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Scope and research hypotheses 
 

Soil organic matter (SOM) is a major factor in soil quality and fertility, as it sustains 

nutrient storage and supply, soil structure and biological activity. SOM, and more 

specifically soil organic carbon (SOC), is also receiving increased attention as a potential 

sink for atmospheric CO2 (carbon sequestration). Maintenance and improvement in SOM 

content is thus generally accepted as being a major objective for any sustainable 

agroecosystem. Assessment of SOM quality, however, is complex, as it comprises an 

enormous array of compounds at various stages of decomposition, ranging from very 

active to recalcitrant. Physical fractionation of SOM and stable isotope techniques (e.g. 

13C natural abundance analysis and 15N isotope dilution) are now more and more used in 

the research on quality and turnover of SOM. 

Recently, physical fractionation techniques, like size and density fractionation of SOM, 

have yielded biologically meaningful SOM fractions or pools, which tend to differ in 

degradability and turnover. Moreover, it is generally observed that isotopic fractionation 

during the decomposition process may result in significant shifts in the 13C isotopic 

signature (13C/12C ratio) of SOM. A first research hypothesis was formulated as follows: 

'Shifts in the 13C isotopic signature can be used as an indicator of SOM quality, in terms 

of SOC degradability and turnover'. In order to test this hypothesis, we studied shifts in 

the 13C isotopic signature of SOM with increasing depth in soil profiles under permanent 

grassland (Chapter 2) and among different size and density fractions of SOM in the 

surface layer of cultivated and grassland soils (Chapter 3). It was evaluated to what extent 

these shifts in the 13C isotopic signature were related to, or could serve as an indicator of 

the degradability and turnover of SOC at different depths in soil profiles (Chapter 2) or in 

different size and density fractions of SOM (Chapter 3).  



General introduction 
________________________________________________________________________ 

 2 

The balance between potential gross N mineralization and gross N immobilization in soils 

is at an undefined equilibrium. This balance, and the potential N dynamics in general, 

tends to be affected by the quantity of SOM, the quality of SOM (availability for 

microbial degradation, C/N ratio) and soil type. It is generally observed that SOM in the 

clay- and silt-sized fraction (<50 µm) is less available for microbial degradation than 

SOM in the sand-sized fraction (>50 µm). In this way, the potential N availability in soils 

may be influenced by the distribution of SOM among different size and density fractions 

and by the clay and silt content (soil texture). Thus, a second research hypothesis was 

formulated as follows: 'Next to the total SOM content, the distribution of SOM among 

different size and density fractions and the soil texture are factors which largely affect the 

potential N dynamics in grassland soils'. In order to verify this second hypothesis, we 

investigated (1) the influence of the total organic C and N content and the distribution of 

organic C and N among size and density fractions (Chapter 4), and (2) the influence of soil 

type (Chapter 5) on the potential N dynamics in permanent grassland soils. 

 

Outline of the thesis 

A first objective of this thesis was to investigate the quality of SOM, in terms of 

degradability and turnover, in cultivated and grassland soils by means of physical 

fractionation of the SOM and variations in its 13C isotopic signature. A second objective of 

this thesis was to study the N dynamics in permanent grassland soils, as affected by the 

quantity and quality of SOM and soil type. 

Chapter 1 is an introductory chapter, which focuses on (1) the role of organic matter in 

agricultural soils, (2) factors affecting organic matter content and organic matter turnover 

in agricultural soils, (3) assessment of the quality and turnover of SOM, and (4) the major 

N transformations that occur in agricultural soils. 
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In chapter 2 we investigated to what extent the variation of the 13C isotopic signature in 

soil profiles under permanent grassland (C3 vegetation) could be used as an indicator of 

the quality of SOM (in terms of degradability) at different depths in the profile. 

In chapter 3 we compared the quantity and quality of SOM (in terms of turnover) in the 

surface layer of cultivated (C4 vegetation) and non-cultivated soils (C3 vegetation). This 

was achieved through separation of the SOM into different fractions (size and density 

fractions, microbial biomass, water soluble organic C), in combination with the analysis of 

their 13C isotopic signature. 

The accumulation of SOM upon conversion of arable land to permanent grassland, and the 

influence of quantity and quality of SOM on the gross N transformation rates in 

permanent grasslands of different age were studied in chapter 4.  

In chapter 5 we quantified the gross N transformation rates and the potential N retention 

upon mineral fertilizer addition to permanent grassland soils of varying texture and SOM 

content. 

Finally, the general conclusions and research perspectives of this thesis are formulated in 

Conclusions and perspectives, and a summary of the text is given in English and Dutch 

(Summary and Samenvatting).  
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1. Introductory chapter 
 

 

1.1. The role of organic matter in agricultural soils 
 

Soil organic matter (SOM) is a key component in the quality and fertility of  

agricultural soils, as it affects many of its biological, physical and chemical properties 

(Doran and Parkin, 1994). SOM is a primary source of, and a temporary sink for, plant 

nutrients and acts as an energy and nutrient source for the soil organisms. The essential 

plant nutrients (especially nitrogen, sulphur and phosphorous) are released through 

mineralization during the decomposition of the SOM, which is accompanied by the 

respiration of carbon as carbon dioxide (CO2) (Brady, 1984). SOM also improves the 

aggregation of soil particles and thus contributes significantly to the formation and 

stabilization of the soil structure (Tisdall and Oades, 1982). This results in a better 

aeration and infiltration of water, and increases the water holding capacity of the soil 

(Gregorich et al., 1994). Furthermore, SOM increases the cation exchange capacity (CEC) 

of soils, which enhances the storage capacity of nutrients (Brady, 1984). Maintenance and 

improvement in SOM content is thus generally accepted as being a major objective for 

any sustainable agroecosystem (Haynes, 1999). 

The SOM in agricultural soils, and more specifically the soil organic C (SOC), is 

also receiving increased attention as a potential sink for atmospheric CO2 (C 

sequestration). The atmospheric concentration of CO2, which is the most important 

anthropogenic greenhouse gas, has increased by about 32% (from approximately 280 ppm 

to approximately 370 ppm) since the onset of the industrial revolution (circa 1850) to the 

present, and is currently increasing at a rate of 0.5% yr-1 (Lal, 2001). Though the largest 

anthropogenic contribution to the increase in the atmospheric CO2 concentration comes 

from fossil fuel combustion, a substantial release of CO2 originates from terrestrial 
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vegetation and soils, caused by land use changes such as deforestation and cultivation 

(Schlesinger, 1997). Due to the concern about the increase in the atmospheric 

concentration of greenhouse gases (e.g. CO2, CH4 and N2O) and their potential effects on 

global climate change (IPCC, 1995), the UN Framework Convention on Climate Change 

has imposed the industrialized countries to reduce their net emissions of greenhouse gases 

by 5% of the 1990 level by the year 2010 (Lal, 2001). A decrease in the atmospheric CO2 

concentration could thus be achieved by reducing the emissions, but also by sequestering 

and storing C in sinks. Carbon sequestration in terrestrial ecosystems is accomplished 

when C is stored in living plants through photosynthesis and then relocated to the soil and 

transformed into SOC (Follett et al., 2001). One possibility is to increase the C stored in 

agricultural soils, which can be accomplished through the adoption of reduced or no-till, 

use of cover crops, improved nutrition and yield enhancement, elimination of bare fallow, 

use of forages in crop rotations, use of improved varieties, and use of organic amendments 

(Bruce et al., 1999). When cultivated soils are converted to permanent grassland, SOM 

contents generally increase, which also involves increased C sequestration and in addition 

improves soil fertility (Robles and Burke, 1998). 

 

1.2. Factors affecting organic matter content and organic matter 

turnover in agricultural soils 

 

SOM originates from the organic residues (derived from plants, animals or micro-

organisms) which enter the soil and undergo a gradual chemical and biological 

decomposition. The SOM pool thus encompasses plant, animal and microbial residues at 

various stages of decomposition and a diversity of heterogeneous, humified or 

nonhumified, organic compounds which are intimately associated with inorganic soil 

components (Christensen, 1992). The nonhumified organic compounds have been released 
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by decomposition of plant, animal and microbial tissue in their original or in a slightly 

modified form (mainly carbohydrates, amino acids, proteins, lipids, nucleic acids, lignins 

and a variety of organic acids). The humified organic compounds are products that have 

been derived from these nonhumified compounds (humification), and consist of complex 

substances (humic and fulvic acids), which are relatively resistant to microbial attack. The 

nonhumic and humic material are collectively called soil humus (Stevenson, 1967; Tan, 

1994). 

 

The SOM content in agricultural soils is mainly determined by the primary plant 

production, or more specifically the input rates and the quality of the plant residues, and 

the rate of SOM decomposition (Jastrow and Miller, 1998). Primary plant production is 

largely dependent on climatic factors (temperature and rainfall), vegetation type, soil type 

and management practices (Brady, 1984). The rate of SOM decomposition is strongly 

determined by the stability of the SOM against microbial degradation. The stability of the 

SOM against microbial degradation depends on (1) the biochemical stabilization of the 

SOM, (2) the degree of its association with the mineral components (mainly silt and clay 

particles), and (3) the physical protection of SOM within aggregate structures 

(Christensen, 1996). Biochemical stabilization of SOM is understood as the stabilization 

due to its own chemical composition (e.g. recalcitrant compounds such as lignin and 

polyphenols) and through chemical complexing processes (e.g. condensation reactions) 

(Heal et al., 1997; Six et al., 2002). It is generally observed that the association of SOM 

with silt and clay particles (by means of chemical or physicochemical binding), creates a 

physical protection against microbial decomposition (Christensen, 1996) and numerous 

studies have reported a positive correlation between the clay or silt plus clay content and 

the preservation of SOM in soils (Sorensen, 1971; Merckx et al., 1985; Christensen, 1992; 

Hassink, 1997). Soil aggregates physically protect SOM by forming physical barriers 
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between micro-organisms plus microbial enzymes and their substrates, by controlling food 

web interactions and by influencing microbial turnover (Elliott and Coleman, 1988).  

Physical disturbance of the soil (e.g. tillage) is an important controlling factor in 

the process of aggregate formation and aggregate turnover in soils (Six et al., 2002), and 

consequently the SOM dynamics and SOM content in agricultural soils are also strongly 

dependent on the management practices (e.g. the frequency and intensity of tillage). It is 

generally accepted that no-tillage or cover crop systems, for example, have beneficial 

effects on soil fertility by decreasing erosion, increasing aggregation and potentially 

increasing SOM contents (Six et al., 2002). Crop sequence, rotation and management 

practice can affect the SOM content by influencing both the quantity and quality of crop 

residues which are returned to the soil and the rate of decomposition of added residues and 

native SOM (Gregorich et al., 1994; Haynes and Beare, 1996). Replacement of natural 

forests by agroecosystems generally increases the flux of terrestrial C to the atmosphere 

due to enhanced SOM decomposition, reduces levels of SOM, and thereby decreases soil 

fertility (Solomon et al., 2002). On the other hand, when arable land, which has been 

under long-term cultivation, is converted to permanent grassland, for example, the SOM 

content gradually tends to increase due to greater organic matter inputs, combined with a 

slower rate of SOM decomposition due to the absence of annual cultivation (Whitehead, 

1995a; Haynes and Beare, 1996).  

As SOM decomposition is mediated through microbial activity, which is 

influenced by temperature and soil moisture content, the rate of SOM decomposition is 

also strongly dependent on climatic factors (Zech et al., 1997). Therefore, it is generally 

observed that SOM in tropical soils has a faster turnover than in temperate soils, due to the 

enhanced decomposition under the higher moisture and temperature regimes of the tropics 

(Trumbore, 1993). 
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1.3. Assessment of the quality and turnover of soil organic matter 

 

The quality of SOM could be broadly defined as its capability to sustain the soil 

quality in general, in terms of sustaining soil structure, nutrient storage and biological 

activity (Gregorich et al., 1994). Characterization of SOM quality is very complex as 

SOM comprises an enormous array of compounds, ranging from recent plant materials 

through a continuum of metabolic products of microorganisms, to components of stable 

humus (Zech et al., 1997). SOM can thus be considered to be composed of a series of 

fractions, ranging from very active to passive (Schimel et al., 1985).  

Total C content, N content and the C/N ratio, in combination with the content of 

various classes of organic compounds, like lignin and polyphenols, can be considered as 

the classical chemical indicators of substrate quality (Haynes, 1986a). The microbial 

biomass content, carbohydrate content, the light fraction of SOM, water soluble C content 

and the mineralizable C and N content are assumed to represent or reflect the labile, active 

fractions of the SOM pool and are also often used as indicators of the quality of SOM 

(Gregorich et al., 1994). Microbial biomass is a key variable of SOM quality, functioning 

both as an agent for the transformation and cycling of SOM and plant nutrients within the 

soil, and as a sink (immobilization) or source (mineralization) of labile nutrients (Sparling 

et al., 1990). The potential C and N mineralization in soils, which are determined by 

means of incubation experiments, reflect the readily decomposable fraction of SOM and 

the capacity of the SOM to supply plant-available N, respectively (Gregorich et al., 1994).  

In mathematical models, describing SOM dynamics, the continuum of SOM 

fractions in soil is conceptualized as kinetically defined pools with different turnover rates 

(Parnas, 1975; Jenkinson and Raynor, 1977; van Veen and Paul, 1981). However, a major 

problem related to predicting SOM dynamics by means of mathematical models is that 

these different pools usually can not be determined directly by chemical or physical 
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fractionation procedures (Paustian et al., 1992). Successful development of techniques for 

direct measurement of pool sizes would thus represent a major step forward towards 

appropriate verification of SOM models (Bonde et al., 1992). Historically, most scientists 

studying the nature of SOM have utilized chemical extractants to fractionate SOM 

(Stevenson and Elliott, 1989). However, chemical extracts of the soil are not clearly 

related to the dynamics of SOM because they extract SOM that may be physically 

protected from microorganisms and not readily available for decomposition (Cambardella 

and Elliott, 1994). Recently, biologically meaningful SOM fractions or pools have been 

obtained by methods based on physical fractionation of soil (according to particle size or 

density) without chemical treatments, which combined with biological and chemical 

analysis allows further insight into the functionality of the separated pools (Tiessen and 

Stewart, 1983; Bonde et al., 1992; Christensen, 1992; Solomon et al., 2002). Moreover, 

the use of the 13C natural abundance technique coupled with particle size fractionation 

have further advanced process oriented SOM studies, since these methods are well suited 

to study soil organic carbon (SOC) dynamics over a time scale ranging from a few to 

several hundred years, and are relevant for understanding the consequences of natural and 

anthropogenic vegetation changes (Balesdent et al., 1987; Boutton, 1996; Shang and 

Tiessen, 2000). 

 

1.3.1. Size and density fractionation of soil organic matter 

 

The concept behind physical fractionation of soil emphasizes that the availability 

of SOM to decomposing organisms depends not only on its intrinsic biochemical nature, 

but also on the nature of its association with the soil mineral fraction (formation of 

organomineral complexes). Physical fractionation techniques, according to size or density 

of particles, are generally less destructive and the results obtained from physically 
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separated soil fractions may relate more to the structure and function of the SOM in situ 

(Christensen, 1992).  

Christensen (1992) defined three levels of structural and functional complexity in 

the soil, which relate to the following experimentally identifiable SOM pools: the 

uncomplexed SOM, the primary organomineral complexes and the secondary 

organomineral complexes. The uncomplexed SOM consists mainly of particulate, partly 

decomposed plant or animal residues, and is a transitory pool between litter and mineral-

associated SOM. Primary organomineral complexes can be divided into clay-sized          

(< 2 µm), silt-sized (2-20 µm or 2-50 µm according to the International Soil Science 

Society (ISSS) or United States Department of Agriculture (USDA) classification, 

respectively) and sand-sized (20-2000 µm or 50-2000 µm according to the ISSS or USDA 

classification, respectively) complexes of SOM with mineral particles of the 

corresponding size. Individual primary organomineral particles and particles of 

uncomplexed SOM can occur as discrete structural units in the soil, but in most soils most 

of the primary particles are incorporated into differently sized secondary organomineral 

complexes, or aggregates (Christensen, 1992). These secondary organomineral complexes 

can be further divided into micro-aggregates (< 250 µm) and macro-aggregates (> 250 

µm). Micro-aggregates are composed from primary complexes and occluded SOM, and 

their stabilization involves both persistent and transient binding agents. Macro-aggregates 

are made up of micro-aggregates, primary complexes and uncomplexed SOM particles, 

held together by transient and temporary binding agents (Tisdall and Oades, 1982).  

Size fractionation of soils is generally achieved through a preliminary dispersion 

of the soil, in order to break down the secondary organomineral complexes, followed by a 

combination of wet sieving and sedimentation to separate the primary organomineral 

complexes. A general observation on the composition of SOM in particle size fractions is 

that the C/N ratio tends to decrease from the coarser to the finer particle size fractions, 
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which indicates an increasing degree of humification (Tiessen and Stewart, 1983; Catroux 

and Schnitzer, 1987). Moreover, SOM in the sand-sized fraction is often more labile than 

SOM in the clay- and silt-sized fractions (Tiessen and Stewart, 1983), and considerable 

published evidence indicates that one of the principal factors responsible for physical 

protection of SOM is its tendency to associate with clay and silt particles (Tate and Theng, 

1980). Density fractionation of SOM is based on the observation that during humification 

parts of SOM become more associated with the mineral fraction and thus occur in 

organomineral complexes of higher density (Barrios et al., 1996). By means of density 

separation, SOM is generally separated into a light fraction, and one or more heavy 

fractions. The so-called light fraction ("free" or uncomplexed SOM) is considered to be 

decomposing plant or animal residues with a relatively high C/N ratio, a rapid turnover 

rate, and a specific density considerably lower than that of soil minerals. The heavy 

fractions include the organomineral complexed SOM, which is assumed to be 

comparatively more processed material, with a lower C/N ratio, a slower turnover rate, 

and a higher specific density due to its intimate association with soil minerals (Greenland, 

1965). The combination of size fractionation and density fractionation of SOM may thus 

enable us to identify both labile SOM fractions (sand-sized or light SOM), which may 

respond relatively faster to management changes in agroecosystems than the total SOM 

content, and more stable fractions (clay- and silt-sized SOM), which are more related to 

long-term SOM dynamics (Janzen et al., 1992; Barrios et al., 1996). 

 

1.3.2. The 13C isotopic signature of soil organic matter 

 

C has two naturally occurring stable isotopes, 12C and 13C. Approximately 98.89 % 

of all C in nature is 12C, and 1.11 % of all C is 13C. The ratio of these two stable isotopes 

(13C/12C) in natural materials varies slightly around these average values as a result of 

isotopic fractionation (discrimination against 13C) during physical, chemical and 
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biological processes (Boutton, 1996). 13C/12C ratios are usually expressed relative to a 

standard (carbonate from Pee Dee belemnite) as δ13C values, and expressed in per mil 

(‰):  

 

Atmospheric CO2, plant material and SOM are depleted in 13C relative to the standard and 

therefore have negative δ13C values. The more depleted in 13C a material is, the more 

negative the δ13C value will be.  

The 13C/12C ratio, or 13C isotopic signature, of SOM is mainly determined by the 

13C/12C ratio of the plant litter from which it is derived. Plants discriminate against 13CO2 

during photosynthesis and the extent of this discrimination is dependent on their 

photosynthetic pathway type. As C3 plants, with the Calvin pathway, discriminate more 

against 13CO2 than C4 plants, with the Hatch and Slack pathway, C3 plants have δ13C 

values ranging from approximately -32‰ to -22‰, while C4 plants have δ13C values 

ranging from approximately -17‰ to -9‰ (Smith and Epstein, 1971). This difference in 

13C/12C ratios can be used as a tracer for in situ labelling of newly incorporated SOM 

when the dominant vegetation type has changed from C3 to C4 species or vice-versa 

(Schwartz et al., 1986; Balesdent et al., 1987; Puget et al., 1995; Ryan et al., 1995). 

The 13C/12C ratio in SOM remains close to the ratio in the original vegetation, but 

during decomposition of the plant residues and the SOM, significant changes in the 

13C/12C ratio may occur due to isotopic fractionation (O’Brien and Stout, 1978; Melillo et 

al., 1989; Wedin et al., 1995). The magnitude and direction of the change in the 13C/12C 

ratio may vary with time and the prevailing environmental conditions (O’Brien and Stout, 

1978). One source of alteration in the 13C/12C ratio of SOM is isotopic discrimination 
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against 13C associated with microbial decomposition of SOM. In their metabolism, 

decomposing organisms would prefer 13C-depleted molecules for respiration while 13C-

enriched molecules tend to be utilised in the production of biomass and the end-products 

of metabolism under aerobic conditions (Blair et al., 1985; Gleixner et al., 1993). As a 

result, SOM decomposition may lead to a progressive 13C enrichment in the mixture of 

residual substrate and microbial products and metabolites (Balesdent and Mariotti, 1996). 

However, in anaerobic environments, the CH4 evolved is generally very depleted in 13C 

relative to the organic substrate, whereas the CO2 evolved is enriched in 13C (Games et al., 

1978). A second possible source of alteration of the 13C/12C ratio may be the different 

decomposition rates of isotopically distinct biochemical components of plant litter (Stout 

et al., 1981; Melillo et al., 1989; Agren et al., 1996; Boutton, 1996). Due to isotopic  

fractionation during the biosynthesis of the major plant cell components, pectins, amino 

acids, hemicellulose and sugars tend to have a larger 13C/12C ratio than the bulk plant 

tissue, whereas cellulose, lignin and lipids usually have a smaller 13C/12C ratio (O’Brien 

and Stout, 1978; Stout et al., 1981; Benner et al., 1987). In particular, lignin is 

substantially depleted in 13C (2-6 ‰) in relation to bulk plant tissue and decomposes at a 

significantly lower rate than the other biochemical fractions in the early stages of plant 

litter decomposition (Minderman, 1968; Benner et al., 1987). As such, 13C enrichment of 

SOM due to microbial respiration would be more or less balanced by the slower decay of 

13C-depleted lignin in the early stages of plant litter decomposition (Balesdent and 

Mariotti, 1996). At more advanced stages of litter decay, lignin and other residual 

fractions would decompose at more similar rates (Berg et al., 1984; Nadelhoffer and Fry, 

1988; Wedin et al., 1995) and microbial recycling of C would dominate (Balesdent and 

Mariotti, 1996), thus resulting in a gradual 13C enrichment of the residual litter and the 

associated SOM pool in well drained, aerobic mineral soils. Thus, as the 13C/12C ratio in 

SOM tends to vary during the decomposition process, the 13C isotopic signature may also 

be used as an indicator of SOM quality. 
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1.4.  Nitrogen transformations in agricultural soils 

 

Litter, originating from both above- and belowground plant parts, is the major 

pathway of supply of energy and N in most terrestrial ecosystems (Staaf and Berg, 1981) 

and decomposition constitutes the means by which N held in the structure of plant tissues 

is released into the soil for reuse by plants. In most soils, more than 95% of the total N is 

present in organic compounds, the remainder being in the inorganic form as ammonium 

(NH4
+) and nitrate (NO3

-). As all higher plants, except those depending on symbiotic N 

fixation, take up almost all their N as NO3
- and NH4

+, the transformation of organic N into 

inorganic N (mineralization) is a key process in the N cycle (Whitehead, 1995b). 

 

1.4.1. Ammonification or mineralization 

 

The biological process by which organic N compounds (proteins, amino acids, 

amino sugars and ureases) are converted into ammonium (NH4
+) or ammonia  (NH3) 

during the decomposition of organic residues, is called ammonification (Tan, 1994). 

Ammonification, together with the subsequent oxidation of NH4
+ to NO3

- through 

nitrification, is generally called mineralization. Ammonification is carried out by a wide 

range of heterotrophic micro-organisms, most of which prefer aerobic conditions 

(Whitehead, 1995b). The process is an enzymatic reaction, and a wide variety of enzymes 

are involved, each acting on a specific type of N compound (Ladd and Jackson, 1982). 

The most important factors affecting the ammonification (and decomposition) process 

include the composition or quality of the decomposing material (particularly N content 

and C/N ratio, lignin and polyphenol content), climatic factors (particularly moisture 

content and temperature), soil pH and the availability of nutrients (Haynes, 1986a). A low 

C/N ratio (high N content) in litter facilitates ammonification by encouraging a high rate 

of decomposition, and ensuring that the release of mineral N exceeds the microbial 
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demand for mineral N (immobilization) during the decomposition process. In general, the 

higher the lignin and polyphenol content of the litter, the lower is the rate of 

decomposition and mineralization (Staaf and Berg, 1981; Melillo et al., 1989). Soil 

moisture content can influence the mineralization in three major ways: (1) moisture stress 

inhibits microbial growth directly, (2) as moisture content increases, aeration decreases 

and microbial growth is reduced, and (3) cycles of drying and rewetting tend to increase 

the amount of available substrate (Haynes, 1986a). When the moisture content is adequate 

for the soil micro-organisms, mineralization increases with increasing temperature over 

the range 5-30°C, and when the temperature is above about 5°C, mineralization increases 

with soil moisture content between permanent wilting point and field capacity (Stanford 

and Epstein, 1974). Since mineralization of soil organic N is carried out by a diverse range 

of micro-organisms, it is not greatly influenced by soil pH. However, when the conditions 

become strongly acid (pH < 4.5), there is a decline in the population and activity of 

bacteria, sometimes accompanied by an increase in soil fungi, resulting in a slower 

mineralization (Alexander, 1980). 

Once the NH4
+ is released through ammonification, it can be affected by several 

processes like plant uptake, volatilization (see 1.4.2.), nitrification (see 1.4.3.) and 

immobilization (through abiotic or biotic processes, see 1.4.4). Generally, the predominant 

form of mineral N available to plants is NO3
--N since under most soil conditions NH4

+-N 

is rapidly nitrified to NO3
--N. However, under conditions that are unfavourable for the 

nitrification process to proceed (e.g. poor aeration and/or soil acidity) NH4
+ is the major 

form of N available to plants (Haynes, 1986c).  
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1.4.2. Ammonia volatilization 

 

Ammonia volatilization is the term commonly used to describe the physico-

chemical process by which gaseous NH3 is released from the soil surface to the 

atmosphere. A necessary prerequisite for NH3 volatilization is a supply of free NH3 (i.e. 

NH3(aq) and NH3(g)) near the soil surface, which usually originates from soil NH4
+ under 

alkaline conditions (pH >7) (Haynes and Sherlock, 1986). The quantities of NH3 lost from 

a soil are highly variable, depending on such factors as rate, type and method of fertilizer 

N application, soil pH, and environmental factors including temperature, moisture and 

wind (Black et al., 1985; Hofman et al., 1995). 

 

1.4.3. Nitrification 

 

Nitrification is classically defined as the process whereby NH4
+ is oxidized via 

NO2
- to NO3

-. The reactions are generally mediated in soil by two small groups of 

chemoautotrophic bacteria. These bacteria are obligate aerobes and synthesize all of their 

cell constituents from CO2. The driving force for the reduction of CO2 is the production of 

ATP during the oxidation of NH4
+ or NO2

-. A first group of chemoautotrophic bacteria, 

which includes Nitrosomonas and Nitrosospira, oxidizes NH4
+ to NO2

- as follows: 

 
NH4

+ + 3/2 O2 → NO2
- + 2H+ + H2O 

The Nitrobacter bacteria oxidize NO2
- to NO3

- as follows: 

NO2
- + 1/2 O2 → NO3

- 

NO2
- is usually oxidized rapidly and accumulates in the soil only in conditions that 

combine a high concentration of NH3 with high pH (Whitehead, 1985b). The biochemical 

pathway of the first stage of nitrification has not been fully elucidated yet (Hutchinson and 
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Davidson, 1993), but hydroxylamine (NH2OH) is produced as intermediate, which may 

decompose chemically (by means of chemodenitrification) into nitric oxide (NO) and 

nitrous oxide (N2O) (Stüven et al., 1992). NO and N2O may then emit from the soil. As 

nitrification is mediated predominantly by a small group of autotrophic bacteria, it is 

generally more influenced by external factors (mainly temperature, moisture content and 

pH) than mineralization. The optimum temperature for nitrification in soils is usually 

between 25 and 35°C (Kowalenko and Cameron, 1976). Nitrification is inhibited by dry 

soil conditions, and the optimum soil moisture tension is normally between -0.1 and -1.5 

Mpa (Davidson et al, 1990). Nitrification is curtailed when the pH is less than about 6.0, 

and the lower limit for autotrophic nitrification is generally found to be around pH 4.5. In 

soils of pH above 7.5, toxic levels of NH3 may result in the inhibition of the activity of 

Nitrobacter and in the accumulation of NO2
- (Paul and Clark, 1996). 

Although the autotrophic nitrifiers are thought to be by far the most predominant 

agents of nitrification in the soil environment, several other minor pathways have been 

suggested (Haynes, 1986b). These include heterotrophic nitrification, carried out by 

bacteria or fungi (Focht and Verstraete, 1977; Paul and Clark, 1996), oxidation of NH4
+ to 

NO2
- by methylotrophic bacteria (Dalton, 1977), and the chemical oxidation of NO2

- to 

NO3
- (Bartlett, 1981). 

Once the NO3
- has been formed, it may also be affected by several processes, 

including plant uptake, leaching, immobilization (see 1.4.4.), denitrification (see 1.4.5.) or 

dissimilatory nitrate reduction to ammonium (see 1.4.6). As in most soil types NO3
- is not 

retained on the clay and organic colloids of the soil, which are negatively charged, it is 

readily susceptible to leaching (in contrast with NH4
+, which is better retained). Leaching 

is undesirable as it represents a loss of plant-available N from the soil, and has negative 

effects on surface and groundwater quality (Whitehead, 1995b). 
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1.4.4. Ammonium and nitrate immobilization 

 

1.4.4.1 Abiotic immobilization 

 

As clay and SOM have a predominantly negative charge, NH4
+ may be adsorbed 

(exchangeable form) on clay and SOM by the process of cation exchange (Thomas, 1977). 

NH4
+ may also be held by 2:1 clay minerals (e.g. vermiculites and montmorillonites) in a 

nonexchangeable "fixed" form (Cameron and Haynes, 1986). SOM can also fix 

considerable amounts of ammonia (NH3) in nonexchangeable forms through 

polymerization reactions with aromatic humic compounds (e.g. phenols and quinones) 

(Broadbent and Stevenson, 1966). 

NO3
- can be adsorbed on positively charged sites on soil minerals like iron and 

aluminum oxides and hydroxides, 1:1 clay minerals (e.g. kaolinite) and allophane (mainly 

in tropical and/or volcanic soils) (Hingston et al., 1972; Cameron and Haynes, 1986). 

Davidson et al. (2003) recently described a mechanism of abiotic immobilization of NO3
- 

via iron oxidation (the ferrous wheel hypothesis) as an important process in forest soils.  

 

1.4.4.2 Biotic immobilization 

 

Immobilization is the reverse of mineralization, i.e. the transformation of inorganic 

N into organic forms. One major route, next to uptake by plants, is through the 

assimilation of inorganic N by the soil micro-organisms. During the decomposition of 

plant residues or SOM in the soil, part of the mineralized C and N is assimilated 

(immobilized) into microbial tissue, and the rest is respired as CO2 (which diffuses to the 

atmosphere) or released as NH4
+ into the soil, respectively. The balance between 

mineralization and immobilization of mineral N in soils depends on the microbial demand 
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for N during the decomposition process, which is largely influenced by the C/N ratio of 

the material undergoing decomposition (Whitehead, 1995b). When organic residues with a 

high C/N ratio (>25 to 30) are incorporated into agricultural soils, net N immobilization 

commonly occurs during the initial stage of decomposition. During decomposition the 

C/N ratio progressively decreases, and at some critical point, where N becomes no longer 

limiting to microbial growth and activity, there is a switch from net immobilization to net 

mineralization. This critical point is generally considered to correspond with a C/N ratio 

<25 to 30. Nonetheless, in natural and agricultural ecosystems, the N level in litter at 

which net release of N occurs varies enormously (Haynes, 1986a). This balance between 

mineralization and immobilization is also affected by other aspects of the litter 

composition, like the lignin content. For example, highly lignified materials decompose 

slowly, and therefore tend to immobilize less N than would be expected on the basis of 

their C/N ratio (Fox et al., 1990). When both NH4
+ and NO3

- are present in soil, a 

preferential uptake of NH4
+-N in relation to NO3

--N is generally observed (Jansson et al., 

1955; Rice and Tiedje, 1989). 

 

1.4.5. Denitrification 

 

Denitrification is the process by which NO3
- or NO2

- is reduced to NO, N2O and 

N2 (gaseous compounds), which then diffuse into the atmosphere. N2O is a greenhouse gas 

contributing 5-6% to the enhanced greenhouse effect (Lal, 2001). In the stratosphere, N2O 

may be converted to NO and thus contribute to the destruction of stratospheric ozone, 

which protects the earth from biologically harmful ultraviolet radiation from the sun 

(Crutzen, 1976). The process is mainly carried out by facultative anaerobic bacteria that 

have the capacity to reduce N oxides (NO3
-, NO2

-, NO, N2O) when O2 becomes limiting 

(Bremner, 1997). Chemodenitrification refers to the same reduction process, but is not 

carried by micro-organisms. However, chemodenitrification is only likely to be significant 
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in soils where NO2
- tends to accumulate (Haynes and Sherlock, 1986). The pathway of 

denitrification is usually presented as follows: 

 

(+5)       (+3)       (+2)     (+1)     (0) 

NO3
- → NO2

- → NO → N2O → N2 

 

The key factors affecting denitrification in soils are the moisture content of the 

soil, availability of O2, the amount of readily available C, pH, temperature and NO3
- 

concentration (Bremner, 1997). As the moisture content determines the availability of O2 

in the soil, it is a major factor influencing the denitrification activity. Linn and Doran 

(1984) and Aulakh et al. (1992) reported critical values for water filled pore space of 

between 60% and 90% for significant denitrification to occur in differently textured soils. 

The availability of organic matter is also an important factor moderating both the rate and 

total extent of denitrifiaction, as the most abundant denitrifiers are heterotrophs, which 

require organic compounds as electron donors and as a source of cellular material (Haynes 

and Sherlock, 1986). The overall rate of denitrification has an optimum in the range of 7 

to 8 (Van Cleemput and Patrick, 1974) and can be strongly inhibited at soil pH values 

below 6 (Muller et al., 1980). The critical temperature below which denitrifiaction is 

strongly reduced ranges from 5 to 10°C (Focht and Verstraete, 1977).  

 

1.4.6. Dissimilatory nitrate reduction to ammonium 

 

Dissimilatory nitrate reduction to ammonium (DNRA) can occur under heavily 

reduced conditions (Sorensen, 1978). DNRA may thus be in direct competition with 

denitrification, especially in anoxic water-logged sediments (Kelso et al., 1997). However, 

Fazzolari et al. (1998) demonstrated that DNRA activity may be less sensitive than 

denitrification to an inhibitory effect by O2 and therefore may also occur in aerobic soils. 
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This process is mainly carried out by obligate and facultative anaerobic bacteria with a 

fermentative metabolism (Koike and Sorensen, 1988).  
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2. Relationship between soil organic C degradability and the 
evolution of the δδδδ13C signature in profiles under 
permanent grassland 

 

 

2.1. Introduction 
 

The transformation of plant litter, entering the soil, into the soil organic matter 

(SOM) pool through gradual decomposition and stabilization is of increasing interest with 

regard to issues of CO2 uptake and C sequestration in soils (Solomon et al., 1993; Smith et 

al., 2000). 13C natural abundance analysis is now a widely used tool in the research on 

quality and turnover of SOM (Balesdent and Mariotti, 1996). The 13C/12C ratio or δ13C 

value (‰) in SOM remains close to the 13C/12C ratio in the original vegetation, but 

isotopic fractionation during decomposition of the plant litter and SOM can produce 

significant changes in the 13C/12C ratio (Melillo et al., 1989; Wedin et al., 1995). The 

magnitude and direction of the change in the 13C/12C ratio may vary with time and the 

prevailing environmental conditions (O’Brien and Stout, 1978). 

Several studies, investigating the evolution of the δ13C signature of SOM in 

undisturbed soil profiles with a permanent C3 vegetation, have shown that the δ13C 

signature generally tends to increase with increasing sampling depth in well or moderately 

drained mineral soils (Becker-Heidmann and Scharpenseel, 1986; Nadelhoffer and Fry, 

1988; Becker-Heidmann and Scharpenseel, 1989; Balesdent and Mariotti, 1996; Bird and 

Pousai, 1997; Bol et al., 1999; Krul et al., 2002). In this study we investigated the 

evolution of the δ13C signature of SOM in three profiles (0-40 cm depth) under permanent 

grassland (C3 vegetation) of varying texture (a loamy sand, a loamy and a clay loam soil). 

We also studied the potential C dynamics at different depth intervals in these profiles, and 
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investigated to what extent the potential C dynamics were correlated with the evolution of 

the δ13C signature in these depth intervals. 

 

2.2. Materials and Methods 
 

2.2.1. Site description and soil sampling 

 

Soil samples were collected in May 2002 from three permanent grassland soils of 

varying texture at three different locations in Belgium. The first grassland soil was a wet, 

poorly drained Plagganthrept with a loamy sand texture (5.9% clay, 8.2% silt), located at 

Wechelderzande (4°46’E, 51°15’N). This soil has a slowly permeable subsoil, giving 

anaerobic conditions during wetter periods of the year. The second grassland soil was a 

moderately drained Glossic Hapludalf with a loamy texture (9.7% clay, 42.4% silt), 

located at Melle (3°47’E, 50°59’N). The third grassland soil was a moderately drained 

Oxyaquic Udifluvent with a clay loam texture (26.9% clay, 45.3% silt), located at 

Watervliet (3°35’E, 51°17’N) (Soil Map of Belgium, 1965; USDA, 1999). The pH-H2O 

values in the 0-10 cm layer of the loamy sand, loamy and clay loam soil were 5.9, 6.3 and 

7.2, respectively. 

In order to study the evolution of the δ13C signature of the SOM with increasing 

depth in the upper 40 cm of the soil profiles, nine replicate soil cores covering the whole 

area of the investigated grassland were taken from the 0-30 cm and 30-40 cm depth 

interval with a steel auger (respective auger diameters were 3.5 cm and 2.5 cm). The cores 

were sectioned into 2-cm (loamy soil profile) or 2.5-cm depth intervals (loamy sand and 

clay loam soil profiles). The nine replicate core sections from each depth interval were 

composited into three replicate bulk samples (each consisting of three randomly chosen 

core sections), mixed, air dried and sieved on a 2 mm sieve in order to remove root 

material. The bulk samples from the loamy sand and loamy soil profiles were then ground 
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in a planetary ball mill (PM400, Retsch, Germany) for subsequent chemical and isotopic 

analysis. As the samples from the calcareous clay loam soil (Watervliet) contained 

considerable amounts of inorganic C (2.6, 4.8, 7.3 and 9.5 g kg-1 soil in the 0-10, 10-20, 

20-30 and 30-40 cm depth interval, respectively), which in general has a higher δ13C value 

than the SOM (Midwood and Boutton, 1998), the inorganic C in these samples had to be 

removed prior to grinding and subsequent isotopic analysis. Removal of inorganic C in 

these samples was performed by adding 100 ml of 1 M HCl to 10 g soil and shaking 

during 1 hour, in accordance to Midwood and Boutton (1998). Next, the samples were 

washed with demineralized water to remove excess Cl-, centrifuged, dried at 50°C and 

ground for isotopic analysis.  

In order to study the potential C dynamics of the SOM at 0-10 cm, 10-20 cm, 20-

30 cm and 30-40 cm depth intervals in the profiles in triplicate, three replicate bulk 

samples were composited for each depth interval, each consisting of 12 replicate soil cores 

covering the whole area of the investigated grassland. The soil cores were taken with a 

steel auger (3.5 cm diameter for the 0-30 cm depth intervals, 2.5 cm diameter for the 30-

40 cm depth interval). The bulk samples were mixed, sieved on a 3.15 mm sieve and 

stored at 4°C until the start of the incubation experiment. 

 

2.2.2. Total C and δδδδ13C analysis 

 

Measurements of total C content and 13C natural abundance in the soil samples 

from the 2 cm and 2.5 cm depth intervals were performed using an ANCA-SL elemental 

analyzer coupled to an Isotope Ratio Mass Spectrometer (20-20, PDZ Europa, UK). The 

measured 13C/12C ratios were expressed as δ13C values (‰) relative to the VPDB standard:  
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The working standard for the measurements was flour with a δ13C value of -27.01 ± 

0.04‰ (certified by Iso Analytical, UK). The analyses were performed in duplicate. 

Measurements of total organic and inorganic C content in the soil samples from the 10 cm 

depth intervals were performed using a CNS analyzer (Vario Max CNS, Elementar, 

Germany). 

 

2.2.3. Potential C mineralization dynamics 

 

Incubation experiments were conducted in order to examine the potential C 

mineralization dynamics of soil samples from the 0-10 cm, 10-20 cm, 20-30 cm and 30-40 

cm depth intervals from the three profiles. Before the start of the incubation experiment all 

the soil samples were dried to the gravimetric water content corresponding with a water 

filled pore space (WFPS) of 60% at the bulk density measured in the field (Table 2.1), 

using the following equation (Linn and Doran, 1984):  

 

 

where WFPS is the water filled pore space (%), w is the gravimetric water content (%), ε 

is the total soil porosity (-), ρb is the bulk density (g cm-3) and ρp is the particle density 

(assumed to be approximately 2.65 g cm-3).  
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Table 2.1. Bulk densities measured in the 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm 

depth layers of the loamy sand, loamy and clay loam soil profiles 

       

Depth Bulk density 

(cm) (g cm-3) 

  Loamy sand soil Loamy soil Clay loam soil 

    
0-10 1.19 1.32 1.11 
10-20 1.22 1.43 1.24 
20-30 1.41 1.51 1.27 
30-40 1.51 1.53 1.35 

        
    
 

Out of the three replicate bulk samples from each depth interval, an amount of soil 

equivalent to 150 g oven-dry weight was placed into a 4.6 cm diameter PVC tube, and 

compressed manually to the corresponding bulk density measured in the field (Table 2.1). 

The tubes were covered with pin-holed parafilm in order to prevent drying out of the soil 

samples, but still enabling gas exchange. The PVC tubes were placed in sealed 1200 cm3 

glass jars fitted with a rubber septum for gas sampling and incubated at 15°C during 

approximately 55 days.  

The evolution of the CO2-production in each jar was measured by analyzing a 1 

cm3 headspace sample for CO2 using a gas chromatograph (GC-14B, Shimadzu, Japan) 

with an ECD detector and a packed column (PORAPACK Q, mesh size 80/100) after 

different time intervals (9 to 10 sampling events in total) during the incubation period. 

Following each sampling event, the glass jars were opened and parafilm was removed 

from the PVC tubes during 15 min. to re-establish ambient conditions. The C 

mineralization rates (mg C kg-1 soil d-1) were calculated as the slope of the linear 

regression, fitted through the evolution of the cumulative CO2-C production between day 

12 and day 55 of the incubations. 
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2.3. Results and discussion 
 

2.3.1. Evolution of the organic C content and δδδδ13C signature of SOM in 

the profiles 

 

The evolution of the total organic C content and the δ13C signature of SOM in the 

loamy sand, loamy and clay loam soil profiles down to a depth of 40 cm is shown in Fig. 

2.1. Fresh plant material originating from the loamy sand, loamy and clay loam grassland 

soils at the time of soil sampling showed δ13C values of, respectively, -30.2 ± 0.3‰, -29.7 

± 0.5‰ and -30.9 ± 0.6‰ (average values of three replicates). These δ13C values were all 

lower than the δ13C value in the corresponding surface layer, which indicates that plant 

litter serves as a continuous input of  13C depleted material into the SOM pool.  

The clay loam soil showed the largest C contents among the three soils 

investigated over the entire profile depth (Fig. 2.1 A, B and C). This may reflect a larger 

input of plant litter and/or a larger storage capacity of SOM, due to a higher physical 

protection against decomposition, in the clay loam soil in relation to the loamy sand and 

loamy soils. A higher physical protection of SOM in the clay loam soil may be explained 

by the higher clay plus silt content (72%) in relation to the loamy sand soil (14%) and the 

loamy soil (52%), as it is generally observed that the preservation of SOM in soils is 

positively correlated with the clay or silt plus clay content (Christensen, 1992; Hassink, 

1997). 
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Fig. 2.1. Evolution of the total organic C content in the loamy sand (A), loamy (B) and clay 

loam soil profile (C), and evolution of the δ13C value in the loamy sand (D), loamy (E) and clay 

loam soil profile (F) down to a depth of 40 cm (average values of three replicates, horizontal 

bars represent two standard deviations) 
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The organic C contents in the three profiles showed a strong decrease from the 

surface down to a certain depth, which varied from approximately 10 cm in the loamy 

sand soil profile to 30 cm in the clay loam profile, followed by a more gentle decrease 

down to 40 cm depth. In the three profiles, the decreasing C contents were accompanied 

by an increase in the δ13C values of the SOM with increasing depth (Fig. 2.1 D, E and F). 

In the loamy and clay loam soil profiles, the δ13C values showed a gradual increase of, 

respectively, 4‰ and 2.9‰ down to 40 cm depth in relation to the δ13C value in the 

surface layer. In the loamy sand soil profile, the δ13C values showed a strong increase of 

1.3‰ down to a depth of approximately 10 cm. This strong increase at the surface of the 

profile was followed by a smaller, nearly linear increase of 0.6‰ down to 40 cm depth in 

the profile, which also coincided with a smaller decrease of the C contents. This resulted 

in a considerably smaller overall increase of the δ13C value (1.9‰) in the loamy sand soil 

profile, in relation to the other profiles. This trend of increasing 13C enrichment of the 

SOM with increasing depth in soil profiles has been observed in several other studies, 

investigating the evolution of the δ13C signature of SOM in both well drained (Becker-

Heidmann and Scharpenseel, 1986; Nadelhoffer and Fry, 1988; Becker-Heidmann and 

Scharpenseel, 1989; Balesdent and Mariotti, 1996; Bird and Pousai, 1997; Bol et al., 1999; 

Krul et al., 2002) and poorly drained (Becker-Heidmann and Scharpenseel, 1989; Bol et 

al., 1999), undisturbed soil profiles with a permanent C3 vegetation.  

This increase in 13C enrichment of the SOM with increasing depth in the soil 

profiles can be partially explained by the fact that the natural abundance of atmospheric 

CO2 has decreased with about 1‰ since pre-industrial times, due to the input of depleted 

CO2 into the atmosphere from fossil C burning and deforestation (Keeling et al., 1984). 

Another possible mechanism explaining the observed trend of increasing δ13C values is 

isotopic discrimination against 13C during organic matter decomposition, combined with 

the higher degree of transformation of SOM with depth in the profile (Becker-Heidmann 
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and Scharpenseel, 1986; Nadelhoffer and Fry, 1988; Balesdent and Mariotti, 1996). In 

their metabolism, decomposing organisms would prefer 13C depleted molecules for 

respiration, while 13C enriched molecules tend to be utilised in the production of biomass 

and the end-products of the metabolism (Blair et al., 1985; Gleixner et al., 1993). As a 

result, SOM decay may lead to a progressive 13C enrichment in the mixture of residual 

substrate and microbial products and metabolites (Balesdent and Mariotti, 1996). 

However, plant litter consists of isotopically distinct biochemical compounds which have 

different rates of decomposition (Melillo et al., 1989; Agren et al., 1996; Balesdent and 

Mariotti, 1996; Boutton, 1996). In particular, lignin is substantially depleted in 13C relative 

to bulk plant tissue and decomposes at a significantly lower rate than the other 

biochemical fractions in the early stages of plant litter decomposition (Benner et al., 1987; 

Balesdent and Mariotti, 1996). As such, 13C enrichment of SOM due to microbial 

respiration would be more or less balanced by the slower decay of 13C depleted lignin in 

the early stages of plant litter decomposition (Balesdent and Mariotti, 1996). At more 

advanced stages of litter decay, lignin and other residual fractions would decompose at 

more similar rates (Berg et al., 1984; Nadelhoffer and Fry, 1988; Wedin et al., 1995) and 

microbial recycling of C would dominate (Balesdent and Mariotti, 1996), thus resulting in 

a gradual 13C enrichment of the residual litter and the associated SOM pool in well or 

moderately drained, aerobic mineral soils. In chronically or permanently saturated soils 

however, with slow rates of SOM decomposition, δ13C values can remain constant or even 

decrease with soil depth as a result of differential preservation of 13C depleted, lignin-

derived compounds or lipids (Stout et al., 1981; Benner et al., 1987; Nadelhoffer and Fry, 

1988; Wedin et al., 1995). This might partially explain the smaller increase of the δ13C 

values below 10 cm depth in the loamy sand soil profile, which is a poorly drained, 

chronically saturated soil. The smaller overall increase of the δ13C value in the loamy sand 

soil profile might also be explained by a more intense translocation of young, 13C depleted 
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material from the surface layer down the profile, in relation to the more fine-textured 

loamy and clay loam soil profiles. 

The Rayleigh equation (Mariotti et al., 1981) was fitted to the observed C contents 

and corresponding δ13C values of the SOM at the different depths in the three profiles 

(Fig. 2.2). The Rayleigh equation describes the gradual enrichment in 13C of SOM as 

resulting from isotopic fractionation associated with C mineralization, where δo and Co 

stand for the initial δ13C signature and the initial C content, respectively, and where ε 

stands for the isotope enrichment factor: 

 

δ = δo + ε ln [C/Co]                                                                                                         (2.3) 

 

δo and Co were approximated by the δ13C value and the C content in the surface layer of 

the profile (0-2 or 0-2.5 cm depth in the loamy or loamy sand and clay loam soils, 

respectively). In the loamy and clay loam soil profiles, the relation between the δ13C 

values and corresponding C contents in the whole profile (0-40 cm depth) could be fitted 

(R2 = 0.97, p<0.001) by the Rayleigh equation (Fig. 2.2). In the loamy sand soil profile 

however, this relation could only be fitted by the Rayleigh equation (R2 = 0.97, p<0.001) 

in the upper 25 cm of the profile, as the δ13C values below 25 cm depth in the profile 

remained nearly constant with still gradually decreasing C contents. The enrichment factor 

ε  associated with the Rayleigh fit  of the observed data in the loamy soil profile (ε = -1.91 

± 0.07‰) was significantly larger (in absolute value, p<0.05) than the enrichment factors 

observed in the loamy sand soil profile (ε = -1.64 ± 0.09‰) and clay loam soil profile 

(ε = -1.57 ± 0.06‰). These values are in accordance with the enrichment factor associated 

with C mineralization (ε = -1.71‰) reported by Balesdent and Mariotti (1996). These 

results indicate that the evolution of the δ13C signature of SOM in the investigated profiles 

(0-40 cm depth in the loamy and clay loam soil profiles, 0-25 cm depth in the loamy sand 
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soil profile) was largely determined by the isotopic fractionation associated with C 

mineralization. The divergence of the data from the Rayleigh approximation below 25 cm 

depth in the loamy sand soil profile suggests that in this profile other factors 

(accumulation or more intense translocation of 13C depleted material) started to influence 

the evolution of the δ13C signature.  

As the observed 13C-enrichment with increasing depth was correlated to the stage 

of decomposition of the SOM, we next investigated if there was a correlation between the 

rate of change of these δ13C values and the potential C dynamics at different depth 

intervals in these profiles. 
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Fig. 2.2. Relationship between ln(C/C0) and the δ13C values in the upper 40 cm of the 

three soil profiles (dotted line), and fit by the Rayleigh equation (full line); in the loamy 

sand soil profile, only the data from the upper 25 cm in the profile were used for the fit 

(data from below 25 cm depth are indicated by empty triangles); C and C0 stand for the C 

content in the different depth intervals and in the surface layer, respectively 
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2.3.2. Potential C dynamics and relationship with 13C enrichment of the 

SOM 

 

The measured C mineralization rates for the 0-10 cm, 10-20 cm, 20-30 cm and 30-

40 cm depth intervals from the three profiles are presented in Table 2.2, together with the 

total organic C contents and the C decomposition rate constants. The C decomposition rate 

constants (yr-1), which are an indicator of the degradability of the SOM, were calculated 

by dividing the observed C mineralization rate by the corresponding C content in each 

depth interval.  

 

Table 2.2. Organic C contents, C mineralization rates and C decomposition rate constants 

in the 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm depth intervals from the three grassland 

profiles (standard deviations in brackets); values in the same column and from the same 

sampling depth that share the same letter are not significantly different (α = 0.05) 

                  

Soil Depth C content  C mineralization rate  
C decomposition rate 

constant 

  (cm) (g kg-1 soil)  (mg CO2-C kg-1 soil d-1)  (yr-1) 

             
Loamy sand 0-10 30.3(0.3) a  4.63(0.16) a  0.0557(0.0019) a 
 10-20 17.6(1.0) a  1.49(0.05) a  0.0308(0.0011) a 
 20-30 13.0(0.5) a  0.71(0.03) a  0.0200(0.0007) a 
 30-40 5.7(0.9) a  0.20(0.01) a  0.0130(0.0004) a 
            
Loamy 0-10 28.8(0.2) a  5.19(0.04) b  0.0657(0.0005) b 
 10-20 11.0(0.2) b  1.56(0.01) a  0.0519(0.0005) b 
 20-30 7.8(0.1) b  0.80(0.03) ab  0.0372(0.0012) b 
 30-40 5.7(0.1) a  0.56(0.04) b  0.0360(0.0028) b 
            
Clay loam 0-10 54.1(0.2) b  6.47(0.42) c  0.0436(0.0028) c 
 10-20 23.0(0.4) a  1.68(0.13) a  0.0267(0.0021) a 
 20-30 13.3(0.1) a  1.00(0.07) b  0.0274(0.0020) c 
 30-40 9.4(0.1) b  0.44(0.02) b  0.0170(0.0008) c 
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In the three profiles, the C contents and C mineralization rates decreased with 

increasing sampling depth. The observed C mineralization rates (mC) showed a significant, 

positive correlation (mC = 0.14Ctot - 0.52, R2 = 0.87, p<0.001) with the total organic C 

contents (Ctot). In the upper 30 cm of the profiles, the largest C mineralization rates were 

observed in the clay loam soil profile, followed by the loamy and loamy sand soil profile. 

The C mineralization rates showed the largest relative difference among the three profiles 

in the surface layer. The C decomposition rate constants also decreased with increasing 

depth in the profiles (Table 2.2). This reflects that the stability of SOM against microbial 

degradation is considerably higher in the deeper layers of the soil profile in relation to the 

SOM in the surface layer, due to a more enhanced decomposition stage. In all the 

investigated layers (from 0-40 cm depth) from the loamy soil profile and in the upper layer 

from the loamy sand soil profile, the C decomposition rate constants were considerably 

larger than the corresponding values in the clay loam soil profile. This may be attributed 

to the higher silt and clay content in the clay loam soil, as SOM generally tends to be more 

stabilized and physically protected against microbial degradation due to the association 

with silt and clay particles (Tiessen and Stewart, 1983). 

As we observed a varying 13C enrichment of the SOM with increasing depth in the 

three profiles, we investigated if there was a correlation between the rate of change of 

these δ13C values and the potential C dynamics in the different depth intervals. Therefore, 

we calculated the average change of the δ13C value per depth increment in each 10 cm 

depth interval (∆δ13C value, expressed in ‰ cm-1), as the slope of a linear regression of 

the evolution of the δ13C values (as illustrated in Fig. 2.3. for the ∆δ13C values in the 

loamy soil profile). The calculated ∆δ13C values for the three profiles, together with the 

goodness-of-fit (R2) of the linear regressions and the standard errors on the ∆δ13C values 

are shown in Table 2.3.  
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Fig. 2.3. Calculation of the ∆δ13C values in the 0-10 cm, 10-20 cm, 20-30 cm and 30-40 

cm depth intervals of the loamy soil profile through linear regression of the evolution of 

the δ13C values (∆δ13C values are indicated in bold in the linear regression equations) 

Table 2.3. ∆δ13C values calculated by linear regression in the 0-10 cm, 10-20 cm, 20-30 

cm and 30-40 cm depth intervals from the three profiles, together with the goodness-of-fit 

(R2) of the linear regressions (standard errors in brackets) 

       

Soil Depth ∆δ13C value R2 

  (cm) (‰ cm-1) (-) 
     
Sandy loam 0-10 0.175(0.012) 0.99 
 10-20 0.018(0.011) 0.58 
 20-30 0.018(0.002) 0.98 
 30-40 0.014(0.011) 0.34 
    
Loamy 0-10 0.168(0.013) 0.98 
 10-20 0.148(0.043) 0.80 
 20-30 0.082(0.011) 0.95 
 30-40 0.009(0.010) 0.30 
    
Clay loam 0-10 0.129(0.007) 0.99 
 10-20 0.077(0.010) 0.97 
 20-30 0.018(0.019) 0.31 
 30-40 0.048(0.007) 0.97 
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The observed ∆δ13C values tended to decrease with increasing sampling depth in 

the three profiles (except for the ∆δ13C value in the 30-40 cm depth interval in the clay 

loam soil profile). In order to investigate the relationship between the ∆δ13C values and 

the potential C dynamics in the different depth intervals, in terms of the C mineralization 

rates (mC) and the C decomposition rate constants (drcC), these values were plotted versus 

the corresponding ∆δ13C values in Fig. 2.4. There was a significant, positive correlation   

(drcC = 0.22∆δ13C + 0.019, R2=0.75, p<0.001, n=12) between the C decomposition rate 

constants from the four sampling depths in the three profiles and the corresponding ∆δ13C 

values. A less significant, positive correlation (mC = 25.3∆δ13C + 0.12, R2=0.59, p<0.005, 

n=12) existed between the C mineralization rates from the four sampling depths in the 

three profiles and the corresponding ∆δ13C values. A stronger, positive correlation 

between the C decomposition rate constants and the ∆δ13C values was observed when only 

the data from the upper 30 cm in the profiles (drcC = 0.22∆δ13C + 0.019, R2=0.86, 

p<0.001, n=9) or from the upper 20 cm in the profiles (drcC = 0.21∆δ13C + 0.020, 

R2=0.78, p<0.05, n=6) were considered.  

These results suggest that the ∆δ13C values in the surface layers (0-30 cm depth) of 

profiles under permanent grassland, and to a lesser extent the ∆δ13C values in the deeper 

soil layers (30-40 cm depth), may be interpreted as a direct indicator of the degradability 

of the SOM, in terms of the C decomposition rate constant. The observed relationship 

between the evolution of the 13C enrichment and the decomposition rate constants of SOM 

in the investigated grassland profiles may be explained by the fact that its degradability is 

proportional to the labile fraction of the SOM. Fresh litter input, which generally has a 

more negative δ13C signature than the SOM in the profile, serves as a continuous source of 

labile C, which is gradually incorporated into the soil profile. In this way, the evolution of 

the δ13C signature might also be interpreted as a decreasing fraction of relatively ‘young’, 

labile C in the SOM with increasing depth in the profile. The soil type may thus   
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Fig. 2.4. Relationship between the C decomposition rate constants and the corresponding 

∆δ13C values (linear regression indicated by a full line), and relation between the potential 

C mineralization rates and the corresponding ∆δ13C values in the 0-10 cm, 10-20 cm, 20-

30 cm and 30-40 cm depth intervals of the three soil profiles; the soils and depth intervals 

from which the data points are originating are indicated by the letters WZ 

(Wechelderzande, loamy sand soil), M (Melle, loamy soil) or WV (Watervliet, clay loam 

soil), followed by the numbers 10 (0-10 cm), 20 (10-20 cm), 30 (20-30 cm) or 40 (30-40 

cm depth)  
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also have an influence on the evolution of the δ13C signature with increasing depth, in 

terms of the rate at which solid and soluble compounds, originating from the surface layer, 

are translocated into the soil profile (Becker-Heidmann and Scharpenseel, 1989).  

As the ∆δ13C values tend to be inversely related to the stability of the SOM and are 

more easily accessible, whereas incubation experiments to determine potential C 

mineralization rates from soil samples are generally time-consuming and laborious, the 

∆δ13C values might serve as a practical tool for getting a rapid indication of soil C stability 

in the surface layers (0-30 cm depth) of profiles under permanent grassland. 
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2.4. Conclusions 
 

The 13C enrichment of SOM which we observed with increasing depth in the three 

profiles under permanent grassland is consistent with the findings of several other studies. 

The significant fit by the Rayleigh equation of the δ13C profiles reflects that the observed 

13C enrichment with increasing depth is mainly driven by isotopic fractionation associated 

with C mineralization along with the decomposition process. The evolution of the δ13C 

signature in the loamy sand soil profile, which diverged from the Rayleigh approximation 

below 25 cm depth, suggests that other factors, like differential preservation or 

accumulation of 13C depleted material, may also influence the δ13C evolution in poorly 

drained, chronically wet soil profiles.  

The strong, significant correlation which we observed between the C 

decomposition rate constants and the corresponding ∆δ13C values in the soil layers down 

to 30 cm depth in the investigated profiles, suggests that these ∆δ13C values may be 

interpreted as a direct indicator of the stability of the SOM in these layers. In this way, the 

∆δ13C values might serve as a practical tool for getting a rapid indication of soil C stability 

in the surface layers (0-30 cm depth) of profiles under permanent grassland.  

However, further research is needed to investigate the influence of soil type, in 

terms of drainage capacity and the translocation of material from the surface layer into the 

profile, and grassland age, in terms of SOM content, on the evolution of the δ13C signature 

in profiles under permanent grassland. The isotope enrichment factor ε relates the 

variation of the quantity of C to the variation of its 13C enrichment, which in turn tended to 

be related to the quality of the C in the investigated soil profiles.  Thus we suggest that 

more extended research in other permanent grassland ecosystems might elucidate whether 

this enrichment factor ε is also related to the C dynamics in profiles under permanent 

grassland.                                                   
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3. Characterization of soil organic matter fractions from             
grassland and cultivated soils via C content, C/N ratio and 
δδδδ13C signature 

 

 

3.1. Introduction 
 

13C natural abundance analysis and physical fractionation are widely used tools in 

the research on quality and turnover of soil organic matter (SOM). The 13C natural 

abundance or δ13C value (‰) of SOM is mainly determined by the δ13C value of the plant 

litter from which it is derived. Plants with the C3 photosynthetic pathway (Calvin  

pathway) discriminate more against 13CO2 during photosynthesis than C4 plants (Hatch 

and Slack pathway) (Smith and Epstein, 1971). As a result, C3 plants have δ13C values 

ranging from approximately -32‰ to -22‰, while C4 plants have δ13C values ranging 

from approximately -17‰ to -9‰ (Boutton, 1996). Thus, the δ13C values reported for C3 

and C4 plants differ on average by 14‰. This large difference in δ13C values enables us to 

study the turnover of whole soil C and different SOM fractions in soils with a former C3 

vegetation converted to a C4 vegetation (or vice-versa) (Balesdent et al., 1987; Puget et al., 

1995; Ryan et al., 1995).  

After incorporation into the SOM pool, the isotopic signature of plant litter may be 

slightly altered as the decomposition process proceeds (O'Brien and Stout, 1978; Melillo 

et al., 1989; Wedin et al., 1995). One possible source of alteration of the isotopic signature 

may be the different decomposition rates of isotopically distinct biochemical components 

of plant litter (Melillo et al., 1989; Agren et al., 1996; Boutton, 1996). In particular, lignin 

is substantially depleted in 13C relative to bulk plant tissue and decomposes at a 

significantly lower rate than the other biochemical fractions (Benner et al., 1987). 

Although several studies have shown that the relative proportion of lignin in plant tissue 
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increases as decomposition proceeds, this differential preservation does not appear to 

induce lower δ13C values in the residual litter or the associated SOM pool in well-drained 

mineral soils (Nadelhoffer and Fry, 1988; Melillo et al., 1989; Wedin et al., 1995; 

Boutton, 1996). Shifts in the isotopic signature can also be induced by isotopic 

discrimination associated with microbial decomposition of SOM. In their metabolism, 

decomposing organisms would prefer 13C-depleted molecules for respiration while 13C-

enriched molecules tend to be utilised in the production of biomass and the end-products 

of metabolism (Blair et al., 1985; Gleixner et al., 1993), which may induce a 13C 

enrichment in the residual SOM.  

Physical fractionation of SOM is based on the concept that SOM fractions (1) with 

different density (density fractionation) or (2) associated with mineral particles of different 

size (size fractionation) vary in structure and turnover, due to different degrees of organo-

mineral complexation (Christensen, 1992). The light fraction of SOM, which mainly 

consists of partially decomposed plant residues, serves as a readily decomposable 

substrate for the soil microbial biomass and is a short-term reservoir of plant nutrients 

(Gregorich et al., 1994). SOM associated with clay and silt particles (<50 µm according to 

USDA classification) generally shows a greater stability against microbial degradation 

than SOM in larger size fractions (Tiessen and Stewart, 1983). Davidson et al. (1987) 

suggested that water soluble organic C (WSOC) is a favourable substrate for the soil 

microbial biomass, and it has been reported that a large portion of the WSOC is readily 

decomposable (Zsolnay and Steindl, 1991). 

In this study, the variation in 13C enrichment due to isotopic fractionation 

associated with SOM decomposition was investigated among five size and density 

fractions, WSOC and microbial biomass C (MBC) from the upper layer of a continuous 

grassland soil (C3 vegetation). The distribution and incorporation of newly introduced C 

into these SOM fractions was investigated by δ13C analysis of the same fractions 
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originating from a C3-humus soil which was converted (since 19 years) to continuous 

maize cultivation (C4 vegetation) and a rotation of maize cultivation with grassland.  

 

3.2. Materials and methods 
 

3.2.1. Site description and soil sampling 

 

Soil samples were taken in November 2000 from the experimental agricultural 

station of the Ghent University located at Melle in Belgium (3°47’E, 50°59’N). The soil is 

a moderately drained Glossic Hapludalf with a degraded argillic horizon and a loam 

texture (9.7% clay, 42.4% silt) (Soil Map of Belgium, 1965; USDA, 1999). The site was 

arable land with C3 crops prior to the establishment of experimental fields with different 

management treatments in 1966. The management treatments studied here were 

continuous grassland (CG, since 1966), continuous maize cropping (CM, since 1981) and 

a rotation of three years maize cropping followed by three years grassland (R, since 1981). 

From 1966 to 1981, the CM and R soils were cultivated with C3 crops instead of maize 

(continuously or in rotation with three years grassland, respectively). At the time of soil 

sampling, the R soil was in the second year of maize cropping. Every time before sowing 

of the maize, the soil was worked with a rotary cultivator to a depth of about 20 cm. The 

general soil characteristics of the 0-20 cm layer from the CG, CM and R soil are shown in 

Table 3.1. 

In the sampling procedure we intended to obtain composite soil samples 

representative of each management treatment. Based on the results and sampling 

procedures from other studies (Tiessen and Stewart, 1983; Van Kessel et al., 1994; Shang 

and Tiessen, 2000), investigating the variability of total C and δ13C analysis in cultivated 

and non-cultivated soils, we composited and mixed 24 subsamples from each field. The 24 

subsamples were taken from the upper 20 cm in each field (as this was the working depth 
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in the cultivated soils) with a steel auger (3.5 cm diameter). Fresh soil samples were 

sieved to pass a 2 mm screen and stored at 4°C until fractionation or chemical analysis.  

 
Table 3.1. General soil characteristics of the 0-20 cm layer from the continuous grassland 

(CG), rotation (R) and continuous maize (CM) soil (standard errors in brackets) 

                

Soil C content N content pH-H2O Bulk density 

  (g kg-1 soil) (-)        (g cm-3) 

        
CG 22.5(0.5) 1.75(0.04) 5.4    1.38(0.07) 
R 14.9(0.3) 1.40(0.01) 6.4 1.43(0.05) 

CM 8.3(0.2) 0.86(0.05) 6.6 1.49(0.06) 
                
 
 

3.2.2. Size and density fractionation of soil organic matter 

 

The SOM was separated into five size and density fractions: the light (LF 150-

2000 µm; density <1.13 g cm-3), intermediate (IF 150-2000 µm; 1.13< density <1.37        

g cm-3) and heavy density fraction (HF 150-2000 µm; density >1.37 g cm-3) of the macro-

organic matter (150-2000 µm), the size fraction 50-150 µm and the size fraction <50 µm 

(Fig. 3.1). Density fractionation of the macro-organic matter was performed by the method 

of Meijboom et al. (1995). Field-moist, mixed soil samples of 500 g were wet sieved over 

two sieves with tap water (top sieve mesh size 250 µm, bottom sieve mesh size 150 µm). 

The soil was pushed through the top sieve until the water passing the sieve became clear, 

in order to destroy all macro-aggregates >250 µm. Next, the two size fractions retained on 

the sieves were washed into a bucket and swirled with a jet of water to separate the 

organic matter from the mineral fraction by decantation. Swirling and decanting were 

repeated until no more floating organic matter appeared.  

  

 



Chapter 3 
_______________________________________________________________________________ 
 

 51 

 

 

 

 

 

Fig. 3.1. Schematic overview of the procedure for size and density fractionation of SOM; 

LF 150-2000 µm = light density fraction (d < 1.13 g cm-3), IF 150-2000 µm = 

intermediate density fraction (1.13 g cm-3< d <1.37 g cm-3), HF 150-2000 µm = heavy 

density fraction (density >1.37 g cm-3) 
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The remaining mineral fraction was discarded. The obtained organic matter from both size 

fractions was combined to be further separated into a light (LF 150-2000 µm), 

intermediate (IF 150-2000 µm) and heavy density fraction (HF 150-2000 µm) by 

subsequent submersion in colloidal silica suspensions (Ludox, Dupont) with a density of 

1.37 g cm-3 and 1.13 g cm-3. The obtained density fractions were washed with 

demineralized water and dried at 50°C during 48 hours.  

The size fractions 50-150 µm and <50 µm were obtained by wetsieving of field-

moist, mixed soil samples of 100 g over three sieves with tap water (top sieve mesh size 

250 µm, middle sieve mesh size 150 µm, bottom sieve mesh size 50 µm). The soil was 

also pushed through the top sieve in order to destroy all macro-aggregates  >250 µm. The 

suspension passing the bottom sieve was collected and left about 48 hours at 4°C to settle. 

After settling, the clear solution was removed and the soil size fraction <50 µm was 

collected. The fraction retained on the 50 µm sieve and the fraction <50 µm were also 

dried at 50°C during 48 hours. 

The size and density fractionation was replicated three times for each composite 

soil sample and fraction yields were compared among replicate fractionations to verify the 

accuracy of the fractionation procedure. The three replicates of each fraction were 

combined for grinding with a planetary ball mill (PM400, RETSCH, Germany) and 

subsequent chemical and isotopic analysis.  

 

3.2.3. MBC and WSOC  

 

MBC was determined by the fumigation-extraction method (Voroney et al., 1993). 

Soluble C in fumigated and non-fumigated soil samples was extracted with demineralized 

water, by shaking on a mechanical shaker for one hour and filtering the soil suspensions 

through Whatman No. 5 filter paper. Demineralized water instead of K2SO4 was used for 
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the extractions in order to enable accurate δ13C analysis, which may be complicated by the 

large amount of S in the K2SO4 extracts. Gregorich et al. (2000) found that the flush of C 

induced by fumigation and extracted by either 125mM K2SO4 or demineralized water was 

similar and the authors suggested that in both cases the organic C extracted was probably 

derived from the same fraction of SOM. The amount of MBC was then calculated 

according to the following formula: 

 

MBC (g C kg-1 soil) = (Cf - Cnf)/kEC                                                                                (3.1) 

 

where Cf and Cnf were the amounts of C extracted from the fumigated and non-fumigated 

samples, and kEC = 0.35 (representing the extraction efficiency of MBC) according to 

Sparling et al. (1990). WSOC was also extracted with demineralized water by shaking for 

one hour, centrifuging at 4000 rpm during 10 min. and filtering through Whatman No. 5 

filter paper. The fumigation-extraction procedure and extraction of WSOC was replicated 

three times for each composite soil sample. All extracts were frozen till further analysis. 

Soluble organic C content in the water extracts was determined with a total organic C 

analyzer (TOC-5000, Shimadzu, Japan). The water extracts were then freeze-dried (HETO 

FD 3, Ankersmit, Germany) in order to increase their C contents considerably to enable 

δ13C analysis of WSOC and MBC.  

 

 

3.2.4. Stable C isotope analysis 

 

Measurements of 13C natural abundance in soils and SOM fractions were 

performed using an ANCA-SL elemental analyzer coupled to an Isotope Ratio Mass 
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Spectrometer (20-20, PDZ Europa, UK). The measured 13C/12C ratios are expressed as 

δ13C values (‰) relative to the VPDB standard:  

 

 

The working standard for the measurements was flour with a δ13C value of -27.01 ± 

0.04‰ (certified by Iso Analytical, UK).  

The proportion (f) of C4-derived C in the SOM fractions from the R and CM soils 

was calculated using the following equation (Balesdent et al., 1987): 

 

where δS is the δ13C value of a given SOM fraction isolated from the soil converted to C4 

vegetation, and δref,C3 or δref,C4 are the δ13C values of the same SOM fraction from a 

reference soil under a C3 or C4 vegetation, respectively. The CG soil can be considered as 

the C3 reference soil. Since there was no reference soil under C4 vegetation, the difference 

(δref,C4 - δref,C3) was estimated as (δmaize - δgrass) or the difference between the δ13C values 

of maize residues (-11.60 ± 0.07‰) and grass residues (-30.26 ± 0.04‰) (Balesdent and 

Mariotti, 1996). Hereby it is assumed that the shift in isotopic composition of plant tissue 

during decomposition and integration into the SOM pool is equal for grass and maize 

residues. 
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The δ13C value of MBC was estimated as the δ13C value of the C extracted from 

the fumigated sample in excess of that extracted from the non-fumigated sample, as 

follows: 

 

 

where Cf and Cnf were the amounts of C extracted from the fumigated and non-fumigated 

samples and δ13Cf and δ13Cnf were the δ13C values of the (freeze-dried) fumigated and 

non-fumigated extracts, respectively.  

 

3.2.5. Total C and N analysis 

 

Total C and N analysis of whole soil and the size fractions 50-150 µm and <50 µm 

was performed using the Isotope Ratio Mass Spectrometer (20-20, PDZ Europa, UK). 

Because of the large C and N contents, total C and N analysis of the macro-organic matter 

fractions was performed using a CN analyser (NC 2100 SOIL, CE Instruments, Italy). 
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3.3. Results and discussion 
 

3.3.1. Whole soil C 

 

The CG soil showed the largest total C content in the upper 20 cm (Table 3.1). In 

the R soil and the CM soil, the total C contents were respectively 34% and 63% lower 

than in the CG soil. These lower total C contents may be attributed to a lower input of 

root-derived organic matter in comparison to the CG soil and the disruption of soil 

aggregation and higher SOM turnover as a consequence of tillage in cultivated soils 

(Christensen, 1992; Puget et al., 1995). 

 

3.3.2. Density fractionation of macro-organic matter 

 

The LF 150-2000 µm fraction consisted mainly of recognisable plant material in 

an early stage of decomposition and showed the largest C content (Table 3.2). The HF 

150-2000 µm fraction contained more humified, darker and amorphous organic matter and 

showed the smallest C content among the three density fractions. The decreasing C 

contents in the IF and HF 150-2000 µm fractions indicate an increasing ash content and an 

increasing association of the organic matter with soil minerals in these heavier fractions.  

The total amount of macro-organic matter obtained after density fractionation was 

largest in the CG soil (12.9 g fraction kg-1 soil), followed by the R (5.1 g fraction kg-1 soil) 

and the CM soil (2.2 g fraction kg-1 soil) (Table 3.2). In the CG soil, the amount of HF 

150-2000 µm fraction (71% of the macro-organic matter) was considerably larger than the 

amounts of IF 150-2000 µm fraction (23%) and LF 150-2000 µm fraction (6%). The 

difference in macro-organic matter content in the R and CM soil in relation to the CG soil  



 

Table 3.2. Amounts and C contents of the size and density fractions (macro-organic matter = size fraction 150-2000 µm; LF 150-2000 µm 
= light density fraction, d < 1.13 g cm-3; IF 150-2000 µm = intermediate density fraction, 1.13 < d <1.37 g cm-3; HF 150-2000 µm = heavy 
density fraction, d >1.37 g cm-3; size fraction 50-150 µm; size fraction <50 µm), and distribution of C among all the SOM fractions 
considered (size and density fractions; WSOC = water soluble organic C; MBC = microbial biomass C) from the 0-20 cm layer in the 
continuous grassland (CG), rotation (R) and continuous maize (CM) soil (standard deviations in brackets) 
 
                                              

   Weight    C content  Distribution of total C 

    (g kg-1 soil)    (g kg-1 fraction)   (g kg-1 soil) 

      CG R CM   CG R CM   CG R CM 

                                        

Whole soil 1000 1000 1000  22.5 (0.5) 14.9 (0.3) 8.3(0.2)  22.5(0.5) 14.9 (0.3) 8.3 (0.2) 

                    
Size and density fractions                  

                    
 Macro-organic matter 12.91(0.21) 5.06(0.19) 2.19(0.20)  227 (6) 247 (12) 270(8)  2.93(0.09) 1.25 (0.08) 0.59 (0.06) 

                  
  LF 150-2000 µm 0.79(0.11) 0.83(0.11) 0.52(0.07)  361 (4) 335 (6) 321(5)  0.28(0.04) 0.28 (0.04) 0.17 (0.02) 

                  
  IF 150-2000 µm 3.00(0.31) 1.64(0.23) 0.77(0.05)  329 (3) 290 (9) 301(6)  0.99(0.11) 0.48 (0.07) 0.23 (0.02) 

                  
  HF 150-2000 µm 9.13(0.06) 2.58(0.29) 0.90(0.18)  182 (4) 191 (4) 214(3)  1.66(0.04) 0.49 (0.06) 0.19 (0.04) 

                   
 50-150 µm 366(8) 349(18) 342(11)  13.9 (0.6) 8.8 (0.1) 2.7(0.1)  5.1(0.2) 3.1 (0.2) 0.9 (0.1) 

                  
 <50 µm 477(12) 497(23) 484(19)  25.4 (0.8) 18.3 (0.5) 14.7(0.1)  12.1(0.5) 9.1 (0.5) 7.1 (0.3) 

                     
WSOC                0.026(0.003) 0.016 (0.006) 0.020 (0.003) 

                      
MBC                0.58(0.03) 0.45 (0.02) 0.21 (0.02) 
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was most pronounced in the amounts of HF 150-2000 µm fraction and IF 150-2000 µm 

fraction. Compared with the CG soil, the amount of LF 150-2000 µm fraction differred to 

a much lesser extent in the CM and was the same in the R soil.  

The increasing amounts of C stored from the LF 150-2000 µm fraction towards the 

HF 150-2000 µm fraction in the CG soil (Table 3.2) reflect an accumulation and 

stabilization of C into the IF and HF 150-2000 µm fractions, resulting from an undisturbed 

transfer of partially decomposed plant material in the LF 150-2000 µm fraction towards 

more humified material in the HF 150-2000 µm fraction, along with the decomposition 

process. However, this trend of increasing C contents in the IF and HF 150-2000 µm 

fractions was not present in the R and CM soil. This may indicate that tillage in the R and 

CM soil disturbed the transfer process and accumulation of soil C into the IF and HF 150-

2000 µm fractions. 

 

3.3.3. Distribution of total C among size and density fractions 

 

The distribution of whole soil C among the five size and density fractions in the 

CG, R and CM soil, expressed in C contents (g C kg-1 soil) and as the proportion (%) of 

the total amount of C recovered in the five fractions, is shown in Table 3.2 and Fig. 3.2, 

respectively. In the three management treatments, the largest amount of soil C was stored 

in the size fraction <50 µm, followed by the size fraction 50-150 µm and the macro-

organic matter. The amount of C stored in the macro-organic matter decreased from 2.93 g 

C kg-1 soil in the CG soil to 0.59 g C kg-1 soil in the CM soil (Table 3.2). This trend was 

also reflected in the proportion of total C present in the macro-organic matter, which 

decreased in the order CG (14.6%) > R (9.3%) > CM (6.8%) (Fig. 3.2). With decreasing 

total C contents (in the order CG>R>CM), the C enrichment ratio (ratio of g C kg-1 

fraction to g C kg-1 whole soil) of the size fraction <50 µm increased from 1.1 in the CG 



Chapter 3 
_______________________________________________________________________________ 
 

 59 

soil to 1.8 in the CM soil, while the C enrichment ratio in the size fraction 50-150 µm 

decreased from 0.6 (CG soil) to 0.3 (CM soil). Consequently, the proportion of total C 

present in the size fraction <50 µm increased in the order CG (60.2%) < R (67.9%) < CM 

(82.3%), while the proportion in the size fraction 50-150 µm decreased in the order CG 

(25.2%) > R (22.8%) > CM (10.8%) (Fig. 3.2). 
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Fig. 3.2. Proportions of total C recovered in the size and density fractions from the 0-20 

cm layer in the continuous grassland (CG), rotation (R) and continuous maize (CM) soil 
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These results show that the relative contribution to the total C content of C stored 

in the macro-organic matter and in the size fraction 50-150 µm decreased with decreasing 

total C contents, while the relative contribution of C associated with the clay- and silt-

sized fraction (<50 µm) increased. This indicates that C in the clay- and silt-sized fraction 

was less affected by soil disruption due to tillage, than C in the macro-organic matter and 

in the size fraction 50-150 µm. This may be attributed to the greater stability and physical 

protection against microbial degradation of the clay and silt associated organic matter, in 

relation to the organic matter in larger size fractions (Tiessen and Stewart, 1983). 

 

3.3.4. C/N ratios of the size and density fractions 

 

The C/N ratios of the size and density fractions in the CG, R and CM soils are 

shown in Table 3.3. In the three soils investigated, the C/N ratios tended to decrease in the 

order LF 150-2000 µm fraction > IF and HF 150-2000 µm fractions > size fraction 50-150 

µm > size fraction <50 µm. The C/N ratios observed in the LF, IF and HF 150-2000 µm 

fractions are in the same range as the values reported by Hassink (1995) (16.1-35.9, 15.9-

26.0 and 11.1-20.9, respectively) and Meijboom et al. (1995) (18-24, 15-21 and 13-16, 

respectively). The generally higher C/N ratio observed in the LF 150-2000 µm fraction in 

relation to the IF and HF 150-2000 µm fractions, reflects that the LF 150-2000 µm 

fraction consists of organic matter in a less decomposed state. The decrease in C/N ratios 

from the macro-organic matter fractions towards the <50 µm fraction which we observed 

is consistent with the findings of several other studies (e.g. Tiessen and Stewart, 1983; 

Catroux and Schnitzer, 1987; Christensen, 1992), and indicates an increasing degree of 

humification from the coarser to the finer particle-size fractions of SOM. In all the size 

and density fractions, except in the size fraction <50 µm, the C/N ratios tended to increase 

in the order CG<R<CM. This might be explained by a higher C/N ratio in the maize 

residues in relation to the C/N ratio in the grass residues.  
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Table 3.3. C/N ratios of the size and density fractions from the 0-20 cm layer in the 

continuous grassland (CG), rotation (R) and continuous maize (CM) soil 

          

SOM fraction                                        Soil 

    CG R CM 
     
Macro-organic matter 16.4 17.4 23.8 
   
 LF 150-2000 µm 20.1 21.1 29.2 
   
 IF 150-2000 µm 16.0 17.0 20.6 
   
 HF 150-2000 µm 16.1 16.1 24.5 
   
50-150 µm 12.6 14.4 18.8 
   
<50 µm 11.3 10.2 8.6 
          
     

 

 

3.3.5. Amounts of WSOC and MBC 

 

The amounts of WSOC and MBC (expressed in g C kg-1 soil) in the three 

management treatments are shown in Table 3.2. The amounts of WSOC corresponded 

with approximately 0.1% of the total C content in the CG and R soils, and with 

approximately 0.2% of the total C content in the CM soil. In the three management 

treatments, the amount of MBC corresponded with approximately 3% of the total C 

content. The WSOC content in the CG plot was significantly larger (p<0.05) than the 

WSOC contents in both the R and CM soil. This is in accordance with results of Gregorich 

et al. (2000) who found substantially lower WSOC contents under continuous maize than 

under grass in different soil types. The WSOC contents of the R and the CM soil, 

however, did not differ significantly. The largest amount of MBC was also found in the 

CG soil. MBC amounts decreased in the same order as the total C contents in the R and 

the CM soil, which is in agreement with the results of Liang et al. (1998), who found a 

positive correlation between the amounts of MBC and whole soil C in soils under 

continuous corn. 
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3.3.6. δδδδ13C analysis of SOM fractions from the CG soil  

 

The δ13C values of whole soil C and the different SOM fractions from the three 

management treatments are presented in Table 3.4. The differences between the δ13C 

values of all the SOM fractions and the δ13C value of whole soil C in every management 

treatment are shown in Fig. 3.3 (negative or positive values indicate, respectively, 

depletion or enrichment in 13C compared to whole soil C). As the input of organic matter 

into soil occurs through decomposition of dead plant material at the surface, the isotopic 

signature of the SOM is mainly determined by the isotopic signature of the plant material. 

δ13C values of different tissues from the same plant, however, may show a variation of    

1-3‰ (Wedin et al, 1995). The measured δ13C values of below-ground and above-ground 

grass tissue were respectively -30.78 ± 0.05‰ and -29.74 ± 0.04‰, indicating that the 

above-ground tissue was more enriched in 13C. Since the relative proportion by the 

different plant parts to the general litter input was not known, the δ13C value of the input 

was assumed to be the average of the above and below-ground δ13C values, namely -30.26 

± 0.04‰. 

Among the size and density fractions, the LF 150-2000 µm fraction had the lowest 

δ13C value, which was closest to the average δ13C value of the grass residues and deviated 

most from the δ13C value of whole soil C (Fig. 3.3). The δ13C values of the IF 150-2000 

µm fraction and the HF 150-2000 µm fraction were respectively 0.4‰ and 1.5‰ higher 

than in the LF 150-2000 µm fraction, which means that there was an increasing 

enrichment in 13C with increasing density in the macro-organic matter. This enrichment in 

13C may be attributed to isotopic fractionation associated with microbial respiration during 

the decomposition process of dead plant material in soils (Balesdent et al., 1987; Melillo 

et al., 1989; Boutton, 1996).  This trend of increasing 13C enrichment from the LF towards  
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Table 3.4. δ13C values of the SOM fractions from the 0-20 cm layer in the continuous 

grassland (CG), rotation (R) and continuous maize (CM) soil, and proportions of C4-

derived C in the R and CM soil (standard errors in brackets) 

                        

   δ13C  C4-derived C 

   (‰)  (%) 

      CG R CM   R CM 
                   
Whole soil -28.8(0.3) -26.8 (0.1) -22.7 (0.2)  11 33 
          
Size and density fractions        
          
 Macro-organic matter -29.0(0.1) -26.0 (0.1) -19.3 (0.1)  16 52 
          
  LF 150-2000 µm -30.0(0.2) -21.2 (0.2) -15.8 (0.1)  47 77 
          
  IF 150-2000 µm -29.6(0.2) -27.4 (0.1) -19.0 (0.2)  11 57 
          
  HF 150-2000 µm -28.5(0.1) -27.3 (0.3) -22.8 (0.1)  6 31 
           
 50-150 µm -29.0(0.1) -27.1 (0.1) -21.0 (0.3)  10 43 
          
 <50 µm -28.6(0.1) -27.1 (0.1) -22.6 (0.1)  8 33 
           
WSOC  -29.5(0.3) -27.2 (0.4) -24.5 (0.5)  13 27 
           
MBC  -27.9(0.7) -23.8 (0.3) -21.3 (0.5)  23 36 
                        
            
 

 

the HF 150-2000 µm fraction, and the higher C/N ratio in the LF 150-2000 µm fraction 

(Table 3.3) reflects that the LF 150-2000 µm fraction consisted mainly of organic matter 

in an early stage of decomposition while the IF and HF 150-2000 µm fractions contained 

relatively more humified material. The size fraction 50-150 µm had the same δ13C value 

as the macro-organic matter, while the size fraction <50 µm showed the highest δ13C value 

among the three size fractions (Table 3.4). This higher 13C enrichment, together with the 

smaller C/N ratio (Table 3.3), reflects that the clay and silt associated organic matter was 

relatively more decomposed and transformed by microbial pocesses than the organic 

matter in the larger size fractions.  
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Fig. 3.3. Difference between the δ13C values of the SOM fractions and whole soil C from 

the 0-20 cm layer in the continuous grassland (CG), rotation (R) and continuous maize 

(CM) soil (horizontal bars represent standard errors) 

 
 

3.3.7. δδδδ13C analysis of SOM fractions from the R and CM soil 

 

At the time of establishment of the R and CM management treatments, the SOM 

had a C3 isotopic signature. Due to the incorporation of maize residues with a much higher 

δ13C value of -11.60 ± 0.07‰, the δ13C values of the SOM in the R and the CM soil 

shifted gradually towards higher values. When considering the CG soil as a reference soil, 

the δ13C values of whole soil C in the R and the CM soil increased with respectively 2‰ 

and 6.1‰ (Table 3.4). Based on these δ13C values, we calculated that respectively 11% 

and 33% of the total C contents in the R and CM soil were maize-derived C. Thus, the 

total amount of C4-derived C incorporated after 19 years of maize cultivation in the CM 
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soil, and 10 years (in total) of maize cultivation in the R soil amounted to, respectively, 

2.74 ± 0.07 and 1.57 ± 0.1 g C4-C kg-1 soil. This equals a net input rate of 429 ± 11 kg C4-

C ha-1 per year in the upper 20 cm of the CM soil (taking into account a bulk density of 

1.49 g cm-3) and a net input rate of 450 ± 8 kg C4-C ha-1 per year in the upper 20 cm of the 

R soil (taking into account a bulk density of 1.43 g cm-3). The smaller increase of the δ13C 

value of whole soil C in the R soil mainly reflects the lower total input of maize residues 

during the last 19 years in relation to the CM soil. However, when we consider the smaller 

proportion of maize-derived C together with the larger total C content in the R soil, we 

may conclude that there was a considerable contribution to the total C content of grass-

derived C, due to the incorporation of grass residues before every switch to three years of 

maize cultivation. 

Both in the R and CM soil, the influence of C4-C incorporation on the δ13C values 

was most pronounced in the LF 150-2000 µm fraction (Table 3.4). In the R soil, the δ13C 

values of the other size and density fractions showed a much smaller positive shift relative 

to the fractions in the CG soil. In the CM soil, however, the  δ13C values of all the SOM 

fractions showed a considerable positive shift relative to the fractions from the CG soil. 

The proportion of relatively ‘young’, C4-derived C was largest in the LF 150-2000 µm 

fraction, and decreased considerably with increasing density among the macro-organic 

matter fractions. Comparing the three size fractions, the proportions of C4-derived C 

declined from the macro-organic matter towards the smallest size fraction. These results 

reflect a decreasing turnover rate of SOM with increasing density among the macro-

organic matter fractions, and with decreasing fraction size. The decreasing proportions of 

C4-derived C in smaller size fractions also reflect a slow transfer of newly introduced and 

partially decomposed plant material from the macro-organic matter fraction to the smallest 

size fraction during the decomposition process. 
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3.3.8. Stable C isotope analysis of WSOC and MBC 

 

WSOC in the CG soil had the most negative δ13C value (Table 3.4). In the R and 

CM soil, the δ13C values were respectively 2.3 and 5‰ higher, which reflects an 

increasing proportion of maize-derived C. In the three management treatments the δ13C 

values of WSOC showed a negative shift in relation to whole soil C, which varied 

between 0.4 and 1.8‰ (Fig. 3.3). MBC showed the same trend of increasing δ13C values 

among the three management treatments. However, the contribution of maize-derived C in 

both R and CM soil was larger in the MBC (23 and 36%, respectively) than in the WSOC 

(13 and 27%, respectively), which is in accordance with the results of Ryan et al. (1995) 

and Gregorich et al. (2000). The average δ13C values of MBC in all the management 

treatments were less negative than the value of whole soil C, indicating an enrichment in 

13C (Fig. 3.3). This enrichment ranged from 0.9‰ in the CG to 3‰ in the R soil.  

Several authors found that MBC was enriched in 13C relative to the bulk SOM in 

grassland soils (Gregorich et al., 2000; Santruckova et al., 2000) and soils with maize 

cultivation (Ryan et al., 1995; Gregorich et al., 2000). This enrichment may be attributed 

to isotopic discrimination associated with microbial metabolism, during which 

decomposing organisms would preferentially use isotopically lighter molecules for 

respiration (Blair et al., 1985; Gleixner et al., 1993), and isotopically heavier molecules 

for biomass synthesis (Gleixner et al., 1993; Santruckova et al., 2000). However, it is also 

possible that the enrichment in 13C of MBC relative to whole soil C in the R and CM soil 

can be mainly attributed to the larger proportion of C4-derived C in MBC relative to whole 

soil C in both management treatments (Table 3.4). 
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3.4. Conclusions 
 

Analysis of the distribution of soil C among size fractions in the CG, R and CM 

soils showed that the relative contribution to the total C content in the macro-organic 

matter and in the size fraction 50-150 µm diminished with decreasing total C contents, 

while the relative contribution of C associated with the clay- and silt-sized fraction <50 

µm increased. This reflects a greater stability against microbial degradation of the clay and 

silt associated organic C. The shifts in the δ13C values together with the decrease in C/N 

ratios, which were observed in the size and density fractions from the CG, R and CM 

soils, reflected an increasing degree of microbial degradation and a decreasing turnover 

rate (1) with increasing density among the macro-organic matter fractions, and (2) with 

decreasing particle size among the size fractions considered. 
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4. Gross N transformation rates and net N mineralization 
rates related to the C and N contents of soil organic 
matter fractions in grassland soils of different age 

 

 

4.1. Introduction 
 

Soil organic matter (SOM) plays a major role in soil quality as it improves the 

physical, chemical and biological properties of the soil. When arable land, which has been 

under long-term cultivation, is converted to permanent grassland, the SOM content 

gradually tends to increase due to greater organic material inputs, combined with a slower 

rate of SOM decomposition due to the absence of annual cultivation (Whitehead, 1995a; 

Haynes and Beare, 1996). This increase in SOM content is a slow process and therefore 

changes in the quantity and quality of the total SOM pool are usually difficult to detect in 

the short-term after conversion of arable land to grassland (Hassink et al., 1997; Haynes, 

1999). SOM is heterogeneous and is composed of a series of pools ranging from active to 

passive (Schimel et al., 1985). Size and density fractionation techniques are often used for 

physically dividing SOM into pools which differ in composition and biological 

functioning (Christensen, 1992). Size fractionation is based on the observation that SOM 

in the sand-sized fraction (>50 µm) is generally more labile than SOM in the clay- and 

silt-sized fractions (Tiessen and Stewart, 1983). Density fractionation is based on the 

observation that during humification parts of SOM become more associated with the 

mineral fraction and thus occur in organomineral complexes of higher density (Barrios et 

al., 1996). Therefore, size and density fractionation may enable us to identify both labile, 

active fractions of SOM, which may respond much faster to management changes than the 

total SOM content, and passive fractions, which are more related to long-term SOM 

dynamics (Janzen et al., 1992; Barrios et al., 1996). 
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The net N mineralization from plant residues and SOM in grassland soils results 

from the balance between gross N mineralization and immobilization by the soil microbial 

biomass. The quality and quantity of soil organic C has been suggested to be a major 

factor affecting N dynamics in soils (Hart et al., 1994). Changes in SOM contents can 

influence the N dynamics in soils, because of the importance of available C for microbial 

immobilization of N (Compton and Boone, 2002) and denitrification (Whitehead, 1995c). 

Schimel (1986) for example found that N immobilization was lower in cropland than in 

native grassland, suggesting that microbial activity in the cropland was limited by C 

substrate availability. Barret and Burke (2000) suggested that soils with high SOM content 

and high C/N ratios may immobilize more N than soils with less SOM because of a 

limitation of reduced C substrate for microbial metabolism. Organic substrates with high 

C/N ratios often support microbial communities that are N-limited and generally exhibit 

higher rates of N immobilization, presumably because these micro-organisms require 

additional N to metabolize material with a high C content relative to the N content (Sollins 

et al., 1984; Janssen, 1996). 

The first objective of this study was to investigate the accumulation of SOM and 

eventual shifts in the distribution of organic C and N among five size and density fractions 

of SOM after conversion of long-term arable land to permanent grassland. The second 

objective was to investigate the influence of the total SOM content and the distribution of 

C and N among the size and density fractions on (1) the gross N transformation rates 

(mineralization, nitrification and immobilization), determined by means of the 15N-isotope 

dilution technique, and (2) on the long-term net N mineralization and immobilization 

rates. All experiments were carried out on three sandy loam grassland soils of 6, 14 and 

approximately 50 years old, respectively. 
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4.2. Materials and Methods 
 

4.2.1. Site description and soil sampling 

 

Soil samples were collected from three adjacent permanent grassland soils of 

different age, located at Deerlijk (50°49’ N, 3°23’ E), Belgium, during August and 

September 2002. These soils had been converted from continuous arable cropping (during 

at least 20 years) to permanent grassland (mainly Lolium perenne) since respectively 6, 14 

and approximately 50 years at the time of sampling. The 6 years old grassland (6.8% clay, 

17.3% silt) and the 14 years old grassland (8.8% clay, 31.5% silt) were moderately dry 

sandy loam soils, whereas the 50 years old grassland (5.9% clay, 21.3% silt) was a 

moderately wet sandy loam soil. The 6, 14 and 50 years old grassland soil will be further 

referred to as the D6, D14 and D50 soil, respectively. Total C and N content, bulk density 

and pH-H2O in the 0-10 and 10-20 cm soil layers of the three soils are shown in Table 4.1. 

The grasslands were grazed and cut one to two times per year, and received an annual 

input of 230 kg organic N ha-1 as cattle manure and 120 kg mineral N ha-1.  

From each grassland soil, three replicate bulk samples from the 0-10 and 10-20 cm 

soil layers were composited, each consisting of 20 replicate soil cores covering the entire 

area of the investigated grassland. The soil cores were taken with a steel auger (3.5 cm 

diameter). The replicate bulk samples were homogenized and sieved on a 2 mm sieve to 

remove root material. Part of the fresh bulk samples was stored in plastic bags at 4°C until 

the start of the 15N isotope dilution experiments, the rest was air-dried and stored until size 

and density fractionation or the start of the long-term incubation experiments. The size 

and density fractionations and incubation experiments were all performed in triplicate, 

using subsamples of the three replicate bulk samples from each plot and soil layer. 
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Table 4.1. Total C and N content, bulk density and pH-H2O in the 0-10 and 10-20 cm 

layers of the D6, D14 and D50 soil (mean values of three replicates, standard deviations in 

brackets); values followed by the same letter in the same layer are not significantly 

different (P<0.05); values followed by * in the 0-10 cm layer are significantly different 

from the corresponding values in the 10-20 cm layer 

                  

Soil Depth   C content     N content Bulk density pH-H2O 

  (cm)                (g kg-1 soil) (g cm-3) (-) 

         
D6 0-10 20.9 (0.8) a*  1.80 (0.07)a* 1.29 (0.06) 5.8 

 10-20 13.2 (0.4) a  1.11 (0.04)a 1.35 (0.05) 6.1 
        

D14 0-10 22.9 (1.0) a*  2.06 (0.06)a* 1.24 (0.10) 5.9 
 10-20 11.0 (0.8) a  0.97 (0.08)a 1.34 (0.06) 6.0 
        

D50 0-10 45.8 (2.8) b*  3.75 (0.22)b* 1.17 (0.06) 6.0 
 10-20 25.3 (0.2) b  1.74 (0.01)b 1.15 (0.03) 6.1 

                 
 

 

4.2.2. Size and density fractionation of soil organic matter 

 

The soil organic matter was separated into five fractions: the light (density <1.13 g 

cm-3), intermediate (1.13 g cm-3< density <1.37 g cm-3) and heavy density fraction 

(density >1.37 g cm-3) of particulate macro-organic matter (150-2000 µm), the size 

fraction 50-150 µm and the size fraction <50 µm.  

The three density fractions of the macro-organic matter were obtained following a 

slightly modified version of the method developed by Meijboom et al. (1995). Instead of 

using field-moist soil samples, 250 g of air dried soil from each replicate bulk sample was 

rewetted with 750 ml of water in a 2000 ml glass beaker and mildly dispersed by shaking 

on an orbital shaker at 175 rev. min.-1 during one hour. By means of this pretreatment, 

most of the macro-aggregates (>250 µm) were broken down in order to release the 

particulate organic matter before the start of the wet-sieving procedure. The soil 
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suspension was then wet-sieved over two stacked sieves (top sieve mesh size 250 µm, 

bottom sieve mesh size 150 µm) by means of a wet sieving machine (AS200 Control g, 

Retsch). Any intact macro-aggregates (>250 µm) remaining on the top sieve were gently 

pushed through, to ensure a complete breakdown of the macro-aggregates. The two size 

fractions retained on the sieves were washed into a bucket and swirled with a jet of water 

to separate the macro-organic matter from the mineral fraction by decantation. The macro-

organic matter was then further separated into a light (LF 150-2000 µm), intermediate (IF 

150-2000 µm) and heavy density fraction (HF 150-2000 µm) by subsequent submersion in 

colloidal silica suspensions (Ludox, Dupont) with a density of 1.37 g cm-3 and 1.13 g cm-3. 

The obtained density fractions were washed with demineralized water, dried at 50°C 

during 48 hours and ground with a planetary ball mill (PM400, Retsch) for total C and N 

analysis. As there was always a certain amount of heavy density particulate organic matter 

which couldn’t be separated from the mineral fraction by decantation, this mineral fraction 

was also analyzed for its total C and N content. The C and N contents reported for the HF 

150-2000 µm density fraction in the following sections are the sum of the C and N 

contents in the mineral fraction 150-2000 µm and the heavy density fraction, obtained 

after density separation. 

For the separation of the size fractions 50-150 µm and <50 µm, 50 g of air dried 

soil from each replicate bulk sample was rewetted with 150 ml of water in a 500 ml glass 

beaker and dispersed in the same way as described before. The soil suspension was then 

wet-sieved over three stacked sieves on the sieving machine (top sieve mesh size 250 µm, 

middle sieve mesh size 150 µm, bottom sieve mesh size 50 µm). The suspension passing 

the bottom sieve was collected and centrifuged (Labofuge GL, Heraeus Sepatech) at 3000 

rev. min.-1 during 5 min. in order to obtain the size fraction <50 µm. The obtained size 

fractions 50-150 µm and <50 µm were also dried at 50°C during 48 hours. As micro-

aggregates (<250 µm) are stable to slaking by rapid-wetting and wet-sieving (Tisdall and 

Oades, 1982), it could be assumed that the size fraction 50-150 µm consisted of a mixture 
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of water-stable micro-aggregates >50µm, particulate organic matter and sand, and that the 

<50 µm fraction mainly consisted of water-stable micro-aggregates and to a lesser extent 

of primary mineral particles. 

 

4.2.3. Incubations 

 

We conducted two sets of laboratory incubations in order to study the N dynamics 

in the three grassland soils. Fully-mirrored 15N isotope dilution experiments (7-day 

incubations) were conducted to determine the short-term potential gross N transformation 

rates. 70-day incubations have been carried out to determine the long-term potential net N 

mineralization rates. 

For the 15N isotope dilution experiments, the fresh soil samples were shortly dried 

to obtain a gravimetric water content (GWC) corresponding to a water filled pore space of 

50% at the bulk density measured in the field (Table 4.1), minus the amount of 15N-

labelling solution which would be added to the soils at the beginning of the experiment 

(corresponding with 6.7% GWC). The soils were pre-incubated during 7 days at 15°C. At 

the start of the incubation experiment, in total 18 disposable jars per soil layer and 

grassland soil were filled with an amount of soil equivalent to 60 g oven-dry weight. In 

order to determine the potential gross N mineralization (ammonification) and NH4
+-

immobilization rates, 4 ml of a 15N-enriched (10.23 atom%) 15NH4
14NO3-solution, 

equivalent to 30 mg N kg-1 soil, was added by means of a disposable syringe to 9 of the 

jars. In order to determine the potential gross nitrification and NO3
--immobilization rates, 

4 ml of a 15N-enriched (10.4 atom%) 14NH4
15NO3-solution of the same concentration was 

added to the 9 other jars. After label addition, the soils were thoroughly mixed in order to 

ensure a homogeneous label distribution, the bulk densities were adjusted to the values 

measured in the field (resulting in a water filled pore space of 50%), covered with pin-

holed parafilm to enable gas exchange and incubated at 15°C. After 1, 3 and 7 days of 
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incubation, three replicate 15NH4
14NO3- and 14NH4

15NO3-labelled samples were extracted 

with 180 ml of 2M KCl (60 min. shaking) for NH4
+-, NO3

-- and 15N-analysis.  

For the 70-day incubations, the air-dried soil samples were rewetted to a 

gravimetric water content corresponding with a water filled pore space of 50% at the bulk 

density measured in the field (Table 4.1) and pre-incubated during 7 days at 15°C. At the 

start of the incubation experiment, 18 disposable jars per soil layer and grassland soil were 

filled with an amount of soil equivalent to 60 g oven-dry weight, which was adjusted to 

the bulk density observed in the field, thus resulting in a water filled pore space of 50%. 

The jars were covered with pin-holed parafilm, incubated at 15°C and after 7, 14, 28, 42, 

56 and 70 days of incubation, three replicate samples were extracted with 180 ml of 2M 

KCl (60 min. shaking) for NH4
+- and NO3

--analysis. The potential net N mineralization 

rates (net production rate of NH4
+- and NO3

--N) were calculated by means of a linear 

regression of the evolution of the total mineral N content at the different sampling dates 

from day 7 till day 70 of the incubation experiment.  

 

4.2.4. Chemical analysis 

 

Analyses of the total C and N content in the soil samples and the different SOM 

fractions was performed using a CNS analyzer (Vario Max CNS, Elementar, Germany). 

The NH4
+ and NO3

- concentrations in the KCl extracts were determined colorimetrically 

by means of a continuous flow analyzer (Skalar, The Netherlands). Isotope ratio analysis 

of the NH4
+- and NO3

--pool was performed after chemical conversion to N2O. NH4
+ was 

converted quantitatively to N2O using NaOBr according to a protocol adapted from Hauck 

(1982) and Saghir et al. (1993). NO3
- was converted quantitatively to N2O according to 

Stevens and Laughlin (1994). Isotope ratio analysis of the produced N2O was carried out 

using a trace gas preparation unit (ANCA-TGII, PDZ Europa, UK) coupled to an Isotope 

Ratio Mass Spectrometer (20-20, PDZ Europa, UK). 
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4.2.5. Calculation of the gross N transformation rates 

 

The potential gross N mineralization and gross NH4
+ consumption rates were 

calculated from the 15NH4-pool dilution in the 15NH4
14NO3-labelled samples between day 

1, 3 and 7 following the equations of Kirkham and Bartholomew (1954): 

 

where m = gross N mineralization rate (mg N kg-1 d-1); cA = NH4
+ consumption rate (mg N 

kg-1 d-1); t = time (days); APE0 = atom% 15N in excess of the NH4
+-pool at time 0; APEt = 

atom% 15N in excess of the NH4
+-pool at time t; [NH4

+]0 = total NH4
+ concentration (mg 

N kg-1) at time 0; [NH4
+] t = total NH4

+ concentration (mg N kg-1) at time t. The potential 

gross nitrification (n) and gross NO3
- consumption rates (cN) were calculated from the 

15NO3-pool dilution in the 14NH4
15NO3-labelled samples between day 1, 3 and 7 following 

the same equations, by substituting the NO3
- concentrations and atom% 15N in excess of 

the NO3
--pool into equations (4.1) and (4.2). The potential gross NH4

+ immobilization rate 

was then calculated by subtracting the gross nitrification rate from the gross NH4
+ 

consumption rate, in the assumption that NH4
+ consumption through volatilization was 

zero. In the assumption that NO3
- consumption through denitrification was negligible at a 

water filled pore space of 50% (Linn and Doran, 1984), the gross NO3
- immobilization 

rate was equivalent to the gross NO3
- consumption rate. 
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4.2.6. Statistical analysis 

 

All statistical analyses of the data were performed using SPSS (version 11.0.1). 

Statistical analysis of the differences in the N transformation rates and differences in C 

and N contents between plots or SOM fractions within depth was conducted by analysis of 

variance (one-way ANOVA). Pairwise comparisons of means was conducted using 

Tukey’s honestly significant difference test with a significance level of α = 0.05. Stepwise 

multiple linear regression analysis (backward procedure, significance level for the F value 

was 0.1 for removal from the model) was used to study the relations between the gross and 

net N transformation rates and the SOM contents. 

 

 

4.3. Results 
 

4.3.1. Total organic C and N contents 

 

At 0-10 cm depth, both total C and N contents showed an increase with increasing 

age of the investigated grasslands (Table 4.1). Total C and N contents in the D14 and D50 

soil were respectively about 1.1 and 2.1 times larger than in the D6 soil. At 10-20 cm 

depth, no trend of increasing C and N contents with increasing age was observed, but the 

C and N contents in the D50 soil were significantly (P<0.05) larger than in the D6 and 

D14 soils. In the three grassland soils, total C and N contents at 0-10 cm depth were 

significantly larger (1.6 to 2.2 times) than at 10-20 cm depth.  
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4.3.2. C and N contents in the size and density fractions of soil organic 

matter 

The C and N contents and the proportions of total C and N recovered in the 

different size and density fractions from the D6, D14 and D50 soils are shown in Tables 

4.2 and 4.3, respectively. In both investigated soil layers, the largest C and N contents 

were found in the size fraction <50 µm. The proportions of total C and N stored in the size 

fraction <50 µm ranged from 44.2 to 56.9% in the 0-10 cm soil layers, and from 62.4 to 

78.4% in the 10-20 cm soil layers. The C and N contents and the proportions of total C 

and N stored in the SOM fractions generally decreased in the order <50 µm > 50-150 µm 

> HF 150-2000 µm > IF 150-2000 µm > LF 150-2000 µm. In the three soils investigated, 

the proportions of total C and N stored in the size fraction <50 µm were considerably 

larger in the 10-20 cm soil layer in relation to the 0-10 cm layer, whereas the proportions 

of total C and N in all the SOM fractions >50 µm were smaller. 

In the 0-10 cm soil layer, the C and N contents in the <50 µm, 50-150 µm and HF 

150-2000 µm fractions increased in the order D6<D14<D50, whereas the C and N 

contents in the LF 150-2000 µm and IF 150-2000 µm fractions remained nearly constant 

or even decreased. The increase in C and N contents was, however, only significant 

(P<0.05) for the HF 150-2000 µm fraction. If we compare the C and N contents of the 

SOM fractions from the D50 soil with the corresponding SOM fractions from the D6 soil, 

the largest relative increase in C and N contents occurred in the HF 150-2000 µm fraction 

(C and N contents respectively 5.1 and 6.1 times larger), followed by the 50-150 µm 

fraction (C and N contents respectively 2.7 and 2.6 times larger) and the <50 µm fraction 

(C and N contents respectively 2 and 1.8 times larger). This was also reflected in the 

proportions of total C and N stored in the HF 150-2000 µm fraction and the 50-150 µm 

fraction, which  were  significantly  larger  in the  D50 soil  than  in  the D6 and  D14 soils, 

 



Table 4.2. C contents and the proportions of total C in the different size and density fractions from the 0-10 and  

10-20 cm layers of the D6, D14 and D50 soil (mean values of three replicates, standard deviations in brackets); 

values followed by the same lowercase letter within a SOM fraction or depth and among grassland soils are not 

significantly different (P<0.05); values followed by the same uppercase letter within a grassland soil or depth and 

among SOM fractions are not significantly different; values followed by * in the 0-10 cm layer are significantly 

different from the corresponding values in the 10-20 cm layer 

                                  

  C content  Proportion of total C 

  (g kg-1 soil)   (%) 
                 Depth SOM fraction  Soil                    Soil 

(cm)   D6   D14   D50   D6 D14 D50 
                 

0-10 LF 150-2000 µm 0.32 (0.08) aA*  0.54 (0.11) bA*  0.17(0.05) aA  1.7 2.5 0.4 
 IF 150-2000 µm 2.08 (0.27) aB*  1.18 (0.12) bA*  2.25(0.18) aB*  10.8 5.5 5.0 
 HF 150-2000 µm 1.63 (0.13) aB*  3.27 (0.27) bB*  8.35(0.58) cC*  8.5 15.1 18.6 
 50-150 µm 5.40 (0.45) aC*  6.10 (1.49) aC*  14.33(0.19) bD* 28.2 28.2 31.9 
 <50 µm 9.74 (0.77) aD*  10.54 (0.35) aD*  19.87(0.46) bE*  50.8 48.7 44.2 
              

10-20 LF 150-2000 µm 0.14 (0.04) aA  0.07 (0.02) bA  0.08(0.01) aA  1.1 0.6 0.4 
 IF 150-2000 µm 0.32 (0.01) aA  0.17 (0.03) bA  0.34(0.05) aB  2.6 1.6 1.4 
 HF 150-2000 µm 1.07 (0.11) aB  0.66 (0.08) bB  1.69(0.15) cC  8.8 6.2 7.1 
 50-150 µm 2.34 (0.12) aC  2.27 (0.08) aC  6.38(0.14) bD  19.3 21.3 26.8 
 <50 µm 8.26 (0.09) aD  7.48 (0.86) aD  15.32(0.55) bE  68.1 70.3 64.3 
                                  



       
           

Table 4.3. N contents and the proportions of total N in the different size and density fractions from the 0-10 and  

10-20 cm layers of the D6, D14 and D50 soil (mean values of three replicates, standard deviations in brackets); 

values followed by the same lowercase letter within a SOM fraction or depth and among grassland soils are not 

significantly different (P<0.05); values followed by the same uppercase letter within a grassland soil or depth and 

among SOM fractions are not significantly different; values followed by * in the 0-10 cm layer are significantly 

different from the corresponding values in the 10-20 cm layer 

                                  

  N content  Proportion of total N 

  (g kg-1 soil)   (%) 

                 
Depth SOM fraction  Soil                    Soil 
(cm)   D6   D14   D50   D6 D14 D50 

                 
0-10 LF 150-2000 µm 0.018(0.004) aA*  0.030 (0.006) bA*  0.011 (0.002) aA*  1.1 1.6 0.3 

 IF 150-2000 µm 0.131(0.017) aB*  0.074 (0.010) bA*  0.166 (0.017) aB*  8.0 3.9 4.6 
 HF 150-2000 µm 0.114(0.025) aAB* 0.255 (0.023) bB*  0.690 (0.045) cC*  7.0 13.6 19.1 
 50-150 µm 0.438(0.050) aC*  0.488 (0.140) aC*  1.124 (0.038) bD* 26.9 26.0 31.1 
 <50 µm 0.926(0.071) aD*  1.032 (0.031) aD*  1.629 (0.037) bE*  56.9 54.9 45.0 
                

10-20 LF 150-2000 µm 0.008(0.002) aA  0.003 (0.001) bcA  0.005 (0.001) acA  0.8 0.4 0.3 
 IF 150-2000 µm 0.019(0.001) aA  0.008 (0.002) bA  0.019 (0.019) aA  1.9 0.8 1.2 
 HF 150-2000 µm 0.067(0.003) aB  0.043 (0.011) aB  0.127 (0.020) bB  6.7 4.6 8.1 
 50-150 µm 0.161(0.013) aC  0.144 (0.036) aC  0.433 (0.011) bC  16.0 15.3 27.8 
 <50 µm 0.750(0.015) aD  0.744 (0.102) aD  0.976 (0.041) bD  74.7 78.9 62.6 
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whereas the proportions of total C and N stored in the <50 µm fraction were significantly 

smaller. In the 10-20 cm soil layer, the C and N contents in the LF 150-2000 µm and IF 

150-2000 µm fractions also remained nearly constant or decreased with increasing age of 

the investigated grasslands. In contrast with the 0-10 cm soil layer, no trend of increasing 

C nor N contents was observed in the <50 µm, 50-150 µm and HF 150-2000 µm fractions 

in the order of D6<D14<D50. However, the C and N contents in these fractions were still 

significantly larger in the D50 soil than in the D6 and D14 soils. 

 

Table 4.4. C/N ratios of the different size and density fractions from the 0-10 and 10-20 

cm layers of the D6, D14 and D50 soil (mean values of three replicates, standard 

deviations in brackets) 

                    
  C/N ratio 
  (-) 

Depth   SOM fraction  Soil 
(cm)   D6   D14   D50 

          
0-10 LF 150-2000 µm 18.1 (0.1)  17.8 (0.8)  15.6 (2.3) 

 IF 150-2000 µm 15.9 (0.2)  16.0 (0.5)  13.6 (0.3) 
 HF 150-2000 µm 14.4 (1.1)  12.8 (0.4)  12.1 (0.2) 
 50-150 µm 12.4 (0.4)  12.6 (0.5)  12.8 (0.3) 
 <50 µm 10.5 (0.1)  10.2 (0.1)  12.2 (0.1) 
       

10-20 LF 150-2000 µm 18.1 (0.4)  19.7 (0.1)  18.4 (1.0) 
 IF 150-2000 µm 17.1 (0.8)  22.1 (3.4)  17.8 (0.9) 
 HF 150-2000 µm 15.9 (1.3)  15.7 (2.3)  13.5 (0.9) 
 50-150 µm 14.6 (1.0)  15.8 (0.7)  14.7 (0.1) 
 <50 µm 11.0 (0.1)  10.1 (0.2)  15.7 (0.1) 
                    
          

 

In both layers of the D6 and D14 soil, the C/N ratios of the SOM fractions 

decreased in the order LF 150-2000 µm > IF 150-2000 µm > HF 150-2000 µm > 50-150 

µm > <50 µm (Table 4.4). In the D50 soil, the C/N ratios of the SOM fractions also 

decreased in the order LF 150-2000 µm > IF 150-2000 µm > HF 150-2000 µm, but no 
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further trend of decreasing C/N ratios was observed in the 50-150 µm and <50 µm 

fractions. The C/N ratios of the SOM fractions were generally lower in the 0-10 cm than 

in the 10-20 cm layer. 

 

4.3.3. Gross N transformation rates and net N mineralization rates 

 

The size and 15N-enrichment of the NH4
+- and NO3

-- pools at day 1, 3 and 7 after 

the 15N-label additions, are shown in Table 4.5 and Table 4.6, respectively. In both 

investigated layers, the NH4
+- contents decreased as a function of time, except in the 10-20 

cm layer of the D50 soil, where the NH4
+- contents increased slightly from day 1 to 3, 

followed by a strong decrease between day 3 and 7. In both layers of the D14 and D50 

soil, the NO3
--contents increased as a function of time, whereas in the D6 soil the NO3

--

contents remained nearly constant during the entire incubation period.  

The gross N transformation rates, which have been calculated for the intervals day 

1-day 3 and day 3-day 7, together with the weighted average transformation rates for the 

interval day 1-day 7, are shown in Table 4.7. The average (day 1-day 7) gross N 

mineralization and gross nitrification rates tended to increase with increasing SOM 

contents, in the order D6<D14<D50 in both soil layers investigated (Table 4.7). The 

average (day 1-day 7) potential gross N mineralization rates in the 0-10 cm layer were 

approximately 2 times (D6 and D14 soils) to 3 times larger (D50 soil) than in the 10-20 

cm layer. These gross mineralization rates correspond with a gross mineralization of 643, 

982 and 1876 kg N ha-1 y-1 in the upper 20 cm of the D6, D14 and D50 soil, respectively. 

The average potential gross nitrification rates in the 0-10 cm layer were, respectively, 1.8, 

1.6 and 1.5 times larger than in the 10-20 cm layer.  
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Table 4.5. Size of the NH4
+- and NO3

--pool at day 1, 3 and 7 after addition of the 

NH4NO3-solution in the 0-10 cm and 10-20 cm layers of the D6, D14 and D50 soil (mean 

values of three replicates, standard deviations in brackets) 

                            
  NH4

+ NO3
- 

  (mg N kg-1 soil) 

Soil Depth d1 d3 d7 d1 d3  d7 

  (cm)                         
              

0-10 11.8(1.7) 5.1(0.7) 1.8(0.9) 25.1(3.6) 22.3(2.2) 24.2(3.8) 
D6 

10-20 11.2(1.5) 6.9(0.7) 3.3(0.9) 14.2(2.3) 13.2(0.5) 14.3(0.6) 
        

0-10 12.8(0.9) 9.7(1.3) 4.4(1.8) 22.6(2.2) 28.5(3.4) 36.2(3.9) 
D14 

10-20 12.8(1.7) 11.7(0.8) 6.5(0.3) 14.0(0.6) 18.5(2.4) 24.9(2.2) 
        

0-10 18.7(3.8) 9.2(1.5) 2.3(0.1) 67.9(9.0) 74.5(2.6) 86.6(3.4) 
D50 

10-20 30.3(1.3) 32.5(2.3) 9.6(0.7) 35.9(4.3) 43.5(1.8) 45.3(2.4) 
                            
 

 

Table 4.6. 15N-enrichment of the NH4
+-pool at day 1, 3 and 7 after addition of the 

15NH4
14NO3-solution, and 15N-enrichment of the NO3

--pool at day 1, 3 and 7 after addition 

of the 14NH4
15NO3-solution in the 0-10 cm and 10-20 cm layers of the D6, D14 and D50 

soil (mean values of three replicates, standard deviations in brackets) 

                

  NH4
+ NO3

- 
  (atom% 15N in excess) 

Soil Depth d1 d3 d7 d1 d3   d7 
  (cm)                         
              

0-10 6.8(0.3) 4.9(0.5) 2.4(0.4) 4.9(0.6) 4.2(0.6) 3.5(0.4) 
D6 

10-20 7.2(0.4) 6.6(0.4) 4.6(0.2) 7.1(0.3) 6.2(0.3) 5.2(0.1) 
        

0-10 7.9(0.2) 6.3(0.3) 2.8(0.9) 4.9(0.2) 4.3(0.1) 3.6(0.1) 
D14 

10-20 8.7(0.3) 7.8(0.4) 5.8(0.2) 6.7(0.2) 6.0(0.1) 5.0(0.1) 
        

0-10 3.5(0.2) 2.3(0.1) 0.5(0.1) 2.7(0.1) 2.4(0.1) 2.0(0.1) 
D50 

10-20 3.9(0.3) 3.7(0.2) 2.9(0.2) 3.5(0.1) 3.2(0.1) 2.5(0.2) 
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Table 4.7. Gross N mineralization, nitrification, NH4
+ and NO3

- immobilization rates 

calculated for the intervals day 1-day 3 and day 3-day 7 of the 15N isotope dilution 

experiments, weighted average values of the gross rates for the interval day 1-day 7 (mean 

values of three replicates, standard deviations in brackets), net N mineralization rates 

measured between day 7 and day 70 of the long-term incubation experiments and gross N 

immobilization rates calculated by difference between the gross N mineralization rates and 

long-term net N mineralization rates in the 0-10 cm and 10-20 cm layers of the D6, D14 and 

D50 soil (mean values of three replicates, standard deviations in brackets); values at the same 

depth followed by the same letter are not significantly different; values followed by * in the  

0-10 cm layer are significantly different from the corresponding values in the 10-20 cm layer 

                

  N transformation rates 

  (mg N kg-1 soil d-1) 

  D6 D14 D50 

    0-10 10-20 0-10 10-20 0-10 10-20 

        
Gross N mineralization (15N isotope dilution)    

        
 d1-d3 1.44 (0.33) 0.42 (0.61) 1.29 (0.32) 0.65 (0.13) 3.12 (0.16) 0.56 (0.23) 
 d3-d7 0.62 (0.28) 0.46 (0.14) 1.49 (0.16) 0.71 (0.10) 3.39 (0.31) 1.37 (0.16) 
 d1-d7    0.89 (0.20)a*   0.45 (0.16)a     1.42 (0.20)b*   0.69 (0.02)a     3.30 (0.18)c*   1.10 (0.18)b 
        

Gross nitrification (15N isotope dilution)     
        
 d1-d3 1.94 (0.62) 0.92 (0.13) 1.76 (0.35) 0.94 (0.08) 5.13 (1.18) 2.29 (0.07) 
 d3-d7 1.09 (0.17) 0.68 (0.14) 1.68 (0.15) 1.11 (0.07) 3.73 (0.08) 3.02 (0.86) 
 d1-d7    1.37 (0.09)a*   0.76 (0.14)a    1.70 (0.21)a*   1.05 (0.02)a     4.20 (0.35)b*   2.78 (0.56)b 
        

Gross NH4
+ immobilization (15N isotope dilution)    

        
 d1-d3 2.81 (0.70) 1.65 (0.94) 1.07 (0.47) 0.25 (0.52) 2.73 (1.51) -2.82 (1.58) 

 d3-d7 0.36 (0.28) 0.68 (0.09) 1.15 (0.33) 0.90 (0.30) 1.39 (0.60)   4.08 (1.34) 

 d1-d7   1.17 (0.40)a   1.00 (0.32)a   1.12 (0.38)a   0.71 (0.28)a   1.83 (0.41)a    2.72 (0.89)b 
        
Gross NO3

- immobilization (15N isotope dilution)    
        
 d1-d3 3.36 (2.01) 1.41 (1.56) -1.22 (1.50) -1.31 (1.38) 1.83 (4.81) -1.56 (2.95) 

 d3-d7 0.61 (0.78) 0.39 (0.15) -0.25 (1.70) -0.50 (1.17) 0.71 (1.35)   2.58 (1.14) 

 d1-d7   1.57 (0.27)a     0.78 (0.44)ab    0.42 (0.59)a    0.19 (0.33)a   1.58 (1.65)a     1.84 (0.96)b
        
Net N mineralization (long- term incubation)     
        
     0.32 (0.08)a*    0.09 (0.03)a    0.33 (0.03)a*     0.12 (0.07)a 0.58 (0.10)a*     0.06 (0.03)a 
        
Gross N immobilization (calculated by difference, long-term incubation)   
        
     0.57 (0.13)a    0.36 (0.15)a   1.09 (0.21)a*     0.58 (0.09)a 2.72 (0.38)b*     1.04 (0.21)b
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Calculation of the gross NH4
+ and NO3

- immobilization rates using the formulas 

(4.1) and (4.2) resulted in negative values in some cases (NO3
- immobilization rates in the 

D14 soil and NH4
+ and NO3

- immobilization rates between day 1 and 3 in the 10-20 cm 

layer of the D50 soil) (Table 4.7). However, in nearly all cases these negative values were 

not significantly different from zero. Thus, when negative values were obtained for one of 

the replicate immobilization rates between day 1-day 3 or day 3-day 7, these could be set 

to zero for the calculation of the weighted average immobilization rates between day 1 and 

7. Negative values for gross immobilization rates, calculated with the same formulas, have 

often been reported in the literature (Watson and Mills, 1998; Watson et al., 2000; Wang 

et al., 2001; Verchot et al., 2002). Müller et al. (2004) suggested that these negative rates 

would be related to fast immobilization and subsequent remineralization of the added 15N-

enriched NH4
+- or NO3

--pool, which cannot be accounted for by means of the analytical 

solution for gross rate calculations. 

In both layers of the D6 soil and the 10-20 cm layer of the D50 soil, the sum of the 

average (day 1-day 7) gross NH4
+ and NO3

- immobilization rates (gross consumption of 

mineral N) was larger than the average (day 1-day 7) gross mineralization rates (gross 

production of mineral N), which was reflected by the decrease in total mineral N contents 

between day 1 and day 7 (Table 4.5). This indicates that net N-immobilization occurred 

during the incubation period in these soils. In the other soil layers investigated, the 

average gross mineralization rates were larger (D14 soil) or nearly equal (0-10 cm layer of 

the D50 soil) in relation to the sum of the average gross NH4
+ and NO3

- immobilization 

rates, which was reflected by an increase in the total mineral N contents between day 1 

and day 7 (Table 4.5). This indicates that net N mineralization occurred in these soil layers 

during the incubation.  

In the 0-10 cm layer, the largest long-term net mineralization rate was observed in 

the D50 soil, which was 1.8 times larger than in the D6 and D14 soils. In the 10-20 cm 
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layer however, the D50 soil showed the smallest net mineralization rate among the three 

soils. The measured net mineralization rates correspond with a net mineralization of 195, 

208 and 274 kg N ha-1 y-1 in the upper 20 cm of the D6, D14 and D50 soil, respectively.  

We also estimated the gross N immobilization rates (NH4
+ plus NO3

- 

immobilization) during the long-term incubation experiments by subtracting the long-term 

net N mineralization rates from the average (day 1-day 7) gross N mineralization rates, 

which were determined by the 15N-isotope dilution technique. This technique for 

calculating gross N immobilization rates is called the difference method (according to 

Hart et al., 1994). The gross immobilization rates calculated by this method will be 

referred to as gross immobilization (difference), in order to distinguish them from the rates 

calculated by the 15N-isotope dilution method, which will be referred to as gross 

immobilization (15N dilution). The gross N immobilization rates (difference) ranged from 

0.57, 1.09 to 2.72 mg N kg-1 soil d-1 in the 0-10 cm layer, and from 0.36, 0.58 to 1.04 mg 

N kg-1 soil d-1 in the 10-20 cm layer of the D6, D14 and D50 soils, respectively (Table 

4.7). These rates correspond with a gross N immobilization (difference) of, respectively, 

444, 776 and 1605 kg N ha-1 y-1 in the upper 20 cm of the D6, D14 and D50 soil. 

In the further discussion of the results, the gross N transformation rates mentioned 

in the text will refer to the weighted average gross N transformation rates calculated 

between day 1 and day 7. 

 

4.3.4. Relations between gross N transformation rates, net N 

mineralization rates and SOM contents 

 

The Pearson correlation coefficients between the N transformation rates (gross N 

mineralization, gross nitrification, gross immobilization (difference) and long-term net N 

mineralization rates, all expressed in mg N kg-1 soil d-1) and the C contents, N contents 
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(expressed in mg C or N kg-1 soil) and C/N ratios of whole soil and the individual SOM 

fractions are shown in Table 4.8. The linear regression models corresponding with the 

largest Pearson correlation coefficients for each of the N transformation rates are included 

in Table 4.9. As in some cases negative values were obtained for the gross NH4
+ and NO3

- 

immobilization rates (15N dilution) (Table 4.7), the correlation between these rates and the 

SOM contents was not investigated.  

The gross mineralization rates showed a strong, positive correlation with the total 

C and N contents (Table 4.8, r=0.948 and r=0.963, respectively; Table 4.9, model 1). 

Considering the C and N contents in the individual SOM fractions, the gross N 

mineralization rates showed the strongest correlation with the C and N content in the HF 

150-2000 µm fraction (Table 4.8, r=0.976; Table 4.9, model 2), followed by the N 

contents in the <50 µm fraction (Table 4.8, r=0.973) and the C and N contents in the      

50-150 µm fraction (Table 4.8, r=0.957 and r=0.953). The gross nitrification rates showed 

a stronger correlation with the total C contents (Table 4.8, r=0.939; Table 4.9, model 4) 

than with the total N contents (Table 4.8, r=0.885) , and were best correlated with the C 

and N contents in the <50 µm fraction (Table 4.8, r=0.965 and r=0.898, respectively; 

Table 4.9, model 5) among the individual SOM fractions. The gross immobilization rates 

(difference) also showed strong, positive correlations with the total C and N contents 

(Table 4.8, r=0.933 and r=0.930; Table 4.9, models 7 and 8). Considering the individual 

SOM fractions, the gross immobilization rates (difference) were best correlated with the C 

and N contents in the HF 150-2000 µm fraction (Table 4.8, r=0.952 and r=0.954; Table 

4.9, models 9 and 10) and the N contents in the <50 µm fraction (Table 4.8, r=0.954; 

Table 4.9, model 11). The long-term net N mineralization rates showed much weaker, 

positive correlations with the total C and N contents (Table 4.8, r=0.748 and r=0.828, 

respectively; Table 4.9, model 12) than the gross N mineralization rates, and showed the 

strongest correlation with the N contents in the IF 150-2000 µm fraction (Table 4.8, 

r=0.848; Table 4.9, model 13). None of the N transformation rates considered were 
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significantly correlated with the whole soil C/N ratio, and only very weak correlations 

were found with the C/N ratios of the SOM fractions. 

 

Table 4.8. Pearson correlation coefficients and significance of the correlations between 

the N transformation rates (weighted average gross N mineralization and nitrification for 

the interval day 1-day 7, gross N immobilization (difference) and long-term net N 

mineralization rates) and the C contents, N contents and C/N ratios of whole soil, LF   

150-2000 µm, IF 150-2000 µm, HF 150-2000 µm, 50-150 µm and <50 µm fractions 

                  
         
 Gross mineralization Gross nitrification Gross immobilization Net mineralization 

 (d1-d7) (d1-d7) (difference) (long-term incubation)
                  
         
Ctot 0.948*** 0.939*** 0.933 *** 0.748*** 
CLF 0.073  -0.096 0.004  0.337 
CIF 0.669*** 0.504* 0.588 * 0.818*** 
CHF 0.976*** 0.846*** 0.952 *** 0.801*** 
C50-150 µm 0.957*** 0.917*** 0.940 *** 0.762*** 
C<50 µm 0.870*** 0.965*** 0.891 *** 0.542* 

      

Ntot 0.963*** 0.885*** 0.930 *** 0.828*** 
NLF 0.125 -0.051 0.053  0.383 
NIF 0.740*** 0.571* 0.663 ** 0.848*** 
NHF 0.976*** 0.851*** 0.954 *** 0.795*** 
N50-150 µm 0.953*** 0.882*** 0.927 *** 0.793*** 
N<50 µm 0.973*** 0.898*** 0.954 *** 0.782*** 
      
C/Ntot 0.062 0.436 0.150  -0.316 
C/NLF -0.709*** - 0.649** -0.670 ** -0.673** 
C/NIF -0.614** - 0.516* -0.580 * -0.583* 

C/NHF -0.590** - 0.648** -0.573 * -0.496* 

C/N50-150 µm -0.431 -0.312 -0.376  -0.541* 

C/N<50 µm 0.184 0.551* 0.268  -0.212 
                  

*, **, *** : r-values significant at p<0.05, 0.01 and 0.001 respectively   
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Table 4.9. Linear and multiple linear regression models for the variation of the N transformation 

rates (weighted average gross N mineralization and nitrification for the interval day 1-day 7, gross 

N immobilization (difference) and long-term net N mineralization rates), as influenced by (1) total 

C contents, total N contents and whole soil C/N ratio, and (2) C contents, N contents and C/N ratios 

of the LF 150-2000 µm, IF 150-2000 µm, HF 150-2000 µm, 50-150 µm and <50 µm fractions 

          

  Unstandardized  Standardized  

    regression coefficient regression coefficient 

Gross N mineralization rate (d1-d7)    

Model 1 (R2=0.93, p<0.001) Constant -0.59426**  
 Ntot 0.00100***  
Model 2 (R2=0.95, p<0.001) Constant 0.41165***  
 NHF 0.00416***  
Model 3 (R2=0.97, p<0.001) Constant -2.27128**  
 N50-150 µm 0.00124* 0.431 
 N<50 µm 0.00215** 0.679 
 C/N50-150 µm 0.09757** 0.188 
 C/N<50 µm -0.04500*              -0.093 

Gross nitrification rate (d1-d7)    

Model 4 (R2=0.88, p<0.001) Constant -0.32716   
 Ctot 0.00010***  
Model 5 (R2=0.93, p<0.001) Constant -1.15886***  

 C<50 µm 0.00026***  
Model 6 (R2=0.92, p<0.001) Constant -2.90391**  
 Ctot 0.00009*** 0.885 
 C/Ntot 0.22298* 0.214 

Gross N immobilization rate (difference)   

Model 7 (R2=0.88, p<0.001) Constant -0.47965*  
 Ctot 0.00007***  
Model 8 (R2=0.87, p<0.001) Constant -0.50431**  
 Ntot 0.00082***  
Model 9 (R2=0.91, p<0.001) Constant 0.24657**  
 CHF 0.00029***  
Model 10 (R2=0.91, p<0.001) Constant 0.31393***  
 NHF 0.00346***  
Model 11 (R2=0.91, p<0.001) Constant -1.52868***  
 N<50 µm 0.00256***  

Net N mineralization rate (long-term incubation)   

Model 12 (R2=0.69, p<0.001) Constant -0.08995  
 Ntot 0.00018***  
Model 13 (R2=0.72, p<0.001) Constant 0.05916  
 NIF 0.00274***  
Model 14 (R2=0.83, p<0.001) Constant 0.69438**  
 Ntot 0.00018*** 0.858 
 C/Ntot -0.06560**              -0.384 
Model 15 (R2=0.84, p<0.001) Constant 0.34105*  
 Ntot 0.00020*** 0.909 
 C/N<50 µm -0.03993**              -0.397 
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Via multiple linear regression analysis we further investigated whether (1) a 

combination of the N contents in the individual SOM fractions, (2) a combination of the 

total N or C contents and the whole soil C/N ratios, or (3) a combination of the N or C 

contents in the individual SOM fractions and their C/N ratios could explain a larger 

proportion of the variability of gross and net N transformation rates, than the total SOM 

contents or the SOM contents in the individual fractions. As the C contents were highly 

correlated with the N contents in the whole soil and the individual SOM fractions (Pearson 

correlation coefficients ranging from 0.91 to 1), the C and N contents were only entered 

separately for the multiple linear regression analysis. 

For all rates considered, no combination of the N contents in the individual SOM 

fractions could be calculated that accounted for a larger proportion of the variability of 

these rates than the total C or N contents or any single SOM fraction. For the gross N 

mineralization rates, multiple linear regression analysis resulted in one significant model 

(Table 4.9, model 3), which included the N contents and C/N ratios of the 50-150 µm and 

<50 µm fractions. This model explained 97% of the variability of the gross N 

mineralization rates. For the gross nitrification rates, one significant model was calculated 

(Table 4.9, model 6). In model 6, the whole soil C/N ratio explained only an additional 4% 

of the variability of gross nitrification rates compared to the linear regression model with 

the total C contents only (Table 4.9, model 4). Multiple linear regression analysis of the 

gross N immobilization rates (difference) resulted in the linear regression models 

including total C and N contents, the C and N contents in the HF 150-2000 µm fraction 

and the N content in the <50 µm fraction, as discussed before (Table 4.9, models 7-11). 

For the net N mineralization rates two significant models were calculated (Table 4.9, 

models 14 and 15). Model 14 included a negative correlation with the total C/N ratios, and 

explained 83% of the variability of the net mineralization rates. 84% of the variability of 

the net mineralization rates was accounted for by model 15, which included a negative 

correlation with the C/N ratio of the <50 µm fraction. 
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In order to investigate whether the long-term potential net N mineralization rates 

were related to the short-term potential gross N mineralization rates, the long-term net N 

mineralization rates in the six soil layers investigated were plotted versus the 

corresponding gross N mineralization rates in Figure 4.1. The relation between net and 

gross N mineralization rates could be significantly fitted by a logarithmic equation        

(net m = 0.24Ln(gross m) + 0.23, R2=0.69, p<0.05). When the outlier (corresponding with 

the mineralization rates in the 10-20 cm layer of the D50 soil) was removed from the 

dataset, a much better fit was obtained (net m = 0.25Ln(gross m) + 0.27, R2=0.92, 

p<0.01). 

 

y = 0.24Ln(x) + 0.23

R2 = 0.69

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

Gross N mineralization rate
(mg N kg-1 soil d-1)

N
et

 N
 m

in
er

al
iz

at
io

n 
ra

te

(m
g 

N
 k

g-1
 s

oi
l d

-1
)

 

Fig. 4.1. Plot of the net N mineralization rates versus the gross N mineralization rates 

observed in the 0-10 cm and 10-20 cm layers of the D6, D14 and D50 soil, and fit of the 

relation by a logarithmic regression equation 
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4.4. Discussion 
 

4.4.1. Total organic C and N contents  

 

Accumulation of SOM when long-term arable land is converted to permanent 

grassland can be attributed to greater organic matter inputs under grassland through dead 

plant material (mainly roots), combined with a slower rate of soil organic matter 

decomposition due to absence of annual cultivation (Whitehead, 1995a; Haynes and 

Beare, 1996). Taking account of the bulk densities measured in the soils (Table 4.1), the 

total amounts of C and N stored in the 0-10 cm layer of the D6, D14 and D50 soil were 

27, 28, and 54 t C ha-1, and 2.3, 2.6 and 4.4 t N ha-1, respectively (Least significant 

difference at P<0.05 = 8 t C ha-1 and 0.6 t N ha-1, respectively). Thus, the difference in C 

and N storage in the 0-10 cm layer of the D6 and D14 soils was not yet significant.  

In the assumption that the initial SOM contents, before conversion to permanent 

grassland, and the average annual input of organic material in the three soils were 

comparable, these results reflect that SOM accumulation after conversion of arable land to 

permanent grassland is a slow process, which tends to be detectable in the total C and N 

contents only in the long-term after conversion (D50 soil). In the 10-20 cm layer, the total 

amounts of C and N stored were respectively 18, 15 and 29 t C ha-1, and 1.5, 1.3 and 2.0    

t N ha-1 (Least significant difference at P<0.05 = 3 t C ha-1 and 0.3 t N ha-1, respectively). 

The smaller increase in C and N storage in the 10-20 cm layer in relation to the 0-10 cm 

layer reflects that in temperate grassland systems, SOM accumulation largely tends to 

occur in the surface layer (Loiseau and Soussana, 1999).  
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4.4.2. C and N contents in the size and density fractions of soil organic 

matter  

 

The contribution of the macro-organic matter fractions to the total organic C and N 

contents in the 0-10 cm layers ranged from 0.3 to 2.5% for the LF 150-2000 µm fraction, 

from 3.9 to 10.8% for the IF 150-2000 µm fraction and from 7.0 to 19.1% for the HF 150-

2000 µm fraction (Tables 4.2 and 4.3). These values correspond well with the results of 

Hassink (1995), who reported ranges of 0.5 to 2.3% for the LF 150-2000 µm fraction, 1.3 

to 8.4% for the IF 150-2000 µm fraction and 5.8 to 23.1% for the HF 150-2000 µm 

fraction from the 0-10 cm layer of grassland soils (> 8 years old) with a loamy texture. 

However, the contributions of the macro-organic matter to the total organic N content in 

this study were considerably larger than the values reported by Warren and Whitehead 

(1988), who found that 0.55 to 6.3% of total organic N was stored in the SOM fraction 

>200 µm in the 0-15 cm layer of grassland soils (> 20 years old). This difference may be 

partially explained by the smaller sampling depth (0-10 cm depth) and minimal particle 

size of the macro-organic matter (>150 µm) which were considered in our study.  

In the 10-20 cm layer, the contribution to the total organic C and N contents of the 

LF 150-2000 µm fraction, which ranged from 0.4 to 1.1%, was generally slightly smaller 

than in the 0-10 cm layer. The contributions of the IF and HF 150-2000 µm fractions, 

however, which respectively ranged from 0.8 to 2.6% and from 4.5 to 8.8%, were 

considerably smaller than in the 0-10 cm layer and this was also observed by Hassink 

(1995).  

The C/N ratios observed in the LF, IF and HF 150-2000 µm fractions from the     

0-10 cm layers were generally slightly smaller than the values reported by Hassink (1995) 

(20, 18 and 14, respectively), Meijboom et al. (1995) (18-24, 15-21 and 13-16, 

respectively) and Warren and Whitehead (1988) (16.4-27.3 for the macro-organic matter 
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fraction >200 µm). This may be explained by the fact that these studies considered the 

macro-organic matter fraction with a size up to 8 mm (Hassink, 1995; Meijboom et al., 

1995) or 6 mm (Warren and Whitehead; 1988), thus containing a larger amount of grass 

root material, which generally has a C/N ratio ranging from 25 to 45 (Whitehead, 1970). 

The decrease of the C/N ratios in the order LF>IF>HF reflects that the LF 150-

2000 µm fraction consisted mainly of partially decomposed plant residues, whereas the IF 

150-2000 µm and HF 150-2000 µm fractions consisted of more humified, organo-mineral 

complexed SOM (Meijboom et al., 1995). The decrease in C/N ratios from the macro-

organic matter fractions towards the <50 µm fraction which we observed (except in the 

10-20 cm layer of the D50 soil) is consistent with the findings of several other studies (e.g. 

Tiessen and Stewart, 1983; Catroux and Schnitzer, 1987; Christensen, 1992) and is 

indicative of an increasing degree of humification from the coarser to the finer particle-

size fractions of SOM. 

In the 0-10 cm layer, total C and N contents and the amounts of C and N stored in 

the HF 150-2000 µm, 50-150 µm and <50 µm fractions tended to increase in the order 

D6<D14<D50, whereas this trend was not observed in the LF 150-2000 µm and IF 150-

2000 µm fractions. Though there was no significant (P<0.05) difference detectable yet 

between total C and N contents nor C and N contents in the 50-150 µm and <50 µm 

fraction in the D6 and D14 soil, C and N contents in the HF 150-2000 µm fraction were 

already significantly larger (about 2 times) in the D14 soil. This indicates that in the short-

term after conversion of arable land to permanent grassland, SOM derived from dead plant 

material initially tends to accumulate in the HF 150-2000 µm fraction. This suggests that 

the HF 150-2000 µm fraction could serve as a good and relatively easily detectable 

indicator of early SOM accumulation, or early changes in SOM content in general, 

induced by the conversion of cultivation to permanent grassland. The fact that no SOM 

accumulation was observed in the LF or IF 150-2000 µm fractions shows that these two 
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fractions can be considered to be SOM pools with a very short turnover time, which is 

consistent with the conclusions of Römkens et al. (1999). These results also indicate that 

the transfer of C and N from the macro-organic matter fractions towards the more 

humified 50-150 µm and <50 µm SOM fractions is a slow process, and that SOM 

accumulation in the 50-150 µm and <50 µm fraction is only detectable in the long-term 

after conversion of arable land to permanent grassland. 

 

4.4.3. Gross N transformation rates and net N mineralization rates 

 

The gross N mineralization rates observed in the 0-10 cm layer in our study 

(ranging from 0.89 to 3.30 mg N kg-1 soil d-1) were comparable with the rates reported by 

Jamieson et al. (1999) (0.36 to 2.36 mg N kg-1 soil d-1) and Murphy et al. (1999) (1.3 to 

3.3 mg N kg-1 soil d-1), but lower than the rates reported by Davidson et al. (1990) and 

Corre et al. (2002) (4.9 to 8.2 mg N kg-1 soil d-1). The gross nitrification rates (ranging 

from 1.37 to 4.20 mg N kg-1 soil d-1 in the 0-10 cm layer) were comparable with the range 

observed by Watson et al. (2000) (1.89 to 3.71 mg N kg-1 soil d-1), but higher than the 

rates observed by Davidson et al. (1990) (0.59 to 0.81 mg N kg-1 soil d-1) and Corre et al. 

(2002) (0.3 to 2.8 mg N kg-1 soil d-1). The net N mineralization rates in the 0-10 cm layer 

of the investigated grassland soils (0.32-0.58 mg N kg-1 soil d-1) were in the same range as 

reported by Hassink (1994) (0.38-0.89 mg N kg-1 soil d-1) for ungrazed grassland soils 

with comparable SOM contents.  

When the gross N transformation rates in soils are estimated by means of 15N 

isotope dilution experiments, the gross NH4
+ consumption rates (NH4

+ immobilization and 

nitrification) and gross NO3
- consumption rates (NO3

- immobilization) may be stimulated 

(priming effect) and thus overestimated, as the substrates for these processes (NH4
+ and 

NO3
-, respectively) are added to the soils (Davidson et al., 1991). Therefore, the calculated 

gross NH4
+ and NO3

- consumption rates may not reflect the N transformation processes as 



Chapter 4 
_______________________________________________________________________________ 

 98 

they occur in the field, but rather represent the potential NH4
+ immobilization, NO3

- 

immobilization and nitrification activity in these soils (Watson et al., 2000). As for the 

calculation of the gross N mineralization rates only the product pool of this process 

(NH4
+), and not the substrate pool is added in the 15N-isotope dilution experiments, the 

thus obtained gross N mineralization rates can be assumed to be unaffected by the 15NH4  

addition (Davidson et al., 1991). In this study, the gross NH4
+ consumption rates (d1-d7) 

were always larger than the gross mineralization rates (d1-d7), which obviously is not 

sustainable (Table 4.7). In the long-term incubation experiments, net mineralization was 

observed in all layers investigated. In the 15N-isotope dilution experiments, however, net 

mineralization was only observed in the D14 soil and the 0-10 cm layer of the D50 soil, 

whereas in the other layers net immobilization occurred. The total gross N immobilization 

rates (15N dilution) (sum of the NH4
+ and NO3

- immobilization rates) in the D6, D14 and 

D50 soils ranged from 2.74, 1.54 to 3.41 mg N kg-1 soil d-1 in the 0-10 cm layer, and from 

1.78, 0.90 to 4.56 mg N kg-1 soil d-1 in the 10-20 cm layer (Table 4.7). The gross N 

immobilization rates (15N dilution) were thus 1.3 to 5 times larger than the gross N 

immobilization rates (difference), which is in contrast with the results of Hart et al. (1994), 

who found a very close agreement between the two methods for calculating gross N 

immobilization in a forest soil. These observations may suggest that NH4
+ and NO3

- 

consumption were stimulated and thus overestimated in our 15N-isotope dilution 

experiments. As the gross N mineralization rates do not tend to be influenced by 15N-

addition in the isotope dilution experiments, we assume that the gross N immobilization 

rates (difference) are more representative for the gross N immobilization rates as they 

occur in the field than the gross N immobilization rates (15N dilution).  
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4.4.4. Relations between gross N transformation rates, net N 

mineralization rates and SOM contents 

 

The very strong correlation, which was observed between the gross N 

mineralization rates and the total N contents (Table 4.8) reflects that gross N 

mineralization is largely determined (93%) by the total N availability. Multiple linear 

regression analysis showed that up to 97% of the variability of the gross N mineralization 

rates could be accounted for by the N contents in the 50-150 µm and <50 µm fractions, 

together with their C/N ratios (Table 4.9, model 3). The standardized regression 

coefficient for the N<50µm fraction was approximately 1.5 times larger than for the         

N50-150µm  fraction, which indicates a larger relative importance of the N<50µm fraction in 

the regression model (Table 4.9, model 3). Monaghan and Barraclough (1997) found that 

the contribution of macro-organic matter N (> 200 µm, d < 1 g cm-3) to gross N 

mineralization in grassland soils was relatively small (only 2.3 to 3.4%) and they 

suggested that most of the N mineralized in grassland soils is derived from SOM 

associated with mineral particles, which is in accordance with our results. 

Considering the N contents in the individual SOM fractions, the net N 

mineralization rates in our study were strongly correlated with the IF 150-2000 µm 

fraction and not significantly correlated with the LF 150-2000 µm fraction (Table 4.8). 

This is in contrast with the results of Hassink (1995) who found that the LF 150-2000 µm 

fraction showed the strongest correlation among the macro-organic matter fractions with 

the net N mineralization rates in the top 25 cm of grassland soils. The net N mineralization 

rates showed a much weaker correlation with the total N contents than the gross N 

mineralization rates (Table 4.8). This reflects that net N mineralization results from the 

balance between gross mineralization and immobilization, which is also controlled by 

other factors than total N availability, like C content (Table 4.9, models 7 and 9) or C/N 

ratio of the SOM (Table 4.9, models 14 and 15). Several studies suggest that N 
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immobilization and the balance between mineralization and immobilization is influenced 

by the available C content (Woodmansee and Duncan, 1980; Hart et al., 1993; Whitehead, 

1995a; Barret and Burke, 2000) and the C/N ratio of the SOM (van Veen et al., 1984; 

Whitehead, 1995a; Janssen, 1996). In our study, the gross N immobilization rates 

(difference) showed a strong, positive correlation with the total C contents and especially 

with the C contents in the HF 150-2000 µm fraction. This is in accordance with the results 

of Barret and Burke (2000), who also found a significant positive, but weaker correlation 

(R2=0.58) between the gross N immobilization rates and total C contents in five grassland 

soils.  

The relation between net N mineralization and gross N mineralization rates could 

be well described by means of a logarithmic equation (Fig. 4.1). As net N mineralization 

equals gross N mineralization minus gross N immobilization (difference), this logarithmic 

relationship indicates that the ratio of net to gross N mineralization (or the ratio of gross 

immobilization (difference) to gross mineralization) tended to decrease with increasing 

gross N mineralization rates in the investigated grassland soils. The ratio of the net to 

gross mineralization rates ranged from 0.36, 0.23 to 0.18 in the 0-10 cm layers, and from 

0.20, 0.17 to 0.05 in the 10-20 cm layers of the D6, D14 and D50 soils, respectively. 

These results shows that the ratio of gross immobilization to gross mineralization tended 

to increase, with increasing SOM contents in both layers of the investigated grasslands. 

This trend has also been observed in forest soils by Hart et al. (1994) and reflects that the 

microbial demand for N (immobilization) tended to increase with increasing C availability 

and with increasing age of the investigated grassland soils. 

In our study no significant correlations were found between the gross N 

immobilization rates and the whole soil C/N ratios (Table 4.8). For the net N 

mineralization rates, however, we did find significant, negative correlations with the 

whole soil C/N ratios and the C/N ratios of the <50 µm fraction via multiple linear 



Chapter 4 
_______________________________________________________________________________________ 

 101 

regression analysis (Table 4.9, models 14 and 15). Whole soil C/N ratios and the C/N 

ratios of the <50 µm fraction accounted for respectively 14 and 15% of the variability of 

the net N mineralization rates, in addition to the variability explained by the total N 

contents. In this way, the very small net N mineralization rate which was observed in the 

10-20 cm layer of the D50 soil in relation to the D6 and D14 soils, may be partially 

explained by the relatively high C/N ratio in the <50 µm fraction in the D50 soil (Table 

4.4).
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4.5. Conclusions 
 

The total C and N contents mainly tended to increase in the 0-10 cm layer with increasing 

age of the investigated grassland soils. Significant differences in total SOM storage were, 

however, only detectable in the long-term (D50 soil) after conversion of arable land to 

permanent grassland. In the assumption that the initial SOM contents, before conversion 

to permanent grassland, and the average annual input of organic material in the soils were 

comparable, these results indicate that stabilization of SOM and thus sequestration of C 

upon conversion of arable land to grassland is a slow process. The largest relative increase 

in C and N contents occurred in the HF 150-2000 µm fraction, followed by the 50-150 µm 

and <50 µm fractions. Our results suggest that the HF 150-2000 µm fraction could serve 

as a good indicator of early SOM accumulation, induced by the conversion of cultivation 

to permanent grassland. We didn't observe any clear trends in C and N contents in the LF 

150-2000 µm fraction, and the C and N contents in the LF 150-2000 µm fraction were not 

significantly correlated with the gross N transformation rates nor with the net N 

mineralization rates in the investigated grassland soils. Therefore we suggest that the LF 

150-2000 µm fraction might be considered together with the IF 150-2000 µm fraction in 

future studies, as the combined LF+IF 150-2000 µm fraction (density <1.37 g cm-3). 

The gross N mineralization, nitrification, and immobilization rates (difference) in 

the investigated grassland soils showed strong, positive correlations with the total C and N 

contents. Our results indicate that gross N mineralization is largely determined by the total 

N availability, whereas net N mineralization is also controlled by other factors (C content 

and C/N ratio of the SOM), as it results from the balance between gross mineralization 

and immobilization. The relation between long-term net mineralization rates and gross 

mineralization rates could be fitted by means of a logarithmic equation, which reflects that 
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the ratio of gross immobilization (difference) to gross mineralization tended to increase 

with increasing SOM contents. Since microbial demand for N (immobilization) tended to 

increase with increasing SOM content in the investigated grassland soils, this indicates 

that potential N retention in soils through immobilization tends to be limited by the 

available C content. 
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5. Estimation of gross N transformation rates and potential 
N retention after addition of 15N-labelled NH4NO3 to 
permanent grassland soils 

 

 

5.1. Introduction 
 

The flux of N through mineralization-immobilization turnover (MIT) in grassland 

soils is a major determinant for the N supply for plant uptake and for N loss processes 

(Ledgard et al., 1998). The balance between N mineralization and immobilization is at an 

undefined equilibrium which tends to vary with time and soil properties (Barraclough and 

Jarvis, 1989). Several field studies with 15N-labelled mineral fertilizer have shown that 

significant amounts of labelled fertilizer can be retained in the soil organic N pool, as a 

result of immobilization by the microbial biomass (Bristow et al., 1987; Hart et al., 1993; 

Whitehead, 1995b). The extent to which inorganic N is immobilized is related to the 

supply of readily available C, as this regulates the microbial activity (Okereke and Meints, 

1985). Some of the immobilized fertilizer N in the soil organic matter (SOM) is 

subsequently remineralized, though this is believed to occur relatively slowly (Whitehead, 

1995b). 

The gross N transformation rates (mineralization, nitrification, NH4
+ and NO3

- 

immobilization) which occur in soils can only be estimated by application of the 15N 

isotope pool dilution methodology in single or paired 15N-labelling experiments 

(Barraclough, 1991). In paired 15N-labelling experiments, 15N-labelled NH4
+ and 

unlabelled NO3
- is added to the soil in one experiment, while unlabelled NH4

+ and        

15N-labelled NO3
- is added in a parallel experiment (Barraclough, 1991). The 15N isotope 

pool dilution methodology is based on the principle that after enrichment of an N pool 

(NH4
+ or NO3

-) with 15N, an influx of non-enriched N into this pool, via mineralization or 
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nitrification, lowers the 15N-abundance (dilution) whereas an efflux, via NH4
+ 

immobilization and nitrification or via NO3
- immobilization and denitrification, does not. 

Thus, the decrease in 15N abundance of the enriched pool is a measure for the gross 

production of the enriched N compound. In addition to this approach, the increase in    

15N-abundance of other, non-enriched pools can be used to quantify the gross 

transformation rates of these pools (Wessel and Tietema, 1992). Because several N fluxes 

can simultaneously dilute or enrich the 15N abundance of a pool, these fluxes can only be 

accurately estimated using numerical techniques (Mary et al., 1998). 

The aim of this study was to investigate the evolution of the gross N 

transformation rates and the potential N retention after mineral fertilizer application in 

three grassland soils of varying texture. Differently 15N-labelled NH4NO3 (at a rate of 100 

mg N kg-1 soil) was added to the soils in paired experiments. These soils were incubated 

during 30 days in the laboratory. Size and 15N-enrichment of the NH4
+, NO3

-, and soil 

organic N pools were measured at 0, 1, 3, 7, 14 and 30 days after NH4NO3-application. 

The C mineralization rates were also monitored during the incubation experiments. The 

experimental data were simulated with the numerical simulation model FLUAZ (Mary et 

al., 1998) in order to estimate the gross N transformation rates. 

 

5.2. Materials and methods 
 

5.2.1. Site description and soil sampling 

 

Soil samples were collected in September 2002 from three permanent grassland 

soils of varying texture at three different locations in Belgium. The first grassland soil was 

a wet, poorly drained Plagganthrept with a loamy sand texture, located at Wechelderzande 

(4°46’E, 51°15’N). The second grassland soil was a moderately drained Glossic Hapludalf 

with a loamy texture, located at Melle (3°47’E, 50°59’N). The third grassland soil was a 
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moderately drained Oxyaquic Udifluvent with a clay loam texture, located at Watervliet 

(3°35’E, 51°17’N). The sand, silt and clay content of the soil samples were determined by 

particle-size analysis following the pipette method of Robinson-Köhn (De Leenheer, 

1966; Gee and Bauder, 1986). The soils were classified according to USDA (1999). The 

general soil characteristics of the 0-10 cm layer of the three soils are shown in Table 5.1. 

The three soils had comparable C/N ratios, ranging from 11.0 (Watervliet) to 11.3 

(Wechelderzande). From each grassland soil, 20 replicate soil cores covering the whole 

area of the investigated grassland were taken from the 0-10 cm layer with a steel auger 

(3.5 cm diameter). The soil cores were bulked and stored in plastic bags at 4°C until the 

start of the 15N-isotope dilution experiments. 

 

Table 5.1. General soil characteristics of the 0-10 cm layer in the Wechelderzande, Melle 

and Watervliet grassland soils 

             
Location C content N content pH-H2O Silt content Clay content Bulk density 

  (%) (%) (-) (%) (%) (g cm-3) 

       
Wechelderzande 3.03 0.268 5.9 8.2 5.9 1.19 

Melle 2.88 0.261 6.3 42.4 9.7 1.32 
Watervliet 5.41 0.493 7.2 45.3 26.9 1.11 

              
       
 

5.2.2. Incubations  

 

For each of the three soils, a fully-mirrored 15N-isotope dilution experiment has 

been conducted in the laboratory, in order to study the gross N transformation rates during 

30 days after addition of differently 15N-labelled NH4NO3. Before the start of the 15N 

isotope dilution experiments, the fresh soil samples were homogenized and sieved on a 

3.15 mm sieve to remove root material and shortly air-dried to obtain the gravimetric 

water content corresponding with a water filled pore space of 50% at the bulk density 
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measured in the field (Table 5.1), minus the amount of 15N-labelling solution which would 

be added to the soils at the beginning of the experiment (corresponding with 6% 

gravimetric moisture content). The soils were pre-incubated during 7 days at 15°C. After 

the pre-incubation period, half the amount of the soil was labelled with a 15N-enriched 

(10.23 atom%) 15NH4
14NO3-solution, equivalent to an addition of 50 mg NH4

+-N and 50 

mg NO3
--N kg-1 soil. The other half of the soil was labelled with a 15N-enriched (10.4 

atom%) 14NH4
15NO3-solution at the same dosis. After label addition, the soils were 

thoroughly mixed in order to ensure a homogeneous label distribution. From both the 

15NH4
14NO3- and 14NH4

15NO3-labelled bulk samples of each of the three grasslands soils, 

15 disposable jars were filled with an amount of soil equivalent to 50 g oven-dry weight. 

The bulk densities of the soil samples were adjusted to the values measured in the field 

(resulting in a water filled pore space of 50%), covered with pin-holed parafilm to enable 

gas exchange and incubated at 15°C. After 1, 3, 7, 14 and 30 days of incubation, 3 

replicate 15NH4
14NO3- and 14NH4

15NO3-labelled incubations were removed and extracted 

with 250 ml of 2M KCl (60 min. shaking). After shaking, the soil suspensions were 

centrifuged (Heraeus Sepatech, Labofuge GL) at 3000 rev. min.-1 during 5 min. and the 

clear supernatans was immediately frozen for later NH4
+-, NO3

-- and 15N-analysis. In order 

to remove any residual inorganic 15N from the soil samples, the extraction was repeated 

twice by shaking during 30 min. with 150 ml 2M KCl followed by centrifugation. The 

extracted soil samples were then quickly dried at 50°C during 48 hours and ground with a 

planetary ball mill (PM400, Retsch, Germany) for 15N-analysis of the organic N, in order 

to study the 15N-immobilization. This extraction procedure was also carried out just before 

and 15 min. after the 15NH4
14NO3- and 14NH4

15NO3-label additions (initial and day 0 

extraction). 

From the 15NH4
14NO3-labelled bulk samples three additional disposable jars per 

grassland soil were filled with an amount of soil equivalent to 150 g oven-dry weight, in 

order to follow the evolution of the CO2-production during the incubation. The bulk 
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densities of these soil samples were also adjusted in order to obtain a  water filled pore 

space of 50% and covered with pin-holed parafilm. These samples were placed in sealed 

1200 cm3 glass jars fitted with a rubber septum for gas sampling and incubated at 15°C for 

30 days. The evolution of the CO2-production in each jar was measured by analyzing a 1 

cm3 headspace sample for CO2 using a gas chromatograph (GC-14B, Shimadzu, Japan) 

with an ECD detector and a packed column (PORAPACK Q, mesh size 80/100) after 1, 3, 

7, 14, 23 and 30 days of incubation. Following each sampling event, the glass jars were 

opened and parafilm was removed from the samples during 15 min. to re-establish 

ambient conditions. 

 

5.2.3. Chemical analysis 

 

Analyses of the total C and N contents in the soil samples were performed using a 

CNS analyzer (Vario Max CNS, Elementar, Germany). The NH4
+- and NO3

--

concentrations in the KCl extracts were determined colorimetrically by means of a 

continuous flow analyzer (Skalar, The Netherlands). Isotope ratio analysis of the NH4
+- 

and NO3
--pool was performed after chemical conversion to N2O. NH4

+ was converted to 

N2O using NaOBr according to a protocol adapted from Hauck (1982) and Saghir et al. 

(1993). The samples with a NH4
+-concentration too low for conversion to N2O were 

spiked by an addition of 700 µl of an (NH4)2SO4-solution at natural abundance, with a 

concentration of 10.7 mmol N l-1, to 45 ml of the samples. NO3
- was converted to N2O 

according to Stevens and Laughlin (1994). Isotope ratio analysis of the produced N2O was 

carried out using an ANCA-TGII trace gas preparation unit (PDZ Europa, UK) coupled to 

a Continuous Flow Isotope Ratio Mass Spectrometer (20-20, PDZ Europa, UK). 15N-

analysis of the soil samples was performed using an ANCA-SL elemental analyzer 

coupled to a Continuous Flow Isotope Ratio Mass Spectrometer (20-20, PDZ Europa, 

UK). 



Chapter 5 
_______________________________________________________________________________ 

 112 

5.2.4. Calculation of the N fluxes 

 

The N fluxes during the incubation experiments were estimated numerically using 

the FLUAZ model developed by Mary et al. (1998). The eight N fluxes which can be 

taken into account in the FLUAZ model are (Fig. 5.1): mineralization (= ammonification, 

m), immobilization of NH4
+ (ia) and NO3

- (in), remineralization or release of previously 

immobilized N (r), humification (h), nitrification (n), volatilization (v) and denitrification 

(d). The calculations in this model are based on the isotopic dilution and isotopic 

enrichment principles (Monaghan and Barraclough, 1995). In order to use the model, 

measurements of the size and atom% 15N in excess of the NH4
+-, NO3

-- and total soil 

organic N pool from either a single or a paired labelling experiment are needed as input 

data. The biomass N pool which is simulated in the model is that part of the biomass 

which is actively growing and accounts for the immobilization and remineralization of 

added mineral N (Mary et al., 1998).  

 

 

Fig. 5.1. Compartment model of the N pools and fluxes considered in FLUAZ; m = 

mineralization (= ammonification), n = nitrification, v = volatilization, d = denitrification, 

ia = immobilization of NH4
+, in = immobilization of NO3

-, r = remineralization, h = 

humification 

NH3 N2O, N2

NO3
-NH4

+

Microbial
biomass

Humus

v d

ia inr

h

m n
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The FLUAZ model combines a numerical integration method (Runge-Kutta 

algorithm) for the differential equations, describing the N and 15N fluxes between the four 

N pools (NH4
+-N, NO3

--N, humus and biomass N; Fig. 5.1), with a non-linear fitting 

method (Haus-Marquardt algorithm) for the calculation (optimization) of the different N 

fluxes in the model. The optimal fit of the experimental data was calculated by minimizing 

the MWE (mean weighted error) criterion, which is a function of the difference between 

simulated and measured variables and the experimental variance of the measured 

variables. In this way, the measured variables with the largest experimental variability 

have the lowest weight in the optimization procedure (Mary et al., 1998). Further details 

on the FLUAZ model can be found in Mary et al. (1998).  

In this study, the FLUAZ model was used to estimate the gross N mineralization 

rate, the gross nitrification rate, the gross NH4
+ and NO3

- immobilization rate, the 

remineralization rate and denitrification rate within the five time intervals (day 0-1, 1-3, 3-

7, 7-14 and 14-30) considered during the incubation of the three soils. The humification 

and volatilization rates were assumed to be zero. The gross N mineralization, 

immobilization, remineralization and denitrification rates were allowed to follow zero 

order kinetics, whereas the gross nitrification rate was allowed to follow first order 

kinetics, in accordance with Mary et al. (1998). 

 

 

 

 

 

 

 

 



Chapter 5 
_______________________________________________________________________________ 

 114 

5.3. Results  
 

5.3.1. Size and atom% 15N in excess of the NH4
+- and NO3

--pool  

 

The initial NH4
+-content in the loamy sand (Wechelderzande), loamy (Melle) and 

clay loam soil (Watervliet), just before addition of the labelled NH4NO3-solutions, was 

respectively 42.4, 1.6 and 1.5 mg N kg-1 soil. The initial NO3
--content in the three soils 

was respectively 28.6, 39.3 and 57.6 mg N kg-1 soil. This indicates that, during the pre-

incubation period, a considerable accumulation of NH4
+-N had occurred in the loamy sand 

soil, which was not the case in the loamy and clay loam soils. The loamy and clay loam 

soils, however, showed a relatively larger accumulation of NO3
--N than the loamy sand 

soil during the pre-incubation period. The evolution of the NH4
+- and NO3

--contents in the 

three soils during the incubation (between 15 min. (day 0) and 30 days after addition of 

the 15N-labelled NH4NO3-solutions) is shown in Fig. 5.2.  

In the loamy sand soil (Fig. 5.2 A), the NH4
+-content increased between day 0 

(96.9 mg N kg-1 soil) and day 3 (107.2 mg N kg-1 soil), followed by a linear decrease 

between day 3 and day 30 (10.6 mg N kg-1 soil). The NO3
--content showed a steady 

increase between day 0 (70.1 mg N kg-1 soil) and day 30 (177.3 mg N kg-1 soil). However, 

the mean net nitrification rate between day 0 and day 14 (5.2 mg N kg-1 soil d-1) was 2.5 

times larger than the mean net nitrification rate between day 14 and day 30 (2.1 mg N kg-1 

soil d-1). The total mineral N content showed a strong increase between day 0 and day 3 

(corresponding with a mean net mineralization rate of 9.3 mg N kg-1 soil d-1), followed by 

a smaller increase between day 3 and 14 (corresponding with a mean net mineralization 

rate of 1.3 mg N kg-1 soil d-1), and a decrease between day 14 and 30 (corresponding with 

a mean net immobilization rate of -1.4 mg N kg-1 soil d-1).  
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The NH4
+-content in the loamy soil (Fig. 5.2 B) decreased linearly between day 0 

(46.5 mg N kg-1 soil) and day 14 (3.9 mg N kg-1 soil), and remained nearly constant 

afterwards. The mean net nitrification rate between day 0 and 14 (3.6 mg N kg-1 soil d-1) 

was 3.4 times larger than the mean net nitrification rate between day 14 and 30 (1.1 mg N 

kg-1 soil d-1). In contrast with the loamy sand soil, the total mineral N content showed a 

continuous increase during the whole incubation period, corresponding with a mean net 

mineralization rate of 0.8 mg N kg-1 soil d-1.  

In the clay loam soil (Fig. 5.2 C), the NH4
+-content showed a very fast decrease 

during the first 3 days after the NH4NO3-addition (from 47.3 to 1.8 mg N kg-1 soil) and 

remained nearly constant after day 3. The fast decrease of the NH4
+-content coincided 

with a very fast increase of the NO3
--content between day 0 (106.6 mg N kg-1 soil) and 

day 3 (186.2 mg N kg-1 soil). The NO3
--content showed a much smaller increase between 

day 3 and day 14, and started to decrease again after day 14. Like in the two other soils, 

the mean net nitrification rates decreased in function of time and ranged from 27.4 mg N 

kg-1 soil d-1 (day 0-day 3), 2.8 mg N kg-1 soil d-1 (day 3-day 14) to -0.97 mg N kg-1 soil d-1 

(day 14-day 30). During the first day after the NH4NO3-addition, the total mineral N 

contents decreased slightly, followed by a strong increase between day 1 and 3 

(corresponding with a mean net mineralization rate of 32.4 mg N kg-1 soil d-1). As the 

NH4
+-contents remained nearly constant after day 3, the mean net N mineralization rates 

equalled the mean net nitrification rates between day 3 and 30. 

The evolution of the atom% 15N in excess of the NH4
+-pool and the NO3

--pool in 

the three soils between 15 min. (day 0) and 30 days after addition of the 15NH4
14NO3 and 

14NH4
15NO3-solutions are shown in Fig. 5.3 and 5.4, respectively.  
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Clay loam soil
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Fig. 5.2. Evolution of the NH4
+- and NO3

--contents (indicated by triangles and squares, 

respectively) in the loamy sand (A), loamy (B) and clay loam (C) soil between 15 min. (day 0) and 

30 days after NH4NO3 addition; vertical bars represent two standard deviations; the evolution of 

the simulated values by the FLUAZ-model is indicated by the continuous lines   
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Loamy sand soil
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Clay loam soil
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Fig. 5.3. Evolution of the atom% 15N in excess of the NH4

+-pool in the loamy sand (A), loamy (B) 

and clay loam soil (C) between 15 min. (day 0) and 30 days after addition of 15NH4
14NO3 and 

14NH4
15NO3 (indicated by full and empty bullets, respectively); vertical bars represent two standard 

deviations; the evolution of the simulated values by the FLUAZ-model is indicated by the 

continuous line 
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Loamy sand soil
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Clay loam soil
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Fig. 5.4. Evolution of the atom% 15N in excess of the NO3

--pool in the loamy sand (A), loamy (B) 

and clay loam soil (C) between 15 min. (day 0) and 30 days after addition of 15NH4
14NO3 and 

14NH4
15NO3 (indicated by full and empty bullets, respectively); vertical bars represent two standard 

deviations; the evolution of the simulated values by the FLUAZ-model is indicated by the 

continuous lines        
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Loamy sand soil
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Clay loam soil

0.00

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30

Time (d)

15
N

 in
 e

xc
es

s 
o

rg
an

ic
 +

  f
ix

ed
 N

 
(a

to
m

%
)

C

 

Fig. 5.5. Evolution of the atom% 15N in excess of the soil organic and fixed N pool in the loamy 

sand (A), loamy (B) and clay loam soil (C) between 15 min. (day 0) and 30 days after addition of 
15NH4

14NO3 and 14NH4
15NO3 (indicated by full and empty bullets, respectively); vertical bars 

represent two standard deviations; the evolution of the simulated values by the FLUAZ-model is 

indicated by the continuous lines              
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15NH4
14NO3-addition 

 
In the loamy sand and loamy soil, the atom% 15N in excess of the NH4

+-pool after 

15NH4
14NO3-addition (Fig. 5.3 A and B) showed a gradual decrease during the whole 

incubation period from 6.3 (day 0) to 0.2 atom% in excess (day 30) and from 10.0 (day 0) 

to 0.6 atom% in excess (day 30), respectively. This indicates that there was a continuous 

input of NH4
+-N at natural abundance into the 15N-labelled NH4

+-pool, resulting from 

mineralization (ammonification) of soil organic N. The lower initial atom% 15N in excess 

of the NH4
+-pool in the loamy sand soil in relation to the loamy soil can be attributed to 

the larger initial NH4
+-content in the loamy sand soil. The atom% 15N in excess of the 

NO3
--pool in the loamy sand and loamy soil (Fig. 5.4 A and B)  showed a logarithmic 

increase as the incubation proceeded, which indicates that 15N-enriched NO3
--N, resulting 

from nitrification, continuously entered the NO3
--pool.  

In the clay loam soil, the rapid decrease of the NH4
+-content between day 0 and 

day 3 (Fig. 3.2 C) coincided with a very fast decrease of the atom% 15N in excess of the 

NH4
+-pool from 8.4 (day 0) to 0.45 atom% in excess (day 3), followed by a small but 

continuous decrease down to 0.25 atom% in excess at day 30 (Fig. 5.3 C). During the first 

day after the 15NH4
14NO3-addition, the atom% 15N in excess of the NO3

--pool (Fig. 5.4 C) 

increased fastly from 0.08 (day 0) to 2.1 atom% in excess (day 1), followed by a slower 

increase up to 2.3 atom% in excess at day 3. The observation that the atom% 15N in excess 

of the NO3
--pool at day 0 (15 min. after addition of the 15NH4

14NO3-solution) was already 

larger than zero, and the very fast increase of the atom% 15N in excess between day 0 and 

1 indicate that the added 15N-labelled NH4
+-N was very rapidly converted to NO3

--N 

through nitrification. After day 3, the atom% 15N in excess of the NO3
--pool decreased 

linearly down to 1.9 atom% in excess at day 30. This 15N-dilution of the NO3
--pool after 

day 3 indicates that from then on there was a continuous input of NO3
--N with a lower 15N 

content through nitrification.  
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14NH4
15NO3-addition 

 
In the loamy sand and loamy soil, the atom% 15N in excess of the NO3

--pool (Fig. 

5.4 A and B) showed a gradual decrease during the whole incubation period from 6.1 (day 

0) to 2.9 atom% in excess (day 30) and from 5.4 (day 0) to 2.9 atom% in excess (day 30), 

respectively. In the clay loam soil, the atom% 15N in excess of the NO3
--pool (Fig. 5.4 C) 

decreased strongly between day 0 and 3 from 4.5 (day 0) to 2.8 atom% in excess (day 3), 

followed by a very slow decrease down to 2.3 atom% in excess (day 30). The observed 

dilution of the 15N-labelled NO3
--pools can be attributed to nitrification of NH4

+-N at 

natural abundance. In the loamy and the clay loam soil, an increase in the atom% 15N in 

excess of the NH4
+-pool was observed between day 14 (0.03 atom% in excess) and 30 

(0.15 atom% in excess), and between day 7 (0.01 atom% in excess) and 30 (0.22 atom% 

in excess), respectively (Fig. 5.3 B and C). However, this increase was only significant 

(p<0.05) in the clay loam soil. This 15N-enrichment in the NH4
+-pool when 14NH4

15NO3 

was applied could be explained by the remineralization of previously immobilized 15N, by 

a direct conversion of NO3
- to NH4

+ (via dissimilatory reduction) or by a combination of 

both processes occurring simultaneously in these soils. 

 

5.3.2. 15N-recovery in the soil organic and fixed N pool 

 

The atom% 15N in excess of the non-labelled loamy sand, loamy and clay loam 

soil was 0.0019, 0.0020 and 0.0026 atom%, respectively. The evolution of the atom% 15N 

in excess, expressed as the difference between the atom% 15N in excess of the labelled and 

non-labelled soils, and the amount of 15N recovered in the soil organic and fixed N pool in 

the three soils between 15 min. (day 0) and 30 days after addition of the 15NH4
14NO3 and 

14NH4
15NO3-solutions are shown in Fig. 5.5 and Table 5.2, respectively.  
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Table 5.2. Amounts of 15N recovered (expressed in µg 15N kg-1 soil) in the soil organic 

and fixed N pool at 15 min. (day 0), 1, 3, 7, 14 and 30 days after addition of 15NH4
14NO3 

and 14NH4
15NO3 in the loamy sand, loamy and clay loam soil 

                

Time 15NH4
14NO3-addition  14NH4

15NO3-addition 

(d)   Soil      Soil   

  Loamy sand Loamy Clay loam   Loamy sand Loamy Clay loam 
        
0 84 357 353  50 47 27 
1 215 508 602  82 94 58 
3 300 543 649  86 106 61 
7 429 866 617  87 135 63 
14 552 1059 701  82 191 130 
30 590 1043 664  106 206 131 

                
 

 

15NH4
14NO3-addition 

 
The atom% 15N in excess of the soil organic and fixed N pool in the loamy sand 

and the loamy soil showed a significant increase from day 0 till day 14 and remained 

nearly constant during the rest of the incubation period (Fig. 5.5 A and B). In the clay 

loam soil however, the atom% 15N in excess only significantly increased between day 0 

and day 1, and remained nearly constant during the rest of the incubation period (Fig. 5.5 

C). The amount of 15NH4
+-N recovered in the soil organic and fixed N pool immediately 

(15 min.) after 15NH4
14NO3-addition (Table 5.2) was smallest in the loamy sand soil (84 

µg 15N kg-1 soil) and approximately 4 times larger in the clay loam (353 µg 15N kg-1 soil) 

and loamy soil (357 µg 15N kg-1 soil). This represented 1.7 and 7.2% of the total amount of 

15NH4
+-N added in the loamy sand soil and the loamy and clay loam soils, respectively. 

This indicates that a rapid biotic or abiotic immobilization of the added NH4
+-N occurred 

immediately after label addition and that this rapid process was most pronounced in the 

loamy and the clay loam soils. The total amount of 15NH4
+-N recovered in the soil organic 

and fixed N pool at the end of the incubation was largest in the loamy soil (1043 µg 15N 
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kg-1 soil), followed by the clay loam (664 µg 15N kg-1 soil) and the loamy sand soil (590 

µg 15N kg-1 soil) (Table 5.2), which represented respectively 21, 13 and 12% of the total 

amount of 15NH4
+-N added. 

 

14NH4
15NO3-addition 

 
The amounts of 15NO3

--N recovered immediately after 14NH4
15NO3-addition 

ranged from 27 µg 15N kg-1 soil in the clay loam soil to approximately 50 µg 15N kg-1 soil 

in the loamy and loamy sand soil (Table 5.2). At the end of the incubation, the largest 

amount of 15NO3
--N was recovered in the loamy soil (206 µg 15N kg-1 soil), followed by 

the clay loam (131 µg 15N kg-1 soil) and the loamy sand soil (106 µg 15N kg-1 soil). These 

amounts corresponded with respectively 4.1, 2.6 and 2.1% of the total amount of 15NO3
--N 

added. The amounts of 15NO3
--N recovered 30 days after 15NH4

14NO3-addition were thus 

on average approximately 5 times larger than the amounts recovered 30 days after 

14NH4
15NO3-addition. 

 

5.3.3. C mineralization rates 

 

As C mineralization rates are a sensitive indicator of the microbial activity in soils, 

also the CO2-production was measured during the incubation experiments. The average C 

mineralization rates which were observed during the five time intervals considered are 

shown in Table 5.3. In the loamy sand and loamy soils, the observed C mineralization 

rates were largest during the first day of incubation, and tended to decrease gradually as 

the incubation proceeded. In the clay loam soil, the same trend was observed as in the two 

other soils, but the C mineralization rates remained relatively large during the first three 

days of the incubation.  
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Table 5.3. Average C mineralization rates (expressed in mg C kg-1 soil d-1) observed 

during the five time intervals considered in the loamy sand, loamy and clay loam soil 

(average values of three replicate measurements, standard deviations in brackets) 

                

Interval  Soil 

    Loamy sand Loamy Clay loam 
        

d0-d1  13.1 (0.8) 9.9(0.1) 21.6(2.0) 

d1-d3  6.7 (0.5) 6.9(0.8) 23.9(0.7) 

d3-d7  6.0 (0.7) 5.8(0.4) 11.6(0.4) 

d7-d14  4.2 (0.6) 4.4(0.5) 5.6(0.3) 

d14-d30  2.9 (0.4) 5.1(0.7) 5.0(0.5) 
                
 

 

5.3.4. Simulation of the data by FLUAZ 

 

The simulated values of the NH4
+- and  NO3

--contents, the atom% 15N in excess of 

NH4
+ and  NO3

-, and the atom% 15N in excess of the soil organic and fixed N in the three 

soils are plotted versus time in Fig. 5.2, 5.3, 5.4 and 5.5, respectively. 

The best overall fit of the data by the FLUAZ-model, based on the MWE criterion, 

was obtained for the loamy soil (average MWE of 1.6), followed by the loamy sand soil 

(average MWE of 2.8) and the clay loam soil (average MWE of 4.6). The simulated 

values of the NH4
+- and  NO3

--contents (Fig. 5.2) and the atom% 15N in excess of the 

NH4
+- (Fig. 5.3) and  NO3

--pool (Fig. 5.4) were generally within or nearly within the 

variation of the measured values. However, in some cases the simulated values diverged 

from the measured values. A discrepancy between the simulated and measured NO3
--

contents (Fig. 5.2) was observed at day 30 in the loamy sand and loamy soil (19 mg N kg-1 

higher or 20 mg N kg-1 lower, respectively) and the simulated NO3
--contents at day 3 in 

the clay loam soil (56 mg N kg-1 lower). A discrepancy between simulated and observed 

values was also observed for the atom% 15N in excess values of the NH4
+- pool in the clay 
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loam soil, after addition of 14NH4
15NO3 (Fig. 5.3 C). The FLUAZ-model simulated an 

increase in the 15N-enrichment of the NH4
+- pool between day 7 and day 14, but the 

simulated atom% 15N in excess values on day 14 and 30 were respectively 1.7 and 2.7 

times smaller than the measured values.  

The atom% 15N in excess of the soil organic and fixed N pool was very well fitted 

for the whole duration of the experiment in the loamy sand soil (Fig. 5.5 A) and for the 

first 14 days of the experiment in the loamy soil (Fig. 5.5 B). In the loamy soil, the 

simulated atom% 15N in excess value of the soil organic and fixed N pool at day 30 was 

slightly smaller than the measured value after addition of 15NH4
14NO3. This suggests that 

the NH4
+ immobilization rate during the last time interval may have been underestimated 

by the FLUAZ-model. In the clay loam soil, the simulated atom% 15N in excess values of 

the soil organic and fixed N pool after addition of 15NH4
14NO3 were systematically lower 

than the measured values from day 3 till the end of the incubation period (Fig. 5.5 C). 

 

5.3.5. Gross N transformation rates calculated by FLUAZ 

 

The gross N mineralization (m), nitrification (n), NH4
+ immobilization (ia), NO3

- 

immobilization (in), remineralization (r) and denitrification (d) rates, which were 

calculated by FLUAZ for the five time intervals considered in the three soils are 

summarized in Table 5.4. In the loamy sand soil, the gross N mineralization rates during 

the day 0-day 1 and day 1-day 3 intervals were considerably larger than the average gross 

N mineralization rates in the time intervals between day 3 and day 30. In the loamy and 

clay loam soil the same trend was observed, but only for the gross mineralization rate in 

the day 0-day 1 interval in relation to the gross mineralization rates in the rest of the 

incubation period. This observation indicates that a flush in gross N mineralization 

(priming effect) may have occurred at the beginning of the incubation experiments after 

the addition of the labelling solution. The cumulative gross N mineralization at the end of 
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the incubation period was largest in the loamy sand soil (68 mg N kg-1 soil or 81 kg N    

ha-1), followed by the clay loam soil (58 mg N kg-1 soil or 64 kg N ha-1) and the loamy soil 

(21 mg N kg-1 soil or 28 kg N ha-1) (Fig. 5.6 A). These values of cumulative gross N 

mineralization correspond with 2.5%, 1.2% and 0.8% of the initial total N content in the 

loamy sand, clay loam and loamy soil, respectively. 

 

 

Table 5.4. Gross N mineralization (m), nitrification (n), NH4
+ immobilization (ia), NO3

--

immobilization (in), remineralization (r) and denitrification (d) rates calculated by FLUAZ 

for the five time intervals considered in the loamy sand, loamy and clay loam soil 

                

Soil Interval N transformation rate 

  (mg N kg-1 soil d-1) 

    m n ia in  r d 

        
Loamy sand d0-d1 6.82 2.22 4.05 1.65 0.73 0.00 

 d1-d3 8.19 3.06 1.78 0.30 0.00 0.00 

 d3-d7 2.70 4.07 1.70 0.18 0.00 0.00 

 d7-d14 3.51 5.11 1.69 0.08 0.00 0.00 

 d14-d30 0.59 3.37 1.37 0.08 0.01 0.00 

        
Loamy d0-d1 2.16 3.71 5.20 1.86 0.00 0.00 

 d1-d3 1.31 3.70 1.09 0.68 0.21 0.00 

 d3-d7 1.48 4.41 1.69 0.57 0.16 0.00 

 d7-d14 0.05 1.13 1.59 0.64 0.00 0.00 

 d14-d30 0.62 0.48 1.56 0.64 0.13 0.00 

        
Clay loam d0-d1 8.14 37.92 8.39 1.61 0.75 0.00 

 d1-d3 3.39 5.05 3.31 0.60 0.26 0.00 

 d3-d7 3.04 2.89 0.56 0.36 0.03 0.00 

 d7-d14 3.01 1.50 2.40 0.63 0.92 0.00 

 d14-d30 0.60 0.75 0.00 0.33 0.16 1.49 
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Cumulative gross mineralization
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Fig. 5.6. Evolution of the cumulative gross N mineralization (A), cumulative gross nitrification 

(B) and cumulative net N immobilization (total mineral N immobilization minus remineralization) 

in the loamy sand , loamy and clay loam soils (values indicated by bullets, squares and triangles, 

respectively) from day 0 till day 30 after NH4NO3-addition       



Chapter 5 
_______________________________________________________________________________ 

 128 

In the loamy sand soil, the gross nitrification rates tended to increase after the 

NH4NO3-addition (2.2 mg N kg-1 soil d-1 in the day 0-day 1 interval) as the incubation 

experiment proceeded until day 14 (5.1 mg N kg-1 soil d-1 in the day 7-day 14 interval), 

and decreased again after day 14 (3.4 mg N kg-1 soil d-1). In the loamy soil, the gross 

nitrification rates increased from 3.7 mg N kg-1 soil d-1 in the day 0-day 3 interval to 4.4 

mg N kg-1 soil d-1 in the day 3-day 7 interval, followed by a fast decrease until day 30. In 

the clay loam soil, a very large gross nitrification rate was observed during the first day 

after the NH4NO3-addition (38 mg N kg-1 soil d-1), which was 10 to 17 times larger than 

the corresponding values in the loamy and loamy sand soils, respectively. The gross 

nitrification rates tended to decrease very fastly as the incubation experiment proceeded. 

The largest cumulative gross nitrification at the end of the incubation period was observed 

in the loamy sand soil (114 mg N kg-1 soil or 136 kg N ha-1), followed by the clay loam 

(82 mg N kg-1 soil or 91 kg N ha-1) and the loamy soil (44 mg N kg-1 soil or 59 kg N ha-1) 

(Fig. 5.6 B). 

The FLUAZ model indicated that in the three soils NH4
+ and  NO3

- immobilization 

occurred simultaneously in each interval considered, except during the day 14-day 30 

interval in the clay loam soil where the estimated NH4
+ immobilization rate was zero 

(Table 5.4). In nearly all time intervals considered, the estimated NH4
+ immobilization 

rates were larger than the NO3
- immobilization rates and in these cases, the proportion of 

the NH4
+ immobilization ranged from 60 to 95% of the total mineral N immobilization. In 

the three soils investigated, the gross NH4
+ and NO3

- immobilization rates were 

considerably larger during the first day after addition of the NH4NO3-solutions in relation 

to the immobilization rates observed during the rest of the incubations.  

In the loamy sand and the clay loam soils, the large NH4
+ and NO3

- immobilization 

rates in the day 0-day 1 interval coincided with significant remineralization rates, which 

was not the case in the loamy soil. This indicates that a quick recycling of mineral N 
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occurred in these soils during the first day after the NH4NO3-addition. In the clay loam 

soil, remineralization of immobilized mineral N occurred during the entire incubation 

period, whereas in the loamy and loamy sand soils remineralization was only observed 

during two or three time intervals.  

The evolution of the cumulative net N immobilization calculated by FLUAZ (total 

mineral N immobilization minus remineralization) in the three soils is shown in Fig. 5.6 C. 

At 14 days after the NH4NO3-addition, the cumulative net immobilization was comparable 

in the three soils, and ranged from 29 mg N kg-1 soil or 34 kg N ha-1 in the loamy sand 

soil, 32 mg N kg-1 soil or 42 kg N ha-1 in the loamy soil, to 35 mg N kg-1 soil or 39 kg N 

ha-1 in the clay loam soil. Between day 14 and day 30, however, a much lower gross 

immobilization rate was calculated for the clay loam soil in relation to the loamy sand and 

loamy soils, and a much higher remineralization rate was calculated for the clay loam and 

loamy soils in relation to the loamy sand soil (Table 5.4). This resulted in a relatively 

larger cumulative net N immobilization in the loamy sand soil (52 mg N kg-1 soil or 62 kg 

N ha-1) at 30 days after the NH4NO3-addition, in relation to the loamy (42 mg N kg-1 soil 

or 56 kg N ha-1) and clay loam soils (38 mg N kg-1 soil or 42 kg N ha-1). The FLUAZ 

model calculated that denitrification at a rate of 1.49 mg N kg-1 soil d-1 occurred in the 

clay loam soil during the last time interval (Table 5.4).  

 

5.3.6. Relationships between C and N fluxes 

 

The relationships between (1) the gross N mineralization rates (Table 5.4) and the 

C mineralization rates (Table 5.3), and (2) the total gross immobilization rates (sum of the 

gross NH4
+ and NO3

- immobilization rates, Table 5.4) and the C mineralization rates 

observed in the three soils during the five time intervals were investigated. A significant 

linear correlation was found between the gross N mineralization rates and the C 

mineralization rates (mN = 0.41mC - 0.60, R2=0.74, p<0.001), when the outlying fluxes
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Fig. 5.7. Relationship between gross N mineralization rates and C mineralization rates observed in 

the loamy sand, loamy and clay loam soils (data indicated by bullets, squares and triangles, 

respectively) during the five time intervals considered, and linear regression of the relationship 

excluding the outlying fluxes observed during the second time interval in the loamy sand and clay 

loam soils (data indicated by F2 WZ and F2 WV, respectively) 
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Fig. 5.8. Relationship between the total gross N immobilization rates and C mineralization rates 

observed in the loamy sand, loamy and clay loam soils (data indicated by bullets, squares and 

triangles, respectively) during the five time intervals considered, and linear regression of the 

relationship excluding the outlying fluxes observed during the second and third time interval in the 

clay loam soil (data indicated by F2 WV and F3 WV, respectively) 
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observed during the second time interval in the loamy sand and clay loam soils were 

excluded (Fig. 5.7). A weak, but significant linear correlation was observed between the 

total gross immobilization rates and the C mineralization rates (i = 0.28mC + 0.66, 

R2=0.46, p<0.001), when all the fluxes were taken into account. A stronger, significant 

correlation was found (i = 0.50mC - 0.54, R2=0.85, p<0.01) when the outlying fluxes 

observed during the second and third time interval in the clay loam soil were excluded 

(Fig. 5.8). 

 

5.4. Discussion 
 

5.4.1. 15N-recovery in the soil organic and fixed N pool 

 

Very shortly (15 min.) after addition of both the 15NH4
14NO3 and 

14NH4
15NO3-

solutions, significant amounts of 15N were already recovered in the soil organic and fixed 

N pool of the three soils investigated (Table 5.2). The rapid 15N-recovery after 

15NH4
14NO3-addition could be attributed to a rapid biological immobilization, a rapid 

abiotic immobilization or a combination of the two processes occurring simultaneously 

immediately after the addition of the 15NH4
14NO3-solution (Davidson et al., 1991). 

Processes of abiotic immobilization of 15NH4
+ which have been described in literature 

include fixation or adsorption on clay minerals, adsorption to soil organic matter and 

condensation reactions with humic compounds (Foster et al., 1985; Davidson et al., 1991; 

Strickland et al., 1992; Compton and Boone, 2002). These processes have been shown to 

occur very rapidly, in less than 15 min. after addition of NH4
+-N (Newman and Oliver, 

1966). In the loamy and clay loam soil, a small amount of the NH4
+-N added was not KCl-

extractable after 15 min. (4.9 + 3.9 and 4.3 + 0.6 mg NH4
+-N kg-1 soil, respectively) which 

was not the case in the loamy sand soil. This observation, together with the higher clay 

content in the loamy and clay loam soils in relation to the loamy sand soil (Table 5.1), 
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may explain why the 15N-recovery in the soil organic and fixed N pool 15 min. after the 

15NH4
14NO3-addition in the loamy and clay loam soil was about 4 times larger than in the 

loamy sand soil.  

A very fast recovery of 15N in the soil organic and fixed N pool after addition of 

15NH4
+

 or 
15NO3

- to mineral and organic soils has been reported in several other studies 

(Recous et al., 1990; Davidson et al., 1991; Mary et al., 1993; Berntson and Aber, 2000; 

Andersen and Jensen, 2001; Compton and Boone, 2002). Davidson et al. (1991), who 

compared the 15N recovery in a sterilized and non-sterilized silt loam grassland soil after 

addition of 15NH4
+, concluded that the observed rapid immobilization was completely 

abiological and occurred within the first 15 min. after addition. In relation to the 

recoveries in our study after 15NH4
14NO3-addition (which ranged from 12% to 21% of the 

15NH4-N added), Recous et al. (1990) observed comparable recoveries of 15N (ranging 

from 17% to 26% of the 15NH4-N added) into the soil organic N pool at 30 min. after 

addition of (15NH4)2SO4 (equivalent to 4.6 mg 15NH4-N kg-1 soil) to cultivated loam soils. 

Recous et al. (1990) attributed this rapid 15N immobilization after 15NH4
+-addition entirely 

to abiotic fixation.  

The amounts of 15N recovered in the soil organic and fixed N pool immediately 

after addition of the 14NH4
15NO3-solution in our study ranged from 2.1% (clay loam soil) 

to 4.1% (loamy sand soil) of the 15NO3-N added. These recoveries are considerably larger 

than the recoveries observed by Mary et al. (1993) (0.4% of the 15NO3-N added) and 

Recous et al. (1990) (no recovery of the 15NO3-N added) within one hour after addition of 

8.1 mg 15NO3-N kg-1 soil (Mary et al., 1993), or within 30 min. after addition of 4.5 mg 

15NO3-N kg-1 soil (Recous et al., 1990) as K15NO3 to cultivated loam soils. Rapid 

immobilization of 15NO3
--N has also been observed in forest soils (Berntson and Aber, 

2000; Compton and Boone, 2002), but the mechanisms and controlling factors of this 

process are not yet clear (Compton and Boone, 2002). However, Davidson et al. (2003) 
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recently described a mechanism of abiotic immobilization of 15NO3
- via iron oxidation 

(the ferrous wheel hypothesis) as an important process in forest soils.  

In the loamy sand soil and the loamy soil, the atom% 15N in excess of the soil 

organic and fixed N pool showed a significant increase after 15NH4
14NO3-addition from 

day 0 till day 14, whereas in the clay loam soil the atom% 15N in excess only significantly 

increased between day 0 and day 1. This can be explained by the fact that the atom% 15N 

in excess of the NH4
+-pool in the clay loam soil was very rapidly diluted between day 0 

(8.5 atom%) and day 3 (0.45 atom%) and remained very low afterwards in relation the 

atom% 15N in excess of the NH4
+-pool in the loamy sand and loamy soils. This very fast 

dilution of the NH4
+-pool was mainly caused by the very fast nitrification during the first 

three days after 15NH4
14NO3-addition (Table 5.4), which rapidly decreased the size of the 

NH4
+-pool, and thus amplified the 15N-dilution of the NH4

+-pool through gross 

mineralization. Consequently the eventual NH4
+ immobilization which occurred after day 

3 in the clay loam soil (Table 5.4) did not result in any further significant enrichment of 

the soil organic and fixed N pool, which was observed in the loamy sand and loamy soils. 

 

5.4.2. Simulation of the data by FLUAZ 

 

When the MWE-values corresponding with the data fits in the different time 

intervals were considered, the quality of the fit of the data generally tended to decrease 

(increasing MWE-values) from the first towards the last time interval. This might be 

partially attributed to the increasing duration of the time intervals between the sampling 

dates, as the incubation experiments proceeded. All N transformation rates, except the 

nitrification rate, were estimated assuming zero order kinetics, which implies that these 

rates are assumed to remain constant during the whole time interval considered. However, 

when longer time intervals were considered (especially between day 7 and 14, and 
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between day 14 and 30) this assumption of constant rates may not have been fully met, 

explaining the larger MWE-values in the longer time intervals. 

The simulated values of the size and atom% 15N in excess of the NH4
+- and  NO3

--

pools were generally within or nearly within the variation of the measured values (Fig. 

5.2, 5.3 and 5.4). The largest discrepancies between simulated and measured values were 

observed for the NO3
--contents at day 3 in the clay loam soil and at day 30 in the loamy 

sand and loamy soil (Fig. 5.2). This might be attributed to the relatively large standard 

deviations associated with these measured values, as measured variables with the largest 

experimental variability have the lowest weight in the optimization procedure of the 

FLUAZ model, due to the MWE criterion. The considerable underestimation of the NO3
--

contents at day 3 in the clay loam soil might imply that the gross nitrification rate between 

day 1 and 3 has been underestimated by FLUAZ. 

 

5.4.3. C mineralization and N transformation rates  

 

C and N mineralization 

  
One of the assumptions associated with the use of the 15N isotope dilution 

technique to quantify gross N transformation rates in soils is that the N pools involved are 

isotopically homogeneous. Therefore, addition of relatively large amounts of labelling 

solution accompanied by thorough mixing of the soil is usually necessary to obtain a 

homogeneous tracer labelling of the soil, with the possible consequence of altering the N 

transformation rates at the start of 15N isotope dilution experiments (Davidson et al., 1991; 

Sparling et al., 1995). However, since the three soils in our study have been labelled with 

the same amount of labelling solution (corresponding with an increase of 6% gravimetric 

moisture content), it can be assumed that the effect of the labelling on the N 

transformation rates was the same in the three soils. 
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In this study, the effect on the microbial activity of the addition of the labelling 

solution to the soils was apparent from the considerably larger C mineralization rates, 

which were observed during the first three days of the incubation experiments, in relation 

to the rates which were observed during the rest of the incubations (Table 5.3). The gross 

N mineralization rates which were observed during the first days (loamy and clay loam 

soils) or the first three days (loamy sand soil) of the incubations were approximately two 

to three times larger than the average gross mineralization rates observed during the rest of 

the incubation experiments (Table 5.4). This indicates that the gross N mineralization rates 

were probably also stimulated during the first days through the addition of the labelling 

solution and subsequent mixing of the soils.  

The cumulative gross N mineralization at the end of the incubation period was 

largest in the loamy sand soil, and 1.2 to 3.2 times larger than in the clay loam and loamy 

soils, respectively (Fig. 5.6 A). The total N content however was largest in the clay loam 

soil, and approximately 2 times larger than in the loamy sand and the loamy soils, which 

showed nearly equal N contents (Table 5.1). When we take into account these differences 

in total N content among the three soils, the largest proportion of the initial total N content 

mineralized (ammonified) upon incubation was observed in the loamy sand soil (2.5%), 

followed by the clay loam soil (1.2%) and loamy soil (0.8%). Hassink (1994) found a 

significant, negative correlation between the proportion of initial organic N mineralized 

upon incubation and the clay plus silt content in grassland soils of varying texture. The 

loamy sand soil had a significantly lower clay plus silt content (14.1%) than the loamy soil 

(52.1%) and clay loam soil (72.2%) (Table 5.1). Thus we suggest that the observed 

differences in cumulative gross N mineralization among the three soils investigated may 

be largely explained by the differences in clay plus silt content, in combination with the 

total N content. 
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Nitrification  

 
As NH4

+ is the substrate for the nitrification process, the relatively large NH4
+-

addition at the start of the incubation experiments has most probably stimulated the 

nitrification. Therefore, the calculated gross nitrification rates represent the potential 

nitrifying activity, rather than the naturally occurring nitrification activity in these soils. 

The nitrification rate observed during the first day after NH4NO3-addition in the clay loam 

soil was 10 to 17 times larger than the rates observed in the loamy and loamy sand soils, 

respectively (Table 5.4). This indicates that the clay loam soil had a much higher potential 

nitrifying activity, resulting in a much faster depletion of the NH4
+-content (after 3 days) 

than in the loamy soil (after 14 days) and the loamy sand soils (after 30 days). These 

differences in potential nitrifying activity might be partially explained by differences in 

soil pH (Table 5.1). The conditions for nitrification might be more favourable in the clay 

loam soil due to its higher pH (7.2) in relation to the loamy soil (6.3) and loamy sand soil 

(5.9). Paul and Clark (1989) reported that nitrification is curtailed when the soil pH is 

below 6.0, which might explain the considerably smaller potential nitrifying activity in the 

loamy sand soil. The difference in potential nitrifying activity might possibly also be 

explained by a difference in the naturally occurring, nitrifying microbial population in the 

three soils. We observed that the initial NH4
+-content (after pre-incubation) in the loamy 

sand soil (42.4 mg N kg-1 soil) was much higher than in the loamy and clay loam soils (1.6 

and 1.5 mg N kg-1 soil, respectively), whereas the initial NO3
--contents increased in the 

order of loamy sand soil (28.6 mg N kg-1 soil) < loamy soil (39.3 mg N kg-1 soil) < clay 

loam soil (57.6 mg N kg-1 soil). This indicates that the naturally occurring nitrification 

rate, without addition of  NH4
+, also tended to be much smaller in the loamy sand soil in 

relation to the loamy and clay loam soils. 
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Immobilization and remineralization 

 
In the three soils investigated, the gross NH4

+ and NO3
- immobilization rates 

observed during the first day after addition of the NH4NO3-solutions were considerably 

larger than the immobilization rates observed during the rest of the incubations. This could 

possibly indicate a stimulation of both the NH4
+ and NO3

- immobilization rates, due to the 

large amounts of NH4
+- and NO3

--N which have been added to the soils. The smaller gross 

NH4
+ immobilization rate in the loamy sand soil during the first day in relation to the rates 

observed in the loamy and clay loam soils, might then be partially explained by a smaller 

stimulation of the NH4
+ immobilization, due to the larger NH4

+-content already present in 

the loamy sand soil before the NH4NO3-addition. However, the larger NH4
+ and NO3

- 

immobilization rates may probably also have been associated with the relatively larger C 

mineralization rates which were observed during the first (loamy sand and loamy soils) or 

first three days (clay loam soil) of the experiments (Table 5.3). Considering the rates from 

all time intervals, 46% of the variation in the total gross N immobilization rates could be 

explained by the variation in C mineralization rates. When two time intervals from the 

clay loam soil were not considered, the C mineralization rates explained up to 85% of the 

variation in the total immobilization rates (Fig. 5.8). These results indicate that the total 

gross N immobilization rates and C mineralization rates were closely related during the 

incubation experiments.  

This relationship between gross N immobilization rates and C mineralization rates 

has been observed in several other studies (Schimel, 1986; Hart et al., 1994; Mary et al., 

1998; Barret and Burke, 2000). Mary et al. (1998) reported a similar regression coëfficient 

(0.2) for the relationship between potential gross N immobilization rates and C 

mineralization rates in an arable soil, after addition of similar amounts of 15N-labelled 

NH4
+-N and NO3

--N. Barret and Burke (2000), however, reported an equal R2-value (0.46) 

but a considerably smaller regression coëfficient (0.03) for the relationship between gross 
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N immobilization and C mineralization rates in grassland soils. This might be partially 

explained by the 10 times smaller amount of 15NH4
+-N which was added to the soils in 

that study.  

In nearly all time intervals considered, NO3
- immobilization occurred 

simultaneously with NH4
+ immobilization, but at a smaller proportion of the total 

immobilization than the NH4
+ immobilization. This is consistent with the findings of 

several other studies and reflects the generally observed preferential microbial uptake of 

NH4
+-N in relation to NO3

--N, when both forms are present in soil (Jansson et al., 1955; 

Rice and Tiedje, 1989; Recous et al., 1990). The large NH4
+ and NO3

- immobilization 

rates during the first day after NH4NO3-addition were accompanied by significant 

remineralization rates during the first day in the loamy sand and clay loam soils, and 

between day 1 and 3 in the loamy soil (Table 5.4). This indicates that a quick recycling 

through the microbial biomass of the recently immobilized mineral N  already occurred 

during the first days after NH4NO3-addition in the three soils investigated, and that this 

fast recycling was most pronounced in the loamy sand and clay loam soils. This fast 

recycling was also observed by Mary et al. (1998).  

An increase in the atom% 15N in excess of the NH4
+-pool after addition of 

14NH4
15NO3 was observed from day 14 in the loamy soil and from day 7 in the clay loam 

soil (Fig. 5.3). This 15N-enrichment in the NH4
+-pool when 14NH4

15NO3 was applied could 

be explained by the remineralization of previously immobilized 15N, by means of a direct 

conversion of NO3
- to NH4

+ via dissimilatory reduction (DNRA), or by a combination of 

the two processes occurring simultaneously in these soils. The good FLUAZ-simulation 

(Fig. 5.3) indicated that this 15N-enrichment of the NH4
+-pool in the loamy soil could be 

largely explained by the remineralization after day 14 (Table 5.4) of recently immobilized 

15NO3
-. For the clay loam soil, however, FLUAZ simulated a smaller increase in the     

15N-enrichment of the NH4
+-pool than the observed enrichment between day 7 and 30 
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(Fig. 5.3). This 15N-enrichment was simulated by means of a significant remineralization 

rate between day 7 and 14 and a smaller remineralization rate between day 14 and 30 

(Table 5.4). This underestimation of the observed 15N-enrichment in the NH4
+-pool by the 

FLUAZ-model, which doesn't consider DNRA, might suggest that this enrichment could 

be partially attributed to DNRA occurring in the clay loam soil after day 7. However, 

considering the strict anaerobic nature of the DNRA process (Paul and Clark, 1996) and 

the assumption that the soils were incubated under aerobic conditions (water filled pore 

space of 50%), it would be very unlikely that DNRA, nor denitrification would have 

occurred in the clay loam soil. Nevertheless, a decrease of the NO3
--content was observed 

after day 14 (Fig. 5.2) and FLUAZ estimated a significant denitrification rate between day 

14 and 30 (Table 5.4). This might indicate that some anaerobic microsites could have been 

produced throughout the incubation period, enabling denitrification or DNRA to occur in 

the clay loam soil. Fazzolari et al. (1998) demonstrated that DNRA activity may be less 

sensitive than denitrification to an inhibitory effect by O2 and therefore may also occur in 

aerobic soils. Müller et al. (2004) suggested that DNRA, rather than remineralization, was 

responsible for the significant 15N-enrichment of the NH4
+-pool which they observed 

during aerobic incubation of an old grassland soil after addition of equal amounts of 

14NH4
15NO3. 
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5.5. Conclusions 
 

In the three soils investigated, significant amounts of 15N were recovered in the 

soil organic and fixed N pool shortly after addition of both 15NH4
14NO3 and 

14NH4
15NO3, 

indicating a fast biotic or abiotic immobilization capacity. The fast immobilization 

capacity of 15NH4
+-N was most pronounced in the loamy and clay loam soils, and could 

probably be attributed to clay fixation, as these soils showed relatively larger clay 

contents. The total amounts of 15N recovered in the soil organic and fixed N pool 30 days 

after addition of 15NH4
14NO3 were approximately 5 times larger than the amounts 

recovered after addition of 14NH4
15NO3, which reflects the generally observed preferential 

microbial uptake of NH4
+-N in relation to NO3

--N.  

The large NH4
+ and NO3

- immobilization rates, which were observed during the 

first days after NH4NO3-addition, were accompanied by significant remineralization rates. 

This indicates that a quick recycling through the microbial biomass of the recently 

immobilized mineral N occurred shortly after NH4NO3-addition. This suggests that 

numerical simulation models, which take into account remineralization, are preferable 

with regard to analytical solutions for estimation of gross N transformation rates, even for 

short-term 15N isotope dilution experiments. The total gross N immobilization rates and C 

mineralization rates were closely related during the incubation experiments.  

The loamy sand soil, which had a considerably lower clay plus silt content than the 

other soils, showed the largest cumulative gross N mineralization and the largest 

proportion of N mineralized at the end of the incubation period. These results indicate that 

the observed differences in cumulative gross N mineralization among the three soils 

investigated may be largely explained by the differences in clay plus silt content, in 

combination with the total N content. The observed potential nitrification activity after 

addition of NH4NO3 was considerably larger in the clay loam soil in relation to the loamy 
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and loamy sand soils. These differences in potential nitrification activity might possibly be 

explained by the difference in soil pH or a difference in the naturally occurring, nitrifying 

microbial population among the investigated soils. 
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Conclusions and perspectives 
 

 

A first objective of this thesis was to investigate the quality of SOM, in terms of 

degradability and turnover, in cultivated and grassland soils by means of physical 

fractionation of the SOM and variations in its 13C isotopic signature. A second objective of 

this thesis was to study the N dynamics in permanent grassland soils, as affected by the 

quantity and quality of SOM and soil type. 

 

The conclusions from this thesis can be summarized as follows: 

 

1. The ∆δ13C values in the surface layers (0-30 cm depth) of the investigated profiles 

under permanent grassland were strongly correlated with the C decomposition rate 

constants and might serve as a practical indicator of soil C stability (Chapter 2);  

2. Shifts in the C content, 13C isotopic signature and C/N ratio of size and density 

fractions of SOM from cultivated and grassland soils reflected an increasing degree of 

microbial degradation and a decreasing C turnover rate (1) with increasing density among 

the macro-organic matter fractions, and (2) with decreasing particle size among the size 

fractions considered (Chapter 3); 

3. The largest relative increase in C and N contents (with increasing age of the 

investigated grassland soils) was observed in the HF 150-2000 µm fraction, followed by 

the 50-150 µm and <50 µm fractions. As SOM accumulation induced by the conversion of 

cultivation to permanent grassland tends to be a slow process, our results suggest that the 

HF 150-2000 µm fraction could serve as a good and relatively easily detectable indicator 

of early soil organic C and N accumulation. The ratio of gross N immobilization to gross 

N mineralization tended to increase with increasing SOM contents, which indicates that 
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potential N retention in soils through biotic immobilization tends to be limited by C 

availability (Chapter 4); 

4. As the size and density fractions considered were characterized by different 

degrees of microbial degradation and turnover rates (Chapter 3), and as their C and N 

contents were significantly correlated with the potential gross N transformation rates and 

long-term net N mineralization rates in the investigated grassland soils (Chapter 4), they 

might represent suitable pools to be used in mechanistic SOM models; 

5. The differences in cumulative gross N mineralization and potential nitrification 

after NH4NO3 addition to grassland soils of varying texture, could be explained by 

differences in silt plus clay content, SOM content, soil pH or the naturally occuring 

microbial population. The investigated soils showed a fast biotic or abiotic immobilization 

capacity for both NH4
+- and NO3

--N in the soil organic and fixed N pool. Total gross 

(biotic) N immobilization showed to be closely related to C mineralization (C turnover).   

Numerical simulation of the data indicated that quick recycling (remineralization) through 

the microbial biomass of the recently immobilized mineral N may occur, shortly after 

NH4NO3-addition. This suggests that numerical simulation models, which take into 

account remineralization, are preferable with regard to analytical solutions for estimation 

of gross N transformation rates, even for short-term 15N isotope dilution experiments 

(Chapter 5).  

 

The following research perspectives arose from this thesis: 

 

1. The observed relationship between 13C enrichment and C dynamics, and the 

potential use of ∆δ13C values or the isotope enrichment factor ε as an indicator of soil C 

stability or availability, might be further elucidated by investigating the influence of soil 

type (in terms of drainage capacity and texture) and grassland age (in terms of SOM 

content) on the evolution of the 13C enrichment in grassland profiles. This relationship 
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might also be investigated in other, undisturbed soil profiles with an exclusive C3 or C4 

vegetation, like arable soils under no-tillage or forest soils; 

2. The combined LF+IF 150-2000 µm fraction (density <1.37 g cm-3), rather than the 

separate LF and IF 150-2000 µm fractions, could be considered in future grassland SOM 

studies;  

3. Evaluation of the relationship between distribution of SOC among the different 

size and density fractions and the potential C dynamics (laboratory incubation 

experiments) in grassland soils of different age; 

4. Assessment of the potential C mineralization, net N mineralization, and gross 

mineralization-immobilization turnover during laboratory incubation of separate size and 

density fractions;  

5. Assessment of the biotic or abiotic nature of the fast N-immobilization capacity in 

grassland soils by comparing the 15N-recovery in the organic and fixed N pool of sterilized 

and non-sterilized soils after addition of 15N enriched NH4
+-N and NO3

--N; 

6. Evaluation of the influence of soil characteristics (texture, pH, SOM content) and 

climatic factors (soil water content and temperature) on the potential environmental N 

losses (N2O and NO emission, NH3 volatilization, NO3
--leaching) associated with the N 

transformations occurring in soils; 

7. Evaluation of the relationship between ∆δ13C values (as a potential indicator of soil 

C availability) and potential N retention in grassland soils through microbial 

immobilization, which tends to be dependent on C availability.  
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Summary 
 
 

Soil organic matter (SOM) is a key component in the quality and fertility of 

agricultural soils, as it affects many of its biological, physical and chemical properties. 

SOM is a primary nutrient source for plants and soil organisms, and contributes 

significantly to the formation and stabilization of the soil structure. The SOM in 

agricultural soils, and more specifically the soil organic C (SOC), is also receiving 

increased attention in terms of carbon sequestration, as a potential sink for atmospheric 

CO2 (which is the most important anthropogenic greenhouse gas). Maintenance and 

improvement of the SOM content is thus generally accepted as being a major objective for 

any sustainable agroecosystem. As SOM comprises an enormous array of compounds, 

ranging from recent plant materials through a continuum of metabolic products of micro-

organisms, to components of stable humus, characterization of SOM quality is very 

complex. Recently, biologically meaningful SOM fractions have been obtained by 

methods based on physical fractionation of soil (according to particle size or density), 

which, combined with biological and chemical analysis, allows further insight into the 

functionality of the separated fractions. Moreover, the use of stable isotope techniques 

(e.g. 13C natural abundance analysis and 15N isotope dilution) have further advanced 

process oriented SOM studies, since these methods are well suited to study SOM quality 

and dynamics. 

 

A first objective of this thesis was to investigate the quality of SOM, in terms of 

degradability and turnover, in cultivated soils and grassland soils by means of physical 

fractionation of the SOM and variations in its 13C isotopic signature. A second objective of 

this thesis was to study the N dynamics in permanent grassland soils, as affected by the 

quantity and quality of SOM and soil type. 
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Chapter 1 introduces the subject and focuses on (1) the role of organic matter in 

agricultural soils, (2) factors affecting organic matter content and organic matter turnover 

in agricultural soils, (3) assessment of the quality and turnover of soil organic matter, and 

(4) the major N transformations that occur in agricultural soils. 

 

In chapter 2 we investigated to what extent the potential C dynamics of SOM are 

related to the degree of 13C enrichment with increasing depth in soil profiles under 

permanent grassland. The evolution of the C content and the 13C natural abundance (δ13C 

value, expressed in ‰) of SOM was investigated in three soil profiles (0-40 cm depth) 

under permanent grassland of varying texture (loamy sand, loamy and clay loam). The 

δ13C value of the SOM showed a gradual increase with increasing depth and decreasing C 

content in the three profiles, ranging from 1.9‰ (loamy sand soil), to 2.9‰ (clay loam 

soil) and 4‰ (loamy soil) in relation to the δ13C value of SOM at the surface. The relation 

between the 13C enrichment and total organic C content at different depths in the profiles 

(down to 40 cm depth in the loamy and clay loam soil, down to 25 cm depth in the loamy 

sand soil) could be fitted by the Rayleigh equation. This reflects that the observed 13C 

enrichment with increasing depth is mainly driven by isotopic fractionation associated 

with C mineralization along with the decomposition process. The enrichment factors 

ε, associated with the Rayleigh approximation of the data, ranged from -1.57‰ (clay loam 

soil), to -1.64‰ (loamy sand soil) and -1.91‰ (loamy soil). The evolution of the δ13C 

signature in the loamy sand profile, which diverged from the Rayleigh approximation 

below 25 cm depth, suggests that other factors, like differential preservation or 

accumulation of 13C depleted material, may also influence the δ13C evolution in poorly 

drained, chronically wet soil profiles. The potential C mineralization rates (determined by 

means of an aerobic incubation experiment) and the C decomposition rate constants (ratio 

of C mineralization rate to total C content) both decreased significantly with increasing 
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sampling depth (0-10, 10-20, 20-30 and 30-40 cm depth) in the three profiles, reflecting a 

more enhanced stage of decomposition and stability of SOC in the deeper soil layers. 

There was a significant, positive correlation (drcC = 0.22∆δ13C + 0.019, R2=0.75, p<0.001, 

n=12) between the C decomposition rate constants (drcC) from the four sampling depths in 

the three profiles and the corresponding ∆δ13C values (average change of the δ13C value 

per depth increment, expressed in ‰ cm-1). A stronger, positive correlation between the C 

decomposition rate constants and the ∆δ13C values was observed when only the data from 

the upper 30 cm in the profiles (drcC = 0.22∆δ13C + 0.019, R2=0.86, p<0.001, n=9) or 

from the upper 20 cm in the profiles (drcC = 0.21∆δ13C + 0.020, R2=0.78, p<0.05, n=6) 

were considered. These results suggest that the ∆δ13C values in the surface layers (0-30 

cm depth) of profiles under permanent grassland, and to a lesser extent the ∆δ13C values in 

the deeper soil layers (30-40 cm depth), may be interpreted as a direct indicator of the 

degradability of the SOM, in terms of the C decomposition rate constant. As ∆δ13C values 

are more easily accessible, whereas incubation experiments to determine potential C 

mineralization rates from soil samples are generally time-consuming and laborious, the 

∆δ13C values might serve as a practical tool for getting a rapid indication of soil C stability 

in the surface layers (0-30 cm depth) of profiles under permanent grassland. 

 

In chapter 3, we compared the quantity and quality of SOM (in terms of turnover) 

in the surface layer of cultivated and grassland soils. The variation in 13C enrichment due 

to isotopic fractionation associated with SOM decomposition was investigated among five 

size and density fractions, water soluble organic C (WSOC) and microbial biomass C 

(MBC) in the surface layer (0-20 cm depth) of a continuous grassland soil (CG, C3 

vegetation). The five size and density fractions considered were the light (LF 150-2000 

µm; d <1.13 g cm-3), intermediate (IF 150-2000 µm; 1.13< d <1.37 g cm-3) and heavy 

density fraction (HF 150-2000 µm; d >1.37 g cm-3) of the macro-organic matter (150-2000 
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µm), the size fraction 50-150 µm and the size fraction <50 µm. The distribution of total C 

and the incorporation of relatively 'young' C4-C into these SOM fractions was investigated 

through δ13C analysis of the same SOM fractions, originating from the surface layer (0-20 

cm depth) of a C3 soil, which had been converted (since 19 years at the time of sampling) 

to continuous maize cultivation (CM, C4 vegetation) and a three year rotation of maize 

cultivation and grassland (R). The CG soil showed the largest total C content (22.5 g kg-1 

soil), and the C contents in the R and CM soil were, respectively, 34% and 63% lower 

than in the CG soil. The amounts of WSOC and MBC in the CG soil were both 

significantly larger than in the R and CM soil. The proportion of total C present in the 

macro-organic matter decreased in the order CG (14.6%) > R (9.3%) > CM (6.8%). With 

decreasing total C contents, the C enrichment ratio (ratio of g C kg-1 fraction to g C kg-1 

whole soil) of the size fraction <50 µm increased from 1.1 in the CG soil to 1.8 in the CM 

soil, while the C enrichment ratio in the size fraction 50-150 µm decreased from 0.6 (CG 

soil) to 0.3 (CM soil). Consequently, the proportion of total C present in the size fraction 

<50 µm increased in the order CG (60.2%) < R (67.9%) < CM (82.3%), while the 

proportion in the size fraction 50-150 µm decreased in the order CG (25.2%) > R (22.8%) 

> CM (10.8%). This indicates that C in the clay- and silt-sized fraction (<50 µm) was less 

affected by soil disruption due to tillage, than C in the macro-organic matter and in the 

size fraction 50-150 µm. In the three soils investigated, the C/N ratios tended to decrease 

in the order LF 150-2000 µm fraction > IF and HF 150-2000 µm fractions > size fraction 

50-150 µm > size fraction <50 µm. In the CG soil, we observed a trend of increasing 13C 

enrichment in the order LF < IF < HF 150-2000 µm fraction and a higher 13C enrichment 

in the size fraction <50 µm in relation to the size fractions >50 µm, which may be 

attributed to isotopic fractionation associated with the microbial decomposition process of 

plant residues in soils. The amount of C4-derived C in the R and CM soil (after in total 10 

and 19 years of maize cultivation, respectively) equalled 11% (R soil) and 33% (CM soil) 
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of the total C content. Among the size and density fractions in the R and CM soils, the LF 

150-2000 µm fraction showed the largest proportion of C4-derived C (47% and 77%, 

respectively). The shifts in the δ13C values, together with the decrease in C/N ratios, which 

were observed among the size and density fractions from the CG, R and CM soils, 

reflected an increasing degree of microbial degradation and a decreasing turnover rate (1) 

with increasing density among the macro-organic matter fractions, and (2) with decreasing 

particle size among the size fractions considered.  

 

The accumulation of SOM upon conversion of arable land to permanent grassland, 

and the influence of quantity and quality of SOM on the gross N transformation rates and 

long-term net N mineralization in permanent grasslands soils were studied in chapter 4. 

This was investigated in the surface layers (0-10 and 10-20 cm depth) of soils (sandy loam 

texture) which had been converted from continuous arable cropping (during at least 20 

years) to permanent grassland since respectively 6, 14 and approximately 50 years at the 

time of sampling. The SOM was fractionated into the LF 150-2000 µm, IF 150-2000 µm 

and HF 150-2000 µm fractions, the size fraction 50-150 µm and the size fraction <50 µm 

in order to study the distribution of the total C and N content among these SOM fractions. 

The potential gross N transformation rates (mineralization (= ammonification), 

nitrification, NH4
+ and NO3

- immobilization) were determined by means of short-term, 

fully-mirrored 15N isotope dilution experiments (7-day laboratory incubations). The long-

term potential net N mineralization and gross N immobilization rates were determined by 

means of 70-day laboratory incubations. The total C and N contents mainly tended to 

increase in the 0-10 cm layer with increasing age of the investigated grassland soils. 

Significant differences in total SOM storage were, however, only detectable in the long-

term (50 years old grassland soil) after conversion of arable land to permanent grassland. 

In the assumption that the initial SOM contents, before conversion to permanent 

grassland, and the average annual input of organic material in the grassland soils were 
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comparable, these results indicate that stabilization of SOM and thus sequestration of C 

upon conversion of arable land to grassland is a slow process. The C and N contents and 

the proportions of total C and N stored in the SOM fractions generally decreased in the 

order <50 µm > 50-150 µm > HF 150-2000 µm > IF 150-2000 µm > LF 150-2000 µm. 

The largest relative increase in C and N contents occurred in the HF 150-2000 µm 

fraction, followed by the 50-150 µm and <50 µm fractions. Our results suggest that the HF 

150-2000 µm fraction could serve as a good and relatively easily detectable indicator of 

early soil organic C and N accumulation, or early changes in SOM content in general, 

induced by the conversion of cultivated soils to permanent grassland. The gross N 

mineralization, nitrification, and (long-term) gross N immobilization rates tended to 

increase with increasing age of the investigated grasslands, and showed strong, positive 

correlations with the total C and N contents. The observed gross N mineralization rates (7-

day incubations) and net N mineralization rates (70-day incubations) corresponded with a 

gross N mineralization of 643, 982 and 1876 kg N ha-1 y-1, and a net N mineralization of 

195, 208 and 274 kg N ha-1 y-1 in the upper 20 cm of the 6, 14 and 50 years old grassland 

soils, respectively. Linear regression analysis showed that 93% of the variability of the 

gross N mineralization rates could be explained by variations in the total N contents, 

whereas total N contents together with the C/N ratios of the <50 µm fraction explained 

84% of the variability of the net N mineralization rates. The relation between long-term 

net N mineralization rates and gross N mineralization rates could be fitted by means of a 

logarithmic equation (net m = 0.24Ln(gross m) + 0.23, R2=0.69, p<0.05), which reflects 

that the ratio of gross N immobilization to gross N mineralization tended to increase with 

increasing SOM contents. Since the microbial demand for N (immobilization) tended to 

increase with increasing SOM content in the investigated grassland soils, this indicates 

that potential N retention in soils through microbial N immobilization tends to be limited 

by C availability. 
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In chapter 5, we investigated the evolution of the gross N transformation rates and 

the potential N retention after mineral fertilizer application in three permanent grassland 

soils (0-10 cm depth) of varying texture (loamy sand, loamy and clay loam). Differently 

15N-labelled NH4NO3 (at a rate of 100 mg N kg-1 soil) was added to the soils in paired 

experiments (30-day laboratory incubations). Size and 15N-enrichment of the NH4
+, NO3

-, 

and soil organic and fixed N pools were measured at 0, 1, 3, 7, 14 and 30 days after 

NH4NO3-application. The C mineralization rates were also monitored during the 

incubation experiments. The experimental data were simulated with the numerical 

simulation model FLUAZ (Mary et al., 1998)1 in order to estimate the gross N 

transformation rates. The cumulative gross N mineralization (ammonification) and the 

proportion of initial N mineralized at the end of the incubation were largest in the loamy 

sand soil (68 mg N kg-1 soil or 81 kg N ha-1; 2.5% of initial N), followed by the clay loam 

soil (58 mg N kg-1 soil or 64 kg N ha-1; 1.2% of initial N) and the loamy soil (21 mg N   

kg-1 soil or 28 kg N ha-1; 0.8% of initial N). These differences in cumulative gross N 

mineralization could be largely explained by the lower clay plus silt content in the loamy 

sand soil (14%) in relation to the loamy (52%) and the clay loam (72%) soils, in 

combination with the total N contents. The potential gross nitrification activity was 

considerably larger in the clay loam soil (pH 7.2) in relation to the loamy (pH 6.3) and 

loamy sand (pH 5.9) soils. These differences in potential gross nitrification activity might 

be explained by the difference in soil pH, or a difference in the naturally occurring, 

nitrifying microbial population in the three soils. In the three soils investigated, significant 

amounts of 15N were recovered in the soil organic and fixed N pool shortly after addition 

of both 15NH4
14NO3 and 

14NH4
15NO3, indicating a fast biotic or abiotic immobilization 

capacity. The fast immobilization capacity of 15NH4
+-N was most pronounced in the 

loamy and clay loam soils, and could probably be attributed to clay fixation. The total 

                                                
1 Mary, B., Recous, S., Robin, D., 1998. A model for calculating nitrogen fluxes in soil using 15N tracing. 
Soil  Biology and Biochemistry 30, 1963-1979. 
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amounts of 15N recovered in the soil organic and fixed N pool at 30 days after addition of 

15NH4
14NO3 were approximately 5 times larger than the amounts recovered after addition 

of 14NH4
15NO3, which also reflects the generally observed preferential microbial uptake of 

NH4
+-N in relation to NO3

--N. The large NH4
+ and NO3

- immobilization rates, which were 

observed during the first days after NH4NO3-addition, were accompanied by significant 

remineralization rates in the three soils investigated. This indicates that a quick recycling 

through the microbial biomass of the recently immobilized mineral N occurred shortly 

after NH4NO3-addition. The total gross N immobilization rates and C mineralization rates 

were closely related (i = 0.50mC - 0.54, R2=0.85, p<0.01) during the incubation 

experiments.  
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Samenvatting 
 
 

Bodem organisch materiaal (BOM) is van cruciaal belang voor de bodemkwaliteit 

en bodemvruchtbaarheid, vermits het een invloed uitoefent op talrijke biologische, 

fysische en chemische bodemkarakteristieken. BOM is een primaire bron van nutriënten 

voor planten en bodemorganismen, en draagt in belangrijke mate bij tot de vorming en 

stabilisatie van de bodemstructuur. BOM in landbouwgronden, en meer specifiek de 

bodem organische koolstof (BOC), krijgt ook steeds meer aandacht in het kader van C-

sequestratie als een potentiële sink voor atmosferische CO2, het belangrijkste antropogeen 

broeikasgas. Het in stand houden of verhogen van het gehalte aan BOM wordt daarom 

algemeen beschouwd als één van de belangrijkste objectieven voor elk duurzaam agro-

ecosysteem. Aangezien het BOM een enorme waaier aan componenten omvat, gaande van 

recent afgestorven plantenmateriaal, via een continuüm van metabolische producten van 

micro-organismen tot stabiele humusverbindingen, is de karakterisering van de kwaliteit 

van BOM zeer complex. Recent werden door middel van methodes gebaseerd op fysische 

bodemfractionering (volgens deeltjesgrootte of -densiteit) biologisch betekenisvolle 

fracties van het BOM bekomen, die, in combinatie met biologische en chemische analyse, 

een dieper inzicht opleveren in de functionaliteit van deze fracties. Daarnaast heeft het 

gebruik van stabiele isotopentechnieken (zoals analyse van de natuurlijke aanrijking in 13C 

en 15N isotopenverdunning) het proces georiënteerd onderzoek van BOM sterk 

vooruitgeholpen, aangezien deze technieken zeer geschikt blijken te zijn om de kwaliteit 

en de dynamiek van BOM te bestuderen. 

 

Een eerste doelstelling van deze thesis was het onderzoeken van de kwaliteit van 

BOM, meerbepaald de afbreekbaarheid en omzettingssnelheid ervan, in gecultiveerde 

bodems en graslanden door middel van fysische fractionatie en variaties in de 13C 

isotopensignatuur van het BOM. Het onderzoeken van de invloed van de kwantiteit en 
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kwaliteit van BOM en bodemtype op de N-dynamiek in permanente graslanden was een 

tweede doelstelling van deze thesis. 

 

In hoofdstuk 1 wordt het onderzoeksgebied kort geïntroduceerd, waarbij de 

aandacht gericht wordt op (1) de rol van organisch materiaal in landbouwgronden, (2) de 

factoren die het gehalte aan BOM en de omzettingssnelheid ervan beïnvloeden, (3) 

inschatting van de kwaliteit en omzettingssnelheid van BOM, en (4) de belangrijkste N-

transformaties die optreden in landbouwgronden. 

 

In hoofdstuk 2 werd onderzocht in welke mate de potentiële C-dynamiek van 

BOM gerelateerd is aan de mate van aanrijking in 13C met toenemende diepte in 

bodemprofielen onder permanent grasland. De evolutie van het C-gehalte en de 

natuurlijke aanrijking in 13C (δ13C-waarde, uitgedrukt in ‰) van BOM werd onderzocht in 

drie bodemprofielen (0-40 cm diepte) met verschillende textuur (lemige zandbodem, 

lemige bodem en klei-leembodem) onder permanent grasland. De δ13C-waarde van het 

BOM vertoonde een geleidelijke toename met toenemende diepte en afnemend C-gehalte 

in de drie profielen, variërend tussen 1.9‰ (lemige zandbodem), 2.9‰ (klei-leembodem) 

en 4‰ (lemige bodem) ten opzichte van de δ13C-waarde van het BOM aan de oppervlakte. 

Het verband tussen de 13C-aanrijking en het totale organische C-gehalte op verschillende 

diepten in de profielen (tot op 40 cm diepte in de lemige bodem en klei-leembodem, tot op 

25 cm diepte in de lemige zandbodem) kon benaderd worden door middel van de Rayleigh 

vergelijking. Dit geeft weer dat de waargenomen 13C-aanrijking met toenemende diepte 

grotendeels kan verklaard worden door isotopenfractionatie geassocieerd met de C-

mineralisatie tijdens het afbraakproces van BOM. De C-aanrijkingsfactoren ε, 

geassocieerd met de Rayleigh benadering van de data, varieerde tussen -1.57‰ (klei-

leembodem), -1.64‰ (lemige zandbodem) en -1.91‰ (lemige bodem). De evolutie van de 
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δ13C-waarde in de lemige zandbodem, die afweek van de Rayleigh benadering vanaf 25 

cm diepte in het profiel, suggereert dat andere factoren zoals differentiële bewaring of 

accumulatie van 13C-verarmd materiaal eveneens de evolutie van de δ13C-waarde kunnen 

beïnvloeden in matig gedraineerde, chronisch waterverzadigde bodemprofielen. De 

potentiële C-mineralisatiesnelheden (bepaald door middel van een aëroob incubatie-

experiment) en de C-afbraak snelheidsconstanten (verhouding van de C-

mineralisatiesnelheid tot het C-gehalte) namen beiden significant af met toenemende 

diepte (0-10, 10-20, 20-30 en 30-40 cm diepte) in de drie profielen, hetgeen een verder 

gevorderd afbraakstadium en grotere stabiliteit van de BOC in de diepere bodemlagen 

weergeeft. Er bestond een significante, positieve correlatie (drcC = 0.22∆δ13C + 0.019, 

R2=0.75, p<0.001, n=12) tussen de C-afbraaksnelheidsconstanten (drcC) in de vier diepte-

intervallen van de drie profielen en de corresponderende ∆δ13C-waarden (gemiddelde 

toename van de δ13C-waarde met toenemende diepte, uitgedrukt in ‰ cm-1). Een sterkere, 

positieve correlatie tussen de C-afbraak snelheidsconstanten en de ∆δ13C-waarden werd 

waargenomen wanneer enkel de waarden afkomstig van de bovenste 30 cm in de profielen 

(drcC = 0.22∆δ13C + 0.019, R2=0.86, p<0.001, n=9) of van de bovenste 20 cm in de 

profielen (drcC = 0.21∆δ13C + 0.020, R2=0.78, p<0.05, n=6) werden beschouwd. Deze 

resultaten suggereren dat de ∆δ13C-waarden in de oppervlaktelagen (0-30 cm diepte) van 

profielen onder permanent grasland, en in mindere mate de ∆δ13C-waarden in de diepere 

bodemlagen (30-40 cm diepte), kunnen geïnterpreteerd worden als een directe indicator 

van de C-afbraaksnelheidsconstante of de afbreekbaarheid van het BOM. Vermits de 

∆δ13C-waarden relatief makkelijk toegankelijk zijn, terwijl incubatie-experimenten ter 

bepaling van de potentiële C-dynamiek in bodems meestal tijdrovend en arbeidsintensief 

zijn, zouden de ∆δ13C-waarden potentieel kunnen aangewend worden als een praktische 

en snelle indicator van de stabiliteit van de bodem-C in de oppervlaktelagen (0-30 cm 

diepte) van profielen onder permanent grasland  
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In hoofdstuk 3 werden de kwantiteit en kwaliteit (meer specifiek de 

omzettingssnelheid) van het BOM in de oppervlaktelaag van gecultiveerde bodems en 

grasland vergeleken. De variatie in 13C-aanrijking ten gevolge van isotopenfractionatie, 

geassocieerd met de afbraak van BOM, werd onderzocht voor vijf grootte- en 

densiteitsfracties, de water oplosbare organische C (WSOC) en de microbiële biomassa C 

(MBC) in de oppervlaktelaag (0-20 cm diepte) van een permanent grasland (CG, C3-

vegetatie). De vijf grootte- en densiteitsfracties van BOM die beschouwd werden waren de 

lichte (LF 150-2000 µm; d <1.13 g cm-3), intermediaire (IF 150-2000 µm; 1.13< d <1.37 g 

cm-3) en zware densiteitsfractie (HF 150-2000 µm; d >1.37 g cm-3) van het macro-

organisch materiaal (150-2000 µm), de groottefractie 50-150 µm en de groottefractie    

<50 µm. De verdeling van de totale C en de incorporatie van relatief 'jonge' C4-C werd 

onderzocht door middel van δ13C analyse van dezelfde BOM fracties, afkomstig van de 

oppervlaktelaag (0-20 cm diepte) van een bodem met oorspronkelijk enkel C3-BOC, die 

omgezet was (sedert 19 jaar op het tijdstip van de staalname) naar permanente 

maïscultivatie (CM, C4-vegetatie) en een driejarige rotatie van maïscultivatie en grasland 

(R). De CG bodem vertoonde het hoogste C-gehalte (22.5 g kg-1 grond), en de C-gehaltes 

in de R en CM bodems waren respectievelijk 34% en 63% lager dan in de CG bodem. De 

WSOC- en MBC-gehaltes in de CG bodem waren beiden significant hoger dan in de R en 

CM bodems. Het aandeel van de totale C aanwezig in het macro-organisch materiaal nam 

af in de volgorde CG (14.6%) > R (9.3%) > CM (6.8%). Met afnemende totale C-gehaltes, 

nam de C-aanrijkingsverhouding (verhouding van g C kg-1 fractie tot g C kg-1 grond) in de 

groottefractie <50 µm toe van 1.1 in de CG bodem tot 1.8 in de CM bodem, terwijl de C-

aanrijkingsverhouding in de groottefractie 50-150 µm afnam van 0.6 (CG bodem) tot 0.3 

(CM bodem). Bijgevolg nam het aandeel van de totale C aanwezig in de groottefractie <50 

µm toe in de volgorde CG (60.2%) < R (67.9%) < CM (82.3%), terwijl het aandeel van de 

totale C in de groottefractie 50-150 µm afnam in de volgorde CG (25.2%) > R (22.8%) > 

CM (10.8%). Dit wijst erop dat de C in de klei-leem fractie (<50 µm) minder onderhevig 
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was aan verstoring van de bodemstructuur ten gevolge van bodembewerking, dan de C in 

het macro-organisch materiaal en in de groottefractie 50-150 µm. In de drie onderzochte 

bodems nam de C/N verhouding af in de volgorde LF 150-2000 µm fractie > IF en HF 

150-2000 µm fracties > groottefractie 50-150 µm > groottefractie <50 µm. In de CG 

bodem werd een trend van toenemende 13C-aanrijking in de volgorde LF < IF < HF 150-

2000 µm fractie en een hogere 13C-aanrijking in de groottefractie <50 µm ten opzichte van 

de groottefracties >50 µm waargenomen, hetgeen kan toegeschreven worden aan 

isotopenfractionatie geassocieerd met de microbiële respiratie tijdens het afbraakproces 

van plantenmateriaal in bodems. Het aandeel C4-C in de R en CM bodem (na 

respectievelijk in totaal 10 en 19 jaar maïscultivatie) bedroeg 11% (R bodem) en 33% 

(CM bodem) van het totale C-gehalte. Onder de grootte- en densiteitsfracties in de R en 

CM bodems, vertoonde de LF 150-2000 µm fractie het hoogste aandeel C4-C 

(respectievelijk 47% en 77%). De verschuivingen in de δ13C-waarden in combinatie met 

de afname in de C/N verhoudingen die werden waargenomen voor de grootte- en 

densiteitsfracties in de CG, R en CM bodems, gaven een toenemende graad van 

microbiële afbraak en een afnemende omzettingssnelheid weer (1) met toenemende 

densiteit onder de fracties van het macro-organisch materiaal, en (2) met afnemende 

deeltjesgrootte onder de beschouwde groottefracties. 

 

De accumulatie van BOM na omzetting van een gecultiveerde bodem naar 

permanent grasland, en de invloed van kwantiteit en kwaliteit van BOM op de bruto       

N-transformatiesnelheden en de lange termijn netto N-mineralisatie in bodems onder 

permanent grasland werden onderzocht in hoofdstuk 4. Dit werd onderzocht in de 

oppervlaktelagen (0-10 en 10-20 cm diepte) van bodems (met een zandleemtextuur) die 

waren omgezet van een permanente cultivatie (gedurende ten minste 20 jaar) naar 

permanent grasland sinds respectievelijk 6, 14 en circa 50 jaar op het tijdstip van de 
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staalname. Het BOM werd gefractioneerd in de LF 150-2000 µm, IF 150-2000 µm en HF 

150-2000 µm fracties, de groottefractie 50-150 µm en de groottefractie <50 µm om de 

verdeling van het totale C- en N-gehalte over deze fracties van het BOM te bestuderen. De 

potentiële bruto N-transformatiesnelheden (mineralisatie (= ammonificatie), nitrificatie, 

NH4
+- en  NO3

--immobilisatie) werden bepaald door middel van korte termijn, volledig 

gespiegelde 15N isotopendilutie-experimenten (incubaties gedurende 7 dagen in het 

laboratorium). De lange termijn potentiële netto N-mineralisatie en bruto N-immobilisatie 

werden gemeten door middel van incubaties gedurende 70 dagen in het laboratorium. De 

totale C- en N-gehaltes namen voornamelijk toe in de laag van 0-10 cm diepte met 

toenemende ouderdom van de onderzochte graslanden. Significante verschillen in het 

totale gehalte aan BOM waren echter slechts meetbaar op lange termijn na de omzetting 

naar permanent grasland (in het 50 jaar oude grasland). In de veronderstelling dat de 

initiële BOM-gehaltes, voor de omzetting naar permanent grasland, en de gemiddelde 

jaarlijkse input van organisch materiaal vergelijkbaar waren in de drie graslanden, wijzen 

deze resultaten erop dat de stabilisatie van BOM en aldus ook C-sequestratie na omzetting 

van gecultiveerde bodems naar grasland een traag proces is. De C- en N-gehaltes en het 

aandeel van de totale C en N aanwezig in de fracties van het BOM namen in het algemeen 

af in de volgorde groottefractie <50 µm > groottefractie 50-150 µm > HF 150-2000 µm > 

IF 150-2000 µm > LF 150-2000 µm. De grootste relatieve toename in C- en N-gehalte 

werd waargenomen in de HF 150-2000 µm fractie, gevolgd door de 50-150 µm en de <50 

µm groottefracties. Deze resultaten suggereren dat de HF 150-2000 µm fractie zou kunnen 

aangewend worden als een goede en relatief eenvoudig meetbare indicator van vroege 

accumulatie van bodem organische C en N, of van vroege veranderingen in het BOM-

gehalte in het algemeen, geïnduceerd door omzetting van gecultiveerde bodems naar 

permanent grasland. De bruto N-mineralisatie, nitrificatie en (lange termijn) bruto N-

immobilisatie neigden toe te nemen met toenemende ouderdom van de onderzochte 

graslanden, en waren sterk positief gecorreleerd met de totale C- en N-gehaltes. De 
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waargenomen bruto N-mineralisatiesnelheden (incubatie gedurende 7 dagen) en netto N-

mineralisatiesnelheden (incubatie gedurende 70 dagen) kwamen respectievelijk overeen 

met een bruto mineralisatie van 643, 982 en 1876 kg N ha-1 jr-1, en een netto mineralisatie 

van 195, 208 en 274 kg N ha-1 jr-1 in de bovenste 20 cm van het 6, 14 en 50 jaar oude 

grasland. Lineaire regressie-analyse toonde aan dat 93% van de variabiliteit van de bruto 

N-mineralisatie kon verklaard worden door de variaties in het totale N-gehalte, terwijl het 

totale N-gehalte en de C/N verhouding in de groottefractie <50 µm samen 84% van de 

variabiliteit van de netto N-mineralisatie konden verklaren. Het verband tussen lange 

termijn netto N-mineralisatiesnelheid en bruto N-mineralisatiesnelheid kon benaderd 

worden door middel van een logaritmische vergelijking (netto m = 0.24Ln(bruto m) + 

0.23, R2=0.69, p<0.05), hetgeen weergeeft dat de verhouding van bruto N-immobilisatie 

tot bruto N-mineralisatie neigde toe te nemen met toenemende gehaltes aan BOM. De 

microbiële behoefte aan N (immobilisatie) neigde dus toe te nemen met toenemende C-

beschikbaarheid in de onderzochte graslanden, hetgeen erop wijst dat de potentiële N-

retentie in bodems door microbiële N-immobilisatie gelimiteerd neigt te zijn door het 

beschikbare C-gehalte. 

 

In hoofdstuk 5 werd de evolutie van de bruto N-transformatiesnelheden en de 

potentiële N-retentie na minerale bemesting in drie permanente graslanden (0-10 cm 

diepte) met een verschillende textuur (lemige zandbodem, lemige bodem en klei-

leembodem) onderzocht. Differentieel 15N-gelabeld NH4NO3 (dosis van 100 mg N kg-1 

grond) werd toegevoegd aan de drie gronden in gepaarde experimenten (incubaties 

gedurende 30 dagen in het laboratorium). De grootte en 15N-aanrijking van de NH4
+- en 

NO3
--pool en de organische en gefixeerde N-pool werden gemeten op 0, 1, 3, 7, 14 and 30 

dagen na toevoeging van NH4NO3. De experimentele data werden gesimuleerd met het 
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numeriek simulatiemodel FLUAZ (Mary et al., 1998)1 om de bruto N-

transformatiesnelheden te schatten. De cumulatieve bruto N-mineralisatie (ammonificatie) 

en het procentueel aandeel van het initiële N-gehalte dat gemineraliseerd was aan het eind 

van de incubatieperiode waren het grootst in de lemige zandbodem (68 mg N kg-1 of 81 kg 

N ha-1; 2.5% van de initiële N), gevolgd door de klei-leembodem (58 mg N kg-1 of 64 kg 

N ha-1; 1.2% van de initiële N) en de lemige bodem (21 mg N kg-1 of 28 kg N ha-1; 0.8% 

van de initiële N). Deze verschillen in cumulatieve bruto N-mineralisatie konden 

grotendeels verklaard worden door een lager klei- plus leemgehalte in de lemige 

zandbodem (14%) in vergelijking met de lemige bodem (52%) en de klei-leembodem 

(72%), in combinatie met de totale N-gehaltes. De potentiële bruto nitrificatie was 

aanzienlijk hoger in de klei-leembodem (pH 7.2) in vergelijking met de lemige bodem (pH 

6.3) en de lemige zandbodem (pH 5.9). Deze verschillen in potentiële bruto nitrificatie in 

de drie bodems zouden verklaard kunnen worden door de verschillen in pH, of door een 

verschil in de natuurlijk voorkomende, nitrificerende microbiële populatie. In de drie 

onderzochte bodems werden significante hoeveelheden 15N teruggevonden in de 

organische en gefixeerde N-pool, kort na toevoeging van zowel 15NH4
14NO3  als 

14NH4
15NO3, hetgeen wijst op een snelle biotische of abiotische immobilisatiecapaciteit. 

De snelle immobilisatiecapaciteit van 15NH4
+-N was meest uitgesproken in de lemige 

bodem en de klei-leembodem, en kon waarschijnlijk toegeschreven worden aan 

kleifixatie. De totale hoeveelheden 15N teruggevonden in de organische en gefixeerde     

N-pool 30 dagen na toevoeging van 15NH4
14NO3 waren circa 5 keer groter dan de 

hoeveelheden die teruggevonden werden na toevoeging van 14NH4
15NO3, hetgeen ook de 

algemeen waargenomen preferentiële microbiële opname van NH4
+-N ten opzichte van 

NO3
--N weergeeft. De relatief grote NH4

+- en NO3
--immobilisatiesnelheden die werden 

waargenomen gedurende de eerste dagen na toevoeging van NH4NO3, waren vergezeld 

                                                
1 Mary, B., Recous, S., Robin, D., 1998. A model for calculating nitrogen fluxes in soil using 15N tracing. 
Soil  Biology and Biochemistry 30, 1963-1979. 
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door significante remineralisatiesnelheden in de drie onderzochte bodems. Dit wijst erop 

dat een snelle recirculatie optrad door de microbiële biomassa van de recent 

geïmmobiliseerde minerale N, kort na de toevoeging van NH4NO3. De totale bruto N-

immobilisatiesnelheden (i) en de C-mineralisatiesnelheden (mC) waren nauw gerelateerd  

(i = 0.50mC - 0.54, R2=0.85, p<0.01) gedurende de incubatie-experimenten. 
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September, 21-24. 12th Nitrogen Workshop. Poster: Gross N transformation rates and soil 
organic matter contents in grassland soils of different age. IGER, Exeter, United 
Kingdom. 

 
 
 
5.2. Participation in conferences, symposia or workshops without poster or online 

presentation 
 
2000 
 
October, 24. Workshop non-CO2 trace gas emissions (N2O, CH4, NO) from Belgian soils: 

where research and policy meet. Ghent University, Belgium. 
 
2002 
 
October, 17. Studie- en vervolmakingsdag Technologisch Instituut KVIV: 

Stikstofproblematiek in de landbouw: evaluatie, maatregelen, consequenties. 
Technologisch Instituut, Meise, Belgium. 

 
2003 
 
November, 19. Thematic day of the Belgian Soil Science Society: Carbon sequestration in 

terrestrial ecosystems. Belgian Soil Science Society, Brussels, Belgium. 
 
 
 



 


