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Summary

The fractional calculus is a generalization of classical integer-order integra-
tion and derivation to fractional (non-integer) order operators. Fractional or-
der (FO) models are those models which contain such fractional order opera-
tors. A common representation of these models is in frequency domain, due
to its simplicity. For an integer order system, the magnitude varies with an
integer multiple of 20 dB/dec (±20 dB/dec, ±40 dB/dec, etc), and the phase
with an integer multiple of 90o (±90o, ±180o, etc). For a FO system of frac-
tional order n, the magnitude varies with n · 20dB/dec, with 0 ≤ n ≤ 1.
Similarly, the phase will vary with n · 90o.
The dynamical systems whose model can be approximated in a natural way
using FO terms, exhibit specific features, such as viscoelasticity, diffusion
and a fractal structure; hence the respiratory system is an ideal application for
FO models. Although viscoelastic and diffusive properties were intensively
investigated in the respiratory system, the fractal structure was ignored. Prob-
ably one of the reasons is that the respiratory system does not pose a perfect
symmetry, hence failing to satisfy one of the conditions for being a typical
fractal structure. Nonetheless, some degree of recurrence has been recog-
nized in the airway generation models.
The respiratory system poses all three properties enumerated above and there
is no reason why one should ignore either one of them. Moreover, with
pathology, viscoelasticity is affected by changes at the cellular level, nar-
rowing or occluding the airway, which in turn affects both the structure of
the airway distribution, as well as the diffusion area. If a specific model (e.g.
an electrical analogue) of the respiratory tree would exist, it would allow
simulation studies in both healthy and pathology scenarios. Firstly, such an
analogue would provide the means to investigate the appearance of the FO
model and secondly, it would provide information upon how the FO model
parameters are affected by changes in morphology.
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SUMMARY

In the 70s, the respiratory impedance determined by the ratio of air-pressure
and air-flow, has been introduced in a model structure containing a resistance
Rr, inertance Lr and compliance Cr element, whereas the latter contained a
fractional order n: 1/Crsn. The model proved to have a notorious success at
low frequencies and has been used ever since by researchers to characterize
the respiratory impedance. It has also been shown that the fractional order
models outperform integer-order models on input impedance measurements.
However, there is a lack of underpinning theory to clarify the appearance of
the fractional order in the FO model structure.
Several attempts have been made to obtain an electrical equivalent of the
respiratory tree, but the models reported hitherto are an approximation of
the tree rather than a precise formulation, and do not preserve the intrinsic
geometry. The clinicians prefer a simple, lumped, yet sufficiently accurate
model from whose parameter values they are able to detect whether or not
a lung function is normal. It is therefore interesting to characterize the lung
function in terms of its mechanical properties, which can be directly related
to changes in airway duct geometry and relate them to the non-integer order
model parameters.
This thesis describes a physiologically consistent approach to reach twofold
objectives:

• to provide a physiologically-based mathematical explanation for the
necessity of fractional order models for the input impedance, and

• to determine the capability of the best fractional order model to classify
between healthy and pathological cases.

Rather than dealing with a specific case study, the modelling approach
presents a general method which can be used not only in the respiratory
system application, but also in other similar systems (e.g. leaves, circulatory
system, liver, intestines). Furthermore, we consider also the case when sym-
metry is not present (e.g. deformations in the thorax - kyphoscoliose) as well
as various pathologies. We provide a proof-of-concept for the appearance
of the FO model from the intrinsic structure of the respiratory tree. Several
clinical studies are then conducted to validate the sensitivity and specificity
of the FO model in healthy groups and in various pathological groups.
This thesis in organized as follows: chapter 1 describes what fractional-order
models are and why they became so popular in characterizing the properties
of the biological tissue, i.e. the lung parenchyma. A state of the art in the
field of modelling and identification of the respiratory system is given and the
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SUMMARY

objectives and contributions of this work are stated. Some basic principles of
lung physiology and pathology are introduced in order to provide support for
later developments throughout the thesis. After introducing some concepts
and results on the appearance of fractional-order in respiratory system mod-
els, the mathematical structure and the basic properties of such systems are
presented.
The second chapter presents the principles of measuring the respiratory input
impedance by means of FOT (Forced Oscillation Technique) lung function
test. The chapter continues with an overview of the most representative para-
metric models reported in literature. Additionally, two alternative models are
proposed. A comparison in terms of modelling performance is evaluated on
typical patient data obtained with FOT, i.e. three averaged sets of represen-
tative diagnosed subjects: healthy, asthma and COPD (chronic obstructive
pulmonary disease). It is shown that the FO model in four parameters from
literature is unable to capture real parts of the impedance which are increas-
ing with frequency. All identified model parameter values are discussed with
respect to physiological insight.
The derivation of the mechanical parameters of the airways from morpholog-
ical insight is presented in chapter 3. The approach consists of: 1) taking into
account morphological and anatomical values such as: airway wall thick-
ness, inner radius, tube length and tissue structure for each airway level and
2) combine them into a set of equations for modelling the pressure drop, flow,
wall elasticity and air velocity (axial and radial). Both elastic and viscoelas-
tic airways are investigated, in the context of a symmetric space-filling of
the lung. Effects of pulmonary disease affecting the inner radius and elastic
modulus of bronchial tree are discussed. The derived mechanical parame-
ters (resistance, inertance, compliance and conductance) are used to gather
insight into the recurrence of the respiratory tree.
Chapter 4 details the construction of the electrical ladder network equivalent,
using the elements determined in chapter 3. The cases of an elastic tube wall
and a viscoelastic tube wall are discussed, with supporting analytical and sim-
ulated results. A generalization of the analytical results is given, suggesting
applicability to other branching systems (e.g. circulatory, neural, lymphatic,
etc). The estimated results are successfully validated with measured data.
The chapter ends with a special analysis of the asymmetric branching and its
consequences on the total input impedance values.
In the 5th chapter, an equivalent mechanical representation is derived for the
elastic and the viscoelastic electrical models developed in the previous chap-
ter. Assuming a dichotomously branching tree, each airway tube is modeled
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SUMMARY

by a combination of Maxwell and Kelvin-Voigt elements calculated from
morphological values. This will allow comparison to models reported in lit-
erature and provide the link between the appearance of the FO behaviour and
both intrinsic fractal geometry, as well as the rheological properties of the
lung parenchyma.
Next, chapter 6 presents an analysis of the modelling performance on several
candidate fractional-order models. The models are presented on an evolu-
tionary basis from the most simple to the most complex representation. The
model with the least number of parameters which delivers the smallest mod-
elling errors will be selected as the best candidate to model the impedance
in the 4-48 Hz frequency interval. Further on, we investigate the ability of
the selected FO model in classifying between healthy and pathologic patient
data. The investigated groups are: healthy vs Chronic Obstructive Pulmonary
Disease; healthy vs kyphoscoliosis; healthy vs asthma in children; healthy vs
cystic fibrosis in children.
The main contributions of this work are pointed out in chapter 7, along with
some further research directions.
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Samenvatting

Fractionele calculus kan beschouwd worden als een veralgemening van
afgeleiden en integralen, waarbij de orde nu ook niet-geheel kan zijn.
Fractionele-orde (FO) systemen zijn dynamische systemen die gemodelleerd
worden met behulp van differentiaalvergelijkingen waarin afgeleiden van
niet-gehele orde voorkomen. Een gebruikelijke representatie van deze mo-
dellen is in het frequentie-domein. Voor een gehele-orde systeem, varieërt de
magnitude in de Bode karakteristiek met een geheel veelvoud van 20 dB/dec
(±20 dB/dec, ±40 dB/dec, enz.), en de fase met een geheel veelvoud van
90o (±90o, ±180o, enz.). Voor een FO systeem met een fractionele orde n,
varieërt de magnitude met n · 20dB/dec, met 0 ≤ n ≤ 1: evenzo zal de fase
variëren met n · 90o.
De dynamische systemen die op een natuurlijke wijze met behulp van FO mo-
dellen kunnen gemodelleerd worden, vertonen specifieke kenmerken, zoals
visco-elasticiteit, diffusie en een fractale structuur; het ademhalingssysteem
is hiervan een ideaal voorbeeld. Hoewel de visco-elastische en diffuse eigen-
schappen van het ademhalingssysteem reeds intensief werden onderzocht,
werd de fractale structuur tot nog toe genegeerd. Eén van de redenen is
wellicht dat de luchtwegen geen perfecte symmetrie vormen, dus niet echt
voldoen aan de voorwaarden om een typisch fractale structuur te zijn. Toch
kan men een hoge mate van recurrentie herkennen in de luchtwegengeome-
trie.
Het ademhalingsstelsel bezit de drie hierboven genoemde eigenschappen
en er is geen enkele reden waarom men één van hen zou moeten negeren.
Bovendien wordt in het geval van aandoeningen de visco-elasticiteit beı̈nvloed
door veranderingen op cellulair niveau; veranderingen die ook de oorzaak
zijn van lokale vernauwingen en afsluitingen van de luchtwegen, die op hun
beurt dan een invloed hebben op zowel de structuur van het luchtwegenstelsel
als op het diffusiegebied. Als een specifiek model (een elektrisch analogon
bv.) van de luchtwegen zou bestaan, dan zou dit kunnen gebruikt worden
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SAMENVATTING

voor simulatiedoeleinden, zowel bij gezonde als pathologische gevallen. Ten
eerste, zou een dergelijk analogon nuttig zijn om het optreden van het FO
verschijnsel te helpen verklaren, en ten tweede zou het ook informatie ver-
strekken over de wijze waarop de FO modelparameters worden beı̈nvloed
door veranderingen in de morfologie.
In de jaren 70 heeft men de ademhalingsimpedantie - gedefinieerd als de ver-
houding tussen drukoscillaties en luchtstroomsnelheid - gemodelleerd met
een RLC-structuur (een weerstand Rr, een inductie Lr en een condensator
Cr) waarbij de condensator een fractionele orde n bevatte: 1/Crsn. Het
model bleek succesvol bij lage frequenties en wordt momenteel nog altijd ge-
bruikt door onderzoekers om de luchtwegimpedantie te karakteriseren. Ook
is gebleken dat de fractionele-orde modellen beter presteren dan gehele-orde
modellen bij metingen van de ingangsimpedantie. Er was echter een gebrek
aan theoretisch inzicht om het fractionele-orde verschijnsel in de structuur
van het model te verklaren.
Verschillende pogingen werden gedaan om een elektrisch equivalent van de
luchtweg-boomstructuur te verkrijgen, maar de modellen die tot nu toe ge-
rapporteerd werden zijn gebaseerd op een ruwe benadering van de boom in
plaats van een meer preciese formulering en ze behouden niet de intrinsieke
geometrie. Artsen prefereren een eenvoudig maar toch voldoende accuraat
model, waarvan de parameterwaarden kunnen dienstig zijn om te detecteren
of de longfunctiemetingen normaal zijn. Het is daarom interessant om de
longfunctie te karakteriseren in termen van mechanische eigenschappen -
welke direct kunnen worden gerelateerd aan veranderingen in de luchtweg-
geometrie - en deze eigenschappen dan te relateren aan de FO modelparam-
eters.
Dit proefschrift beschrijft een fysiologisch consistente aanpak om volgende
twee doelstellingen te bereiken:

• het verstrekken van een theoretische verklaring - gebaseerd op fysio-
logisch inzicht - betreffende de noodzaak aan FO modellen voor de
ademhalingsimpedantie

• het bepalen van de beste FO modelstructuur die toelaat om zo goed
mogelijk gezonde en pathologische gevallen te classificeren.

Eerder dan een specifieke case te bestuderen, werd gekozen voor een meer al-
gemene modelgebaseerde aanpak, die niet alleen kan worden gebruikt in de
ademhalingssysteem, maar ook in andere vergelijkbare systemen (bijvoor-
beeld bloedsomloop, lever, darmen, tot zelfs watertransport in de nerven van
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bladeren). Verder beschouwen we ook het geval indien symmetrie niet aan-
wezig is (bijvoorbeeld vervormingen in de thorax - kyphoscoliose), even-
als verschillende pathologieën. We brengen een proof-of-concept aan voor
het optreden van het FO-fenomeen op basis van de intrinsieke structuur van
de luchtwegenboom. Verschillende klinische studies worden vervolgens uit-
gevoerd voor de validatie van de gevoeligheid en specificiteit van het FO
model in gezonde groepen en in verschillende pathologische groepen.
Dit proefschrift is als volgt opgebouwd: hoofdstuk 1 beschrijft wat fractionele-
orde modellen zijn en waarom ze zo populair werden in de karakterisering
van de eigenschappen van het biologische weefsel, dwz longparenchym. De
state-of-the-art op het gebied van modellering en identificatie van de lucht-
wegen wordt gegeven, gevolgd door een opsomming van de doelstellingen
en de bijdragen van dit proefschrift. Enkele basisprincipes van long fysiolo-
gie en pathologie worden ingevoerd om de steun voor latere ontwikkelingen
in het proefschrift bieden. Na de introductie van een aantal concepten en
resultaten omtrent het optreden van fractionele ordes in de modellen voor
ademhalingswegen, worden de wiskundige structuur en de fundamentele
eigenschappen van dergelijke FO systemen gepresenteerd.
Het tweede hoofdstuk begint met de principes van het meten van de adem-
halingsimpedantie door middel van de geforceerde oscillometrie. Het hoofd-
stuk vervolgt met een overzicht van de meest representatieve parametrische
modellen uit de literatuur. Daarnaast worden door ons twee alternatieve mo-
dellen gesuggereerd. Een vergelijking tussen al deze modellen voor wat
betreft de modelperformantie wordt dan uitgevoerd op basis van typische
patiëntgegevens die zijn verkregen met de geforceerde oscillometrie. Deze
gegevens bestaan uit drie uitgemiddelde sets van representatieve groepen:
gezond, astma en COPD (chronic obstructive pulmonary disease). Er wordt
aangetoond dat het FO-model met 4 parameters uit de literatuur niet in staat is
het reële deel van de opgemeten impedantie - dat toeneemt met de frequen-
tie - te modelleren. Alle geı̈dentificeerde modelparameterwaarden worden
geı̈nterpreteerd vanuit fysiologisch inzicht.
De afleiding van de mechanische parameters van de luchtwegen op basis
van morfologisch inzicht is de kern van hoofdstuk 3. De aanpak bestaat
uit: 1) rekening te houden met morfologische en anatomische waarden (zoals
luchtweg-wanddikte, binnenstraal, buislengte, weefselstructuur) en dit voor
elk luchtweg-niveau; en 2) deze te combineren in een stel vergelijkingen voor
de modellering van de drukval, luchtdebiet, wandelasticiteit en luchtsnelheid
(axiale en radiale). Zowel elastische als visco-elastische luchtwegen worden
onderzocht, en dit in het kader van een symmetrische ruimte-opvulling. Ef-
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fecten van longziekte die de straal en elasticiteitsmodulus van de bronchiale
boom beı̈nvloeden, worden besproken. De afgeleide mechanische parame-
ters (weerstand, inertie, capaciteit en geleiding) worden gebruikt om inzicht
te verkrijgen in de recurrente structuur van de luchtwegenboom.
Hoofdstuk 4 beschrijft de opbouw van een equivalent elektrisch ladder-
netwerk met behulp van de basiselementen die bepaald werden in hoofdstuk
3. De 2 gevallen van een elastische en een visco-elastische buiswand worden
besproken, met ondersteuning van analytische en gesimuleerde resultaten.
Een veralgemening van de analytische resultaten wordt gegeven, wat wijst
op de toepasbaarheid ervan in andere vertakkingsystemen (bijvoorbeeld de
bloedsomloop, zenuwstelsel, lymfesysteem, enz.). De resultaten worden suc-
cesvol gevalideerd op basis van gemeten data. Het hoofdstuk eindigt met een
speciale analyse van de a-symmetrische vertakking en de gevolgen daarvan
op de totale waarde van de ingangsimpedantie.
In het 5e hoofdstuk wordt een equivalente mechanische representatie afgeleid
voor de elastische en de visco-elastische elektrische modellen die werden
ontwikkeld in het vorige hoofdstuk. Uitgaande van een dichotomisch-
vertakkende boom, wordt elke luchtwegbuis gemodelleerd door een com-
binatie van Maxwell en Kelvin-Voigt elementen, berekend op basis van mor-
fologische waarden. Dit laat toe een vergelijking te maken tussen ons model
en andere modellen uit de literatuur. Het laat ook toe een verband te leggen
tussen enerzijds het FO-verschijnsel en anderzijds zowel de intrinsieke frac-
tale structuur van de longgeometrie als de rheologische eigenschappen van
het longparenchym.
Hoofdstuk 6 start met een analyse van de prestaties van verschillende kan-
didaat FO modellen. De modellen worden voorgesteld van de meest een-
voudige tot de meest complexe structuur. Het model met het minste aan-
tal parameters dat de kleinste modelfout oplevert wordt dan geselecteerd
als het beste kandidaatmodel voor de ademhalingsimpedantie in het 4-48
Hz frequentie-interval. Verder onderzoeken we de mogelijkheden van het
geselecteerde model voor wat betreft de indeling tussen gezonde mensen en
patiënten. Dit gebeurt op basis van gegevens afkomstig van clinische me-
tingen, waarbij de onderzochte groepen zijn: gezond versus COPD (Chronic
Obstructive Pulmonary Disease); gezond vs astma bij kinderen; gezond vs
cystic fibrosis bij kinderen; gezond vs kyphoscoliosis.
De belangrijkste bijdragen van dit proefschrift worden vermeld in een con-
cluderend hoofdstuk 7, samen met enkele suggesties en ideëen voor vervolg-
onderzoek.
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Chapter 1

Introduction

This chapter describes what fractional-order models are and why they be-
came so popular in characterizing the properties of the biological tissue, i.e.
the lung parenchyma. A state of the art in the field of modelling and identifi-
cation of the respiratory system is given and the objectives and contributions
of this work are stated. Some basic principles are given over the anatomy
and physiology of the respiratory system along with its related pathologies.
After introducing some concepts and results for the appearance of fractional-
order in respiratory system models, the mathematical structure and the basic
properties of such systems are presented. The chapter ends with an overview
of this thesis.
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

The concept of fractional order (FO) – or non-integer order – systems refers
to those dynamical systems whose model parameters contain arbitrary order
derivatives and/or integrals. The fractional order derivatives and integrals
are tools of the Fractional Calculus theory (Oldham & Spanier 1974). The
dynamical systems whose model can be approximated in a natural way using
FO terms, exhibit specific features:

• viscoelasticity;

• diffusion;

• fractal structure.

Viscoelasticity has been shown to be the origin of the appearance of FO mod-
els in polymers (from the Greek: poly – many and meros – parts) (Adolfsson
et al. 2005) and resembling biological tissues (Doehring et al. 2005, Suki
et al. 1994, Ionescu & Chirita 2008).
Diffusion phenomena have been intensively studied in the field of chemistry
and dielectrics (Jesus & Tenreiro Machado 2008, Reyes-Melo et al. 2004),
hydrology (Benson et al. 2004) and in biology (Jesus et al. 2008, Hou et al.
2005, Losa et al. 2005).
Finally, the most remarkable property, the fractal structure, has been shown
to lead to a FO model in some geometrical structures (Ramus-Serment et al.
2002, Elzbieta et al. 2005) and electrical networks (Tenreiro Machado & Je-
sus 2004, Ionescu & Tenreiro Machado in print).
Although viscoelastic and diffusive properties were intensively investigated
in the respiratory system, the fractal structure was ignored. Probably one
of the reasons is that the respiratory system does not pose a perfect symme-
try, hence failing to satisfy one of the conditions for being a typical fractal
structure. Nonetheless, some degree of recurrence has been recognized in
the airway generation models (Mandelbrot 1983, Weibel 1963, Sauret et al.
1999).
The literature reports the existence of a FO model based on viscoelastic as-
sumptions (Hantos et al. 1992b, a). The model provides an expression for
the input impedance (measured at the mouth of the patient) by considering a
series arrangement of a resistance, inertance and capacitance:

Zr(s) =
P (s)
Q(s)

= Rr + Lrs+
1

Crsβr
(1.1)
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1.1. Problem Statement

with P – pressure in kPa; Q – flow in l/s; Zr – the respiratory impedance; Rr
– airway resistance kPa/(l/s); Lr – inductance kPa/(l/s2); Cr – capacitance in
l/kPa; 0 ≤ βr ≤ 1 the fractional order and s the Laplace operator (see details
on units in Appendix A). In this representation, the last term is also referred
to as tissue viscance. This model, although broadly used by researchers and
providing valid parameter values in several groups of patients, is unable to
characterize real part of the impedance values which increase with frequency
(Ionescu 2003). As a result of this limitation, researchers have performed
and reported studies in which the parameter values are meaningless from a
physiological standpoint, i.e. negative (Hantos et al. 1982, Peslin et al. 1992,
Suki et al. 1992).
The respiratory system poses all three properties enumerated above and there
is no reason why one should ignore either one of them. Moreover, with
pathology, viscoelasticity is affected by changes at the cellular level, nar-
rowing or occluding the airway, which in turn affects both the structure of
the airway distribution, as well as the diffusion area. If a specific model (e.g.
an electrical analogue) of the respiratory tree would exist, it would allow sim-
ulation studies in both healthy and pathology scenarios. Firstly, such a model
would provide the means to investigate the appearance of the FO model and
secondly, would provide information upon how the FO model parameters are
affected by changes in morphology.
Several attempts have been made to obtain an electrical equivalent of the res-
piratory tree (Farre et al. 1989, Diong et al. 2007, Ionescu 2003). However,
the models reported hitherto are an approximation of the tree rather than a
precise formulation, and do not preserve the intrinsic geometry. Thanks to
advances in technology, information on airway radius, length and thickness
is available (Sauret et al. 1999). This doctoral thesis provides a simulator for
the dichotomous airway structure and verifies the appearance of a FO model.
The clinicians prefer a simple, lumped, yet sufficiently accurate model from
whose parameter values they are able to detect whether or not a lung func-
tion is normal. It is therefore interesting to characterize the lung function in
terms of its mechanical properties, which can be directly related to changes
in airway duct geometry and relate them to the non-integer order model pa-
rameters. Consequently, an analysis of the respiratory tree in terms of its
electrical and mechanical equivalent is another issue treated in this thesis.
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CHAPTER 1. INTRODUCTION

1.2 State of the Art

The compliance is expressed as the volume increase in the lungs for each unit
increase in alveolar pressure or for each unit decrease of pleural pressure.
The most common representation of the compliance is given by the pressure-
volume (PV) loops. Changes in elastic recoil (more, or less, stiffness) will
affect these pressure-volume relationships. The initial steps undertaken by
Salazar & Knowles to characterize the pressure-volume relationship in the
lungs by means of exponential functions suggested a new interpretation of
mechanical properties in lungs (Salazar & Knowles 1964). In their endeavor
to obtain a relation for compliance which would be independent on the size
of the lungs, they concluded that the pressure volume curve is a good tool
in characterizing viscoelasticity. Shortly after, Hildebrandt used similar con-
cepts to assess the viscoelastic properties of a rubber balloon (Hildebrandt
1969) as a model of the lungs. He obtained similar static pressure-volume
curves by stepwise inflation in steps of 10ml (volume) increments in a one
minute time interval. He then points out that the curves can be represented
by means of a power law function (see figure 1.1).

Figure 1.1: Schematic representation of the quasi-linear dependence of the
pressure-volume ratio with the logarithm of time.

Instead of deriving the compliance from the PV curve, Hildebrandt suggests
to apply sinusoidal inputs instead of steps and he obtains the frequency re-
sponse of the rubber balloon. He considers the variation of pressure over total
volume displacement also an exponentially-decaying function:

P (t)
VT

= A t−n +B,
P (t)
VT

= C −D log t (1.2)

with A, B, C, D arbitrary constants, VT the total volume, t the time and n
the power-law constant. The transfer function obtained by applying Laplace
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to this stress relaxation curve is given by:

P (s)
VT

= A
Γ(1− n)
s1−n +

B

s
(1.3)

with Γ the Gamma function. If the input is a step v(t) = VTu(t), then
V (s) = VT /s and the output is given by P (s) = T (s)VT /s with T (s) the
unknown transfer function. Introducing this into (1.3) he obtains that

T (s) =
P (s)
V (s)

= AsnΓ(1− n) +B (1.4)

By taking into account the mass of air introduced into the balloon, an extra
term appears in the transfer function equation:

T (s) =
P (s)
V (s)

= AsnΓ(1− n) +B + Lrs
2 (1.5)

with Lr the inductance. The equivalent form in frequency domain is given
by:

T (jω) = AΓ(1− n)ωn cos(nπ2 )− Lrω2 +B+

+j[AΓ(1− n)ωn sin(nπ2 )]
(1.6)

This function describes the behavior of the balloon in a plethysmograph,
while undergoing sinusoidal forced oscillations (see Appendix B). One year
later, in 1970, he published the results obtained by identifying such a model
on excised cat lungs (Hildebrandt 1970). He then suggests to do the PV
approximation with a transfer function which has an imaginary part indepen-
dent on frequency. This special property gives a phase angle which decreases
slightly with frequency (quasi-constant). Playing with these models on the
data for the PV curves, he discusses the viscoelastic properties of the rubber
balloon versus the excised cat lungs. In doing so, he combines several ideal-
ized mechanical elements to express viscoelasticity in a mechanical context.
Some fragile steps are then directed towards concepts of stress relaxation and
dynamic hysteresis of the lungs.
Two decades later, Hantos and co-workers in 1992b revise the work of Hilde-
brandt and introduce the impedance as the ratio of pressure and flow, in a
model structure containing a resistance Rr, inertance Lr and compliance Cr
element, as in (1.1) (Hantos et al. 1992b). This model proved to have a noto-
rious success at low frequencies and has been used ever since by researchers
to characterize the respiratory impedance.
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In the same context of characterizing viscoelasticity, Suki et al. provided an
overview of the work done by Salazar & Knowles, Hildebrandt and Hantos
et al., establishing possible scenarios for the origin of viscoelastic behavior
in the lung parenchyma (Suki et al. 1994). The authors acknowledge the
validity of the models from (1.2) and the FO impedance from (Hantos et al.
1992b):

Zr(s) =
1

Crsβr
(1.7)

in which the real part denotes elastance and the imaginary part the vis-
cance of the tissue. This model was then referred to as the constant-phase
model because the phase is independent of frequency, implying a frequency-
independent mechanical efficiency. In their paper, Suki et al. recognize
five classes of systems admitting power-law relaxation or constant-phase
impedance (Suki et al. 1994):

• Class 1: systems with nonlinear constitutive equations; a nonlinear dif-
ferential equation may have a At−n solution to a step input. Indeed,
lung tissue behaves nonlinearly, but this is not the primary mechanism
for having constant-phase behaviour, since the forced oscillations are
applied with small amplitude to the mouth of the patient to ensure lin-
earity.

• Class 2: systems in which the coefficients of the constitutive differen-
tial equations are time-varying; the linear dependence of the pressure-
volume curves in logarithmic time scale does not support this assump-
tion.

• Class 3: systems in which there is a continuous distribution of time
constants that are solutions to integral equations. By aid of Kelvin
bodies and an appropriate distribution function of their time constants,
a linear model has been able to capture the hysteresis loop of the lungs,
capturing the relaxation function decreasing linearly with the logarithm
of time (Fung 1981). This is a class of systems which may be success-
ful in acknowledging the origin of the constant-phase behaviour, but
there is no micro–structural basis.

• Class 4: complex dynamic systems exhibiting self-similar properties
(fractals). This class is based on the fact that the scale-invariant be-
haviour is ubiquitous in nature and the stress relaxation is the result
of the rich dynamic interactions of tissue strips independent of their
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individual properties (Losa et al. 2005, Bates 2007). Although inter-
esting, this theory does not give a straightforward explanation for the
appearance of constant-phase behaviour.

• Class 5: systems with input-output relationships including fractional
order equations; borrowed from fractional calculus theory, several
tools were used to describe viscoelasticity by means of fractional or-
der differential equations (Suki et al. 1994, Bates 2007, Craiem &
Armentano 2007).

Referring to the specific application of respiratory mechanics, Classes 3–
5 are most likely to characterize the properties of lung parenchyma. The
work presented in this thesis deals primarily with concepts from Class 4, but
addresses also several items from Class 5.
Following the direction pointed hitherto, several studies have been performed
to provide insight on fiber viscoelasticity at macro– and microscopic levels,
using tissue strips from animals (Yuan et al. 2000). For instance, Maksym
& Bates attempt to provide a model based on Hookean springs (elastin) in
parallel with a nonlinear string element (collagen) to fit measurements of
stress-strain in tissue strips in dogs (Maksym & Bates 1997). Their theory
is based on the seminal work of Salazar & Knowles and Hildebrandt and the
results suggest that the dominant parameter in (1.2) is n. This parameter has
been found increased in emphysema and decreased in fibrosing alveolitis.
They interpret the changes in this variable as related to alterations in collagen
and elastin networks.
About a decade later, Bates provides another mechanistic interpretation of
the quasi-linear viscoelasticity of the lung, suggesting a model consisting
of series spring-dashpot elements (Maxwell bodies) (Bates 2007). He also
suggests the genesis of power-law behaviour arising from:

• the intrinsic complexity of dynamic systems in nature, ubiquitously
present;

• the property of being self-organized critically, posing an avalanche be-
haviour (e.g. sandpile);

• the rich-get-richer mechanism (e.g. internet hubs).

whereas the common thread which sews all them together is sequentiality. By
allowing two FO powers in the model of Maxwell bodies arranged in parallel
(a spring in parallel with a dashpot), he discusses viscoelasticity in simulation
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studies. Similar attempts have been done by Craiem & Armentano in models
of the arterial wall (Craiem & Armentano 2007).
Hitherto, the research community focused on the aspect of viscoelasticity in
soft biological tissues. The other property of the lungs which can be related
to fractional-order equations is diffusion and some papers discuss this aspect
(Losa et al. 2005).
Surprisingly, the plain fractal-like geometry of the airways has been com-
pletely ignored throughout the decades. Since Weibel and Mandelbrot there
is no study reporting the influence of geometrical changes in airways with
disease (Weibel 1963, Mandelbrot 1983). Perhaps one of the reasons for this
lack of interest from the research community is that the lungs are not per-
fectly symmetric and even more, the quasi-symmetry disappears completely
with disease. This doctoral thesis will also address this issue and will estab-
lish a direct relation between recurrent geometry (symmetric and asymmetric
tree) and the appearance of the fractional order impedance function.

1.3 Objectives and contributions of this work

The seminal work of Mandelbrot and Weibel in the early 70s on the concept
of self-similarity, iterative geometry and recursiveness tackled by fractal ge-
ometry have prompted innovative ways to promote real progress in biomed-
ical sciences. While most biologic processes could be described by models
based on power law behavior and quantified by a single characteristic param-
eter (the fractal dimension), the necessity arises to introduce multi–fractal
models. The evaluation of airway tree geometry and morphology for deriv-
ing total impedance and validate the appearance of a FO term in the model
is a primary task of this work. The concise objectives can be formulated as
follows:

1. to employ the available knowledge from literature on airway geometry
and morphology in order to derive a mathematical model of the res-
piratory impedance, using the fractal structure, in order to prove the
necessity of a FO model;

2. to validate the reliability of the FO model in clinical studies.

Endeavoring the above enumerated objectives requires several specifications:
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• the geometry and the morphology must be employed to derive an ex-
plicit formulation of the air pressure and air flow through the airways,
e.g. by means of Navier-Stokes equations;

• the electrical equivalent of the Navier-Stokes model for respiratory
ducts in terms of the equivalent electrical impedance must preserve
the structure and morphology of the respiratory tree;

• the electrical equivalent must be analyzed in terms of its total input
impedance, providing both theoretical and practical proof of fractional-
order appearance;

• an equivalent mechanical model, preserving morphology and geome-
try, must be developed in order to analyze viscoelastic properties of
lung parenchyma;

• the reduced model of fractional order(s), from the electrical and me-
chanical models, should preserve physiological interpretation and
should be validated against measured data from healthy subjects;

• finally, the model parameter sensitivity should be tested on various
groups of patients and the identified model coefficients should be dis-
cussed in relation to the respective pathologies.

This thesis describes a physiologically consistent approach to each of the
afore-mentioned objectives. Rather than dealing with a specific case study,
the modelling approach presents a general method which can be used not
only in the respiratory system application, but also in other similar systems
(e.g. leaves, circulatory system, liver, intestines). Furthermore, we consider
also the case when symmetry is not present (e.g. deformations in the thorax -
kyphoscoliose) as well as various pathologies. We provide a proof-of-concept
for the appearance of the FO model from the intrinsic structure of the respira-
tory tree. Several clinical studies are then conducted to validate the sensitivity
and specificity of the FO model in healthy groups and in various pathological
groups.
The original contributions of this thesis are situated within the following:

• the theoretical study showing the appearance of the fractional order
originated from the intrinsic geometry of the human respiratory tree;

• the simulations which validated the above theoretical considerations in
both simplified and integral form of the respiratory tree;

9



CHAPTER 1. INTRODUCTION

• the physical interpretation which has been given to the fractional orders
appearing in the lumped model of the total respiratory impedance; (this
has been done for a generalized fractional-order model, as well as for
several specific candidate models);

• the mathematical analysis on several fractional-order model candi-
dates, suggesting one optimal structure which is valid in the frequency
range of clinical interest;

• the FO model which has been evaluated on real clinical data (healthy,
asthma and COPD), providing good separation between the groups and
a valid assessment of the mechanical properties in lungs.

1.4 The Respiratory System

1.4.1 Anatomy and Physiology

Respiration is the act of breathing, namely inhaling (inspiration) oxygen from
the atmosphere into the lungs and exhaling (expiration) into the atmosphere
carbon dioxide (Guyton 1986). The respiratory system is made up of the or-
gans involved in breathing, and consists of the nose, pharynx, larynx, trachea,
bronchi and lungs, as depicted in figure 1.2 below.

Figure 1.2: Schematic representation of the respiratory system and its main
components.

The respiratory system can be divided into two major parts: the upper airways
part and the lower airways part. The upper respiratory tract includes the nose,
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with its nasal cavity, frontal sinuses, maxillary sinus, larynx and trachea. The
lower respiratory tract includes the lungs, bronchi and the alveoli.
The lungs take in oxygen, which is required by all the cells throughout the
body to live and carry out their normal functions. The lungs also get rid of
carbon dioxide, a waste product of the body’s cells. The lungs are a pair of
cone-shaped organs made up of spongy, pinkish-gray tissue. They take up
most of the space in the chest, or the thorax (the part of the body between the
base of the neck and diaphragm).
The lungs are separated from each other by the mediastinum, an area that
contains the following:

• heart and its large vessels;

• trachea;

• esophagus;

• thymus;

• lymph nodes.

The right lung has three sections, called lobes. The left lung has two lobes.
When one breaths, the air enters the body through the nose or the mouth,
travels down the throat through the larynx (voice box) and trachea (windpipe)
and goes into the lungs through the tubes called main-stem bronchi. One
main-stem bronchus leads to the right lung and the other one leads to the left
lung. In the lungs, the main-stem bronchi divide into smaller bronchi and
then into even smaller tubes called bronchioles, which finally end in tiny air
sacs called alveoli. At this level, the act of diffusion takes place. Diffusion
allows the oxygen from the alveoli to pass through the alveolar walls into
the blood and the carbon dioxide to pass through the capillary walls into the
alveoli. Hence, it is the act of gas exchange, as depicted in figure 1.3.
In order to move air in- and out- of the lungs, the volume of the thoracic
cavity is increased (or decreases). The lungs do not contract but increase
or decrease in volume. Muscles like intercostals or diaphragm contract dur-
ing inspiration. Normally, the expiration is passive, the inpiration is active
(= contraction of muscles). By increasing the thoracic cavity, the pressure
around the lungs decreases, the lungs expand, and air is sucked in.
Normal quiet breathing (such as during the forced oscillation technique lung
function test) is accomplished by contraction of the diaphragm, the paraster-
nal muscles and the scaleni. During inspiration, the diaphragm pulls the
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Figure 1.3: Schematic representation of the respiratory system and its com-
ponents.

lower surfaces of the lung downwards. Expiration results from simple re-
laxation of these muscles. Changes in the elastic recoil of the lungs (more,
or less, stiffness) will affect their normal function, in particular total lung
volume and pressure-volume relationships.
Some measurements are performed during forced inspirations and forced ex-
pirations, i.e. the spirometry lung function test. A person’s vital capacity
can be measured by a spirometer. In combination with other physiological
measurements, the vital capacity (VC) can help make a diagnosis of underly-
ing lung disease. Vital capacity is the maximum amount of air a person can
expel from the lungs after a maximum inspiration. It is equal to the inspira-
tory reserve volume plus the tidal volume plus the expiratory reserve volume.
Force vital capacity (FVC) is the maximum volume of air that a person can
exhale after maximum inhalation. It can also be the maximum volume of air
that a person can inhale after maximum exhalation. Another important mea-
sure during spirometry is the forced expired volume in one second (FEV1).
The FEV1/FVC ratio is used in the diagnosis of obstructive and restrictive
lung disease, and normal values are approximately 80%. In obstructive lung
disease, the FEV1 is reduced due to obstruction to air escape. Thus, the
FEV1/FVC ratio will be reduced. In restrictive lung disease, the FEV1 and
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FVC are equally reduced due to fibrosis or other lung pathology (not obstruc-
tive pathology). Thus, the FEV1/FVC ratio should be approximately normal.
The compliance is expressed as the volume increase in the lungs for each unit
of trans-pulmonary pressure (which is the difference between the alveolar
and pleural pressures). For instance, the compliance of the normal lungs and
thorax combined is 0.13 liter per centimeter of water pressure (l/cmH2O).
This means that every time the alveolar pressure is increased by 1 cmH2O,
the lungs expand 130 ml. The most common representation of the compliance
is given by the pressure-volume (PV) loops, as depicted in figure 1.4. The
area between the inspiratory and expiratory PV curve is called the work of
breathing; this will again vary with pathology.

Figure 1.4: Schematic representation of the work of breathing.

Factors that cause abnormal compliance can be in fact anything which de-
stroys the lung tissue, causing it to become fibrotic or edematous, blocks
the bronchioli or in any other way impedes lung expansion and contrac-
tion. When considering the compliance of the lungs and thorax together,
one should keep in mind any abnormality of the thoracic cage (e.g. kyphosis,
scoliosis). In the next section we shall discuss some of the most important
respiratory diseases and their effects on the normal functioning of the respi-
ratory system.
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1.4.2 Specific Pulmonary Abnormalities

Chronic Pulmonary Emphysema literally means excess air in the lungs
(Guyton 1986, Hogg et al. 2004, Barnes 2000). It results from three major
pathophysiological events in the lung:

• chronic infection, caused by inhaling smoke or other substances that
irritate the bronchi and bronchioles;

• the infection, the excess of mucus, and inflammatory edema of the
bronchiolar epithelium together cause chronic obstruction of smaller
airways;

• the obstruction of the airways makes it especially difficult to expire,
causing entrapment of air in the lungs (barrel chest effect) and over-
stretching the alveoli.

The physiological effects of chronic emphysema are extremely varied, de-
pending on the severity of the disease and on the relative degree of bronchi-
olar obstruction versus parenchymal destruction at the alveolar level. Some
tissue samples can be observed in figure 1.5.

Figure 1.5: Alveolar tissue in normal lungs (left) and disrupted
alveolar walls in emphysematous lungs (right); pictures available at
http://www.kuma.us/index.cfm/page/daily/emphysema.htm.

The bronchiolar obstruction causes increased airway resistance and results in
greatly increased work of breathing. It is especially difficult for the person to
move air through the bronchioles during expiration, because the compressive
force on the alveoli acts also on the bronchi, further increasing their resistance
during expiration. Another physiological effect is that of a decreased diffu-
sive capacity, from the marked loss of lung parenchyma (see figure 1.5 on the
right). This will reduce the ability of the lungs to oxygenate the blood and
to remove the carbon dioxide. Another effect is that of abnormal ventilation-
perfusion ratio, i.e. portions of the lungs will be well ventilated, while others
will be poorly ventilated, depending on the degree of the obstructive process.

14



1.4. The Respiratory System

Chronic emphysema progresses slowly over many years, leading to necessity
of ventilatory assist devices and finally to death.
Asthma is characterized by spastic contraction of the bronchioles, which
causes extremely difficult breathing (Guyton 1986, Busse & Lemanske
2001). The usual cause is bronchial hyperresponsiviness towards a vari-
ety of specific and a-specific stimuli. In fact, in younger patients, under the
age of 30, the asthma is in about 70% caused by allergic hypersensitivity (i.e.
plant polen, dust mite, cats, dogs). In elder persons, the hypersensitivity is to
non-allergic types of irritants in air, such as smog.
Figure 1.6 depicts schematically the difference between normal and asth-
matic airways.

Figure 1.6: Schematic representation of the normal and asthmatic airways.

As a result of the irritants, the allergic person has a tendency to produce a
high amount of antibodies, which attach to specific cells in the bronchioles
and small bronchi. As a result of the antibodies reaction with the irritant,
some substances are released (e.g. histamine). The combined effect of all
these factors will produce:

• localized edema in the walls of the small bronchioles as well as secre-
tion of thick mucus into bronchiolar airways, and

• spasm of the bronchiolar smooth muscle.

There may be a wheezing or whistling sound, which is typical of asthma.
Wheezing occurs because muscles that surround the airways tighten, and the
inner lining of the airways swells and pushes inward. It also occurs because
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membranes that line the airways secrete extra mucus and furthermore the
mucus can form plugs that may block the air passages. As a result, the rush
of air through the narrowed airways produces the wheezing sounds. Usually,
the asthmatic person can inspire quite easily, but has difficulty to expire air
from the lungs. Also here the long-term effect of barrel chest will occur,
similarly to chronic obstructive emphysema.
Although anyone may have an asthma attack, it most commonly occurs in
children, by the age of 5, adults in their 30s, adults older than 65 and peo-
ple living in urban communities (smog or allergic reactions). Other factors
include: family history of asthma and personal medical history of allergies.
Cystic Fibrosis is an inherited disease characterized by an abnormality in
the glands that produce sweat and mucus (Rogers & Doull 2005, Elizur et al.
2008). It is chronic, progressive, and may be fatal. Cystic fibrosis affects
various systems in children and young adults, including the following: respi-
ratory system, digestive system and the reproductive system.
Approximately 1 in 20 people in the US and Europe are carriers of the cystic
fibrosis gene. These people are not affected by the disease and usually do not
know that they are carriers.
Figure 1.7 depicts schematically the difference between normal and cystic
fibrosis airways.

Figure 1.7: Schematic representation of the normal and cystic fibrosis air-
ways.

Abnormalities in the glands that produce sweat and mucus can cause:
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• loss of salt, which in turn can cause an upset in the balance of minerals
in the blood, abnormal heart rhythms and possibly, shock;

• thick mucus that accumulates in lungs and intestines, which in turn
can cause malnutrition, poor growth, frequent respiratory infections,
breathing difficulties and in general, lung disease;

• other medical problems.

Under the item of medical problems one can enumerate: sinusitis, nasal
polyps, clubbing of fingers and toes, pneumothorax - rupture of lung tissue,
hemoptysis - coughing blood, enlargement of right side of heart, abdominal
pain, gas in the intestines, liver disease, diabetes, pancreatitis and gallstones.
In addition to a complete medical history and physical examination, diagnos-
tic procedures for cystic fibrosis include a sweat test to measure the amount
of sodium chloride (salt) present. Higher than normal amounts of sodium and
chloride will suggest cystic fibrosis.
Kyphoscoliosis is a deformation of the spine, as a combination effect of sco-
liosis and kyphosis (McCool & Rochester 2008). An example of an X-ray is
given in figure 1.8, courtesy of Prof. Derom from Ghent University Hospital.
The patient was hospitalized for severe breathing insufficiency.

Figure 1.8: X-ray of a patient presenting kyphoscoliosis.

Scoliosis, is a medical condition in which a person’s spine is curved from
side to side, shaped like an S or C, and may also be rotated. To adults it can
be very painful. It is an abnormal lateral curvature of the spine. On an X-ray,
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viewed from the rear, the spine of an individual with a typical scoliosis may
look more like an S or a C than a straight line. It is typically classified as
congenital (caused by vertebral anomalies present at birth), idiopathic (sub-
classified as infantile, juvenile, adolescent, or adult according to when onset
occurred) or as neuromuscular, having developed as a secondary symptom
of another condition, such as spina bifida, cerebral palsy, spinal muscular
atrophy or due to physical trauma. Scoliotic curves of 10 degrees or less
affect 3-5 out of every 1000 people.
Kyphosis, also called hunchback, is a common condition of a curvature of
the upper (thoracic) spine. It can be either the result of degenerative diseases
(such as arthritis), developmental problems, osteoporosis with compression
fractures of the vertebrae, and/or trauma. In the sense of a deformity, it is
the pathological curving of the spine, where parts of the spinal column lose
some or all of their normal profile. This causes a bowing of the back, seen
as a slouching back and breathing difficulties. Severe cases can cause great
discomfort and even lead to death.
As a result of these deformities at the spinal level, the thorax cannot perform
its normal function, leading to changes in airway resistance and total lung
compliance.

1.5 Some concepts from Fractional Calculus

The fractional calculus is a generalization of integration and derivation to
non-integer (fractional) order operators. At first, we generalize the differen-
tial and integral operators into one fundamental operator Dn

t (n the order of
the operation) which is known as fractional calculus.
Several definitions of this operator have been proposed (see, e.g. (Podlubny
1999)). All of them generalize the standard differential–integral operator in
two main groups: (a) they become the standard differential–integral operator
of any order when n is an integer; (b) the Laplace transform of the operator
Dn
t is sn (provided zero initial conditions), and hence the frequency charac-

teristic of this operator is (jω)n. The latter is very appealing for the design of
control systems by using specifications in the frequency domain (Oustaloup
et al. 2000, Ionescu & De Keyser 2008a, 2009a, De Keyser et al. 2009).
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1.5. Some concepts from Fractional Calculus

A fundamental Dn
t operator, a generalization of integral and differential op-

erators (differintegration operator), is introduced as follows:

Dn
t =


dn

dtn , n > 0
1, n = 0∫ t

0 (dτ)−n, n < 0

 (1.8)

where n is the fractional order and dτ is a derivative function. Since the
entire thesis will focus on the frequency-domain approach for fractional order
derivatives and integrals, we shall not introduce the complex mathematics for
time domain analysis. The Laplace transform for integral and derivative order
n are, respectively:

L
{
D−n
t f(t)

}
= s−nF (s) (1.9)

L {Dn
t f(t)} = snF (s) (1.10)

where F (s) = L {f(t)} and s is the Laplace complex variable. The Fourier
transform can be obtained by replacing s by jω in the Laplace transform and
the equivalent frequency-domain expressions are:
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Thus, the modulus and the argument of the FO terms are given by:

Modulus(dB) = 20 log
∣∣(jω)∓n

∣∣ = ∓20n log |ω| (1.13)

Phase(rad) = arg
(
(jω)∓n

)
= ∓nπ

2
(1.14)

resulting in:

• a Nyquist contour of a line with a slope ∓nπ2 , anticlockwise rotation
of the modulus in the complex plain around the origin according to
variation of the FO value n;

• Magnitude (dB vs log-frequency): straight line with a slope of ∓20n
passing through 0dB for ω = 1;

• Phase (rad vs log-frequency): horizontal line, thus independent with
frequency, with value ∓nπ2 .

The respective sketches can be seen in figure 1.9.
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CHAPTER 1. INTRODUCTION

Figure 1.9: Sketch representation of the FO integral and derivator operators
in frequency domain, by means of the Bode plots (Magnitude, Phase)

1.6 Fractional order dynamical systems

This section will discuss the most representative results in systems posing
one of the three conditions for FO behaviour. These typical results will be
used throughout the work presented by this thesis.
Let us firstly consider the rheological properties of soft biological tissue,
i.e. viscoelasticity. Typical cases are the arterial wall (Craiem & Armentano
2007) and lung parenchyma (Bates 2007), which clearly pose viscoelastic be-
haviour. In these recent reports, the authors acknowledge that integer-order
models to capture these properties can reach high orders and that fractional
derivative models with fewer parameters have proven to be more efficient in
describing rheological properties. Both of these authors define the complex
modulus of elasticity as being determined by a real part, i.e. the storage mod-
ulus, capturing the elastic properties, and respectively by an imaginary part,
i.e. the dissipation modulus, capturing the viscous properties:

E∗(jω) =
σ(ω)
ε(ω)

= ES(ω) + jED(ω) (1.15)

with σ the stress and ε the strain. This complex modulus E∗(jω) shows
partial frequency dependence within the physiologic range in both soft tissue
examples. A typical example of integer-order lumped rheological model is
the Kelvin-Voigt body, consisting of a perfectly elastic element (spring) in
parallel with a purely viscous element (dashpot):

σ(t) = Eε(t) + η
dε(t)
dt

(1.16)
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1.6. Fractional order dynamical systems

with E the elastic constant of the spring and η the viscous coefficient of
the dashpot. One of the limitations of this model is that it shows creep but
does not show relaxation, the latter being a key feature of viscoelastic tissues
(Adolfsson et al. 2005, Ionescu & Chirita 2008). The classical definition
of fractional order derivative (i.e. the Riemann-Liouville definition) of an
arbitrary function f(t) is given by (Oldham & Spanier 1974, Podlubny 1999):

dnf

dtn
=

1
Γ(1− n)

d

dt

∫ t

0

f(τ)
(t− τ)n

dτ (1.17)

where Γ is the Euler gamma function. Hence, the FO derivative can be seen
in the context of (1.16) as the convolution of ε(t) with a t−n function, antic-
ipating some kind of memory capability and power-law response. It follows
that the spring-pot element can be defined based on (1.17) as:

σ = η
dnε

dtn
, 1 ≥ n ≥ 0 (1.18)

in which the value for n can be adjusted to incorporate either a purely elas-
tic component (n = 0), either a pure viscous one (n = 1). Both Bates
and Craiem & Armentano acknowledge the fact that the soft biological tis-
sue follows both elastic and viscous behaviour under baseline and stimulated
case. Therefore, if one needs to derive a general model for characterizing soft
tissue rheological properties, two instead of one spring-pot elements are nec-
essary. This recent conclusion based on mechanical properties of soft tissues
is very similar to a suggestion presented in my Master Thesis work based on
frequency domain analysis of an electrical equivalent model (Ionescu 2003).
Therefore, it would be of great interest to offer a validation of this suggestive
remark in nominal and pathological case.
Secondly, let us consider the diffusive properties; e.g. heat transfer (Losa
et al. 2005), gas exchange (Hou et al. 2005) and water transfer through porous
materials (Benson et al. 2004, Losa et al. 2005). Diffusion is of fundamen-
tal importance in many disciplines of physics, chemistry, and biology. It is
well known that the fractional order operator d0.5

dt0.5
→ s0.5 appears in several

types of problems (Battaglia et al. 2001). The transmission lines, the heat
flow, or the diffusion of neutrons in a nuclear reactor are examples where the
half-operator is the fundamental element. Diffusion is in fact a part of trans-
port phenomena, being one of the three essential partial differential equations
of mathematical physics. Molecular diffusion is generally superimposed on,
and often masked by, other transport phenomena such as convection, which
tend to be much faster. However, the slowness of diffusion can be the reason
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CHAPTER 1. INTRODUCTION

for its importance: diffusion is often encountered in chemistry, physics and
biology as a step in a sequence of events, and the velocity of the whole chain
of events is that of the slowest step. Transport due to diffusion is slower over
long length scales: the time it takes for diffusion to transport matter is pro-
portional to the square of the distance. In cell biology, diffusion is a main
form of transport for necessary materials such as amino acids within cells.
Metabolism and respiration rely in part upon diffusion in addition to bulk or
active processes. For example, in the alveoli of mammalian lungs, due to dif-
ferences in partial pressures across the alveolar-capillary membrane, oxygen
diffuses into the blood and carbon dioxide diffuses out. Lungs contain a large
surface area to facilitate this gas exchange process. Finally, the spreading of
any quantity that can be described by the diffusion equation or a random
walk model (e.g. concentration, heat, momentum, ideas, price) can be called
diffusion. It is therefore a property ubiquitous in nature.
Thirdly, let us consider the fractal geometry; e.g. self-similarity and recur-
rence. Much work has been done on the fundamental property of percolation
using self-similar fractal lattices such as the Sierpinski gasket and the Koch
tree (see figures 1.10 and 1.11) (Mandelbrot 1983, Oustaloup 1995, Ramus-
Serment et al. 2002, Losa et al. 2005). Examples from real-life include the
coastline, invasion-front curve, lightning, broccoli and cauliflower, and sev-
eral human organs such as lungs, vascular tree and brain surface. Other stud-
ies involve the temporal dynamics of biological signals and systems, which
also pose recurrence (Eke et al. 2002, Suki & Frey 2003).

Figure 1.10: The Sierpinski triangle, determined by a fractal dimension 1.58
from the ratio log 3/ log 2. A similar example of this, entitled the Sierpinksi
carpet is obtained using a ratio of log 8/ log 2 and started by a square instead
of a triangle.

It is generally acknowledged that dynamical systems (e.g. electrical circuits)
involving such geometrical structures would lead to the appearance of a frac-
tional order transfer function. However, this topic has been investigated only
in the case of an electrical analogue of the Sierpinski gasket (Ramus-Serment
et al. 2002) and in the case of the vascular system (Elzbieta et al. 2005). In
both cases, the calculated total impedance was of non-integer order. This
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1.7. Overview

Figure 1.11: The Koch tree is determined from a square by generating 2
other squares (dichotomous) with a reduction ratio of

√
2/2. The fractal

dimension is given by the ratio log 2/ log 2
√

2

thesis proposes to investigate the case of the respiratory system impedance,
whereas a fractal geometrical structure can be applied: the Koch tree.

1.7 Overview

This thesis offers a detailed investigation of three main issues:

• the appearance of the fractional order behaviour in a recurrent structure
of the respiratory tree;

• the relation between the electrical network and mechanical network
equivalents of such a tree; and

• the determination of an effective fractional order model for clinical
studies and its validation on clinical data.

First, we start our quest for knowledge by introducing the principles of mea-
suring respiratory impedance, which will set our background conditions for
the next steps. This is done in chapter 2, next to a comparison of the most
popular integer-order models for assessment of the respiratory impedance.
We proceed our pursuit with chapter 3, where the Navier-Stokes equations
from fluid dynamics theory collaborate with Womersley assumptions to pro-
vide a set of differential equations for pressure and flow in laminar flow con-
ditions. This chapter will also show that during restful breathing, the laminar
flow condition is fulfilled, along with other simplifying assumptions.
Chapter 4 provides an electrical equivalent of the dichotomous respiratory
tree, preserving morphological information using the pressure-flow equations
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CHAPTER 1. INTRODUCTION

derived in chapter 3. Here we present the first proof that the geometrical
structure of the tree leads to a fractional order behaviour and both recurrent
and explicit cases are analyzed. The model determined in chapter 4 allows
us to make changes in the morphology of the tree according to pathology and
simulate changes from specific lung disease.
We continue our journey by discussing viscoelasticity with respect to the
fractal structure of the lungs in chapter 5. Hence, a mechanical equivalent
model is derived from our electrical network model from chapter 4.
Finally, a set of candidate fractional order models (also known by their spe-
cific property as constant-phase models) are evaluated in chapter 6. The best
candidate is then further used in clinical studies on various groups of patients:
Chronic Obstructive Pulmonary Disease (COPD), asthma, cystic fibrosis and
kyphoscoliosis.
The main contributions of this work and conclusions are resumed in chapter
7, along with a short overview of the by-products of this investigation.
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Chapter 2

The Respiratory Input
Impedance

This chapter presents the principles of measuring the respiratory input
impedance by means of FOT (Forced Oscillation Technique) lung function
test. The chapter continues with an overview of the most representative para-
metric models reported in literature. Additionally, two alternative models are
proposed. A comparison in terms of modelling performance is evaluated on
typical patient data obtained with FOT, i.e. three averaged sets of represen-
tative diagnosed subjects: healthy, asthma and COPD (chronic obstructive
pulmonary disease). It is shown that the FO model in 4 parameters from
literature is unable to capture real parts of the impedance which are increas-
ing with frequency. All identified model parameter values are discussed with
respect to physiological insight.

Parts of the material presented in this chapter has been used and extended in
the following publications:

• Ionescu C., De Keyser R. (2008a), ”Parametric models for the human
respiratory impedance”, Medical Engineering and Technology, 32(4),
315- 324;

• Ionescu C., De Keyser R. (2003), ”A Novel Parametric Model for the
Human Respiratory System”, in : Proc. of the IASTED Int. Conf. on
Modelling and Simulation, Palm Springs, CA USA, 246-251.
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CHAPTER 2. THE RESPIRATORY INPUT IMPEDANCE

2.1 Input Impedance Measurement

The impedance was measured using the FOT standard setup, commercially
available, assessing respiratory mechanics from 4 − 48 Hz. An I2M (Input
Impedance Measurement) device produced by Chess Medical Technologies,
The Netherlands (2000) and available in our laboratory has been used for
pulmonary testing. The specifications of the device are: 11kg, 50x50x60 cm,
8 sec measurement time, European Directive 93/42 on Medical devices and
safety standards EN60601-1. The standard measurement time of 8 seconds
is attractive because it requires minimal cooperation from the subject, but
the breathing period in this interval might not be considered as a stationary
signal. Hence, to avoid biased estimates due to short measurement time, a
second measurement line has been connected to a data acquisition PCMCIA
card and the signals were recorded for 30 seconds. The subject is connected
to the typical setup from figure 2.1 via a mouthpiece, suitably designed to
avoid flow leakage at the mouth and dental resistance artifact. The oscillation
pressure is generated by a loudspeaker connected to a chamber (DuBois et al.
1956, Oostveen et al. 2003). The loudspeaker is driven by a power amplifier
fed with the oscillating signal generated by a computer. The movement of the
loudspeaker’s cone generates a pressure oscillation inside the chamber, which
is applied to the patient’s respiratory system by means of a tube connecting
the loudspeaker’s chamber and the bio-filter. A bias tube allows the patient
to have fresh air circulation. Ideally, this pipeline will have high impedance
at the excitation frequencies to avoid the loss of power from the LS pressure
chamber. During the measurements, the patient wears a nose clip and keeps
the cheeks firmly supported. Before starting the measurements, the frequency
response of the transducers and of the pneumotachograph are calibrated (Van
De Woestijne et al. 1994). The measurements of air-pressure P (cmH2O)
and air-flow Q (l/s) during the FOT lung function test is done at the mouth of
the patient.
The global experimental set-up from figure 2.1-A can be modelled by the
electrical analogy from figure 2.1-B, where: Ug denotes the generator test
signal (known); Ur denotes the effect of spontaneous breathing (unknown);
Zr denotes the total respiratory impedance (to be estimated); Z1 denotes the
impedance (unknown) describing the transformation of driving voltage (Ug)
to chamber pressure; Z2 denotes the impedance (unknown) of both bias tubes
and loudspeaker chamber; Z3 denotes the impedance (unknown) of tube seg-
ment between bias tube and mouth piece (effect of pneumotachograph es-
sentially). It follows that the respiratory impedance Zr can be defined as

26



2.1. Input Impedance Measurement

Figure 2.1: A schematic overview (A) and an electrical analogy of the FOT
setup (B). Typical measured signals (C) from one subject: oscillatory driv-
ing air-flow; air pressure and air-flow. The breathing of the patient (low
frequency) can be observed superimposed on the multisine signals. Symbols:
LS - loudspeaker; PT - pressure transducer; PN - pneumotachograph; BT
- bias tube; bf - biological filter; U(t) - generated pressure oscillations (4-
48Hz); P(t) - measured pressure oscillations; Q(t) - measured flow; pressure
unit conversion: 1 kPa = 10 cmH2O.
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CHAPTER 2. THE RESPIRATORY INPUT IMPEDANCE

their spectral (frequency domain) ratio relationship (Daroczi & Hantos 1982,
Ionescu & De Keyser 2003):

Zr(jω) =
SPUg(jω)
SQUg(jω)

(2.1)

where SXY (jω) denotes the cross-correlation spectra between the various
input-output signals, ω = 2πf is the angular frequency and j =

√
−1, the

result being a complex variable. The derivation of (2.1) from the measured
signals is detailed in Appendix B. The FOT excitation signal is kept within
a range of a peak-to-peak size of 1-3 (cmH2O), in order to ensure linearity
(Oostveen et al. 2003). Averaged measurements from 3-5 technically accept-
able tests are taken into consideration for each subject, and typical recorded
signals are depicted in figure 2.1-C.

2.2 Identification Methods

The spectral representation of Zr is a fast, simple and fairly reliable evalua-
tion. The algorithm can be summarized starting from the following equation
from the electrical analogue in figure 2.1-B:

P (s) = Zr(s)Q(s) + Ur(s) (2.2)

where s denotes the Laplace operator. If the excitation signal is taken into
account as proposed in (Daroczi & Hantos 1982, Ionescu & De Keyser 2003)
and correlation analysis is applied to the measured signals, one can estimate
the respiratory impedance as in (2.1). From the point of view of the forced
oscillatory experiment, the signal components of respiratory origin (Ur) have
to be regarded as pure noise for the identification task.
With the real Re and imaginary Im parts of the complex impedance from
(2.1) at hand, parametric identification has been employed and the models
parameters were estimated using a nonlinear least squares optimization algo-
rithm, making use of the MatLab function lsqnonlin. The optimization
algorithm is a subspace trust region method and is based on the interior-
reflective Newton method described in (Coleman & Li 1996). The large-
scale method for lsqnonlin requires that the number of equations (i.e.,
the number of elements of cost function) is at least as great as the number of
variables. Every iteration involves the approximate solution using the method
of preconditioned conjugate gradients, for lower and upper bounds. In this
application, the lower bounds were set to 0 (negative values are meaningless)
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2.3. Parametric Models from Literature

and no upper bounds. The optimization stopped either when a high num-
ber of iterations reached 100 times the number of variables (i.e. 500), or a
termination tolerance value of 10e−8. In all cases we obtained a correlation
coefficient between data and model estimates above 80%.
Along with the corresponding model estimates, the error on the real and
imaginary part respectively and the total error between the real patient
impedance and the model estimated impedance are calculated according
to the formula:

ER = 1
NS

√∑NS
1 (Re− R̂e)2

EX = 1
NS

√∑NS
1 (Im− ˆIm)2

ET =
√
E2
R + E2

X

(2.3)

with Re denoting the real part of the impedance, Im denoting the imaginary
part of the impedance and NS the total number of data samples.

2.3 Parametric Models from Literature

Unlike non-parametric modeling, parameterization has the advantage of
providing concise values for the variables of interest. With the frequency-
dependent impedance curves at hand, by means of identification algorithms
(Schoukens & Pintelon 2001), the non-parametric data may be correlated
with the models consisting of electrical components that are analogous to the
resistances, compliances and inertances inherent in the respiratory system
(Oostveen et al. 2003). For this study, we selected 4 reported models closely
related to the physiology of human lungs. The units are as follows: resistance
in cmH2O/(l/s); inertance in cmH2O/(l/s2) and compliance in l/cmH2O.
One of the first models reported in the literature and also the simplest is based
on analogy of the respiratory system as a tube denoting the central airways
and a balloon accounting for the inspiration and expiration changes in volume
of the lungs. This pipe-balloon analogy can be described as a series RLC
electrical circuit (DuBois et al. 1956), as in figure 2.2.
In its initial attempts to characterize input impedance with a series RLC
model structure, DuBois et al. observed that over the 1-15Hz frequency
range, the inertance is a factor which must be negligible at ordinary breath-
ing frequencies (0.0004 cmH2O/(l/s2)), but that inertia and compressibility
of alveolar air become factors of increasing importance as the test frequency
is increased. He also found rather high values for the airway resistance
(3.8 cmH2O/(l/s)) in the 2-10Hz frequency range. He concluded that the
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CHAPTER 2. THE RESPIRATORY INPUT IMPEDANCE

Figure 2.2: Structure of the series RLC model from (DuBois et al. 1956); R
- airway resistance; L - air inertance; C - tissue compliance.

mechano-acoustical (equivalent) system must be more complex in order to
be able to capture the true properties of chest and lungs. The model is unable
to represent the frequency-dependent real part of the complex impedance (re-
sistance), and has not been included in the consequent discussion.

Figure 2.3: Structure of the viscoelastic model from (Navajas et al. 1990).
Raw - airway resistance; Cs - static compliance; Rve - viscoelastic tissue
resistance; Cve - viscoelastic tissue compliance.

A model which provides significant biased estimates at high frequencies, due
to the absence of the inertance element, is the so-called viscoelastic model.
This model consists of the overall airway resistance, the static compliance
and the viscoelastic tissue resistance and compliance. The viscoelastic model
(figure 2.3) implies that the respiratory system acts like a tree with uniform
airways leading to identically distributed viscoelastic tissues (Navajas et al.
1990). The viscoelastic model gave best estimates for our data using the fol-
lowing initial values in the optimization procedure: Raw = 0.01; Cs = 0.06;
Rve = 0.4; Cve = 0.45; with: Raw - airway resistance; Cs - static compli-
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2.3. Parametric Models from Literature

ance; Rve - viscoelastic tissue resistance; Cve - viscoelastic tissue compli-
ance.
To characterize the respiratory mechanical properties at low frequencies,
Navajas et al. proposed the above model, including a linear viscoelastic
component for the tissues (figure 2.3) (Navajas et al. 1990). They assessed
the impedance in seven anesthetized paralyzed patients with no respiratory
disease. The advantage of this scenario is that the influence from upper
airway shunt and muscular activity are not active and therefore do not bias
the estimates. The Raw is hypothesized to represent airways resistance plus
a purely viscous component of tissue resistance, presumably in the chest
wall. The Cs is the static compliance of the respiratory system. The Rve and
Cve are related to viscoelastic properties of the tissue. As observed, there
is virtually no inertance (air mass) quantified in this model, therefore it is
expected that this model will provide biased estimates.
All patients exhibited a marked frequency dependence of effective respira-
tory resistance (real part of impedance) at low frequencies. The resistance
fell sharply from 6.2± 2.1 cmH2O/(l/s) at 0.25 Hz to 2.3± 0.6 cmH2O/(l/s)
at 2 Hz and decreased moderately with frequency, such that its value at 32
Hz was 1.5 ± 0.5 cmH2O(l/s). The imaginary part of the impedance was
−22.2± 5.9 cmH2O/(l/s) at 0.25 Hz and increased with frequency, crossing
zero line around 14 Hz and reached 2.3 ± 0.8 cmH2O/(l/s) at 32 Hz. They
observed that the inertance becomes important as early as with 4 Hz, which
rather contradicts DuBois (DuBois et al. 1956, Lutchen & Costa 1990). The
strong negative dependence in the vicinity of spontaneous breathing frequen-
cies in the real part of impedance in anesthetised patients agreed with studies
in awaken subjects. The authors agree that this dependence at low frequen-
cies can hardly be attributed to regional inhomogeneities of tissues. They
suggest that the mechanical behavior of the respiratory system at spontaneous
breathing frequencies is largely determined by intrinsic features of tissues,
such as plasto-elastic properties. They also report an average value of ≈ 9
cmH2O/(l/s) for total resistance, mainly influenced by tissue properties at
very low frequencies. The authors suggest a nonlinear plastic model should
be considered to account for the mechanical behavior of the respiratory sys-
tem.
A relatively good model structure, dividing the airway tissue and alveolar
properties into different compartments, is the one proposed by DuBois et al.
and schematically depicted in figure 2.4 (DuBois et al. 1956). This model
provides the smallest total error for the following initial values: Raw = 0.01;
Law = 0.01; Rt = 0.01; Ct = 0.01; Lt = 0.29; Cg = 0.14; with: Raw -
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CHAPTER 2. THE RESPIRATORY INPUT IMPEDANCE

Figure 2.4: Structure of the model from (DuBois et al. 1956). Raw - air-
way resistance; Law - airway inertance; Rt - tissue resistance; Ct - tissue
compliance; Lt - tissue inertance; Cg - gas compression compliance.

airway resistance; Law - airway inertance; Rt - tissue resistance; Ct - tissue
compliance; Lt - tissue inertance; Cg - gas compression compliance.

Figure 2.5: Structure of the model from (Mead 1961). Rc - central resis-
tance, Lr - the total inertance, Rp - peripheral resistance, Cl - lung com-
pliance, Cb - bronchial tube compliance, Cw - wall compliance and Ce -
extrathoracic compliance.

Mechanical properties in lung and chest wall are described by the model de-
veloped originally by Mead and described later in (Van Noord 1990). Mead’s
model is an extended one-compartment model that does not allow the simu-
lation of uneven alveolar ventilation (figure 2.5). Acceptable estimates were
given for these initial values: Rc = 0.01; Lr = 0.01; Rp = 0.01; Cl = 0.01;
Cb = 0.01; Cw = 0.09; Ce = 0.02, where: Rc - central resistance, Lr
- the total inertance, Rp - peripheral resistance, Cl - lung compliance, Cb
- bronchial tube compliance, Cw - wall compliance and Ce - extrathoracic
compliance.
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The Mead model (Mead 1961) (figure 2.5) allows the simulation of different
influences on the respiratory mechanics (e.g. extrathoracic compliance by
the mouth and the face mask, properties of the chest wall, air leaks around
face mask or endotracheal tubes). The model is used to investigate different
causes of airway obstructions and to assess the influence of the equipment on
measurements.

Figure 2.6: Structure of the extended model from (Diong et al. 2007). Rr -
airway and lung resistance; Rp - peripheral resistance; Lr - lung inertance;
Cr - alveolar compliance.

Recently, an extended RLC model was proposed in (Diong et al. 2007), which
can be viewed either as a simplification of the DuBois’s or Mead’s model,
either an improvement of the simple series RLC circuit. The model allows
characterization of small airways resistance (figure 2.6). For the extended
RLC model, the corresponding initial values were set as: Rr = 0.01; Rp =
0.09; Lr = 0.9; Cr = 0.31; with: Rr - airway and lung resistance; Rp -
peripheral resistance; Lr - lung inertance; Cr - alveolar compliance.
This model provides a theoretical support for the observations made in ex-
perimental studies upon the frequency-dependence of respiratory resistance
at low frequencies. The added peripheral resistance Rp allows for the fre-
quency dependence observed of the typical real impedance data, which is be-
yond the RLC series model’s capability. The physical justification for adding
this additional component is that it models the resistance presented by the
respiratory system’s small airways.

2.4 Proposed Parametric Models

Hitherto, integer-order parametric models for characterizing the respiratory
input impedance have been broadly developed and tested in various lung
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pathologies. Although they succeed to characterize in a clinically useful
manner the mechanical properties of the lungs, there is a major drawback:
accuracy increases with the model order and so does numerical complexity.
The impedance varies significantly with frequency, requiring high order dy-
namical models. This problem has been tackled by introducing the concept
of fractional calculus from mathematics, leading to FO models.
Two alternative parametric models are proposed: an integer-order and a
fractional-order model. The first model proposed here is based on the obser-
vations from (Diong et al. 2007) on the influence of the upper airway shunt:
RLCES (RLC Extended with Shunt). In Mead’s model, the influence of
upper airway shunt is taken into account by the extrathoracic compliance Ce.
The proposed model is then an extension from the Extended RLC proposed in
(Diong et al. 2007) combined with the extrathoracic compliance from Mead
(Mead 1961). The corresponding electrical scheme of the RLCES model is
given in figure 2.7. The proposed parametric model is a simplification of
Mead model, with similar variables: Rc - the central resistance, Lr - the total
inertance, Rp - the peripheral resistance, Cb - the bronchial tube compliance
and Ce - the extrathoracic compliance.

Figure 2.7: Structure of the RLCES proposed model (Ionescu & De Keyser
2008b). Rc - the central resistance, Lr - the total inertance, Rp - the periph-
eral resistance, Cb - the bronchial tube compliance and Ce - the extratho-
racic compliance.

The second proposed model is based on the fractional order model (1.1) from
chapter 1. Due to the fact that (1.1) cannot capture the real part of impedance
which is increasing with frequency (Ionescu 2003, Ionescu & De Keyser
2003), we add a FO on the inertance term, therefore providing two FO in
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the impedance model:

Zr(s) =
P (s)
Q(s)

= Rr + Lrs
αr +

1
Crsβr

(2.4)

with P – pressure in cmH2O; Q – flow in l/s; Zr – the impedance in
cmH2O/(l/s); Rr – airway resistance in cmH2O/(l/s), Lr – inductance in
cmH2O/(l/s2); Cr – capacitance in l/cmH2O; 0 ≤ αr ≤ 1 and 0 ≤ βr ≤ 1
fractional orders and s the Laplace operator. Using the definition of complex
numbers, (2.4) becomes:

Zr(jω) = Rr + Lrω
αr cos

(
αrπ

2

)
+ 1

Crωβr
cos
(
βrπ

2

)
+

j · [Lrωαr sin
(
αrπ

2

)
− 1

Crωβr
sin
(
βrπ

2

)
]

(2.5)

It is possible to see that contrary to a series RLC system, the real part of
the impedance in (2.5) depends on frequency and comprises both inductance
and compliance effects. Therefore, it allows to characterize both increase and
decrease with frequency in the real part of impedance, without requiring high
integer order system (Ionescu & De Keyser 2004, 2006, Ionescu et al. 2007,
Ionescu & De Keyser 2008c). Using the nonlinear least squares algorithm
described above, the solution is given by an optimal set of Rr, Lr, Cr, αr, βr
parameters.

2.5 Subjects

In this study, we are dealing with subjects evaluated with the FOT non-
invasive lung function test. There are three averaged data sets from groups
of Caucasian healthy, asthmatic and COPD patients. Table 2.1 presents the
corresponding biometric and spirometric parameters.
The choice of these representative cases is motivated by the general aim of
the study: to compare which model can capture with a least total error the
complex respiratory input impedance of these three sets of subjects. The
physiological differences between these sets of subjects are clearly visible
in the complex impedance values and we expect that the parametric models
proposed in this section will be able to quantify their specific properties.

2.6 Results and Discussion

We apply the input impedance identification methods described initially in
(Daroczi & Hantos 1982) and revisited in (Ionescu 2003, Ionescu & De
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Healthy Asthma COPD
(7) (5) (14)

Age (yrs) 55±3 65±2 51±6
Height (m) 1.74±0.15 1.62±0.12 1.73±0.14
Weight (kg) 82±4 78±5 71±5
VC % pred 100±3 80±8 89±7

FEV1 % pred 100±4 53±7 44±6

Table 2.1: Biometric and spirometric parameters of the investigated (male)
subjects. Values are presented as mean±SD; % pred: predicted according
to the asymptomatic males of the present study; VC: vital capacity; FEV1:
forced expiratory volume in one second.

Keyser 2003) on the data measurements from FOT. By using (2.1), we obtain
complex input impedances for each group, from which averaged sets as given
in table 2.2 from 4-48 Hz frequency range.
The standard deviations on the averaged impedance data varied roughly in all
three groups from a±14% at 4-6 Hz, to±5% at resonant frequencies (6-8Hz
for healthy, 18-20Hz for asthma and COPD patients) and to ±8% at 40-48
Hz. For all parametric models described in section 2.4, the corresponding
solutions for each subject group are given in table 2.2 (Ionescu & De Keyser
2008b).
The reported values are given for resistance in cmH2O/(l/s); for inertance in
cmH2O/(l/s2) and for compliance in l/cmH2O. The corresponding averaged
values for each model parameter and their standard deviations are reported.
The results were tested using the one way analysis of variance (in Matlab,
anova1). All reported values were statistically significant (p < 0.001,
where p is the probability of obtaining a result at least as extreme as the
one that was actually observed, assuming that the null hypothesis is true).
The error values calculated with (2.2) for each case are also reported, in terms
of their averaged values and a standard deviation > 5%. For those model
parameters for which no standard deviation is reported, the standard deviation
varied with < 5%.
In the remainder of this chapter, CP4 and CP5 will denote the constant-phase
model in 4 parameters from (1.1), respectively the constant-phase model in 5
parameters from (2.4).
The data from these averaged sets of complex impedance is depicted in figure
2.8.
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Frequency Re Im Re Im Re Im
Hz Healthy Healthy Asthma Asthma COPD COPD
4 2.623 -0.394 3.95 -1.75 0.1725 -0.1391
6 2.433 -0.109 3.65 -1.5 0.2047 -0.0956
8 2.421 0.136 3.3 -0.75 0.1841 -0.0742

10 2.417 0.266 3.25 -0.5 0.1699 -0.0693
12 2.467 0.427 3.1 -0.35 0.1546 -0.0609
14 2.396 0.512 2.98 -0.35 0.1440 -0.0500
16 2.36 0.671 2.8 -0.3 0.1399 -0.0358
18 2.43 0.766 2.7 -0.15 0.1365 -0.0138
20 2.417 0.812 2.6 0.10 0.1326 0.0027
22 2.465 1.011 2.65 0.5 0.1423 0.0157
24 2.515 1.213 2.58 0.6 0.1501 0.0256
26 2.398 1.357 2.55 0.7 0.1506 0.0332
28 2.491 1.394 2.53 0.75 0.1513 0.0339
30 2.643 1.62 2.3 1 0.1576 0.0386
32 2.589 1.534 2.4 1.45 0.1499 0.0470
34 2.646 2.043 2.45 1.52 0.1526 0.0487
36 2.694 1.849 2.55 1.7 0.1614 0.0532
38 2.584 2.111 2.35 2.3 0.1603 0.0642
40 2.772 2.135 2.4 2.35 0.1647 0.0751
42 2.586 2.476 2.5 2.5 0.1702 0.0855
44 2.908 2.395 2.53 2.65 0.1757 0.0960
46 3.083 2.537 2.48 2.7 0.1797 0.0966
48 2.894 2.608 2.49 3.1 0.1885 0.1002

Table 2.2: The impedance data for the 3 typical patients (from averaged data
measured with FOT) from 4-48 Hz, every 2 Hz. The real part (Re) and the
imaginary part (Im) of the complex impedance are given in cmH2O/(l/s).
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CHAPTER 2. THE RESPIRATORY INPUT IMPEDANCE

Figure 2.8: The averaged complex impedances for healthy, asthmatic and
COPD patients.
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2.6. Results and Discussion

The performance of the novel models from section 2.4 on the impedance
complex data is depicted in figures 2.9-2.10-2.11. It can be observed that
both proposed models characterize sufficiently well the frequency-dependent
behaviour of the impedance. It is also clear that the FO model in 4 parameters
from literature, given by (1.1), is unable to capture the real part of impedance
which is increasing with frequency. This model is then only valid in the
low frequency range. The standard deviation intervals are not indicated in
the plots for sake of clarity. Deviations are distributed as following for the
RLCES and fractional-order model: ±16% and ±10% at 4-6 Hz, ±3% and
±2% at resonant frequencies, ±8% and ±6% at 40-48 Hz.

Figure 2.9: The performance of the RLCES model (star line), the CP4 model
(dashed line) and the CP5 model (dotted line), against measured data (con-
tinuous line) in healthy subjects.

As observed from the results given in tables 2.4–2.9, the viscoelastic model
has the poorest performance in terms of total error, explained by the ab-
sence of inductance in the model structure. Within the integer-order models,
Mead’s model has the least total error results in all subject groups. Notice that
Extended RLC is a (simplified) special case of Mead’s model, and therefore
it will never provide better results. For the case of a healthy subject, periph-
eral resistance is very high (910.5778 cmH2O/(l/s)). As reported in (Diong
et al. 2007), in trying to minimize the error by not having the real part of the

41



CHAPTER 2. THE RESPIRATORY INPUT IMPEDANCE

Figure 2.10: The performance of the RLCES model (star line), the CP4
model (dashed line) and the CP5 model (dotted line), against measured data
(continuous line) in asthmatic patients.

Figure 2.11: The performance of the RLCES model (star line), the CP4
model (dashed line) and the CP5 model (dotted line), against measured data
(continuous line) in COPD patients.
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impedance decreased too rapidly (with respect to frequency), Rp will tend
to have larger values. Diong et al. suggest that it is not entirely reliable
to use any individual value of the model parameter to discriminate between
pathologic and healthy cases. However, the authors point to the possibility of
using two-parameter combinations for discriminating between normal and ill
patients.
It is also worth noticing that the estimated values of the RLCES model pa-
rameters are close to the ones estimated in the Mead model, leading to the
conclusion that the absence of wall compliance does not affect significantly
the total impedance of the human respiratory system.
Generally, the values for the model parameters in the three subject groups
were significantly different, allowing a separation (necessary for screening
or diagnosis). The airway resistance in models Viscoelastic, DuBois and
RLCES were fairly close to each other, indicating good correlation between
the various models for this specific parameter. The same is valid for the
central resistance values in models Mead and CP5.
As referring to the specific values in each case (healthy, asthma and COPD),
the resistance indicated correctly the possible variations with pathology. As
expected, the viscoelastic resistance Rve in Viscoelastic was significantly
lower in COPD than in Healthy and Asthma groups. The peripheral resis-
tance Rp in models Mead, Extended and RLCES had similar order of mag-
nitude in each group, but their values did not correlate. Since the highest
values are reported by the Extended model, which also has the least number
of parameters of the above mentioned three model structures, we may suspect
that this is due to the lumped characterization in model Extended as opposed
to Mead or RLCES, where part of this resistance’s effects are transmitted to
other model parameters.
In DuBois, tissue compliance correlated well with physiologically expected
values and pathology. Bronchial compliance Cb correlated well between
models Mead and RLCES for asthma and COPD cases, but not in healthy
subjects. We suspect this may be due to inaccurate partitioning of wall and
lung compliance. Nevertheless, the values for Cb in asthma are very close to
the reported values by Van Noord, where Cb = 0.005 l/cmH2O and although
the values for Ce are somewhat lower than expected, they are similar to what
other authors report (Diong et al. 2007, Lutchen & Costa 1990, Farre et al.
1989). Airway inertance correlated well between model structures DuBois,
Mead, Extended, RLCES, as well as in relation to expected pathology.
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From the point of view of reported total errors, we may add that for all sub-
ject groups the best performance was given by Mead’s model and highest er-
rors for viscoelastic model. We may conclude that Mead’s model is still the
structure with least errors in parametric estimations. However, the newly pro-
posed integer-order model RLCES gives similar total errors with less number
of model parameters. This is indeed an advantage when a specific character-
ization is not intended, but merely a clear-cut within subject population for
preliminary diagnosis. It is clear that if more specific information is required,
the Mead model must be employed. Nonetheless, the model structure in
Mead may not necessarily be optimal, for it over-estimates lung compliance
(in healthy and asthmatic).
It is also noticeable that the total errors given by the CP5 model are com-
parable to the ones given by the Mead model. The main advantage of the
CP5 model structure over the Mead’s model structure is its reduced num-
ber of parameters to be identified. The reason for giving such good esti-
mations is that the fractional-order captures in a more accurate and flexible
way the frequency-dependence of the complex impedance. It also seems that
the model from (2.4) gives most accurate estimates for the COPD case. For
healthy persons, the airway resistance is very low. The reason for such low
values is that part of dissipation properties are captured by the fractional-
orders (Oustaloup 1995). This observation suggests eliminating the term Rr
from 2.4, but this issue will be revisited later in this thesis.
Further analysis and figures describing the performance for each of the mod-
els presented in this chapter can also be found in (Ile 2007, Ionescu 2009).

2.7 Conclusions

A comparison with most representative parametric models from literature
for assessing respiratory input impedance shows that FO models are more
efficient than integer order models. It is also shown that the FO model in
4 parameters available from literature is limited to the low frequency range
of application. Hence, the necessity for two FO terms arises and requires
a physiological interpretation (i.e. CP5 model). It is therefore necessary to
provide a link between the anatomy and morphology of the respiratory tract
and the appearance of the fractional orders and their values. The next chapter
lays the mathematical basis for attaining this objective.
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Chapter 3

Mechanical Properties of the
Airways

The derivation of the mechanical parameters of the airways from morpho-
logical insight is presented in this chapter. The approach consists of taking
into account morphological and anatomical values such as: wall thickness,
inner radius, tube length and tissue structure for each airway level and com-
bine them into a set of equations for modelling the pressure drop, flow, wall
elasticity and air velocity (axial and radial). Both elastic and viscoelastic
airways are investigated, in the context of a symmetric space-filling of the
lung. Effects of pulmonary disease affecting the inner radius and elastic
modulus of bronchial tree are discussed. The derived mechanical parame-
ters (resistance, inertance, compliance and conductance) are used to gather
insight into the recurrence of the respiratory tree.

Part of the material presented in this chapter has been published in an ex-
tended form in:

• Ionescu C., Segers P., De Keyser R. (2009), ”Mechanical properties
of the respiratory system derived from morphologic insight”, IEEE
Transactions on Biomedical Engineering, 56(4), 949-959;

• Ionescu C., Tenreiro-Machado J. (online), ”Mechanical properties and
impedance model for the branching network of the sapping system
in the leaf of Hydrangea Macrophylla”, Nonlinear Dynamics, DOI:
10.1007/s11071-009-9590-0;

• Ionescu C., Muntean I., Tenreiro-Machado J., De Keyser R., Abrudean
M., (online) ”A Theoretical Study on Modelling the Respiratory Tract
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With Ladder Networks by Means of Intrinsic Fractal Geometry”, IEEE
Transactions on Biomedical Engineering, Digital Object Identifier:
10.1109/TBME.2009.2030496;

• Ionescu C., Oustaloup A., Levron F., Melchior P., Sabatier J., De
Keyser R. (2009), ”A model of the lungs based on fractal geometrical
and structural properties”, in : Proc. of the IFAC Int. Conf. on System
Identification, St. Malo, France, 994-999.

and is pending for review in the following article:

• Ionescu C., Kosinsky W., De Keyser R., ”Viscoelasticity and fractal
structure in a model of human lungs”, Archives of Mechanics (Else-
vier).
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3.1 Introduction

Since the fractal geometry is characterized by recurrent geometry, the respira-
tory system is an ideal application. Lung geometry and morphology has been
studied using CT scans in 3D form (Sauret et al. 1999). Already since Weibel,
the fractal geometry present in the lung morphology has been employed in
studies on airway aerodynamics (Weibel 1963). The self-similarity is related
to the optimality of ventilation and asymmetry exists in the healthy lung as
well. A diseased lung parenchyma contains significant heterogeneities and
the optimality conditions are not anymore fulfilled (Hou et al. 2005).
One of the most comprehensive and earliest overviews on the mechanical
properties of lungs is given by Mead, describing the initial attempts to quan-
tify static and dynamic resistive, inertial and compliant properties of lungs.
His review covers both the inspiratory and expiratory phase, at laminar and
turbulent flow conditions, in terms of a single variable: air volume. Another
important study has been reported in (Olson et al. 1970) for tube-entrance
flow and pressure drop during inspiration in spontaneous ventilation. Dur-
ing breathing at rest, the air flow remains laminar (Hou et al. 2005, Olson
et al. 1970, Pedley et al. 1971). A decade later, Franken et al. developed
a model for oscillating flow of a viscous and compressible fluid in a rigid
tube (Franken et al. 1981). It is one of the first applications of dynamic mod-
els to the conditions of the forced oscillations technique as applied for lung
function testing. They modified the standard measurement device for pres-
sure and flow at the mouth of the patient replacing it with a 2m rigid tube and
based on the tube model, the flow was estimated (thus the pneumotachograph
is replaced by this 2m rigid tube). They included a one dimensional model
of the propagating waves and the true thermal properties of the tube wall and
found that quantitative differences between models with and without thermal
variations are negligible.
Based on technological and computational progress, Sauret et al. describes
a study based on CT scans of the 3D topology and morphology of a human
(cast) lung (Sauret et al. 1999). Mean gravity and branching angles up to
level 9 bifurcations for the right and left lobe (asymmetric morphology due
to heart location) were also reported, allowing detailed simulations in flow
analysis studies.
There are two distinct groups of researchers, using either a symmetrical
(Weibel 1963, 2005) either an asymmetrical (Horsfield et al. 1971, Habib
et al. 1994) representation of the airways in the respiratory tree. We shall as-
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CHAPTER 3. MECHANICAL PROPERTIES OF THE AIRWAYS

sume the symmetric bifurcation case for finding the pressure-flow dynamics
in the ducts.

3.2 Modelling Pressure-Flow Dynamics

Womersley theory has been applied to circulatory system analysis, consider-
ing the pulsatile flow in a circular pipeline for sinusoidally varying pressure-
gradients (Womersley 1957). Taking into account that the breathing is peri-
odic with a certain period (usually, for normal breathing conditions, around 4
seconds), we address the airway dynamics problem making use of this theory.
For the case when sinusoidal excitation is applied to the respiratory system
(Ionescu & De Keyser 2008b, Oostveen et al. 2003), this has ten times higher
frequencies than the breathing, which permits analyzing oscillatory flow. To
find an electrical equivalent of the respiratory duct, one needs expressions
relating pressure and flow with properties of the elastic tubes, which can be
done straightforward via the Womersley theory (Avolio 1980, Olufsen 2004,
Segers et al. 1997).
The periodic breathing can be analyzed in terms of periodical functions, such
as the pressure gradient:−∂p

∂z = MP cos(ωt−ΦP ), where z is the axial coor-
dinate, ω = 2πf is the angular frequency (rad/s), with f the frequency (Hz),
MP the modulus and ΦP is the phase angle of the pressure gradient. Given
its periodicity, it follows that also the pressure and the velocity components
will be periodic, with the same angular frequency ω. The purpose is to deter-
mine the velocity in radial direction u(r, z, t) with r the radial coordinate, the
velocity in the axial direction w(r, z, t), the pressure p(r, z, t) and to calcu-
late them using the morphological values of the lungs. In this study, we shall
make use of the Womersley parameter from the Womersley theory developed
for the circulatory system, with appropriate model parameters for the respi-
ratory system, defined as the dimensionless parameter δ = R

√
ωρ
µ (Segers

et al. 1997, Womersley 1957), with R the airway radius. The air in the air-
ways is treated as Newtonian, with constant viscosity µ = 1.8 ∗ 10−5 kg/m-s
and density ρ = 1.075 kg/m3, and the derivation from the Navier-Stokes
equations is done in cylinder coordinates (Welty et al. 1969):

ρ(∂u∂t + u∂u∂r + v
r
∂u
∂θ + w ∂u

∂z −
v2

r ) = −∂p
∂r + ρFr+

µ[1
r
∂
∂r (r ∂u∂r )− u

r2
+ 1

r2
∂2u
∂θ2
− 2

r2
∂v
∂θ + ∂2u

∂z2
]

(3.1)

48



3.2. Modelling Pressure-Flow Dynamics

for the radial direction r, and:

ρ(∂v∂t + u∂v∂r + v
r
∂v
∂θ + w ∂v

∂z + uv
r ) = −1

r
∂p
∂θ + ρFθ+

µ[1
r
∂
∂r (r ∂v∂r )− v

r2
+ 1

r2
∂2v
∂θ2
− 2

r2
∂u
∂θ + ∂2v

∂z2
]

(3.2)

for the contour θ, and:

ρ(∂w∂t + u∂w∂r + v
r
∂w
∂θ + w ∂w

∂z ) = −∂p
∂z + ρFz+

µ[1
r
∂
∂r (r ∂w∂r ) + 1

r2
∂2w
∂θ2

+ ∂2w
∂z2

]
(3.3)

in the axial direction z. If we have the simplest form of axi-symmetrical flow
in a cylindrical pipeline, the Navier Stokes equations simplify by ∂

∂θ = ∂2

∂θ2
=

0 and with the contour velocity v = 0; consequently (3.2) can be omitted.
Further on, consider no external forces Fr, Fz . Since we have very low total
pressure drop variations, ≈0.1 kPa (Olson et al. 1970), we can divide by
density ρ and introduce the dimensionless parameter y = r/R, 0 ≤ y ≤ 1
in the relation d

dy = d
dr
dr
dy = R d

dr ,
d
dr = 1

R
d
dy . The simplifying assumptions

can be then applied: i) the radial velocity component is small, as well as the
ratio u/R and the term in the radial direction; ii) the terms ∂2

∂z2
in the axial

direction are negligible, leading to the following system:

∂u

∂t
= − 1

ρR

∂p

∂y
+
µ

ρ
[

1
yR2

∂u

∂y
+

1
R2

∂2u

∂y2
− u

R2y2
] (3.4)

∂w

∂t
= −1

ρ

∂p

∂z
+
µ

ρ
[

1
yR2

∂w

∂y
+

1
R2

∂2w

∂y2
] (3.5)

u

Ry
+

1
R

∂u

∂y
+
∂w

∂z
= 0 (3.6)

Studies on the respiratory system using similar simplifying assumptions can
be found in (Franken et al. 1981, Olson et al. 1970, Pedley et al. 1971). Given
the pressure gradient is periodic, it follows that also the pressure p(y, z, t) and
the other velocity components u(y, z, t), w(y, z, t) are periodic, as in:

p(y, z, t) = AP (y)ejω(t−z/c̃),

u(y, z, t) = AU (y)ejω(t−z/c̃),

w(y, z, t) = AW (y)ejω(t−z/c̃)

(3.7)
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where c̃ denotes the complex velocity of wave propagation and j =
√
−1.

Further simplifications lead to the following system of equations:

u = jωR
µc̃ {C1

2
δj3/2

J1(δj3/2y) + AP
ρc̃ y}e

jω(t− z
c̃

) or

u = C1
jωR
δj3/2c̃

J1(δj3/2y)ejω(t− z
c̃

) + R
2ρc̃MP e

j(ωt−ΦP )

(3.8)

w = {C1J0(δj3/2y) + AP
ρc̃ }e

jω(t− z
c̃

) or

w = C1J0(δj3/2y)ejω(t− z
c̃

) + MP
ωρ e

j(ωt−ΦP−π
2

)

(3.9)

p(t) = AP e
jω(t− z

c̃
) or − dp

dz = MP e
j(ωt−ΦP ) (3.10)

with C1 = −AP
ρc̃

1
J0(δj3/2)

, AP the amplitude of the pressure wave, J0 the
Bessel function of the first kind and zero degree, J1 the Bessel function of
the first kind and first degree (Abramowitz & Stegun 1972), and in which:

−dp
dz

=
jω

c̃
AP e

jω(t− z
c̃

) = MP e
j(ωt−ΦP ) (3.11)

such that
AP e

jω(t− z
c̃

) =
c̃

ω
MP e

j(ωt−ΦP−π/2) (3.12)

It is supposed that the movement of the (relatively short) elastic airway ducts
is limited to the radial movement ζ(z, t) of the tube, being dependent only
on the longitudinal coordinate and time. This supposition is valid for short
segments (� wavelength of the pressure wave) in which the longitudinal
movement is negligible compared to the radial. The wavelength correspond-
ing to the tracheal tube is about 2.5m long, much longer than the length of
the tube itself; hence, the supposition is valid in our case (Ionescu 2008).
Although the inspiratory and expiratory movements of the airways involve
both radial as well as longitudinal movement, we restrict our analysis to the
radial elongation only. The Poisson coefficient is denoted by νP and will be
set to 0.45 (Lai & Hyatt 2000). The problem now contains four unknowns:
u(y, z, t), w(y, z, t), p(z, t), and ζ(z, t); therefore we need an extra equation
in order to solve the system: the pipeline equation. The movement equation
of the wall follows from the dynamical equilibrium of the forces applied on
the wall, similar to the work reported in (Olufsen 2004). Denoting with ζ
the elongation of the tube radius from R to R + ζ, we have the dynamic
equilibrium equation in the radial direction:

p(R+ ζ)dθdz + h E
1−ν2

P

ζ
Rdθdz = hρwall(R+ ζ)dθdz d

2ζ
dt2 (3.13)
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where R is the initial (steady-state) radius, h is the thickness of the wall, E
is the effective modulus of elasticity, ρwall is the effective density of the wall
and νP is the Poisson coefficient. The modulus of elasticity and the wall
density have to take into account that the airways are a combination of soft
tissue and cartilage, the percent of which varies with the airway levels.
In this model, the effective elastic modulus and wall density, respectively, are
considered in function of the airway tissue structure:

E = κEc + (1− κ)Es,
ρwall = κρc + (1− κ)ρs

(3.14)

taking into account at each level the fraction amount κ of corresponding
cartilage tissue (index c) and soft tissue (index s) and with Ec=400kPa,
Es=60kPa, ρc=1140 kg/m3, ρs=1060 kg/m3.
The values of corresponding cartilage fraction are given in table 3.1. Assum-
ing a negligible displacement ζ in comparison to R, one can simplify (3.13)
with all terms in ζ/R. Dividing by Rdzdθ, leads to the simplified equation
of motion for the elastic airway wall:

p+
Eh

1− ν2
P

ζ

R2
= ρwallh

d2ζ

dt2
(3.15)

The set of equations (3.4)-(3.6) and (3.15) form a system with four unknown
parameters.
For a rigid pipeline we have that

ζ = 2Rejω(t− z
c̃

); (3.16)

introducing this relation in (3.15) and using (3.10) we obtain that

2R =
AP

( E
1−ν2

p

h
R2 − ρwallhω2)

, (3.17)

such that the movement of the airway wall is given as a function of the pres-
sure

ζ =
AP

( E
1−ν2

p

h
R2 − ρwallhω2)

· ejω(t− z
c̃

). (3.18)

The equation for the axial velocity remains the same as in case of a rigid
pipeline:

w(y) =
MP

ωρ
M0(y)ej(ωt−ΦP−π/2+ε0(y)). (3.19)
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where:

M0(y)ejε0(y) = 1− (δj3/2y)
(δj3/2)

(3.20)

Similarly, we define:

M1e
jε1 = 1− 2J1(δj3/2)

(J0(δj3/2)δj3/2)

M2(y)ejε2(y) = 1− 2J1(δj3/2y)

(J0(δj3/2)δj3/2)

(3.21)

denoting the modulus and phase of the Bessel functions of first kind Ji and
ith order (Abramowitz & Stegun 1972). For an elastic pipeline, the no-slip
condition is still valid (w = 0 for y = ±1), such that the radial velocity is:

u(y) = jωR
2ρc̃ {y −

2J1(δj3/2y)

J0(δj3/2y)δj3/2
}AP ejω(t− z

c̃
) =

Ry
2ρc̃{y −

2J1(δj3/2y)

J0(δj3/2)δj3/2
}MP e

j(ωt−ΦP )

(3.22)

and using (3.21), the equivalent form of (3.22) becomes:

u(y) =
R

2ρc̃
MPM2(y)ej(ωt−ΦP+ε2(y)). (3.23)

The flow is given by:

Q =
πR2MP

ωρ
M1e

j(ωt−ΦP−π/2+ε1) =
πR4MP

µδ2
M1e

j(ωt−ΦP−π/2+ε1).

(3.24)
The effective pressure wave has the general form of

p(z, t) = AP e
j(ω(t− z

c̃
)−φP ), (3.25)

where φP can be a phase shift for z=0 at t=0. It follows that

−dp
dz

= MP e
j(ωt−ΦP ) =

APω

c̃
ej(ω(t− z

c̃
)−φP+π/2). (3.26)

For z=0, it follows that

MP e
j(ωt−ΦP ) =

APω

ć0

√
M1

ej(ωt−φP+π/2−ε1/2), (3.27)

from which we have that
MP =

APω

ć0

√
M1

(3.28)
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and
ΦP = φP − π/2 + ε1/2. (3.29)

The pressure gradient is related to the characteristics of the airway duct via
the Moens-Korteweg relation for the wave velocity ć0, with

ć0 =

√
Eh

(2ρR(1− ν2
P ))

. (3.30)

The model for wave propagation in function of the pressure p (kPa) for ax-
ial w (m/s) and radial u (m/s) velocities, for flow Q (l/s) and for the wall
deformation ζ (%) at the axial distance z=0 is given by the set of equations:

p(t) = AP e
j(ωt−φP ) (3.31)

u(y, t) =
RAPω

2ρć2
0

· M2(y)
M1

cos(ωt− ε1 − φP + ε2(y) +
π

2
) (3.32)

w(y, t) =
R2APω

ć0µ
√
M1
· M0(y)

δ2
sin(ωt− ε1

2
− φP + ε0(y) +

π

2
) (3.33)

Q(t) =
πR4

µ

APω

ć0

√
M1

M1

δ2
sin(ωt+

ε1

2
− φP +

π

2
) (3.34)

ζ(t) =
AP

hE
R2 − ρwallhω2

cos(ωt− φP ) (3.35)

with
AP = 2R(

E

1− ν2

h

R2
− ρwallhω2), (3.36)

ć0 =

√
Eh

(2ρR(1− ν2
P ))

, (3.37)

One should note that the model given by (3.31)-(3.35) is a linear hydrody-
namic model, adapted from Womersley (Womersley 1957) and further de-
veloped by numerous authors, such as in (Olufsen 2004, Segers et al. 1997).
The assumption that air is incompressible and Newtonian has been previously
justified and the equations are axi–symmetric for flow in a circular cylinder.
The boundary condition linking the wall and pipeline equations (3.31)-(3.35)
is the no-slip condition that assumes the fluid particles adherent to the inner
surface of the airway and hence to the motion of the elastic wall. Due to the
fact that the wall elasticity is determined by the cartilage fraction in the tis-
sue, it is possible to consider variations in elasticity with morphology, which
in turn varies with pathology.
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3.3 Anatomy and morphology of the respiratory tree

There are two representative sets of airway morphological values: the sym-
metric case and the asymmetric case of the respiratory tree, schematically
depicted in figure 3.1. The symmetric case assumes a dichotomously equiva-
lent bifurcation of the airways in sub-sequent levels and is agreed by a group
of authors e.g. (Weibel 2005, Mandelbrot 1983, Sauret et al. 1999) as in ta-
ble 3.1. The asymmetric case is when the bifurcations are still dichotomous,
but they occur in non-sequent levels, as given in table 3.2. The parameter ∆
denotes the asymmetry index. In this case, a parent airway will split into two
daughters: one of subsequent level m+ 1 and one of level m+ 1 + ∆. This
latter anatomical context is agreed by another group of authors: (Horsfield
et al. 1971, Habib et al. 1994).

Figure 3.1: Schematic representation of the bronchial tree: generations 1-16
transport gas and 17-24 provide gas exchange.

Generally, it is considered that if the Reynolds number NRE is smaller than
2000, then the airflow is laminar; otherwise it is turbulent (Welty et al. 1969).
Based on the airway geometry and on an the average inspiratory flow rate
of 0.5 (l/s) during tidal breathing conditions, the Reynolds number can be
calculated as:

NRE = w · 2R · ρ
µ

(3.38)
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Depth Length Radius Wall thickness Cartilage
m ` (cm) R (cm) h (cm) fraction κ
1 10.0 0.80 0.3724 0.67
2 5.0 0.6 0.1735 0.5000
3 2.2 0.55 0.1348 0.5000
4 1.1 0.40 0.0528 0.3300
5 1.05 0.365 0.0409 0.2500
6 1.13 0.295 0.0182 0.2000
7 1.13 0.295 0.0182 0.0922
8 0.97 0.270 0.0168 0.0848
9 1.08 0.215 0.0137 0.0669
10 0.950 0.175 0.0114 0.0525
11 0.860 0.175 0.0114 0.0525
12 0.990 0.155 0.0103 0.0449
13 0.800 0.145 0.0097 0.0409
14 0.920 0.140 0.0094 0.0389
15 0.820 0.135 0.0091 0.0369
16 0.810 0.125 0.0086 0.0329
17 0.770 0.120 0.0083 0.0308
18 0.640 0.109 0.0077 0.0262
19 0.630 0.100 0.0072 0.0224
20 0.517 0.090 0.0066 0.0000
21 0.480 0.080 0.0060 0.0000
22 0.420 0.070 0.0055 0.0000
23 0.360 0.055 0.0047 0.0000
24 0.310 0.048 0.0043 0.0000

Table 3.1: The tube parameters for the sub-glottal airways depths, whereas
depth 1 denotes the trachea and depth 24 the alveoli, as used in (Hou
et al. 2005, Harper et al. 2001, Lai & Hyatt 2000, Mauroy 2005, Weibel
1963, 2005)
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Depth Length Radius Wall thickness Cartilage bifurcation
m ` (cm) R (cm) h (cm) fraction κ ∆
1 10.0 0.80 0.3724 0.67 1
2 5.0 0.6 0.1735 0.5000 2
3 2.2 0.55 0.1348 0.5000 3
4 1.1 0.40 0.0528 0.3300 3
5 1.05 0.365 0.0409 0.2500 3
6 1.13 0.295 0.0244 0.2000 3
7 1.13 0.295 0.0244 0.0926 3
8 0.97 0.270 0.0205 0.0851 3
9 1.08 0.215 0.0149 0.0671 3

10 0.860 0.175 0.0126 0.0526 3
11 0.950 0.175 0.0126 0.0525 3
12 0.990 0.155 0.0118 0.0450 3
13 0.800 0.145 0.0114 0.0410 3
14 0.920 0.140 0.0112 0.0389 3
15 0.820 0.135 0.0111 0.0370 3
16 0.810 0.125 0.0107 0.0329 3
17 0.770 0.120 0.0105 0.0309 3
18 0.640 0.109 0.01 0.0262 3
19 0.630 0.100 0.0096 0.0224 3
20 0.517 0.090 0.0091 0.0000 3
21 0.480 0.080 0.0085 0.0000 3
22 0.420 0.070 0.0079 0.0000 3
23 0.360 0.055 0.0067 0.0000 2
24 0.310 0.048 0.0060 0.0000 2
25 0.250 0.038 0.0050 0.000 1
26 0.11 0.0315 0.0042 0.000 0
27 0.131 0.0265 0.0036 0.000 0
28 0.105 0.024 0.0032 0.000 0
29 0.075 0.0215 0.0029 0.000 0
30 0.059 0.04 0.0052 0.000 0
31 0.048 0.04 0.0052 0.000 0
32 0.048 0.04 0.0052 0.000 0
33 0.048 0.04 0.0052 0.000 0
34 0.048 0.04 0.0052 0.000 0
35 0.048 0.04 0.0052 0.000 0

Table 3.2: The tube parameters for the sub-glottal airways depths, whereas
depth 1 denotes the trachea and depth 35 the alveoli, as used in (Horsfield
et al. 1971, Habib et al. 1994)
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with ρ = 1075 (g/m3) the air density BTPS (Body Temperature and Pressure,
Saturated) and µ = 0.018 (g/m-s) the air viscosity BTPS. We have verified
the values for the Reynolds number, which indeed indicated laminar flow
conditions throughout the respiratory tree, varying from 1757 in the trachea
to 0.1 in the alveoli (Ionescu 2008). Hence, the assumption of laminar flow
conditions during tidal breathing is justified.
For deriving the parameters to be used later in an electrical equivalent model
of the tree, it suffices to treat the symmetric case. The influence of asymmetry
will be discussed in the next chapter.

3.4 Electrical Equivalent

By analogy to electrical networks, one can consider voltage as equivalent
for respiratory pressure P and current as equivalent for air-flow Q (Kundur
1994). Electrical resistances Re represent respiratory resistance that occur
as a result of air-flow friction in the airways, electrical capacitors Ce repre-
sent volume compliance of the airways which allows them to inflate/deflate,
electrical inductors Le represent inertia of air and electrical conductances Ge
represent the viscous losses. These properties are often clinically referred to
as mechanical properties: resistance, compliance, inertance and conductance.
The aim of this section is to derive them in function of airway morphology in
case of an elastic airway wall (Re,Le,Ce) and in case of a viscoelastic airway
wall (Re,Le,Ce,Ge).

Figure 3.2: Schematic representation of the infinitesimal distance dx over
the transmission line and its parameters.

Suppose the infinitesimal distance dx of a transmission line as depicted in
figure 3.2. We have the distance-dependent parameters: lx - induction/m; rx
- resistance/m; gx - conductance/m; cx - capacity/m. We consider the analogy
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to voltage as being the pressure p(x, t) and to current as being the air-flow
q(x, t) and we apply the transmission line theory. We shall make use of the
complex notation:

p(x, t) = P (x)ej(ωt−φP )

q(x, t) = Q(x)ej(ωt−φQ) (3.39)

where x is the longitudinal coordinate (m), t is the time (s), ω is the angular
frequency (rad/s), f is the frequency (Hz) and j =

√
−1. The pressure and

the flow are harmonics, with the modulus dependent solely on the location
within the transmission line (x). φP and φQ are the pressure and flow phase
angles at t=0. The voltage difference between two points on the transmission
line denoted as (x) and (x + dx) is due to losses over the resistance and
inductance:

p(x+ dx)− p(x) = −rxdx · q − lxdx
∂q

∂t
(3.40)

and the current difference between the same points is due to leakage losses
and storage in the capacitor:

q(x+ dx)− q(x) = −gxdx · p− cxdx
∂p

∂t
(3.41)

After division with dx, knowing that in the limit dx −→ 0, and introducing
(3.39) in the first and second derivation gives, respectively:

∂P
∂x = −(rx + jωlx)Q = −ZlQ

∂Q
∂x = −(gx + jωcx)P = −P/Zt

∂2P
∂x2 = −(rx + jωlx)∂Q∂x = −Zl ∂Q∂x

∂2Q
∂x2 = −(gx + jωcx)∂P∂x = −∂P

∂x /Zt

(3.42)

with

Zl = −
∂P
∂x

Q
= rx + jωlx (3.43)

the longitudinal impedance and

Zt =
P

−∂Q
∂x

=
1

gx + jωcx
(3.44)
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the transversal impedance.
From (3.42) we obtain the system equations for P (x) and Q(x):

∂2P
∂x2 − ZlP/Zt = 0

∂2Q
∂x2 − ZlQ/Zt = 0

(3.45)

Introducing the notation

γ =
√

(rx + jωlx)(gx + jωcx) =
√
Zl
Zt
, (3.46)

it follows that (3.45) can be re-written as

∂2P
∂x2 − γ2P = 0 and

∂2Q
∂x2 − γ2Q = 0,

(3.47)

to which the solution is given by

P (x) = Ae−γx +Beγxand

Q(x) = Ce−γx +Deγx
(3.48)

with complex coefficients A,B,C,D; using (3.48) in the first 2 relations from
(3.42), the system can be reduced to:

Q(x) =
1
Z0

(Ae−γx −Be+γx),with (3.49)

Z0 =

√
rx + jωlx
gx + jωcx

=
√
ZlZt, (3.50)

in which Z0 is the characteristic impedance of the transmission line cell.
Using the trigonometric relations

sinh(γx) = eγx−e−γx
2 ,

cosh(γx) = eγx+e−γx

2

(3.51)

we can write the relationship between the input x = −` and the output x = 0
as:

P1 = cosh(γ`) Z0 sinh(γ`) P2

Q1 = 1
Z0

sinh(γ`) cosh(γ`) Q2
(3.52)
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with

Z0 =

√
rx + jωlx
gx + jωcx

=
√
ZlZt (3.53)

the characteristic impedance and

Zl = rx + jωlx = γZ0 (3.54)

the longitudinal impedance, respectively

Zt = 1/(gx + jωcx) = Z0/γ (3.55)

the transversal impedance.
The relation for the longitudinal impedance in function of aerodynamic vari-
ables is obtained from (3.43), and gives:

Zl = jωρ
πR2M1

e−jε1 = µδ2

πR4M1
e−j(

π
2
−ε1)

= µδ2

πR4M1
[sin(ε1) + j cos(ε1)];

(3.56)

respectively, in terms of transmission line parameters, the longitudinal
impedance is given by Zl = rx + jωlx.
By equivalence of the two relations we have that the resistance per unit dis-
tance is:

rx =
µδ2

πR4M1
sin(ε1) (3.57)

It follows that ωlx = µδ2

πR4M1
cos(ε1) and recalling that δ = R

√
ωρ
µ , the

inductance per unit distance is:

lx =
ρ

πR2

cos(ε1)
M1

(3.58)

3.4.1 Elastic Tube walls

In case of an elastic pipeline, the characteristic impedance is obtained using
relations (3.43), (3.44) and (3.50), leading to:

Z0 =
ρ

πR2

1
1− ν2

P

√
Eh

2ρR
1√
M1

e−j
ε1
2 (3.59)
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and for a lossless line (no air losses trough the airway walls, thus conduc-
tance gx is zero), the transversal impedance is

Zt =
1

jωcx
=
Z2

0

Zl
=

Eh

(jω(2πR3(1− ν2
P ))

, (3.60)

from where the capacity per unit distance can be extracted:

cx =
2πR3(1− ν2

P )
Eh

(3.61)

Thus, from the geometrical (R, h) and mechanical (E, νP ) characteristics of
the airway tube, and from the air properties (µ, ρ) one can express the rx,
lx and cx parameters. In this way, the dynamic model can be expressed in
an equivalent lossless transmission line by equations (3.57)-(3.61). Notice
that the compliance parameter cx in (3.61) is independent of the frequency,
while both rx (3.57) and lx (3.58) are dependent on frequency trough the δ
parameter, present also in M1. Because we are interested only in the input
impedance, we can disregard the effects introduced by the reflection coef-
ficient. Hence, for |γ| � 1, one can estimate that over the length ` of an
airway tube, we have the corresponding properties (Ionescu et al. 2009f ):

Re = rx` = `
µδ2

πR4

sin(ε1)
M1

(3.62)

Le = lx` = `
ρ

πR2

cos(ε1)
M1

(3.63)

Ce = cx` = `
2πR3(1− ν2

P )
Eh

(3.64)

3.4.2 Viscoelastic tube walls

Viscoelasticity is introduced assuming a complex function for the elastic
modulus, yielding a real and an imaginary part (Bates 2007, Suki et al. 1994,
Craiem & Armentano 2007). This can then be written as a corresponding
modulus and phase:

E∗(jω) = ES(ω) + jED(ω) = |E| ejϕE (3.65)

The complex definition of elasticity will change the form of the wave velocity
(3.37) into:

ć0 =

√
|E|hejϕE

2ρR(1− ν2
P )

=

√
|E|h

2ρR(1− ν2
P )
ej

ϕE
2 (3.66)
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The viscoelasticity of the wall is determined by the amount of cartilage frac-
tion in the tissue, as the viscous component (collagen), respectively by the
soft tissue fraction in the tissue as the elastic component (elastin) (Bates
2007). The equivalent of (3.65) is the ratio between stress and strain of the
lung parenchymal tissue. The Young moduli is then defined as the slope of
the stress-strain curve. With the model given by the above described equa-
tions, it is possible to consider variations in viscoelasticity with morphology
and with pathology. This issue will be discussed in a next chapter.
In case of a viscoelastic pipeline, the characteristic impedance is given by

Z0 =
ρ

πR2

1
1− ν2

P

√
|E|h
2ρR

1√
M1

e−j(
ε1
2

+
ϕE
2

) (3.67)

and the transversal impedance is given by

Zt =
1

gx + jωcx
=
Z2

0

Zl
= 1/

(
ω

2πR3(1− ν2
P )2

|E|h
ej(

π
2
−ϕE)

)
, (3.68)

from where the conductance per unit distance can be extracted:

gx = ω
2πR3(1− ν2

P )2

|E|h
sinϕE (3.69)

and the capacitance per unit distance is given by:

cx =
2πR3(1− ν2

P )2

|E|h
cosϕE (3.70)

Thus, from the geometrical (R, h) and mechanical (E∗, νP ) characteristics of
the airway tube, and from the air properties (µ, ρ) one can express the rx, lx,
gx and cx parameters. In this way, the dynamic model can be expressed in an
equivalent transmission line defined by equations (3.57),(3.58),(3.69),(3.70).
Similar to the elastic wall case, we can estimate that over the length ` of an
airway tube, we have the corresponding properties:

Re = rx` = `
µδ2

πR4M1
sin(ε1) (3.71)

Le = lx` = `
ρ

πR2

cos(ε1)
M1

(3.72)

Ge = gx` = `ω
2πR3(1− ν2

P )2

|E|h
sinϕE (3.73)
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Ce = cx` = `
2πR3(1− ν2

P )2

|E|h
cosϕE (3.74)

In the case of blood flow, leakage was interpreted as the blood lost due to
vessels branching off from the parent vessel, with conductance as the electri-
cal equivalent (Olufsen 2004). Our relation for conductance (3.73) is similar
to that obtained in (Olufsen 2004).

3.4.3 Generic Recurrence in the Airways

Figure 3.3-left depicts the variation of the mechanical parameter ratios within
consecutive airway levels, in a branch. The ratio for the resistance is supra-
unitary, hence the resistance increases with the branch. Similarly, a sub-
unitary ratio for compliance denotes a decreases in elasticity with each level.
Both effects are due to a decrease in the airway cross-section. Figure 3.3-
right depicts the variation of the mechanical parameter ratios with the airway
level. Due to an increase in the total cross-sectional area from one level to
another, the total resistance decreases (sub-unitary ratio), whereas the total
compliance increases (supra-unitary ratio). Exponential changes for resis-
tance, inertance and elastance from level 10 onwards show that mechanical
properties become important towards the lower ducts (gas exchange).

Figure 3.3: The ratio between two consecutive branches belonging to con-
secutive levels (left) and between two consecutive levels (right) in the healthy
lung for resistance Re, inertance Le and compliance Ce.

Notice in figure 3.3 that from level 11 onward, the variances of the ratios are
smaller (except the last 2 bifurcations: 22 and 23). Physiologically, level 11
corresponds to the bronchiole (Harper et al. 2001, Olson et al. 1970). We can
correlate these effects to the variations in the airway radius and in the airway
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cross-sectional area respectively. The radius changes from 8mm to 1.75mm,
whereas the area varies from 254.5 mm2 to 2.09mm2 from trachea (level 1) to
bronchiole (level 11). From level 11 onward, these changes are not so abrupt,
thus resulting in lower variance of the mechanical parameters values as well.
The nominal simulation of the respiratory tree leads to ratios as in table 3.3.

3.5 Results for Elastic Walls

The set of equations given by (3.31)-(3.35) can be used to investigate the
variations in tidal breathing pressure and flow waves caused by pathology in
the nominal function of the lung. Tidal breathing characterizes the inhalation
and exhalation at rest (no forceful maneuvers, no exercise, etc). Two distinct
scenarios will be studied: normal (healthy) and pathologic.
For a healthy subject, during tidal conditions we have a typical breathing
frequency of 0.25 Hz (i.e. a breathing period of 4 seconds) and respective
calculations of the parameters dependent on the tube geometry as in table 3.1
(Hou et al. 2005, Harper et al. 2001, Lai & Hyatt 2000, Mauroy 2005, Weibel
1963, 2005), with the phase shift φP=0, and a reference driving pressure
AP=0.1 kPa.
For a pathologic case, two distinct cases can be observed:

• when mucus and other particles obstruct the airway, resulting in
changes in the inner radius; and

• when structural changes occur, in a more advanced level of the disease,
changing the elastic modulus of the airway tissue.

Both these cases will be simulated at the alveolar level (m=24), for varying
the radius values as in: R=0.048 cm; 0.024 cm; 0.012 cm for the first case
and respectively varying the E-modulus values as in: E=60 kPa (compliant);
230 kPa; 400 kPa (stiff) for the second case.
Similarly, variations in pressure and flow patterns from specific diseases will
have effect on the parameters from (3.57)-(3.61), affecting the total values
of the input impedance. To illustrate these effects, specific morphological
changes will be applied and the impedance will be evaluated over the standard
clinical range of frequencies (4-48 Hz) for asthma and COPD pathologies.
Asthma is characterized by airway wall inflammation and thickening with
mucus in the central and peripheral airways (levels 1-7) (Busse & Lemanske
2001, Vignola et al. 2004). COPD is characterized by increased resistance
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of small conducting airways (levels 4-14) by airway wall thickening and mu-
cus presence, combined with alveolar wall destruction of the emphysematous
lung parenchyma (levels 18-24) (Hogg et al. 2004, Vignola et al. 2004).

3.5.1 General model performance

The pressure gradient, flow, wall displacement and radial velocity, function
of the airway geometry depend on the morphological changes corresponding
to each airway level. From all airway levels, results are depicted for levels 1
(trachea), 5 (bronchi) 13 (bronchiole) and 24 (alveoli) in figure 3.4. Notice
that each of the parameters in model (3.31)-(3.35) are varying with the tube
geometry. Figure 3.4 depicts the corresponding effects in pressure gradient,
flow and wall displacement as resulted from pressure variations in percent
values with respect to the initial radius of the tube. The pressure gradient
is increasing with airway levels, becoming significant in the gas exchange
ducts (levels 13-24), whereas the flow is decreasing from 15 l/s in the trachea
to 0.00001 l/s at the alveolar level (the evaluation was made in open-system
conditions, hence the values in the trachea might be over-estimated). The
wall displacement is negligible in central airways, but higher than 5% in the
gas exchange ducts. The pressure drop over each bifurcation is given in figure
3.4, where it can be observed that the first 5 bifurcations account for 80% of
total values.

3.5.2 Effect of pathologies

The influence of disease which affects the wall structure in terms ofE-moduli
or the airway radius R is represented in figures 3.5 and 3.6. The results
show that (as expected) higher pressure must be applied in order to obtain the
same (or even less) air flow in the alveoli in case of disease. That explains
why most respiratory diseases involve higher (sometimes dangerous) work
of breathing, such as in COPD or lung injury patients. It can be observed
that the influence of airway obstruction (changes in radius) is more drastic on
the airflow than on the pressure gradient, whereas the influence of changing
the wall structure (variations in tissue elasticity) affects more the pressure
gradient than airflow. The analysis presented here is similar to studies in
vaso-dilatation and vaso-constriction of arteries, by altering the ratio Eh/R
(Olson et al. 1970). However, the separate study of the influence of E and R
gives more insight on how each term changes respiratory pressure and flow
with pathology.
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Figure 3.4: (top-left) the pressure gradient; (top-right) the flow; (bottom-
left) the wall displacement in % relative to the initial airway radius and
(bottom-right) the pressure drop at each bifurcation, as function of morphol-
ogy at various levels.

Figure 3.5: Variations in pressure gradient at alveoli level in function of
(left) changes in E and (right) changes in R.
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Figure 3.6: Variations in flow at alveoli level in function of (left) changes in
E and (right) changes in R.

The results for asthma and COPD cases are presented in figure 3.7. The lo-
cations of the changes in morphology with each disease are mentioned in
previous section. In asthma, airway wall inflammation and thickening with
mucus is represented by altering the radius by R − 0.5 · h and wall thick-
ness 1.5 ·h. Altering the radius represents the presence of mucus and remod-
elling entails thickening of the airway walls, with increases in smooth muscle
(Elizur et al. 2008, Vignola et al. 2004). In COPD, increased resistance has
been represented by R − 5 · h in small conducting airways (levels 4-14) and
by 1.5 ·R in acinar airways (levels 13-24); airway wall thickening as 6 ·h for
levels 4-14, combined with alveolar wall destruction of the emphysematous
lung parenchyma h = 0.00001 and κ = 0 (levels 18-24) (Hogg et al. 2004,
Vignola et al. 2004).
One can observe the above mentioned effects of airway remodelling on the
mechanical properties Re (figure 3.7-top-left), Le (figure 3.7-top-right) and
Ce (figure 3.7-bottom-left) in healthy, asthma and COPD scenarios, for each
branch. Figure 3.7-bottom-right depicts the net effect of these changes on
the total input impedance values between 4-48 Hz (typical frequency range
evaluated in clinical practice).
According to the specific pathology, asthma is characterized by increased
resistance due to central airway collapse and increased inertance values due
to increased mucus secretion (peaks at levels 6-7, where the collapse of the
airways has been simulated) (Busse & Lemanske 2001). By contrast, COPD
is characterized by decreased resistance at lower airway levels due to empty-
spaced lung resulting from destruction of lung parenchyma and increasing
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Figure 3.7: Variations in the mechanical parameters: resistance Re (top-
left); inertance Le (top-right); compliance Ce (bottom-left) in healthy (con-
tinuous line), asthma (star-dashed line) and COPD (dashed line) cases. The
corresponding total input impedance by means of its real and imaginary
parts (bottom-right).
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compliance (stiffness) due to fibrosis and rupture of elastic cross-links (Hogg
et al. 2004). These results will be revisited in a following chapter, for a
comparison against measured data.

3.6 Results for Viscoelastic Walls

Variations in pressure and flow patterns from specific diseases will have ef-
fect on the mechanical parameters (3.71)-(3.74), affecting the total values
of the input impedance. To illustrate these effects, specific morphological
changes will be applied and the evolution of the mechanical parameters will
be evaluated for emphysema and fibrosis pathologies.
Pulmonary fibrosis involves scarring of the lung. Gradually, the air sacs of
the lungs become replaced by fibrotic tissue. When the scar forms, the tissue
becomes thicker causing an irreversible loss of the tissues ability to transfer
oxygen into the bloodstream. Airway remodeling in fibrosis is character-
ized pathologically by sub-epithelial deposition of collagen in the airways,
increases in airway smooth-muscle-cell mass, mucus gland hyperplasia, and
mucosal neovascularization. The increased thickness is due to deposition of
collagen and several other muscle-cell components. The changes in tissue
are accompanied by widespread inflammation, reducing the air space or even
filling it completely with inflammatory products (Elizur et al. 2008).
Pulmonary emphysema is characterized by loss of elasticity (increased pul-
monary compliance) of the lung tissue, from destruction of structures sup-
porting the alveoli, and destruction of capillaries feeding the alveoli. Conse-
quently, the small airways collapse during exhalation, as alveolar collapsibil-
ity is increased, preventing the air to move into the lungs (Hogg et al. 2004,
Vignola et al. 2004).

3.6.1 Effect of Pathologies

One can expect that the ratios are changing with pulmonary diseases, as sug-
gested by both figures 3.7 and figures 3.8. In figures 3.8, the changes in
fibrosis have been simulated in our model by increasing the stiffness of the
smooth tissue elasticity three times, reducing the radius with 50 percent and
increasing airway thickness by a factor 20, in the acinar airways (levels 13-
24). In emphysema, tissue destruction at acinar level has been simulated by
increased airway radius with 50 percent, an increased thickness of factor 5
and rupture of alveolar ligaments by reducing the collagen density to half.
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Figure 3.8: Variations in the mechanical parameters in each airway duct:
resistance (top-left); inertance (top-right); compliance (middle-left); con-
ductance (middle-right); complex input impedance (bottom-left); and equiv-
alent Bode plot (bottom-right) in nominal (continuous line), fibrosis (+) and
emphysema (o) cases.
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nominal fibrosis emphysema
ratio R 1.5207± 0.590 2.738± 4.2877 1.455± 0.684

and 1.406± 0.336 and 1.406± 0.336 and 1.406± 0.336
ratio L 1.134± 0.319 1.347± 0.771 1.097± 0.3740

and 1.116± 0.123 and 1.116± 0.123 and 1.116± 0.123
ratios C 0.871± 0.323 0.752± 0.344 0.814± 0.5297

and 0.727± 0.123 and 0.716± 0.120 and 0.719± 0.121

Table 3.3: Ratios of the mechanical parameters between consecutive
branches. Values are presented as mean ± SD for the 1..15 levels, respec-
tively for the 16..24 levels. The ratios for G are the same as those of C.

Further on, the results with disease are in agreement with the respective na-
ture of airway remodelling.
In fibrosis, the mucus and fibrotic tissue appearance leads to increased over-
all resistance, visible in the increased values for the real part of the complex
impedance, and shifting the imaginary part to the right. The latter observa-
tion is in agreement with published reports on subjects diagnosed with fi-
brosis (Elizur et al. 2008). In the Bode plot, increase in resistance is visible
in the increased magnitude. The presence of the mucus will also affect vis-
coelasticity of the wall, therefore affecting inertance and compliance (see also
ratios in table 3.3). This will then change the imaginary part, by affecting the
resonance frequency (crossing from negative to positive values in imaginary
part), i.e. shifting it to the right. Similarly, the phase is affected in the Bode
plot.
In emphysema, due to the loss of interstitial tissue and lung parenchyma at
alveolar level, increased elasticity (due to empty alveolar space) will decrease
overall resistance, but the mass of air involved in the respiration will be less.
This will result in low resonance frequency (short of breathing, resulting in
an increased breathing frequency and work of breathing). The equivalent
change in the impedance plots will be a shift upward of the imaginary part.
All these changes are in good agreement with the nature of the disease and
expected results from literature reports (Barnes 2000, Elizur et al. 2008).

3.7 Discussion

The results presented here are in agreement with previous studies and show
that predominant pressure drop occurs in the upper airways (first 5 bifurca-
tion levels) (Olson et al. 1970). In (Olson et al. 1970), airway elasticity is not
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included for computational reasons and the authors claim that if included,
the results will not improve too much due to numerical inaccuracies in tube
elasticity or elasticity in the spur of bifurcation. Our results show that elastic-
ity cannot be neglected, since its effects are varying significantly with airway
disease. For typical flow rates during spontaneous breathing ranging 0.5-1 l/s,
wall roughness is neglected since it has little effect in laminar flow conditions
and for low values of the Womersley parameter. The values of the Womersley
parameter δ are always less than 1, varying from 0.0471 in alveoli to 0.785
in the trachea. If one compares these values of δ for the circulatory system,
where values become as high as 24, deviations from Poiseuille parabolic flow
profile occur as a result (Pedley et al. 1971, Segers et al. 1997). This is not the
case for the laminar flow conditions during tidal breathing (Ionescu 2008).
We use a set of simplifying assumptions which are generally accepted from
previous studies (Franken et al. 1981, Mead 1961). Pressure related as-
sumptions: the pressure at the boundaries of all parts is the same at all points
of the respective boundaries. Three of the boundaries contain gas only on one
side: airway opening, alveolar surface and body surface. Uniform pressure is
valid if the gas is in continuity condition and no flow. These conditions are
fulfilled for the body surface, during panting at the airway opening and the
alveoli. The only part which is not in agreement with this hypothesis is the
pleural surface, which has tissue on both sides and its pressure distribution
cannot be predicted.
To summarize, the results are obtained under the following assumptions:

• laminar flow for typical Reynolds number during quiet breathing less
than 2000;

• ducts are long enough (this assumption is not true, thus neglecting the
entrance effects);

• the air is homogeneous and Newtonian;

• the axial velocity component is zero at the airway wall;

• linear (visco)elastic, uniform cylindrical duct (valid as approximation);

• for linearization we have assumed the following simplifications: a)
−ωR

c << δ, for in respiration we have values between 3.5904·10−5

and 2.1542·10−6; b) the air velocity is small compared to the wave ve-
locity; this is valid for most of the airways; i.e. in trachea there may
be velocities as high as 10m/s, with a wave velocity of 339m/s; c) the
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values for y vary between 0 −→ ±1 (rigid pipe), although in reality
it varies between 0 −→ ±(1 + ζ/R) (visco-elastic pipe); d) the E
modulus is dependent on the airway type (cartilage fraction);

• thin-walled ducts; for the healthy respiratory system, the ratio h/R
varies between 0.4625 in trachea, to 0.0896 in alveoli. When calcu-
lating the value for ć0, the geometrical characteristics are introduced,
modifying it accordingly.

Due to the fact that we do not seek to obtain a precise/exact value of the
pressure and flow components but merely a qualitative value, we consider
that a more complex formulation may be correct and more realistic, but may
serve little our objectives.
The results based on the Womersley theory have been used to determine an
electrical equivalent of the respiratory system and capture the mechanical
properties (3.62)-(3.64). For the respiratory system, transmission line models
are mostly used within high frequency ranges (above 100 Hz) for sound anal-
ysis diagnosis (Harper et al. 2001). However, for lower frequencies (0.1-50
Hz) the transmission line theory can be applied in a simplified form, leading
to the exact solution for pressure and flow changes in normal breathing con-
ditions. A study on the systemic circulation has been employed in (Olufsen
2004), leading to the same formula for the compliance (3.61). Similarity ex-
ists between the derivation of the input impedance in the respiratory tree in
this study and modeling the smaller systemic arteries, since in both simula-
tions the symmetric structure is employed, along with laminar flow condi-
tions, incompressibility, Newtonian fluid and the no-slip boundary condition.
The input impedance is extended to a more general tree in (Olufsen 2004),
by adding the equation of crossing a bifurcation based on a law on which the
geometry changes over the junction. Nevertheless, we may argue that our
choice of choosing to model a completely symmetric tree still reflects its es-
sential behavior, and can be extended with the asymmetry relations adapted
from (Olufsen 2004).
It is straightforward to apply airway altering/remodeling effects in this simple
model representation, but limitations should be taken into account. The major
errors which may occur in this study are determined by the heterogeneity of
the human lung, i.e. inter-subject variability can affect the values from table
3.1. However, these values are reported in several studies (Hou et al. 2005,
Harper et al. 2001, Lai & Hyatt 2000, Mauroy 2005, Weibel 2005) and they
had offered good basis for investigations, originally measured from excised
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lungs (Olson et al. 1970, Weibel 1963) and then in plastic casts (Sauret et al.
1999).
Another source for errors is neglecting the effects from the branching an-
gles. These angles influence the flow to change direction, may lead to an
asymmetrical velocity profile, to develop a secondary flow in the daughter
branches and the inner airway walls to be slightly stretched (Sauret et al.
1999). The change in cross-sectional areas which occurs from parent to
daughter branches in a bifurcation causes the fluid to undergo a deceleration
and may cause separation of adjoining streamlines.
Some nominal recurrence in the lungs is derived in Appendix D.

3.8 Conclusions

The novelty of the work presented in this chapter consists in that it introduces
the assumption of flexible airways in a simple form, taking into account the
wall tissue structure (in terms of cartilage and soft tissue percent and den-
sities) and derives the mechanical parameters to enable changes in airway
morphology with disease. The resulting models are therefore relatively sim-
ple and efficient to capture mechanical variations in lumped models (e.g. an
electrical equivalent).
Here, a mathematical model for the pressure and flow variations in the respi-
ratory tree has been developed based on similarity to the well-defined Wom-
ersley theory, which was hitherto applied only in models for the circulatory
system. Due to the fact that fractal-like geometry in both circulatory and
respiratory tree exists, theoretical developments for models of the circulatory
system were applicable in this study as well. The mathematical model is de-
veloped for tidal breathing conditions, allowing consequent assumptions to
simplify the complex modelling of aerodynamics. The influence of changes
in radius and elastic modulus with disease has been assessed in terms of pres-
sure and flow changes. The outcome of this pressure-flow dynamical model
is the electrical transmission line analogue. As a result, the electrical pa-
rameters for resistance, inductance, capacitance and conductance have been
determined over one airway.
In simulations for viscoelastic airways, variations in these parameters cor-
respond to the physiological insight. Although the simplifying assumptions
may introduce errors, these are not significant for our final objective.
The next step is to use the elastic and viscoelastic models of the airway ducts
to model the entire respiratory structure, preserving its intrinsic geometry.
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Chapter 4

The Fractal Structure of the
Lungs

The construction of the electrical ladder network equivalent using the ele-
ments determined in the previous chapter is detailed here. The cases of an
elastic tube wall and a viscoelastic tube wall are discussed, with supporting
analytical and simulated results. A generalization of the analytical results
is given, suggesting applicability to other branching systems. The estimated
results are successfully validated with measured data. The chapter ends with
a special analysis of the asymmetric branching and its consequences on the
total input impedance values.

Part of the material presented in this chapter has been used in the following
publications:

• Ionescu C., Muntean I., Tenreiro-Machado J., De Keyser R., Abrudean
M., (online) ”A Theoretical Study on Modelling the Respiratory Tract
With Ladder Networks by Means of Intrinsic Fractal Geometry”, IEEE
Transactions on Biomedical Engineering, Digital Object Identifier:
10.1109/TBME.2009.2030496;

• Ionescu C., Caicedo A., De Keyser R., (2007) ”Total respiratory
impedance analysis using ladder networks analogy for fractional-
order models” in Bulletin of the Transilvania University of Brasov,
Series A1, 14(49), ISSN 1223-9631, 227–234;

• Ionescu C., De Keyser R., (2008) ”The use of non-integer order mod-
elling in a tracheal simulation study”, in Transactions on Automatic
Control and Computer Science, 53(67), ISSN 1224-600X, 201–208;
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• Muntean I., Ionescu C., Nascu I., (2009), ”A simulator for the respi-
ratory tree in healthy subjects derived from continued fractions expan-
sion”, in AIP Conference Proceedings Book vol. 1117 (Proceedings of
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Systems), Eds. B. Iantovics, Enachescu C., F. Filip, ISBN: 978-0-7354-
0654-4, 225–231;

• Ionescu C., Oustaloup A., Levron F., Melchior P., Sabatier J., De
Keyser R. (2009), ”A model of the lungs based on fractal geometrical
and structural properties”, in: Proc. of the IFAC Int. Conf. on System
Identification, St. Malo, France, 994-999;

• Ionescu C., Muntean I., De Keyser R., (2009), ”The respiratory
impedance in an asymmetric model of the lung structure ”, in: Proc.
of the Int. Symp. on Understanding Intelligent and Complex Systems,
Tg Mures,Romania.

76



4.1. An elastic airway wall

4.1 An elastic airway wall

In this section, we make use of the formulas (3.62), (3.63) and (3.64), which
are calculated with the morphologic values from table 3.1. With the resis-
tance, inertance and capacitance values at hand, one is able to build an elec-
trical network. Suppose the electrical network as depicted in figure 4.1, which
preserves the geometry of the respiratory tree (Ionescu & De Keyser 2008d).
In this network, Zl∗m denotes the longitudinal impedance, whereas Zt∗m de-
notes the transversal impedance of the airway tubes and m denotes the level
in the respiratory tree (m = 1..N ).

Figure 4.1: Recursive tree representation of the respiratory tree in its elec-
trical equivalent.

Assuming that the flow Q is symmetric with respect to each bifurcation
(divides equally trough the branches) one can define the equivalent level
impedances and admittances as a function of powers 2. Hence, the total
resistance per level is given by (Muntean et al. 2009):

Rem = R∗em/2
m−1 (4.1)

with R∗em the resistance in a single branch. Similarly, the total inertance per
level is given by:

Lem = L∗em/2
m−1 (4.2)
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CHAPTER 4. THE FRACTAL STRUCTURE OF THE LUNGS

with L∗em the inertance in a single branch; finally, the total capacitance in a
level is given by:

Cem = C∗em · 2m−1 (4.3)

with C∗em the capacitance in a single branch. Using these relations, one
can simplify the electrical network from figure 4.1 to an equivalent lad-
der network, schematically depicted in figure 4.2. In this ladder network,
Zl∗m, with m = 1..N denotes the longitudinal impedance, which is defined
as: Zl∗m(s) = R∗em + L∗ems. Since both resistance and inertance in each
level are divided by 2m−1, then we can use the equivalent representation
Zlm(s) = Zl∗m/2

m−1, as in figure 4.2. In the same figure, the capacitance is
denoted using (4.3).

Figure 4.2: Equivalent ladder network for the symmetric recursive tree.

We introduce the following notations for the ratios between the levels:

Rem+1

Rem
= λ,

Lem+1

Lem
=

1
α
,
Cem+1

Cem
= χ (4.4)

with the ratios including both morphological and geometrical properties, as
in figure 4.2. Hence, using the morphological values from table 3.1 in (4.1),
(4.2) and (4.3), the ’nominal’ ratios from (4.4) are calculated and given in
table 4.1.

nominal levels 1..15 levels 16..24
λ 0.81± 0.32 0.68± 0.16

1/α 0.56± 0.17 0.56± 0.08
χ 1.71± 0.77 1.55± 0.29

Table 4.1: Ratios of the mechanical parameters between consecutive lev-
els. Values are presented as mean ± standard deviation values for the 1..15
levels, respectively for the 16..24 levels.

The total input impedance ZN (s) of the ladder network from figure 4.2 can
be written as a continuous fraction expansion (Oustaloup 1995). For sake of

78



4.1. An elastic airway wall

mathematical clarity, we shall derive the analysis in terms of the admittance,
which is the inverse of the impedance YN (s) = 1/ZN (s).
In this paper we make use of the theoretical basis developed in the past for
similar structures, but tailored upon the conditions and the characteristics of
the respiratory system.

Figure 4.3: General scheme of a ladder network in gamma-cell configura-
tion; where N denotes the total number of cells.

Consider the generalized case depicted in figure 4.3. The longitudinal and
transversal impedances can be defined irrespective of their elements, in func-
tion of voltage and current:

Zlm(s) =
Um−1(s)− Um(s)

Im−1(s)
(4.5)

and

Ztm(s) =
Um(s)

Im−1(s)− Im(s)
(4.6)

from which we can further write:

Um(s)− Um+1(s) = Zlm+1(s)Im(s), (4.7)

or, equivalently,
Im(s)
Um(s)

=
1/Zlm+1(s)

1 + Um+1(s)
Im(s)Zlm+1(s)

(4.8)

and

Im(s)− Im+1(s) =
Um+1(s)
Ztm+1(s)

, (4.9)

or, equivalently

Um+1(s)
Im(s)

=
Ztm+1(s)

1 + Ztm+1(s) Im+1(s)
Um+1(s)

(4.10)

79



CHAPTER 4. THE FRACTAL STRUCTURE OF THE LUNGS

From (4.8)-(4.10), the total admittance of the ladder at level m = 0 is given
by:

Y1(s) =
I0(s)
U0(s)

=
1/Zl1(s)

1 + U1(s)
I0(s)Zl1(s)

(4.11)

or, equivalently, by:

Y1(s) =
1/Zl1(s)

1 +
Zt1(s)/Zl1(s)

1 + Zt1(s)
I1(s)
U1(s)

(4.12)

If we calculate the total admittance until m = 1, we have that:

Y2(s) =
1/Zl1(s)

1 +
Zt1(s)/Zl1(s)

1 +
Zt1(s)/Zl2(s)

1 +
U2(s)

I1(s)Zl2(s)

(4.13)

or, equivalently,

Y2(s) =
1/Zl1(s)

1 +
Zt1(s)/Zl1(s)

1 +
Zt1(s)/Zl2(s)

1 +
Zt2(s)/Zl2(s)

1 + Zt2(s)
I2(s)
U2(s)

(4.14)

From (4.12)-(4.14) one may generalize via recurrence the form of the total
admittance with m = N cells, for N →∞:

YN (s) =
1/Zl1(s)

1 +
Zt1(s)/Zl1(s)

1 +
Zt1(s)/Zl2(s)

1 +
Zt2(s)/Zl2(s)

. . .
. . .

1 +
ZtN−1(s)/ZlN (s)

1 + ZtN (s)/ZlN (s)

(4.15)

which is, in fact, a continued fraction expansion (Oustaloup 1995). Re-
writing (4.15) using the explicit form of the longitudinal and transversal

80



4.1. An elastic airway wall

impedances gives:

YN (s) =
1/(Re1 + Le1s)

1 +
1/[Ce1s(Re1 + Le1s)]

1 +
1/[Ce1s(Re2 + Le2s)]

1 +
1/[Ce2s(Re2 + Le2s)]

1 +
1/[Ce2s(Re3 + Le3s)]

. . .
. . .

1 +
1/[Ce(N−1)s(ReN + LeNs)]
1 + 1/[CeNs(ReN + LeNs)]

(4.16)

which, in terms of the recursive ratios from (4.4) can be re-written as:

YN (s) =
1/(Re1 + Le1s)

1 +
1/[Ce1s(Re1 + Le1s)]

1 +
1/[Ce1s(λRe1 + Le1s

α )]

1 + 1/[χCe1s(λRe1+
Le1s
α

)]

1+
1/[χCe1s(λ

2Re1+
Le1s

α2 )]

. . .
. . .

1 +
1/[χN−2Ce1s(λN−1Re1+

Le1s

αN−1 )]

1+1/[χN−1Ce1s(λN−1Re1+
Le1s

αN−1 )]

(4.17)

For the set of conditions:

Le1 << Re1 |s| <
1

Re1 · Ce1
and |s| << Re1

Le1
(4.18)

and:
α · χ > 1, α · λ > 1, λ > 1 and χ > 1, (4.19)

we have that in the limit N → ∞, the term Le1s

(αλ)N−1 from (4.17) becomes
very small compared to the term inRe1. Consequently, the continued fraction
expansion from (4.17) reduces to:

YN (s) ∼=
1/Re1

1 +
1/Re1Ce1s

1 +
1/λRe1Ce1s

1 +
1/χλRe1Ce1s

1 +
1/χλ2Re1Ce1s

. . .
. . .

1 +
1/χN−2λN−1Re1Ce1s

1 + 1/χN−1λN−1Re1Ce1s

(4.20)
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If we introduce the notations:

Wd(s) =
1

Re1Ce1s
, Wn(s) =

1
Re1

, (4.21)

then (4.20) can be reduced to an analogue representation:

YN (s) ≈ Wn(s)
1 + g(Wd(s), λ, χ)

(4.22)

in which g(Wd(s), λ, χ) denotes:

g(Wd(s), λ, χ) =
Wd(s)

1 + Wd(s)/λ

1+
Wd(s)/λχ

1+
Wd(s)/λ2χ

···

(4.23)

Since Wd(s) can be taken in front of the expansion and both λ and χ are
constants, we can write that:

YN (s) ≈ Wn

K(λ, χ)(Wd(s))n
(4.24)

with the fractional order n given by

n =
log(λ)

log(λ) + log(χ)
(4.25)

or that, in our specific case:

YN (s) ∼=
1/Re1

K(λ, χ) · (1/Re1Ce1s)n
(4.26)

Consequently, the impedance is given by:

ZN (s) =
1

YN (s)
∼=
K(λ, χ) ·Re1
(Re1Ce1s)

n (4.27)

The values for K(λ, χ) can be determined as described in (Oustaloup 1995);
since we do not make use of it explicitly, its derivation will not be discussed
here. Moreover, our sole purpose was to show that the continuous fraction ex-
pansion from (4.16) will lead to a compact form which contains a term in the
fractional-order n. Hence, relation (4.27) shows the link between the ladder
network from figure 4.2 and the appearance of a fractional order term in the
form of total input impedance. In the frequency domain, the fractional order
will lead to a constant-phase behaviour, i.e. a phase-locking in the frequency
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4.1. An elastic airway wall

range given by the convergence conditions (Oustaloup 1995). Depending
on the number of cells in the ladder (N ), the constant-phase behavior will
emerge over a wider range of frequencies. This result is applicable to any
kind of ladder network (airways, arteries, etc). However, the fractional order
value and coefficients will change according to the properties (morphology,
geometry) of the system.
In practice, the respiratory tract can be simulated as follows. The relations
derived in chapter 3 for resistance (3.62), inertance (3.63) and compliance
(3.64) are used to calculate the total level values as in (4.1), (4.2) and (4.3).
Notice that the values in the trachea Re1, Le1, and Ce1 need to take into ac-
count the flow and pressure effects in the upper airways (mouth, nose, larynx,
pharynx). Since we do not model the upper airways, we need to take the cor-
responding values from literature (Peslin et al. 1984): RUA = 0.2 kPa/(l/s),
LUA = 0.002 kPa/(l/s2) and CUA = 0.25 l/kPa. To find the level values,
one can make use of the ratios from table 4.1. The last compartment needs
to model the gas compression effect; hence, from literature, we introduce the
series impedance consisting of (Habib et al. 1994): RCG = 0.05 kPa/(l/s),
LCG = 0.06 kPa/(l/s2) and CCG = 6 l/kPa. This last impedance is closing
the ladder network, being in parallel with the cell N = 24. The total admit-
tance from (4.16) is then calculated. The equivalent total input impedance
(including the upper airways and the gas compression compartment) is de-
picted by means of its real-imaginary parts in figure 4.4-left, respectively by
its equivalent Bode plot representation in figure 4.4-right. Notice that in these
figures, we show the impedance in two cases: when the airway tube is mod-
elled by an R − C element, and an R − L − C element, respectively. This
comparison allows capturing the effect of the inertance element, while the
frequency is increasing.
In the Bode plot, a variation of the phase between 0o and −26o can be ob-
served in the frequency interval ω ∈ [10−4, 102] (rad/s). However, this is
not the constant phase effect as expected from theory, because the fractional-
order value n would have to be zero, or 0.3, respectively. If we use the
analytical form of (4.25) to calculate this fractional order value, we obtain
n = 0.59. This mismatch between simulation and theory is due to the fact
that the condition of λ > 1 is not fulfilled in (4.19). We shall discuss this
aspect later on.
It is also worth noticing that the extra parameterLm has no effect in determin-
ing the value of the fractional order, which is then similar to what we expected
from theoretical analysis, i.e. relation (4.20) (Ionescu et al. in print). On the
other hand, the effect of this extra term becomes significant with increasing
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Figure 4.4: Impedance by means of complex (left) and Bode-plot (right)
representation, for the R− C (continuous line) and the R− L− C (dashed
line) model structures.

frequencies, namely after the frequency interval where the phase variations
are observed (ω > 100 rad/s).

4.2 A viscoelastic airway wall

In this section, we shall use the formulas derived in chapter 3, namely
(3.71),(3.72), (3.74) and (3.73), with values from table 3.1. With these val-
ues at hand, one is able to build an electrical network as described in the
previous section. The difference to the previous case (elastic) is that now the
airway tube is modelled in a R−L−C−G element, as described in chapter
3. This representation allows us to consider the viscoelastic wall properties,
trough the elements C −G.

nominal level 1..15 level 16..24
λ 0.81± 0.32 0.68± 0.16

1/α 0.56± 0.17 0.56± 0.08
χ 1.71± 0.77 1.55± 0.29
o 1.71± 0.77 1.55± 0.29

Table 4.2: Ratios of the mechanical parameters between consecutive lev-
els. Values are presented as mean ± standard deviation values for the 1..15
levels, respectively for the 16..24 levels.

For the special case of the ladder network in which Zlm(s) = Rem + Lems
and 1/Ztm(s) = Gem + 1/Cems , with m denoting a level in the respiratory
tree, one can analyze the properties of such a network. Next to the ratios
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defined in (4.4), we add the ratio for the conductance:

Gem+1

Gem
=

1
o

(4.28)

where the ratio is determined similarly as for the other parameters. The nom-
inal ratios are given in table 4.2. Notice that the ratio for Ce and Ge are
similar due to the fact that the forms in (3.74) and (3.73) are the same, except
for the sin and cos terms, whose effect are thus very small.
In a similar manner as for the elastic tube case, we can write that the total
admittance is given by:

YN (s) =
1/(Re1 + Le1s)

1 +
Ge1/[(Ge1Ce1s+ 1)(Re1 + Le1s)]

1 + Ge1/[(Ge1Ce1s+1)(Re2+Le2s)]

1+
Ge2/[(Ge2Ce2s+1)(Re2+Le2s)]

1+
Ge2/[(Ge2Ce2s+1)(Re3+Le3s)]

. . .
. . .

1 + Ge(N−1)/[(Ge(N−1)Ce(N−1)s+1)(ReN+LeNs)]

1+GeN/[(GeNCeNs+1)(ReN+LeNs)]

(4.29)
which, can be re-written in a convenient form:

YN (s) =
1/Re1(1 + Le1s/Re1)

1 +
Ge1/Ge1Ce1s

(1+1/Ge1Ce1s)Re1(1+Le1s/Re1)

1 +
Ge1/Ge1Ce1s

(1+1/Ge1Ce1s)Re2(1+Le2s/Re2)

1+

Ge2/Ge2Ce2s
(1+1/Ge2Ce2s)Re2(1+Le2s/Re2)

1+

Ge2/Ge2Ce2s
(1+1/Ge2Ce2s)Re3(1+Le3s/Re3)

. . .
. . .

1 +

Ge(N−1)/Ge(N−1)Ce(N−1)s

(1+1/Ge(N−1)Ce(N−1)s)ReN (1+LeNs/ReN )

1+
GeN/GeNCeNs

(1+1/GeNCeNs)ReN (1+LeNs/ReN )

(4.30)
We introduce the notations:

Wd(s) =
1

Re1Ce1s
, W0(s) =

1
Ge1Ce1s

and W1(s) =
Le1s

Re1
(4.31)
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and replace for the ratios in (4.30) and we obtain that:

YN (s) =
1/Re1(1 +W1(s))

1 +
Wd(s)/(W0(s)+1)

(1+W1(s))

1+

Wd(s)/λ(W0(s)+1)
(1+W1(s)/αλ)

1+

Wd(s)/λχ(oW0(s)/χ+1)
(1+W1(s)/αλ)

1+

Wd(s)/λ2χ(oW0(s)/χ+1)

(1+W1(s)/α2λ2)

. . .
. . .

1 +
Wd(s)/λN−1χN−2(oN−2W0(s)/χN−2+1)

(1+W1(s)/αN−1λN−1)

1+
Wd(s)/λN−1χN−1(oN−1W0(s)/χN−1+1)

(1+W1(s)/αN−1λN−1)

(4.32)
For the set of conditions from (4.18) and for

α · χ > 1, α · λ > 1, λ > 1 and χ ≥ o, o > 1, (4.33)

we have that the term oN−1

(Ge1Ce1s)χN−1 from (4.32) goes to zero as frequency
increases. In this case, the limitN →∞ does not play any role, since χ = o;
however, if 1/(Ge1Ce1s) << 1 then we can then re-write (4.32) as:

YN (s) ∼=
1/Re1(1 +W1(s))

1 +
Wd

1 +
Wd/λ

1 +
Wd/χλ

1 +
Wd/χλ

2

. . .
. . .

1 +
Wd/χ

N−2λN−1

1 +Wd/χ
N−1λN−1

(4.34)

which is similar in form to (4.22):

YN (s) ≈ 1/Re1(1 +W1(s)))
1 + g(Wd(s), λ, χ)

(4.35)

in which

g(Wd(s), λ, χ) =
Wd(s)

1 + Wd(s)/λ

1+
Wd(s)/λχ

1+
Wd(s)λ2χ

···

(4.36)

which can be re-written as:

YN (s) ≈ 1/(Re1 + Le1s)
K(λ, χ)(Wd(s))n

(4.37)
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with the fractional order n given by

n =
log(λ)

log(λ) + log(χ)
(4.38)

In our specific case we have that:

YN (s) ∼=
1/(Re1 + Le1s)

K(λ, χ) · (1/Re1Ce1s)n
(4.39)

Consequently, the impedance is given by:

ZN (s) =
1

YN (s)
∼=
K(λ, χ) · (Re1 + Le1s)

(Re1Ce1s)
n (4.40)

The respiratory tract is simulated in a similar manner as explained in the
previous section, with the same values for the upper airways and the gas
compression impedance. We have no information upon the upper airway
values for GUA, thus we take GUA = 1/[RUA · 200]. The total impedance
from (4.29) is then calculated and depicted by means of its real-imaginary
parts in figure 4.5-left, respectively by its equivalent Bode plot representation
in figure 4.5-right. Notice that in these figures, we show the impedance in two
cases: when the airway tube is modelled by the R − L− C element, and by
the R−L−C −G element, respectively. This comparison allows capturing
the effect of the conductance element at frequencies below 0.1 rad/s.

Figure 4.5: Impedance by means of complex (left) and Bode-plot (right)
representation, for the R−L−C (continuous line) and the R−L−C −G
(dashed line) model structures.

A similar FO behavior can be observed as in figure 4.4. This is again in
accordance to the theoretical result from relations (4.34) and (4.38), which
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shows that only the ratios for Rm+1/Rm and Cm+1/Cm play a role in de-
termining the value for the fractional order at low frequencies. Another ob-
servation is that the viscoelastic effects are visible only at low frequencies,
below 0.1 rad/s, which is also in agreement with rheological properties (Suki
et al. 1994, Bates 2007, Craiem & Armentano 2007).

4.3 Model Validation

4.3.1 Measurements in the 4-48 Hz frequency interval

In order to compare the result obtained by the nominal simulator param-
eters with the result from measured data of healthy patients, an averaged
impedance has been made from 25 healthy subjects whose biometric charac-
teristics are given in table 4.3.

Healthy
Age (yrs) 26± 3

Height (m) 1.67± 0.04
Weight (kg) 64± 3.7

Table 4.3: Biometric parameters of the healthy subjects. Values are pre-
sented as mean ± standard deviation values, as from (Ionescu & De Keyser
2009b)

These subjects have been tested for their lung function using the forced oscil-
lation technique, as described in chapter 2. From the non-invasive measure-
ment of the air-pressure and air-flow at the mouth, the complex impedance
is obtained. The range of frequencies where the data is measured is between
25 rad/s and 300 rad/s (i.e. from 4 to 48 Hz). The impedance data from the
healthy subjects with the corresponding mean and standard deviation values
is given in figure 4.6.

4.3.2 Results for the 4-48 Hz frequency interval

From the measured healthy subjects, we obtain the averaged impedance and
the standard deviation values which offer a lower and upper bound, as de-
picted in figure 4.6. The RLC-ladder model for the respiratory tree calculated
with parameters from table 3.1 and (3.62)-(3.64), neglects the impedance in-
troduced by the upper airways segment. In order to make the comparison with
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Figure 4.6: Measured impedance values from healthy subjects (left) and the
corresponding mean with standard deviation values (right).

the measured data, one has to add this extra impedance to obtain the total es-
timated input impedance. By adding the values of upper airway impedance
parameters: RUA = 0.35 kPa/(l/s), LUA = 0.00045 kPa/(l/s2), CUA = 0.85
l/kPa, one obtains satisfactory values in the clinical range of frequencies, as
depicted in figure 4.7. One should keep in mind that no study has been re-
ported in literature upon the variations and confidence intervals of the upper
airway parameters values. These values represent a tuning parameter of our
ladder network model, and in this particular case they have been tuned for
the averaged values of impedance given in figure 4.7.

Figure 4.7: Comparison of the RLC-ladder model performance, within the
measured frequency range, against data from healthy subjects (left) and
equivalent polar plot representation (right).

Since figure 4.5 shows the same result in the 25-300 rad/s frequency range
for both elastic and viscoelastic airway wall models, it is clear that the same
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result is obtained for the R − L− C −G ladder network model as in figure
4.7.

4.3.3 Model Analysis

In this study, we investigate three cases: the nominal, the pathologic case
and the extended case. The nominal case is denoted by the ladder network
model in which the ratios from table 4.1 are used. In the pathologic case,
due to the fact that airway morphology is affected by disease, changes occur
in the mechanical parameters such that the overall resistance increases and
the compliance decreases (e.g. in chronic obstructive pulmonary disease),
resulting in the ratios from table 4.4.

pathologic levels 1..15 levels 16..24
λ 1.12± 0.22 1.16± 0.06

1/α 0.54± 0.11 0.65± 0.08
χ 1.22± 0.27 1.22± 0.20

Table 4.4: Ratios of the mechanical parameters between consecutive levels
in pathology. Values are presented as mean ± standard deviation values for
the 1..15 levels, respectively for the 16..24 levels.

From this table, we can observe that all conditions from (4.19) are now ful-
filled; including λ > 1. The extended case consists of increasing the number
of cells in the ladder network, while keeping constant the ratios from table
4.4.
The simulated total input impedance is depicted by means of its equivalent
Bode plot representation in figure 4.8-left in the nominal case, in the patho-
logic case and in figure 4.8-right the extended case (varying the number of
cells in the ladder network). From the Bode plot, it is clear that the fractional
order behaviour (phase locking) depends on the ratios between the ladder
network parameters, since its value varies from one scenario to the other.
As mentioned previously, the nominal case does not fulfill the condition
λ > 1, hence the constant-phase behaviour does not appear as expected from
theory. In the pathologic case, one may observe that in the frequency interval
ω ∈ [10−4, 10−1] (rad/s) the constant phase effect is visible. The magnitude
decreases with 45 dB over four decades, which results in a change of about
-11 dB/dec. The phase exhibits a phase-locking within this frequency range,
around the value of −48o. From −n · 20 dB/dec=11 dB/dec we have that
n ∼= 0.55 and from −n · 90o = 48o, it follows that n ∼= 0.53. If one calcu-
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Figure 4.8: (left): Impedance by means of Bode-plot representation, for
the nominal and the pathologic scenarios; (right): for the pathologic case,
but with increasing number of cells in the ladder network (the extended sce-
nario).

lates the fractional order value from (4.25) with averaged ratio values from
table 4.4, one comes up with n = 0.59, which corresponds closely to the
value observed in figure 4.8. This result proves that the formula for n is
accurate if the convergence conditions are fulfilled.
In the extended case, figure 4.8-right shows the effect of increasing the num-
ber of cells, while keeping the same ratios as in table 4.4. Indeed, since the
ratios are close to 1, the convergence using relation (4.25) is somewhat diffi-
cult. Therefore, increasing the number of cells will help convergence in the
limit; recall here that the formula (4.25) was derived considering N → ∞.
Increasing the number of cells in the ladder network leads indeed to a con-
stant phase behavior corresponding to a phase value of about −39o, which is
close to the calculated value using (4.25), i.e. n = 0.40.
Our findings justify the use of a FO parametric model to characterize the
respiratory input impedance (Ionescu & De Keyser 2008b). Hence, we es-
tablished that the origins of the FO behaviour are not only the viscoelastic
properties of the lung tissue, typically visible at low frequencies, but also the
fractal structure of the respiratory tree. It is interesting to note that both vis-
coelasticity and diffusion appear at low frequencies, but the diffusion is not
tackled in this thesis. The proposed model allows variations in the param-
eters by altering the elastic modulus E and cartilage fraction κ, as well as
variations in the airway geometry by altering the airway radius R, length `
and thickness h. Although preserving its fractal structure, these alterations
can be correlated to airway remodeling in pathology, leading to different val-
ues in the ratios, e.g. those given in (4.4). The results depicted in figure 4.8
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indicate that viscoelastic and diffusion phenomena are not the only origin of
the phase constancy (non-integer order) models for the lungs, but also the
intrinsic recurrent geometry has a similar contribution. Although simple, the
nominal case of our model proves to be reasonably close to the data mea-
sured from the healthy subjects, showing that it is able to capture the intrinsic
properties of the respiratory tree.

4.3.4 Model Validation at Low Frequencies

It is difficult to measure the respiratory impedance at frequencies below the
breathing frequency (≈ 0.15 Hz-0.3 Hz) due to high interference between the
excitation signal and the breathing signal. For the identification of the respi-
ratory impedance, the breathing signal is considered as pure noise (Ionescu
& De Keyser 2003). Hence, there are only a few papers in the literature dis-
cussing oscillatory impedance at low frequencies. For example, Hantos et al.
gives the input impedance measurement in five healthy subjects from 0.25
- 5 Hz frequency interval (Hantos et al. 1986). Although they discuss the
results in terms of the complex impedance, we can approximate the equiva-
lent magnitude-phase (Bode) plot (see figure 4.9). From figure 4.10 we find
that the phase varies from −60o to −20o. Hence, a change of about 40o per
decade, resulting in a variation of the fractional order between n = 0.66 and
n = 0.22. The authors discuss that in the respective range of frequencies, the
compliance plays an important role, again in agreement with our findings.
From this, we conclude that our model underestimates the resistance and
overestimates the compliance parameters. Hence, we identify the ratios for
λ and for χ based on data from (Hantos et al. 1986), along with the upper
airway values for RUA and CUA. The identified values are: λ = 1.18, χ =
1.04, RUA = 0.0155 and CUA = 0.0191.
In another study, Babik et al. investigate the effect of cardiopulmonary by-
pass on the respiratory mechanics at low frequency (Babik et al. 2003). They
measure the impedance via an endotracheal tube, in the 0.2 - 2 Hz frequency
range. They find higher values for the resistance and lower values for the
compliance and inertance than in (Hantos et al. 1986), as shown in figure
4.9. This suggests that in anaesthesia, constriction is present, causing par-
tial closure of airways and resulting in increased tissue hysteresivity (non-
homogeneous effects). This effect is close to that observed in COPD lungs,
namely a pronounced phase constancy to lower values, as in figure 4.10.
From figure 4.10, we find that the phase varies from −74o to −66o, resulting
in an averaged FO value of n = 0.77 (Babik et al. 2003).
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Figure 4.9: Complex Impedance: validation with data from literature at low
frequencies (Hantos et al. 1986), (Babik et al. 2003), for the nominal (+) and
copd (o) cases.

Figure 4.10: Bode plot: validation with data from literature at low frequen-
cies (Hantos et al. 1986), (Babik et al. 2003), for the nominal (+) and copd
(o) cases.
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The identified values based on data from (Babik et al. 2003) are: λ = 1.35,
χ = 1.02, RUA = 0.0095 and CUA = 0.0148. Notice that the ladder net-
work model identified lower values in upper airway resistance in anesthetized
patients (Babik et al. 2003) than in healthy subjects measured during tidal
breathing (Hantos et al. 1986). This is not surprising, since the measurement
in anesthetized subjects is done by skipping the upper airways and measuring
directly in the trachea (intubated patients). Typically, most of these patients
are under artificial ventilation during surgery. Since both sets of data come
from subjects with healthy lung parenchyma, the identified values are similar
for the ratios. We conclude therefore that the results obtained with our model
are reasonable and correspond to practical insight.

4.4 Influence of Asymmetric Space Filling

In his recent publication, Weibel discusses the reduction of diameter and
length by a constant factor for both blood vessels and airways (Weibel 2005).
He recognizes the theoretical contributions of Murray (Murray 1926, Bennet
et al. 2009), i.e. that the dissipation of energy due to flow of blood or air in a
branched tube system can be minimized if the diameter of the two daughter-
branches are related to the diameter of the parent as in d3

parent = d3
1 + d3

2. In
the context of fractal geometry, the reduction factor depends on the frac-
tal dimension fD of the branching tree such that the correct formula is:
d1 = dparent · 2−1/fD. In the case of Hess-Murray law, fD = 3 because
the tree is considered to be space-filling (Elzbieta et al. 2005). In his in-
vestigations, Weibel found that the slope of the conducting airway diameters
against the generations was given by d(m) = d0 ·2−m/3, with d0 the tracheal
diameter and m the airway generation. He then concludes that the conduct-
ing airways of the human lung are designed as a self-similar and space-filling
fractal tree, with a homothety factor of 2−1/3 = 0.79 (similitude ratio). How-
ever, as discussed in chapter 3 and in the beginning of chapter 4, this average
has a significant variance in the first generations. Hence, the average value
changes in the diffusion zone (airways from 16th generation onward). These
observations and the fact that Weibel himself discusses that a small change
in the homothety factor results in a dramatic increase in peripheral bronchi-
olar resistance, suggests that the lung must be capable to adjust itself to the
optimality conditions. Indeed, a closer analysis reveals that the homothety
factor is about 0.79 in the 6th generation, but it increases slowly to about 0.9
in the 16th generation, with an average of 0.85 for the small airways (Weibel
2005). The physiological implications of this observation are:
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• the flow resistance decreases in the small airways and

• a small reduction in the homothety factor does not affect significantly
the lung function.

In the context of the above observations, one may explore the possibility of
the respiratory system as a multi-fractal structure. A self-similar multi-fractal
spatial distribution forms the basis for breaking the symmetry of bifurcation
design within a tree. In their study, Bennet et al. discuss the implications of
self-affine scaling (Bennet et al. 2009). It turns out that the fractal dimension
changes when calculated from different reference points. Therefore, the slope
determining the homothety factor changes when viewed at a fine or coarse
grained diameter scale. This latter observation is of interest in the context of
this thesis, since it supports the idea of a multi-fractal structure. For example,
the average of the radius ratio changes from 2−0.17 = 0.88 from (D.1) to
0.89 when only the first 16 generations are taken into account, respectively
to 0.87 for the alveoli (generations 17-24). This implies that the homothety
factor changes, depending on the spatial location within the tree. On the other
hand, if we analyze the radius ratio from generations 1 to 24 in steps of 4,
we obtain an average of 0.85, whereas if we use steps of 2, we obtain an
average homothety factor of 0.86. These changes might not seem significant,
but one should recall that they are originated by the symmetric geometry of
the respiratory tree. However, when asymmetry is considered, one deals with
several homothety factors, i.e. as schematically drawn in figure 4.11.
It has been demonstrated by a systematic analysis that the airway tree in
different species shows a common fractal structure, in spite of some gross
differences in airway morphology (Weibel 2005). Nevertheless, we propose
to investigate the case of asymmetric branching in the human lungs. The
Horsfield representation will be used, as from (Horsfield et al. 1971), with
the values listed in Table 3.2. In this scenario, an airway of levelm bifurcates
into two daughters: one of order m + 1 and one of order m + 1 + ∆, with
∆ the asymmetry index. As a result of the asymmetry, the electrical network
becomes as in figure 4.11. Figure 4.12 shows the number of branches that are
in one generation, for the symmetric and asymmetric lung structure. Notice
the different slope which characterizes the space-filling distribution; the top-
figure shows that the slope is lower in the asymmetric tree section than in the
symmetric tree section (Ionescu et al. 2009d).
Since the symmetry is lost, one cannot simplify the electrical network to its
ladder network equivalent as in figure 4.2. Therefore, one must calculate
explicitly the impedance from level 36 to level 1. To avoid complex numer-
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Figure 4.11: Asymmetric representation for the first four generations, in its
electrical equivalent.

Figure 4.12: Number of branches for each generation, in the asymmetric
(top) and symmetric (bottom) generation. Notice that the Y-axis is logarith-
mic.
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ical formulations, the impedance along the longest path was calculated, as
in (Habib et al. 1994). One should notice that from level 26 onward, the
asymmetry index is zero, therefore symmetric bifurcation occurs (recall here
Table 3.2). The effect of this change in the asymmetry index is visible in
figure 4.12, i.e. a change in the slope. The initial values in the trachea are
imposed similarly as in the symmetric case (Peslin et al. 1984). Figure 4.13
shows the total impedance by means of its complex representation (left) and
its Bode plot (right), for the symmetric and the asymmetric tree, whereas the
airway tubes are modelled by an R−L−C element in both representations.

Figure 4.13: Impedance by means of complex (left) and Bode-plot (right)
representation, symmetric (continuous line) and the asymmetric (dashed
line) tree.

It is significant to observe that in the frequency interval of clinical interest,
ω ∈ [25, 300] rad/s, the two impedances tend to behave similarly. A detail of
figure 4.13 can be viewed in figure 4.14. For the asymmetric case, we have a
decrease of about -10dB/dec and a phase of approximately−50o, resulting in
a fractional order of n ∼= 0.5. The constant-phase behavior is emphasized at
frequencies below those evaluated standardly in clinical practice, i.e. below
5 Hz. However, in the standard clinical range of frequencies for the forced
oscillation technique, namely 4-48 Hz, both models give similar results, as
depicted in figure 4.15 below.

4.5 Conclusions

In this Chapter, it has been shown that the structure of the respiratory tree
leads to an impedance exhibiting fractional-order behavior. The conclusions
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Figure 4.14: Detailed view of the impedance by means of the Bode-plot rep-
resentation, for the symmetric (continuous line) and the asymmetric (dashed
line) tree.

Figure 4.15: The estimated impedance within the measured frequency range
for the symmetric (*) and the asymmetric (o) case, against averaged data
from healthy subjects (left) and equivalent polar plot representation (right).
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of the investigations can be classified in two groups, namely, for the symmet-
ric and for the asymmetric tree.
For the symmetric tree representation, we have established the following:

• a recurrent relation can be obtained between the model parameters of
each airway generation;

• the recurrence leads to a homothety factor, which is different for the
conductive (levels 1..15) and diffusive (levels 16..24) zones;

• if symmetry exists, then the total input impedance can be calculated in
a simplified, recurrent manner;

• the impedance exhibits a fractional order behavior leading to a fractional-
order value for the symmetric case, if the convergence conditions are
fulfilled; otherwise the constant-phase behaviour is missing;

• the ratios for inertance 1/α and for the conductance o elements do not
play a role in determining the value of the fractional order, the latter
being determined solely by the ratios of the resistance λ and of the
capacitance χ elements.

For the asymmetric tree representation, the following remarks can be sum-
marized:

• the impedance exhibits a fractional order behaviour in the nominal
case, without fulfilling the theoretical conditions for convergence; in
this case it is difficult to calculate analytically the value of the frac-
tional order;

• the fractional order behavior is still present, although the fractal struc-
ture and dimension is not uniquely characterised;

• the fractional order value is changing if the degree of asymmetry is
changed (this observation is significant for the case of diseased lungs).

The novelty of the results presented in this chapter consists in that of show-
ing that a fractional order behavior is present in the respiratory impedance,
justifying the use of fractional order model parameters from the intrinsic ge-
ometry of the lungs. We have also discussed the existence of the fractional
order behavior even in the asymmetric tree representation. A link has been
established and validated between the recurrent ratios in the symmetric tree
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and the value of the fractional order. For the asymmetric tree, this link has
not been established, but it was shown that the fractional order value depends
on the multi-fractal structure of the lungs, hence related to the changes in the
homothety factor. In doing so, it is clear that changes in the respiratory tree
with disease will lead to different fractional order values.
Since the results in this chapter are based on the geometrical structure cou-
pled with elastic and viscoelastic properties, it is interesting to discuss our
modelling approach in a mechanical analogue.
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Chapter 5

Viscoelasticity of the Lung
Parenchyma

This chapter provides an equivalent mechanical representation for the elastic
and viscoelastic models developed previously (and presented via an electrical
analogue) in chapter 4. Assuming a dichotomously branching tree, each air-
way tube is modeled by a combination of Maxwell and Kelvin-Voigt elements
calculated from morphological values. This will allow comparison to mod-
els reported in literature and provide the link between the appearance of the
FO behaviour and both intrinsic fractal geometry, as well as the rheological
properties of the lung parenchyma.

The material presented in this chapter has been in part published in:

• De Geeter N., Ionescu C., De Keyser R. (2009), A mechanical model of
soft biological tissue - an application to lung parenchyma, in : IEEE
Proc. of the Eng Med Biol Comp, Minneapolis, USA, 2863–2866.
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5.1 Basic elements

When a force F is applied on an object with initial length ` and cross-
sectional area A, a mechanical stress σ results. Consequently, a deformation
occurs ∆` which is defined as the strain ε:

σ =
F

A
; ε =

∆`
`

(5.1)

Figure 5.1: The stress-strain curves for a spring (left) and for a damper
(right).

The following relations can be defined between the stress and the strain, in
which E is the elasticity modulus and η the viscosity coefficient (Craiem &
Armentano 2007):
For a spring:

σ(t) = E · ε(t) (5.2)

denoting the Hooke’s Law and the linear elastic behaviour of materials. Sup-
posing a sinusoidal strain applied to the material: ε(t) = ε0 ·sin(ωt), then the
stress is in phase with the strain and its amplitude is given byE·ε0. Observing
the corresponding stress-strain curve from figure 5.1-left, the load and unload
are following the same path; therefore no loss of energy occurs. Hence, we
conclude that elastic materials do not show energy-dissipation phenomena.
For a damper:

σ(t) = µ · d
dt
ε(t) (5.3)

denoting Newton’s Law and describing the viscous behaviour of a linear
flow. Applying a similar strain as above, the stress will lead the strain by 90o

with an amplitude equal to µ · ω · ε0. The amplitude is therefore frequency-
dependent. When both signals are opposite in phase, as depicted in figure
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5.1-right, we see that all the energy is used (equal hysteresis on both sides).
Therefore, we conclude that viscous materials show energy-dissipation phe-
nomena.
For a spring-pot of order n (with 0 ≤ n ≤ 1) we have that:

σ(t) = η · d
n

dtn
ε(t) (5.4)

and it denotes an element characterizing the combined effect of elastic and
viscous behavior in a material. Notice that for n = 0 we have a pure elastic
element (spring), whereas for n = 1 we have a pure viscous element (dash-
pot).
When the material undergoes a dynamical excitation, the stress will lead the
strain in phase with an angle ϕ between 0 en π/2 radians. The amplitude of
the stress is Ed · ε, from:

σ(t) = Ed(ω) · ε · sin (ωt+ ϕ(ω)) (5.5)

The plot of the stress and strain below shows that part of the energy is stored
and part is dissipated, resulting in a hysteresis.

Figure 5.2: The stress-strain curve of a viscoelastic material.

The most simple combination of the basic elements presented above is a se-
ries spring-dashpot, referred to as the Maxwell-element and depicted in fig-
ure 5.3.
For a constant strain variation we have that:

σ(t) = E · ε · e(−
t
τ ) (5.6)

with τ = η
E , the relaxation-time. At time t = 0 the spring will be fully taut,

whereas the damper will remain unchanged. Within some time, the damper
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will start to take over the stress from the spring and relax it. Hence, the
Maxwell-element can characterize stress relaxation.
For a constant stress variation (step inputs) we have that:

ε(t) = σ

(
1
E

+
t

η

)
(5.7)

which shows a spontaneous elastic strain with the stress. When the stress
variation stops, the spring returns to its initial position, while the damper
remains in an irreversible state.
A second possible combination is the parallel spring-dashpot, referred to as
the Kelvin-Voigt element (see figure 5.3). In this model, we cannot account
for a constant strain, given the force on the damper must be infinitely big;
hence, this model does not show stress-relaxation.
Assuming a constant stress input, we have that:

ε(t) =
σ

E

(
1− e(−

t
τ )
)

(5.8)

with τ = η
E , the relaxation-time. At the time instant t = 0, the damper

begins to change slowly, while the spring reached asymptotically its taut-
value. Hence, the Kelvin-Voigt element describes good the creep phenomena
in viscoelastic materials.
Finally, both the Maxwell-element, as well as the Kelvin-Voigt element, do
not fully characterize the true viscoelastic behaviour. Hence, combining both
elements seems to be a good solution to overcome their individual limitation:
N parallel Maxwell-elements, all in parallel with an extra spring, as shown
in figure 5.3.

5.2 Viscoelasticity in the lungs

During quiet breathing, energy is used to overcome elastic and resistive
forces. The classic equation of motion describes the relationship among
pressure, volume and flow as:

P (t) = Er · V (t) +Rr ·Q(t) + P0 (5.9)

where at any instant t, P is the applied pressure, Er is the elastance, V is the
volume, Rr is the resistance, Q is the flow and P0 is the pressure correspond-
ing to transpulmonary pressure at end-expiration. The representative model
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5.2. Viscoelasticity in the lungs

Figure 5.3: From left to right: the Maxwell- and the Kelvin-Voigt-element,
followed by a combination of the two.

for this equation is the resistive-elastic model, characterized by a single resis-
tive compartment connected to a single elastic compartment, and represented
by a dashpot in parallel with a spring (Kelvin-Voigt element). To increase
volume in this resistive-elastic model, part of the applied energy would be
dissipated by the dashpot (resistance), whereas another fraction of the total
energy would be stored in the spring (elastance), providing the driving pres-
sure for expiration. This model does not account for the stress relaxation
observed in the lung parenchyma, but it is widely used in practice.
Recoil pressures at same lung volumes are always less during deflation than
inflation (hysteresis), hence the mechanical energy (work of breathing) fol-
lows the same property. The area within the pressure-volume loops represents
the lost energy per breathing cycle. During quiet breathing, this area is nearly
independent of frequency. Thus, under constant amplitude cycling, energy
dissipation is nearly independent of frequency. However, the dissipation is
proportional to the product of resistance and frequency, hence, implying that
the resistance is inversely proportional to the frequency.
Close to the hysteresis observed during volume cycling of the lung, are the
phenomena of stress adaptation and creep. In this line, soft biological tissues
are known to be highly viscoelastic in nature. In contrast to perfect elastic
materials, the viscoelastic materials do not maintain a constant stress under
constant deformation; the stress slowly relaxes - stress relaxation. On the
other hand, under constant deformation, the material undergoes a continuous
deformation in time - creep. The linear viscoelastic model predicts dynamic
elastance and its frequency dependence quite well, but it cannot account for
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about one third of the energy loss (hysteresis), suggesting that additional plas-
toelastic elements are necessary in the model.
During cycling loading, the stress that develops in the viscoelastic body dis-
plays:

• a component in phase with strain, which is the elastic stress contribut-
ing to the storage modulus ES (elastance); and

• a component out of phase with strain, corresponding to the viscous
dissipation and contributing to the loss of modulus ED (damping).

The viscoelastic properties of lung tissue cause the effective tissue resistance
to be very high at very low frequencies, but then to decrease asymptotically
towards zero, at higher frequencies. Consequently, the tissue resistance has
the main contribution in the total lung resistance. At breathing frequencies
in the range of 0.2 - 0.4 Hz, tissue resistance can account for ≈ 40% of lung
resistance.
The constant-phase model by Hantos et al. (Hantos et al. 1992b) from (1.1)
describing the viscoelastic properties of lung tissues, has been considered
superior to the classic spring and dashpot representation, since it contains
a combined element. Although the electrical analogue of viscoelastic pro-
cesses as well as the phenomenological and mechanical approaches yield
good quantitative correspondence with data, they lack anatomic and mech-
anistic specificity.
Later models tried to deal with dynamic tissue behavior on a mechanistic
basis. Some mechanisms have been proposed as contributors to the constant-
phase tissue viscoelasticity, such as the structural disposition of fibers and
their instantaneous configuration during motion, since elastic fibers dissipate
energy as they slip with respect to each other. Additionally, lung tissue might
exhibit molecular mechanisms similar to those proposed for polymer rheol-
ogy. Maksym & Bates (Maksym & Bates 1997) suggested a role for the
relative stress-bearing contributions of collagen and elastin fibers based on
the differential elastic properties of these two types of fibers, in which colla-
gen fibers were progressively recruited with strain. Bates (Bates 2007) also
proposed that the nonlinear elastic properties and linear elastic behaviour of
lung tissues arise from different physical processes, whereas elastic recoil is
linked to geometry as fibers rearrange themselves; stress adaptation would
reflect a process of diffusion due to the thermal motion of the fibers with
respect to each other and to the ground substance.
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However, viscoelasticity of lung parenchyma determines the mechanical
properties of the overall lung function. Since the system acts as a whole, it is
important to characterize the mechanical properties as they propagate within
consequent levels. Several research groups investigated the viscoelasticity
of the lung parenchyma in animal and human studies (ex-vivo) (Maksym
& Bates 1997, Suki et al. 1994), but their investigations neglect the inter-
connection to the rest of the respiratory system.

5.3 Equivalent mechanical model

In this chapter we treat the symmetric structure of the respiratory tree (Man-
delbrot 1983, Sauret et al. 1999, Weibel 1963, 2005), with morphological
values given as in table 3.1. For the purpose of this study, we investigate
the airways within the respiratory zone, corresponding to levels 16-24, as
schematically depicted in figure 5.4 (Hou et al. 2005, Weibel 2005). In this
figure, Am denotes the cross sectional area, `m denotes the length, Rem the
resistance and Cem the capacitance of one airway tube from level m, respec-
tively.
In the respiratory zone, the oxygen and carbon dioxide exchange takes place
between the air in the lung and the blood in the small-diameter blood vessels
that surround the alveoli. The gas compression impedance is modelled by a
series RCG − LCG − CCG impedance, as described in chapter 4.
For the case of elastic tube walls, we have no viscous losses, thus no con-
ductance Ge element, as defined in section 3.4.1. Using (3.62)-(3.64), the
equations for the electrical model are given by:

e0 = Re1i1 + e1; e1 = Re2
2 i2 + e2

i1 = i2 + Ce1ė1; i2 = 2Ce2ė2

(5.10)

with e the voltage and i the current represented as in figure 5.5. The electro-
mechanical analogy is given in table 5.1.
Using the electromechanical analogy from table 5.1, we can derive an equiv-
alent mechanical model. This can be done starting from the electrical model
equations (5.10). The electrical element (ReCe series) corresponds to the
mechanical Kelvin-Voigt element (spring in parallel with dashpot):

F0 = B1v1 + F1; F1 = B2
2 v2 + F2

v1 = v2 + 1
K1
Ḟ1; v2 = 2

K2
Ḟ2

(5.11)
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Figure 5.4: A schematic representation of the electrical model for the lung
parenchymal tissue as an interconnected system (starting from level 16).

Figure 5.5: An illustrating example of the first two levels in the electrical
and the mechanical networks.
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Table 5.1: The electromechanical analogy.

Electrical Mechanical
Voltage e [V ] Force F [N ]
Current i [A] Velocity v [m/s]
Resistance Re [Ω] Damping constant B [Ns/m]
Capacitance Ce [F ] Spring constant 1/K [m/N ]
Inductance Le [H] Mass M [kg]

The values of resistors and capacitors are calculated with the model from
figure 5.5 and relations (3.62)-(3.64): Re16 = 1.57 kPa/(l/s) and Ce16 =
3.06 · 10−6 l/kPa. From these values one can calculate the equivalent B∗

m

and K∗
m values, taking into account that Rem = R∗em/2

m−1 and Cem =
2m−1C∗em respectively, from (4.1) and (4.3). The superscript ∗ denotes a
single branch in the respiratory level represented by the subscript m.

B∗
m = Fm

vm
= Pm

Qm
A2
m = R∗emA

2
m

K∗
m = Fm

xm
= Pm

Vm
A2
m = A2

m
C∗em

(5.12)

with P the pressure, Q the flow, V the volume, Am = πR2
m the area, Rm the

radius of a tube at level m and x the axial displacement.
Figure 5.6-left depicts the evolution of the parameters in a single tube at a
certain level m, whereas figure 5.6-right depicts their evolution in the entire
level. One may observe that the evolution in a single tube, in consecutive
levels is quasi-linear for both parameters (figure 5.6-left). However, since
the total parameter values from figure 5.6-right depend on the total number
of tubes within each level, they change as an exponential decaying function.
When represented on a logarithmic scale, one can observe a quasi-linear be-
havior, as in figure 5.6-right.
In a similar manner as the electrical impedance, one may obtain H(s), which
defines the relation from velocity (input) to force (output) F (s)/v(s), with
s the Laplace operator. The transfer function of a cell in the ladder network
consisting of one damper and one spring, is:

H(s) = B +
K

s
(5.13)

which can be evaluated over a range of frequencies, e.g. ω ∈ [10−5, 105],
with the result depicted in figure 5.7. In this figure ’24’ denotes that theH(s)
is calculated at level 24; ’23’ denotes that H(s) is calculated at level 23, etc.
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Figure 5.6: Parameter evolution in singular tubes (left) and in the entire
level (right), for levels 16–24.

Figure 5.7: The corresponding frequency response of the transfer function
for the network of spring-dashpot elements in levels 16–24.
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Figure 5.8: A schematic representation of the mechanical model for the lung
parenchymal tissue (levels 16–24).

Due to the fact that the network is dichotomous and symmetric, we can obtain
the total mechanical impedance using the network structure as in figure 5.5,
with Bm and Km calculated with (5.12). Since the Kelvin-Voigt elements
corresponding to one level are in parallel, their transfer function Hm will
be in series with the spring in the level m − 1. The next corresponding
transfer function is in parallel with the damper in the level m−1, as depicted
schematically by figure 5.9. In this manner, the total transfer function H(s)
can be determined, starting at level 24 (De Geeter et al. 2009).
The lung parenchyma consists of interwoven collagen (infinitely stiff) and
elastin (elastic) fibers. Each level in the respiratory tree has a specific bal-
ance between these two components. In our model we take this balance into
account in (3.14), in function of the cartilage percent (table 3.1). Follow-
ing this reasoning, a similar representation of the mechanical model is given
in figure 5.8. Here, the cylinders represent the collagen fibers within one
level, which are interconnected with elastin fibers, represented by inextensi-
ble unstressed strings. This representation varies from that of Bates in that it
represents the total collagen-elastin distribution in a level and not in a single
tissue strip (Bates 2007).
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Figure 5.9: A schematic representation of how the mechanical impedance
H(s) is calculated from level 24 by adding levels up to level 16 (De Geeter
et al. 2009).
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5.4 Stress-Strain curves

5.4.1 Stepwise variations of strain

The elastic modulus is defined as the ratio between stress and strain proper-
ties. The Kelvin-Voigt body is the simplest viscoelastic model that can store
and dissipate energy, consisting of a perfectly elastic element (i.e. spring)
arranged in parallel with a purely viscous element (i.e. dashpot). The corre-
sponding equation is given by:

σ(t) =
K`

A
ε(t) +

B`

A

dε(t)
dt

(5.14)

with σ the stress, ε the strain, ` the length, A the area and K,B the constants
of the spring and dashpot, respectively (Craiem & Armentano 2007). The
stress can be defined as pressure, whereas the latter is given by force dis-
tribution over the area. The strain ε is defined as the ratio of the change in
length over the initial length: ∆`/`. Starting with an unstressed tissue, we
apply a strain that increases in steps of 10% until it reaches 100%. The new
length can be calculated as:

`new = (1 + ε)`old (5.15)

with the subscript old denoting the characteristics before applying the strain
step. Assuming a constant tissue volume Vt, the radius will decrease:

Rnew =
Vt

2π`newh
=
Rold · `old
`new

(5.16)

with Rnew and Rold the new and old airway radius, respectively. We neglect
the changes in the thickness h of the tube wall with changes in the strain.
Applying a typical value for the oscillatory flowQ = 0.5 l/s at the oscillatory
frequency of 5 Hz, the velocity v can be calculated as:

vnew =
5 · 10−4

Anew
(5.17)

Since the B’s and K’s are time-invariant material properties, the transfer
function H(s) from (5.13) will be independent of the strain. The elongation
∆` of the airway tube will have an effect on the pipeline equation (3.13)
which can be expressed as:

p+
h

R
(
1− ν2

p

) (K`
A
ε+

B`

A

dε

dt

)
= 0 (5.18)
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with νp the Poisson coefficient. The new values for the pressure and the stress
are given by:

Pnew =
Fnew
Anew

=
vnewH

πR2
new

(5.19)

σnew = −Pnew
Rnew

(
1− ν2

p

)
h

(5.20)

Hence, in this representation, the stress and strain properties can be evalu-
ated using (5.15)-(5.20), leading to the stress-strain curves depicted in figure
5.10. The strain is increased in steps of 10% from 10 to 100%. Starting
from level 24, one can then calculate the stress-strain curve at the input of
each level. This then will give rheological information in the context that all
parenchymal levels are interconnected.

Figure 5.10: The stress-strain curves for a ladder network model of the level
24, building up additional cells, until level 16.

As expected, the stress increases with the degree of elongation applied to
the entire structure. The more levels we have in our structure, the higher
the values of the stress-strain curve, due to higher amount of cartilage tissue
(collagen). The latter observation has been illustrated in figure 5.8. The ob-
tained results are qualitatively similar to those reported in literature (Maksym
& Bates 1997, Suki et al. 1994). Quantitatively, it is not possible to make an
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evaluation of our model, since the values reported hitherto in the literature
are based on excised tissue strips.

5.4.2 Sinusoidal variations of strain

In the previous section, a stepwise strain excitation was applied in steps of
10% until 100%. Similarly to the calculus presented previously, the new
fractal-mechanical model can be excited by a dynamic strain excitation; i.e.
a sinusoidal excitation, which is closer to the breathing phenomena. It is
noteworth to realize that since our model consists of a combination of springs
and dampers, the stress-strain curve will be a result of the two individual
curves from figure 5.1. Moreover, since we only characterise the respiratory
zone by the viscoelastic lung parenchyma, we also expect a stress-strain curve
as in 5.2.
Applying a sinusoidal strain on the lung model with amplitude ε0 and fre-
quency ω = 2πf it follows that:

ε(t) = ε0 · sin(ωt) (5.21)

which results in a sinusoidal stress response, as in (5.5).
Using sin(α+ β) = cos(α) sin(β) + sin(α) cos(β) yields:

σ(t) = Ed · ε0 · sin(ωt+ ϕd) =
ε0 · [Ed cos(ϕd) sin(ωt) + Ed sin(ϕd) cos(ωt)]

(5.22)

with Ed the dynamic modulus and ϕd the corresponding angle. Introduc-
ing the storage modulus ES = Ed cos(ϕd) and the loss modulus ED =
Ed sin(ϕd), one may calculate the dissipated energy W in one cycle:

W =
∫
σdε

=
∫ T

0 ε0 · [Ed cos(ϕd) sin(ωt) + Ed sin(ϕd) cos(ωt)] ε0 sin(ωt)dt
= πε20Ed sin(ϕd)

(5.23)
with T = 1/f the corresponding period and f the frequency in Hz. The used
energy is therefore directly proportional to the loss modulus. The storage
modulus is a measure for the necessary power to overcome elastic forces and
to release them when the excitation ceases.
Viscoelastic properties can be analyzed by means of a frequency dependent
complex elastic modulus E∗ (Craiem & Armentano 2007):

E∗(jω) =
σ(jω)
ε(jω)

= ES(ω) + jED(ω) (5.24)
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whereas the parameters are related to the viscous behaviour of the material.
In the Kelvin-Voigt model, the relation between stress and strain is given by:

σ(t) = Eε(t) + η
dε(t)
dt

(5.25)

Applying the Fourier transform leads to:

E∗(jω) = E + η(jω) (5.26)

For a viscoelastic material the mechanical impedance H(s) of this material
is given by:

H(s) =
K

s
+B (5.27)

which leads to the following relation for the complex modulus:

E∗(s) =
`

A
· s ·H(s) (5.28)

Applying the Laplace transform on the sinusoidal strain ε(t) = ε0 · sin(ωt)
we have that:

ε(s) = ε0
ω

s2 + ω2
(5.29)

and the stress can be calculated as:

σ(s) = E∗(s)ε(s)
σ(t) = L−1 {σ(s)} (5.30)

The results for a sinusoidal strain of ω = 2π0.25 (rad/s) and of ω = 2π4
(rad/s) are given in figure 5.11.
As expected, the energy is dissipated and the ellipse curve is deformed to a
hysteresis curve (Hildebrandt 1970). There is also a slope on this hysteresis
loop, which points to the fact that both energy storage and dissipation occurs
during the test. As the frequency increases, the loop becomes closer to the
ellipse form, suggesting that viscous behaviour becomes negligible.
The evolution with frequency of the complex modulus from (5.28) is depicted
in figure 5.12 below. It is clear that the real part varies with frequency, hence
if one would identify a lumped model in a limited frequency range, would
need a fractional-order model (Ionescu & De Keyser 2003), as explained by
means of (2.5). Notice that in our model representation, the ladder network
leads to a similar effect of constant-phase behaviour as that of the electrical
ladder network in the previous chapter. This effect is visible in figure 5.12-
right, below ω < 100.3 (rad/s) frequency range.
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5.4. Stress-Strain curves

Figure 5.11: The stress-strain curve for sinusoidal strain at ε(t) = ε0 ·
sin(2π0.25t) and at ε(t) = ε0 · sin(2π4t).

Figure 5.12: The frequency response of the elastic modulus in its complex
representation (left) and in its equivalent Bode plot (right).

117



CHAPTER 5. VISCOELASTICITY OF THE LUNG PARENCHYMA

In a similar study, Craiem & Armentano acknowledge the necessity of a frac-
tional order to characterize viscoelasticity in the arterial wall of the circula-
tory system in a sheep (Craiem & Armentano 2007).
Compared to the values in literature, one may say that our results are within
reasonable values. For example, in (Yuan et al. 2000) the authors obtain
values of 2-8 kPa for the storage modulus, respectively values of 0.2-1 kPa
for the loss modulus in guinea pigs lung tissue strips. It is difficult to compare
our results to those from (Yuan et al. 2000), because they come from animal
studies and in general, most of the authors provide values from tissue strips
instead of an interconnected system of lung parenchymal airways.

5.5 Conclusions

Biological tissue is essentially viscoelastic, and following a stress-strain anal-
ysis, a hysteresis loop is evident. In this chapter, a link between our ladder
network model of the respiratory tree and viscoelastic properties in the lung
parenchyma has been presented by building a mechanical analogue for the
respiratory zone (levels 16-24).
Our findings show that the proposed model is able to reproduce well the
results expected from theoretical background, both qualitatively, as well as
quantitatively. Furthermore, we introduce a method to calculate the stress-
strain relationship from intrinsic geometrical and material properties of the
airways and assess stress-strain properties of the lung parenchyma with re-
spect to the airways as an interconnected tree.
We also prove the necessity of using fractional order models when character-
izing the storage modulus, which varies with frequency. In this chapter we
show that the respiratory system requires a combination of spring and dash-
pot elements in its model structure, to characterize viscoelasticity from its
intrinsic geometry and morphology.
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Chapter 6

Clinical Applications

This chapter starts by presenting an analysis of the modelling performance
of several candidate fractional-order models on the respiratory impedance.
The models are presented on an evolutionary basis from the most simple to
the most complex representation. The model delivering the least modelling
errors and having the least number of parameters will be selected as the best
candidate to model the input impedance in the 4-48 Hz frequency interval.

Once the best model is selected, we investigate the ability of the selected
FO model, in classifying between healthy and pathologic patient data. The
investigated groups are: healthy vs Chronic Obstructive Pulmonary Disease;
healthy vs kyphoscoliosis; healthy vs asthma in children; healthy vs cystic
fibrosis in children.

Extended parts of the material presented in this chapter has been published
in:

• Ionescu C., De Keyser R. (2009), ”Relations between Fractional Or-
der Model Parameters and Lung Pathology in Chronic Obstructive
Pulmonary Disease”, IEEE Transactions on Biomedical Engineering,
56(4), 978-987;

• Ionescu C., Derom E., De Keyser R. (2009), ”Assessment of respi-
ratory mechanical properties with constant-phase models in healthy
and COPD lungs”, Computer Methods and Programs in Biomedicine,
DOI: 10.1016/j.cmpb.2009.06.006;

• Ionescu C., Desager K., De Keyser R. (2009), ”Estimating respiratory
mechanics with constant-phase models in healthy lungs from forced
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oscillations measurements”, Studia Universitatis Vasile Goldis, Life
Science Series, 19(1), 123-132;

• Ionescu C., De Keyser R. (2008), ”Model-free Adaptive Control in Fre-
quency Domain: Application to Mechanical Ventilation”, chapter in
book: Frontiers in Adaptive Control, ed. S. Cong, www.intechweb.org/books.php
(open access), In-Tech, 253-270,

• Ionescu C., De Keyser R. (2008), ”Time domain validation of a frac-
tional order model for human respiratory system”, in Proc. of the 14th
IEEE Mediterranean Electrochemical Conf (MELECON08), Ajaccio,
Corsica, 89–95;

• Ionescu C., De Keyser R., Desager K., Derom E. (2009), ”Frac-
tional order models for the input impedance of the respiratory sys-
tem”, chapter in book: Recent Advances in Biomedical Engineering,
www.intechweb.org/books.php (open access), In-Tech, 1–20;

• De Keyser R., Ionescu C., Lazar C., (2009) ”Frequency-Response
based CACSD for Fractional Order Systems”, chapter in book: New
Trends in Nanotechnology and Fractional Calculus Applications,
Baleanu et al (Eds), Springer, 415–423.

and is pending review in the following papers:

• Ionescu C., Desager K., De Keyser R. ”Fractional order model param-
eters for the input impedance in healthy and in asthmatic children”,
Computer Methods and Programs in Biomedicine.
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6.1. Introduction

6.1 Introduction

This chapter is dedicated to selecting the best candidate model to characterize
the impedance and further validation in clinical studies.
An analysis of the modelling performance of several candidate fractional-
order models on the respiratory impedance is necessary, in order to decide
which model is most suitable in the frequency range of interest. The mod-
els are presented on an evolutionary basis from the most simple to the most
complex representation. The model delivering the least modelling errors and
having the least number of parameters will be selected as the best candidate
to model the input impedance in the 4-48 Hz frequency interval.
Once the best model is selected, the ability of the selected FO model in classi-
fying between healthy and pathologic patient data needs to be assessed. The
investigated clinical groups are: healthy vs Chronic Obstructive Pulmonary
Disease; healthy vs kyphoscoliosis; healthy vs asthma in children; healthy vs
cystic fibrosis in children. All these measurements have been performed by
myself, with the same forced oscillation lung function testing device, avail-
able in our laboratory. The spirometric and plethysmographic tests have been
done according to the standard procedures, to avoid biased protocols. For
the tests in the hospitals, professional technical assistance was provided and
supervised by myself.

6.2 Which Fractional-order Model?

It is interesting to compare the models existing in literature with some similar
candidate models, in the 4-48 Hz frequency range. This frequency range is
commonly evaluated in clinical trials using the forced oscillation lung func-
tion test (Oostveen et al. 2003). We therefore propose the following FO mod-
els, in order of complexity (Ionescu et al. 2009c, a).

6.2.1 Candidate Models

The first model, from here-on referred to as FO1, is:

ZFO1(s) = Rr +
1

Crsβr
(6.1)

withRr the resistance (kPa/(l/s)), Cr the capacitance (l/kPa) and 0 ≤ βr ≤ 1.
This model was initially developed for frequencies below 5 Hz, whereas the
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effect of the inductance is negligible (Hantos et al. 1992b). Therefore, when
evaluating such model in the 4-48Hz frequency interval, one may expect in-
ferior performance results.
The second model proposed here, referred to as FO2, is obtained from (6.1)
by adding the inductance term (Hantos et al. 1992a):

ZFO2(s) = Rr + Lrs+
1

Crsβr
(6.2)

As described in chapter 2, experimental results show that in several patients,
the real part of the complex impedance may increase with frequency. Split-
ting (6.2) in its real and imaginary parts yields:

Zr(jω) = Rr + 1
Crωβr

cos
(
βrπ

2

)
+

j · [Lrω sin
(
π
2

)
− 1

Crωβr
sin
(
βrπ

2

)
]

(6.3)

Hence, it can be observed that when frequency increases, the real part of
the term in Cr decreases, therefore unable to characterize correctly the
impedance. However, if the model is evaluated in a frequency range in
which the real part of the impedance is decreasing with frequency, the model
performs well.
The third model (FO3) proposed for evaluation has an extra FO term in the
inductance:

ZFO3(s) = Rr + Lrs
αr +

1
Crsβr

(6.4)

which is in fact (2.4). This model will tackle the limitation from FO2 and
will be able to capture both increasing, as well as decreasing variations with
frequency in the real part of the impedance.
The last model proposed for evaluation in this chapter is based on the work
of this thesis, i.e. the FO4 model:

ZFO4(s) = Lrs
αr +

1
Crsβr

(6.5)

which does not contain the resistance term Rr. Indeed, the theory of frac-
tional order appearance in ladder networks shows that the effects of Rr
are indirectly captured in the values of the FO terms and FO coefficients
(Oustaloup 1995, Ionescu et al. 2009e). Hence, if it turns out that the Rr
term in FO3 will not give significant values, then FO4 will have less model
parameters to be interpreted by the clinicians.
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6.2.2 Subjects

The first group evaluated here consists of male volunteers without a history
of respiratory disease, whose lung function tests were performed in our labo-
ratory and Table 6.1 presents their biometric parameters, whereas a detailed
analysis on their respiratory impedance parameters will be discussed later in
this chapter.
A second group consists of former coal miners from the Petrosani area, kept
under observation at the ’Leon Danielo’ Hospital in Cluj-Napoca, Romania,
and diagnosed with COPD (Chronic Obstructive Pulmonary Disease). Table
6.1 presents the corresponding biometric and spirometric parameters.

Healthy COPD
(17) (17)

Age (yrs) 26± 3 51± 11
Height (m) 1.67± 0.04 1.74± 0.09
Weight (kg) 64± 3.7 76± 8
V C % pred - 89± 7
FEV1 % pred - 44± 6

Table 6.1: Biometric and spirometric parameters of the investigated sub-
jects. Values are presented as mean ± standard deviations; % pred: pre-
dicted according to the asymptomatic males of the study; V C: vital capacity;
FEV1: forced expiratory volume in one second.

The measurements of the input impedance values for these two groups of vol-
unteers have been performed according to the forced oscillation lung function
test described in section 2.1 and the model from (2.1). The modelling errors
have been calculated according to (2.2).

6.2.3 Results

The complex impedance values for the healthy and COPD patients have been
obtained using (2.1) and they are depicted in figure 6.1 below. It can be
observed that the healthy group has a resonant frequency (zero crossing in
the imaginary part) around 8 Hz, whereas the COPD group around 16 Hz.
The real part denotes mainly the mechanical resistance of the lung tissue,
which is generally increased in the COPD group, resulting in higher work of
breathing. Also, the resistance at low frequencies is much increased in the
COPD group, suggesting increased damping of the lung parenchyma (Hogg
et al. 2004).
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Figure 6.1: Impedance plots for the healthy (left) and for the COPD (right)
groups.

Next, the models from (6.1)-(6.5) are fitted to these complex impedance
values. Identification is performed using the System Identification Toolbox
within the MatLab platform, i.e. the lsqnonlin optimization function (a
nonlinear least squares algorithm). The estimated parameter values along
with the modelling error values are given in table 6.2 for the healthy subjects,
respectively in table 6.3 for the COPD patients.
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From tables 6.2 and 6.3 one may observe that the models FO3 and FO4 give
the smallest total error. This is due to the fact that two FO terms are present in
their model structure, allowing both a decrease and increase in the real part of
the impedance values. Although the FO2 model is the most commonly em-
ployed in clinical studies, it has to be used with care, since it provides higher
modelling error in the real part of the impedance than the FO3 and FO4 mod-
els. The underlying reason is that the FO2 model can only capture a decrease
in real part values of the impedance with frequency, whereas some patients
may present an increase. In figure 2.9 was presented an example where one
could visually compare the performance of the FO2 and FO4 models on a
patient data. Another observation is that the resistance identified by FO3 was
found to be very low in COPD patients, with values which were not statis-
tically significant (p < 0.26) (Ionescu & De Keyser 2009b). Hence, it can
be regarded as an indication that the FO3 model structure has an unnecessary
parameter Rr, for the respiratory impedance in the 4-48 Hz frequency range.
This section presented a comparison of four candidate lumped models for the
respiratory input impedance between 4-48 Hz frequency range. The results
suggest that the two models broadly used in the clinical studies (i.e. FO1 and
FO2) and reported in the specialized literature are suitable for frequencies
lower than 15 Hz. However, in the transitional frequency range from com-
pliance to inertance effects, two fractional orders are necessary in the model
structure.
The multi-fractal model proposed here in (6.5) identifies significant values
between the examined groups and has the best performance with the least
number of model parameters. Hence, the remainder of this chapter will eval-
uate in detail the model performance in classifying between several groups
of subjects.

6.3 Classification Indexes

Recalling here the identification procedure described in section 2.1 using
(2.1), one obtains the complex impedance by means of its real and imagi-
nary parts as a function of frequency. From the real and imaginary parts of
the complex impedance, the model parameters of (6.5) were identified. The
modeling errors were calculated with (2.2).
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From the identified model parameters one can derive the tissue damping Gr
and elastance Hr, defined as (Hantos et al. 1992b, a):

Gr = 1
Crωβr

cos
(
βr

π
2

)
Hr = 1

Crωβr
sin
(
βr

π
2

) (6.6)

both in (l/kPa). The hysteresivity coefficient ηr is defined as (Fredberg &
Stamenovic 1989):

ηr =
Gr
Hr

(6.7)

This parameter characterizes the heterogeneity of the lung tissue and has been
shown to vary significantly with pathology. Since all these parameters from
(6.6) and (6.7) are frequency-dependent, the identified values will represent
an averaged value over the 4-48 Hz frequency range.
Apart from the identified model parameters, some additional parameters are
introduced in this analysis. The real part of the complex impedance at 6 Hz
(R6) can be used to characterize the total resistance at this frequency, a pa-
rameter often encountered in clinical studies. The resonant frequency (Frez)
could also be used as a classifying parameter, since it has been shown that the
balance between elastic and inertial properties change with pathology.
We introduce two dimensionless indexes, namely the quality factor at 6 Hz
(QF6), denoted by the ratio of the reactive power to the real power:

QF6 =
Im6

Re6
= tanφz (6.8)

where Re6 and Im6 denote the real and imaginary parts of the complex
impedance evaluated at 6 Hz and φz denotes the phase angle at 6 Hz. From
(6.8), one can calculate the corresponding power factor PF6:

PF6 =
√

1
QF62 + 1

=

√
Re2

6

(Re2
6 + Im2

6)2
=

Re6

Re2
6 + Im2

6

= cosφz (6.9)

In engineering, the quality factor QF compares the time constant for decay
of an oscillating physical system’s amplitude with respect to its oscillation
period. In other words, it compares the frequency at which a system oscillates
to the rate at which it dissipates its energy, also known as the damping factor.
For a second order linear time invariant system, a system is said to be over-
damped if QF < 0.5, under-damped for QF > 0.5 and critically damped
for QF = 0.5. In other words, a low QF denotes a high energy loss, while a
high QF denotes a low energy loss. For the power factor PF , we have that
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for PF = 0 the energy flow is entirely reactive (hence the stored energy in
the load returns to the source with each cycle), and if PF = 1, all the energy
supplied by the source is consumed by the load.
Independent Student’s t tests with unequal sample size were used to compute
the confidence intervals. The classification results were considered signifi-
cant if p ≤ 0.05 (i.e. within 95% confidence interval).
The model parameters were compared between groups using boxplots.
The lower and upper lines of the boxplot are the 25th and 75th percentiles
of the sample group. The distance between the top and bottom of the box
is the interquartile range. The line in the middle of the box is the sample
group median value. If the median is not centered in the box, it is an indi-
cation of skewness. The whiskers are lines extending below and above the
box. They show the extent of the rest of the sample group (unless there are
outliers). Assuming no outliers, the maximum of the sample is the top of the
upper whisker, respectively the minimum is the bottom of the lower whisker.
An outlier is a value more than 1.5 times the interquartile range away from
the top or bottom of the box, and they are denoted by plus signs. A side by
side comparison of two or more boxplots provides a graphical way to deter-
mine which groups have significantly different medians (typical measure in
classification studies).

6.4 Envisaged Subjects and Patients

In the remainder of this chapter, the term subjects will refer to healthy vol-
unteers, whereas the term patients will refer to diagnosed volunteers. The
forced oscillations lung function test (FOT) was employed to perform mea-
surements of the input respiratory impedance, as described in section 2.1.
The measurement was performed in the f ∈ [4, 48] (Hz) frequency interval,
respectively ω ∈ [25, 300] (rad/s).
Drop-out criteria were: i) technically biased measurements (swallowing,
coughing, glottis closure); ii) fatigue and therefore reduced ability to breath
spontaneously; and iii) irregular breathing period. All subjects and patients
were in stable physical conditions at the time of the evaluation.
Written and/or oral consent was obtained from all participants, and in case
of children, from both children and their parents. Further selection of the
participants was performed by oral/written questionnaire ruling out any other
respiratory disease than the one envisaged for the study at the time of mea-
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surement or in the past 4 weeks. The remainder of this section presents the
data for the participants to whom these inclusion criteria applied.

6.4.1 Healthy Subjects - Adults

The group evaluated in this study consists of 80 Caucasian volunteers (stu-
dents) without a history of respiratory disease, whose lung function tests were
performed in our laboratory, and table 6.4 presents their biometric parame-
ters. The measurements were performed over the 2005-2009 time interval.

Healthy
(80)

female/male 31/49
Age (yrs) 27± 5

Height (m) 1.73± 0.17
Weight (kg) 69± 9.6

Table 6.4: Biometric parameters of the healthy subjects. Values are pre-
sented as mean ± standard deviation.

According to Pasker et al., the real (Re) and imaginary (Im) parts of the
impedance can be predicted from their biometric data as given below (Pasker
et al. 1997):

Female
Re0 = −0.4300 · h+ 0.00165 · w − 0.00070 · a+ 0.9312
(RSD = 0.0619)
Re1 = 0.01176 · h− 0.000106 · w − 0.000045 · a− 0.00817
(RSD = 0.00256)
Im0 = 0.2487 · h− 0.001700 · w − 0.00053 · a− 0.2158
(RSD = 0.0406)
Male
Re0 = −0.2454 · h+ 0.001564 · w − 0.00055 · a+ 0.5919
(RSD = 0.0493)
Re1 = 0.01176 · h− 0.000106 · w − 0.000045 · a− 0.00817
(RSD = 0.00197)
Im0 = 0.2487 · h− 0.001700 · w − 0.00053 · a− 0.2158
(RSD = 0.0306)

(6.10)

where h denotes height in (m), w denotes weight in (kg), a denotes age in
(yrs) and RSD is the residual standard deviation. The real and imaginary
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parts of the impedance are fitted by the polynomial:

Rrs = Df + E (6.11)

where f is the frequency. The coefficients calculated with (6.10) from their
biometric parameters are then validated with the E and D coefficients result-
ing from the curve fitting. For the real part of the impedance, the coefficient
E is validated with the coefficient Re0, respectively the coefficient D is val-
idated with the coefficient Re1. For the imaginary part of the impedance,
the coefficient E is validated with the coefficient Im0. Since the volunteers
were presumed healthy (but not guaranteed), the predicted values for terms in
(6.11) were verified with the reference values from (Quanjer 1998). Only in
56 (from the initial 80) subjects, the identified values from (6.11) remained
close to the predicted values of Re0, Re1 and Im0, within the 95% confi-
dence interval.

6.4.2 Patients with COPD

COPD (Chronic Obstructive Pulmonary Disease) denotes any disorder that
persistently obstructs the bronchial airflow (Barnes 2000, Hogg et al. 2004).
However, it mainly involves two related diseases – chronic bronchitis and em-
physema. Both cause chronic obstruction of air flowing through the airways
and in and out of the lungs. The obstruction is irreversible and progresses
(becomes worse) over the time. Most cases of COPD develop after long-
term exposure to lung irritants that damage the lungs and the airways (e.g.
miners, smoke). Secondhand smoke (i.e. smoke in the air from other people
smoking) can also irritate the lungs and contribute to COPD. Breathing in
air pollution and chemical fumes or dust from the environment or workplace
also can contribute to COPD.
The COPD group under study consisted of 47 Caucasian patients, diagnosed
and under observation at the ”Leon Danielo” Hospital in Cluj-Napoca, Ro-
mania. The patients were former coal miners from the Petrosani area in Ro-
mania. Their biometric and spirometric parameters are given in table 6.5.
The measurements were performed in January 2006, Cluj Napoca, Romania.

6.4.3 Patients with Kyphoscoliosis

Kyphoscoliosis is a disease of the spine and its articulations, mostly begin-
ning in childhood (McCool & Rochester 2008). The deformation of the spine
characteristically consists of a lateral displacement or curvature (scoliosis) or
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COPD
(47)

female/male 0/47
Age (yrs) 64± 13

Height (m) 1.74± 0.12
Weight (kg) 79± 12
VC % pred 84± 12
FEV1 % pred 38± 8

Table 6.5: Biometric and spirometric parameters of the COPD patients. Val-
ues are presented as mean ± standard deviation; % pred: predicted ac-
cording to the asymptomatic males of the present study; VC: vital capacity;
FEV1: forced expiratory volume in one second.

an antero-posterior angulation (kyphosis) or both (kyphoscoliosis). The angle
of the spinal curvature called the angle of Cobb determines the degree of the
deformity and consequently the severity of the restriction. Severe kyphosco-
liosis may lead to respiratory failure, which often needs to be treated with
non-invasive nocturnal ventilation.
This study was approved by the local Ethics Committee of the University
Hospital Gent (UZGent) and informed consent was obtained from all volun-
teers before inclusion in the study. The study involved 9 adults diagnosed
with kyphoscoliosis and their corresponding biometric and spirometric val-
ues are given in table 6.6. The measurements were performed during the June
2009 - August 2009 time interval.

6.4.4 Healthy Subjects - Children

This study was approved by the local Ethics Committee of the University
Hospital in Antwerp (UZA) and informed consent was obtained from all vol-
unteers before inclusion in the study. The study involved 16 healthy chidren
and their corresponding biometric values are given in table 6.7. The mea-
surements were performed in May 2009, at the St. Vincentius Basis School
in Zwijnaarde, Belgium.
The healthy children had no history of pulmonary disease, and were selected
using a specific questionnaire. The questionnaire verified the absence of dys-
pnoea, chronic cough, wheeze in the chest, etc.
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Kyphoscoliosis
(9)

female/male 3/6
Age (yrs) 62.25± 10.12

Height (m) 1.55± 0.08
Weight (kg) 63.25± 15.62
V C % pred 33.25± 14.15
FEV1 % pred 31.62± 11.30
FV C % pred 34.62± 12.12
Cobb angle (o) 75± 19.63
Raw (kPa/l/s) 0.51± 0.12

Ccw pred* (l/kPa) 0.98± 0.29
V C % pred* 65.06± 10.48

Table 6.6: Biometric and spirometric parameters of the adults diagnosed
with kyphoscoliosis. Values are presented as mean±standard deviation val-
ues; % pred: predicted values; VC: vital capacity; FEV1: forced expiratory
volume in one second; FVC: forced vital capacity; Cobb angle: the angle
of spinal deformity (one patient was excluded for it has outlier value for
Cobb angle, i.e. 178o; Ccw: chest wall compliance; pred∗: denotes values
predicted from the Cobb angle, according to (McCool & Rochester 2008);
Raw: airway resistance from bodybox lung function test. All patients were
on nocturnal ventilation.

Healthy
(16)

female/male 13/3
Age (yrs) 9.66± 0.47

Height (m) 1.39± 0.07
Weight (kg) 32.3± 6.34

Table 6.7: Biometric parameters of the healthy children. Values are pre-
sented as mean ± standard deviation values.
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In order to validate the measurements in healthy children, the real part of the
complex impedance evaluated at 6 Hz (R6) was predicted from:

R6 = 0.0017 · h2 − 0.5407 · h+ 47.7323 (6.12)

with h the height in (cm) (Duiverman et al. 1985). All subjects were within
the 95% confidence interval values.

6.4.5 Children with Asthma

Asthma denotes a pulmonary disease in which there is obstruction to the flow
of air out of the lungs, but the obstruction is usually reversible and between
attacks of asthma the flow of air through the airways is usually good (Busse
& Lemanske 2001, Vignola et al. 2004, Cavalcanti et al. 2006). Asthma is
caused by chronic (ongoing, long-term) inflammation of the airways, making
them highly sensitive to various triggers. Such triggers are usually: indoor
and outdoor allergens, indoor and outdoor dust, exercise. In an asthma attack,
the muscles in the airways contract (bronchospasm), causing narrowing of the
airway walls. With proper treatment, people with asthma can have fewer and
less severe attacks; while without treatment, they will have more frequent
and more severe asthma attacks and can even die. Asthma can be controlled
using specific medication (inhaled steroids).
This study was approved by the local Ethics Committee of the University
Hospital Antwerp (UZA) and informed consent was obtained from all volun-
teers before inclusion in the study. The study involved 19 asthmatic children
and their corresponding biometric and spirometric values are given in table
6.8. The measurements were performed during the December 2008 - March
2009 time interval.
The protocol in this clinical trial was as follows: initial measurements of FOT
and spirometry were performed, followed by a bronchodilatator test. Typi-
cally, the spontaneous improvement of the symptoms mentioned above, after
the bronchodilatator use, is also an indicative of asthma (> 12% improve-
ment of forced expiratory volume for the 1 second (FEV1) predicted baseline
after inhalation). For the bronchodilatation test, Ventolin 100 (4 x Salbuta-
mol 100 mg) was administered. The patient has to breath in and breath out
in a nebulizer 4 times the administered medication. A time interval of 12
minutes was allowed to pass after the inhalation, such that the airways have
time to respond to the bronchodilatator. Repeated measurements of FOT and
spirometry evaluated the patients after the bronchodilatation test.
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Asthma Healthy
(19) (16)

female/male 3/16 13/3
Age (yrs) 11.05± 4.7 9.66± 0.47

Height (m) 1.40± 0.17 1.39± 0.07
Weight (kg) 36.25± 15.58 32.3± 6.34

FEF/V C % pred 85.31± 31.15 NA
FEV1/V C % pred 97.75± 12.83 NA
MEF75/25 (l) 2.12± 0.95 NA

Table 6.8: Biometric and spirometric parameters of the asthmatic children
and the healthy children used for comparison. Values are presented as mean
± standard deviation values; % pred: predicted values; VC: vital capacity;
FEV1: forced expiratory volume in one second; FEF: forced expiratory flow;
MEF75/25: mean expiratory flow at 75%, respectively at 25% capacity; NA:
data not available.

As additional information, allergy was determined based on specific positive
reaction to inhaled allergen (house dust mite, birch tree, grass pollen, weed,
dog/cat dander), and further details are given in table 6.9.

Medication ICS: 12 LABA: 15 LRA: 8
Level of asthma control PC: 6 C: 8 none: 5

Time of diagnose (years) <1: 9 <2: 3 <5: 7
Allergic asthma Yes: 17 No: 2 -

Table 6.9: Number of the asthmatic children related to various asthma
parameters: ICS: inhaled corticosteroid; LABA: long acting beta agonist;
LRA: leukotriene receptor antagonist; PC: partially controlled; C: con-
trolled.

6.4.6 Children with Cystic Fibrosis

One of the most common severe genetic diseases, cystic fibrosis (CF) is char-
acterized by the production of abnormal secretions, leading to mucous build-
up, and persistent infections and inflammation in a variety of organs (Brennan
et al. 2005, Rogers & Doull 2005). Inflammation and infection also cause in-
jury and structural changes to the lungs, leading to a variety of symptoms and
eventually to respiratory failure. Without treatment, CF results in death for
95% of affected children before the age of 5, hence early diagnosis is critical.
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This study was approved by the local Ethics Committee of the University
Hospital Antwerp (UZA) and informed consent was obtained from all volun-
teers before inclusion in the study. The study involved 10 children diagnosed
with cystic fibrosis and their corresponding biometric and spirometric val-
ues are given in table 6.10. The measurements were performed during the
December 2008 - March 2009 time interval.

Cystic Fibrosis Healthy
(10) (16)

female/male 4/6 13/3
Age (yrs) 14.44± 6.21 9.66± 0.47

Height (m) 1.49± 0.15 1.39± 0.07
Weight (kg) 39.89± 11.67 32.3± 6.34

FEF/V C % pred 86.51± 36.12 NA
FEV1/V C % pred 95.71± 9.42 NA
MEF75/25 (l) 2.08± 1.13 NA

Table 6.10: Biometric and spirometric parameters of the children diagnosed
with cystic fibrosis and the healthy children used for comparison. Values are
presented as mean±standard deviation values; % pred: predicted values;
VC: vital capacity; FEV1: forced expiratory volume in one second; FEF:
forced expiratory flow; MEF75/25: mean expiratory flow at 75%, respec-
tively at 25% capacity; NA: data not available

The patients were clinically diagnosed and hospitalized at the time of mea-
surement. Diagnosis was based on a sweat test and detection of a minimum
1 gene mutation responsible for cystic fibrosis.

6.5 Results

In the remainder of this chapter, the complex impedance will be depicted
against frequency f in Hz, whereas its equivalent Bode plot representation
will be depicted against angular frequency ω in rad/s.

6.5.1 Healthy vs COPD

The complex impedance values for the healthy and COPD patients obtained
with (2.1) are similar to those presented in section 6.1; the equivalent Bode
plots are given in figure 6.2. The real part denotes mainly the mechanical re-
sistance of the lung tissue, which is generally increased in the COPD group,
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resulting in a higher work of breathing. Also, the resistance at low frequen-
cies is much increased in the COPD group, suggesting increased damping of
the lung parenchyma (viscoelasticity is mainly analyzed at low frequencies).

Figure 6.2: Bode plots for the healthy (left) and for the COPD (right) groups.

The estimated and derived model parameter values along with the real, imag-
inary and total error values are given in table 6.11 for the healthy subjects
and for the COPD patients.

Healthy COPD
Lr 0.032± 0.029 (0.019,0.045) 0.016± 0.007 (0.013,0.019)

1/Cr 1.59± 1.10 (1.09,2.08) 2.81± 1.45 (2.15,3.47)
αr 0.42± 0.08 (0.38,0.47) 0.56± 0.07 (0.53,0.60)
βr 0.75± 0.11 (0.70,0.80) 0.52± 0.10 (0.47,0.56)
Gr 0.44± 0.15 (0.37,0.50) 1.77± 0.73 (1.43,2.10)
Hr 1.49± 1.14 (0.98,2.00) 2.15± 1.30 (1.55,2.74)
ηr 0.41± 0.21 (0.32,0.51) 0.99± 0.41 (0.80,1.18)
R6 0.13± 0.05 (0.11,0.16) 0.33± 0.07 (0.29,0.36)
Frez 10.48± 3.56 (8.75,13.87) 20.58± 8.98 (11.89,30.27)
QF6 0.09± 0.09 (0.02,0.17) 0.55± 0.24 (0.44,0.66)
PF6 0.99± 0.01 (0.98,0.99) 0.86± 0.08 (0.82,0.90)
ER 0.02± 0.01 0.03± 0.01
EX 0.013± 0.006 0.02± 0.006
ET 0.02± 0.01 0.04± 0.01

Table 6.11: Estimated and derived model parameters and modelling errors
for the healthy and COPD groups. Values are given as mean ± standard
deviation; values in brackets indicate the corresponding 95% confidence in-
tervals.

Tissue destruction (emphysema, COPD) and changes in air-space size and
tissue elasticity are matched with changes in model parameters when com-
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pared to the healthy group. The physiological effects of chronic emphysema
are extremely varied, depending on the severity of the disease and on the rel-
ative degree of bronchiolar obstruction versus lung parenchymal destruction
(Barnes 2000). Firstly, the bronchiolar obstruction greatly increases airway
resistance and results in increased work of breathing. It is especially difficult
for the person to move air through the bronchioles during expiration because
the compressive force on the outside of the lung not only compresses the
alveoli but also compresses the bronchioles, which further increase their re-
sistance to expiration. This might explain the decreased values for inertance
(air mass acceleration), captured by the values of Lr.
Secondly, the marked loss of lung parenchyma greatly decreases the elastin
cross-links, resulting in loss of attachments (Hogg et al. 2004). The latter can
be directly related to the fractional-order of compliance, which generally ex-
presses the capability of a medium to propagate mechanical properties (Suki
et al. 1994). The damping factor is a material parameter reflecting the ca-
pacity for energy absorption. In materials similar to polymers, as lung tissue
properties are very much alike polymers, damping is mostly caused by vis-
coelasticity, i.e. the strain response lagging behind the applied stresses (Suki
et al. 1994, 1992). In the FO model, the exponent βr governs the degree
of the frequency dependence of tissue resistance and tissue elastance. The
increased lung elastance 1/Cr (elasticity) in COPD results in higher values
of tissue damping and tissue elastance, as observed in figure 6.3. The loss
of lung parenchyma (empty spaced lung), consisting of collagen and elastin,
both of which are responsible for characterizing lung elasticity, is the leading
cause of increased elastance in COPD. Given the results observed in Fig-
ure 6.4, it is possible to distinguish between tissue changes from healthy to
COPD case from the variatons in the hysteresivity index ηr (p << 0.01).
Since pathology of COPD involves significant variations between inspiratory
and expiratory air-flow, an increase in the hysteresivity coefficient ηr reflects
increased inhomogeneities and structural changes in the lungs.
Figures 6.3-6.4 depict the boxplots for the tissue damping Gr (p << 0.01),
tissue elastance Hr (p << 0.01), tissue hysteresivity ηr (p << 0.01) and
resistance at 6Hz R6 (p << 0.01) calculated with the parameters from Ta-
ble 6.11. In emphysematous lung, the caliber of small airways changes less
than in the normal lung (defining compliant properties) and peripheral air-
way resistance may increase with increasing lung volume. At this point, the
notion of space competition has been introduced (Hogg et al. 2004), hypoth-
esizing that enlarged emphysematous air spaces would compress the adjacent
small airways, according to a nonlinear behavior. Therefore, the compression
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would be significantly higher at higher volumes rather than at low volumes,
resulting in blunting or even reversing the airway caliber changes during lung
inflation. This mechanism would therefore explain the significantly marked
changes in model parameters in tissue hysteresivity depicted in figure 6.4.
Many alveolar walls are lost by emphysematous lung destruction, the lungs
become so loose and floppy that a small change in pressure is enough to
maintain a large volume, thus the lungs in COPD are highly compliant (elas-
tic) (Barnes 2000, Hogg et al. 2004, Ionescu et al. 2009b). This is observed
in the high values identified for 1/Cr.

Figure 6.3: Tissue damping Gr (left) and tissue elastance Hr (right) in 1:
Healthy subjects and 2: COPD patients.

Figure 6.4: Tissue hysteresivity η (left) and real part of impedance R6 eval-
uated at 6 Hz (right) in 1: Healthy subjects and 2: COPD patients.

The quality factor QF6 is close to 0.5 in COPD, suggesting a critically
damped tissue characteristic. As expected, the quality factor remained low in
healthy, denoting the under-damped character of lung parenchyma. This will
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Figure 6.5: Quality factor QF6 (left) and power factor PF6 (right) in 1:
Healthy subjects and 2: COPD patients.

then result in a high power factor for healthy and decreased power factor in
COPD, hence increased work of breathing in COPD.

6.5.2 Healthy vs Kyphoscoliosis

The complex impedance values for the healthy and kyphoscoliosis patients
obtained using (2.1) are depicted in figure 6.6 and the equivalent Bode plots
are given in figure 6.7.

Figure 6.6: Impedance plots for the healthy (left) and for the kyphoscoliosis
(right) groups.

Table 6.12 presents the results obtained from the identification of model pa-
rameters (2.4). There were significant variances between the groups for tis-
sue damping Gr (p << 0.01), but not for tissue elastance Hr (p < 0.75),
as observed from figure 6.8. The boxplots for the quality factor QF6 and
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Figure 6.7: Bode plots for the healthy (left) and for the kyphoscoliosis (right)
groups.

Healthy Kyphoscoliosis
Lr 0.032± 0.029 (0.019,0.045) 0.0173± 0.012 (0.007,0.02)

1/Cr 1.59± 1.10 (1.09,2.08) 2.47± 0.76 (1.85,3.10)
αr 0.42± 0.08 (0.38,0.47) 0.54± 0.05 (0.49,0.58)
βr 0.75± 0.11 (0.70,0.80) 0.55± 0.05 (0.50,0.59)
Gr 0.44± 0.15 (0.37,0.50) 1.55± 0.39 (1.25,1.86)
Hr 1.49± 1.14 (0.98,2.00) 1.91± 0.73 (1.34,2.48)
ηr 0.41± 0.21 (0.32,0.51) 0.85± 0.16 (0.72,0.98)
R6 0.13± 0.05 (0.11,0.16) 0.28± 0.06 (0.23,0.33)
Frez 10.48± 3.56 (8.75,13.87) 15.01± 2.08 (12.80,18.02)
QF6 0.09± 0.09 (0.02,0.17) 0.58± 0.15 (0.46,0.71)
PF6 0.99± 0.01 (0.98,0.99) 0.85± 0.05 (0.81,0.90)
ER 0.02± 0.01 0.03± 0.008
EX 0.013± 0.006 0.01± 0.005
ET 0.02± 0.01 0.03± 0.008

Table 6.12: Estimated and derived model parameters and modelling errors
for the healthy and kyphoscoliosis groups. Values are given as mean ± stan-
dard deviation; values in brackets indicate the 95% confidence intervals.
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the power factor PF6 are given in figure 6.9, which were significantly dif-
ferent between the groups (p << 0.01). Finally, the boxplot for the real
part of impedance at 6 Hz, R6 (p << 0.01), and for tissue hysteresivity ηr
(p << 0.01) are given in figure 6.10.

Figure 6.8: Tissue damping Gr (left) and tissue elastance Hr (right) in 1:
healthy and 2: kyphoscoliosis. See corresponding p-values discussed in text.

Figure 6.9: Quality factorsQF6 (left) and power factors PF6 (right) evalu-
ated at 6 Hz in 1: healthy and 2: kyphoscoliosis. See corresponding p-values
discussed in text.

The total lung capacity can be markedly reduced in kyphoscoliosis, with a
relative preservation of residual volume. Hence, the reduction in volume
capacity (VC) is consequent. The fact that the predicted values in V C from
the Cobb angle values were higher than measured, can be attributed to the fact
that these patients may have secondary kyphoscoliosis, whereas the predicted
values correlate better with idiopatic scoliosis (McCool & Rochester 2008).
Similarly, a stiff chest wall (low Ccw values from Cobb angle) will diminish
the resting position of the chest wall, which in turn, reduces the functional
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Figure 6.10: Real part of impedance R6 evaluated at 6 Hz (left) and the tis-
sue hysteresivity ηr in 1: healthy and 2: kyphoscoliosis. See corresponding
p-values discussed in text.

residual capacity. Stiffening of the chest wall leads as well to an overall
reduction in the lung compliance (increased damping). One must keep in
mind that these changes are not resulted from a diseased parenchyma, but a
consequence of the relatively immobile chest wall.
The restrictive nature of the disease (from reduced lung volume) was con-
firmed by a significantly increased tissue damping Gr, airway resistance R6
and quality factor QF6. The latter suggested an over-damped dynamical
system. The reduced lung and chest wall compliances increase the elastic
load on the respiratory muscles and therefore increase the inspiratory pres-
sure needed to inhale a given air volume. Consequently, the work of breathing
is increased, reflected in the lower values for the power factor PF6.
Tissue elastance was not significantly different between the groups, but the
tissue hysteresivity ηr provided a significantly increased heterogeneity in the
lungs of the kyphoscoliosis group. Indeed, this result reflects the modified
structure of the lungs as originated by the spinal deformity. For example,
airway obstruction can occur in some cases as a consequence of changes in
the geometry of the airways, or as a result of the aorta impinging on the
tracheal wall.

6.5.3 Healthy vs Asthma in Children

Using a closed circuit spirometer (JAEGER MasterLab, Germany) measure-
ments for forced vital capacity (FVC), forced expiratory volume in one sec-
ond (FEV1), the ratio FEV1/FVC and the ratio of forced expiratory flow
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(FEF) between 25% and 75% of FVC to FVC (FEF/FVC) were obtained for
the asthmatic patients in a sitting position. These parameters were presented
as raw data and percentile of the predicted values (% pred) in a healthy sub-
ject with the same biometric details. Quality control of spirometry is given
by the ATS criteria (American Thoracic Society), with the software allowing
detection of non-acceptable manoeuvres. From the 19 patients with clinical
diagnosis of asthma, 16 presented normal respiratory response by spirome-
try, and will be further referred to as normal-to-the exam (NE) patients. The
underlying reason for this was that the patients had a controlled asthma.
The predicted values in R6 are very close to the measured values, in both
healthy and asthmatic children, as depicted by figure 6.11. This then supports
the spirometric data from Table 6.8, which shows values close to 100% from
the predicted values in all subjects, thus denoting the NE patients. The high
standard deviation values in Table 6.8 for the spirometric indexes are due to
the few asthmatic patients which were not normal to the exam, also visible
in figure 6.11 with R6 values higher than the rest of the group. As observed
form figure 6.12, there was a linear dependence between the FEV 1/V C%
index and height in asthmatic children, in agreement with similar studies
from literature (Duiverman et al. 1985, Peslin et al. 1984).
The complex impedance values for the healthy and asthmatic children ob-
tained using (2.1) are depicted in figure 6.13 below. The equivalent Bode
plots are given in figure 6.14. Table 6.13 presents the results obtained from
the identification of model parameters.

Figure 6.11: The real part of impedance R6 evaluated at 6 Hz against the
height in healthy (square), asthma before bronchial challenge (triangle) and
asthma after bronchial challenge (crosses). Predicted values for R6 from
(Duiverman et al. 1985) (diamond).
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Figure 6.12: The percent ratios FEV 1/V C% (diamond) and FEF/V C%
(square) against height.

Figure 6.13: Impedance plots for the healthy (left) and for the asthma (right)
groups.

Figure 6.14: Bode plots for the healthy (left) and for the asthma (right)
groups.
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CHAPTER 6. CLINICAL APPLICATIONS

It can be observed that for the inductance Lr and its corresponding fractional-
order parameter αr, the confidence intervals are overlapping; hence, there are
no significant differences from these parameters between the three groups.
The elastance 1/Cr and its corresponding fractional-order parameter βr were
significantly different between the groups, leading to significantly different
values for the tissue damping Gr (p << 0.01) and tissue elastance Hr

(p << 0.01), as observed in figure 6.15. The corresponding boxplots for tis-
sue damping Gr and tissue elastance Hr in the three groups: healthy, asthma
before bronchial challenge and asthma after bronchial challenge test are given
in figure 6.15. The boxplots for the quality factor QF6 and the power fac-
tor PF6 are given in figure 6.16. Finally, the boxplots for the real part of
impedance R6 and resonant frequency ηr are given in figure 6.17.

Figure 6.15: Tissue damping Gr (left) and tissue elastance Hr (right) in 1:
healthy; 2: asthma; and 3: asthma after bronchial challenge. See corre-
sponding p-values discussed in text.

There were no significantly different values obtained between the groups for
the hysteresivity ηr (p < 0.41), perhaps due to prior medication of the asth-
matic group. Indeed, in lung tissues, the frictional stress is almost invariably
between 0.1 and 0.2 of the elastic stress, fraction known as hysteresivity. This
means that for each unit of peak elastic strain energy that is stored during a
cyclic deformation, 10 to 20% of that energy is lost irreversibly to heat. This
fixed relationship holds at the level of the whole lung, isolated lung parenchy-
mal tissue strips (Suki et al. 1994), and isolated smooth muscle strips (Yuan
et al. 2000). The fact that in our case we do not have variations in histere-
sivity with bronchial challenge is explained by the fact that in all asthma
patients, a spontaneous improvement higher than 12% was absent, due to
prior medication intake (see Table 6.9). Nevertheless, the tissue damping and
tissue elastance coefficients were sensitive to detect variations between the
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6.5. Results

Figure 6.16: Quality factorsQF6 (left) and power factors PF6 (right) eval-
uated at 6 Hz in 1: healthy; 2: asthma; and 3: asthma after bronchial chal-
lenge. See corresponding p-values discussed in text.

Figure 6.17: Real part of impedance R6 evaluated at 6 Hz (left) and tis-
sue hysteresivity ηr (right) in 1: healthy; 2: asthma; and 3: asthma after
bronchial challenge. See corresponding p-values discussed in text.

groups when evaluated independently. Tissue damping was higher in asthma
and highest after bronchial challenge, than in healthy. Tissue elastance de-
creased in asthma after bronchial challenge, to values close to those found in
the healthy group.
Lower QF6 values were obtained in the healthy group in figure 6.16 (p <<
0.01), denoting that higher amount of air circulates in the lungs than in
asthma. A slight decrease in QF6 values suggests an improvement in the air
flow after bronchial challenge in asthma groups (decreased overall damping
factor). The corresponding values for the PF6 show that in healthy lungs, the
overall system is more efficient to use the available energy than in asthmatic
lungs (p << 0.01), hence increased work of breathing in asthma.
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The real values of impedance R6 (p < 0.22) and the tissue hysteresivity
ηr (p < 0.29) were not significantly different between the groups. These
findings are in agreement with similar studies in asthma groups, using forced
oscillation lung function test (Cavalcanti et al. 2006). The authors also report
no statistical significant differences between the control and NE groups in
mean reactance, mean resistance and resonant frequency.

6.5.4 Healthy vs Cystic Fibrosis in Children

The complex impedance values for the healthy and cystic fibrosis (CF) chil-
dren obtained using (2.1) are depicted in figure 6.18 below. The equivalent
Bode plots are given in figure 6.19.

Figure 6.18: Impedance plots for the healthy (left) and for the cystic fibrosis
(right) groups.

Figure 6.19: Bode plots for the healthy (left) and for the cystic fibrosis (right)
groups.
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Healthy Cystic Fibrosis
Lr 0.11± 0.08 (0.06,0.15) 0.07± 0.03 (0.05,0.10)

1/Cr 4.73± 2.73 (3.2,6.2) 8.67± 4.63 (5.11,12.23)
αr 0.32± 0.11 (0.26,0.38) 0.38± 0.08 (0.31,0.44)
βr 0.63± 0.16 (0.54,0.72) 0.77± 0.15 (0.66,0.89)
Gr 1.91± 0.68 (1.53,2.29) 2.07± 0.85 (1.41,2.73)
Hr 4.10± 3.01 (2.44,5.76) 8.26± 4.86 (4.52,12.00)
ηr 0.70± 0.38 (0.49,0.91) 0.38± 0.29 (0.15,0.61)
R6 0.49± 0.06 (0.46,0.53) 0.38± 0.08 (0.32,0.45)
Frez 21± 5.9 (17.81,24.18) 15.75± 4.71 (11.80,19.69)
QF6 0.41± 0.11 (0.35,0.48) 0.67± 0.18 (0.52,0.81)
PF6 0.91± 0.03 (0.89,0.93) 0.82± 0.06 (0.77,0.88)
ER 0.05± 0.01 0.07± 0.03
EX 0.04± 0.01 0.05± 0.04
ET 0.06± 0.02 0.10± 0.05

Table 6.14: The identified model parameters in the two groups; values are
given as mean ± standard deviations; values in brackets denote the 95%
confidence intervals.

Table 6.14 presents the results obtained from the identification of model pa-
rameters. There were no significant variances between the groups for tissue
damping Gr (p < 0.46) and tissue elastance Hr (p < 0.17), as observed
from figure 6.20. The boxplots for the quality factor QF6 and the power fac-
tor PF6 are given in figure 6.21, which were significantly different between
the groups (p << 0.01). Finally, the boxplot for the real part of impedance
at 6 Hz, R6 (p << 0.01), and for tissue hysteresivity ηr (p < 0.23) are given
in figure 6.22.

Figure 6.20: Tissue damping Gr (left) and tissue elastance Hr (right) in 1:
healthy and 2: cystic fibrosis. See corresponding p-values discussed in text.
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Figure 6.21: Quality factorsQF6 (left) and power factors PF6 (right) eval-
uated at 6 Hz in 1: healthy and 2: cystic fibrosis. See corresponding p-values
discussed in text.

Figure 6.22: Real part of impedance R6 evaluated at 6 Hz (left) and the
tissue hysteresivity ηr (right) in 1: healthy and 2: cystic fibrosis. See corre-
sponding p-values discussed in text.

Lung disease in CF begins in the distal airways and should be therefore re-
flected in abnormalities of the intra-parenchymal airways and parenchymal
mechanics. By its intrinsic nature, the identified FO4 model should be able
to determine such changes. However, in order to partition the airway and
parenchymal mechanics, one needs to measure at low frequencies, i.e. a
decade lower than 5 Hz. Since in our study we are not envisaging such fre-
quency range, it is not surprising that no statistical significant differences
in tissue damping, elastance and hysteresivity were obtained. In a study over
the 0.5-20 Hz frequency range using the model structure from (6.2), there was
also no significant difference between the measures of lung function (airway
or parenchymal) in infected or uninfected children with respiratory pathogen

150



6.6. Conclusions

(Brennan et al. 2005). Brennan et al. have shown that the FO2 model can
provide separate estimates of the mechanical properties of the airways and
pulmonary parenchyma in CF, but in a lower frequency decade than in this
present study.
In the 4-48 Hz frequency range, the only parameters able to classify between
healthy and CF children were those derived from the identified impedance at
6Hz: R6,QF6 and PF6. One should recall that the quality factorQF6 is re-
lated to the overall damping factor of the respiratory system, hence indirectly
related to Gr. QF6 was significantly higher in CF than in healthy, denoting
an over-damped tissue property. Consequently, the power factor PF6 was
below than of healthy children, suggesting lower efficiency in breathing, thus
requiring higher work of breathing.
Although one might expect increased airway resistance in CF than in healthy,
the values for R6 were significantly lower in CF than in healthy. One of the
reasons for this result might be that prior to the lung function exam, the CF
patients undergone removal of retained secretions using specific physiother-
apy which resulted in decreased airway obstruction and overall resistance
(Rogers & Doull 2005).
The lung function measured by spirometry is insensitive to changes in airway
structure, therefore it is not sufficient for early diagnosis of CF. We expect
that the FO4 model is able to capture such changes, but in a lower frequency
range.

6.6 Conclusions

This Chapter provided an evaluation of several candidate models in the 4-48
Hz frequency range. The specific information in this frequency range is the
balance between elastic and inertial properties of the lung tissues. Hence,
it is not surprising that the model with both fractional orders in the compli-
ance and inertance terms gave the lowest modelling errors when fitted on the
measured input impedance data.
Further on, we have shown the ability of this multi-fractal model to distin-
guish between healthy groups and other pathologic groups (COPD, kyphosco-
liosis, asthma and cystic fibrosis) in this frequency range. Two novel indexes
are introduced, the quality factor and the power factor, both evaluated at
6 Hz. These indexes proved to be sensitive for variations between all the
groups. The identified values for the usual model parameters (tissue damp-
ing, elastance and hysteresivity) were in the same order of magnitude with
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reported values in literature, but could not be compared since the model
structure differs.
The results obtained in these investigations are encouraging for future clin-
ical trials in groups with distinctive degrees of airway obstruction and other
restrictive airway disorders.

152



6.6. Conclusions

Acknowledgment
I would like to acknowledge here the persons who supported administratively
and technically in the clinical trials.
For the measurements on healthy adult subjects, I would like to thank Mr.
Sven Verschraeven for the technical assistance for pulmonary function testing
at the Department of Respiratory Medicine of Ghent University Hospital,
Belgium.
For the measurements on healthy children, I would like to thank Mr. Principle
Raf Missorten from St. Vincentius school in Zwijnaarde for allowing us to
perform tests and to Mr Dirk Audenaert for providing the healthy volunteers.
I would also like to thank Nele De Geeter and Niels Van Nuffel for further
assistance during the FOT measurements.
For the measurements on COPD patients: many thanks to Prof Dr Dorin
Isoc from Technical University of Cluj-Napoca and to Dr Monica Pop for
the assistance in the University of Pharmacy and Medicine ”Iuliu Hatieganu”
from Cluj-Napoca, Romania.
For the measurements on asthmatic children, I would like to thank Rita Claes,
Hilde Vaerenberg, Kevin De Sooner, Lutje Claus, Hilde Cuypers, Ria Heyn-
drickx and Pieter De Herdt from the pulmonary function laboratory in UZ
Antwerp, for the professional discussions, technical and amicable support
during my stay in their laboratory. I would also like to appreciate the many
trips that Niels had made with his car to transport the medical devices.
For the measurements on kyphoscoliosis adults, I would like to thank Mrs.
Hermine Middendorp for the assistance with the Ethical Committee request;
to Philippe De Gryze, Frank De Vriendt, Lucienne Daman and Evelien De
Burck for performing the spirometry tests and to Dr. Robert Gosselin for
calculating the Cobb angles on the RX photos.

153





Chapter 7

Conclusions and Perspectives

In this Chapter, the main contributions of this thesis are emphasized. Some
further research directions are mentioned as well.
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7.1 Main Results

In this thesis, the airway tree geometry and morphology was engaged to find
the origins of the fractional order appearance in impedance models of the
respiratory system. These models pose the characteristic of having a con-
stant phase over a frequency interval, suggesting a frequency independent
mechanical efficiency of the lungs (i.e. constant-phase models). After a care-
ful investigation in chapter 2 on the existing models from literature for the
input impedance, we conclude that the fractional order models outperform
integer order models. Hence, the natural question arises: why?
The work in this thesis is based on two characteristics of the respiratory sys-
tem, in order to investigate the origins of the FO:

1. the geometrical structure, using the intrinsic recurrence of the respira-
tory tree and

2. the tissue structure, using the viscoelastic properties of lung parenchyma.

A mathematical model has been built in chapter 3, using the Navier-Stokes
equations and Womersley theory, leading to a relation between the air pres-
sure and air-flow in the airways, with respect to lung geometry, morphology
and airway wall (visco)elasticity. Further on, following the two character-
istics of the respiratory system, two analogues have been derived from this
mathematical model:

1. an electrical analogue, based on the recurrent geometrical structure of
the lung, and

2. a mechanical analogue, based on tissue viscoelasticity.

Chapter 4 shows that the electrical analogue leads to an equivalent structure
of the respiratory tree, namely a ladder network. If approached with clas-
sic integer-order modelling, it results in a very high-order impedance model.
However, a convergence analysis reveals that this recurrent ladder network
can be well approximated by a low-order lumped impedance model contain-
ing a FO, over a limited range of frequencies. Similarly, chapter 5 shows that
the mechanical analogue leads also to a ladder structure, whose low-order
lumped model also contains fractional orders.
Therefore, it has been shown how at least two phenomena explain why the
experimental data from chapter 2 is best approximated by lumped FO mod-
els. Furthermore, chapter 6 shows that in the envisaged frequency range (4-48
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Hz) the selected best FO lumped impedance model is able to classify between
healthy groups of subjects and several pathologies: Chronic Obstructive Pul-
monary Disease, asthma, cystic fibrosis and kyphoscoliosis. Some typical
indexes from literature, which were derived from the identified model pa-
rameters, as well as two novel indexes, are discussed for each of the groups
in relation to the specific lung pathology. The results show good agreement
with physiology and pathology of the lungs in all investigated groups.
The work presented in this thesis provides a mathematical basis for the re-
sults observed heuristically from experimental data. The thesis describes a
physiologically consistent approach to model the respiratory tree and show
the appearance of the fractional order impedance model and its typical con-
stant phase characteristic. Rather than dealing with a specific case study,
the modelling approach presents a general method which can be applied in
many other similar systems (e.g. leaves, circulatory system, liver, intestines,
brain). Although recurrence is linked to symmetry of the tree, we consider
also the case when symmetry is not present, showing that the constant-phase
behaviour is still present, hence justifying once again the use of fractional
order models.

7.2 Subjects for further research

7.2.1 Relating the fractional order parameter values to pathol-
ogy

It is significant to recognize the importance of relating the fractional order
model parameter values to the changes occurring in lung pathology. Since
these fractional orders are related to the physiology of the lungs, they might
give insight on structural and morphological changes in the airways with the
severity of the disease.
For instance, in chapter 4 it has been shown that the fractional order arises
from the recurrence ratio of the resistance and compliance per level. Most
of the obstructive and restrictive lung disorders have a crucial impact on the
overall resistance and compliance of the lungs, hence it is clear that changes
in these properties will lead to changes in the values obtained for the frac-
tional orders.
A good starting point in this direction is the mathematical model developed
in chapter 3, which allows various structural changes in the airways. There-
fore, it provides the means to simulate various pathologies, which can be
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further analyzed by means of the two analogue representations: electrical or
mechanical ladder structures. The resulting fractional order values can then
be related to specific changes in the airways.

7.2.2 Low Frequency Measurements

At present, the frequency range of 4-48 Hz used for gathering the measure-
ments from patients is about one decade above the breathing frequency. This
ensures that no signal distortion comes from the breathing in the measured
frequency range. However, the viscoelastic properties can be analyzed at
low frequencies, and one needs to measure closer to the breathing frequency.
This will then bias the estimates due to the high noise level coming from
the breathing signal itself. Hence, an interesting research direction is that
of improving the low frequency identification, in the presence of nonlinear
distortions coming from the breathing of the patient.
In order to apply the low frequency excitation signals (multisine, chirp, etc),
the present FOT device needs to be revised and rebuilt in order to ensure that
the signal to the patient is not distorted by hardware limitations. A prelim-
inary version of the revised FOT device for low frequency measurements is
already available, but with sub-optimal performance below 1 Hz. Once the
low frequency measurements are available, the model described in chapter 5
can be further investigated, in relation to measured data.

7.2.3 Novel impedance estimation algorithms

In identification, the optimal design of the excitation signal is crucial. An-
other interesting research direction is the use of chirp signals instead of multi-
sine signals to excite several oscillatory frequencies. By definition, the chirp
signal excites a band of frequencies, by sending a sinusoidal signal whose
frequency changes with time, but with a fixed amplitude and in a given time
interval. The advantage is that a simple transfer function analyzer can be used
on the input and output signals in order to identify the frequency response of
a system.
The challenge is the interference with the breathing signal, which is super-
imposed on the chirp signal. In this manner, the classic transfer function
analyzer algorithm cannot be used anymore and novel estimation algorithms
have to be developed. Hitherto, several attempts have been done to perform
such tests, but due to high interference with breathing, the estimation algo-
rithm has to be revised.
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Appendix A

Units for the Respiratory
Impedance

For integer order models, the units for the impedance are given by the ra-
tio between pressure (kPa) and flow (l/s), hence kPa/(l/s). In the case of
fractional-order models, the units are not quite the same. For the model of
Hantos et al. (Hantos et al. 1992b), we have that the impedance is given by:

Zr(s) =
P (s)
Q(s)

= Rr + Lrs+
1

Crsβr
(A.1)

with P – pressure in kPa; Q – flow in l/s; Zr – the respiratory impedance;
Rr – airway resistance kPa/(l/s); Lr – inductance kPa/(l/s2); 0 ≤ βr ≤ 1
the fractional order and s the Laplace operator. To determine the units of the
capacitance Cr, we need to keep in mind the fractional order of the Laplace
operator sβ .
The capacitance is defined as the ratio:

Cr =
V (t)
P (t)

(A.2)

with V (t) the volume in liters and P (t) pressure in kPa. The term 1
Crsβ

, can
be re-written as 1

Cr(jω)β
. The units for the angular frequency ω are no more

rad/second but instead, are rad/secondβ . The units for Cr will be given by:

Cr =
V (t)
P (t)

=
1

( ddt)
β

Q(t)
P (t)

(A.3)
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which denote (secondβ) l/secondkPa or l·secondbeta−1

kPa . In this context, the lung
parenchyma can be considered as a tissue with memory. The correct units
of the compliance for such model representations are not discussed in the
literature, mainly because there is not enough information to provide a clear
physiological explanation. In terms of viscoelastic properties, such memory
effects could be associated with the slow motion of molecules at cellular level
within the lung parenchymal strips.
In order to keep consistency with literature reports, we shall keep the units
corresponding to an integer order model throughout the thesis (notice that
other authors who use fractional order impedance also keep the same units).
Presently, efforts are directed towards providing an interpretation of these
units and their importance in characterizing the dynamics of the lung tissue.
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Appendix B

Basic Principles for Estimating
the Respiratory Impedance

For frequencies below 2Hz, the respiratory system can be represented me-
chanically as a series connection of a resistance Re and a compliance Ce.
The driving pressure P (t) generates flow Q(t) across the resistance and the
volume V (t) changes in the compliance. If Pr(t) and Pe(t) are the resistive
and elastic pressure drops respectively, we have that:

Rr =
Pr(t)
Q(t)

; Cr =
V (t)
Pe(t)

and P (t) = Pe(t) + Pr(t). (B.1)

It results that:

P (t) = Rr ·Q(t) +
V (t)
Cr

(B.2)

This represents the first order equation in the motion-equation for a single
compartment model of the respiratory system: a single balloon with compli-
ance Cr on a pipeline with a resistance Rr. This system can be studied us-
ing the exponential decay of volume V (t) as resulting from a step input V0:
V (t) = V0e

−t/τ , where t is time and τ is the time constant which character-
izes the system, denoted by the product of RrCr (Hildebrandt 1969, 1970).
However, in respiratory mechanics, the system is studied using a sinusoidal
function at a given angular frequency ω. The pressure drop across the resis-
tance is in phase with the flow, while the pressure across the elastic element
is in phase with the volume. Using the exponential notation of sinusoidal
functions, (B.2) can be re-written as function of flow:

P = Rr ·Q− j
Q

Crω
(B.3)
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and division by Q results in the impedance formula:

P

Q
= Zr = Rr − j

1
Crω

. (B.4)

In this form, the resistance is the in-phase component, while the compliance
is the out-of-phase component. The modulus is then defined by

|Zr| =
√
Re2 + Im2 (B.5)

with Re and Im denoting the real, respectively the imaginary part of the
complex impedance. The phase is defined by

Φ = tan−1(Im/Re) = tan−1(
−1

RrCrω
) = tan−1(

−1
τω

). (B.6)

When the pressure is oscillated at higher frequencies, an additional term,
the inductance, must be introduced into the model to account for pres-
sure changes in phase with the volume accelerations; resulting in the series
RLC model structure (DuBois et al. 1956, Hildebrandt 1970, Hantos et al.
1992b, a).
The electrical impedance is given by

Zr = |Zr| ejΦ (B.7)

with

|Zr| =

√
R2
r + (Lrω −

1
(ωCr)

)2 (B.8)

and

tan−1 Φ =
Lrω − 1/(ωCr)

Rr
(B.9)

Hence, Zr varies with the frequency of the applied potential difference of the
alternating current. At a certain frequency, the so-called resonance frequency,

Lrω − 1/(ωCr) = 0, (B.10)

denoting the balance between the mechanical properties of the respiratory
system. Depending on these properties, the resonance frequency varies with
healthy and pathologic lungs.
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Non-parametric Estimation of
the Respiratory Impedance

Figure C.1: An electrical analogy of the FOT setup

The global experimental set-up can be modelled by the electrical analogy
from figure C.1, where: Ug denotes the generator test signal (known); Ur de-
notes the effect of spontaneous breathing (unknown); Zr denotes the total res-
piratory impedance (to be estimated); Z1 denotes the impedance (unknown)
describing the transformation of driving voltage (Ug) to chamber pressure; Z2

denotes the impedance (unknown) of both bias tubes and loudspeaker cham-
ber; Z3 denotes the impedance (unknown) of tube segment between bias tube
and mouth piece (effect of pneumotachograph essentially).
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RESPIRATORY IMPEDANCE

Using the basic laws for analyzing electrical networks,the following relation-
ships can be derived:

P =
(Zm − Z3)Zr
(Zm + Z3)Z1

Ug +
Zm

Zm + Zr
Ur (C.1)

Q =
Zm − Z3

(Zm + Zr)Z1
Ug −

1
Zm + Zr

Ur (C.2)

with Zm = Z3 + Z1Z2
Z1+Z2

. This is a system with 2 inputs (Ug and Ur) and 2
outputs (P and Q) and the transfer matrix:

H =

[
(Zm−Z3)Zr
(Zm+Zr)Z1

Zm
Zm+Zr

Zm−Z3
(Zm+Zr)Z1

−1
Zm+Zr

]
(C.3)

all impedances Z being a function of the Laplace operator s. Define now the
vectors:

SY U =
[
SPUg
SQUg

]
(C.4)

and

SUU =
[
SUgUg
SUrUg

]
(C.5)

containing the cross-prower-spectra SY U (jω) between two signals y(t) and
u(t) and the auto-power-spectra SUU (ω) of a signal u(t). From well-known
identification techniques and signal processing theory (Schoukens & Pintelon
2001), it follows that:

SY U (jω) = H(jω) · SUU (jω) (C.6)

In case of absence of breathing Ur = 0, the above expression reduces to:[
SPUg
SQUg

]
=

[
(Zm−Z3)Zr
(Zm+Zr)Z1
Zm−Z3

(Zm+Zr)Z1

]
· SUgUg (C.7)

and it would be exact to estimate the impedance of interest:

Zr(jω) =
SPUg(jω)
SQUg(jω)

(C.8)

the result being a complex variable. However, it is supposed that the test is
done in normal breathing conditions, which may result in interference be-
tween the unknown breathing signal and the test signal Ug. From the point of
view of the forced oscillatory experiment, the signal components of respira-
tory origin Ur has to be regarded as noise. Nevertheless, if Uris designed to
be uncorrelated with the test signal, then SUrUg = 0 and our approach is still
valid. This material has been published in (Ionescu & De Keyser 2003).
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Appendix D

Nominal Recurrence in the
Lungs

The anatomical parameters of the respiratory tree are designed to perform
their natural function in an efficient manner. One may determine the ratio be-
tween parameters of consecutive airway levels and provide a mean and stan-
dard deviation value for each of these morphological parameters (i.e. radius,
length). Since the respiratory tree is a dichotomously bifurcating structure,
one may consider the parameter ratios in terms of powers of 2, as derived
from morphological data of the symmetric representation of the lungs:

Rm+1
∼= Rm · 2−0.17

`m+1
∼= `m · 2−0.18

(D.1)

where length is denoted by ` and airway radius by R; m represents the level
of the branch. The detailed view of a branch bifurcation into two daughter
branches is depicted in Figure D.1. In this figure, ϕb represents the bifurca-
tion angle and b represents the bifurcation length.
The bifurcation angle can be found from Figure D.1 as following:

cosϕb ∼=
Rm

2Rm+1
⇒ ϕb ∼= arccos

(
2−0.83

)
≈ 55o (D.2)

which is in agreement with other studies on bifurcation angles in lung (Sauret
et al. 1999). The bifurcation length b in (m) is then given by:

bm+1
∼= 2 ·Rm+1 sinϕb ∼= 2 ·R1 · 2−0.17m sinϕb ∼=

∼= 0.016 · 2−0.17m · 0.83 ∼= 0.0132 · 2−0.17m
(D.3)
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APPENDIX D. NOMINAL RECURRENCE IN THE LUNGS

Figure D.1: Schematic representation of a symmetric bifurcation.

although in this contribution it will not be explicitly used. Taking into account
that the airway radius is decreasing in each branch, the area of one branch
will decrease too, while the total area per level will increase within the depth
(2m−1 branches). From (D.1) follows the area in a single branch as well as
the total area, respectively:

A∗m+1
∼= A∗m · 2−0.34 → Am+1

∼= Am · 20.66 (D.4)

with m denoting the depth and ∗ denoting a single branch in the respective
depth. Because the overall flow remains constant (Qin = Qout), it follows
that Q∗

m = 2Q∗
m+1. From w∗m · A∗m = 2 · w∗m+1 · A∗m+1 , with w∗ the mean

axial velocity in (m/s) of a single branch which is splitting in the next depth,
we obtain that velocity is decreasing:

w∗m+1

w∗m
=

A∗m
2A∗m+1

∼= 2−1 · 20.346 ∼= 2−0.66 (D.5)

Introducing the Poiseuille equation: Q = πR4∆P/8µ`, with µ - the dynamic
viscosity of air and ∆P the pressure drop in (kPa), leads to:

∆Pm
∆Pm+1

= 2
R4
m+1 · `m

R4
m · `m+1

∼= 2 ·
(
2−0.17

)4 · 20.18 ∼= 1.40 (D.6)
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This observation tells us that the variation of the pressure will decrease with
each depth in a singular branch, which is in accordance with similar studies
(Olson et al. 1970, Pedley et al. 1971). Notice that these relations do not refer
to the pressure itself, but its gradient, and are valid only in case of laminar
flow conditions.
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Appendix E

List of Symbols

Defined in Chapter 1:

P pressure
Q flow
Zr respiratory impedance
Rr respiratory resistance
Lr respiratory inertance
Cr respiratory capacitance
βr fractional order
n fractional order
j the imaginary number =

√
(− 1)

ω angular frequency = 2πf , f the frequency in Hz
E∗ complex modulus of elasticity
σ stress
ε strain
ES , ED storage and dissipation moduli, respectively
E spring/elastic constant
η damper/viscous constant
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Defined in Chapter 2:

Ug generated input/signal
Ur breathing input/signal
Z1 impedance describing voltage-pressure conversion
Z2 impedance describing the loudspeaker and bias tube
Z3 impedance describing the pneumotachograph effect
SPU , SQU cross-correlation spectra between various signals
ER error calculated from the real part of impedance
EX error calculated from the imaginary part of impedance
ET total error
Re the values of the real part of the impedance
Im the values of the imaginary part of the impedance
αr, βr fractional orders
CP4 the constant-phase model from literature in 4 parameters
CP5 the proposed constant-phase model in 5 parameters
NS total number of samples
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Defined in Chapter 3:

δ Womersley parameter = R
√
ωρ/µ

ε0, ε1, ε2 phase angles of the complex Bessel functions of the first kind and order 0 and 1
φP phase angle for pressure
γ complex propagation coefficient
κ cartilage fraction
µ dynamic viscosity
νP coefficient of Poisson (=0.45)
θ contour coordinate
ρ, ρwall, ρs, ρc density of air at BTPS, respectively of the airway wall, of the soft tissue and of

the cartilage
ω angular frequency
ζ radial deformation
φb angle of bifurcation
∆P pressure drop
b bifurcation length
cx capacity per distance unit
dx distance unit
c̃, ć0 the complex velocity of wave propagation, the effective/corrected Moens-

Korteweg velocity
f frequency in Hz
gx conductance per distance unit
h wall thickness
j complex unit =

√
−1

lx inductance per distance unit
` airway length
`m length of an airway in a level m
m airway depth or airway level
p pressure
q flow
r radial direction, radial coordinate

171



APPENDIX E. LIST OF SYMBOLS

rx resistance per distance unit
t time
u velocity in radial direction
v velocity in contour direction
w velocity in axial direction
z axial direction, longitudinal coordinate
y ratio of radial position to radius = r/R
R airway radius
Ap, C1 amplitude of the pressure wave
Au amplitude of the radial velocity wave
Aw amplitude of the axial velocity wave
A∗m, Am the cross sectional area in an airway, and in the level m respectively
Q∗
m, Qm the air-flow in an airway, and in the level m respectively

w∗m, wm the axial velocity in an airway, and in the level m respectively
E, Ec, Es effective, cartilage and soft tissue elastic modulus, respectively
Fr , Fθ , Fz forces in the radial, contour and axial directions
Mp modulus of pressure wave
J1, J0 Bessel functions of first kind and order 1 and 0
M0, M1, M2 the modulus of the complex Bessel functions of the first kind and order 0 and 1
∆ asymmetry index
Re electric resistance
Le electric inductance, inertance
Ce electric capacitance, compliance
Zl, Zt, Z0 the longitudinal, transversal and characteristic impedances
|E|, φE the modulus and angle of the elastic moduli
NRE Reynolds number

172



Defined in Chapter 4:

λ ratio for resistance
1/α ratio for inertance
χ ratio for capacitance
o ratio for conductance
fD fractal dimension
Rm radius of an airway in a level m
BTPS body temperature and pressure, saturated air conditions
Rem electrical resistance in the level m
Lem electrical inertance in the level m
Cem electrical capacitance in the level m
RUA, LUA, CUA upper airway resistance, inertance and capacitance, respectively
RCG, LCG, CCG gas compression resistance, inertance and capacitance, respectively
Zl, Zt longitudinal and transversal impedances, respectively
ZN , YN the total ladder network impedance, respectively admitance
N total number of levels, total number of cells
Im current in cell m
Um voltage in cell m
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Defined in Chapter 5:

n fractional order
F force
A cross sectional area
σ stress
ε strain
∆` longitudinal deformation
ES , ED storage and dissipation moduli, respectively
τ relaxation time
V volume
B damping constant (dashpot) from electrical equivalence
K elastic constant (spring) from electrical equivalence
E spring constant
η damper constant
v velocity
x axial displacement
Ed, ϕd dynamic moduli and its angle
W energy

Defined in Chapter 6:

V C% vital capacity in percent (spirometry)
FEV 1%pred forced expiratory volume in 1 second, in percent of predicted value (spirometry)
FEF forced expiratory flow (spirometry)
MEF75/25 mean expiratory flow at 75/25 percent ratio (spirometry)
Raw total airway resistance (body plethysmography)
Ccw chest wall compliance calculated from Cobb angle
h, a, w height (m), age (years) and weight (kg)
QF6 quality factor at 6 Hz
R6 real part of impedance at 6 Hz
PF6 power factor at 6 Hz
Frez resonant frequency
Gr tissue damping
Hr tissue elastance
ηr tissue hysteresivity
φz phase angle at 6 Hz
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