the positions in C where this maximum or minimum is reached. And
the u-‘colour’ dilation and u-‘colour’ erosion can then be given by the original
colours (in the original image C) of these pixels.

3. The fuzzy ‘colour’ morphological operators (fuzzy logic approach):
Again, we have to determine the maximum and minimum of a (new) set of
colours, possibly after adding, subtracting or multiplying original colours of C
with colours of the structuring element B.
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Finally in our experimental results (figure 4.11 to 4.24) we have compared our new
approach with the component-based approach. And what is more, we have compared
our u-morphological colour operators in HSV with the u-morphological colour oper-
ators proposed in [39] and our t-morphological colour operators in L*a*b* with the
t-morphological colour operators proposed in [4]. We have used different test images
in our experiments (the well-known Tulips, Trees and Lena images), shown in figure
4.10. Because the dilation is a supremum operator, this operator will suppress dark
colours and intensify light colours: objects/areas in the image that have a dark colour
become smaller while objects/areas that have a light colour become larger. The erosion
on the other hand is an infimum operator so that light colours are suppressed and dark
colours intensified. The choice of the structuring element has of course a great influ-
ence on the result and will obviously depend on the application. As ‘binary’ structuring
elements we have used

B′(i, j, 1) = B′(i, j, 2) = B′(i, j, 3) =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ , 1 ≤ i, j,≤ 3,

or

B′ ∗ (i, j, 1) = B′ ∗ (i, j, 2) = B′ ∗ (i, j, 3) =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠ , 1 ≤ i, j,≤ 3,

or

B′′∗(i, j, 1) = B′′∗(i, j, 2) = B′′∗(i, j, 3) =

⎛
⎝ 0.55 0.55 0.55

0.55 0.55 0.55
0.55 0.55 0.55

⎞
⎠ , 1 ≤ i, j,≤ 3,

and as greyscale structuring element

B′′
RGB(i, j, 1) = B′′

RGB(i, j, 2) = B′′
RGB(i, j, 3) =

⎛
⎝ 0 255 0

255 255 255
0 255 0

⎞
⎠ ,

or

BWh
RGB(i, j, 1) = BWh

RGB(i, j, 2) = BWh
RGB(i, j, 3) =

⎛
⎝ 255 255 255

255 255 255
255 255 255

⎞
⎠ ,

1 ≤ i, j,≤ 3, where the underlined element corresponds to the origin of coordinates.
Notice that since in both the HSV and L*a*b* colour model we can separate intensity
from chrominance (= hue and saturation or chroma), we will obtain the best results
for the component-based approach by applying the greyscale morphological operators
on the intensity component only. Then we add the ‘new’ intensity component to the
original chrominance components to get again a colour image in the HSV or L*a*b*
colour model.
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Figure 4.10: At the top, from left to right: the original Tulips and Lena image, and at the bottom,
the original Trees image.

In figures 4.11 and 4.12 the t-colour dilation and t-colour erosion in HSV and L*a*b*
of the component-based approach and the proposed method are shown. Pay attention to
the edge of the tulips leaves. New colours appear with the component-based approach,
while with our approach the colours are preserved.
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Figure 4.11: T-morphological operators in HSV: at the top: the original image C, left column:
the t-dilation Dt(C, B′) and right column: the t-erosion Et(C, B′): from top to bottom: the
component-based approach and our new vector-based approach.
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Figure 4.12: T-morphological operators in L*a*b*: at the top: the original image C, left column:
the t-dilation Dt(C, B′) and right column: the t-erosion Et(C, B′): from top to bottom: the
component-based approach and our new vector-based approach.
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We have compared the results for the t-morphological colour operators in L*a*b* of
our method with these of the state-of-the-art method [4] in figure 4.13. The difference
between the two approaches is noticeable at the edge of the tulips leaves, but the results
are quite similar.

Figure 4.13: T-morphological colour operators in L*a*b* by structuring element B′: at the top:
the t-dilation and at the bottom: the t-erosion, using our RGB ordering (left) and the reduced
ordering, based on the distance to white, completed by the conditional ordering L* → a* → b*
(right).
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Figures 4.14 and 4.15 illustrate the fuzzy morphological colour operators for (C, I) =
(Tmin, ITmin,Ns) in HSV and L*a*b* obtained by the component-based approach and
the proposed approach. Look at the edge of the hat. With the component-based ap-
proach new colours are introduced, whereas with our method no colours that are not
present in the original colour image appear in the results.

Figure 4.14: Fuzzy morphological operators for (C,I) = (Tmin, ITmin,Ns) in HSV: left col-
umn: the dilations DTmin(C, BWh) and right column: the erosions EITmin,Ns

(C, BWh): from
top to bottom: the component-based approach and our new vector-based approach.
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Figure 4.15: Fuzzy morphological operators for (C, I) = (Tmin, ITmin,Ns) in L*a*b*: left
column: the dilations DTmin(C,BWh) and right column: the erosions EITmin,Ns

(C, BWh):
from top to bottom: the component-based approach and our new approach.
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The fuzzy morphological colour dilation and colour erosion for (C, I) = (T ∗, IT∗,Ns)
in HSV and L*a*b* for the component-based approach and the proposed approach are
shown in figures 4.16 and 4.17. Pay attention to the edge of the trees, where the colours
are not preserved with the component-based approach but no new colours appear with
our method.

Figure 4.16: Fuzzy morphological operators for (C, I) = (T∗, IT∗,Ns) in HSV: at the top:
the original image C, left column: the dilations DT∗ (C, B′′) and right column: the erosions
EIT∗,Ns

(C, B′′): from top to bottom: the component-based approach and our new vector-based
approach.
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Figure 4.17: Fuzzy morphological operators for (C,I) = (T∗, IT∗,Ns) in L*a*b*: at the top:
the original image C, left column: the dilations DT∗ (C, B′′) and right column: the erosions
EIT∗,Ns

(C, B′′): from top to bottom: the component-based approach and our new vector-based
approach.
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Note that for the fuzzy morphological operators with conjunctor-implicator pair (C, I)
= (T∗, IT∗,Ns) we have used the structuring element B ′′. If we choose as structuring
element for example

B′′′
RGB(i, j, 1) = B′′′

RGB(i, j, 2) = B′′′
RGB(i, j, 3) =

1
255

⎛
⎝ 155 235 155

235 255 235
155 235 155

⎞
⎠ ,

1 ≤ i, j,≤ 3, new unwanted colours that are not present in the original image can
appear in the image after applying the morphological operators, as shown along the
edges of the tulips leaves in figure 4.18.

Figure 4.18: Fuzzy morphological operators for (C, I) = (T∗, IT∗,Ns) in HSV: at the top: the
original image C, the fuzzy dilation DT∗ (C, B′′′) (left) and the fuzzy erosion EIT∗,Ns

(C, B′′′)
obtained by our new approach.
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To solve this problem we better first multiply or subtract colours of the original image
C with colours of the chosen structuring element B ′′′ and then determine the maximum
and minimum of this new set of colours. Next we look at the positions in C where this
maximum or minimum is reached. The fuzzy dilation and fuzzy erosion for (C, I) =
(T∗, IT∗,Ns) are then given by the original colours (in the original image C) of these
pixels.

Figure 4.19: Fuzzy morphological operators for (C, I) = (T∗, IT∗,Ns) in HSV: at the top:
the original image C, left column: the dilations DT∗ (C, B′′′) and right column: the erosions
EIT∗,Ns

(C, B′′′): from top to bottom: the component-based approach and our new vector-
based approach.
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Figure 4.19 and 4.20 show the fuzzy colour dilation and erosion for the conjunctor-
implicator pair (C, I) = (T∗, IT∗,Ns) in HSV and L*a*b* for the component-based
and the proposed approach. Along the edges of the trees new colours appear with the
component-based approach, which is not the case with the new method.

Figure 4.20: Fuzzy morphological operators for (C,I) = (T∗, IT∗,Ns) in L*a*b*: at the top:
the original image C, left column: the dilations DT∗ (C, B′′′) and right column: the erosions
EIT∗,Ns

(C, B′′′): from top to bottom: the component-based approach and our new vector-
based approach.
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The u-colour dilation and erosion using the new vector-based approach in the HSV
and L*a*b* colour model is given in figure 4.21 and 4.22 respectively. The results of
the proposed approach when replacing the new colours by the original colours of the
corresponding pixels are also shown.

Figure 4.21: U-morphological operators in HSV: left column: the u-dilation Du(C, BWh) and
right column: the u-erosion Eu(C, BWh): from top to bottom: our new vector-based approach
and the result of our approach when replacing the new colours by the original colours of the
corresponding pixel positions.
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Figure 4.22: U-morphological operators in L*a*b*: at the top: the original image C, left col-
umn: the u-dilation Du(C, BWh) and right column: the u-erosion Eu(C, BWh): from top to
bottom: our new vector-based approach and the result of our approach when replacing the new
colours by the original colours of the corresponding pixel positions.
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In figure 4.23 and 4.24 the results of the u-morphological colour operators in HSV by
the proposed method and the state-of-the-art method described in [39] are illustrated.
Figure 4.23 shows that the colours obtained by our approach are natural in comparison
with the original colours of the original image, while artificial colours appear in the
images using the other approach. The results of both approaches when replacing the
new colours by the original colours of the right pixel positions, as shown in figure 4.24,
are very similar.

Figure 4.23: U-morphological colour operators in HSV: at the top: the u-‘colour’ dilation based
on our approach by structuring element BWh and based on the approach [39] by structuring
element B′′∗, and at the bottom: the u-‘colour’erosion based on our approach by structuring
element BWh and based on the approach [39] by structuring element B′′∗.
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Figure 4.24: U-morphological colour operators in HSV: at the top: the u-‘colour’ dilation based
on our approach by structuring element BWh and based on the approach [39] by structuring
element B′∗, both results when replacing the new colours by the original colours of the cor-
responding pixel positions, and at the bottom: the u-‘colour’erosion based on our approach by
structuring element BWh and based on the approach [39] by structuring element B′∗, both re-
sults when replacing the new colours by the original colours of the corresponding pixel positions.
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4.3.7 New RGB Colour Ordering Compatible with the Comple-
ment co

Now we introduce a new approach for the ordering of colours in RGB. We first explain
our idea and define a new ordering ≤RGB compatible with the complement co (we
need this property for our morphological interpolation method to magnify images (see
chapter 4)) so that (RGB,≤RGB) becomes a lattice.

Construction of the new RGB colour vector ordering ≤RGB

Our idea still is to rank colours in RGB from ‘dark’ colours (close to black) to ‘light’
colours (close to white). When we look at the distance of colours in RGB to black and
white (see section 4.3.2), we do not get an order relation. So we got the idea to consider
the centre (1/2, 1/2, 1/2) of the RGB cube (as the middle of the black and white top)
and to determine from this point if colours are lying close to black or close to white.

In the RGB cube we consider a plane V through the centre m = (1/2, 1/2, 1/2) per-
pendicular to the line l determined by the two points Bl (0, 0, 0) and Wh (1, 1, 1). The
line l is determined as intersection of the two planes r = g and g = b. In figure 4.25
you see the line l and the plane V in the RGB cube. The equation of the plane V with
non-zero normal vector (1, 1, 1) through (1/2, 1/2, 1/2) is

V : r + g + b − 3
2

= 0.

For every colour c = (rc, gc, bc) in RGB we now look if c lies ‘below’ or ‘above’
the plane V with respect to its normal vector (1, 1, 1). So we have to work out the
“distance” from c to V as follows

D(c,V ) =
(rc + gc + bc − 3/2)√

3
.

If D(c,V ) > 0, then c is on the same side of the plane as the normal vector (1, 1, 1); if
D(c,V ) < 0, then c is on the opposite side; and if D(c,V ) = 0, then c lies in V . This
way we can distinguish between ‘dark’ colours lying close to black (D (c,V ) < 0) and
‘light’ colours lying close to white (D(c,V ) > 0), where we will rank ‘dark’ colours
lower than ‘light’ colours. The plane V ‘divides’ the RGB cube into two similar parts.
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Figure 4.25: The RGB colour cube with the plane V (in green) and the line l (in blue).

Let c = (rc, gc, bc) and c′ = (rc′ , gc′, bc′) be two colours in RGB. We will consider
the following cases for the ranking of c and c ′:

1st case: The two colours c and c′ are not lying on the same side w.r.t. V

1.1. c lies under V and c′ lies above V , i.e., D(c,V ) < 0 and D(c′,V ) > 0

1.2. c lies in V and c′ lies above V , i.e., D(c,V ) = 0 and D(c′,V ) > 0

1.3. c lies under V and c′ lies in V , i.e., D(c,V ) < 0 and D(c′,V ) = 0.

In these three subcases c is ranked lower than c ′, i.e., c <RGB c′.

2nd case: The two colours c and c′ are lying on the same side w.r.t. V

2.1. c and c′ are lying above V , i.e., D(c,V ) > 0 and D(c′,V ) > 0; c and c′ lie both
close to white

All colours above V are considered to be ‘light’ colours lying close to white. Because
we want to determine which of the two colours c and c ′ is the ‘lightest’ colour, we slice
the cube by looking at the distance to V :

D(c, V ) = |rc + gc + bc − 3/2| /
√

3 =
∣∣D(c,V )

∣∣



4.3 Colour Morphology 123

D(c′, V ) = |rc′ + gc′ + bc′ − 3/2| /
√

3 =
∣∣D(c′,V )

∣∣
where the colours c and c′ are then ordered accordingly to their distance with respect
to V .

2.1.1. D(c, V ) < D(c′, V ): c is a ‘darker’ colour than c′ so that we rank c
lower than c′, i.e., c <RGB c′.

2.1.2. D(c, V ) > D(c′, V ): c is a ‘lighter’ colour than c′ so that we rank c
higher than c′, i.e., c >RGB c′.

2.1.3. D(c, V ) = D(c′, V ) → the distance to m is taken into account:

If (D(c,V ) > 0 and D(c′,V ) > 0) and (D(c, V ) = D(c′, V )), thus D(c,V ) = D(c′,V ) >
0, that is, if the two colours c and c′ lie on the same plane Wc,c′ parallel to V at distance
D(c, V ) = D(c′, V ), then we determine the distance from c and c ′ to the centre m of
the cube as

D(c, m) =
√

(rc − 1/2)2 + (gc − 1/2)2 + (bc − 1/2)2,

D(c′, m) =
√

(rc′ − 1/2)2 + (gc′ − 1/2)2 + (bc′ − 1/2)2.

We sort the colours w.r.t. their distance to m, that is,

2.1.3.1. D(c, m) < D(c′, m): c is ranked lower than c′, i.e., c <RGB c′.

2.1.3.2. D(c, m) > D(c′, m): c is ranked higher than c′, i.e., c >RGB c′.

2.1.3.3. D(c, m) = D(c′, m), see subcase 2.3.

2.2. c and c′ are lying below V , i.e., D(c,V ) < 0 and D(c′,V ) < 0; c and c′ lie both
close to black

Here we can make an analogous reasoning as in case 2.1. Again we first take the
distance to V into account:

2.2.1. D(c, V ) > D(c′, V ): we rank c lower than c′, i.e., c <RGB c′.

2.2.2. D(c, V ) < D(c′, V ): we rank c higher than c′, i.e., c >RGB c′.

2.2.3. D(c, V ) = D(c′, V ) → the distance to m is taken into account:

2.2.3.1. D(c, m) > D(c′, m): c is ranked lower than c′, i.e., c <RGB c′.

2.2.3.2. D(c, m) < D(c′, m): c is ranked higher than c′, i.e., c >RGB c′.

2.2.3.3. D(c, m) = D(c′, m), see subcase 2.3.

2.3. In this part we can take the two subcases 2.1.3.3. and 2.2.3.3. together.
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If for c and c′ hold that D(c,V ) < 0 and D(c′,V ) < 0 and D(c, V ) = D(c′, V ) and
D(c, m) = D(c′, m) or D(c,V ) > 0 and D(c′,V ) > 0 and D(c, V ) = D(c′, V ) and
D(c, m) = D(c′, m), then both colours c and c′ lie not only on the same plane Wc,c′

parallel to V , but also on the same sphere S at distance D(c, m) = D(c ′, m) from
the centre m. If D(c,V ) = D(c′,V ) < 0, the sphere S lies below the plane V ; if
D(c,V ) = D(c′,V ) > 0, the sphere S lies above the plane V . Consequently, c and c ′

lie on a circle Cc,c′ in Wc,c′ parallel to V with centre on the line l. All these colour
hues are considered to be equally important, so that we really have to choose one out
of these two colours to be the smallest (or largest) colour. And therefore we will order
c and c′ by defining an angle θ ′ in Cc,c′ .

If we cut the plane Wc,c′ with the line l, we get the centre of our circle Cc,c′ . The plane
Wc,c′ is parallel to V , and thus has the same normal vector as V , so we get

Wc,c′ : r + g + b − dW = 0

with dW = DW .
√

3, where DW is the distance of W from the origin (0, 0, 0).

DW = DV + D(Wc,c′ ,V ),

where DV is the distance of (0, 0, 0) to the plane V , DV =
√

3
4 =

√
3

2 ; and D(Wc,c′ ,V )

is the “distance” between the two planes V and Wc,c′ , D(Wc,c′ ,V ) = D(c,V ) = D(c′,V ).
The centre a = (ra, ga, ba), where ra = ga = ba, of the circle Cc,c′ has to satisfy

⎧⎨
⎩

r + g + b − dW = 0
r = g
g = b

,

or thus a = (dW /3, dW/3, dW /3). For the radius r of Cc,c′ we get

r = d(c, a) = d(c′, a) =
√

(rc − dW /3)2 + (gc − dW /3)2 + (bc − dW /3)2.

Now we will define an angle θ′
c from the centre a of Cc,c′ for every colour c lying on

Cc,c′ :

All lines through a in the plane Wc,c′ are perpendicular to l. We want to choose a
fixed ‘direction’ that is the same for every plane Wc,c′ , and thus independent of Wc,c′ ,
through which we define the angle θ ′

c. And therefore we cut the plane Wc,c′ with the
upper plane of the cube b = 1 so that we get a line WWc,c′ :{

r + g + b − dW = 0
b = 1

or
WWc,c′ : r + g + (1 − dW ) = 0.
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Next, we consider the line Xc,c′ through the centre a perpendicular to the line WW c,c′ .
We determine the equation of Xc,c′ as the intersection of two planes, namely the plane
Wc,c′ and the plane through the line l perpendicular to the line WW c,c′ , which has
equation r = g. So that we obtain for Xc,c′{

r = g
r + g + b − dW = 0 .

We know that Xc,c′ goes through the point a and when we cut Xc,c′ with the line
WWc,c′ , we get another point γ of Xc,c′ ,⎧⎨

⎩
r = g

r + g + b − dW = 0
r + g + (1 − dW ) = 0

,

or thus γ has coordinates ( dW −1
2 , dW −1

2 , 1). The line Xc,c′ gives us the fixed chosen
direction, which can be determined for every plane W c,c′ in the same way, to define θ ′

c.
Accordingly, we first define for a colour c lying on the circle C c,c′ an angle θc deter-
mined by

θc = arcsin
dc

d(a, c)
(∈ [0, π/2])

with d(a, c) =
√

(rc − dW

3 )2 + (gc − dW

3 )2 + (bc − dW

3 )2, the distance between a

and c, and dc the perpendicular distance between c and the line Xc,c′ through the two
points a and γ. Let ac(rac, gac, bac) = a(ra, ga, ba) − c(rc, gc, bc) and
γa(rγa, gγa, bγa) = γ(rγ , gγ , bγ) − a(ra, ga, ba). The distance dc is then given by

d2
c =

|ac|2 |γa|2 − ((ac) · (γa))2

|γa|2

or

d2
c =

(r2
ac + g2

ac + b2
ac) · (r2

γa + g2
γa + b2

γa) − (rac · rγa + gac · gγa + bac · bγa)
2

(r2
γa + g2

γa + b2
γa)

.

Now we choose a ‘direction’ for θc and so define the angle θ ′
c as

if bc > ba (c lies above a)

if rc > gc

θ′c = θc

else if gc > rc

θ′c = 2π − θc

else if rc = gc
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θ′c = θc = 0

else if bc < ba (c lies below a)

if rc > gc

θ′c = π − θc

else if gc > rc

θ′c = π + θc

else if rc = gc

θ′c = π

else if bc = ba

if rc > gc

θ′c = θc = π/2
else if gc > rc

θ′c = 3π/2
else if rc = gc

impossible.

In this last step, where for the two colours c and c ′ hold that D(c,V ) = D(c′,V ) �= 0 and
D(c, m) = D(c′, m), we order their corresponding angles θ ′

c and θ′c′ as follows:

if: ((θ′c ∈ [0, π [ and θ′c′ ∈ [0, π [ ) or (θ′c ∈ [0, π [ and θ′c′ ∈ [π, 2π [ )) and θ′c < θ′c′

then: θ′c <θ θ′c′

if: θ′c ∈ [π, 2π [ and θ′c′ ∈ [π, 2π [ and 2π − θ′c < 2π − θ′c′ (or thus θ′c > θ′c′)

then: θ′c <θ θ′c′ .

2.4. c and c′ are lying in V , i.e., D(c,V ) = D(c′,V ) = 0

Because we want our ordering to be compatible with the complement co, we order the
colours c and c′ here as follows:

2.4.1. D(c, m) cos(θ′c) < D(c′, m) cos(θ′c′): we rank c lower than c′, i.e.,
c <RGB c′.

2.4.2. D(c, m) cos(θ′c) > D(c′, m) cos(θ′c′): we rank c higher than c′, i.e.,
c >RGB c′.

2.4.3. D(c, m) cos(θ′c) = D(c′, m) cos(θ′c′) and D(c, m) sin(θ′c) <
D(c′, m) sin(θ′c′): we rank c lower than c′, i.e., c <RGB c′.

2.4.4. D(c, m) cos(θ′c) = D(c′, m) cos(θ′c′) and D(c, m) sin(θ′c) >
D(c′, m) sin(θ′c′): we rank c higher than c′, i.e., c >RGB c′.
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Definition of the new RGB colour vector ordering ≤RGB

Consider two colours c(r, g, b) and c′(r′, g′, b′) in RGB, then it holds that

c <RGB c′ ⇔
(
D(c,V ) < 0 and D(c′,V ) > 0

)

or
(
D(c,V ) = 0 and D(c′,V ) > 0

)

or
(
D(c,V ) < 0 and D(c′,V ) = 0

)

or
(
D(c,V ) < 0 and D(c′,V ) < 0 and D(c, V ) > D(c′, V )

)

or
(
D(c,V ) > 0 and D(c′,V ) > 0 and D(c, V ) < D(c′, V )

)

or
(
D(c,V ) < 0 and D(c′,V ) < 0 and D(c, V ) = D(c′, V )

and D(c, m) > D(c′, m))

or
(
D(c,V ) > 0 and D(c′,V ) > 0 and D(c, V ) = D(c′, V )

and D(c, m) < D(c′, m))

or
(
D(c,V ) = D(c′,V ) �= 0 and D(c, m) = D(c′, m) and θ′c <θ θ′c′

)

or (D(c,V ) = D(c′,V ) = 0 and D(c, m) cos(θ′c) < D(c′, m) cos(θ′c′))

or (D(c,V ) = D(c′,V ) = 0 and D(c, m) cos(θ′c) = D(c′, m) cos(θ′c′)
and D(c, m) sin(θ′c) < D(c′, m) sin(θ′c′))

c >RGB c′ ⇔ c′ <RGB c

c =RGB c′ ⇔ D(c,V ) = D(c′,V ) and D(c, m) = D(c′, m) and θ′c = θ′c′

c ≤RGB c′ ⇔ c <RGB c′ or c =RGB c′.

Properties of ≤RGB

We examine some properties of our new ordering ≤RGB .

1. Reflexive: (∀a ∈ RGB)(a ≤RGB a). OK.

2. Antisymmetric: (∀a, b ∈ RGB)(a ≤RGB b and b ≤RGB a
?⇒ a =RGB b)

Proof

Suppose that a �=RGB b.
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1.1 (D(a,V ) < 0 and D(b,V ) > 0) and b <RGB a

From the definition of <RGB would follow: D(a,V ) > 0, a contradiction.

1.2 (D(a,V ) = 0 and D(b,V ) > 0) and b <RGB a

From the definition of <RGB would follow: D(a,V ) > 0, a contradiction.

1.3 (D(a,V ) < 0 and D(b,V ) = 0) and b <RGB a

From the definition of <RGB would follow: D(a,V ) ≥ 0, a contradiction.

2.1.1 (D(a,V ) > 0 and D(b,V ) > 0 and D(a, V ) < D(b, V )) and b <RGB a

From the definition of <RGB would follow:
D(a,V ) > 0 and D(b, V ) ≤ D(a, V ), a contradiction.

2.2.1 (D(a,V ) < 0 and D(b,V ) < 0 and D(a, V ) > D(b, V )) and b <RGB a

From the definition of <RGB would follow:

(a) D(b,V ) < 0 and D(a,V ) ≥ 0, a contradiction.

(b) D(b,V ) < 0 and D(a,V ) < 0 and D(b, V ) ≥ D(a, V ), a contradiction.

2.1.3 (D(a,V ) > 0 and D(b,V ) > 0 and D(a, V ) = D(b, V ) and D(a, m) <
D(b, m)) and b <RGB a

From the definition of <RGB would follow:
D(b, m) ≤ D(a, m), a contradiction.

2.2.3 (D(a,V ) < 0 and D(b,V ) < 0 and D(a, V ) = D(b, V ) and D(a, m) >
D(b, m)) and b <RGB a

From the definition of <RGB would follow:

(a) D(b,V ) < 0 and D(a,V ) ≥ 0, a contradiction.

(b) D(b,V ) < 0 and D(a,V ) < 0 and D(a, V ) = D(b, V ) and D(b, m) ≥
D(a, m), a contradiction.

2.3 (D(a,V ) = D(b,V ) �= 0 and D(a, m) = D(b, m) and θ′a <θ θ′b) and b <RGB a

From the definition of <RGB would follow: θ′
b <θ θ′a, a contradiction.

2.4.1 (D(a,V ) = D(b,V ) = 0 and D(a, m) cos(θ′a) < D(b, m) cos(θ′b))
and b <RGB a
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From the definition of <RGB would follow:
D(b, m) cos(θ′b) ≤ D(a, m) cos(θ′a), a contradiction.

2.4.3 (D(a,V ) = D(b,V ) = 0 and D(a, m) cos(θ′a) = D(b, m) cos(θ′b) and
D(a, m) sin(θ′a) < D(b, m) sin(θ′b)) and b <RGB a

From the definition of <RGB would follow:
D(b, m) sin(θ′b) < D(a, m) sin(θ′a), a contradiction.

⇒ D(a,V ) = D(b,V ) and D(a, m) = D(b, m) and θ′a = θ′b

⇒ a =RGB b.

�

3. Transitive: (∀a, b, c ∈ RGB)(a ≤RGB b and b ≤RGB c
?⇒ a ≤RGB c)

Proof

Let a =RGB b and b ≤RGB c, then it holds that a ≤RGB c. Let a ≤RGB b and
b =RGB c, then it holds that a ≤RGB c. So suppose that a �=RGB b and b �=RGB c,
thus a <RGB b and b <RGB c.

1.1 (D(a,V ) < 0 and D(b,V ) > 0) and b <RGB c.

From the definition of <RGB would follow: D(b,V ) > 0 and D(c,V ) > 0

⇒ D(a,V ) < 0 and D(c,V ) > 0

⇒ a <RGB c.

1.2 (D(a,V ) = 0 and D(b,V ) > 0) and b <RGB c.

From the definition of <RGB would follow: D(b,V ) > 0 and D(c,V ) > 0

⇒ D(a,V ) = 0 and D(c,V ) > 0

⇒ a <RGB c.

1.3 (D(a,V ) < 0 and D(b,V ) = 0) and b <RGB c.

From the definition of <RGB would follow: D(b,V ) = 0 and D(c,V ) ≥ 0

⇒ D(a,V ) < 0 and D(c,V ) ≥ 0

⇒ a <RGB c.

2.1.1 (D(a,V ) > 0 and D(b,V ) > 0 and D(a, V ) < D(b, V )) and b <RGB c.
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From the definition of <RGB would follow:
D(b,V ) > 0 and D(c,V ) > 0 and D(b, V ) ≤ D(c, V )

⇒ D(a,V ) > 0 and D(c,V ) > 0 and D(a, V ) < D(c, V )

⇒ a <RGB c.

2.2.1 (D(a,V ) < 0 and D(b,V ) < 0 and D(a, V ) > D(b, V )) and b <RGB c.

From the definition of <RGB would follow:

(a) D(b,V ) < 0 and D(c,V ) ≥ 0

⇒ D(a,V ) < 0 and D(c,V ) ≥ 0

(b) D(b,V ) < 0 and D(c,V ) < 0 and D(b, V ) ≥ D(c, V )

⇒ D(a,V ) < 0 and D(c,V ) < 0 and D(a, V ) > D(c, V )

⇒ a <RGB c.

2.1.3 (D(a,V ) > 0 and D(b,V ) > 0 and D(a, V ) = D(b, V ) and D(a, m) <
D(b, m)) and b <RGB c.

From the definition of <RGB would follow that:

(a) D(b,V ) > 0 and D(c,V ) > 0 and D(b, V ) < D(c, V )

⇒ D(a,V ) > 0 and D(c,V ) > 0 and D(a, V ) < D(c, V )

(b) D(b,V ) > 0 and D(c,V ) > 0 and D(b, V ) = D(c, V ) and D(b, m) ≤
D(c, m)

⇒ D(a,V ) > 0 and D(c,V ) > 0 and D(a, V ) = D(c, V ) and D(a, m) <
D(c, m)

⇒ a <RGB c.

2.2.3 (D(a,V ) < 0 and D(b,V ) < 0 and D(a, V ) = D(b, V ) and D(a, m) >
D(b, m)) and b <RGB c.

From the definition of <RGB would follow that:

(a) D(b,V ) < 0 and D(c,V ) ≥ 0

⇒ D(a,V ) < 0 and D(c,V ) ≥ 0

(b) D(b,V ) < 0 and D(c,V ) < 0 and D(b, V ) > D(c, V )

⇒ D(a,V ) < 0 and D(c,V ) < 0 and D(a, V ) > D(c, V )

(c) D(b,V ) < 0 and D(c,V ) < 0 and D(b, V ) = D(c, V ) and D(b, m) ≥
D(c, m)
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⇒ D(a,V ) < 0 and D(c,V ) < 0 and D(a, V ) = D(c, V ) and D(a, m) >
D(c, m)

⇒ a <RGB c.

2.3 (D(a,V ) = D(b,V ) �= 0 and D(a, m) = D(b, m) and θ′a <θ θ′b) and b <RGB c.

From the definition of <RGB would follow that:

(a) D(a,V ) = D(b,V ) < 0

1. D(c,V ) ≥ 0

2. D(c,V ) < 0 and D(b, V ) > D(c, V )

3. D(c,V ) < 0 and D(b, V ) = D(c, V ) and D(b, m) > D(c, m)

4. D(b,V ) = D(c,V ) and D(b, m) = D(c, m) and θ′b <θ θ′c

(b) D(a,V ) = D(b,V ) > 0

1. D(c,V ) > 0 and D(b, V ) < D(c, V )

2. D(c,V ) > 0 and D(b, V ) = D(c, V ) and D(b, m) < D(c, m)

3. D(b,V ) = D(c,V ) and D(b, m) = D(c, m) and θ′b <θ θ′c

⇒ a <RGB c

2.4.1 (D(a,V ) = D(b,V ) = 0 and D(a, m) cos(θ′a) < D(b, m) cos(θ′b))
and b <RGB c

From the definition of <RGB would follow:

(a) D(c,V ) > 0

(b) D(b,V ) = D(c,V ) and D(b, m) cos(θ′b) ≤ D(c, m) cos(θ′c)

⇒ a <RGB c

2.4.3 (D(a,V ) = D(b,V ) = 0 and D(a, m) cos(θ′a) = D(b, m) cos(θ′b) and
D(a, m) sin(θ′a) < D(b, m) sin(θ′b)) and b <RGB c

From the definition of <RGB would follow:

(a) D(c,V ) > 0

(b) D(b,V ) = D(c,V ) and D(b, m) cos(θ′b) < D(c, m) cos(θ′c)

(c) D(b,V ) = D(c,V ) and D(b, m) cos(θ′b) = D(c, m) cos(θ′c) and
D(b, m) sin(θ′b) < D(c, m) sin(θ′c)

⇒ a ≤RGB c.

�
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We now prove that our new ordering≤RGB is compatible with the complement co, i.e.,

for all colours c, c′ in RGB : c ≤RGB c′
?⇔ co(c) ≥RGB co(c′).

Proof

1.1 (D(c,V ) < 0 and D(c′,V ) > 0)

D(c,V ) < 0 ⇔ rc + gc + bc < 3/2
⇔ 3 − (rc + gc + bc) > 3 − 3/2
⇔ (1 − rc) + (1 − gc) + (1 − bc) > 3/2
⇔ D(co(c),V ) > 0

So we get

(D(c,V ) < 0 and D(c′,V ) > 0) ⇔ (D(co(c),V ) > 0 and D(co(c′),V ) < 0).

1.2

(D(c,V ) = 0 and D(c′,V ) > 0) ⇔ (D(co(c),V ) = 0 and D(co(c′),V ) < 0).

1.3

(D(c,V ) < 0 and D(c′,V ) = 0) ⇔ (D(co(c),V ) > 0 and D(co(c′),V ) = 0).

2.1.1 (D(c,V ) > 0 and D(c′,V ) > 0) and D(c, V ) < D(c′, V ), where

D(c, V ) = |rc+gc+bc−3/2|√
3

= |−(rc+gc+bc)+3/2|√
3

= |3−(rc+gc+bc)−3/2|√
3

= |(1−rc)+(1−gc)+(1−bc)−3/2|√
3

= D(co(c), V ).

So we get
(D(c,V ) > 0 and D(c′,V ) > 0) and D(c, V ) < D(c′, V ) ⇔
(D(co(c),V ) < 0 and D(co(c′),V ) < 0) and D(co(c), V ) < D(co(c′), V ).

2.2.1 (D(c,V ) < 0 and D(c′,V ) < 0) and D(c, V ) > D(c′, V ) ⇔
(D(co(c),V ) > 0 and D(co(c′),V ) > 0) and D(co(c), V ) > D(co(c′), V ).
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2.1.3 (D(c,V ) > 0 and D(c′,V ) > 0 and D(c, V ) = D(c′, V )) and D(c, m) <
D(c′, m), where

D(c, m) < D(c′, m) ⇔ (rc − 1/2)2 + (gc − 1/2)2 + (bc − 1/2)2 <
(rc′ − 1/2)2 + (gc′ − 1/2)2 + (bc′ − 1/2)2

⇔ r2
c − rc + g2

c − gc + b2
c − bc <

r2
c′ − rc′ + g2

c′ − gc′ + b2
c′ − bc′

⇔ 1 − 2rc + r2
c − 1 + rc + 1 − 2gc + g2

c − 1 + gc

+1 − 2bc + b2
c − 1 + bc <

1 − 2rc′ + r2
c′ − 1 + rc′ + 1 − 2gc′ + g2

c′ − 1
+gc′ + 1 − 2bc′ + b2

c′ − 1 + bc′

⇔ (1 − rc)2 + 1/4 − (1 − rc) + (1 − gc)2 + 1/4
−(1 − gc) + (1 − bc)2 + 1/4 − (1 − bc) <

(1 − rc′)2 + 1/4 − (1 − rc′) + (1 − gc′)2 + 1/4
−(1 − gc′) + (1 − bc′)2 + 1/4 − (1 − bc′)

⇔ ((1 − rc) − 1/2)2 + ((1 − gc) − 1/2)2+
((1 − bc) − 1/2)2) < ((1 − rc′) − 1/2)2+
((1 − gc′) − 1/2)2 + ((1 − bc′) − 1/2)2)

⇔ D(co(c), m) < D(co(c′), m)

So we get (D(c,V ) > 0 and D(c′,V ) > 0) and D(c, V ) = D(c′, V ) and D(c, m)
< D(c′, m) ⇔ (D(co(c),V ) < 0 and D(co(c′),V ) < 0) and D(co(c), V ) =
D(co(c′), V ) and D(co(c), m) < D(co(c′), m).

2.2.3 (D(c,V ) < 0 and D(c′,V ) < 0) and D(c, V ) = D(c′, V ) and D(c, m) >
D(c′, m) ⇔ (D(co(c),V ) > 0 and D(co(c′),V ) > 0) and D(co(c), V ) =
D(co(c′), V ) and D(co(c), m) > D(co(c′), m).

2.3 D(c,V ) = D(c′,V ) �= 0 and D(c, m) = D(c′, m)

A. θ′c ∈ [0, π[

i. θ′c′ ∈ [0, π[
From c ≤RGB c′ it follows that θ′c ≤ θ′c′ . By definition of co we get:
θ′co(c) = θ′c + π and θ′co(c′) = θ′c′ + π and hence from θ ′

c ≤ θ′c′ we get
θ′c + π ≤ θ′c′ + π, i.e., θ′co(c) ≤ θ′co(c′).

ii. θ′c′ ∈ [π, 2π[
From c ≤RGB c′ it follows that θ′c ≤ θ′c′ . By definition of co we get:
θ′co(c) = θ′c +π and θ′co(c′) = θ′c′ −π and hence from θ ′

c +π ∈ [π, 2π[
and θ′c′ − π ∈ [0, π[ we get θ′co(c′) ≤ θ′co(c).

B. θ′c ∈ [π, 2π[

i. θ′c′ ∈ [0, π[, impossible
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ii. θ′c′ ∈ [π, 2π[
From c ≤RGB c′ it follows that θ′c ≥ θ′c′ . By definition of co we get:
θ′co(c) = θ′c − π and θ′co(c′) = θ′c′ − π and hence from θ ′

c ≥ θ′c′ we get
θ′c − π ≥ θ′c′ − π, i.e., θ′co(c) ≥ θ′co(c′).

2.4.1 D(c,V ) = D(c′,V ) = 0 and D(c, m) cos(θ′c) < D(c′, m) cos(θ′c′), where

D(c, m) cos(θ′c) < D(c′, m) cos(θ′c′)
⇔ −D(c, m) cos(θ′c) > −D(c′, m) cos(θ′c′)
⇔ D(c, m) cos((θ′c + π) mod 2π) > D(c′, m) cos((θ′c′ + π) mod 2π)
⇔ D(c, m) cos(θ′co(c)) > D(c′, m) cos(θ′co(c′)),

where we have used the property that

cos(x + π) = cos(x − π) = − cos(x)

and
(x + π) mod 2π = x − π or x + π

for all x ∈ [0, 2π].
So we get D(c,V ) = D(c′,V ) = 0 and D(c, m) cos(θ′c) < D(c′, m) cos(θ′c′) ⇔
D(co(c),V ) = D(co(c′),V ) = 0 and D(c, m) cos(θ′co(c)) > D(c′, m) cos(θ′co(c′)).

2.4.3 D(c,V ) = D(c′,V ) = 0 and D(c, m) cos(θ′c) = D(c′, m) cos(θ′c′) and
D(c, m) sin(θ′c) < D(c′, m) sin(θ′c′), where

D(c, m) cos(θ′c) = D(c′, m) cos(θ′c′)
⇔ −D(c, m) cos(θ′c) = −D(c′, m) cos(θ′c′)
⇔ D(c, m) cos((θ′c + π) mod 2π) = D(c′, m) cos((θ′c′ + π) mod 2π)
⇔ D(c, m) cos(θ′co(c)) = D(c′, m) cos(θ′co(c′))

and

D(c, m) sin(θ′c) < D(c′, m) sin(θ′c′)
⇔ −D(c, m) sin(θ′c) > −D(c′, m) sin(θ′c′)
⇔ D(c, m) sin((θ′c + π) mod 2π) > D(c′, m) sin((θ′c′ + π) mod 2π)
⇔ D(c, m) sin(θ′co(c)) > D(c′, m) sin(θ′co(c′)),

where we have used the property that

sin(x + π) = sin(x − π) = − sin(x)

and
(x + π) mod 2π = x − π or x + π
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for all x ∈ [0, 2π].
So we get D(c,V ) = D(c′,V ) = 0 and D(c, m) cos(θ′c) = D(c′, m) cos(θ′c′) and
D(c, m) sin(θ′c) < D(c′, m) sin(θ′c′) ⇔ D(co(c),V ) = D(co(c′),V ) = 0 and
D(c, m) cos(θ′co(c)) = D(c′, m) cos(θ′co(c′)) and D(c, m) sin(θ′co(c)) >

D(c′, m) sin(θ′co(c′)).

⇒ c ≤RGB c′
!⇔ co(c) ≥RGB co(c′).

�

4.3.8 Associated Minimum and Maximum Operators

The minimum (maximum) of a set S of n colours c1(r1, g1, b1), . . . , cn(rn, gn, bn) in
RGB is the colour cα ∈ S wherefore cα ≤RGB ci (cα ≥RGB ci), for all i = 1 . . . n.

(RGB,≤RGB) is a poset, and what is more, by definition of the order relation ≤RGB ,
it holds that

(∀c, c′ ∈ RGB)(c ≤RGB c′ or c′ ≤RGB c),

so that (RGB,≤RGB) is a totally ordered set (maxRGB(c, c′) and minRGB(c, c′)
exist for all c, c′ ∈ RGB), and thus a lattice. The greatest element in (RGB,≤RGB)
is 1 = (1, 1, 1) and the smallest element is 0 = (0, 0, 0), so we get a bounded complete
lattice. We will sometimes drop the index RGB.

Since colour images in the RGB colour model can be modelled as R
2−(RGB,≤RGB)

mappings and because (RGB,≤RGB) is a complete lattice, we can identify colour
images in RGB with L-fuzzy sets on R

2, with (L,≤L) = (RGB,≤RGB), and thus
define for a family (Ai)n

i=1 of colour images in RGB

n⋂
i=1

RGBAi(x) = min
i=1...n

RGBAi(x), ∀x ∈ R
2,

n⋃
i=1

RGBAi(x) = max
i=1...n

RGBAi(x), ∀x ∈ R
2,

so that (FRGB(X),∩RGB,∪RGB) is a lattice with an ordering defined for all A, B ∈
FRGB(X) as

A ⊆RGB B ⇔ (∀x ∈ X)(A(x) ≤RGB B(x)).



136 Colour Morphology

Let N be a negator on RGB, T a t-norm and S a t-conorm on RGB. For a colour image
A in RGB and a family (Ai)n

i=1 of colour images in RGB we define

coNA(x) = N (A(x)), ∀x ∈ R
2,

n⋂
i=1

T Ai(x) = T (A1(x), A2(x), . . . , 1An(x)), ∀x ∈ R
2,

n⋃
i=1

SAi(x) = S(A1(x), A2(x), . . . , An(x)), ∀x ∈ R
2.

Extension of greyscale morphology to colour morphology in RGB

We extend the basic morphological operators dilation and erosion for greyscale images
based on the threshold, umbra and fuzzy approach to colour images modelled in RGB.
For proofs we refer to the equivalent properties in the HSV colour model.

• Threshold approach

Let A be a colour image, represented as a R
2 − (RGB,≤RGB) mapping, and B a

binary structuring element (⊆ R
2).

Definition 4.51. Let A be a colour image and B a binary structuring element. The
threshold ‘colour’ dilation 	Dt(A, B) and the threshold ‘colour’ erosion 	Et(A, B)
are the colour images given by

	Dt(A, B)(y)
def
= RGB max

x∈Ty(B)
A(x) for y ∈ R

2,

	Et(A, B)(y)
def
= RGB min

x∈Ty(B)
A(x) for y ∈ R

2.

Property 4.52.

	Dt(0, B) =RGB 0 and 	Et(1, B) =RGB 1
	Dt(A, ∅) =RGB 0 and 	Et(A, ∅) =RGB 1.

Property 4.53 (Duality dilation-erosion).

	Dt(A, B) =RGB co( 	Et(co(A), B))
	Et(A, B) =RGB co( 	Dt(co(A), B)).
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Property 4.54 (Monotonicity). If A and B are two colour images, and C and C ′ are
two binary structuring elements, then it holds that

A ⊆RGB B ⇒ 	Dt(A, C) ⊆RGB
	Dt(B, C) and

	Et(A, C) ⊆RGB
	Et(B, C)

C ⊆ C′ ⇒ 	Dt(A, C) ⊆RGB
	Dt(A, C′) and

	Et(A, C) ⊇RGB
	Et(A, C′).

Property 4.55 (Inclusion).

	Et(A, B) ⊆RGB
	Dt(A, B).

Property 4.56 (Extensity).

0 ∈ B ⇒ A ⊆RGB
	Dt(A, B) and 	Et(A, B) ⊆RGB A.

Property 4.57 (Interaction with intersection and union). Consider a family (A i)n
i=1

of colour images and a family (Bi)n
i=1 of binary structuring elements.

For the t-‘colour’ dilation it holds that

	Dt(
n⋂

i=1

Ai, B) ⊆RGB

n⋂
i=1

	Dt(Ai, B)

	Dt(A,

n⋂
i=1

Bi) ⊆RGB

n⋂
i=1

	Dt(A, Bi);

	Dt(
n⋃

i=1

Ai, B) =RGB

n⋃
i=1

	Dt(Ai, B)

	Dt(A,

n⋃
i=1

Bi) =RGB

n⋃
i=1

	Dt(A, Bi).

For the t-‘colour’ erosion it holds that

	Et(
n⋂

i=1

Ai, B) =RGB

n⋂
i=1

	Et(Ai, B)

	Et(A,
n⋂

i=1

Bi) ⊇RGB

n⋃
i=1

	Et(A, Bi);

	Et(
n⋃

i=1

Ai, B) ⊇RGB

n⋃
i=1

	Et(Ai, B)

	Et(A,
n⋃

i=1

Bi) =RGB

n⋂
i=1

	Et(A, Bi).
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Property 4.58. Let A be a colour image and B and C two binary structuring elements,
then

	Dt( 	Dt(A, B), C) =RGB
	Dt( 	Dt(A, C), B)

	Et( 	Et(A, B), C) =RGB
	Et( 	Et(A, C), B).

• Fuzzy approach

The support dA of a colour image A in RGB is defined as the set

dA = {x ∈ R
2 | A(x) >RGB 0}.

Definition 4.59. Let A be a colour image and B a colour structuring element (both
seen as (RGB,≤RGB)-fuzzy sets), C a conjunctor on (RGB,≤RGB) and I an impli-
cator on (RGB,≤RGB). The fuzzy ‘colour’ dilation 	DC(A, B) and the fuzzy ‘colour’
erosion 	EI(A, B) are the (RGB,≤RGB)-fuzzy sets defined as

	DC(A, B)(y)
def
= RGB max

x∈Ty(dB)
C(B(x − y), A(x)) for y ∈ R

2,

	EI(A, B)(y)
def
= RGB min

x∈Ty(dB)
I(B(x − y), A(x)) for y ∈ R

2.

Notice that we can write

max
x∈Ty(dB)

C(B(x − y), A(x))
def
= RGB max

x∈R2
C(RB(x, y), A(x)),

min
x∈Ty(dB)

I(B(x − y), A(x))
def
= RGB min

x∈R2
I(RB(x, y), A(x)),

for all y in R
2, whereby

RB : R
2 × R

2 → (RGB,≤RGB),

RB = B ◦ V with V defined as V (x, y) = x − y = (x1, x2) − (y1, y2) = (x1 −
y1, x2 − y2), ∀(x, y) ∈ (R2)2 so that RB(x, y) = B(x − y).

Property 4.60. [12] Let T be a t-norm and I be an implicator on (RGB,≤RGB),
then it holds:

	DC(0, B) =RGB 0 and 	EI(1, B) =RGB 1.

If B(0) =RGB 1, then it holds:

	DC(1, B) =RGB 1 and 	EI(0, B) =RGB 0.
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Property 4.61 (Duality dilation-erosion). [12] Let T be a t-norm on RGB, N an
involutive negator on RGB and IT ,N the correspondingS-implicator. For every colour
image A and colour structuring element B we have

coN 	DT (A, B) =RGB
	EIT ,N (coNA, B)

	DT (coNA, B) =RGB coN ( 	EIT ,N (A, B)).

Property 4.62 (Monotonicity). [Generalisation of [12]] If A and B are two colour
images, C and C ′ two colour structuring elements, C1 and C2 two conjunctors and I1

and I2 two implicators on RGB, then it holds that

A ⊆RGB B ⇒ 	DC(A, C) ⊆RGB
	DC(B, C) and

	EI(A, C) ⊆RGB
	EI(B, C)

C ⊆RGB C′ ⇒ 	DC(A, C) ⊆RGB
	DC(A, C′) and

	EI(A, C) ⊇RGB
	EI(A, C′)

C1 ⊆RGB C2 ⇒ 	DC1(A, C) ⊆RGB
	DC2(A, C) and

I1 ⊆RGB I2 ⇒ 	EI1(A, C) ⊆RGB
	EI2(A, C)

Property 4.63 (Inclusion). [Generalisation of [12]] Let C be a seminorm and I an
edge-implicator on RGB. Consider a colour image A and a ‘normalized’ colour struc-
turing element B, that is, (∀y ∈ R

2)(∃z ∈ R
2)(B(z − y) = 1). It holds that

	EI(A, B) ⊆RGB
	DC(A, B).

Property 4.64. [Generalisation of [12]] Let C be a seminorm and I an edge-
implicator on RGB. For every colour image A and every colour structuring element B,
it holds that

B(0) =RGB 1 ⇒ A ⊆RGB
	DC(A, B) and 	EI(A, B) ⊆RGB A.

Property 4.65 (Interaction with intersection and union). [Generalisation of [12]]
Consider a family (Ai)n

i=1 of colour images and a family (Bi)n
i=1 of colour structuring

elements. For the C-‘colour’ dilation it holds that

	DC(
n⋂

i=1

Ai, B) ⊆RGB

n⋂
i=1

	DC(Ai, B)

	DC(A,

n⋂
i=1

Bi) ⊆RGB

n⋂
i=1

	DC(A, Bi);

	DC(
n⋃

i=1

Ai, B) =RGB

n⋃
i=1

	DC(Ai, B)

	DC(A,

n⋃
i=1

Bi) =RGB

n⋃
i=1

	DC(A, Bi).
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For the I-‘colour’ erosion it holds that

	EI(
n⋂

i=1

Ai, B) =RGB

n⋂
i=1

	EI(Ai, B)

	EI(A,

n⋂
i=1

Bi) ⊇RGB

n⋃
i=1

	EI(A, Bi);

	EI(
n⋃

i=1

Ai, B) ⊇RGB

n⋃
i=1

	EI(Ai, B)

	EI(A,
n⋃

i=1

Bi) =RGB

n⋂
i=1

	EI(A, Bi).

Some examples of conjunctors C on (RGB,≤RGB) are

1. Cmin(γ, δ) = minRGB(γ, δ)

2. C∗(γ, δ) = γ ∗ δ, ∀γ, δ ∈ RGB.

One can easily show that the conjunctor Cmin as well as the conjunctor C∗ is a t-norm
on (RGB,≤RGB); we note Tmin and T∗. The S-implicators induced by Tmin (and T∗)
and the standard negator Ns(c) = 1RGB − c, for all c ∈ RGB, on (RGB,≤RGB) are
then given by

1. ITmin,Ns(γ, δ) = maxRGB(1− γ, δ)

2. IT∗,Ns(γ, δ) = 1 − (γ ∗ (1− δ)), ∀γ, δ ∈ RGB.

• Umbra approach

Definition 4.66. Let A be a colour image and B a colour structuring element (both
represented as R

2 − (RGB,≤RGB) mappings). The umbra ‘colour’ dilation
	Du(A, B) and the umbra ‘colour’ erosion 	Eu(A, B) are the colour images given by

	Du(A, B)(y)
def
= RGB max

x∈Ty(dB)
A(x) ⊕ B(x − y) for y ∈ R

2,

	Eu(A, B)(y)
def
= RGB min

x∈Ty(dB)
A(x) � B(x − y) for y ∈ R

2,

where ⊕ and � are colour mix operators.

Definition 4.67. Let c and c′ be two colours in RGB. We define the colour mix operators
⊕ and � for c and c′ as

c ⊕ c′ =RGB

{
0RGB if c =RGB 0RGB

c +RGB c′ otherwise
,

c � c′ =RGB

{
1RGB if c =RGB 1RGB

c −RGB c′, otherwise
.
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Property 4.68.

	Du(0, B) =RGB 0 and 	Eu(1, B) =RGB 1.

Proof
For all y in R

2 it holds that

	Du(0, B)(y) = max
x∈Ty(B)

0(x) ⊕ B(x − y) = max
x∈Ty(B)

0 ⊕ B(x − y) = 0 = 0(y),

	Eu(1, B)(y) = min
x∈Ty(B)

1(x) � B(x − y) = min
x∈Ty(B)

1 � B(x − y) = 1 = 1(y).

�

Property 4.69 (Duality dilation-erosion).

	Du(A, B) =RGB co( 	Eu(co(A), B))
	Eu(A, B) =RGB co( 	Du(co(A), B)).

Proof
1) If A �=RGB 1 we get:

co( 	Du(co(A), B))(y) = 1RGB − 	Du(1RGB − A, B)(y)
= 1RGB − max

x∈Ty(dB)
(1RGB − A)(x) ⊕ B(x − y)

= min
x∈Ty(dB)

1RGB − ((1RGB − A)(x) ⊕ B(x − y))

= min
x∈Ty(dB)

1RGB −
(

1 − rA(x) + rB(x−y)

2
,

1 − gA(x) + gB(x−y)

2
,
1 − bA(x) + bB(x−y)

2

)

= min
x∈Ty(dB)

(
rA(x) + 1 − rB(x−y)

2
,

gA(x) + 1 − gB(x−y)

2
,
bA(x) + 1 − bB(x−y)

2

)

= 	Eu(A, B)(y), ∀y ∈ R
2.
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2) If A �=RGB 0 we get:

co( 	Eu(co(A), B))(y) = 1RGB − 	Eu(1RGB − A, B)(y)
= 1RGB − min

x∈Ty(dB)
(1RGB − A)(x) � B(x − y)

= max
x∈Ty(dB)

1RGB − ((1RGB − A)(x) ⊕

(1RGB − B)(x − y))

= max
x∈Ty(dB)

1RGB −
(

1 − rA(x) + 1 − rB(x−y)

2
,

1 − gA(x) + 1 − gB(x−y)

2
,
1 − bA(x) + 1 − bB(x−y)

2

)

= max
x∈Ty(dB)

(
rA(x) + rB(x−y)

2
,

gA(x) + gB(x−y)

2
,
bA(x) + bB(x−y)

2

)

= 	Du(A, B)(y), ∀y ∈ R
2.

3) If A =RGB 1 we get:

co( 	Du(co(1), B))(y) = 1RGB − 	Du(0, B)(y)
= 1RGB − 0RGB

= 1RGB

= 	Eu(1, B)(y), ∀y ∈ R
2.

4) If A =RGB 0 we get:

co( 	Eu(co(0), B))(y) = 1RGB − 	Eu(1, B)(y)
= 1RGB − 1RGB

= 0RGB

= 	Du(0, B)(y), ∀y ∈ R
2.

�

4.3.9 Experimental Results

In figures 4.26 to 4.43 you see the results of the different kinds of morphological op-
erators in RGB. We have used the same structuring elements as before. In figure 4.26,
4.27 and 4.28 the t-morphological colour operators dilation and erosion in RGB are
illustrated for the component-based and the proposed approach. The results look very
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Figure 4.26: T-morphological operators in RGB: the component-based t-dilation Dt(C, B′) and
the t-‘colour’ dilation �Dt(C, B′).
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Figure 4.27: T-morphological operators in RGB: the component-based t-erosion Et(C,B′) and
the t-‘colour’ erosion �Et(C, B′).
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similar, but pay attention to the hat for example. Figure 4.28 shows that more colours
presented in the original colour image occur in the results with our approach than in
the results with the other approach. This way more details from the original image are
preserved with our method.

Figure 4.28: T-morphological operators in RGB: left column: the component-based t-dilation
Dt(C, B′) and the t-‘colour’ dilation �Dt(C, B′), right column: the component-based t-erosion
Et(C,B′) and t-‘colour’ erosion �Et(C, B′).

Figure 4.29, 4.30 and 4.31 show the results for the fuzzy morphological colour opera-
tors in RGB with conjunctor-implicator pair (Tmin, ITmin,Ns) for the component-based
approach and our method. Again, the obtained results are very similar, but some de-
tails, especially along edges, are better visible with the proposed method.
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Figure 4.29: Fuzzy morphological operators for (Tmin, ITmin,Ns) in RGB: the component-
based fuzzy dilation DTmin(C, BWh) and the fuzzy ‘colour’ dilation �DTmin(C, BWh).
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Figure 4.30: Fuzzy morphological operators for (Tmin, ITmin,Ns) in RGB: the component-
based fuzzy erosion EITmin,Ns

(C, BWh) and the fuzzy ‘colour’ erosion �EITmin,Ns
(C,BWh).
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Figure 4.31: Fuzzy morphological operators for (C, I) = (Tmin, ITmin,Ns) in RGB: at the
top: original image C, left column: the component-based fuzzy dilation DTmin(C, BWh) and
the fuzzy ‘colour’ dilation �DTmin(C, BWh), right column: the component-based fuzzy erosion
EITmin,Ns

(C, BWh) and the fuzzy ‘colour’ erosion �EITmin,Ns
(C, BWh).

The fuzzy colour dilation and erosion for (C, I) = (T∗, IT∗,Ns) in RGB for the com-
ponent-based approach and the proposed method are shown in figures 4.32, 4.33 and
4.34. The results for both approaches are quite similar.
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Figure 4.32: Fuzzy morphological operators for (C, I) = (T∗, IT∗,Ns) in RGB: the component-
based fuzzy dilation DT∗(C, B′′) and the fuzzy ‘colour’ dilation �DT∗(C, B′′).
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Figure 4.33: Fuzzy morphological operators for (C, I) = (T∗, IT∗,Ns) in RGB: the component-
based fuzzy erosion EIT∗,Ns

(C, B′′) and the fuzzy ‘colour’ erosion �EIT∗,Ns
(C, B′′).
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Figure 4.34: Fuzzy morphological operators for (C, I) = (T∗, IT∗,Ns) in RGB: at the top: the
component-based fuzzy dilation DT∗ (C,B′′) and the fuzzy ‘colour’ dilation �DT∗(C, B′′), at
the bottom: the component-based fuzzy erosion EIT∗,Ns

(C, B′′) and the fuzzy ‘colour’ erosion
�EIT∗,Ns

(C, B′′).

The umbra colour operators in RGB for the component-based approach and the pro-
posed method are illustrated in figures 4.35, 4.36 and 4.37. The original results as well
as the results where the new colours have been replaced by the original colours of the
corresponding pixel positions are shown.
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Figure 4.35: U-morphological operators in RGB: the u-‘colour’ dilation �Du(C, BWh) (top)
and the u-‘colour’ erosion �Eu(C, BWh) (bottom).



4.3 Colour Morphology 153

Figure 4.36: U-morphological operators in RGB: the u-‘colour’ dilation �Du(C, BWh) (top)
and the u-‘colour’ erosion �Eu(C, BWh) (bottom) containing no new colours.
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Figure 4.37: U-morphological operators in RGB: left column: the u-‘colour’ dilation
�Du(C, BWh), right column: the u-‘colour’ erosion �Eu(C,BWh), from top to bottom: con-
taining new colours and containing no new colours.
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We have compared our technique in RGB with the following state-of-the-art methods:
we have used the α-modulus lexicographical order I − RGBα presented in [5] to de-
termine the t-morphological operators dilation and erosion and the proposed vector
dilation and vector erosion of [8] using a reduced ordering with as measurement func-
tions the luminance image and the Euclidean distance.

Figure 4.38: The t-dilation in RGB by structuring element B′: above: using our RGB ordering
(left) and the I−RGBα=10 ordering (right), below: using a reduced ordering with the luminance
image (left) and the Euclidean distance (right) as measurement functions.
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Figure 4.39: The t-erosion in RGB by structuring element B′: above: using our RGB ordering
(left) and the I−RGBα=10 ordering (right), below: using a reduced ordering with the luminance
image (left) and the Euclidean distance (right) as measurement functions.
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Figure 4.40: The t-dilation in RGB by structuring element B′′
RGB : above: using our RGB

ordering (left) and the I −RGBα=10 ordering (right), below: using a reduced ordering with the
luminance image (left) and the Euclidean distance (right) as measurement functions.
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Figure 4.41: The t-erosion in RGB by structuring element B′′
RGB : above: using our RGB

ordering (left) and the I −RGBα=10 ordering (right), below: using a reduced ordering with the
luminance image (left) and the Euclidean distance (right) as measurement functions.
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Figure 4.42: The t-dilation in RGB by structuring element B′: above: the original colour image,
in the middle: using our RGB ordering (left) and the I − RGBα=10 ordering (right), below:
using a reduced ordering with the luminance image (left) and the Euclidean distance (right) as
measurement functions.
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Figure 4.43: The t-erosion in RGB by structuring element B′: above: the original colour image,
in the middle: using our RGB ordering (left) and the I − RGBα=10 ordering (right), below:
using a reduced ordering with the luminance image (left) and the Euclidean distance (right) as
measurement functions.

All methods give similar results, but look carefully at the hat of the Lena image. More
details from the original image are visible because more colours from the original
colour image are presented in the results with our approach than in the results obtained
by the other approaches.
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At last we give an overview of the properties that still hold for the new colour morpho-
logical operators in the RGB, HSV and L*a*b* colour model:

Threshold Fuzzy Umbra
Duality dilation-erosion × × ×
Monotonicity × ×
Inclusion × ×
Interaction with intersection and union × ×

4.3.10 Conclusion

We have presented a new vector ordering procedure for morphological processing of
colour images on fuzzy sets, umbra and thresholding techniques. The problem of look-
ing for a vector ordering for colour or multivariate morphological image processing
is not new and is being developed since the early 90’s. What is new here is the used
approach, namely through the umbra approach and fuzzy set theory. We may conclude
that our new method provides better results than those obtained by the component-
based approach and similar or better results than those obtained by other state-of-the-
art methods. On the one hand one great advantage is that the existing correlations
between the different colour components are taken into account. Firstly, the colours
are preserved and thus no new colours appear after applying the new vector t- and
fuzzy morphological operators for (C, I) = (Tmin, ITmin,Ns) to colour images. Sec-
ondly, more details from the original colour image are preserved and thus visible. On
the other hand visual inspection shows that there still may appear some little artefacts.
As future work we can set up an experiment regarding the psycho visual behaviour of
similarity measures, which can be useful for the evaluation of morphological operators.
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Chapter 5

Image Magnification

We now introduce a new image magnification approach [14]. First we demonstrate the
hit-or-miss transformation and explain the pixel replication or nearest neighbour inter-
polation, used as the first ‘trivial’ interpolation step in our method. Next we discuss our
corner detection method, using different kinds of structuring elements, and describe our
corner correction, first for magnification by a factor 2 and then for magnification by an
integer factor n > 2. In the previous chapter we have presented a new vector ordering
≤RGB for colours modelled in the RGB colour model. We have also defined a com-
plement co for colours in RGB, with which our new ordering is compatible. Here we
use ≤RGB in our morphological magnification method, where we need the compatibil-
ity of ≤RGB with co to detect corners in an image by the hit-or-miss transformation.
Thereafter we compare our magnification method experimentally to other well-known
approaches. The results show that our method provides a visual improvement in qual-
ity on existing techniques: almost all jagged effects have been removed so that the
edges become smooth. Finally, in the last section, we present the extension of our new
magnification method towards colour images in RGB with ‘vague’ edges.

5.1 The Hit-or-Miss Transformation

Consider a binary image X and two binary structuring elements A and B.
The hit-or-miss operator of X by A and B is defined as

X ⊗ (A, B) = E(X, A) ∩ E(co(X), B),

where co(X) is the complement of X w.r.t. R
2. The result is empty if A ∩ B �= ∅.

The name hit-or-miss operator can be explained as follows: a pixel h belongs to the
hit-or-miss transformation X⊗(A, B) if and only if Th(A) does not hit (intersect with)
co(X) and Th(B) does not hit X . The hit-or-miss operator is very useful for the de-
tection of points inside an image with certain (local) geometric properties, e.g. isolated
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points, edge points, corner points.

The basic idea behind the hit-or-miss transformation consists in extracting image pixels
having a given neighbouring configuration. The neighbouring configuration is there-
fore defined by two disjoint sets, the first for the object pixels and the second for the
background pixels. These two sets are two composite structuring elements that have
the same origin. As an example we show the detection of the upper-left corner points of
objects in an image in figure 5.1. The structuring elements A and B have been chosen
in such a way that the hit-or-miss operator detects the lower left corner points of the
original image.

Figure 5.1: From left to right: The structuring elements (A,B), where A contains the white
pixels with (×)-symbol and B the white pixels with (·)-symbol, the original binary image X and
the hit-or-miss transformation X ⊗ (A, B) (only the white pixels).

More information about the hit-or-miss transformation can be found in [25].

5.2 New Morphological Image Interpolation Method to
Magnify Images with Sharp Edges

5.2.1 Pixel Replication or Nearest Neighbour Interpolation

When we magnify an image V times, the number of pixels will increase (V 2 times).
The easiest way to enlarge an image is to copy the existing pixel values to the new
neighbouring pixels. If we magnify an image V times, one pixel in the original image
will be replaced by a square of V × V pixels in the new image. This is called pixel
replication or nearest neighbour interpolation. The result is quite poor, but we can
use it as a first ‘trivial’ interpolation step.

5.2.2 Corner Detection

To detect the unwanted jaggies in the nearest neighbour interpolated image, we first
determine the inner edge-image of the blown up image using the structuring element
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BWh
RGB and then apply the hit-or-miss operator to obtain the positions of the object

corner edge pixels. The advantage of the internal morphological gradient is that this
gradient gives the correct positions of corner pixels in an image. Let us call O the
nearest neighbour interpolated image of an original image X , co(O) the complement
of O, Oedge the inner edge-image of O, and Oc

edge the inner edge-image of co(O). If
the original image X is a binary image, the blown up image O will be a binary image,
and so will the inner edge-image Oedge. On the other hand, if the original image X is
a colour image, the inner edge-image Oedge of the blown up image O will also be a
colour image, but we transform it into a greyscale image by giving all non-black pixels
a grey value:

Oedge = double(Oedge);
[mOedge, nOedge, 3] = size(Oedge);
Oedge,new = zeros(mOedge, nOedge, 3);

for i = 1 : mOedge

for j = 1 : nOedge

Oedge,new(i, j, 1) = max(max(Oedge(i, j, 1), Oedge(i, j, 2)), Oedge(i, j, 3));
Oedge,new(i, j, 2) = Oedge,new(i, j, 1);
Oedge,new(i, j, 3) = Oedge,new(i, j, 1);

end;
end;
Oedge = uint8(Oedge,new);

Analogously for the inner edge-image O c
edge of the complementary image co(O).

With a given pair of structuring elements (A, B) we first determine the hit-or-miss
transformation Oedge ⊗ (A, B) and secondly the hit-or-miss transformation O c

edge ⊗
(A, B). This way we will not only detect corners of objects in O, but also corners
of objects in co(O). Not all the corner pixels in the image should be changed, be-
cause some corners are ‘real’ corners, which have to be preserved in the magnified
image, whereas others are part of jaggies and have to be removed. Therefore we will
use different kinds of binary structuring elements in our hit-or-miss transformation.
The structuring elements used for magnification by a factor 2 are shown in figure 5.2,
where Ai contains the white pixels (×) and Bi the white pixels (·), i = 1 . . . 9. The
other structuring elements are rotated or reflected versions of these. For example, the
structuring elements (A1, B1) will allow us to detect all upper-left corner pixels, while
using structuring elements that are properly rotated versions of (A 1, B1), we will de-
tect all upper-right, lower-left and lower-right corners. And we not only look for cor-
ners of the ‘foreground’ objects, but also for corners of the ‘background’ objects. In
the example in section 5.1 (figure 5.1), not only the white pixels (X ⊗ (A, B)) will
be detected (foreground object corners), but also the black pixels with white ×-symbol
(co(X)⊗(A, B)) (background object corners). Consequently we have 8 different kinds
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of corner pixels (4 ‘foreground’ object corner pixels and 4 ‘background’ object corner
pixels).

(1) (2) (3) (4)

(5) (6) (7) (8) (9)

Figure 5.2: The used binary structuring elements (1) (A1, B1) ... (9) (A9, B9) (the underlined
element corresponds to the origin of coordinates) for magnification by a factor 2.

5.2.3 Corner Correction

In this section we explain our proposed corner transformation method, which is a trade-
off between blur and jaggies, for magnification by a factor 2.

Binary images

If the original image X is a binary image, then the nearest neighbour interpolated
image O of X is also a binary image, and so are the complement co(O) of O, the inner
edge-image Oedge of O and the inner edge-image Oc

edge of co(O). We can apply the
hit-or-miss operator on the binary images Oedge and Oc

edge, and get binary images as
result.

Step 1. We look for corners determined by the structuring elements (A 1, B1) and
their rotations. For example, we detect an upper-left foreground corner pixel a or
an upper-left background corner pixel a ∗ at position (i, j) in O (see figure 5.3). An
upper-left foreground corner pixel will be determined by the hit-or-miss transformation
Oedge ⊗ (A1, B1), while an upper-left background corner pixel will be determined by
the hit-or-miss transformation Oc

edge ⊗ (A1, B1). Then we change the colour of the
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pixel at position (i, j) in the blown up image O by a mixture of the ‘foreground’ and
‘background’ colour of the surrounding pixels. We obtain this by adding a mixture of
the pixel values at positions (i− 1, j) and (i, j − 1) to the pixel value at position (i, j).
Let [rc, gc, bc] and [rc′ , gc′ , bc′ ] be the RGB colour vectors of the pixels O(i−1, j) and
O(i, j−1) respectively, and if we call our new image Onew, then Onew(i, j)(r, g, b) =
(O(i − 1, j)(rc, gc, bc) + O(i, j − 1)(rc′ , gc′ , bc′)) + O(i, j)(ri, gi, bi), with the new
colour value of the pixel Onew(i, j) defined as

r
def
= ( rc+rc′

2 + ri)/2, g
def
= (gc+gc′

2 + gi)/2, b
def
= ( bc+bc′

2 + bi)/2.

Figure 5.3: Step 1 worked out for the structuring elements (A1, B1).

Step 2. In step 2 we detect corners with the pair (A2, B2). If we detect such a fore-
ground corner a or a background corner a ∗ at position (i, j) in O (see figure 5.4), we
change the corner pixels at positions (i−1, j) and (i, j−1) or at positions (i−1, j−1)
and (i, j) in the blown up image Onew. First we determine if the pixel value O(i−1, j)
is equal to the pixel value O(i, j − 1). Analogously for O(i − 1, j − 1) and O(i, j). If
O(i−1, j) = O(i, j−1) and O(i−1, j−1) �= O(i, j), then we fill the pixels at positions
(i−1, j−1) and (i, j) with the pixel value O(i−1, j). If O(i−1, j−1) = O(i, j) and
O(i−1, j) �= O(i, j−1), then we fill the pixels at positions (i−1, j) and (i, j−1) with
the pixel value O(i−1, j−1). If O(i−1, j−1) = O(i, j) and O(i−1, j) = O(i, j−1),
we determine which of the two pixel values O(i− 1, j) and O(i− 1, j − 1) is the fore-
ground colour. Note that the foreground colour is defined by the minority colour in the
image. So we determine which of the two values O(i − 1, j) and O(i − 1, j − 1) is
less present in the image. If O(i − 1, j) is the foreground colour, we fill the pixels at
positions (i− 1, j − 1) and (i, j) with O(i− 1, j). If O(i− 1, j − 1) is the foreground
colour, we fill the pixels at positions (i − 1, j) and (i, j − 1) with O(i − 1, j − 1). If
there is no minority colour O(i − 1, j) or O(i − 1, j − 1) in the image, that is, if there
are as many colour pixels O(i− 1, j) as colour pixels O(i− 1, j − 1) in the image, we
leave the colour values of the pixels unchanged.
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Figure 5.4: Step 2 illustrated for the structuring elements (A2, B2).

Step 3. We have added the structuring elements (A3, B3), (A4, B4), (A5, B5) and
rotated or reflected structuring elements because we experienced that they are repre-
sentative for the corner structures that should not be changed in an image. When we
find a corner determined by one of these structuring elements, we leave the observed
pixels unchanged in Onew to avoid that real corners will be removed in the magnified
image.

Step 4. We look at structuring elements of the form (A6, B6), (A7, B7) and rotated or
reflected versions, see figure 5.5. In the first case (1) when a foreground corner a or a
background corner a∗ is determined by (A6, B6) at position (i, j) in O, we replace the
pixel value at position (i + 1, j − 1) or at position (i + 1, j) in the image Onew by the
colour with RGB components
for Onew(i + 1, j − 1)(r, g, b):

r
def
= (3/4 · rc + 1/4 · ri), g

def
= (3/4 · gc + 1/4 · gi), b

def
= (3/4 · bc + 1/4 · bi),

for Onew(i + 1, j)(r, g, b):

r
def
= (1/4 · rc + 3/4 · ri), g

def
= (1/4 · gc + 3/4 · gi), b

def
= (1/4 · bc + 3/4 · bi),

where [ri, gi, bi] and [rc, gc, bc] are the RGB colour vectors of the pixels O(i, j) and
O(i, j − 1). In the second case (2), if a corner a or a∗ is determined by the structuring
elements (A7, B7) or by the structuring elements (A6, B6) in the special composition
as illustrated in figure 5.5(a) for a (for a∗ we get a similar figure) at position (i, j) in
O, we replace the original colour at position (i + 1, j) or at position (i + 1, j − 1) in
Onew by the colour with RGB components
for Onew(i + 1, j − 1)(r, g, b):

r
def
= (3/4 · rc + 1/4 · ri), g

def
= (3/4 · gc + 1/4 · gi), b

def
= (3/4 · bc + 1/4 · bi),

for Onew(i + 1, j)(r, g, b):

r
def
= (1/4 · rc + 3/4 · ri), g

def
= (1/4 · gc + 3/4 · gi), b

def
= (1/4 · bc + 3/4 · bi),

where [ri, gi, bi] and [rc, gc, bc] are the RGB colour vectors of the pixels O(i, j) and
O(i, j − 1). The colour value of Onew(i, j) or Onew(i, j − 1) is changed to the RGB
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colour (r′, g′, b′) with
for Onew(i, j − 1)(r′, g′, b′):

r′
def
= (1/4 · rc + 3/4 · ri), g′

def
= (1/4 · gc + 3/4 · gi), b′

def
= (1/4 · bc + 3/4 · bi),

for Onew(i, j)(r′, g′, b′):

r′
def
= (3/4 · rc + 1/4 · ri), g′

def
= (3/4 · gc + 1/4 · gi), b′

def
= (3/4 · bc + 1/4 · bi).

(a)

Figure 5.5: Step 4, at the top: case (1) and at the bottom: case (2).

Step 5. At last we consider the pairs of structuring elements (A8, B8), (A9, B9) and
their rotated or reflected structuring elements. If we find such a foreground corner
a (or a background corner a∗) at position (i, j), then we move the colour of pixel
Onew(i + 1, j − 1) (Onew(i + 1, j)) to the pixel Onew(i + 2, j − 1) (Onew(i + 2, j))
and give pixel Onew(i+1, j−1) (Onew(i+1, j)) an intermediate colour value between
the colours Onew(i, j − 1) and Onew(i + 2, j − 1) or Onew(i, j) and Onew(i + 2, j),
that is, Onew(i+1, j−1) = Onew(i, j−1)+Onew(i+2, j−1) and Onew(i+1, j) =
Onew(i, j) + Onew(i + 2, j), as shown in figure 5.6.
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Figure 5.6: Step 5, at the top: case (1) and at the bottom: case (2).

Colour images

When the original image X is a colour image, the blown up image O and the comple-
ment co(O) of O will also be colour images. The inner edge-image O edge of O and the
inner edge-image Oc

edge of co(O) are originally both colour images, but we transform
them into greyscale images. The definition of the hit-or-miss operator as intersection of
two erosions can be extended to greyscale images, using the threshold approach for ex-
ample. The hit-or-miss operator based on the threshold approach of a greyscale image
I by two binary structuring elements A and B is defined as

I ⊗t (A, B) = Et(I, A) ∩ Et(co(I), B),

with co(I) the complementary image of I . In our method we determine the inner edge-
image (the intern morphological gradient) of a colour image X and the inner edge-
image of the complementary image co(X) of X to detect corners in the image. It is
important and even necessary that the used colour vector ordering≤RGB is compatible
with the complement co to get ‘supplementary’ inner edge-images for X and co(X).
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Figure 5.7: The original image X (left) and the complementary image co(X) of X (right).

In figure 5.7 you see the original image X and its complement co(X). When we
use an ordering that is not compatible with the complement co, we can get results
as in figure 5.8 (upper line) for the inner edge-image of X and co(X), where it is
impossible to detect corners using the hit-or-miss transform. Figure 5.8 (lower line)
shows the t-‘colour’ erosions of X and co(X) and their corresponding induced intern
morphological gradients.

Figure 5.8: From left to right: above: possible t-erosions of X and co(X) by BWh
RGB and

the corresponding inner edge images, when using an ordering that is not compatible with the
complement; below: the t-‘colour’ erosions �Et(X, BWh

RGB) and �Et(co(X), BWh
RGB) and their

corresponding intern morphological gradients �G
BW h

RGB
t,i (X) and �G

BW h
RGB

t,i (co(X)), using ≤RGB .
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For the corner correction we can work here in the same way as described before for bin-
ary images. The hit-or-miss transformations Oedge ⊗t (Ai, Bi) and Oc

edge ⊗t (Ai, Bi),
for i = 1 . . . 9, are now greyscale images so that we get for every pixel in O a value
between 0 and 1 that gives us a degree of being a corner edge pixel for that pixel. The
property ‘being a corner’ can thus be evaluated on a numeric scale, where the fuzzily
known values for this property can be represented as a fuzzy set on R. Therefore we
have constructed an S-membership function, by experiment, as you can see in figure
5.9, with parameters α = 0.15, γ = 0.3 and β = α+γ

2 , given by

S(.; α, β, γ) : R → [0, 1]
x �→ 0, ∀x ∈ [−∞, α]
x �→ 2(x−α

γ−α)2, ∀x ∈ [α, β]
x �→ 1 − 2( x−γ

γ−α)2, ∀x ∈ [β, γ]
x �→ 1, ∀x ∈ [γ, +∞].

The fuzzy property ‘being a corner’ is represented by means of the membership func-
tion S(.; 0.15, 0.225, 0.3). Every number below α = 0.15 does not satisfy the property
‘being a corner’ at all and every number beyond the value γ(> α) = 0.3 satisfies
the property ‘being a corner’ completely. Our first idea was to work with weights in

Figure 5.9: Graphical representation of the S-membership function S(.; 0.15, 0.225, 0.3).

the corner correction procedure to obtain good results. We look back at step 1 in our
corner correction method, where we determine corners using the structuring elements
(A1, B1) and their rotations. Instead of changing the colour at position (i, j) in O by
(O(i − 1, j)(rc, gc, bc) + O(i, j − 1)(rc′ , gc′ , bc′)) + O(i, j)(ri, gi, bi) we now add
a weight w, determined by Oedge ⊗t (A1, B1)(i, j) or Oc

edge ⊗t (A1, B1)(i, j), and
change the pixel values, here explained for foreground corner pixels determined by
Oedge ⊗t (A1, B1)(i, j), but it is analogous for background corner pixels determined
by Oc

edge ⊗t (A1, B1)(i, j), as follows
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O = double(O);
[mO, nO, 3] = size(O);
Onew = O;
for s = 1 : mO

for ss = 1 : nO
w(s, ss) = S(Oedge ⊗t (A1, B1)(s, ss)(r); 0.15, 0.225, 0.3)

= S(Oedge ⊗t (A1, B1)(s, ss)(g); 0.15, 0.225, 0.3)
= S(Oedge ⊗t (A1, B1)(s, ss)(b); 0.15, 0.225, 0.3)

if w(s, ss) >= 0.3
for sss = 1 : 3

Onew(s, ss)(sss) = ((O(s − 1, ss) + O(s, ss − 1)) + O(s, ss))(sss);
end;

else if w(s, ss) < 0.3 & w(s, ss) >= 0.15
for sss = 1 : 3

Onew(s, ss)(sss) = (w(s, ss) · (O(s − 1, ss) + O(s, ss − 1))
+ (1 − w(s, ss)) · O(s, ss))(sss);

end;
else

for sss = 1 : 3
Onew(s, ss)(sss) = O(s, ss)(sss);

end;
end;

end;
end;

end;

In the other steps of the corner correction we can work in the same way.

However, experiments have shown that this does not necessarily give better results, on
the contrary, as when we do not take the weight w into account. And this is because of
the following. Consider a pixel at position (i, j) in O. When we add the weight w(i, j)
to the mixture (O(i−1, j)(rc, gc, bc)+O(i, j−1)(rc′ , gc′ , bc′))+O(i, j)(ri, gi, bi), i.e.,
w(i, j)·(O(i−1, j)+O(i, j−1))+(1−w(i, j))·O(i, j), the smaller the value for w(i, j)
(the larger the value for 1−w(i, j)), the less difference in colour there will be between
the mixture w(i, j) · (O(i − 1, j) + O(i, j − 1)) + (1 − w(i, j)) · O(i, j) and O(i, j).
Consequently, this mixture will become less ‘strong’ in the sense that it is possible
that no or almost no difference in colour is visible anymore between this mixture and
O(i, j), and thus changing the pixel value at position (i, j) has had no effect, although
the corner in (i, j) has to be smoothed since it causes a staircasing effect. So we
better do not take the weight w into account in the corner transformation. The smaller
the value in (i, j) for the property ‘being a corner’, the less clear a corner is visible
at position (i, j) in O and the less difference in colour is noticeable between O(i, j)
and the surrounding pixel values; the larger the value in (i, j) for the property ‘being a
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corner’, the more clear a corner is visible at position (i, j) in O and the more difference
in colour is noticeable between O(i, j) and the surrounding pixel values. When we
change the pixel values in (i, j) by (O(i−1, j)(rc, gc, bc)+O(i, j−1)(rc′ , gc′ , bc′))+
O(i, j)(ri, gi, bi), we will get a gradual corner correction transition from pixels not
being a corner to pixels being a corner.

We have made the choice, by experiments, that if w(i, j) ≤ 0.15, then there is no corner
or the corner-property is very weak at position (i, j) in O so that we do not chance the
pixel values in (i, j), because otherwise too much pixels in the image would be changed
creating a blurring effect. If w(i, j) > 0.15, then there is a visible corner at position
(i, j) in O, which has to be smoothed, because otherwise jagged edges would remain
in the image. We get:

O = double(O);
[mO, nO, 3] = size(O);
Onew = O;
for s = 1 : mO

for ss = 1 : nO
w(s, ss) = S(Oedge ⊗t (A1, B1)(s, ss)(r); 0.15, 0.225, 0.3)

= S(Oedge ⊗t (A1, B1)(s, ss)(g); 0.15, 0.225, 0.3)
= S(Oedge ⊗t (A1, B1)(s, ss)(b); 0.15, 0.225, 0.3)

if w(s, ss) >= 0.15
for sss = 1 : 3

Onew(s, ss)(sss) = ((O(s − 1, ss) + O(s, ss − 1)) + O(s, ss))(sss);
end;

else
for sss = 1 : 3

Onew(s, ss)(sss) = O(s, ss)(sss);
end;

end;
end;

end;
end;

In the other steps of the corner transformation we work in the same way.

5.2.4 Magnification by an Integer Factor n > 2

Now, for magnification by an integer factor n > 2, we have to extend the structuring
elements to a larger size but a similar shape, and the way of filling up the edge pixels
will change a bit, but is analogous. In figure 5.10 we have illustrated this process for
magnification by a factor 3. In figure 5.11 and 5.12 you see our corner correction for
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magnification by a factor 4 and 5, where we have replaced the colour values in a similar
way. And so you can go on for magnification by a larger integer factor.

Figure 5.10: Corner correction for magnification by a factor 3.
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Figure 5.11: Corner correction for magnification by a factor 4.
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Figure 5.12: Corner correction for magnification by a factor 5.
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5.2.5 Experimental Results

Figures 5.13 to 5.16 show some results of our interpolation method.

Figure 5.13: At the top: the pixel replicated ‘cartoon’ image for magnification by a factor 2, at
the bottom: the result of our morphological interpolation method.
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Figure 5.14: At the top: the original ‘mailbox’ image (left) and the nearest neighbour interpol-
ated image for magnification by a factor 2 (right), at the bottom: the result of our new morpho-
logical interpolation method (left) and our method, giving as result a colour image with no new
colours (right).
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Figure 5.15: At the top: the original ‘man’ image (left) and the nearest neighbour interpolated
image for magnification by a factor 2 (right), at the bottom: our new morphological interpolation
method (left) and the result of our method introducing no new colours (right).
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(Pixel replication)

(Our method) (Hq)

(Staircasing) (Bicubic)

Figure 5.16: Interpolation results for magnification by a factor 3.

Figure 5.16 and 5.17 illustrate the result of several interpolation methods. We have
compared our technique with the following state-of-the-art methods: the high-quality
magnification filter Hq [76], which analyses a 3 × 3 area around the source pixel and
makes use of lookup tables to get interpolated pixels of the filtered image, the staircas-
ing filter [54], which detects staircasing and changes only staircased edges and pixels,
and some classical linear interpolation methods [32], in particular, bilinear and bicubic
interpolation, which use the (weighted) mean of respectively 4 and 16 closest neigh-
bours to calculate the new pixel values, and sinc interpolation [32], which makes use
of windowed sinc functions. The main advantages and drawbacks of these linear inter-
polation filters are pointed out in [32].
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(Pixel replication) (Our method) (Hq)

(Staircasing) (Bicubic) (Sinc) (Bilinear)

Figure 5.17: Result of several interpolation methods for magnification by a factor 2.

We may conclude that our new method provides very good results. Improvements in
visual quality can be noticed: unwanted jaggies have been removed so that edges have
become smoother and the edges are very sharp and clear. Good results are also ob-
tained with the Hq interpolation method, but our method outperforms all the others.

Our method was implemented in Matlab, which makes it hard to compare the computa-
tional complexity of this method with the others. As future work we can reimplement
all methods in the same program language, Java or C++, to make them comparable
with each other.

Remark: Sometimes it is desired that binary logos, cartoons and maps remain bin-
ary or that no new colours are introduced in a colour image after magnification. Our
method can also produce such a result, we only have to insert a threshold in the corner
correction method. In the first step all new coloured pixels with a value greater than or
equal to (O(i− 1, j)+ O(i, j− 1))+ O(i, j) are assigned to the background colour of
that pixel, while all other pixel values remain unchanged. In the fourth and fifth step all
pixels with RGB colour values greater than or equal to (1/4 ·O(i, j−1)+3/4 ·O(i, j))
are transformed to O(i, j), the values of the colour pixels greater than or equal to
(3/4 · O(i, j − 1) + 1/4 · O(i, j)) are transformed to O(i, j − 1), for i = 6, 7, 8, 9,
and the pixel values greater than or equal to ([r, g, b] of the foreground colour pixel
+ [r, g, b] of the background colour pixel) are assigned to the background colour value
of that pixel. The main visual improvements can be seen in figure 5.14, 5.15 and 5.18:
the contours are smooth and text is also still interpolated very well.
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Figure 5.18: Our new morphological interpolation method, giving as result a binary image of
the original binary image ‘cartoon’ (magnification by a factor 2).

For a binary image interpolation method making use of mathematical morphology and
giving a black-and-white result, we also refer to [31]. An extension of this approach to
greyscale images can be found in [30].

5.2.6 Conclusion

We have presented a magnification method that improves the visual quality of mag-
nified binary images with sharp boundaries. The problem of interpolating an image
is the introduction of unwanted jagged edges in the blown up image. We developed
a new approach to avoid these jaggies, making use of mathematical morphology and
our ordering ≤RGB. We have demonstrated that our method gives beautiful results
for the magnification of colour images with sharp edges. Our next step is to extend
our approach towards all colour images with ‘vague’ edges, again using mathematical
morphology.
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5.3 New Morphological Image Interpolation Method to
Magnify Images with Vague Edges

5.3.1 Corner Detection

Again, we use the pixel replicated or nearest neighbour interpolated image O of an
original image X as first ‘trivial’ interpolation step. Next we determine the inner edge-
image of the blown up image O, using structuring element B Wh

RGB , in order to obtain
the positions of the corner pixels of unwanted jagged edges. Let us call O edge the
inner edge-image of O, transformed into a greyscale image, as described in section
5.2.2. Since we work here with ‘vague’ edges, it is much more difficult to detect the
unwanted jaggies. In contrast with sharp edges, vague edges are usually less fine, less
clear and less sharp, whereby pixels along vague edges will have a lower degree of
being a corner edge pixel, which makes it more difficult to detect them. First we have
tried to apply the hit-or-miss operator to O and co(O) to detect edge points of jaggies,
but we did not succeed in detecting all unwanted corner pixels. The condition that a
pixel has to belong to the intersection of two erosions is too strict to detect all vague
edges. So let us take a closer look at the inner edge-image Oedge of a blown up image
O.

In figure 5.19 you see an example of a nearest neighbour interpolated image O and
the internal morphological gradient Oedge of O by BWh

RGB . When we look at Oedge,
we see a kind of cross structure appearing at the edge where the pixels O edge(3, 7),
Oedge(5, 9) and Oedge(7, 11) indicate unwanted jaggies. Accordingly, we got the idea
to work with one type of binary structuring elements, see figure 5.20, where A contains
the white pixels (×) and B the white pixels (•), to detect these edge pixels.
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Figure 5.19: The pixel replicated image O (at the top) and the inner edge-image Oedge of O by
BWh

RGB(at the bottom).
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Figure 5.20: The used binary structuring elements (A, B) (the underlined element corresponds
to the origin of coordinates) for magnification by a factor 2.

With this given pair of structuring elements (A, B) we determine the erosions
Et(Oedge, A) and Et(Oedge, B) and then take in every pixel position (i, j) of O the
maximum of Et(Oedge, A)(i, j) and Et(Oedge, B)(i, j). The erosion Et(Oedge, A)
allows us to detect jaggies in the \-slanted direction, call this the second diagonal
direction, while the erosion Et(Oedge, B) allows us to detect jaggies in the /-slanted
direction, call this the first diagonal direction. The structuring elements we have used
further on are illustrated in figure 5.21. The others are rotated or reflected versions of
these.

(1) (2) (3) (4)
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(5) (6)

(7) (8)

Figure 5.21: The used binary structuring elements (1) (A1, B1) ... (8) (A8, B8) (the underlined
element corresponds to the origin of coordinates) for magnification by a factor 2, where Ai

contains the white pixels (×) and Bi the white pixels (•), i = 1 . . . 8.

5.3.2 Corner Correction

In this section we describe our corner correction method, which is again a trade-off
between blur and jaggies, for magnification by a factor 2.

When we detect a corner at position (i, j) in O, we look in which direction, along
the first or second diagonal, the edge moves and determine how strong the jaggie is
by calculating the weight w(i, j). As explained in section 5.2.3 for colour images,
when w(i, j) ≤ 0.15, we will leave the pixel values around O(i, j) unchanged, and
when w(i, j) > 0.15, we will change the pixel values around O(i, j). Depending on in
which direction the edge moves, we will change the pixel values in and around O(i, j)
in a different way. When the edge moves in the second diagonal slanted direction, we
look for that side of the edge of which the colour lies closest for the human eye to
the colour value of the pixel O(i, j). We do this by transforming the colour image O
modelled in RGB into the L*a*b* colour model, call this image OL∗a∗b∗ , and then
calculating

north = max(norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i − v, j)),
norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i, j + v)));

south = max(norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i + v, j)),
norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i, j − v)));

where v is the integer factor by which we have magnified the image. If north > south,
then we will change pixels at the right side of the pixel O(i, j), and if north < south,
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then we will change pixels at the left side of the pixel O(i, j). Analogously, when the
edge moves in the first diagonal slanted direction, we look for the side of the edge of
which the colour lies closest for the human eye to the colour value of the pixel O(i, j)
by calculating

north = max(norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i − v, j)),
norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i, j − v)));

south = max(norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i + v, j)),
norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i, j + v))).

If north > south, then we will change pixels at the left side of the pixel O(i, j), and
if north < south, then we will change pixels at the right side of the pixel O(i, j).

If north = south, in the second diagonal slanted direction or in the first diagonal
slanted direction, we calculate

north1 = norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i − v, j)),
south2 = norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i, j − v)),
north2 = norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i, j + v)),
south1 = norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i + v, j)).

SECOND DIAGONAL SLANTED DIRECTION

(north > south) or
((north = south) and ((north1 > south1) or (north2 > south2)))

Step 1. When we detect a corner at position (i, j) in O, denoted by , along the
second diagonal and where north > south or ((north = south) and ((north1 >
south1) or (north2 > south2))), we first look in which direction, to the right or
going down, the difference in colour between O(i, j) and the neighbouring pixels is
largest, by calculating

S1 = norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i, j + v))
S2 = norm(OL∗a∗b∗(i, j) − OL∗a∗b∗(i + v, j)).

Dependent on in which direction we get the largest colour difference, we will change
other pixel values, as shown in figure 5.22.



5.3 New Vague Morphological Image Interpolation Method 189

Figure 5.22: Corner correction to the right if S1 > S2 (left) or going down if S1 < S2 (right).

If S1 > S2, we look at the pixels O(i − 1, j), O(i − 2, j + 1) and O(i − 2, j + 3). If
S1 < S2, we look at the pixels O(i+1, j), O(i, j+1) and O(i−2, j+1). The colour of
the pixels at position (i−1, j) or (i+1, j) in O is replaced by a mixture of the adjoining
pixels, that is, we add the pixel values at positions (i, j) and (i−1, j−1) or at positions
(i+2, j) and (i+1, j − 1). Let [rc, gc, bc] and [rc′ , gc′, bc′ ] be the RGB colour vectors
of the pixels O(i, j) and O(i−1, j−1) or O(i+2, j) and O(i+1, j−1) respectively.
If we call our new image Onew , then Onew(i − 1, j)(r, g, b) = (O(i, j)(rc, gc, bc) +
O(i − 1, j − 1)(rc′ , gc′ , bc′)) or Onew(i + 1, j)(r, g, b) = (O(i + 2, j)(rc, gc, bc) +
O(i + 1, j − 1)(rc′ , gc′ , bc′)), with the new colour values [r, g, b] defined as

r
def
= rc+rc′

2 , g
def
= gc+gc′

2 , b
def
= bc+bc′

2 .

The colour of the pixels at positions (i − 2, j + 1) and (i − 2, j + 3) or (i, j + 1) and
(i−2, j+1) in Onew is also replaced by a mixture of the adjoining pixels. For example,
for the pixels O(i− 2, j + 1) and O(i− 2, j + 3) we get Onew(i− 2, j + 1) = (O(i−
3, j+1)+O(i−2, j+2)) and Onew(i−2, j+3) = (O(i−3, j+3)+O(i−2, j+4)).
We have used different notations to denote which pixels should be mixed: when one of
the adjoining pixels is lying above the considered pixel, and the other adjoining pixel
is in this case then lying at the right side, we denote , and when one of the adjoining
pixels is lying below the considered pixel, and the other adjoining pixel here now at the
left side, we denote . If S1 = S2, we change the pixels as in the cases S1 > S2 and
S1 < S2.

Thereafter we detect corners with the structuring element A5 if S1 > S2 or with the
structuring element A1 if S1 < S2. If S1 = S2, we detect corners with the structuring
elements A1 and A5 and look for which structuring element we get the largest value.

Step 2. In step 2 we calculate Et(Oedge, A5)(i, j) and verify if Et(Oedge, A5)(i, j) >
α and ¬(Et(Oedge, A)(i+2, j +2) > Et(Oedge, A)(i, j +2)). When both conditions
are fulfilled, we may assume that there is a step at position (i, j) in the staircasing edge
that moves further to the right, as at position (9, 5) in Oedge shown in figure 5.23. Thus
we will smooth the jagged edge at (i, j) further in the right direction, as shown in figure
5.24(a).
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Figure 5.23: An example of an inner edge-image Oedge where we see an edge point at position
(9, 5) moving to the right.

(a) (b)

(c)

Figure 5.24: Corner transformation in step 2 for the structuring elements A5, A6 and A7.
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First we change the pixel value at position (i−1, j +2) in Onew by a mixture, denoted
by , of the colour O(i − 1, j + 2) and the two adjoining colours O(i − 1, j + 1) and
O(i, j + 2), i.e., Onew(i − 1, j + 2)(r, g, b) = (O(i − 1, j + 2)(rc, gc, bc) + O(i −
1, j + 1)(rc′ , gc′ , bc′) + O(i, j + 2)(rc′′ , gc′′ , bc′′)), where

r
def
= rc+rc′+rc′′

3 , g
def
= gc+gc′+gc′′

3 , b
def
= bc+bc′+bc′′

3 .

Thereafter we replace the pixel value Onew(i−1, j+1) by an intermediate colour value
between the colours Onew(i− 1, j) and Onew(i− 1, j + 2), i.e., Onew(i− 1, j + 1) =
Onew(i − 1, j) + Onew(i − 1, j + 2), which we indicate by −. Next the pixel value
Onew(i− 2, j +5) is replaced by a mixture of the adjoining pixels O(i− 2, j + 6) and
O(i−3, j+5), again denoted by . And at last the pixel values Onew(i−2, j+2) and
Onew(i−2, j+4) are changed to an intermediate colour between the new colour values
Onew(i−2, j+1) and Onew(i−2, j+3) for Onew(i−2, j+2) and Onew(i−2, j+3)
and Onew(i − 2, j + 5) for Onew(i − 2, j + 4), again denoted by −.

Analogously we calculate Et(Oedge, A6)(i, j) and verify if Et(Oedge, A6)(i, j) > α
and ∼ (Et(Oedge, A)(i + 2, j + 4) > Et(Oedge, A)(i, j + 4)). When both conditions
are fulfilled, we know that at position (i, j) there is a step in the staircasing effect that
moves still further on to the right so that we have to smooth the jagged edge further to
the right, and so we can go on, for example for the structuring element A 7 as illustrated
in figure 5.24(c).

Step 3. For steps moving downstairs in the staircasing edge, determined by the struc-
turing elements A1, A2, A3 and A4, we work completely analogously as in step 2. The
corner correction here is illustrated in figure 5.25.

Figure 5.25: The corner correction in step 3 worked out for the structuring elements A1, A2 and
A3.
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Step 4. Finally in the last two steps 4 and 5 we check if the jagged corners follow each
other. When we detect a jagged edge point at position (i, j), we look if there is an edge
point present at position (i− 2, j − 2). If so, then the jagged corners follow each other.
If not, it is possible that there is a jagged edge point present at position (i − 2, j − 4)
or (i − 4, j − 2) or at position (i − 2, j − 6) or (i − 6, j − 2). If we find an edge point
at position (i − 2, j − 4) that does not move to the right and is or is not coming from
an edge moving to the right, or if we find an edge point at position (i − 2, j − 6) that
moves one time to the right and is or is not coming from an edge moving to the right,
then we change the pixels around Onew(i, j) as illustrated in figure 5.26(a). If there is
no edge point present at position (i − 2, j − 4) and we find an edge point at position
(i− 2, j − 6) that does not move to the right or an edge point at position (i− 2, j − 8)
that is moving one time to the right, then we change the pixels around O new(i, j) as
illustrated in figure 5.26(b). The symbol denotes that we add the colour of that pixel
to the colour of the left pixel, while the symbol denotes that we add the colour of
that pixel to the colour of the right pixel. The other symbols have been explained in the
previous steps.

(a)

(b)

Figure 5.26: Step 4, at the top: case (a) and at the bottom: case (b).

Step 5. In figure 5.27 we illustrate how we replace the pixel values when there is no
edge point present at position (i−2, j−2) and we detect a jagged edge point at position
(i−4, j−2) that does not move downstairs or at position (i−6, j−2) that moves one
time downstairs (see figure 5.27(a)), or when there is no edge point present at positions
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(i− 2, j− 2) and (i− 4, j− 2) and we find an edge point at position (i− 6, j− 2) that
does not move downstairs or at position (i − 8, j − 2) that moves one time downstairs
(see figure 5.27(b)).

(a) (b)

Figure 5.27: Step 5, at the left: case (a) and at the right: case (b).

In the other cases, the second diagonal slanted direction with (north < south) or
((north = south) and ((north1 < south1) or (north2 < south2))) and the first di-
agonal slanted direction with (north > south) or ((north = south) and ((north1 >
south1) or (north2 < south2))) and (north < south) or ((north = south) and
((north1 < south1) or (north2 > south2))), we work completely analogously as
explained before so that we will only give the figures that illustrate which pixels are
changed and how they are replaced.

(north < south) or
((north = south) and ((north1 < south1) or (north2 < south2)))

Step 1.
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Step 2.

Step 3.
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Step 4.

Step 5.

FIRST DIAGONAL SLANTED DIRECTION

(north > south) or
((north = south) and ((north1 > south1) or (north2 < south2)))

Step 1.
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Step 2.

Step 3.
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Step 4.

Step 5.
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(north < south) or
((north = south) and ((north1 < south1) or (north2 > south2)))

Step 1.

Step 2.

Step 3.
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Step 4.

Step 5.

Lastly, when all cases have been considered in our method, we combine our result with
the bilinear interpolation method, as follows. Let us call Obil the bilinear interpolated
image of X for magnification by a factor 2. For every position (i, j) in O we look if
pixels have been changed in the 5 × 5 neighbourhood of O(i, j) with our method. If
no pixels have been changed in this neighbourhood, then we replace the pixel values of
Onew in these surroundings by the corresponding pixel values in O bil. We do this be-
cause our interpolation method works very well along edges between areas of objects
in the image with a different colour. But our method will not be able to detect corners
in regions with little detail, because these edges are too weak, although they also have
to be smoothed to avoid jaggies when we magnify the image by a large factor. Com-
bination of both our morphological interpolation method and the bilinear interpolation
method deals with all edges.
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5.3.3 Magnification by an Integer Factor n > 2

Now, for magnification by an integer factor n > 2, we have to extend the structuring
elements to a larger size but a similar shape, and the way of filling up the edge pixels
will change a bit, but is very similar. In figure 5.28 and 5.29 we have illustrated our
corner correction process for magnification by a factor 3 and 4. And so you can go on
for magnification by a larger integer factor.
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5.3.4 Experimental Results

Figures 5.30 and 5.31 show some results for magnification by a factor 2.

Figure 5.30: Some results of our new morphological magnification method: the original colour
image (left), the nearest neighbour interpolated image (middle) and our result (right).
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More in detail:

Figure 5.31: Some of the results of figure 5.30 in more detail: left: the nearest neighbour
interpolated image and right: our morphological magnification result.
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Figures 5.32, 5.33, 5.34 and 5.35 illustrate the result of several interpolation methods
for magnification by a factor 2, 3 and 4.

(Original image) (Pixel replication) (Our method) (Level curve)

(Bilinear) (Cubic B-spline) (Edge-directed) (Sinc)

(Original image) (Pixel replication) (Our method)

(Bilinear) (B-spline) (Curve map) (Sinc)

(Original image) (Pixel replication) (Our method) (Level curve)

(Bilinear) (Cubic B-spline) (Edge-directed) (Sinc)

Figure 5.32: From top to bottom: result of several interpolation methods for magnification by a
factor 2, 3 and 4.
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(Pixel replication) (Our method) (Level curve mapping)

(Cubic B-spline) (Edge-directed) (Sinc)

Figure 5.33: Interpolation results for magnification by a factor 2, in detail.
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(Pixel replication) (Our method) (Level curve)

(Bilinear) (Cubic B-spline) (Sinc)

Figure 5.34: Interpolation results for magnification by a factor 3, in detail.

(Pixel replication) (Our method) (Level curve)

(Bilinear) (Cubic B-spline) (Edge-directed)

Figure 5.35: Interpolation results for magnification by a factor 4, in detail.
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We have compared our technique with the following state-of-the-art methods: bilin-
ear interpolation, which uses the (weighted) mean of 4 closest neighbours to calculate
the new pixel values, cubic b-spline interpolation [80, 81], which makes use of con-
tinuous B-spline basis functions, level curve mapping [38], which sharpens edges by
mapping the image level curves using adaptive contrast enhancement techniques, sinc
interpolation [32], which makes use of windowed sinc functions and new edge-directed
interpolation [34].

We may conclude that our new method provides very good results. Improvements in
visual quality can be noticed: unwanted jaggies have been removed so that edges have
become smoother and there are no ringing and blurring artefacts present in the images.
The results clearly show that our technique gives the sharpest edges.

Our method was implemented in Matlab, which makes it hard to compare the computa-
tional complexity of this method with the others. As future work we can reimplement
all methods in the same program language, Java or C++, to make them comparable
with each other.

5.3.5 Conclusion

We have presented a magnification method using mathematical morphology that im-
proves the visual quality of magnified colour images with ‘vague’ edges. The problem
of interpolating an image is the introduction of unwanted jagged edges in the blown
up image. We have developed a new approach to avoid these jaggies, making use of
mathematical morphology and our ordering ≤RGB , which is a trade-off between blur
and jaggies.
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Conclusion

Mathematical morphology was originally only developed for binary images. There
exist different approaches for the extension of binary morphology to morphology for
greyscale images. These extensions towards colour images are not straightforward, and
this is what this work is concerned with. The problem of looking for a vector ordering
for colour or multivariate morphological image processing is not new and is being de-
veloped since the early 90’s.

First of all we have defined a complement co and addition +, subtraction - and multi-
plication * operations between colours in the RGB, HSV and L*a*b* colour model. A
new colour ordering in RGB, HSV and L*a*b*, which is compatible with the defined
complement co, is proposed, where we have treated the colours as vectors so that we
get complete lattices for these colour models seen with the new corresponding order-
ing. Definition of associated minimum and maximum operators follows, and so we
can extend the greyscale morphological operators based on the threshold, umbra and
fuzzy approach to operators acting on colour images. At last we have examined which
properties, e.g. duality principle and monotonicity, still hold for the new colour mor-
phological operators.

We may conclude that our new method provides better results than those obtained
by the component-based approach and similar or better results than those obtained by
other state-of-the-art methods. One great advantage is that the existing correlations be-
tween the different colour components are taken into account. And what is more, more
details from the original colour image are preserved and thus visible.

As application we have used our new approach to colour morphology to magnify im-
ages. Image magnification has many applications such as simple spatial magnification
of images (e.g. printing low-resolution documents on high-resolution printer devices,
digital zoom in digital cameras), geometrical transformation (e.g. rotation), etc. Differ-
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ent image magnification methods have already been proposed in the literature. Because
the existing methods usually suffer from one or more artefacts such as staircasing and
blurring, we have developed a new image interpolation method, based on mathematical
morphology, to magnify binary as well as colour images with sharp edges. Finally, an
extension of our morphological interpolation method to magnify colour images with
vague edges is studied.

We may conclude that our new method provides very good results and an improvement
w.r.t. the state-of-the-art. Improvements in visual quality can be noticed: unwanted
jaggies have been removed so that edges have become smoother and there are no ring-
ing and blurring artefacts present in the images. Our approach gives the sharpest and
clearest edges.

As future work we can set up an experiment regarding the psycho visual behaviour
of similarity measures, which can be useful for the evaluation of morphological opera-
tors. Our morphological image magnification method for sharp and vague edges have
been implemented in Matlab, which makes it hard to compare the computational com-
plexity of this method with the others. As future work we can reimplement all methods
in the same program language, Java or C++, to make them comparable with each other.
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Samenvatting

Mathematische morfologie is een theorie voor de analyse van ruimtelijke structuren,
gebaseerd op verzamelingenleer en het begrip verschuiving. In de jaren zestig voerden
G. Matheron en J. Serra [41], beiden geı̈nspireerd door de studie naar de geometrische
vorm van poreus medium, het begrip mathematische morfologie in. Poreus medium
is binair in de zin dat een punt van poreus medium ofwel deel uitmaakt van een porie
ofwel behoort tot de grondmassa rond de poriën. Zo ontwikkelden Matheron en Serra
een theorie voor de analyse van binaire beelden. De grondmassa kan beschouwd wor-
den als de verzameling van objectpunten in het beeld, terwijl de poriën het complement
van deze verzameling vormen. Bijgevolg kunnen objectpunten behandeld worden met
eenvoudige bewerkingen zoals unie, doorsnede, complement en verschuiving. Mathe-
matische morfologie werd oorspronkelijk dus enkel voor binaire beelden ontwikkeld.
Op deze manier legden Matheron en Serra alvast de basis voor mathematische mor-
fologie in de beeldanalyse. Vandaag de dag heeft mathematische morfologie vele
toepassingen in de beeldanalyse zoals randdetectie, ruisverwijdering, objectherken-
ning, patroonherkenning, beeldsegmentatie en beeldvergroting in o.a. de biologische
en medische wereld [71, 74]. De basiswerktuigen van mathematische morfologie zijn
de morfologische operatoren die een gegeven beeld A dat we willen analyseren omzet
naar een nieuw beeld P (A, B) gebruik makend van een structuurelement B, om zo
bijkomende informatie over de vorm, grootte, oriëntatie of beeldafmetingen van voor-
werpen in A te verkrijgen. Behalve de schijfjes- en umbrabenadering kan binaire
morfologie uitgebreid worden naar morfologie voor grijswaardenbeelden door gebruik
te maken van vaagverzamelingenleer, vaagmorfologie genoemd. De toepassing van
morfologische operatoren op kleurenbeelden is zeker niet voor de hand liggend. En
daarover handelt dit proefschrift.

In hoofdstuk 2 beginnen we met de voorstelling van digitale beelden en enkele defini-
ties in verband met vaagverzamelingen, vaaglogische operatoren, L-vaagverzameling-
en, L-vaaglogische operatoren, L-vaagrelaties en L-vaagrelationele beelden die we
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verder in dit proefschrift nodig hebben. In het derde hoofdstuk leggen we uit hoe het
menselijk oog is opgebouwd en hoe het licht, en zo ook kleur, waarneemt. Daarna
beschrijven we de additieve en subtractieve kleurenmengeling om kleur te reprodu-
ceren en leggen we het verschil uit tussen de termen kleurenmodel en kleurenruimte.
In hoofdstuk 3 bestuderen we ook de kleurenmodellen RGB, CMY en CMYK, YUV,
YIQ en YCbCr, HSV en HSL, CIEXYZ, CIEYxy, L*a*b* en L*u*v*. De defini-
tie van de fundamentele morfologische operatoren dilatatie en erosie wordt ingevoerd
in hoofdstuk 4. We beschouwen zowel de binaire morfologische operatoren als de
grijswaardenmorfologische operatoren gebaseerd op de schijfjes- en umbrabenadering
en de vaagverzamelingenleer. Vervolgens geven we een overzicht en een korte be-
spreking van de bestaande uitbreidingen van mathematische morfologie naar kleur uit
de literatuur. Een eerste manier om de morfologische operatoren voor grijswaarden-
beelden toe te passen op kleurenbeelden is de componentsgewijze aanpak, waarbij
we de morfologische operatoren op elk van de kleurencomponenten afzonderlijk be-
werken. Maar deze aanpak leidt vaak tot artefacten in het beeld omdat geen rekening
gehouden wordt met de samenhang tussen de kleurencomponenten. Daarom hebben
we gezocht naar een vectorordening voor kleuren, waarbij we de RGB, HSV en L*a*b*
kleurenmodellen hebben beschouwd. Nadien hebben we minimum en maximum o-
peratoren gedefinieerd en nieuwe +, − en ∗ bewerkingen tussen kleuren zodat we
de grijswaardenmorfologische operatoren konden uitbreiden naar nieuwe vectorge-
baseerde operatoren voor kleurenbeelden. Het probleem van het zoeken naar een
vectorordening voor kleur is niet nieuw en werd reeds in het begin van de jaren ne-
gentig ontwikkeld. Wat nieuw is hier is de gebruikte aanpak, namelijk door de um-
bramethode en de vaagverzamelingenleer. Experimentele resultaten tonen aan dat we
zeer goede resultaten bekomen. Tenslotte hebben we in hoofdstuk 5 onze nieuwe
kleurenmorfologische aanpak toegepast op het vergroten van beelden. Verschillende
methodes voor het vergroten van beelden werden reeds voorgesteld in de literatuur
[2, 6, 20, 27, 32, 34, 38, 42, 54, 76, 78], maar we hebben echter slechts één artikel
[1] gevonden dat gebruik maakt van mathematische morfologie. Omdat de bestaande
methoden meestal tekortschieten door hoek- en verwazigingsartefacten, hebben we
een nieuwe methode ontwikkeld voor het vergroten van zwart-wit beelden en kleuren-
beelden met scherpe randen, gebaseerd op mathematische morfologie. Daar een een-
voudige vergroting van een beeld kartelingen introduceert, zal onze methode deze
gekartelde randen opsporen en afronden. Experimenten illustreren dat onze methode
zeer goed presteert voor de interpolatie van scherpe beelden zoals logo’s, cartoons en
kaarten, voor zwart-wit beelden en kleurenbeelden. Tot slot hebben we onze mor-
fologische interpolatiemethode uitgebreid voor het vergroten van kleurenbeelden met
onscherpe randen. Hierbij bekomen we mooie resultaten die een verbetering zijn van
de bestaande methoden.
Tenslotte merken we op dat bepaalde onderdelen van dit proefschrift reeds gepubli-
ceerd werden in een boek [15] en in internationale tijdschriften [14, 16] en een aantal
onderzoeksresultaten gepresenteerd werden op (internationale) conferenties [13, 14,
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16]. Bijdragen tot het werk van anderen werden gepubliceerd in een boek [69], inter-
nationale tijdschriften [30, 46, 48, 49, 60, 61, 62, 64, 65, 66, 68] en proceedings van
(internationale) conferenties [29, 31, 45, 47, 50, 63, 67, 82, 83, 84, 86, 85].
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[32] LEHMANN, T., GÖNNER, C., AND SPITZER, K. Survey: Interpolation methods
in medical image processing. IEEE Transactions on Medical Imaging 18, 11
(1999), 1049–1075.

[33] LI, J., AND LI, Y. Multivariate mathematical morphology based on principal
component analysis: initial results in building extraction. International Archives
for Photogrammetry, Remote Sensing and Spatial Information Sciences 35, B7
(2004), 1168–1173.

[34] LI, X., AND ORCHARD, M. New edge-directed interpolation. IEEE Transactions
on Image Processing 10, 10 (2001), 1521–1527.

[35] LOUVERDIS, G., AND ANDREADIS, I. Design and implementation of a fuzzy
hardware structure for morphological color image processing. IEEE Transactions
on Circuits and Systems for Video Technology 13, 3 (2003), 277–288.

[36] LOUVERDIS, G., ANDREADIS, I., AND TSALIDES, P. New fuzzy model for
morphological color image processing. In Proceedings of IEEE Vision, image
and signal processing (2002), pp. 129–139.



218 Bibliography

[37] LOUVERDIS, G., VARDAVOULIA, M., ANDREADIS, I., AND TSALIDES, P. A
new approach to morphological color image processing. Pattern Recognition 35,
8 (2002), 1733–1741.

[38] LUONG, H., DE SMET, P., AND PHILIPS, W. Image interpolation using con-
strained adaptive contrast enhancement techniques. In Proceedings of IEEE In-
ternational Conference on Image Processing ICIP 2005 (Italy, September 2005),
pp. 998–1001.

[39] M. I. VARDAVOULIA, I. A., AND TSALIDES, P. Vector ordering and morpho-
logical operations for colour image processing: fundamentals and applications.
Pattern Analysis & Applications 5 (2002), 271–287.

[40] MACADAM, D. L. Visual sensitivities to color differences in daylight. Journal
of the Optical Society of America 32, 5 (1942), 247–274.

[41] MATHERON, G., AND SERRA, J. The birth of mathematical morphology.
http://cmm.ensmp.fr/∼serra/communications pdf/C-72.pdf, 1998.

[42] MORSE, B. S., AND SCHWARTZWALD, D. Isophote-based interpolation. In
Proceedings of IEEE International Conference on Image Processing ICIP 1998
(USA, October 1998), pp. 227–231.

[43] NACHTEGAEL, M. Vaagmorfologische en vaaglogische filtertechnieken in beeld-
verwerking. PhD Thesis, Ghent University, Belgium, 2002.

[44] NACHTEGAEL, M., AND KERRE, E. E. Connections between binary, gray-scale
and fuzzy mathematical morphologies. Fuzzy Sets and Systems 124, 1 (2001),
73–85.

[45] NACHTEGAEL, M., SCHULTE, S., VAN DER WEKEN, D., DE WITTE, V., AND

KERRE, E. E. Fuzzy filters for noise reduction: the case of impulse noise. In
Proceedings of Joint 2nd International Conference on Soft Computing and Intel-
ligent Systems and 5th International Symposium on Advanced Intelligent Systems
SCIS and ISIS 2004 (Japan, September 2004), pp. CD–ROM.

[46] NACHTEGAEL, M., SCHULTE, S., VAN DER WEKEN, D., DE WITTE, V., AND

KERRE, E. E. Do fuzzy techniques offer an added value for noise reduction in
images? Lecture Notes in Computer Science 3708 (2005), 658–665.

[47] NACHTEGAEL, M., SCHULTE, S., VAN DER WEKEN, D., DE WITTE, V., AND

KERRE, E. E. Fuzzy filters for noise reduction: the case of gaussian noise. In
Proceedings of 14th IEEE International Conference on Fuzzy Systems FUZZ-
IEEE 2005 (Nevada, 2005), pp. 201–206.



Bibliography 219

[48] NACHTEGAEL, M., SCHULTE, S., VAN DER WEKEN, D., DE WITTE, V., AND

KERRE, E. E. Gaussian noise reduction in greyscale images. International Jour-
nal of Intelligent Systems Technologies and Applications 1, 3 (2006), 211–233.

[49] NACHTEGAEL, M., VAN DER WEKEN, D., SCHULTE, S., AND DE WITTE, V.
Fuzzy techniques in image processing at Ghent University. Journal of Intelligent
and Fuzzy Systems 16, 4 (2005), 281–287.

[50] NACHTEGAEL, M., VAN DER WEKEN, D., SCHULTE, S., DE WITTE, V., AND

KERRE, E. E. Fuzzy mathematical morphology: current status and required
developments. In Proceedings of 6th International Symposium on Advanced In-
telligent Systems ISIS 2005 (Korea, 2005), pp. 429–434.

[51] NATIONAL EYE INSTITUUT. Diagram of the eye. http://www.nei.nih.gov.

[52] PETERS, R. A. Mathematical morphology for angle-valued images. In Proceed-
ings of Nonlinear Image Processing VIII SPIE 3026 (USA, 1997), pp. 84–94.

[53] PHILIPS, W. Image Processing. http://telin.ugent.be/ philips/beeldv/.

[54] POWER RETOUCHE. Staircasing filter. http://www.powerretouche.com/.

[55] POYNTON, C. Frequently asked questions about color and Frequently asked
questions about gamma. http://www.poynton.com.

[56] RONSE, C. Why mathematical morphology needs complete lattices. Signal Pro-
cessing 21, 2 (1990), 129–154.

[57] RONSE, C., AND HEIJMANS, H. J. A. M. The algebraic basis of mathematical
morphology, part 2: Openings and closings. Computer Vision, Graphics and
Image Processing 54, 1 (1991), 74–97.

[58] SANGWINE, S. J., AND HORNE, R. E. N. The Colour Image Processing Hand-
book. Chapman & Hall, 1998.

[59] SARTOR, L. J., AND WEEKS, A. R. Morphological operations on color images.
Journal of Electronic Imaging 10, 2 (2001), 548–559.

[60] SCHULTE, S., DE WITTE, V., AND KERRE, E. E. A fuzzy noise reduction
method for color images. IEEE Transactions on Image Processing (2007), in
press.

[61] SCHULTE, S., DE WITTE, V., NACHTEGAEL, M., VAN DER WEKEN, D., AND

KERRE, E. E. A new fuzzy multi-channel filter for the reduction of impulse
noise. Lecture Notes in Computer Science 3522 (2005), 368–375.



220 Bibliography

[62] SCHULTE, S., DE WITTE, V., NACHTEGAEL, M., VAN DER WEKEN, D., AND

KERRE, E. E. A novel histogram based fuzzy impulse noise restoration method
for colour images. Lecture Notes in Computer Science 3708 (2005), 626–633.

[63] SCHULTE, S., DE WITTE, V., NACHTEGAEL, M., VAN DER WEKEN, D., AND

KERRE, E. E. A new fuzzy filter for the reduction of randomly valued impulse
noise. In Proceedings of IEEE International Conference on Image Processing
ICIP 2006 (USA, 2006), pp. 1809–1812.

[64] SCHULTE, S., DE WITTE, V., NACHTEGAEL, M., VAN DER WEKEN, D., AND

KERRE, E. E. Fuzzy two-step filter for impulse noise reduction from color im-
ages. IEEE Transactions on Image Processing 15, 11 (2006), 3567–3578.

[65] SCHULTE, S., DE WITTE, V., NACHTEGAEL, M., VAN DER WEKEN, D., AND

KERRE, E. E. Fuzzy random impulse noise reduction method. Fuzzy Sets and
Systems 158, 3 (2007), 270–283.

[66] SCHULTE, S., DE WITTE, V., NACHTEGAEL, M., VAN DER WEKEN, D., AND

KERRE, E. E. Histogram-based fuzzy colour filter for image restoration. Image
and Vision Computing (2007), in press.

[67] SCHULTE, S., NACHTEGAEL, M., DE WITTE, V., VAN DER WEKEN, D., AND

KERRE, E. E. A new two step color filter for impulse noise. In Proceedings of
the East West Fuzzy Colloquium 2004 (11th Zittau Fuzzy Colloquium) (Germany,
2004), pp. 185–192.

[68] SCHULTE, S., NACHTEGAEL, M., DE WITTE, V., VAN DER WEKEN, D., AND

KERRE, E. E. A fuzzy impulse noise detection and reduction method. IEEE
Transactions on Image Processing 15, 5 (2006), 1153–1162.

[69] SCHULTE, S., NACHTEGAEL, M., DE WITTE, V., VAN DER WEKEN, D.,
AND KERRE, E. E. Fuzzy Impulse Noise Reduction Methods for Color Images.
Springer, 2006, ch. Computational intelligence, theory and applications, pp. 711–
720.

[70] SCRUGGS, J. Color theory. http://www.bway.net/ jscruggs/index3.html.

[71] SERRA, J., AND SOILLE, P. Mathematical Morphology and Its Applications to
Image Processing. Kluwer Academic Publishers, 1994.

[72] SHARMA, G. Digital Color Imaging Handbook. CRC-Press, England, 2003.

[73] SHARMA, G., AND TRUSSELL, H. J. Digital color imaging. IEEE Transactions
on Image Processing 6, 7 (1997), 901–932.

[74] SOILLE, P. Morphological Image Analysis: Principles and Applications.
Springer-Verlag, 1999.



Bibliography 221

[75] SPECIALCHEM. Color centre. http://www.specialchem4coatings.com/tc/color-
handbook.

[76] STEPIN, M. Hq 3x magnification filter. http://www.hiend3d.com/hq3x.html.

[77] TALBOT, H., EVANS, C., AND JONES, R. Mathematical Morphology and Its
Applications to Image and Signal Processing. Kluwer Academic Press, 1998,
ch. Complete ordering and multivariate mathematical morphology, pp. 27–34.
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