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Chapter 1

Introduction

1.1 An obstinate misconception

Since its advent in the ’s, the programmable digital computer has been
used for mathematical numeric calculations. Somewhat less known it is also
perfectly possible to program such a device to perform symbolic calculations
and even proofs.

For example, if we want to prove that 1 + 2 + 3 + · · · + n = n·(n+1)
2

,
conventional wisdom seems to be that while we can write a computer program
along the lines of

PRINT "Value of n? "

READ n

sum = 0

counter = 1

WHILE counter <= n DO

sum = sum + counter

counter = counter + 1

DONE

PRINT "1+2+...+n = " sum

PRINT "n*(n+1)/2 =" n*(n+1)/2

which yields

Value of n? 3

1+2+...+n = 6

n*(n+1)/2 = 6

Value of n? 10

1+2+...+n = 55

5



6 CHAPTER 1. INTRODUCTION

n*(n+1)/2 = 55

Value of n? 100

1+2+...+n = 5050

n*(n+1)/2 = 5050

...

using which we can verify the formula for each individual value of n, it is
impossible to use a computer to check the formula for all values of n. To
be certain that this formula holds for all n, still according to conventional
wisdom, a human needs to supply a proof, an argument, to convince one that
the formula indeed holds for all n. For example, one could observe

1 + 2 + 3 + . . . + (n− 1) + n
n + (n− 1) + (n− 2) + . . . + 2 + 1

+
n+ 1 + n+ 1 + n+ 1 + . . . + n+ 1 + n+ 1

and hence, 2 · (1 + 2 + · · ·+ n) = n · (n+ 1), from which the initial formula
easily follows.

At first sight, this conventional wisdom seems correct: how would we be
able to program a computer to process mathematical proofs, of which the
example above is just a very simple one?

1.2 The QED Dream

However, one of the achievements of mathematics in the late ’s is the
realisation that almost all of mathematics can, at least in principle, be derived
from a very small set of axioms using a very small set of so called deduction
rules. In practice, this is rather tedious: Russell later said that his mind never
fully recovered from the strain of writing Principia Mathematica, in which
this is actually done for set theory, cardinal numbers, ordinal numbers, and
real numbers.

With the advent of the computer, the venture of doing mathematics
formally has become a practical possibility. There are currently tens of
systems available to do this. (See for example http://www.cs.ru.nl/

~freek/digimath/index.html, which lists  systems in the categories
‘proof checker’ and ‘theorem prover’.) But why would one embark on such
an arcane mission? The reasons can be manifold:

• Correctness: if we know that the program correctly implements the ax-
ioms and deduction rules, all theorems derived in it are correct. This is

http://www.cs.ru.nl/~freek/digimath/index.html
http://www.cs.ru.nl/~freek/digimath/index.html
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important when one wants to formally verify that a computer program
obeys a certain property (e.g. for use in medical or avionic devices).
It is also pleasant when developing new proofs, since it is hard to be
sure that a proof of a theorem is completely correct. Illustrations of
the difficulty of validating mathematical proofs are for example

– the Fundamental Theorem of Algebra, which purportedly was
proven in  by d’Alembert and later also by Euler, de Foncenex,
Lagrange, Laplace, Gauss, . . . , until finally only in  Argand
supplied the first correct proof,

– the Four Color Theorem, of which incorrect proofs were given in
 by Kempe and  by Tait, which were both believed to be
correct for 11 years, and it was not until  before a completely
correct proof was found.

• Rigour: for most formal systems, a precise semantics is available, and
hence the meaning of a mathematical statement in the system is un-
ambiguously clear. This is in sharp contrast with computer algebra
systems (CAS), such as Maple, Mathematica, Derive, . . . which are no-
toriously sloppy in this regard. An interesting insight in the problems
surrounding the construction of mathematically correct computer alge-
bra systems can be found in [Fateman 1994].

• Assistance: if we use the computer to do mathematics, it could help
us by suggesting existing possibly useful lemmas, doing routine checks
and even automatically filling in some parts of the proof.

• Retrieval: currently, mathematical proofs in journals are increasingly
electronically available, but these are informal proofs, and even for-
mulae are in most of the cases stored in a form which is essentially a
consecution of typographical glyphs from which it is difficult to pro-
grammatically extract the mathematical structure. For example, it is
almost impossible to search for “a formula containing the integral of
a polynomial in sin(x)”. If the theorems would be stored in a formal
system, such queries would be significantly facilitated. In a world in
which yearly 55000 mathematical articles [Impens] containing about
200000 theorems [Hazewinkel 2003] are published, it is increasingly in-
teresting to be able to scan them effectively for theorems which would
be of interest for the problem at hand.

• . . . There are many more reasons; see for example the QED Mani-
festo [QED 1994] for a thorough examination of the usefulness of for-
malising mathematics.
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1.3 An informal introduction to formal logic

1.3.1 An example of a formal proof

A small formal proof might look like this:

1. ∀y¬p(x, y) ` ∀y¬p(x, y) ass
2. ∀y¬p(x, y) ` ¬p(x, y) ∀-elim (1)
3. ∀xp(x, y) ` ∀xp(x, y) ass
4. ∀xp(x, y) ` p(x, y) ∀-elim (3)
5. ∀y¬p(x, y),∀xp(x, y) ` ¬∀xp(x, y) contra (2,4)
6. ¬∀xp(x, y) ` ¬∀xp(x, y) ass
7. ∀y¬p(x, y) ` ¬∀xp(x, y) rem (5,6)
8. ∀y¬p(x, y) ` ∀y(¬∀xp(x, y)) ∀-in (7)
9. ¬∀y(¬∀xp(x, y)) ` ¬∀y(¬∀xp(x, y)) ass

10. ∀y¬p(x, y),¬∀y(¬∀xp(x, y)) ` ¬∀y(¬p(x, y)) contra (8,9)
11. ¬∀y(¬p(x, y)) ` ¬∀y(¬p(x, y)) ass
12. ¬∀y(¬∀xp(x, y)) ` ¬∀y(¬p(x, y)) rem (10,11)
13. ¬∀y(¬∀xp(x, y)) ` ∀x(¬∀y(¬p(x, y))) ∀-intro (12)

where p is a unary predicate symbol (for a rigorous description of the syntax,
see §2.1).

We see that a formal proof is a list containing a number of sequents,
which consist of a list of formulae called the antecedent and a single formula
called the conclusion with a “`” symbol in between. Note that the order
of formulae in the antecedent is not significant, so line 5 could just as well
have read

5. ∀xp(x, y), ∀y¬p(x, y) ` ¬∀xp(x, y) contra (2,4)

Each sequent is ‘obtained’ by applying a deduction rule. For exam-
ple, in the first line of the proof, we obtained the sequent “∀y¬p(x, y) `
∀y¬p(x, y)” using the deduction rule called ‘ass(umption)’—see §2.3 for a
list of all available rules. In the second line, we obtained the sequent
“∀y¬p(x, y) ` ¬p(x, y)” using the deduction rule ‘∀-elim’. This rule needs
as ‘input’ or premise a single sequent obtained earlier in the proof, in this
case the sequent from line 1. In this fashion, we continue to produce sequent
after sequent until the proof ends.

In this way, a formal system could be considered as a kind of game,
where the challenge is to find a way to produce a given sequent (in our case
“¬∀y(¬∀xp(x, y)) ` ∀x(¬∀y(¬p(x, y)))”) using the deduction rules.
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1.3.2 Semantics

Of course, the rules of the calculus are not chosen at random: we can attach a
semantics, meaning or interpretation to a formula in a certain domain ω.

For example, if we set ω to be the natural numbers, we could interpret
p(x, y) as “x ≥ y”. Having fixed ω and the interpretation of p in this way,
using §2.2, we can interpret the formula ¬∀y(¬∀xp(x, y)) as “it is not the case
that for each natural number y, no natural number x is larger than or equal
to y”, i.e., “there exists a natural number y such that every natural number
x is larger than or equal to y”. In this interpretation, the formula is true
or valid (the natural number 0 is a suitable candidate for y). Similarly, the
formula ∀x(¬∀y(¬p(x, y))) is to be interpreted as “for each natural number
x there exists a natural number y such that x is larger than or equal to y”,
which too turns out to be a valid formula (again zero is a suitable candidate
for y).

We can choose another interpretation, where for example ω is the set of
real numbers and p(x, y) is interpreted as “x is the double of y”. Then it
turns out that the first formula is false (or invalid) since it interprets as
“there exists a real number y such that every real number is equal to the
double of y” and the second formula is valid since it interprets as “for each
real number x there exists a real number y such that x is the double of y”
(x

2
is a suitable candidate for y).

Hence, we observe that the interpretation of a formula depends on the
interpretation chosen.

However, it turns out that the interpretation of some formulae can be
independent of the interpretation. For example, the formula ‘x = x’ is always
valid, no matter which interpretation is used. Carrying this idea further, it is
also possible that a formula is always valid, provided some other formula(e)
is (are) valid too in the same interpretation. For instance, it turns out that
∀x(¬∀y(¬p(x, y))) is always valid whenever ¬∀y(¬∀xp(x, y)) is valid, and we
note this as

¬∀y(¬∀xp(x, y)) |= ∀x(¬∀y(¬p(x, y)))

and we say that ∀x(¬∀y(¬p(x, y))) is a consequence of ¬∀y(¬∀xp(x, y)).
The corresponding sequent, ¬∀y(¬∀xp(x, y)) ` ∀x(¬∀y(¬p(x, y))), is called
a sound sequent.

The connection between the formal calculus and the semantics can now
become apparent: it turns out that using the deduction rules, we only can
produce sound sequents (the calculus is sound); conversely, each sound se-
quent can be derived (the calculus is complete).
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1.3.3 Theories

The ‘plain’ first order logic as described above is able to reason about func-
tions and predicates in general. Often, we have some specific functions and
predicates in mind. For example, when discussing natural numbers, we
will probably want to introduce a one-place function ‘successor(x)’ which
we want to interpret as ‘x + 1’, a constant (which we treat as 0-ary func-
tions) ‘0’, and so on. Of course, interpretations don’t have to choose the
set of natural numbers as their domain, and don’t have to interpret ‘suc-
cessor’ as the successor function. To try and force this, one adds axioms,
e.g., ∀x(¬(successor(x) = 0)). Interpretations which interpret this partic-
ular axiom as valid, only allow interpretations of ‘successor’ for which the
interpretation of ‘0’ is not the successor of any element of the domain. This
single axiom is not sufficient to fix the interpretation; for example, we need
to add the axiom ∀x∀y((successor(x) = successor(y)) ⇒ x = y); intuitively,
this expresses that each number has only a single predecessor.

Hence, in practice, we will add to the calculus extra sequents of the form
` α where α is an axiom; we call the resulting formal system a theory. One
can for example consider the theory of natural numbers, the theory of sets,
and so on.

1.4 Partial functions in mathematical prac-

tice

Earlier, we said there are tens of systems available in which one can do
computerised formal mathematics. Why are these systems not commonplace
among mathematicians if the advantages are so numerous? The reasons seem
to be manifold (see e.g. Jones’ Critique of the QED Manifesto [Jones 1995]).
One of them is that we need the formal logic to reflect the common mathe-
matical practice as close as possible. In systems to do computerised formal
mathematics, there is a tendency not to merely reconstruct existing mathe-
matics in a formal framework, but to try and develop a new (better?) mathe-
matics. [. . . ] If we hope to interest many mathematicians [in actually using
such a system], we need to accommodate existing mathematics. We are al-
ready trying to wreak one revolution by making the mathematicians formalise
their work. Surely one revolution at a time is enough! [Harrison 1996b]

An area in which formal logics are notoriously controversial is in their
treatment of partially defined functions (see next section).

In mathematical practice, partially defined functions abound:
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• Division in the real numbers, i.e., the function div(x, y) := x
y

is only
defined when y 6= 0.

•
∞∑
i=1

ai is only defined when the series converges.

• lim
n→∞

an is only defined when the sequence an is convergent.

•
∫
f is only defined when f is (Riemann, Lebesgue, . . . ) integrable.

• GF (q) is only defined when q is a prime power.

Note that even in a logic which does not explicitly cater for partially
defined functions, we can express everything using relations instead (this is
approach (b) in [Farmer 1990]). For example, instead of using the partial
function mapping (x, y) to x

y
, we can use the relation Div(x, y, z), which

contains all triples (x, y, z) for which x
y

is defined and x
y

= z. Hence, the

formula div(x, y) = z becomes Div(x, y, z). This notation quickly becomes
unwieldy. Hence, our task is not one of making the logic more expressive, but
“to find a notationally efficient way of reasoning about partial functions that
is reasonably faithful to mathematical practice and that upsets the framework
of classical logic as little as possible” [Farmer 1990]. In other words, our aim
is not being able to prove more theorems, but to prove them in a way that
corresponds better to mathematical practice.

How does mathematical practice cope with potentially undefined expres-
sions such as 1

x
or
√
y? Almost all introductory mathematical textbooks

present elementary mathematical logic as if it were two-valued; potentially
undefined expressions are allowed only when one first proves that they are
always defined. For example, one is allowed to talk about 1

x
and
√
y pro-

vided that one proves first that x 6= 0 and y ≥ 0. Expressions such as 1
0

are meaningless: one can write them down but is not allowed to use them
or prove properties about them. The mathematical expression “1

0
” is akin

to the natural language expression “the brick is happy” in the sense that 0
possesses no inverse just like bricks have no mood; it makes no sense to try
and discuss such nonsense statements.

We conclude that in mathematical practice one performs a balancing act
between using potentially undefined terms (which seems to call for a three-
valued logic in which expressions be true, false or undefined) and maintaining
the illusion that one works in a two-valued setting.
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1.5 Treating partially defined functions in a

formal calculus

It will appear shortly that there are many different ways in which formal
calculi have been adapted to handle partially defined functions. The mul-
titude of different approaches already indicates that there is probably no
“definitive” way in which once and for all partially defined functions can be
handled, but the way in which they are handled depends on the application
at hand. Each approach has its advantages and disadvantages—there ain’t
no such thing as a free lunch with partial functions as [Jones 1996] puts it.

For example, in computer science, it is very common that an operation is
‘undefined’, for example when trying to read a nonexistent file:

try {

f = open_file_for_reading("nonexistent")

do_something_with_file(f)

} catch (FileException) {

PRINT "Could not read the file"

}

This differs quite from undefinedness in pure mathematics, where terms as 1
0

are considered with suspicion. Here, the result of open_file_for_reading()
can be ‘undefined’, but this is not a problematical situation since we explicitly
state what has to happen when this occurs.

On the other hand, another kind of undefinedness can creep in computer
programs: in most programming languages, the result of some operations
is not specified. For example, in Java, File.delete() evaluates to true

when the file is successfully deleted and to false otherwise, but if the file
did not exist in the first place, the result depends on the particular Java
implementation (so this corresponds to approach (c) in [Farmer 1990]). In
case the specified file did not exist, we could consider this expression as
‘undefined’, since we do not want programs to depend on its exact value. (In
theorem 23 we will prove formally that in our calculus, proofs don’t ‘depend
on undefined values’).

In this work, we extend the classical first order predicate calculus with
identity (as formalised in e.g. [Hermes 1973]) by adding so-called ι-terms to
the calculus, in a way which is analogous to [Hilbert & Bernays 1968]: the
term ‘ιx(ϕ)’ is to be interpreted as ‘the (unique) x for which ϕ is true’. Such
ι-terms are only allowed to be used if one can show that the uniqueness
condition ∃!x(ϕ) holds. For example, in a theory describing real numbers,
we can introduce the operation of subtraction given addition: ‘x− y’ is just
ιz(z + y = x); we can indeed show ` ∃!z(z + y = x).
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However, we extend this “classical” notion of ι-term to situations where
there is not always a unique x satisfying ϕ but only when a certain condition ψ
(the domain formula) holds. For example, if we want to introduce division
in the example given above, we would like to proceed analogously and define
x
y

as ιz(z · y = x); however we can only show that y 6= 0 ` ∃!z(z · y = x); if
y = 0 then either x = 0 and every z satisfies z · y = x, or x 6= 0 and no z
satisfies z ·y = x. We will show that allowing such ι-terms to be added to the
calculus introduces no contradictions, provided one considers the obtained ι-
term as undefined when the uniqueness condition is not met (i.e., we consider
ιz(z · y = x) as undefined if y = 0). We will denote this partially defined
ι-term as ιzy 6=0(z · y = x): in the subscript, we note when the ι-term is
defined (i.e., its domain formula). The interpretation of this ι-term is still
‘the unique z for which z · y = x’ when y 6= 0, but when y = 0, this ι-term
will be interpreted as ‘undefined’.

We will now discuss various ways in which formal calculi have been
adapted to cope with partial functions.

• As already indicated in the previous section, one can avoid the problem
by using a total n + 1-ary relation instead of a partial n-ary function.
(approach (b) in [Farmer 1990], approach 4 in [Jones 1996])

• One can move the problem into the syntax by considering expres-
sions containing applications of functions outside their domain as
not well-formed. This method has drawbacks (see approach (a)
in [Farmer 1990]), one of which is that it is not in line with mathe-
matical practice, in which expressions as 1

x
are well-formed. In our

calculus, a partially defined ι-term is always syntactically well-formed,
even if we cannot deduce its uniqueness condition, e.g., ιxy>5(x < y).
However, we cannot prove anything about it, since otherwise, we would
be able to infer its uniqueness condition (using the UC rule).

• One can model partial functions as total, but keep its value outside
its domain unspecified (approach (c) in [Farmer 1990], approach 1
in [Jones 1996]). For example, terms such as 1

0
are given a value but

one cannot know which one it is, say 19
17

, and hence we would get the
pathological theorem 0

0
= 0 · 1

0
= 0 · 19

17
= 0. The popular HOL sys-

tem (http://www.cl.cam.ac.uk/research/hvg/HOL/) uses this tech-
nique. In our calculus, terms as 1

0
are considered as undefined, avoiding

the pathological theorems.

• One can make a partial function total by giving it a ‘convenient’ value
on points outside its domain. For example, we could set x

0
:= 0. Here

http://www.cl.cam.ac.uk/research/hvg/HOL/
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we get the same risk of introducing pathological theorems as in the
previous approach. ACL2 is a system using this technique.

• One can use a many-sorted logic, where a sort is introduced for each
domain ((d) in [Farmer 1990]). This can lead to a proliferation of sorts
; however, given a sufficiently rich type theory, this approach seems
manageable, as witnessed by the well known PVS, Coq and NuPRL
systems. Our calculus is one-sorted, keeping the calculus simple. This
has the advantage that we can use standard ZFC set theory instead of
type theory. The use of standard set theory makes a system possible
which adheres more to common mathematical practice than type theo-
ries. Interestingly, PVS (http://pvs.csl.sri.com/) has also a notion
of ‘definedness in context’ and hence a notion of evaluation order, which
in fact inspired the handling of undefinedness in our system. PVS has
a separate mechanism of Type Correctness Conditions (TCC’s) to en-
sure that undefinedness does not occur when evaluating. For example,
when one sets out to derive ` x 6= 0⇒ x · y

x
= y, the PVS system gen-

erates the TCC ` x 6= 0 ⇒ x 6= 0, which we have to derive first. This
parallels the requirement of the premise Σ;`ι ∆(α) for the assumption
rule in our calculus; note that ∆

(
x 6= 0⇒ x · y

x
= y
)

is precisely the
formula in the TCC. In contrast to PVS, which is a higher order logic,
our calculus shows that we can apply similar ideas to a first order logic
(this is also done in [Wiedijk & Zwanenburg 2003]—see below).

• One can extend the range of each partial function with a special ‘error’
value ((e) in [Farmer 1990]). For example, the division function would
be modeled as a function from R × R to R ∪ {error}. This approach
seems more suitable to reason about computer programs than abstract
mathematics. For example, 1

1
x

is problematical because (1, error) is not

in the domain of our division function as sketched earlier; we would have
to modify it into a function from R∪{error}×R∪{error} to R∪{error}
and it is easy to see that other functions such as addition, . . . would
be ‘infected’ rapidly too.

• Use ‘error’ values, but do not quantify over them ((f) in [Farmer 1990]).
The ‘error’ value is given an inferior status: free variables range over
the whole domain including error values, but quantified variables do
not range over error values. This alleviates some of the problems with
the previous approach, but the different treatment of free and bound
variables is contrary to mathematical practice. In our calculus, free
and bound variables are treated equally and never are undefined.

http://pvs.csl.sri.com/
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• Use a three-valued logic in which terms and formulae are allowed to
have the value ‘undefined’; if a formula or term contains an undefined
term, it is itself undefined ((g) in [Farmer 1990]). This is akin to our ap-
proach, but in our calculus, undefinedness does not have to ‘propagate
upwards’. For example, in our calculus, the formula x 6= 0 ⇒ 1

x
6= 0

is true, even when x is interpreted as 0, which causes the formula to
contain the undefined subterm 1

0
.

• Use a three-valued logic in which terms are undefined when they
contain an undefined subterm but formulae are always defined. An
atomic formula containing an undefined subterm is considered false
((h) in [Farmer 1990]). The IMPS system uses this approach. This
approach has a number of interesting features. For example, over the
reals,

√
x = 2 ⇔ x = 4 is a theorem, even if x < 0, since for example√

−2 = 2 is considered false because it contains the undefined term√
−2, and −2 = 4 is of course false too. Another example is the the-

orem x = z
y
⇒ x · y = z, which holds even when y = 0, since then we

have that x = z
0

is false because z
0

is undefined and hence the whole
implication is true. However, we also get pathological theorems such
as ¬(1

0
= 1

0
). In our calculus, formulae can be undefined, avoiding the

¬(1
0

= 1
0
) pathological theorem.

• Use a three-valued logic in which terms can be undefined but formu-
lae are always defined, introducing two forms of equality: existential
equality (for which undefined =∃ undefined) and strong equality (for
which undefined 6= undefined) (approach 2 in [Jones 1996]). Not only
is having two different notions of equality confusing, other relational
operators get infected too and also need two variants in the logic.

• Use a three-valued logic in which terms and formulae can be undefined.
The propositional operators are the McCarthy conditional operators.
These operators have slightly different properties compared to their
two-valued counterparts; for example, conjunction is no longer com-
mutative. Hence, both a commutative and a conditional variant of the
propositional operators is used (approach 3 in [Jones 1996]).

Our calculus uses the McCarthy operators, but we do not see the need
to introduce extra commutative variants: the conjunction does not
commute only when undefined terms are involved (see property 35) so
we do not see this as a major problem.

• Use a three-valued logic in which terms and formulae can be unde-
fined. The propositional operators can be thought of as evaluating
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their operands in parallel and delivering a result as soon as enough
information is available (this is the LPF approach [Jones 1996]).

The drawback of this approach is that for example 1+ 1
0

= 1+ 1
0
⇒ 1 = 1

is a theorem, which is contrary to the idea that undefined terms are
nonsensical; we don’t like to have theorems depend on properties of
undefined terms.

• Use a three-valued logic with an extra ‘is defined’ operator (as in
PPC [Hoogewijs 1977]), on equal footing with the other logical symbols
such as ∀, &, ¬, . . . This complicates the logic by introducing an extra
operator. Undefined values are treated more on an equal footing with
true and false values and there is no notion of evaluation order (the
conjunction of PPC is symmetric in both arguments). For example,
with the usual definitions, y = 1

x
` y = 1

x
is a valid sequent in PPC,

whereas it is invalid in our calculus (when I(x) = 0, we encounter an
undefined value).

In our calculus, the operator ‘is defined’ (∆) is a metalogical opera-
tor (so it is not present in proofs or formulae), which makes the logic
simpler for the user; undefined values are not allowed to occur when
evaluating a valid sequent and there is a notion of evaluation order.

Interestingly, in our calculus, both the Herbrand deduction rule
(DdRu1 and DdRu2) and the Modus Ponens rule hold, which is not
possible in PPC.

• Add PVS-like domain conditions to standard first order
logic [Wiedijk & Zwanenburg 2003]. This approach is similar to
our calculus. However, our calculus is an extension of the standard
first order calculus (as given in [Hermes 1973]); domain conditions are
part of the formal proof itself ([Wiedijk & Zwanenburg 2003] requires
one to prove those separately) and functions and predicates do not
have to be strict with respect to undefinedness: we can define a
function or predicate that is defined when some of its arguments are
undefined.

See also [Harrison 1996b] §2.5 where some of these approaches are discussed.

1.6 Introduction to our calculus

The logic which we will develop, which we will call the pitfol calculus (for
Partial Iota Terms in First Order Logic), is a superset of the well-known
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classical first order predicate calculus with identity (see §2 for a short de-
scription). We then add, as already announced, terms of the form ιxψ(ϕ) to
the calculus, adapt the deduction rules as necessary and add new rules. The
resulting system has 17 deduction rules: 6 are transferred unmodified from
the classical calculus, 5 are slightly extended and 6 are new. The extension
is done in such a way that the rules do not change when applied to formulae
of the classical calculus; only when ι-terms are used, the rules deviate from
the classical rules. Moreover, the extension is conservative: if we obtain
a theorem using the new rules and terms which is also expressible in the
classical calculus, this theorem must already have been provable in the clas-
sical calculus. In this way, we have a calculus that “upsets the framework
of classical logic as little as possible”. This illustrates that our aim is not to
be able to prove more theorems; the introduction of ι-terms however helps
in finding proofs that follow mathematical practice better.

To illustrate how our pitfol calculus handles partially defined terms,
let us reconsider the term ιzy 6=0(z · y = x), which as we showed above can
be interpreted as x

y
. If we were to use the classical equality rule, we would

obtain the sequent

` ιzy 6=0(z · y = x) = ιzy 6=0(z · y = x)

which seems harmless enough: it expresses that x
y

= x
y

is a theorem. If
we now interpret this sequent in a model where y is interpreted as 0, the
term ιzy 6=0(z · y = x) is interpreted as “undefined”, and so is the formula
ιzy 6=0(z · y = x) = ιzy 6=0(z · y = x). This is a situation which of course
does not occur in the classical first order predicate calculus, which is two-
valued (formulae are either true or false, never undefined). However, in our
pitfol calculus, sequents can only be sound when one never has to consider
undefined terms or formulae when interpreting it, so the given sequent is not
sound.

The modified equality rule yields

y 6= 0;`ι ιzy 6=0(z · y = x) = ιzy 6=0(z · y = x)

provided we are able to produce the uniqueness condition y 6= 0 `ι ∃!z(z ·y =
x), which in a reasonable theory about real numbers should pose no problems.
The meaning of the semicolon will become apparent later; for the time being,
we just note that in this particular case we are allowed to drop the semicolon
(the impatient reader may consult the fromCtxt and toCtxt rules in §3.4),
yielding

y 6= 0 `ι ιzy 6=0(z · y = x) = ιzy 6=0(z · y = x)
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Is the latter sequent sound? Let us again evaluate it in a model where y
is interpreted as 0. Crucial for our pitfol calculus is the notion of a left-
to-right short circuit evaluation, which we will now see in action: we
first interpret all formulae on the left hand side of the sequent. When we
find that at least one of them interprets as ‘undefined’, the whole sequent is
considered unsound, since we agreed that in sound sequents, we never have to
consider undefined formulae. When we find that no left hand side formulae
interpret as ‘undefined’ and at least one of them interprets as ‘false’, the whole
sequent is interpreted as ‘true’ (i.e., sound), without considering the formula
on the right hand side of the sequent (its consequent)—hence the name
‘short circuit’ evaluation. We are in this situation here: the interpretation
of y 6= 0 is clearly ‘false’, so the sequent is ‘true’ for this interpretation. For
all other interpretations, where y is interpreted as a real number different
from 0, the formula y 6= 0 is interpreted as ‘true’ and we have to consider the
consequent, which clearly interprets as ‘true’, so in this case too, the whole
sequent remains ‘true’.

We believe this approach is “faithful to mathematical practice”: one is
allowed to prove theorems about potentially undefined terms such as x

y
, but

only in contexts where one has already shown that they cannot be undefined
(here, that y must necessarily be nonzero).

To continue our illustration, let us consider the term

ιwy≥0(w ≥ 0 & w · w = y),

which can be interpreted as
√
y. Another application of the substitution rule

to the sequent we obtained thus far, yields the difficult to decipher sequent

y ≥ 0; ιwy≥0(w ≥ 0 & w · w = y) 6= 0

`ι ιzy≥0&ιwy≥0(w≥0&w·w=y)6=0(z · ιwy≥0(w ≥ 0 & w · w = y) = x)

= ιzy≥0&ιwy≥0(w≥0&w·w=y)6=0(z · ιwy≥0(w ≥ 0 & w · w = y) = x)

If we consider
√
y for a moment as a shorthand for ιwy≥0(w ≥ 0&w ·w = y),

the sequent becomes somewhat more readable:

y ≥ 0;
√
y 6= 0 `ι ιzy≥0&

√
y 6=0(z · √y = x) = ιzy≥0&

√
y 6=0(z · √y = x)

and if we consider in turn x√
y

as a shorthand for ιzy≥0&
√
y 6=0(z · √y = x), we

finally get

y ≥ 0;
√
y 6= 0 `ι

x
√
y

=
x
√
y

If nothing else, from this example we learn that a facility for introducing
shorthands (defined symbols) is a necessity; we will illustrate it shortly
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but for now consider notations like x
y
,
√
y, x√

y
, . . . to be just abbreviations

for the rather lengthy terms given above.
Moreover, this example also illustrates why we needed to extend the notion
of sequent to the form

σ1, σ2, . . . , σm; γ1, γ2, . . . , γm `ι α

where γ1, γ2, . . . , γm is still called the antecedent and we will call
σ1, σ2, . . . , σm the context of the sequent. (If the context is empty, we drop
the semicolon and just write γ1, γ2, . . . , γm `ι α.)
Indeed, the sequent

y ≥ 0,
√
y 6= 0 `ι

x
√
y

=
x
√
y

is not a sound sequent. Consider an interpretation where y is interpreted as
−1. Interpreting the sequents of the antecedent yields “false” resp. “unde-
fined”. If we interpret y ≥ 0 first, we would be tempted to conclude that the
interpretation of the whole sequent would be ‘true’, but in the antecedent,
the order of the formulae is unimportant and we could just as well have
started with the interpretation of

√
y 6= 0. Since it is possible to encounter

an undefined formula when interpreting the sequent, it cannot be sound.
Hence, it is necessary to consider the version of the sequent with the

semicolon. In contrast to the antecedent, the order of formulae in the context
is significant; we are required to first interpret σ1; if it is false then the whole
sequent is automatically true (without considering the rest of the sequent,
hence again short circuit evaluation). If it is undefined, the sequent is invalid.
If it is true, then we have to consider σ2 in a similar fashion. Only when all
σi interpret as true, we have to consider the interpretation of the formulae
in the antecedent.

Let us now illustrate the introduction of defined symbols, the need for
which has been amply demonstrated. It turns out (see chapter 5) that we
can indeed add the following sequents to the calculus:

y 6= 0 `ι div(x, y) = ιzy 6=0(z · y = x)

y ≥ 0 `ι sqrt(y) = ιwy≥0(w ≥ 0 & w · w = y)

Note that there are no domain formulae present in the defined symbols (i.e.,
we do not have to write something like “divy 6=0(x, y)” or “sqrty≥0(y)”); we
will establish in chapter 5 that from the sequents above, one can extract all
that is needed to keep the calculus consistent.

Finally, we remark that pathological theorems we found in other systems
such as ` 1

0
6= 1

0
simply are not sound (and hence not deducible) in our

calculus.
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The price we have to pay for the simple semantics (“evaluate from left
to right and you will never encounter an undefined term”) and the absence
of pathological theorems is a certain amount of verbosity in the logic. For
example, suppose we are working in a suitable developed theory of real num-
bers in which the function limn→∞ xn is only defined for convergent sequences
xn. Then the sequent

lim
n→∞

xn = a, lim
n→∞

yn = b ` lim
n→∞

xn + yn = a+ b

is not a valid sequent in our calculus, but

convergent(xn), convergent(yn); lim
n→∞

xn = a, lim
n→∞

yn = b ` lim
n→∞

xn+yn = a+b

is. It remains to be seen whether this “considerable clutter with definabal-
ity assumptions” [Harrison 1996] can be controlled enough to outweigh the
advantages.

In practice, it seems this clutter is bearable enough; for example the
corresponding theorem in the Mizar library reads

theorem :: SEQ_2:20

seq is convergent & seq’ is convergent implies

lim (seq + seq’)=(lim seq)+(lim seq’);

Even more ‘clutter’ is to be seen in the corresponding theorem for real
functions:

theorem :: LIMFUNC3:37
f1 is_convergent_in x0 & f2 is_convergent_in x0 &
(for r1,r2 st r1<x0 & x0<r2 ex g1,g2 st
r1<g1 & g1<x0 & g1 in dom(f1+f2) & g2<r2 & x0<g2 & g2 in dom(f1+f2))

implies
f1+f2 is_convergent_in x0 & lim(f1+f2,x0)=lim(f1,x0)+lim(f2,x0);

So probably in practice, one can live with the extra clutter in theorems—
the Mizar library is one of the largest library of formally proven mathematics
in the world.



Chapter 2

First order predicate calculus
with identity

As a starting point for our logic, we use the well known first order predicate
calculus with identity, as formalised in [Hermes 1973]. We will refer to this
formalisation as the Hermes calculus.

2.1 Syntax

The Hermes calculus uses a first order language consisting of

• variable symbols, consisting of a number of letters: x, y, z, xyzzy , . . .
We suppose that we have countably many variable symbols to our dis-
posal.

• function symbols, consisting of a number of letters. We suppose that
we have countably many function symbols and that we can distinguish
them somehow from the variable symbols. Each function symbol has
an arity which is a natural number. Function symbols with arity zero
are also called constant symbols.

• predicate symbols, with analogous conditions. Each predicate sym-
bol has an arity which is a natural number.

• the connectives ‘¬’ and ‘&’

• the quantifier ‘∀’

• the equality symbol ‘=’

21
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• punctuation symbols: the brackets ‘(’ and ‘)’ and the comma symbol
‘,’. For clarity, we will sometimes omit some brackets.

From these symbols, terms are constructed as follows:

• A variable symbol is a term.

• If f is a n-ary function symbol and t1, t2, . . . , tn are terms, then
f(t1, t2, . . . , tn) is a term.

Next, formulae are built up following these rules:

• If t1 and t2 are two terms, then t1 = t2 is a formula. We call this kind
of formula atomic.

• p is a n-ary predicate symbol and t1, t2, . . . , tn are terms, then
p(t1, t2, . . . , tn) is a formula. We call this kind of formula atomic too.
For syntactical purposes, we will often treat = as if it were a 2-ary
predicate symbol. Whenever we proceed as such, we will mention that
‘the case t1 = t2 is treated analogously’.

• If α is a formula, then ¬α is a formula too.

• If α and β are formulae, then so is (α&β). We will not always explicitly
write down the enclosing brackets around this kind of formula.

• If α is a formula and x a variable symbol, then ∀x(α) is a formula.

We will use the metalogical symbols ≡ and 6≡ to express that two se-
quences of symbols are equal or not equal. We will often use variable names
as x where we actually mean names for a variable name (just like we did
when we said ‘∀x(α) is a formula’, where x can be any variable symbol).

With each formula and term, we associate a finite set of variable symbols,
called the free variables of that formula or term, as follows:

• A term x has x as its only free variable.

• A term f(t1, . . . , tn) has as free variables the union of the free variables
of t1, . . . , tn−1 and tn.

• An atomic formula t1 = t2 has as free variables the union of the free
variables of t1 and the free variables of t2.

• An atomic formula p(t1, . . . , tn) has as free variables the union of the
free variables of t1, . . . , tn−1 and tn.
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• A formula of the form ¬α has exactly the same free variables as α.

• A formula of the form (α & β) has as free variables the union of the
free variables of α and the free variables of β.

• The free variables of a formula of the form ∀x(α) are the same as those
of α, except x. We say that x is a bound variable of ∀x(α).

Note that a variable can occur both free and bound in an expression: in

∀x(x = y) & z = x

the x in x = y is bound but the x in z = x is free.
Note also that nothing forbids a variable to be ‘bound twice’:

∀x(x = y & ∀x(z = x))

is a legitimate formula.

Given a term τ , a variable x and a term t, we call [t/x]τ the substitution
of t for x in τ , which is the term obtained by replacing in τ all occurrences
of x by t. More explicitly, we can define [t/x]τ like this:

• If τ is a variable symbol and τ ≡ x, then [t/x]τ ≡ t.

• If τ is a variable symbol and τ 6≡ x, then [t/x]τ ≡ τ .

• If τ ≡ f(τ1, . . . , τn), then [t/x]τ ≡ f([t/x]τ1, . . . , [t/x]τn). If c is a con-
stant symbol, then [t/x]c ≡ c, in line with our definition of constant
symbols as 0-ary function symbols.

Given a formula α, a variable x and a term t, we call [t/x]α the substi-
tution of t for x in α, which is a formula obtained as follows by induction
on the structure of α.

• If α is atomic and of the form α ≡ t1 = t2, then [t/x]α ≡ [t/x]t1 = [t/x]t2.

• If α is atomic and of the form α ≡ p(t1, . . . , tn) then [t/x]α ≡
p([t/x]t1, . . . , [t/x]tn).

• [t/x]¬α ≡ ¬ [t/x]α.

• [t/x](α & β) ≡ [t/x]α & [t/x]β.
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• If x is not a free variable of ∀y(α), then [t/x]∀y(α) ≡ ∀y(α); in partic-
ular, [t/x]∀x(α) ≡ ∀x(α).
If x is a free variable of ∀y(α) and y is not a free variable of t, then
[t/x]∀y(α) ≡ ∀y([t/x]α).
If x is a free variable of ∀y(α) and y is a free variable of t, then the
substitution [t/x]∀y(α) is undefined (in the sense that there is no such
formula as [t/x]∀y(α)); we say that the substitution would capture the
free variable y of t.

As we can see, substitution is not defined when the substitution would cause
a free variable of t to become bound (‘captured’).

We remark that if y does not occur in α, the substitution [y/x]α is always
defined.

A sequent is an expression of the form γ1, γ2, . . . , γn ` α. The list
γ1, . . . , γn is called the antecedent of the sequent; α is its consequent
(in the literature also called succedent). We suppose that the antecedent
does not contain the same formula more than once; if that would be the
case, we silently delete its other instances. The order and multiplicity of the
formulae in the antecedent is not important, i.e., we consider two sequents
whose antecedents contain the same formulae identical even when they are
in a different order or are repeated. For example, we consider

x = y, y = z ` x = z

and

y = z, y = z, x = y, y = z ` x = z

as two different notations for the same sequent.
In the sequel, we will use a few abbreviations:

• α ∨ β is an abbreviation for ¬(¬α & ¬β)

• α⇒ β is an abbreviation for ¬(α & ¬β)

• α⇔ β is an abbreviation for (α⇒ β) & (β ⇒ α)

• ∃x(α) is an abbreviation for ¬∀x(¬α)

2.2 Semantics

We start from a domain ω, which must be a non-empty set. An interpreta-
tion is a function I defined on the variable, function and predicate symbols,
such that
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• for each variable symbol x we have I(x) ∈ ω,

• for each n-ary function symbol f , I(f) is an n-place function over ω,

• for each n-ary predicate symbol p, I(p) is an n-place predicate over ω.

Intuitively, an interpretation fixes a ‘meaning’ for each symbol of the formal
language.

Remark that all functions and predicates above are total, i.e., defined for
all n-tuples of elements of ω where n is the arity of the function or predicate.

An interpretation depends on the domain chosen, so actually we should
write Iω, but in the sequel we suppose the domain to be a fixed set and just
write I to ease the notation.

Given an interpretation I, a variable symbol x and an element a ∈ ω, we
define a new interpretation Iax as follows:

• Iax(x) := a

• Iax(y) := I(y) if x 6≡ y.

We write Iaxby as an abbreviation of (Iax)by.
Starting from I, we can associate an element of ω to each term t. As not

to burden the notation, we will note this element too as I(t). It is defined
inductively by setting

I(f(t1, . . . , tn)) := I(f)(I(t1), . . . , I(tn))

We say that a formula α is valid in an interpretation I, or synonymously
that I is a model of α, if

• If α is atomic, then we say that t1 = t2 is valid in I if and only
if I(t1) = I(t2), and that p(t1, . . . , tn) is valid in I if and only if
I(p)(I(t1), . . . , I(tn)) holds.

• ¬α is valid in I if α is not valid in I.

• α & β is valid in I if both α and β are valid in I.

• ∀x(α) is valid in I if for each a ∈ ω, α is valid in Iax .

We say that a list of formulae Γ is valid in an interpretation I, or syn-
onymously that I is a model of Γ, when all formulae of Γ are valid in I (i.e.,
I is a model of all formulae of Γ).

We say that a formula α is a consequence of a list of formulae Γ when
for any I we have that I is a model of α whenever it is a model of Γ. We note
this as Γ |= α and call the corresponding sequent Γ ` α a sound sequent.
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2.3 Deduction rules

The Hermes calculus is a sequent calculus which uses the following deduction
rules. The Greek letters α and β stand for formulae; Γ and ∆ stand for lists
of formulae; x stands for a variable and t for a term. Premises are above
the horizontal line and the conclusion below. As indicated above, double
formulae are to be removed from the antecedent of the conclusion and the
order of the formulae in the antecedent is not important.

We present abbreviated names of the rules in a box at the top of the rule,
to be able to concisely refer to them in the sequel.

Assumption introduction:
ass
α ` α

&-introduction:

&-intro

Γ ` α
∆ ` β

Γ,∆ ` α & β

&-elimination:

&-elim

Γ ` α & β
Γ ` α

&-elim

Γ ` α & β
Γ ` β

Removal:

rem

Γ, α ` β
∆,¬α ` β

Γ,∆ ` β

Contradiction:

contra

Γ ` α
∆ ` ¬α

Γ,∆ ` β

∀-introduction:
Γ ` α
Γ ` ∀x(α)

provided x is not free in Γ

∀-elimination:

∀-elim

Γ ` ∀x(α)
Γ ` α

Substitution:

subst

Γ ` α
[t/x]Γ ` [t/x]α

where [t/x]Γ means substituting t for x in
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all formulae of Γ. This rule can only be applied if all the substitutions are
defined.

Equality rules:
eq

` t = t

eqSubst

Γ ` α
Γ, x = t ` [t/x]α

The latter rule can only be applied if the substitution [t/x]α is defined.

We call a sequent derivable if it can be obtained by applying a deduction
rule with derivable sequents as premises. From now on, we will use the symbol
` only for derivable sequents; with the phrase “we have Γ ` α” we mean that
this sequent is a derivable one.

A proof is a finite list of sequents s1, s2, . . . , sn where each si is obtained
by applying one of the deduction rules with as antecedents sequents obtained
earlier in the proof; i.e., if sj is used as an antecedent, then j < i.

We call two formulae α and β equivalent when α ` β and β ` α are
derivable. We note this as α a` β. We call two formulae α and β equivalent
under the condition γ when α, γ ` β and β, γ ` α.

We call a formula α a validity if ` α is derivable.
One proves that the predicate calculus is sound: when Γ ` α, then

Γ |= α. In other words, each derivable sequent is a sound sequent: we cannot
derive unsound sequents using the deduction rules.

One proves also that the predicate calculus is complete: when Γ |= α,
then Γ ` α. In other words, all sound sequents are derivable.
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Chapter 3

Partially defined iota terms

3.1 Introduction

Whenever we prove that only one object x satisfying a certain property given
by a formula ϕ exists, we want to be able to give it a name so we can reason
about it. Hence we want to introduce a new kind of term in our logic of the
form

ιx(ϕ)

meaning ‘the (unique) x for which ϕ holds’.
For example, in a theory about real numbers (i.e., ω is the set of reals),

one can prove that there exists only one x such that

x · x = 5 & x > 0

(where we suppose that ‘5’ and ‘0’ are constants). This is of course the real
number more customarily denoted with ‘

√
5’.

In that case, we want to introduce a new term

ιx(x · x = 5 & x > 0)

read as ‘the x such that x · x = 5 & x > 0’, the interpretation of which will
correspond to

√
5. This kind of terms has been introduced in the literature

as ι-terms ([Hilbert & Bernays 1968]).
To deal with such terms, we will introduce a new calculus

[Vernaeve & Hoogewijs 2007a] [Vernaeve & Hoogewijs 2007a]which we will
coin the pitfol calculus (for Partial Iota Terms in First Order Logic). It will
be a superset of the first order predicate calculus with identity as presented
earlier (which we will also call the ‘Hermes calculus’) in the sense that each
term, formula, proof, . . . of the Hermes calculus is a term, formula, proof, . . .
of the pitfol calculus.

29



30 CHAPTER 3. PARTIALLY DEFINED IOTA TERMS

We will only allow terms of the form ιx(ϕ) to appear in a proof when we
have a proof of

` ∃x(ϕ) & ∀x∀y((ϕ& [y/x]ϕ)⇒ x = y)

where y is a variable not occurring in ϕ. We will call this the uniqueness
condition for ιx(ϕ) and use the shorthand notation

` ∃!x(ϕ)

These terms can also contain free variables:

ιx(x · x = z & x > 0)

is a term whose interpretation will correspond to
√
I(z). However, this is a

bad example because we cannot prove the uniqueness condition (there is no
such x when z < 0).

We see from the last example that not everything we would like is a valid
ι-term. To fix the definition of ‘

√
z’, we could write

ιx((z ≥ 0⇒ (x · x = z & x > 0)) & (z < 0⇒ x = 0))

which interprets as
√
I(z) whenever the square root is defined (i.e., when

I(z) ≥ 0—we suppose for the sake of the example that I(≥) is the predicate
≥ on the real numbers) and as 0 in the other cases.

However, such definitions are rather clumsy and give rise to strange side
effects; for example, from

√
z = 0 we cannot conclude any more that z = 0

since z could have been any negative number too.
Another classic example is ‘x

y
’, defined as

ιz((y 6= 0⇒ x = z · y) & (y = 0⇒ z = 0))

where we again encounter a side effect: ` 0
0

= 0 would be provable. This of
course causes no inconsistencies, but it does not mirror the common mathe-
matical practice, which forbids one from considering square roots of negative
numbers or divisions by zero.

To meet this need, we introduce partially defined iota terms. These
terms have the form

ιxψ(ϕ)

and are to be interpreted in the same way as ιx(ϕ), but are only defined
whenever ψ holds: if ψ is not valid then the interpretation of ιxψ(ϕ) is
undefined; otherwise it is the unique x for which ϕ holds. We see that
interpretations become three-valued: the interpretation of a term or formula
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can be ‘undefined’. If a term or formula is not undefined in an interpretation
(i.e. it denotes an element of the domain resp. is valid or invalid) we call it
defined in that interpretation.

A partially defined iota term ιxψ(ϕ) is only allowed to be used inside a
proof whenever its uniqueness condition has been proved first:

ψ ` ∃x(ϕ) & ∀x∀y((ϕ& [y/x]ϕ)⇒ x = y))

where y is a variable not occurring in ϕ, or in shorthand:

ψ ` ∃!x(ϕ)

How will we handle undefined terms? Our solution is to make sure that
when we are to interpret a term and find that it is undefined, the sequent in
which it appears is automatically unsound. For example,

Γ ` ιyx 6=0(x · y = 1) 6= 0 (meaning “Γ ` 1

x
6= 0”)

is only sound when Γ ` x 6= 0. More specifically,

` ιyx 6=0(x · y = 1) 6= 0 (meaning “ ` 1

x
6= 0”)

is unsound since ιyx 6=0(x · y = 1) is undefined when we interpret x as 0.
However, we want

x 6= 0 ` 1

x
6= 0 , x > 0 ` 1

x
> 0 and ` x > 1⇒ 1

x
< 1

(where 1
x

is a fancy notation for the iota term ιyx6=0(x ·y = 1)—we will handle
defined function symbols later) to be sound sequents. We see that in order
to determine whether a term is defined or not, we need to take the ‘context’
into account. In the three last examples, from each of the ‘contexts’ ‘x 6= 0’,
‘x > 0’ and ‘x > 1’, we can deduce that ‘x 6= 0’, which is the condition for
the definedness of 1

x
. The notion of ‘context’ entails that when interpreting

a sequent, we first interpret the left hand sides of ` and & (and hence, of
⇒ too) and can make use of this information to deduce that terms in their
right hand sides are defined.

It will become clear that the condition ψ itself must be defined in any
interpretation, i.e., in a valid sequent, the term

ιx 1
y

=5(. . .)
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cannot occur because 1
y

= 5 is undefined in any interpretation that interprets
y as 0; however,

ιxy 6=0& 1
y

=5(. . .)

will turn out to be a usable ι-term, because y 6= 0 & 1
y

= 5 will turn out to

be always defined (see below).
Note that even pathological terms like ‘ιx 1

y
=5(. . .)’ are syntactically well-

formed; we just cannot prove anything about them, because we cannot derive
the uniqueness condition

1

y
= 5 ` ∃!x(. . . )

Indeed, this sequent has to be unsound because in an interpretation where y
is interpreted as 0, the interpretation of 1

y
= 5 is undefined.

Another consequence of the ‘first interpret the left hand side of &’ rule is
that the conjunction is no longer commutative when one of its arguments is
undefined.

To illustrate this, we look again at the formula y 6= 0 & 1
y

= 5. In an in-
terpretation where y is interpreted as 0, the left hand side of the conjunction
is invalid and hence we conclude that the whole formula is invalid, without
considering the interpretation of the right hand side.
If we consider another interpretation where y is not interpreted as 0, the left
hand side of the conjunction is valid and we have to determine the interpre-
tation of 1

y
= 5, which may be valid or invalid, but never undefined since 1

y

is defined when y is not interpreted as 0.
On the other hand, the formula 1

y
= 5 & y 6= 0 is undefined whenever the

interpretation of y is 0. Indeed, we first have to determine the interpretation
of 1

y
= 5 which is undefined since we have to interpret the term 1

y
.

3.2 Syntax

The syntax of the calculus with partially defined iota terms (the pitfol
calculus) is an extension of the syntax of the calculus without iota terms
(the Hermes calculus).

The terms and formulae of the pitfol calculus are constructed using the
same rules as those of the Hermes calculus with the addition of

• If ϕ and ψ are formulae of the pitfol calculus and x is a variable
symbol then ιxψ(ϕ) is a term. This kind of terms will be called ι-
terms. We call ψ the domain formula and ϕ the definiens of the
ι-term.
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Note that the terms of our new calculus can be divided into three cate-
gories:

• ι-less terms, not containing any ι symbol. These terms correspond to
the terms of the Hermes calculus.

• Terms of the form ιxψ(ϕ), which we call ι-terms.

• Other terms of the pitfol calculus, which are not ι-terms themselves
but contain one or more ι-terms inside them, for example f(ιxψ(ϕ)).

Remark that ι-terms are allowed to contain free variables (in the litera-
ture, sometimes such terms are called ‘ι-expressions’ and only get the name ‘ι-
term’ when they do not contain free variables, e.g. [Hilbert & Bernays 1968]).

The uniqueness condition corresponding to a ι-term ιxψ(ϕ) is the se-
quent

ψ `ι ∃!x(ϕ).

Note that even if the uniqueness condition ψ `ι ∃!x(ϕ) has not been
derived, we still consider ιxψ(ϕ) to be a syntactically well-formed ι-term,
although in the sequel it will turn out that they cannot appear in proofs.

The formulae of the pitfol calculus are built up in the same way as those
of the Hermes calculus, but of course their terms are terms of the pitfol
calculus. From now on, a ‘formula’ will stand for a formula of the pitfol
calculus unless we explicitly note otherwise.

Remark that in the pitfol calculus, not only do formulae contain terms,
but terms also can contain formulae (domain formula and definiens of ι-
terms).

Given a formula α or term t, we denote the list containing all occurrences
of its top-level ι-terms (i.e., those ι-terms that are themselves not contained
into another ι-term) as TLI(α) resp. TLI(t). Formally,

• TLI(x) ≡ (), the empty list

• TLI(ιxψ(ϕ)) ≡ (ιxψ(ϕ))

• TLI(f(t1, t2, . . . , tn)) ≡ TLI(t1) : TLI(t2) : . . . : TLI(tn)

• TLI(t1 = t2) ≡ TLI(t1) : TLI(t2)

• TLI(p(t1, t2, . . . , tn)) ≡ TLI(t1) : TLI(t2) : . . . : TLI(tn)

• TLI(¬α) ≡ TLI(α)

• TLI(α & β) ≡ TLI(α) : TLI(β)
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• TLI(∀x(α)) ≡ TLI(α)

where ‘:’ denotes the list concatenation operator and (e) the list with the
single element e.

Given a formula α or term t, we denote the list containing the uniqueness
conditions corresponding to all its top-level ι-terms as UC(α) resp. UC(t).
In the sequel, we will also refer to this list as “the uniqueness conditions for
a term or formula”. Formally,

• UC(x) ≡ (), the empty list

• UC(ιxψ(ϕ)) ≡ (ψ `ι ∃!x(ϕ))

• UC(f(t1, t2, . . . , tn)) ≡ UC(t1) : UC(t2) : . . . : UC(tn)

• UC(t1 = t2) ≡ UC(t1) : UC(t2)

• UC(p(t1, t2, . . . , tn)) ≡ UC(t1) : UC(t2) : . . . : UC(tn)

• UC(¬α) ≡ UC(α)

• UC(α & β) ≡ UC(α) : UC(β)

• UC(∀x(α)) ≡ UC(α)

We will denote ιx(ϕ) as an abbreviation for ιx∀x(x=x)(ϕ), i.e., a ι-term for
which the definedness condition is always satisfied.

The notion of free variable of a term is extended with

• A term ιxψ(ϕ) has as free variables the union of the free variables of
ϕ except x (which we call a bound variable of the term) and the free
variables of ψ. Symbolically, if we denote the set of free variables of a
term t as FV (t), then

FV (ιxψ(ϕ)) = (FV (ϕ) \ {x}) ∪ FV (ψ).

Note that any free occurrences of x in ψ are not bound by the ι.

A pitfol sequent is an expression of the form

σ1, σ2, . . . ; γ1, γ2, . . . `ι α

where the σ’s, γ’s and α are formulae of the pitfol calculus. If there are
no σ’s, then the leading semicolon is to be dropped. Note that we add a
ι subscript to the ` symbol to indicate the difference with sequents of the
Hermes calculus.
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The finite and possibly empty list σ1, σ2, . . . is called the context of the
sequent; the finite and possibly empty list γ1, γ2, . . . is called the antecedent
and the mandatory formula α is the consequent.
As before, the order and multiplicity of the formulae of the antecedent is not
important. However, the order of the formulae in the context is significant.
When the context contains double formulae, we consider the sequent identical
to the same sequent in which we only keep the first copy of the double formula
in the context. Note that a formula is allowed to occur both in the antecedent
and the context of the conclusion; we are not allowed to remove those double
formulae.

For example, we consider the sequent

α, α, β, α, γ, β; γ, γ, α `ι δ

identical to the sequent α, β, γ; γ, α `ι δ and, since we noted that the order of
the formulae in the antecedent is not important, the sequent α, β, γ;α, γ `ι δ.
However, it is different from the sequent α, β, γ; γ `ι δ.

If α is a formula, then informally, ∆(α) is defined as the formula that
states when α is defined. However, ∆(α) may also be the symbol > in case α
is always defined. The logic will be constructed in such a way that the symbol
> will never occur inside sequents; it is just a syntactical device to aid in
the construction of ∆(α). Semantically, > will behave as if its interpretation
were ‘true’.

For example, ∆(ιxy 6=0(x · y = 1) > 0) will be y 6= 0. Note that the
symbol ∆ is not part of our formal language; ∆(α) is a metalogical operator
that maps the formula α to another formula or the symbol >. We will again
use the notation α ≡ β to express that two formulae are identical (where ≡
is also a metalogical operator).
Likewise, if t is a term, ∆(t) will be the formula (or the symbol >) that
states when t is defined, so ∆(ιxy 6=0(x · y = 1)) ≡ y 6= 0.

Formally, ∆(t) is defined as follows:

• If t is a variable symbol, then ∆(t) is >.

• ∆(f(t1, t2, . . . , tn)) ≡∆(t1) & (∆(t2) & (. . .& (∆(tn−1) & ∆(tn)))) and
for 1-ary function symbols ∆(f(t1)) ≡∆(t1). If c is a constant symbol,
we define ∆(c) also as >, in line with our definition of constant symbols
as 0-ary function symbols.

• ∆(ιxψ(ϕ)) ≡ ψ.
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One could also express these rules less formally as ∆(t) ≡ ψ1&ψ2&. . .&ψn up
to associativity, where ψ1, ψ2, . . . , ψn are the domain formulae of the top-level
ι-terms of t in left-to-right order.

Note that the associativity of ∆(t) depends on the structure of t. For
example, ∆(f(g(ιxψ1(ϕ1), ιxψ2(ϕ2)), ιxψ3(ϕ3))) ≡ (ψ1 & ψ2) & ψ3.

Note that from the sequel, it will appear that the conjunction is as-
sociative (property 34), and moreover, in this case also commutative
(since from the uniqueness conditions ψi `ι ∃!x(ϕi) we can conclude
`ι ∆(ψi); see property 35). So there’s no real reason to insist on this
specific form of ∆(t).

As indicated above, we don’t want the symbol > to occur in sequents. To
achieve this, we will assume that formulae containing > are automatically
simplified with the rules

α &> → α
>& α → α
∀x(>) → >

We see that, using these rules, either the symbol > does not occur in ∆(t)
or ∆(t) ≡ >.

For formulae, the formal definition of ∆(α) is

• ∆(t1 = t2) ≡∆(t1) & ∆(t2)

• ∆(p(t1, t2, . . .)) ≡ ∆(t1) & (∆(t2) & (∆(t3) & . . .)); for 0-ary predicate
symbols we have again ∆(p(t1, t2, . . .)) ≡ >

• ∆(¬α) ≡∆(α).

• If ∆(β) 6≡ >, then we define ∆(α & β) ≡ ∆(α) & (α ⇒ ∆(β)), which
is an abbreviation for ∆(α) & ¬(α & ¬(∆(β))). Note that we have
given no simplification rule for ¬>, so we have to define explicitly
∆(α & β) ≡∆(α) in case ∆(β) ≡ >.

• ∆(∀x(α)) ≡ ∀x(∆(α)).

For atomic formulae α, we see again that up to associativity, ∆(α) ≡ ψ1 &
ψ2 & . . . & ψn where ψ1, ψ2, . . . , ψn are the domain formulae of the top-level
ι-terms of α.

Finally, we define ∆(>) ≡ >.
As an example, let us reconsider the term

t ≡ ιzy≥0&ιwy≥0(w≥0&w·w=y)6=0(z · ιwy≥0(w ≥ 0 & w · w = y) = x).
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We already met this term in the introduction and noticed that one could
interpret it as x√

y
.

Then we have ∆(t) ≡ y ≥ 0 & ιwy≥0(w ≥ 0 & w · w = y) 6= 0, and

∆(∆(t)) ≡∆(y ≥ 0) & y ≥ 0⇒∆(ιwy≥0(w ≥ 0 & w · w = y) 6= 0)

≡ >& y ≥ 0⇒ y ≥ 0

≡ y ≥ 0⇒ y ≥ 0.

For another example, reconsider the formula ¬(y = 0) & ιx¬(y=0)(y · x =
1) = 5, which we abbreviated as y 6= 0 & 1

y
= 5. We then have

∆

(
¬(y = 0) &

1

y
= 5

)
≡∆(¬(y = 0)) &

(
(¬(y = 0))⇒∆

(
1

y
= 5

))
≡ >& ((¬(y = 0))⇒ ¬(y = 0))

≡ (¬(y = 0))⇒ ¬(y = 0).

Substitution is defined as in the Hermes calculus, extended with the case
[t/x]ιyψ(ϕ) as follows:

• If x ≡ y or if x is not a free variable of ϕ, then [t/x]ιyψ(ϕ) ≡ ιyψ(ϕ)
when x is not a free variable of ψ, or [t/x]ιyψ(ϕ) ≡ ιy∆(t)&[t/x]ψ(ϕ) when
x is a free variable of ψ.

• If x 6≡ y and x is a free variable of ϕ and y is not a free variable of t,
then [t/x]ιyψ(ϕ) ≡ ιy∆(t)&[t/x]ψ([t/x]ϕ).

• If x 6≡ y and x is a free variable of ϕ and y is a free variable of t, then
[t/x]ιyψ(ϕ) is undefined; we say that the substitution would capture
the free variable y of t.

We see that for the definiens, the substitution behaves similarly to the case
[t/x]∀y(α). Note that the ‘naive’ definition [t/x]ιyψ(ϕ) ≡ ιy[t/x]ψ([t/x]ϕ) in the
cases where we defined it as ιy∆(t)&[t/x]ψ(ϕ) would get us into trouble later on
(in particular, lemma 19 would not hold).

Remark that the substitution [t/x]ιyψ(ϕ) in some cases uses [t/x]ϕ and/or
[t/x]ψ; if in those cases one or both substitutions would be undefined, the
substitution [t/x]ιyψ(ϕ) is also undefined.

The complexity of a formula α or term t, abbreviated cpl(α) or cpl(t),
is defined as the number of &, ¬, ∀, ι, =, predicate and function symbols in
α or t. Note that we define complexity also for terms since they can contain
formulae too; for example, cpl(ιxψ(ϕ)) = 1 + cpl(ψ) + cpl(ϕ).
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Terms of complexity 0 are variable symbols; there are no formulae of
complexity 0.
Terms of complexity 1 are of the form f(x1, x2, . . . , xn); formulae of com-
plexity 1 are of the form p(x1, x2, . . . , xn) or x1 = x2.
Terms of complexity 2 are of the form
f1(x1, . . . , xm−2, f2(y1, . . . , yk), xm, xm+1, . . . , xn); formulae of complex-
ity 2 are of the form p(x1, . . . , xm−2, f(y1, . . . , yk), xm, . . . , xn), ¬p(x1, . . . ) or
∀x(p(x1, . . . , xn)) where p(x1, . . . , xn) may be replaced with x1 = x2.
We remark that ι-terms only start occurring in terms from complexity 3
onwards (these are of the form ιxp1(x1,...,xn)(p2(y1, . . . , ym)) where one or
both of the pi(. . . ) may be replaced by x1 = x2 or y1 = y2); and in formulae
starting at complexity 4.

3.2.1 Properties of substitution

We extended the notion of substitution to the case [t/x]ιyψ(ϕ); we will now
investigate how this affects the properties of substitution.

In this section, α will stand for a formula of the pitfol calculus, t, u,
t1, t2 and τ for terms of the pitfol calculus and w, x, y and z for variable
symbols.

Property 1 If x is not a free variable of α or τ then x is also not a free
variable of ∆(α) resp. ∆(τ).

This is easy to prove using structural induction on α and τ .
Another way of stating this property is FV (∆(α)) ⊆ FV (α) and likewise

for τ .

Property 2 The substitutions [x/x]α and [x/x]τ are always defined; [x/x]α ≡
α and [x/x]τ ≡ τ .

Property 3 If the substitution [x/y]α is defined and ∆(α) 6≡ > then
∆([x/y]α) ≡ [x/y]∆(α). If the substitution [x/y]τ is defined and ∆(α) 6≡ >
then ∆([x/y]τ) ≡ [x/y]∆(τ).

For convenience, we define [t/x]> ≡ >, so the previous property can
be stated more succinctly as “If the substitution [x/y]α is defined then
∆([x/y]α) ≡ [x/y]∆(α)”.

Property 4 If the substitution [t/x]α is defined and x is a free variable of
α, then FV ([t/x]α) = FV (t) ∪ (FV (α) \ {x}).

If the substitution [t/x]τ is defined and x is a free variable of τ , then
FV ([t/x]τ) = FV (t) ∪ (FV (τ) \ {x}).
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From this property, we also get

• If x is not a free variable of t, then x is also not a free variable of [t/x]α
resp. [t/x]τ if the substitution is defined.

• If y is not a free variable of t and α resp. τ , then y is also not a free
variable of [t/x]α resp. [t/x]τ if the substitution is defined.

Property 5 If x is not a free variable of α or τ , then [t/x]α ≡ α resp.
[t/x]τ ≡ τ and this substitution is always defined.

One proves properties 4 and 5 simultaneously by structural induction on α
and τ .

Corollary 6 If x 6≡ y, then [t/x] [y/x]α ≡ [y/x]α and [t/x] [y/x]τ ≡ [y/x]τ ; all
these substitutions are always defined.

Proof.
First consider the case that x is not a free variable of α. Using the

previous lemma, what we have to show simplifies to α ≡ α.
If x is free in α, then we apply property 4, yielding FV ([y/x]α) = {y} ∪

(FV (α) \ {x}). Hence x 6∈ FV ([y/x]α). Applying property 5 concludes the
proof. The case for [t/x] [y/x]τ is analogous. 2

Property 7 If y is not a free variable of t, x 6≡ y and x 6≡ z, then
[t/x] [z/y]α ≡ [z/y] [t/x]α if at least one of these substitutions is defined. Like-
wise for τ instead of α.

Proof.
The proof is by structural induction on α and τ ; the only interesting case

is τ ≡ ιwψ(ϕ).

• y ≡ w and y is not a free variable of ψ. Then we have to prove that
[t/x]τ ≡ [z/y] [t/x]τ . Remark that in this case, y is not a free variable
of τ ; by property 4, y is also not a free variable of [t/x]τ . Applying
property 5 concludes this case.

• y ≡ w and y is a free variable of ψ. Then we have to prove that
[t/x]ιy[z/y]ψ(ϕ) ≡ [z/y] [t/x]ιwψ(ϕ).

– x is not a free variable of ϕ and ψ. Hence x is not a free variable
of [z/y]ψ and what remains to prove is ιy[z/y]ψ(ϕ) ≡ [z/y]ιyψ(ϕ),
which is trivial.
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– x is not a free variable of ϕ and x is a free variable of ψ. We
have to prove that ιy∆(t)&[t/x][z/y]ψ(ϕ) ≡ [z/y]ιy∆(t)&[t/x]ψ(ϕ). The
right hand side is identical to ιy∆(t)&[z/y][t/x]ψ(ϕ). Induction on ψ
concludes this case.

– x is a free variable of ϕ. This case is the same as the previous one,
except that the definiens is [t/x]ϕ instead of ϕ.

• y 6≡ w and y is not a free variable of ϕ.

– If y is not a free variable of ψ, then we have to prove that
[t/x]ιwψ(ϕ) ≡ [z/y] [t/x]ιwψ(ϕ). Note that y is not a free variable
of ιwψ(ϕ) and hence also not a free variable of [t/x]ιwψ(ϕ), from
which we this case easily follows.

– If y is a free variable of ψ, then we have to prove that
[t/x]ιw[z/y]ψ(ϕ) ≡ [z/y] [t/x]ιwψ(ϕ).

∗ x ≡ w, or x 6≡ w and x is not a free variable of ϕ. Then
we again have to show that ιw[z/y]ψ(ϕ) ≡ [z/y]ιwψ(ϕ) when
x if not a free variable of ψ, or that ιw∆(t)&[t/x][z/y]ψ(ϕ) ≡
[z/y]ιy∆(t)&[t/x]ψ(ϕ) when x is a free variable of ψ.

∗ x 6≡ w and x is a free variable of ϕ. For this case, we have
to prove that ιw∆(t)&[t/x][z/y]ψ([t/x]ϕ) ≡ [z/y]ιw∆(t)&[t/x]ψ([t/x]ϕ);
the proof is analogous.

• y 6≡ w and y is a free variable of ϕ. We have to prove that
[t/x]ιw[z/y]ψ([z/y]ϕ) ≡ [z/y] [t/x]ιwψ([z/y]ϕ). The proof is analogous to
the preceding cases.

2

Note that in general, [t/x] [u/y]τ 6≡ [u/y] [t/x]τ , when x 6≡ y, x is not a free
variable of u and y is not a free variable of t, as was the case in the Hermes
calculus. Indeed, a counterexample is given by

[ιxz=w(x = x)/x] [ιxz 6=w(x = x)/y]ιzx=y(z = w) ≡ ιzz=w&...(z = w)
[ιxz 6=w(x = x)/y] [ιxz=w(x = x)/x]ιzx=y(z = w) ≡ ιzz 6=w&...(z = w)

where w, x, y and z are mutually different variable symbols.

3.3 Semantics

In this section, we adapt the semantics from §2.2 to the pitfol calculus.
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Given an interpretation I, we can associate to each term t of the pitfol
calculus an element of the domain ω or the status ‘undefined’ (in the latter
case, we write I(t) = ⊥), as follows:

• If ψ is valid in I and there is a unique a ∈ ω such that ϕ is valid in Iax ,
then I(ιxψ(ϕ)) is the a ∈ ω such that ϕ is valid in Iax .
Else, I(ιxψ(ϕ)) is undefined.

• I(f(t1, . . . , tn)) := I(f)(I(t1), . . . , I(tn)), provided all I(ti) are
defined; else I(f(t1, . . . , tn)) is undefined.

Note that again, for function symbols f and predicate symbols p, I(f)
and I(p) are supposed to be total functions resp. predicates. Also, the in-
terpretation of a variable symbol is always an element of ω; it can never
be undefined. Support for partially defined functions and predicates will
be given in §5. Hence, for now, the only “source of undefinedness” are the
ι-terms.

We attach to a formula α and an interpretation I the status valid, invalid
or undefined as follows:

• If α is atomic, then we say that t1 = t2 is valid in I if both I(ti) are
defined and I(t1) = I(t2). We say that p(t1, . . . , tn) is valid in I if all
I(ti) are defined and I(p)(I(t1), . . . , I(tn)) holds. However, if not all
I(ti) are defined, we say that α is undefined. In all other cases, α is
invalid.

• ¬α is valid in I if α is invalid in I; ¬α is invalid in I if α is valid in I;
¬α is undefined if α is undefined.

• α& β is valid in I if both α and β are valid in I; α& β is invalid when
α is invalid, or when α is valid and β is invalid; else α&β is undefined.
(This is the McCarthy conjunction [McCarthy 1967].)

• ∀x(α) is valid in I if for each a ∈ ω, α is valid in Iax . If there exist one
or more a ∈ ω such that α is undefined in Iax , then we say that ∀x(α)
is undefined. In all other cases, α is invalid.

When a formula is valid or invalid, we will call it defined.
Note that we use the term ‘undefined’ in two contexts: a substitution

can be undefined in the sense that the substitution [t/x]α cannot take place,
hence this is a syntactical notion; on the other hand, a term or a formula
of the pitfol calculus can be undefined in an interpretation I, so this is a
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semantical notion. It will be clear from the context which kind of ‘undefined’
we mean in the sequel.

This yields the following truth tables for ¬α and α & β:

α ¬α
T F
F T
U U

α\β T F U
T T F U
F F F F
U U U U

where T , F and U stand for valid (true), invalid (false) and undefined re-
spectively.

We can see that α & β is defined if and only if α is defined and when α
is true, β is defined. In other words, to prove that α& β is defined, we have
to prove that both

• α is defined

• β is defined, where we may assume that α is true (“β is defined in the
context of α”).

Yet another way to express this is that semantically, the & connective is
evaluated from left to right with “short circuit evaluation”: to evaluate
α & β, we first check whether α is false. If this is the case, then we “short
circuit” the evaluation here and declare α & β to be false. If α is undefined,
then we can short circuit again and declare α&β to be undefined. Otherwise,
we continue our left-to-right evaluation and consider β, knowing α to be true
at this stage; the truth value of α & β is then the truth value of β.

Using the definitions of ∨, ⇒ and ⇔ yields their truth tables:

α\β T F U
T T T T
F T F U
U U U U

α\β T F U
T T F U
F T T T
U U U U

α\β T F U
T T F U
F F T U
U U U U

Examining these tables, we conclude again that semantically, the evaluation
is done left to right with short circuit. More specifically, we note that to
prove that α ∨ β is defined, we have to prove that α is defined, and that β
is defined provided ¬α holds (“β is defined in the context of ¬α”). Also,
α⇒ β is defined if and only if α & β is defined, and α⇔ β is defined when
α and β are both defined.

We say that the uniqueness condition of a ι-term ιxψ(ϕ) holds when
for any interpretation I, we have:
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• ψ is defined in I.

• If ψ is valid in I, then ϕ is valid in Iax for exactly one a ∈ ω and invalid
in Iax for all other a ∈ ω.

This will of course correspond to ψ |= ∃!x(ϕ) once we have defined |= in the
pitfol calculus.

We say that a formula α is a consequence of a list of formulae Γ if for
any interpretation I, all of the following conditions hold:

• the uniqueness conditions of all ι-terms in Γ and α hold.

• whenever all formulae of Γ are valid in I, then also α is valid in I.

• all formulae of Γ are defined in I (i.e., valid in I or invalid in I).

We note this as Γ |=ι α and call the sequent Γ `ι α a sound sequent.
The last condition ‘forbids’ us from considering undefined statements, just

like in common mathematical practice, where one is not allowed to speak of
e.g. 1

0
. For example, without the last condition, we would have that

ιyx6=0(x · y = 1) 6= 0 |=ι x 6= 0 (intuitively “
1

x
6= 0 |=ι x 6= 0”)

but because of the second condition, we are not allowed to talk about ‘ 1
x
’ if

we cannot prove that it is always defined. On the other hand, we do have

x 6= 0 |=ι ιyx 6=0(x · y = 1) 6= 0 (“x 6= 0 |=ι
1

x
6= 0”)

because we do not require the consequent to be defined for all interpretations.
To simplify the treatment of contexts, a pitfol sequent may also contain

a context Σ. This makes the calculus easier to use; it is possible to develop
a calculus for the pitfol calculus that does not use contexts in its sequents,
but that calculus turns out to be more cumbersome to use in practice (see
§3.5.4).

Let Σ ≡ σ1, σ2, . . . . We say that α is a consequence of Σ; Γ if for any
interpretation I, the following holds:

• the uniqueness conditions of all ι-terms in Σ, Γ and α hold.

• whenever all formulae of Γ and Σ are valid in I, then also α is valid in
I.

• whenever all formulae of Σ are valid in I, then all formulae of Γ are
defined in I.
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• σ1 is defined in I; when σ1 is valid in I, σ2 is defined in I; when σ1

and σ2 are valid in I, σ3 is defined in I, and so on. This is equivalent
to requiring that the formula σ1 & σ2 & . . . be defined in I.

We note this as Σ; Γ |=ι α.

3.3.1 Examples

The term ιx(x = y) has the same interpretation as the term y; indeed, the
only x fulfilling the condition x = y is y.

The interpretation of the term ιx¬∀x(x=x)(x = y) is always ‘undefined’.
Likewise, y = ιx¬∀x(x=x)(x = y) is a formula whose interpretation is always
‘undefined’. Actually, any term of the form ιx¬∀x(x=x)(ϕ) is always inter-
preted as ‘undefined’.

One could wonder what a term of the form ιxψ(ϕ) means when x is a
free variable of ψ, as in the term ιxx 6=z(x = y). Following the definition of
interpretation given above, the interpretation of this term is again y whenever
the interpretation of x differs from that of z; else, it is undefined. In other
words, this term has the same interpretation as ιwx 6=z(w = y); we see that we
can perform a change of variable name, and this change leaves the domain
formula unchanged. We will formally derive this in corollary 43.

From this example, we observe that in a ι-term of the form ιxψ(ϕ), x
binds in ϕ but not in ψ, which is reflected in the definition of FV (ιxψ(ϕ)).

Note that in contrast to the short circuit evaluation of the conjunction,
∀x(α) is undefined as soon as Iax(α) is undefined for one a ∈ ω, even though
there might be b ∈ ω for which Iax(α) is invalid, which seems to run counter to
the idea of universal quantification as a ‘generalised conjunction’. However,
in general, there is no natural order in which we can enumerate the elements
of ω; if we were to start with a, the generalised conjunction would evaluate
as undefined, whereas if we started with b, it would yield invalidity. Since as
indicated, we wish to avoid to reason about potentially undefined terms, the
only safe choice is to consider ∀x(α) as undefined.

3.4 Deduction rules

Now we present the rules that are analogue of the rules of the Hermes cal-
culus. We present abbreviated names of the rules in a box at the top of the
rule, to be able to concisely refer to them in the sequel.
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Note that the order of the premises is significant; e.g., when we inter-
change both premises of the &-introduction rule, we get a different sequent,
Σ2,Σ1; ∆,Γ `ι β & α as a result:

Σ2; ∆ `ι β
Σ1; Γ `ι α

Σ2,Σ1; ∆,Γ `ι β & α

Concerning the > symbol, we introduce the following conventions which
will ascertain that the > symbol never will occur inside sequents, as we
already announced:

• If > would occur inside the context or antecedent of a sequent, it is
removed from the context or antecedent. For example, the sequent
>, α; β,> `ι γ is to be rewritten as α; β `ι γ.

• If > would occur as consequent, the whole sequent is simply dropped.
For example, if a proof rule would require Σ; Γ `ι > as premise, that
premise doesn’t need to be supplied.

We are now in a position to introduce the rules themselves.

Assumption introduction:

ass

UC(α)

Σ; `ι ∆(α)
Σ;α `ι α

When ∆(α) is >, the context Σ must be empty.

&-introduction:

&-intro

Σ1; Γ `ι α
Σ2; ∆ `ι β

Σ1,Σ2; Γ,∆ `ι α & β

&-elimination:

&-elim

Σ; Γ `ι α & β
Σ; Γ `ι α

&-elim

Σ; Γ `ι α & β
Σ; Γ `ι β

Removal:

rem

Σ1; Γ, α `ι β
Σ2; ∆,¬α `ι β

Σ1,Σ2; Γ,∆ `ι β
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Contradiction:

contra

UC(β)

Σ1; Γ `ι α
Σ2; ∆ `ι ¬α

Σ1,Σ2; Γ,∆ `ι β

∀-introduction:

∀-intro

Σ; Γ `ι α
Σ; Γ `ι ∀x(α)

provided x is not free in Γ and Σ

∀-elimination:

∀-elim

Σ; Γ `ι ∀x(α)
Σ; Γ `ι α

Substitution:

subst

UC(t)

Σ; Γ `ι α
∆(t) , [t/x]Σ; [t/x]Γ `ι [t/x]α

where Γ ≡ γ1, γ2, . . . , γn. Further, [t/x]Γ is shorthand for
[t/x]γ1, [t/x]γ2, . . . , [t/x]γn. This rule can only be applied if all the sub-
stitutions are defined.

Equality rules:

eq

UC(t)
∆(t) `ι t = t

eqSubst

UC(t)

Σ; Γ `ι α
Σ,∆(t) ; Γ, x = t `ι [t/x]α

The latter rule can only be applied if the substitution [t/x]α is defined.

We need some extra deduction rules:

ι-rule:

iota

ψ `ι ∃!x(ϕ)
ψ `ι [ιxψ(ϕ)/x]ϕ̃

where ϕ̃ is obtained from ϕ by changing the names of all bound variables,
such that they are different from the free variables of ϕ. This ensures that
the substitution [ιxψ(ϕ)/x]ϕ̃ is always defined. Formally, x̃ ≡ x; f̃(t1, . . . ) ≡
f(t̃1, . . . ); ˜ιxΨ(Φ) ≡ ιyeΨ([y/x]Φ̃) where y is not a free variable of ϕ and Φ̃;

p̃(t1, . . . ) ≡ p(t̃1, . . . ); α̃ & β ≡ α̃ & β̃; ¬̃α ≡ ¬α̃ and ∀̃x(α) ≡ ∀y([y/x]α̃)
where y is not a free variable of ϕ and α̃.

Note that to keep the notation simple, we do not indicate explicitly which
variables are to be avoided in renaming—in this case, the free variables of ϕ.
We call α and α̃ alphabetic variants of each other.
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UC-rule:

UC

Σ; Γ `ι α
ψ `ι ∃!x(ϕ)

where ιxψ(ϕ) is a ι-term occurring in Σ, Γ or α.

∆-rules; only applicable when the consequent of the conclusion is not >:

defAnt

Σ; Γ, α `ι β
Σ; `ι ∆(α)

defCons

Σ; Γ `ι α
Σ; Γ `ι ∆(α)

Finally, we add these rules for manipulating contexts:

toCtxt

Σ;σ & Γ,∆ `ι α
Σ, σ; Γ,∆ `ι α

fromCtxt

Σ, σ; Γ `ι α
Σ;σ & Γ `ι α

The notation σ & Γ stands for σ & γ1, σ & γ2, . . . , σ & γn; when Γ is empty it
is shorthand for σ.

Note that in rules where the conclusion has Σ1,Σ2 as context, we could
just as well have chosen Σ2,Σ1; we just had to fix an order to create our new
deduction rules. Indeed: in the sequel (see the discussion of the WeakCtxtL
rule), we will show that using the deduction rules, we are able do derive from
Σ1; Γ `ι α and Σ2; ∆ `ι β the sequent Σ2,Σ1; Γ,∆ `ι α&β, and the situation
for the rem and contra rules is similar.

We call a sequent pitfol derivable if it can be obtained by applying
a deduction rule of the pitfol calculus with pitfol derivable sequents as
premises.

A pitfol proof is a finite list of pitfol sequents s1, s2, . . . , sn where
each si is obtained by applying one of the deduction rules with as premises
sequents obtained earlier in the proof; i.e., if sj is used as a premise, then
j < i.

Note that, as we remarked before, the order in which the premises are
supplied to a deduction rule is significant, but we will not record the specific
order in the proof, just like we do not record the exact deduction rule used
in the proof.

Note that a proof of the Hermes calculus is automatically a pitfol proof;
in this view, our pitfol calculus is an extension of the Hermes calculus
(which will turn out to be a conservative extension; see §3.6.2). Indeed,
for formulae of the Hermes calculus, ∆(α) is >, and it is easy to see that the
proof rules of the Hermes calculus coincide under those circumstances with



48 CHAPTER 3. PARTIALLY DEFINED IOTA TERMS

the proof rules of the pitfol calculus. We believe that this property yields a
logic close to common mathematical practice, where one reasons (or at least
often claims to do so) in a two-valued setting, with the addition that one has
to make sure that the ‘definedness conditions’ are fulfilled (e.g., that x 6= 0
when reasoning about 1

x
).

In the sequel, we will again define the symbols ∨, ⇒, ⇔ and ∃ in the
same way as in the Hermes calculus.

3.5 Discussion of the rules

Before we will show that the calculus introduced above is consistent (§3.6),
sound (§3.7) and complete (§3.9), we will discuss some peculiarities of the
calculus.

3.5.1 Commutativity of the conjunction

We remarked that the conjunction is not commutative in the pitfol calculus;
however, examining deduction rules, this may not be readily apparent. The
only rules concerning conjunction seem to be the &-introduction and &-
elimination rules, which are unchanged from the original calculus. Indeed,
using these rules, from Σ; Γ `ι α & β, we can easily obtain Σ; Γ `ι β & α.

However, if we consider the assumption introduction rule, we observe that
it may be the case that we can derive Σ;α& β `ι α& β, but not Σ; β & α `ι
β & α, because we can derive Σ;`ι ∆(α & β) but not Σ;`ι ∆(β & α).

For example, consider the example at the end of §3.1 where we set α ≡
y 6= 0 and β ≡ 1

y
= 5; we can derive `ι ∆(α & β), which is

`ι ∆(y 6= 0)︸ ︷︷ ︸
≡>

& y 6= 0⇒∆
(

1
y

= 5
)

︸ ︷︷ ︸
≡y 6=0

,

i.e., `ι y 6= 0 ⇒ y 6= 0, but we clearly cannot derive `ι ∆(β & α), which is

`ι ∆
(

1
y

= 5
)

, i.e., `ι y 6= 0.

Hence, we conclude that the non-commutativity of the conjunction man-
ifests itself in the calculus because of the definition of ∆.

3.5.2 Definedness of generalisations

We defined ∆(∀x(α)) as ∀x(∆(α)). If one considers a generalisation as a
‘generalised conjunction’, this might seem surprising since one might expect
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the noncummutativity of the definedness of a conjunction to surface here too.
For example, suppose we have a finite domain ω = {a1, a2, . . . , an} which can
be described by terms of the logic, i.e., there exist terms t1, . . . , tn such that
Iti = ai for i = 1 . . . n. Then the generalised conjunction of α with respect
to x is defined as

[t1/x]α & [t2/x]α & · · ·& [tn/x]α.

In the classical two-valued setting, one expects this formula to be equivalent
with ∀x(α); hence we call the ∀ quantifier a generalised conjunction.

In our three-valued setting, in general, the interpretation of

[t1/x]α & · · ·& [tn/x]α

depends on the order in which the ti are chosen. Indeed, if for example [t1/x]α
is invalid and [t2/x]α is undefined, then

[t1/x]α & [t2/x]α & · · ·& [tn/x]α is invalid
[t2/x]α & [t1/x]α & · · ·& [tn/x]α is undefined

It seems natural to require that ∀x(α) to be considered valid only when
all possible generalised conjunctions of α are valid. In particular, for each
i = 1 . . . n, we require that

[ti/x]α & [t1/x]α & · · ·& [ti−1/x]α & [ti+1/x]α & · · ·& [tn/x]α

should be valid, from which it easily follows that each [ti/x]α should be valid.
Hence we have no other choice than to define ∆(∀x(α)) ≡ ∀x(∆(α)).

3.5.3 ∆ and >
One could wonder why we did not define ∆ to always yield a formula. In
the cases where we used >, at first sight we could just as well have used a
validity τ , such as ∀x(x = x) or p ∨ ¬p where p is a predicate constant.

The first drawback of avoiding the > symbol is that ∆ would yield very
large and unwieldy formulae; for example, we would get

∆(x = x& y = y) ≡∆(x = x) & (x = x⇒∆(y = y))

≡ (τ & τ) & (x = x⇒ (τ & τ))

This complicates formal proofs considerably; for example, to apply the
assumption rule on the formula x = x& y = y, we need to derive first

`ι (τ & τ) & (x = x⇒ (τ & τ))
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which is not straightforward. To illustrate how much even simple proofs are
affected, just deriving `ι x = x is not trivial, since the equality rule now
yields the more complicated

τ & τ `ι (x = x)

In general, it seems necessary to add `ι τ as an axiom to the calculus; for
some specific forms of τ such as ∀x(x = x) we can derive `ι τ however:

∀x(x = x) & ∀x(x = x) `ι (x = x) eq
`ι ∀x(∀x(x = x) & ∀x(x = x))

& (∀x(x = x)⇒ ∀x(x = x) & ∀x(x = x)) defAnt

`ι ∀x(∀x(x = x) & ∀x(x = x)) &-elim
`ι ∀x(x = x) & ∀x(x = x) ∀-elim
`ι ∀x(x = x) &-elim
`ι x = x ∀-elim

Moreover, if we drop the use of >, a proof of the Hermes calculus using
the assumption introduction rule, the substitution rule or the equality rules
is not any more a proof of the pitfol calculus and hence the pitfol calculus
would not be an extension of the original calculus.

Note that for theoretical purposes, it can be interesting to define a variant
of ∆ along the lines sketched above, which is what we will do in §3.6 with
the definition of D. Indeed, for theoretical investigations where it is not
important that the resulting formulae are small, the definition of D has as
advantage that it has less different cases and we do not need to resort to the
introduction of the symbol > and its simplification rules.

3.5.4 A note about contexts

It seems that we don’t have to extend the notion of sequent with a context.
In this variant of the calculus, some deduction rules look different:

subst

UC(t)

Γ `ι α
∆(t) & [t/x]Γ `ι [t/x]α

eqSubst

UC(t)

Γ `ι α
Γ,∆(t) & x = t `ι [t/x]α

and instead of toCtxt and fromCtxt, we would have

assCtxt

`ι ∆(γ)

γ `ι ∆(α)
γ & α `ι α

remCtxt

Γ, γ & α `ι β
∆, γ & ¬α `ι β

Γ,∆, γ `ι β
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The advantage of this approach is that the notion of sequent (and hence
of proof) is simpler, but it turns out to be much more cumbersome to actually
prove things in this variant of the calculus. Most derived rules have a variant
with and without ‘context’, e.g.

SeAs

Γ,¬α `ι α
Γ `ι α

SeAsCtxt

Γ, γ & ¬α `ι α
Γ, γ `ι α

The clumsiness of the contextless calculus is illustrated further by the
derivation of the Cut2 rule, where we are (at least not in an obvious way)
unable to reuse the Cut rule, but have to invent a completely new proof:

Γ `ι α prem
γ & α `ι β prem

`ι ∆(γ & α) defAnt
γ & ¬α `ι γ & ¬α ass
γ & ¬α `ι ¬α &-elim

Γ, γ & ¬α `ι β contra
Γ, γ `ι β remCtxt

In contrast, compare the forthcoming proof of the Cut2 rule in the calculus
with contexts, where we are indeed able to reuse the Cut rule.

One could also go to the other extreme and define sequents of the form

σ1
1, σ

1
2, . . . ;σ

2
1, σ

2
2, . . . ; . . . ;σ

n
1 , σ

n
2 , . . .Γ ` α

where the order of the formulae in σ1
1, σ

1
2, . . . is not important and double

formulae are to be removed; likewise in σ2
1, σ

2
2, . . . , and so on. The idea here

is that semantically, one evaluates first the sequents of the first list σ1
1, σ

1
2, . . .

in any random order, then those of the second list σ2
1, σ

2
2, . . . , . . . One would

then need some rules specifying when a formula is allowed to move to the
left or right of a semicolon:

LeftCtxt

. . . ; Σ1;σ & Σ2,Σ3; . . . `ι α
. . . ; Σ1, σ; Σ2,Σ3; . . . `ι α

RightCtxt

. . . ; Σ1, σ; Σ2; . . . `ι α
. . . ; Σ1;σ & Σ2; . . . `ι α

It seems that all this extra complication in syntax would yield little gain in
usability, so we opted not to pursue this option.
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3.6 Equiconsistency proof

3.6.1 Translation of sequents

In this section, we will give a process to transform a sequent in the pitfol
calculus to one or more sequents in the Hermes calculus.

We define two metalogical operations on formulae α of the pitfol calcu-
lus: the reduction R(α) and the definedness D(α). Both produce a formula
of the Hermes calculus. Semantically, R(α) will express that if α is defined,
it is true (or equivalently, that α is undefined or true), and D(α) will express
that α is defined (we will actually prove this in lemma 20).

We define R by structural induction on the formula α:

• α is an atomic formula, i.e., α ≡ t1 = t2 or α ≡ p(t1, t2, . . . , tn). We
will only cover the latter case; the former is analogous.

If there are no ι-term arguments of p, then we define R(α) ≡ α.

Else, we enumerate all occurrences of top-level ι-terms of α (i.e., those
ι-terms that are themselves not contained into another ι-term) as
TLI(α) ≡ ιx1ψ1

(ϕ1), ιx2ψ2
(ϕ2), . . . , ιxmψm(ϕm). We define R(α) as

∃u1∃u2 . . . ∃um (R([u1/x1
]ϕ1) &R([u2/x2

]ϕ2) & . . .&R([um/xm]ϕm) & q)

where q is the formula obtained from α by replacing all top-level ι-
terms ιxiψi(ϕi) by their corresponding variable symbol ui. We choose
the ui’s such that they are all different from each other and such that
ui does not occur in α.
Formally, we can construct q as follows. Choose the m different variable
symbols u1, . . . , um not occurring in α. We then define a metalogical
operator Q which maps a term t to another term Q(t), as follows:

– Q(x) ≡ x

– Q(f(τ1, . . . , τk)) ≡ f(Q(τ1), . . . , Q(τk)) with special cases
Q(f(τ)) ≡ f(Q(τ)) and Q(c) ≡ c where c is a constant (which
we identified with nullary function symbols)

– Q(ιxiψi(ϕi)) ≡ ui where i is the index of this ι-term in the list op
top-level ι-terms of the original formula α.

Then we have q ≡ p(Q(t1), Q(t2), . . . , Q(tn)) if n > 1; q ≡ p(Q(t1)) if
n = 1 and q ≡ α if n = 0.

• R(¬α) ≡ ¬R(α)
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• R(α & β) ≡ R(α) &R(β)

• R(∀x(α)) ≡ ∀x(R(α))

Note that this is the same definition as in [Hilbert & Bernays 1968], except
that there, ui ≡ xi is chosen (which is incorrect when two or more xi’s are
the same variable symbol) and we don’t identify multiple occurrences of the
same ι-term (each occurrence gets its own ui).

One sees that the set of free variables of α is the same as that of R(α).

We illustrate the definition of R on atomic formulae with the following
example. Consider the formula α :≡ 1

x
= 1

y
, i.e., ιzx 6=0(x·z = 1) = ιzy 6=0(y·z =

1). Then we have

R(ιzx 6=0(x · z = 1) = ιzy 6=0(y · z = 1))

≡ ∃u1∃u2(R(x · u1 = 1) &R(y · u2 = 1) & u1 = u2)

≡ ∃u1∃u2(x · u1 = 1 & y · u2 = 1 & u1 = u2)

Semantically, if α is defined (i.e., if x and y are both nonzero), this expresses
that u1 is an inverse of x (and since we have the uniqueness condition, u1 is
the inverse of x), that u2 is the inverse of y and that they are equal, i.e., α
is valid.
If α is undefined, for example when x = 0, then R(α) is equivalent with

∃u1∃u2(0 = 1 & y · u2 = 1 & u1 = u2)

which is of course invalid.
Note that if we have the uniqueness conditions, R(α) is equivalent with

∀u1∀u2((x · u1 = 1 & y · u2 = 1)⇒ u1 = u2)

so we could have defined the reduction of an atomic formula as

∀u1∀u2 . . . ∀um ((R([u1/x1
]ϕ1) &R([u2/x2

]ϕ2) & . . .&R([um/xm]ϕm))⇒ q)

See also lemma 12, where we show that given one form of the definition, we
can derive the other.

Another example with nested iota terms is given by the formula x√
y

= 1:

R
(
ιzy≥0&ιwy≥0(w≥0&w·w=y)6=0(z · ιwy≥0(w ≥ 0 & w · w = y) = x) = 1

)
≡ ∃u1(R(u1 · ιwy≥0(w ≥ 0 & w · w = y) = x) & u1 = 1)

≡ ∃u1(∃u2(R(u2 ≥ 0 & u2 · u2 = y) & u1 · u2 = x) & u1 = 1)

≡ ∃u1(∃u2(u2 ≥ 0 & u2 · u2 = y & u1 · u2 = x) & u1 = 1)
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Semantically, this expresses that u2 ≡
√
y, u1 = x

u2
and u1 = 1.

We will prove shortly that the exact choice of the u’s is not relevant:
different choices yield equivalent reductions. Sometimes, we wish to avoid
a certain choice of variable symbol for the u’s, e.g., when the substitution
[t/x]α is defined, the substitution [t/x]R(α) is not necessarily defined because
one or more of the ui’s might accidentally be a free variable of t. Hence given
a set of variable symbols V , we define RV (α) in the same way as R(α), but
with the extra demand that all u’s be different from all variables in V . Just
like R, RV is defined inductively so we define RV (¬α) ≡ ¬RV (α) and so
on. We call V the exclusion set of the reduction. If x is a variable symbol,
then we will with a slight abuse of notation write Rx instead of R{x} and
RV,x instead of RV ∪{x}.

Next, we define D:

• DV (p(t1, t2, . . . , tn)) ≡ RV (ψ1) &RV (ψ2) & . . .&RV (ψn) with the same
notations as in the definition of R. If there are no ι-terms as argument
of p, then DV (p(. . .)) ≡ ∀x(x = x). We treat DV (t1 = t2) analogously.
Note that it would be natural to defineDV (p(t1, t2, . . . , tn)) ≡ RV (ψ1)&
DV (ψ1) & . . .&RV (ψn) &DV (ψn) but in the sequel (see page 61) it will
appear that we get DV (ψi) from the uniqueness condition for ιxiψi(ϕi).

• DV (¬α) ≡ DV (α)

• DV (α & β) ≡ DV (α) & (RV (α)⇒ DV (β))

• DV (∀x(α)) ≡ ∀x(DV (α))

If V is the empty set, we write D instead of D{}; if V is a singleton {x}, we
write Dx instead of D{x}.

When t is a term, we define DV (t) ≡ DV (t = x).
Note that in contrast to ∆, the result of D can never be > and hence

the resulting formulae will be longer. As we already indicated in §3.5.3, for
theoretical purposes it is more interesting that there are less cases in the
definition of D.

Lemma 8 For each formula α of the pitfol calculus,

1. if the substitution [y/x]α is defined, then

RV ([y/x]α) a` [y/x]RV,y(α)

where V is a set of variable symbols.
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2. choosing different u’s in the reduction of α yields equivalent reductions
(and hence, RV (α) a` RW (α) for any two sets of variable symbols V
and W )

Note that it is necessary to use RV,y to ensure that the substitution
[y/x]RV,y(α) is defined. As a counterexample, we take α ≡ p(ιz(x = z)).
Then, the substitution

[y/x]R(α) ≡ [y/x]∃u1(x = u1 & p(u1))

is not defined when we would choose u1 ≡ y.
Proof.

We prove this by induction the complexity of α; we will at the same time
prove that the exact choice of the u’s in the reduction does not matter.

• If α has complexity zero, i.e., α is atomic and does not contain any
ι-terms, then

RV ([y/x]α) ≡ [y/x]α ≡ [y/x]RV,y(α)

because the reduction of a formula without ι-terms is that formula
itself.

• 1. If α is atomic and contains ι-terms, i.e., α ≡ p(t1, . . . , tn), where
we treat the case α ≡ t1 = t2 analogously, then we have to prove that
the formula RV ([y/x]α), or more explicitly,

∃v1∃v2 . . . ∃vn (RV ([v1/x1
]ϕ′1) &RV ([v2/x2

]ϕ′2) & . . .&RV ([vm/xm]ϕ′m) & q′))

is equivalent to the formula [y/x]RV,y(α), i.e., equivalent to

[y/x]∃u1∃u2 . . . ∃un (RV,y([u1/x1
]ϕ1) & . . .&RV,y([um/xm]ϕm) & q))

with the usual notations: the vi are all different from each other and
do not occur in [y/x]α or V ; the ui are all different from each other, do
not occur in α or V and are different from y; q′ is the formula obtained
from [y/x]α by replacing its top-level ι-terms by v’s and q is obtained
likewise from α by replacing its top-level ι-terms by u’s; the top-level
ι-terms of α are TLI(α) ≡ ιx1ψ1

(ϕ1), . . . , ιxmψm(ϕm) and the top-level
ι-terms of [y/x]α are TLI([y/x]α) ≡ ιx1ψ′1

(ϕ′1), . . . , ιxmψ′m(ϕ′m).

It is easy to see that [y/x]ιxiψi(ϕi) ≡ ιxiψ′i(ϕ
′
i). Hence, ϕ′i is the definiens

of [y/x]ιxψi(ϕi), i.e.:
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– If x ≡ xi or x is not a free variable of ϕi, then [y/x]ιxψi(ϕi) ≡
ιxψi(ϕi) or [y/x]ιxψi(ϕi) ≡ ιx∆(y)&[y/x]ψi(ϕi) ≡ ιx[y/x]ψi(ϕi), hence
ϕ′i ≡ ϕi.

– If x 6≡ xi and x is a free variable of ϕi, then [y/x]ιxiψi(ϕi) ≡
ιxi∆(y)&[y/x]ψi([y/x]ϕi) ≡ ιxi[y/x]ψi([y/x]ϕi). (We take the substitu-
tion to be defined, hence xi 6≡ y.) So in this case, ϕ′i ≡ [y/x]ϕi.

We first establish that

RV ([ui/xi]ϕ
′
i) a` [y/x]RV,y([ui/xi]ϕi)

or, using induction on ϕi,

RV ([ui/xi]ϕ
′
i) a` RV ([y/x] [ui/xi]ϕi)

– If x ≡ xi, then we have to prove that

RV ([ui/x]ϕi) a` RV ([y/x] [ui/x]ϕi)

Since ui 6≡ x, this reduces using corollary 6 to

RV ([ui/x]ϕi) a` RV ([ui/x]ϕi)

– If x is not a free variable of ϕi, then we have to prove that

RV ([ui/xi]ϕi) a` RV ([y/x] [ui/xi]ϕi) .

Noting that ui is different from x, we can apply property 4, yield-
ing that x is not a free variable of [ui/xi]ϕi, so using property 5,
[y/x] [ui/xi]ϕi ≡ [ui/xi]ϕi.

– If x is a free variable of ϕi and x 6≡ xi, then we are left to show
that

RV ([ui/xi] [
y/x]ϕi) a` RV ([y/x] [ui/xi]ϕi)

Since we supposed the substitution to be defined, xi 6≡ y; we
also have that ui does not occur in α and hence ui 6≡ x. Hence
property 7 is applicable, which shows that we may change the
order of the substitutions without affecting the result.

Having established this, what remains to prove is

∃v1∃v2 . . . ∃vm (RV ([v1/x1
]ϕ′1) &RV ([v2/x2

]ϕ′2) & . . .&RV ([vm/xm]ϕ′m) & q′)
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is equivalent to

∃u1∃u2 . . . ∃um (RV ([u1/x1
]ϕ′1) & . . .&RV ([um/xm]ϕ′m) & [y/x]q)

which follows from the next part, since this are just two reductions that
only differ in the choice of the ui.

2. We have to show that reductions with different choices of u are
equivalent, i.e.,

∃u1∃u2 . . . ∃um (R([u1/x1
]ϕ1) &R([u2/x2

]ϕ2) & . . .&R([um/xm]ϕm) & q)
(3.1)

is equivalent with

∃u′1∃u′2 . . . ∃u′m (R([u
′
1/x1

]ϕ1) &R([u
′
2/x2

]ϕ2) & . . .&R([u
′
m/xm]ϕm) & q′)

with the usual notations (this time, q and q′ are both obtained from
α by replacing its top-level ι-terms by u’s, respectively by u′’s). We
may suppose that the u’s and u′’s are all different: if there would be
common variables, then we can choose a set of u′′’s which are different
from the u’s and the u′′’s; the reduction with the u’s then is equivalent
with the reduction with the u′′’s which is in turn equivalent to the one
with the u′’s.

Using the induction hypothesis, we have that R([ui/xi]ϕi) a`
[ui/xi]Rui(ϕi). Hence (3.1) is equivalent with

∃u1∃u2 . . . ∃um ([u1/x1
]Ru1(ϕ1) & . . .& [um/xm]Rum(ϕm) & q)

We can now perform a change of variables, giving

∃u′1 . . . ∃u′m ([u
′
1/x1

]Ru1(ϕ1) & . . .& [u
′
m/xm]Rum(ϕm) & [u

′
1/u1

]· · · [u′m/um]q)

and it is easy to see that [u
′
1/u1

] [u
′
2/u2

]· · · [u′m/um]q ≡ q′. Now we only
have to establish that [u

′
i/xi]Rui(ϕi) a` R([u

′
i/xi]ϕi). Since by induc-

tion Rui(ϕi) a` Ru′i
(ϕi), we have that

[u
′
i/xi]Rui(ϕi) a` [u

′
i/xi]Ru′i

(ϕi) a` R([u
′
i/xi]ϕi)

• The cases where α is not atomic are straightforward.

2
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We define the translation of a pitfol sequent Σ; Γ `ι α as the three
sequents

` D(σ1 & σ2 & . . .& σn)

R(σ1) ,R(σ2) , . . . ,R(σn) ` D(γ1) &D(γ2) & . . .&D(γm)

R(σ1) , . . . ,R(σn) ,R(γ1) , . . . ,R(γm) ` R(α) &D(α)

where Σ ≡ σ1, σ2, . . . , σn and Γ ≡ γ1, γ2, . . . , γm
We will often write with a slight abuse of notation R(Σ) instead of

R(σ1) ,R(σ2) , . . . ,R(σn) and likewise R(Γ) instead of R(γ1) ,R(γ2) , . . .
In case Σ is empty, we define the translation as{

` D(γ1) &D(γ2) & . . .&D(γm)

R(Γ) ` R(α) &D(α)

If Γ is empty, we define the translation as{
` D(σ1 & σ2 & . . .& σn)

R(Σ) ` R(α) &D(α)

When both Σ and Γ are empty, the translation of `ι α is defined as the
single sequent

` R(α) &D(α) .

3.6.2 Translation of proofs

We define the translation of a pitfol proof s1, s2, . . . , sn as a list of sequents
of the Hermes calculus which we obtain by replacing all the sequents of the
given pitfol proof by their translations.

We will show in the following sections that the translation of a pitfol
proof can be expanded to a proof (in the Hermes calculus). To do this, it is
sufficient to prove for each deduction rule of the pitfol calculus that when
we replace the premises by their translations, we can derive in the Hermes
calculus the sequent(s) of the translation of the conclusion.

Note that the translation of a pitfol proof need not be a correct proof:
often we need to add some ‘glue sequents’ in between. For example, consider
the pitfol proof

`ι x = x eq
`ι y = y eq
`ι x = x& y = y &-intro
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Its translation is

` x = x& ∀x(x = x)
` y = y & ∀x(x = x)
` x = x& y = y & ∀x(x = x) & x = x⇒ ∀x(x = x)

which is not a valid proof but can be easily expanded into one (note that
¬(x = x& ¬∀x(x = x)) is an abbreviation for x = x⇒ ∀x(x = x)):

` x = x eq
` ∀x(x = x) ∀-intro
` x = x & ∀x(x = x) &-intro
` y = y eq
` y = y & ∀x(x = x) &-intro
` x = x& y = y &-intro
` x = x & y = y & ∀x(x = x) &-intro

x = x& ¬∀x(x = x) ` x = x& ¬∀x(x = x) ass
x = x& ¬∀x(x = x) ` ¬∀x(x = x) &-elim

` ∀x(x = x) ∀-intro
x = x& ¬∀x(x = x) ` ¬(x = x& ¬∀x(x = x)) contra

¬(x = x& ¬∀x(x = x)) ` ¬(x = x& ¬∀x(x = x)) ass
` x = x⇒ ∀x(x = x) rem
` x = x & y = y & ∀x(x = x)

&x = x ⇒ ∀x(x = x) &-intro

Once we have shown that the translation of a pitfol proof can be ex-
panded to a proof, we can establish equiconsistency of the pitfol calculus
with the Hermes calculus as follows. Suppose that the pitfol calculus would
be inconsistent, i.e., every pitfol sequent is derivable in the pitfol calculus.
In particular, the sequent

` ¬(x = x)

would then be derivable in the pitfol calculus. Translating the pitfol
proof of this sequent, we get a proof whose last sequent is

` R(¬(x = x)) &D(¬(x = x))

i.e.,
` ¬(x = x) & ∀x(x = x)

But then we would have a proof (in the Hermes calculus) of ` ¬(x = x), and
it is easy to see that this would imply that the Hermes calculus would be
inconsistent.

Another corollary is that the pitfol calculus is a conservative exten-
sion of the Hermes calculus. By this, we mean that when we have a pitfol
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proof of Γ `ι α, and Γ and α do not contain iota-terms, then there must exist
a proof of Γ ` α; in other words, in the pitfol calculus, we cannot derive
any “new” truths that were expressible in the original Hermes calculus. The
proof is easy: the translations of Γ `ι α are derivable, i.e.,{

` D(γ1) &D(γ2) & . . .&D(γm)

R(Γ) ` R(α) &D(α)

But since Γ and α do not contain iota-terms, R(Γ) ≡ Γ and R(α) ≡ α.
Hence, we have Γ ` α & D(α), from which we easily obtain the desired
sequent.

3.6.3 Lemmata

Remark that R(α) and D(α) never contain ι-terms. Further, it is easy to
see that the reduction of a formula without ι-terms is the formula itself, and
the definedness of a formula without ι-terms is a validity.

From these observations, we see that

• R(R(α)) ≡ R(α)

• D(R(α)) is a validity

• R(D(α)) ≡ D(α)

• D(D(α)) is a validity

Next, we establish that in D(α1 & (α2 & (. . .& (αn−1 & αn)))), the order
of association is not important, i.e., changing the association yields an equiv-
alent formula:

D(α1 & (α2 & α3)) ≡ D(α1) & (R(α1)⇒ D(α2 & α3))

≡ D(α1) & (R(α1)⇒ (D(α2) & (R(α2)⇒ D(α3)))

a` D(α1) & (R(α1)⇒ D(α2)) & (R(α1 & α2)⇒ D(α3)))

≡ D(α1 & α2) & (R(α1 & α2)⇒ D(α3))))

≡ D((α1 & α2) & α3)

In general, one can prove that D(α1 & α2 & . . .& αn) is equivalent with

D(α1) & (R(α1)⇒ D(α2))

& (R(α1 & α2)⇒ D(α3))

& . . .

& (R(α1 & α2 & . . .& αn−1)⇒ D(αn))
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Using this result, we find that the translation of a sequent Σ; Γ `ι α is
equivalent with

` D(σ1)

R(σ1) ` D(σ2)

R(σ1) ,R(σ2) ` D(σ3)

...

R(σ1) ,R(σ2) , . . . ,R(σn−1) ` D(σn)

R(Σ) ` D(γ1) &D(γ2) & . . .&D(γm)

R(Σ) ,R(Γ) ` R(α) &D(α)

Finally, we investigate the definedness of α ∨ β, α⇒ β and ∃x(α).

D(α ∨ β) ≡ D(¬(¬α & ¬β))

≡ D(¬α & ¬β)

≡ D(¬α) & (R(¬α)⇒ D(¬β))

≡ D(α) & ((¬R(α))⇒ D(β))

D(α⇒ β) ≡ D(¬(α & ¬β))

≡ D(α & ¬β)

≡ D(α) & (R(α)⇒ D(¬β))

≡ D(α) & (R(α)⇒ D(β))

D(α⇔ β) ≡ D((α⇒ β) & (β ⇒ α))

≡ D(α⇒ β) & (R(α⇒ β))⇒ D(β ⇒ α))

≡ D(α) & (R(α)⇒ D(β)) & (R(α⇒ β)⇒ (D(β) & (R(β)⇒ D(α))))

a` D(α) & (R(α)⇒ D(β)) & (R(α⇒ β)⇒ D(β))

a` D(α) &D(β)

D(∃x(α)) ≡ D(¬∀x(¬α)) ≡ D(∀x(¬α)) ≡ ∀x(D(¬α)) ≡ ∀xD(α)

Note that D(α⇒ β) ≡ D(α & β) and D(∃x(α)) ≡ D(∀x(α)).
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3.6.4 Translation of the proposition rules

The following lemma shows a connection between ∆ and D.

Lemma 9 If ∆(α) is not >, then R(∆(α)) is equivalent to D(α). If ∆(α)
is >, then D(α) is a validity.

Proof.
We prove this by structural induction on α.

• If α is atomic, it is of the form α ≡ p(t1, t2, . . . , tn), where we treat the
case α ≡ t1 = t2 analogously.
First suppose α contains some ι-terms. Then ∆(α) ≡ ψ1&ψ2&. . .&ψm
with the usual notations, i.e., ψ1, ψ2, . . . , ψm are the domain formulae
of the top-level iota terms of α. Hence R(∆(α)) is

R(ψ1 & ψ2 & . . .& ψm) ≡ R(ψ1) &R(ψ2) & . . .&R(ψm) ≡ D(α)

If there are no ι-terms present, then ∆(α) ≡ > and we have to show
that D(α) is a validity, which is the case since D(α) ≡ ∀x(x = x).

• Suppose α ≡ ¬β. If ∆(β) is not >, then by induction, we know that
R(∆(β)) is equivalent to D(β). Hence

R(∆(α)) ≡ R(∆(β)) a` D(β) ≡ D(α)

If ∆(β) is >, then D(β) is a validity. Then D(α) is a validity too, since
D(α) ≡ D(β).

• For formulae of the form α & β, we have four cases.

– If both ∆(α) and ∆(β) are not >, then R(∆(α)) is equivalent to
D(α) and likewise for β. Then

R(∆(α & β)) ≡ R(∆(α) & (α⇒∆(β)))

≡ R(∆(α)) & (R(α)⇒ R(∆(β)))

a` D(α) & (R(α)⇒ D(β))

≡ D(α & β)

– If ∆(α) is not > but ∆(β) is, then R(∆(α)) is equivalent to D(α)
and D(β) is a validity. Then

R(∆(α & β)) ≡ R(∆(α)) a` D(α) a` D(α) & (R(α)⇒ D(β))

which is D(α & β).
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– If ∆(α) is> and ∆(β) is not, then D(α) is a validity andR(∆(β))
is equivalent to D(β). Hence

R(∆(α & β)) ≡ R(α⇒∆(β))

a` R(α)⇒ D(β)

a` D(α) & (R(α)⇒ D(β))

– If both ∆(α) and ∆(β) are>, then we have to show thatD(α & β)
is a validity. By induction, D(α) and D(β) are validities, from
which we get the desired result.

• Finally, we consider formulae of the form ∀x(α). If ∆(α) is not >, then
by induction we know that R(∆(α)) is equivalent to D(α). Now

R(∆(∀x(α))) ≡ ∀x(R(∆(α)))

Using the induction hypothesis, we know that this is equivalent to
∀x(D(α)), which is D(∀x(α)).
If ∆(α) is>, we have to show that D(∀x(α)) is a validity. By induction,
D(α) is a validity, from which we easily get the desired result.

2

Lemma 10 If ∆(α) is not >, and the translations of the uniqueness condi-
tions of α are derived, then D(∆(α)) is a validity. If ∆(α) is >, then D(α)
is a validity.

Proof.
We prove this by structural induction on α.

• If α is atomic, then either α does not contain ι-terms, and then ∆(α) ≡
>, and D(α) ≡ ∀x(x = x), a validity, or else

D(∆(α)) ≡ D(ψ1 & ψ2 & · · ·& ψm)

where as usual, we enumerated the top-level ι-terms of α as TLI(α) ≡
ιx1ψ1

(ϕ1), . . . , ιxmψm(ϕm). From the translation of the uniqueness
condition for ιxiψi(ϕi), we get ` D(ψi); hence we easily conclude
` D(ψ1 & ψ2 & · · ·& ψm).

• The other cases are straightforward; only for formulae of the form α&β,
the proof is somewhat more convoluted:
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– If both ∆(α) and ∆(β) are not >, then both D(∆(α)) and
D(∆(β)) are validities and we have

D(∆(α & β)) ≡ D(∆(α) & (α⇒∆(β)))

≡ D(∆(α)) & (R(∆(α))⇒ D(α⇒∆(β)))

≡ D(∆(α)) & (R(∆(α))⇒ (D(α) & (R(α)⇒ D(∆(β)))))

a` D(α)⇒ D(α)

using lemma 9, which clearly yields a validity.

– If ∆(α) is not > but ∆(β) is, then D(∆(α & β)) ≡ D(α), which
is a validity using the induction hypothesis.

– If ∆(α) is > and ∆(β) is not, then

D(∆(α & β)) ≡ D(α⇒∆(β)) ≡ D(α) & (R(α)⇒ D(∆(β)))

is a validity, since by induction, both D(α) and D(∆(β)) are va-
lidities.

– If ∆(α) and ∆(β) are both >, then ∆(α & β) is also > and we
have to show that D(α & β) is a validity. Since by induction, both
D(α) and D(β) are validities,

D(α & β) ≡ D(α) & (R(α)⇒ D(β))

is also a validity.

2

Structural rules

In the definition of pitfol sequent, we indicated that one is free to add or
remove duplicates of formulae in antecedent and context. This amounts to
silently applying the following structural rules:

struct1

Σ; Γ1, α,Γ2 `ι β
Σ; Γ1, α, α,Γ2 `ι β

struct2

Σ; Γ1, α, α,Γ2 `ι β
Σ; Γ1, α,Γ2 `ι β

struct3

Σ; Γ1, α, β,Γ2 `ι γ
Σ; Γ1, β, α,Γ2 `ι γ

struct4

Σ1, σ,Σ2, σ,Σ3; Γ `ι α
Σ1, σ,Σ2,Σ3; Γ `ι α

struct5

Σ1, σ,Σ2,Σ3; Γ `ι α
Σ1, σ,Σ2, σ,Σ3; Γ `ι α

where Σ, Σ1, Σ2, Σ3, Γ, Γ1 and Γ2 are possibly empty lists of formulae and
α, β, γ and σ are formulae. For all these rules, it is easy to see that one can
derive the translations of the conclusion from the translation of the premise.
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Assumption introduction

If ∆(α) is not >, then the translation of the premise is

{
`ι D(σ1 & σ2 & . . .& σn)

R(Σ) `ι R(∆(α)) &D(∆(α))

From the lemmata above, we can conclude that the last sequent is equiva-
lent to R(Σ) ` D(α). From this, we have to deduce the translation of the
conclusion: 

`ι D(σ1 & σ2 & . . .& σn)

R(Σ) `ι D(α)

R(Σ) ,R(α) `ι R(α) &D(α)

The first sequent we already have; the second we already have obtained,
and the third can be easily deduced from it.

If ∆(α) ≡ >, then D(α) is a validity and we have to derive

{
`ι D(α)

R(α) `ι R(α) &D(α)

which is easy.

Note that we could have used

Σ; `ι D(α)
Σ;α `ι α

as assumption introduction rule—in that case, the last sequent of the trans-
lation of the premise would have been

R(Σ) ` R(D(α)) &D(D(α))

and using §3.6.3, we can deduce R(Σ) ` D(α), which is the same sequent we
got using the variant of the rule with Σ;`ι ∆(α) as premise.

The only reason we introduced ∆ is that ∆(α) is usually a shorter formula
than D(α), since in the former we are still allowed to use ι-terms, while in
the latter we must reduce them fully.
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&-introduction

The translation of the premises gives us the sequents

` D(σ1,1)

R(σ1,1) ` D(σ1,2)

...

R(Σ1) ` D(γ1) &D(γ2) & . . .&D(γm)

R(Σ1) ,R(Γ) ` R(α) &D(α)

and 

` D(σ2,1)

R(σ2,1) ` D(σ2,2)

...

R(Σ2) ` D(δ1) &D(δ2) & . . .&D(δl)

R(Σ2) ,R(∆) ` R(β) &D(β)

where we denote

Σ1 ≡ σ1,1, σ1,2, . . . , σ1,n1 Γ ≡ γ1, γ2, . . . , γm

Σ2 ≡ σ2,1, σ2,2, . . . , σ2,n2 ∆ ≡ δ1, δ2, . . . , δl.

First, we have to derive the sequents

` D(σ1,1) (1)

R(σ1,1) ` D(σ1,2)

R(σ1,1) ,R(σ1,2) ` D(σ1,3)

...

R(σ1,1) ,R(σ1,2) , . . . ,R(σ1,n1−1) ` D(σ1,n1) (2)

R(Σ1) ` D(σ2,1) (3)

R(Σ1) ,R(σ2,1) ` D(σ2,2)

R(Σ1) ,R(σ2,1) ,R(σ2,1) ` D(σ2,3)

...

R(Σ1) ,R(σ2,1) , . . . ,R(σ2,n2−1) ` D(σ2,n2) (4)

We already have the first group of sequents (1)–(2) from the translation
of the first premise. For the second group (3)–(4), we easily obtain the
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required sequent from the corresponding sequent of the translation of the
second premise.

Next, we handle the one but last sequent of the translation of the con-
clusion:

R(Σ1) ,R(Σ2) ` D(γ1) &D(γ2) & . . .D(γm) &D(δ1) &D(δ2) & . . .D(δl)

This sequent is easy to derive by applying the &-introduction rule to the one
but last sequents of the translation of both premises.

Finally, we have to deduce

R(Σ1) ,R(Σ2) ,R(Γ) ,R(∆) ` R(α & β) &D(α & β)

i.e.,

R(Σ1) ,R(Σ2) ,R(Γ) ,R(∆) ` R(α) &R(β) &D(α) & (R(α)⇒ D(β))

which is easily obtained from the last sequents of the translation of both
premises.

For the other rules of this section, we will do the proofs for the case
that the context Σ is empty. Expanding the proof to non-empty contexts is
analogous to the proofs already given.

&-elimination

We will handle both &-elimination rules at once. Translating the premise,
we have {

` D(γ1) &D(γ2) & . . .&D(γm)

R(Γ) ` R(α & β) &D(α & β)

This gives us immediately the first sequent of the translation of the conclu-
sion. The second sequent is

R(Γ) ` R(α) &R(β) &D(α) & (R(α)⇒ D(β))

from which it is easy to deduce the second sequents of the translations we
need:

R(Γ) ` R(α) &D(α)

R(Γ) ` R(β) &D(β)
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Removal

Translation of the premises yields
` D(γ1) &D(γ2) & . . .&D(γm) &D(α)

R(Γ) ,R(α) ` R(β) &D(β)

R(Γ) ,R(¬α) ` R(β) &D(β)

We only have three sequents, since the first sequents of the translations are
identical (using the fact that D(α) ≡ D(¬α)).

Using the property R(¬α) ≡ ¬R(α), we see that we can apply the re-
moval rule to the remaining two sequents, yielding the required

R(Γ) ` R(β) &D(β)

Contradiction

The premises are in translation:{
` D(γ1) &D(γ2) & . . .&D(γm)

R(Γ) ` R(α) &D(α){
` D(δ1) &D(δ2) & . . .&D(δm)

R(∆) ` ¬R(α) &D(α)

Using &-elimination twice, we get

R(Γ) ` R(α)

R(∆) ` ¬R(α)

Applying the contradiction rule yields

R(Γ) ,R(∆) ` R(β) &D(β)

which is the second sequent of the translation of the conclusion; obtaining
the first sequent is trivial.

3.6.5 Translation of the predicate rules

∀-introduction

The translation of the premise is{
` D(γ1) &D(γ2) & . . .&D(γm)

R(Γ) ` R(α) &D(α)

If we keep the first sequent and apply the ∀-introduction rule of the Hermes
calculus, we get the translation of the conclusion.
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∀-elimination

The proof is analogous to the ∀-introduction rule.

3.6.6 Translation of the other rules

Before we can handle these rules, we have to build up some the-
oretical machinery first. Basically, our approach is an adaptation
of [Hilbert & Bernays 1968].

We start by proving a more general version of lemma 8.

Lemma 11 If t is a term of the pitfol calculus, V is the set of free variables
of t and the substitution [t/x]α is defined, then

R([t/x]α) a` R([t/x]RV (α))

Proof.
We prove this by induction on the complexity of α.
We first note that if x is not a free variable of α, the lemma is trivial.

Hence we will suppose that x is a free variable of α.

• If α has complexity zero, i.e., α is atomic and does not contain any
ι-terms, then, as we showed in §3.6.3, RV (α) ≡ α and the lemma is
trivially proved.

• When α is atomic and contains ι-terms, i.e., α ≡ p(τ1, τ2, . . . , τn), we
proceed as follows (we treat the case α ≡ τ1 = τ2 analogously).
Enumerate the top-level ι-terms of α as

TLI(α) ≡ ιx1ψ1
(ϕ1), ιx2ψ2

(ϕ2), . . . , ιxmψm(ϕm).

Enumerate the top-level ι-terms of t as

TLI(t) ≡ ιy1ζ1(χ1), ιy2ζ2(χ2), . . . , ιylζl(χl).

Call k the number of top-level free occurrences in α of the variable
symbol x (i.e., those occurrences not inside a ∀x or inside a definiens or
domain formula of a ι-term). Construct the terms t1, t2, . . . , tk by re-
placing the top-level ι-terms of t with the variable symbols vi1, v

i
2, . . . , v

i
l ,

that is,
• t1 is obtained from t by replacing its top-level ι-terms with
v1

1, v
1
2, . . . , v

1
l

• . . .
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• tk is obtained from t by replacing its top-level ι-terms with
vk1 , v

k
2 , . . . , v

k
l .

Finally, note the definiens of [t/x]ιxiψi(ϕi) as ϕ′i.
The top-level ι-terms of [t/x]α originate from two sources:

– A top-level ι-term ιxiψi(ϕi) of α gives rise to a single ι-term
[t/x]ιxiψi(ϕi)

– A top-level variable symbol x gives rise to l top-level ι-terms,
namely TLI(t).

Then, R([t/x]α) can be written as

∃w1∃w2 . . . ∃wm∃v1
1∃v1

2 . . . ∃v1
l ∃v2

1∃v2
2 . . . ∃v2

l . . . ∃vk1∃vk2 . . . ∃vkl
(

R([w1/x1
]ϕ′1) &R([w2/x2

]ϕ′2) & . . .&R([wm/xm]ϕ′m)

&R([v
1
1/y1

]χ1) &R([v
1
2/y2

]χ2) & . . .&R([v
1
l/yl]χl)

& . . .R
([
vk1/y1

]
χ1

)
&R

([
vk2/y2

]
χ2

)
& . . .&R

([
vkl/yl

]
χl
)

& q′
)

(3.2)
where q′ is obtained from α by replacing its top-level ι-terms with w1,
w2, . . . , wm and its top-level occurrences of the variable symbol x with
t1, t2, . . . , tk.
As usual, the w’s and v’s are all different and do not occur in [t/x]α,
i.e., they do not occur in α and t.

Next, we investigate RV (α), which can be written as

∃u1∃u2 . . . ∃um(RV ([u1/x1
]ϕ1)&RV ([u2/x2

]ϕ2)& . . .&RV ([um/xm]ϕm)&q)

where q is obtained from α by replacing its top-level ι-terms with u1,
u2, . . . , um and the u’s are all different, do not occur in α and are not
free variables of t.
Hence, R([t/x]RV (α)) is

∃u1∃u2 . . . ∃um(R([t/x]RV ([u1/x1
]ϕ1)) & . . .

&R([t/x]RV ([um/xm]ϕm)) &R([t/x]q))

Using induction on the formulae [u1/x1
]ϕ1, [u2/x2

]ϕ2, . . . , [um/xm]ϕm,
this is equivalent with

∃u1∃u2 . . . ∃um(R([t/x] [u1/x1
]ϕ1)& · · ·&R([t/x] [um/xm]ϕm)&R([t/x]q))

We will now establish that

R([t/x] [ui/xi]ϕi) a` R([ui/xi]ϕ
′
i)
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– If x ≡ xi, then [t/x]ιxψi(ϕi) ≡ ιxψi(ϕi) or [t/x]ιxψi(ϕi) ≡
ιx∆(t)&[t/x]ψi(ϕi); hence ϕ′i ≡ ϕi and we have to prove that

R([t/x] [ui/x]ϕi) a` R([ui/x]ϕi)

which is easy, since [t/x] [ui/x]ϕi ≡ [ui/x]ϕi because ui 6≡ x.

– If x is not a free variable of ϕi, then analogously, ϕ′i ≡ ϕi. We
must again prove that

R([t/x] [ui/xi]ϕi) a` R([ui/xi]ϕi)

But since ui 6≡ x and x is not a free variable of ϕi, we also have that
x is not a free variable of [ui/xi]ϕi. Hence [t/x] [ui/xi]ϕi ≡ [ui/xi]ϕi.

– If x is a free variable of ϕi and x 6≡ xi, then [t/x]ιxiψi(ϕi) ≡
ιxi∆(t)&[t/x]ψi([t/x]ϕi) (We take the substitution to be defined, hence
xi is not free in t.) So in this case, ϕ′i ≡ [t/x]ϕi and we have to
prove that

R([t/x] [ui/xi]ϕi) a` R([ui/xi] [
t/x]ϕi)

Since we supposed the substitution to be defined, xi is not a free
variable of t; we also have that ui does not occur in α and hence
ui 6≡ x. It is now easy to show that in that case, we may change
the order of the substitutions without affecting the result.

Using this result, we conclude that R([t/x]RV (α)) is equivalent with

∃u1∃u2 . . . ∃um
(
R([u1/x1

]ϕ′1) &R([u2/x2
]ϕ′2)

& . . .&R([um/xm]ϕ′m) &R([t/x]q)
)

We now investigate the structure of R([t/x]q). By construction, q does
not contain any ι-terms; the only possible ι-terms in [t/x]q are in copies
of t (one for each free occurrence of x in q)—that is, if t contains any
ι-terms at all. Hence, if we construct the terms t′i by replacing the
top-level ι-terms of t with the variable symbols v′i1, v

′i
2, . . . , v

′i
l, we can

write R([t/x]q) as

∃v′11∃v′
1
2 . . . ∃v′

1
l ∃v′

2
1∃v′

2
2 . . . ∃v′

2
l . . . ∃v′

k
1∃v′

k
2 . . . ∃v′

k
l

(
&R

([
v′11/y1

]
χ1

)
&R

([
v′12/y2

]
χ2

)
& . . .&R

([
v′1l/yl

]
χl
)

& · · ·&R
([
v′k1/y1

]
χ1

)
&R

([
v′k2/y2

]
χ2

)
& . . .&R

([
v′kl/yl

]
χl

)
& q′′

)
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where we obtain q′′ by replacing all free occurrences of x with
t′1, t

′
2, . . . , t

′
k.

Combining this and moving the existential quantifiers ∃v′ji to the front,
we notice that R([t/x]R(α)) is equivalent to a formula which has the
same structure as (3.2) except that all u’s and v′’s are replaced with
w’s and v’s.

But lemma 8 yields that reductions of the same formula ([t/x]α in this
case) with different variables are equivalent.

• The cases where α is not atomic are straightforward.

2

If t does not contain any ι-terms, then this lemma simplifies to

R([t/x]α) a` [t/x]RV (α)

For the sequel, we will need the following property of the Hermes calculus:

Lemma 12 For each formula α and β,

∃!x(α),∀x(α⇒ β) ` ∃x(α & β)

Proof.

∀x¬(α & β) ` ∀x¬(α & β) ass
∀x¬(α & β) ` ¬(α & β) ∀-elim

α ` α ass
β ` β ass

α, β ` α & β &-intro
∀x¬(α & β), α, β ` ¬α contra

∀x(α⇒ β) ` ∀x(α⇒ β) ass
∀x(α⇒ β) ` ¬(α & ¬β) ∀-elim

¬β ` ¬β ass
α,¬β ` α & ¬β &-intro

∀x(α⇒ β), α,¬β ` ¬α contra
∀x¬(α & β),∀x(α⇒ β), α ` ¬α rem

¬α ` ¬α ass
∀x¬(α & β),∀x(α⇒ β) ` ¬α rem
∀x¬(α & β),∀x(α⇒ β) ` ∀x(¬α) ∀-intro

∃!x(α) ` ∃!x(α) ass
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∃!x(α) ` ¬∀x(¬α) &-elim
∃!x(α),∀x¬(α & β),∀x(α⇒ β) ` ¬∀x¬(α & β) contra

¬∀x¬(α & β) ` ¬∀x¬(α & β) ass
∃!x(α),∀x(α⇒ β) ` ¬∀x¬(α & β) rem

2

Note that one can also prove ∃!x(α),∃x(α & β) ` ∀x(α⇒ β).

Lemma 13 From the translation of ψ `ι ∃!x(ϕ) we can deduce

R(ψ) ` (R([u1/x]ϕ) &R([u2/x]ϕ))⇔ (R([u1/x]ϕ) & u1 = u2)

if u1 and u2 do not occur free in ϕ.

Proof.
• First, we will prove the ⇒ direction.
The translation of the uniqueness condition is{

` D(ψ)
R(ψ) ` R(∃!x(ϕ)) &D(∃!x(ϕ))

from which we can deduce

R(ψ) ` ∀x∀y((R(ϕ) &R([y/x]ϕ))⇒ x = y)

with y not occurring in ϕ. If x is not a free variable of ϕ, then the proof is
trivial; hence suppose x is a free variable of ϕ.

Using R(ϕ) a` Ru1(ϕ) and R([y/x]ϕ) a` Ru2([y/x]ϕ), we get

R(ψ) ` ∀x∀y((Ru1(ϕ) &Ru2([y/x]ϕ))⇒ x = y)

Suppose first that u1 and u2 differ from y. Then we have that u1 and u2

are not free variables of (Ru1(ϕ) &Ru2([y/x]ϕ)) ⇒ x = y and hence we can
perform a rename of variables, yielding

R(ψ) ` ∀u1∀u2(([u1/x] [u2/y]Ru1(ϕ) & [u1/x] [u2/y]Ru2([y/x]ϕ))⇒ u1 = u2)

Since y does not occur in ϕ, it does not occur free in Ru1(ϕ), so
[u2/y]Ru1(ϕ) ≡ Ru1(ϕ). By lemma 11, [u1/x]Ru1(ϕ) a` R([u1/x]ϕ). Analo-
gously, we have [u1/x] [u2/y]Ru2([y/x]ϕ) a` R([u2/x]ϕ), yielding

R(ψ) ` ∀u1∀u2((R([u1/x]ϕ) &R([u2/x]ϕ))⇒ u1 = u2)
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from which we easily get the desired sequent.
The cases where u1 ≡ y or u2 ≡ y are similar.

• Next, we handle the ⇐ direction. Using the assumption rule, we get

R(ψ) ,R([u1/x]ϕ) & u1 = u2 ` R([u1/x]ϕ) & u1 = u2

which is equivalent with

R(ψ) ,R([u1/x]ϕ) & u1 = u2 ` Ru2([u1/x]ϕ) & u1 = u2

Using the equality rule, we can deduce

R(ψ) ,R([u1/x]ϕ) & u1 = u2 ` [u2/u1
]Ru2([u1/x]ϕ)

Lemma 11 yields that the consequent is equivalent toR([u2/u1
] [u1/x]ϕ) which

is in turn equivalent to R([u2/x]ϕ), since u1 is not a free variable of ϕ. Now
it is easy to get the desired sequent. 2

Lemma 14 If the translation of ψ `ι ∃!x(ϕ) is derivable, then

R(ψ) ` (R(ϕ) & α)⇔ (R(ϕ) & ∃x(R(ϕ) & α))

Proof.
Choose a variable symbol y not occurring free in ϕ and α. Because y is

not a free variable of R(ϕ), we have

R(ψ) ` (R(ϕ) & ∃y([y/x]R(ϕ) & [y/x]α))⇔ ∃y(R(ϕ) & [y/x]R(ϕ) & [y/x]α)

Using the previous lemma, we get

R(ψ) ` (R(ϕ) & ∃y([y/x]R(ϕ) & [y/x]α))⇔ ∃y(R(ϕ) & x = y & [y/x]α)

from which

R(ψ) ` (R(ϕ) & ∃y([y/x]R(ϕ) & [y/x]α))⇔ (R(ϕ) & α)

and finally by a change of variable name,

R(ψ) ` (R(ϕ) & ∃x(R(ϕ) & α))⇔ (R(ϕ) & α).

2

The next lemma enables us to eliminate a iota-term ιxψ(ϕ) from a for-
mula α. It is a key step in the equiconsistency proof. This is analogous to
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[Hilbert & Bernays 1968], pp. 441–448: there, the theorem reads, translated
to our notations,

` (∀x(R(ϕ)⇒ R(α)))⇔ R([ιx(ϕ)/x]α)

from which we clearly can observe that our lemma is a generalisation of
Hilbert and Bernays’s. Moreover, we can prove the lemma in a way that is
very close to the proof of Hilbert and Bernays:

Lemma 15 If the translation of ψ `ι ∃!x(ϕ) is derivable, and the substitu-
tion [ιxψ(ϕ)/x]α is defined, then

R(ψ) ` (∀x(R(ϕ)⇒ R(α)))⇔ R([ιxψ(ϕ)/x]α)

Proof.
We prove this by structural induction on α.
If x is not a free variable of α, then we have to prove that

R(ψ) ` (∀x(R(ϕ)⇒ R(α)))⇔ R(α)

which is equivalent with

R(ψ) ` (∃x(R(ϕ))⇒ R(α))⇔ R(α)

This easy to show, using the uniqueness condition.

For the case where x is a free variable of α, we first treat the case where α
is atomic, which we handle by induction on the nesting depth of the ι-terms
of α.
• First, let us suppose that α does not contain any ι-terms. Hence,

R(α) ≡ α. We have to prove that

R(ψ) ` (∀x(R(ϕ)⇒ α))⇔ R([ιxψ(ϕ)/x]α)

Using lemma 12, this is equivalent to

R(ψ) ` (∃x(R(ϕ) & α))⇔ R([ιxψ(ϕ)/x]α)

Expanding the last reduction, we get

R(ψ) ` (∃x(R(ϕ) & α))⇔ ∃u1∃u2 . . . ∃uk(R([u1/x]ϕ)& . . .&R([uk/x]ϕ)& q)

where q is the formula obtained by replacing all k top-level occurrences of x
in α by u1, u2, . . . We now use lemma 13 to transform this into

R(ψ) ` (∃x(R(ϕ) & α))⇔ ∃u1 . . . ∃uk(R([u1/x]ϕ) & u1 = u2 & · · ·& u1 = uk & q)
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from which we can get

R(ψ) ` (∃x(R(ϕ) & α))⇔ ∃u1(R([u1/x]ϕ) & [u1/u2
] [u1/u3

]· · · [u1/uk]q)

and finally, using R([u1/x]ϕ) a` Ru1([u1/x]ϕ) and lemma 11,

R(ψ) ` (∃x(R(ϕ) & α))⇔ ∃x(R(ϕ) & [x/u1
] [x/u2

]· · · [x/uk]q)

Noticing that [x/u1
] [x/u2

]· · · [x/uk]q ≡ α concludes the proof of this case.
• If α contains ι-terms, i.e., α ≡ p(τ1, . . . , τn), where we treat the case

α ≡ τ1 = τ2 analogously, then we proceed as follows. We have

R(α) ≡ ∃u1∃u2 . . . ∃um(R([u1/x1
]ϕ1) & . . .&R([um/xm]ϕm) & q)

R([ιxψ(ϕ)/x]α) ≡ ∃w1∃w2 . . . ∃wm∃v1∃v2 . . . ∃vk
(

R([v1/x]ϕ) & . . .&R([vk/x]ϕ)

&R([w1/x1
]ϕ′1) & . . .&R([wm/xm]ϕ′m) & q′

)
where TLI(α) ≡ ιx1ψ1

(ϕ1), . . . , ιxmψm(ϕm), we obtain q by replacing all top-
level ι-terms of α by u1, u2, . . . , um, and q′ by replacing all top-level free
x (i.e., not inside a ∀x quantifier or inside the domain formula of a ι-term)
symbols in α by v1, v2, . . . , vk and all top-level ι-terms by w1, w2, . . . , wm
and ϕ′i is defined as the definiens of [ιxψ(ϕ)/x]ιxiψi(ϕi). More explicitly, we
have

• If x ≡ xi or x is not a free variable of ϕi, then ϕ′i ≡ ϕi

• If x 6≡ xi and x is a free variable of ϕi, then ϕ′i ≡ [ιxψ(ϕ)/x]ϕi. Note
that we supposed the substitution [ιxψ(ϕ)/x]α to be defined, hence the
substitution [ιxψ(ϕ)/x]ιxiψi(ϕi) is defined (and hence xi is not a free
variable of ιxψ(ϕ)).

By proceeding similarly to the previous case, we find that under the condition
R(ψ),

R([ιxψ(ϕ)/x]α) a` ∃w1∃w2 . . . ∃wm∃x
(

R(ϕ) &R([w1/x1
]ϕ′1) & · · ·&R([wm/xm]ϕ′m)

& [x/v1
] [x/v2

]· · · [x/vk]q
′
)

We have to prove that this is equivalent under the condition R(ψ) to
∀x(R(ϕ) ⇒ R(α)), or, using lemma 12, to ∃x(R(ϕ) & R(α)). We have
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that

∃x(R(ϕ) &R(α))

a` ∃x(R(ϕ) & ∃u1 . . . ∃um(R([u1/x1
]ϕ1) & · · ·&R([um/xm]ϕm) & q))

a` ∃x∃u1 . . . ∃um(R(ϕ) &R([u1/x1
]ϕ1) & · · ·&R([um/xm]ϕm) & q)

We supposed here that the u’s are not free variables of R(ϕ); if this would
be the case, we would have to perform an extra change of variable names
here.
Define

C := [ui1/xi1 ]ϕi1 & [ui2/xi2 ]ϕi2 & · · ·& [uic/xic ]ϕic
D := [uj1/xj1 ]ϕj1 & [uj2/xj2 ]ϕj2 & · · ·& [ujd/xjd ]ϕjd

where in C, all ϕi occur for which ϕ′i ≡ [ιxψ(ϕ)/xi]ϕi and in D, all ϕj for
which ϕ′j ≡ ϕj occur. Then

∃x(R(ϕ) &R(α)) a` ∃x∃u1∃u2 . . . ∃um(R(ϕ) &R(C) &R(D) & q)

Using the previous lemma, this is equivalent under R(ψ) to

∃x∃u1∃u2 . . . ∃um(R(ϕ) & ∃x(R(ϕ) &R(C)) &R(D) & q)

We now apply induction on C, yielding

R(ψ) ` (∃x(R(ϕ) &R(C))⇔ R([ιxψ(ϕ)/x]C)

so we have that ∃x(R(ϕ) &R(α)) is equivalent to

∃x∃u1∃u2 . . . ∃um(R(ϕ) &R([ιxψ(ϕ)/x]C) &R(D) & q)

i.e.,

∃x∃u1∃u2 . . . ∃um
(
R(ϕ)

&R([ιxψ(ϕ)/x] [ui1/xi1 ]ϕi1 & · · ·& [ιxψ(ϕ)/x] [uic/xic ]ϕic)

&R([uj1/xj1 ]ϕj1 & · · ·& [ujd/xjd ]ϕjd) & q
)

Now ui1 does not occur in α and hence differs from x, and as we remarked
before, xi1 is not a free variable of ιxψ(ϕ). Further, xi1 differs from x. Hence
the conditions for property 7 are fulfilled and we have [ιxψ(ϕ)/x] [ui1/xi1 ]ϕi1 ≡
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[ui1/xi1 ] [
ιxψ(ϕ)/x]ϕi1 and likewise for ϕi2 and so on. Hence we can transform

our expression into

∃u1∃u2 . . . ∃um∃x
(
R(ϕ) &R

(
[ui1/xi1 ]ϕ

′
i1

& · · ·& [uic/xic ]ϕ
′
ic

)
&R

(
[uj1/xj1 ]ϕ

′
j1

& · · ·& [ujd/xjd ]ϕ
′
jd

)
& q
)

But this is R([ιxψ(ϕ)/x]α) up to a choice of the u’s, and we know that such
reductions are equivalent.

If α is not atomic, then we can apply induction on the structure of α. 2

Note that we need the antecedent R(ψ). Indeed, otherwise setting α ≡
x = x and ιxψ(ϕ) ≡ ιxy 6=0(x · y = 1), we would obtain

` (∀x(x · y = 1⇒ x = x))⇔ ∃u∃v(u · y = 1 & v · y = 1 & u = v)

Since x = x is a validity, so is x · y = 1⇒ x = x, so the sequent obtained is
equivalent with

` ∃u∃v(u · y = 1 & v · y = 1 & u = v)

from which we easily could derive the unsound sequent

` ∃u∃v(u · 0 = 1 & v · 0 = 1 & u = v).

Lemma 16 Let t be a term of the pitfol calculus and α a formula of the
pitfol calculus. If the translations of the uniqueness conditions for t hold
and the substitution [t/x]α is defined, then

D(t) ,∀x(R(α)) ` R([t/x]α)

Proof.

• If t does not contain any ι-terms, then D(t) is a validity and we have
to prove

∀x(R(α)) ` R([t/x]α)

We have ∀x(R(α)) ` R(α) and because of lemma 8, this is equivalent
with ∀x(R(α)) ` RV (α) where V is the set of free variables of α.
Applying the substitution rule yields ∀x(R(α)) ` [t/x]RV (α) Using
lemma 11 we can transform this into ∀x(R(α)) ` R([t/x]α).
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• If t ≡ ιxψ(ϕ), then we use lemma 15 to get

D(t) ` (∀x(R(ϕ)⇒ R(α)))⇔ R([t/x]α)

and hence
D(t) ,∀x(R(ϕ)⇒ R(α)) ` R([t/x]α)

One easily shows that ∀x(R(α)) ` ∀x(R(ϕ) ⇒ R(α)) and using this
result, this case is easily proved.

• The case t ≡ ιyψ(ϕ) with y 6≡ x is handled as follows. Choose a
variable symbol z different from x and which does not occur in α and t.
Applying the previous case to the formula [y/x] [z/y]α, we get

D(t) ,∀y(R([y/x] [z/y]α)) ` R([t/y] [y/x] [z/y]α)

which is equivalent to

D(t) ,∀x(R([z/y]α)) ` Ry([t/x] [z/y]α)

from which we can derive

[y/z]D(t) , [y/z]∀x(R([z/y]α)) ` [y/z]Ry([t/x] [z/y]α)

Since z does not occur in t, it is not a free variable of D(t) and
[y/z]D(t) ≡ D(t).
Next, [y/z]∀x(R([z/y]α)) ≡ ∀x([y/z]R([z/y]α)) and the latter formula
is, using lemma 11, equivalent with ∀x([y/z] [z/y]Rz(α)) which is identi-
cal to ∀x(Rz(α)). From lemma 8 we learn that this is equivalent with
∀x(R(α)).
Finally, [y/z]Ry([t/x] [z/y]α) is equivalent with R([y/z] [t/x] [z/y]α). Be-
cause z is not a free variable of t, we can swap the order of the sub-
stitutions; the last formula is identical to R([t/x] [y/z] [z/y]α) which in
turn is identical to R([t/x]α).
Combining these three observations yields the desired sequent.

• If t ≡ f(t1, t2, . . . , tn) then we enumerate the top-level ι-terms of t as

TLI(t) ≡ ιx1ψ1
(ϕ1), ιx2ψ2

(ϕ2), . . . , ιxmψm(ϕm)

and define g as the term obtained by replacing all top-level ι-terms in t
with the variable symbols u1, u2, . . . , um, which we choose all different
and not occurring in t or α. Applying the first case of our proof yields

∀x(R(α)) ` R([g/x]α)
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from which we easily get

∀x(R(α)) ` ∀u1(R([g/x]α))

Applying the previous case, we get

R(ψ1) ,∀u1(R([g/x]α)) ` R
([
ιx1ψ1

(ϕ1)/u1

]
[g/x]α

)
Combining these sequents yields

R(ψ1) , ∀x(R(α)) ` R
([
ιx1ψ1

(ϕ1)/u1

]
[g/x]α

)
Continuing in this way, we get

R(ψ1) , . . . ,R(ψm) ,∀x(R(α))

` R
([
ιxmψm(ϕm)/um

]
. . .
[
ιx1ψ1

(ϕ1)/u1

]
[g/x]α

)
i.e.,

D(t) ,∀x(R(α)) ` R([t/x]α)

2

Note that we need D(t) to be present in the antecedent. As a counterex-
ample, consider α ≡ x = x and t ≡ ιxy 6=0(x · y = 1). Then we would get
∀x(x = x) ` ∃u∃v(u · y = 1 & v · y = 1 & u = v) from which we easily could
derive the unsound sequent ` ∃u∃v(u · 0 = 1 & v · 0 = 1 & u = v).

Lemma 17 Let t be a term of the pitfol calculus and α a formula of the
pitfol calculus. If the substitution [t/x]α is defined, then

D(t) ,R([t/x]DV (α)) ` D([t/x]α)

where V is the set of free variables of α.

Proof.
If x is not a free variable of α, then the proof is trivial, so we will suppose

that x is a free variable of α.

• If α is atomic, then call TLI(α) ≡ ιx1ψ1
(ϕ1), ιx2ψ2

(ϕ2), . . . , ιxmψm(ϕm)
its top-level ι-terms. Then,

DV (α) ≡ RV (ψ1) &RV (ψ2) & · · ·&RV (ψm)
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If we denote the top-level ι-terms of [t/x]α as TLI([t/x]α) ≡
ιx′1ψ′1

(ϕ′1), ιx′2ψ′2
(ϕ′2), . . . , ιx′Mψ′M

(ϕ′M) then analogously, we have

D([t/x]α) ≡ R(ψ′1) &R(ψ′2) & · · ·&R(ψ′M)

Denoting the domain formula of [t/x]ιxiψi(ϕi) as ψ′′i , we see that the
ψ′’s contain all the ψ′′’s and the rest of them originate from the top-
level ι-terms of t.
Summarizing, we have that

R(ψ′1)&R(ψ′2)& · · ·&R(ψ′M) a` R(ψ′′1)&R(ψ′′2)& . . .&R(ψ′′m)&D(t)

We will now establish that either ψ′′i ≡ [t/x]ψi or ψ′′i ≡∆(t) & [t/x]ψi.

– If x ≡ xi or x is not a free variable of ϕi, then ψ′′i ≡ ψi when x is not
a free variable of ψi and hence ψ′′i ≡ [t/x]ψi, or ψ′′i ≡∆(t)& [t/x]ψi
when x is a free variable of ψi.

– Else, ψ′′i ≡∆(t) & [t/x]ψi.

Hence, R(ψ′′i ) is equivalent to R([t/x]ψi) or D(t) &R([t/x]ψi).
So what we have to prove amounts to

D(t) ,R([t/x](RV (ψ1) & · · ·&RV (ψm)))

` R([t/x]ψ1) & · · ·&R([t/x]ψm) &D(t)

for which it will be sufficient to derive

R([t/x](RV (ψi)) ` R([t/x]ψi)

which we immediately obtain from lemma 11.

• If α ≡ ¬β then we must prove

D(t) ,R([t/x]DV (¬β)) ` D([t/x]¬β)

Because of the definition of D, this is identical to the induction hypoth-
esis

D(t) ,R([t/x]DV (β)) ` D([t/x]β)

• If α ≡ β & γ, then we have to show that

D(t) ,R([t/x]DV (β) & [t/x](RV (β)⇒ DV (γ)))
` D([t/x]β) & (R([t/x]β)⇒ D([t/x]γ))
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Induction on β yields D(t) ,R([t/x]DV (β)) ` D([t/x]β), so we still have
to derive

D(t) ,R([t/x]RV (β))⇒ R([t/x]DV (γ))) ` R([t/x]β)⇒ D([t/x]γ) .

Invoking lemma 11, this becomes

D(t) ,R([t/x]β)⇒ R([t/x]DV (γ))) ` R([t/x]β)⇒ D([t/x]γ)

which is easy to prove using induction on γ.

• If α ≡ ∀y(β), then, using the induction hypothesis, we can derive

∀y(D(t)),∀y(R([t/x]DV (β))) ` ∀y(D([t/x]β))

Since the substitution [t/x]α is derived, either x is not a free variable
of α, and then the lemma is trivial, or y is not a free variable of t. In
the latter case, we have D(t) ` ∀y(D(t)), and we can derive

D(t) ,∀y(R([t/x]DV (β))) ` ∀y(D([t/x]β))

Noticing that ∀y(R([t/x]DV (β))) ≡ R([t/x]DV (∀y(α))) and
∀y(D([t/x]β)) ≡ D([t/x]∀y(β)) proves this case.

2

Corollary 18 Let t be a term of the pitfol calculus and α a formula of the
pitfol calculus. If the translations of the uniqueness conditions for t hold
and the substitution [t/x]α is defined, then

D(t) ,∀x(D(α)) ` D([t/x]α)

Proof.
Applying lemma 16 on the formula DV (α) gives

D(t) ,∀x(R(DV (α))) ` R([t/x]DV (α))

In combination with

∀x(R(D(α))) ` ∀x(R(DV (α)))

this yields
D(t) ,∀x(R(D(α))) ` R([t/x]DV (α))

Applying the previous lemma yields

D(t) ,∀x(R(D(α))) ` D([t/x]α)

which is the desired sequent, using the observations in §3.6.3. 2
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Lemma 19 If the translation of ψ `ι ∃!y(ϕ) is derivable and the translations
of the uniqueness conditions of t are given, then so is the translation of the
uniqueness condition of [t/x]ιyψ(ϕ), if the substitution is defined.

Proof.
The translation of the uniqueness condition we have at our disposal is{

` D(ψ)

R(ψ) ` R(∃!y(ϕ)) &D(∃!y(ϕ))

Denote the result of the substitution, [t/x]ιyψ(ϕ), as ιyψ′(ϕ
′). We have to

derive {
` D(ψ′)

R(ψ′) ` R(∃!y(ϕ′)) &D(∃!y(ϕ′))

• First, we show how ` D(ψ′) can be derived from ` D(ψ). If ψ ≡ ψ′

then we have nothing to do; otherwise we have to derive ` D(∆(t) & [t/x]ψ),
i.e.,

` D(∆(t)) & (R(∆(t))⇒ D([t/x]ψ))

Using lemmas 10 and 9, this simplifies to

` D(t)⇒ D([t/x]ψ))

which we get easily from ` D(ψ) using corollary 18.

• Next, we prove that from R(ψ) ` R(∃!y(ϕ)), we can obtain R(ψ′) `
R(∃!y(ϕ′)).

If x 6≡ y and x is a free variable of ϕ, then we have to obtain

D(t)&R([t/x]ψ) ` ∃y(R([t/x]ϕ))&∀y∀v((R([t/x]ϕ)&R([v/y] [t/x]ϕ))⇒ y = v)

where v does not occur in [t/x]ϕ, and we already have

R(ψ) ` ∃y(R(ϕ)) & ∀y∀z((R(ϕ) &R([z/y]ϕ))⇒ y = z)

where z does not occur in ϕ.
We can assume that v 6≡ x; if v ≡ x then one can prove easily that re-

placing v by another variable also not occurring in [t/x]ϕ yields an equivalent
sequent.

Using the property that R(α) is equivalent with Rv(α), we get after
renaming z to v:

R(ψ) ` ∃y(R(ϕ)) & ∀y∀v(([v/z]Rv(ϕ) & [v/z]Rv([z/y]ϕ))⇒ y = v)
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Since z does not occur in ϕ, it is not a free variable of R(ϕ) and hence
[v/z]Rv(ϕ) ≡ R(ϕ).
Using lemma 11, we also get that [v/z]Rv([v/y]ϕ) a` R([v/z] [z/y]ϕ); since z
does not occur in ϕ, the latter sequent can be written as R([v/y]ϕ).
These two observations yield

R(ψ) ` ∃y(R(ϕ)) & ∀y∀v((R(ϕ) &R([v/y]ϕ))⇒ y = v)

from which we easily derive

` ∀x(RV (ψ)⇒ ∃y(RV (ϕ)) & ∀y∀v((RV (ϕ) &RV ([v/y]ϕ))⇒ y = v))

where V is the set of free variables of t. Using lemma 16, we easily obtain

D(t) ` R([t/x]RV (ψ))⇒
(
R([t/x]∃y(RV (ϕ))) &

R([t/x]∀y∀v((RV (ϕ) &RV ([v/y]ϕ))⇒ y = v))
)

Applying lemma 11 yields

D(t) ` R([t/x]ψ)⇒
(
∃y(R([t/x]ϕ))&

∀y∀v((R([t/x]ϕ) &R([t/x] [v/y]ϕ))⇒ y = v)
)

Since y is not a free variable of t (because the substitution is defined) and
x 6≡ v, we have that [t/x] [v/y]ϕ ≡ [v/y] [t/x]ϕ. Now we can easily derive the
desired sequent.

If x ≡ y or x is not a free variable of ϕ, then ϕ′ ≡ ϕ. If also x is not
a free variable of ψ, then ψ′ = ψ and we have nothing to do; so suppose
ψ′ = ∆(t) & [t/x]ψ. We rewrite the sequent at our disposal as

` R(ψ ⇒ ∃!y(ϕ))

Using lemma 16, we easily get

D(t) ` R([t/x]ψ ⇒ [t/x]∃!y(ϕ))

If x ≡ y, then [t/x]∃!y(ϕ) ≡ ∃!y(ϕ); the same holds if x is not a free variable
of ϕ:

[t/x]∃!y(ϕ) ≡ [t/x]∃y(R(ϕ)) & [t/x]∀y∀z((R(ϕ) &R([z/y]ϕ))⇒ y = z)
≡ ∃y(R(ϕ)) & ∀y∀z((R(ϕ) &R([z/y]ϕ))⇒ y = z)

at least if z is not a free variable of ϕ; in that case, we would have to perform
a variable renaming as the first step (before applying lemma 16).
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Hence we easily can transform our sequent into

D(t) ,R([t/x]ψ) ` R(∃!y(ϕ))

which is by lemma 9 equivalent with

R(∆(t) & [t/x]ψ) ` R(∃!y(ϕ))

• Finally, we prove that from R(ψ) ` R(∃!y(ϕ)) & D(∃!y(ϕ)), we can
obtain R(ψ′) ` D(∃!y(ϕ′)).

If x 6≡ y and x is a free variable of ϕ, then we have to get
R(∆(t) & [t/x]ψ) ` D(∃!y([t/x]ϕ)), i.e., we have to obtain

D(t) ,R([t/x]ψ) ` D(∃y([t/x]ϕ)) &
(∃y(R([t/x]ϕ))⇒ (∀y∀v(D([t/x]ϕ& [v/y] [t/x]ϕ⇒ y = v))))

where v does not occur in [t/x]ϕ. From the previous part of the proof, we
have D(t) ,R([t/x]ψ) ` ∃y(R([t/x]ϕ)), so it is sufficient to derive

D(t) ,R([t/x]ψ) ` D(∃y([t/x]ϕ)) & ∀y∀v(D([t/x]ϕ& [v/y] [t/x]ϕ⇒ y = v)))

From the given sequent, R(ψ) ` R(∃!y(ϕ)) &D(∃!y(ϕ)), we get

R(ψ) ` ∃y(R(ϕ))&D(∃y(ϕ))&(∃y(R(ϕ))⇒ (∀y∀z(D(ϕ& [z/y]ϕ⇒ y = z))))

where z does not occur in ϕ. From which in turn,

R(ψ) ` D(∃y(ϕ)) & ∀y∀z(D(ϕ& [z/y]ϕ) & (R(ϕ& [z/y]ϕ)⇒ D(y = z))))

Using the fact that D(y = z) is a validity, we get

R(ψ) ` D(∃y(ϕ)) & ∀y∀z(D(ϕ& [z/y]ϕ)))

which is equivalent with

R(ψ) ` ∀y(D(ϕ)) & ∀y∀z(D(ϕ) & (R(ϕ)⇒ Dv([z/y]ϕ))))

We rename z to v:

R(ψ) ` ∀y(D(ϕ)) & ∀y∀v([v/z]D(ϕ) & ([v/z]R(ϕ)⇒ [v/z]Dv([z/y]ϕ))))

Since z does not occur in ϕ, we can conclude that [v/z]R(ϕ) ≡ R(ϕ) and
[v/z]D(ϕ) ≡ D(ϕ).
Lemma 17 yields [v/z]Dv([z/y]ϕ) ` D([v/z] [z/y]ϕ) and the last sequent is
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D([v/y]ϕ) since z does not occur in ϕ.
So we can transform our sequent into

R(ψ) ` ∀y(D(ϕ)) & ∀y∀v(D(ϕ) & (R(ϕ)⇒ D([v/y]ϕ))))

which we can simplify to

R(ψ) ` ∀y∀v(D(ϕ) & (R(ϕ)⇒ D([v/y]ϕ))))

Finally, we transform the sequent into

` R(ψ ⇒ ∀y∀v(DV (ϕ) & (ϕ⇒ DV ([v/y]ϕ)))))

Combining this with an application of lemma 16 yields

D(t) ` R([t/x]ψ ⇒ ∀y∀v([t/x]DV (ϕ) & ([t/x]ϕ⇒ [t/x]DV ([v/y]ϕ)))))

Using lemma 17, we obtain

D(t) ` R([t/x]ψ)⇒ ∀y∀v(D([t/x]ϕ) & (R([t/x]ϕ)⇒ D([t/x] [v/y]ϕ))))

For the same reasons of the previous part of the proof, we can change the
order of the substitutions. We then easily obtain the sequent we had to
derive.

If x ≡ y or x is not a free variable of ϕ, then again ϕ′ ≡ ϕ. If also x is
not a free variable of ψ, then ψ′ = ψ and we have nothing to do; so suppose
ψ′ = ∆(t) & [t/x]ψ.

Reasoning analogously as in the previous case, we find that we have to
obtain

D(t) ,R([t/x]ψ) ` D(∃y(ϕ)) & ∀y∀v(D(ϕ& [v/y]ϕ⇒ y = v)))

and that we can derive from the sequent we have at our disposal the sequent

D(t) ` R([t/x]ψ ⇒ [t/x]∀y∀v(DV (ϕ) & (ϕ⇒ DV ([v/y]ϕ)))))

If x ≡ y, then we see immediately that this is equal to

D(t) ` R([t/x]ψ ⇒ ∀y∀v(DV (ϕ) & (ϕ⇒ DV ([v/y]ϕ)))))

and if x is not a free variable of ϕ, the same holds (provided we chose v
such that it is not a free variable of t, which always is possible using a
variable renaming). From this sequent, it is not difficult to derive the required
sequent. 2
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Substitution rule

The translation of the premise is
` D(σ1 & σ2 & · · ·& σn)

R(Σ) ` D(γ1) &D(γ2) & · · ·&D(γm)

R(Σ) ,R(Γ) ` R(α) &D(α)

and from these sequents, we have to prove that
` D(∆(t) & [t/x]σ1 & [t/x]σ2 & · · ·& [t/x]σn)

R(∆(t)) ,R([t/x]Σ) ` D([t/x]γ1) &D([t/x]γ2) & · · ·&D([t/x]γm)

R(∆(t)) ,R([t/x]Σ) ,R([t/x]Γ) ` R([t/x]α) &D([t/x]α)

• We start with deriving the first sequent of the translation of the con-
clusion, which is equivalent to the two sequents

` D(∆(t))

R(∆(t)) ` D([t/x]σ1 & [t/x]σ2 & · · ·& [t/x]σn)

Remembering that ∆(t) ≡ ∆(t = x), lemma 10 yields the first sequent and
we can apply lemma 9 to simplify the second sequent to

D(t) ` D([t/x]σ1 & [t/x]σ2 & · · ·& [t/x]σn)

From corollary 18 we learn that

D(t) ,∀x(D(σ1 & σ2 & · · ·& σn)) ` D([t/x](σ1 & σ2 & · · ·& σn))

From the first sequent of the translation of the premise, we can derive `
∀x(D(σ1 & σ2 & · · ·& σn)), which we can use to simplify the former sequent
to

D(t) ` D([t/x](σ1 & σ2 & · · ·& σn))

which is the desired sequent.
• To derive the second sequent of the translation of the conclusion, we

modify the second sequent of the translation of the premise into

` R((σ1 & σ2 & · · ·& σn)⇒ (DV (γ1) &DV (γ2) & · · ·&DV (γm)))

where V is the set of free variables of t. From this sequent, we can deduce

` ∀x(R((σ1 & σ2 & · · ·& σn)⇒ (DV (γ1) &DV (γ2) & · · ·&DV (γm))))
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Combining this result with an application of lemma 16, we get

D(t) ` R(([t/x]σ1 & · · ·& [t/x]σn)⇒ ([t/x]DV (γ1) & · · ·& [t/x]DV (γ2)))

which is equivalent with

D(t) ,R([t/x]σ1 & · · ·& [t/x]σn) ` R([t/x]DV (γ1)) & · · ·&R([t/x]DV (γm))

Using lemma 17, we can deduce

D(t) ,R([t/x]σ1 & · · ·& [t/x]σn) ` D([t/x]γ1) &D([t/x]γ2) & · · ·&D([t/x]γm)

Applying lemma 9, we get the desired sequent.
• Finally, we derive the last sequent of the translation of the conclu-

sion. From the last sequent of the translation of the premise, using similar
manipulations as above, we can obtain

D(t) ,R([t/x]Σ) ,R([t/x]Γ) ` R([t/x]α) &R([t/x]DV (α))

Lemma 17 transforms this into

D(t) ,R([t/x]Σ) ,R([t/x]Γ) ` R([t/x]α) &D([t/x]α)

from which the desired sequent easily follows.

First equality rule

We have to prove that{
` D(∆(t))

R(∆(t)) ` R(t = t) &D(t = t)

If t does not contain any ι-terms, then this reduces to the single sequent
` R(t = t) & D(t = t) which is equal to ` t = t & ∀x(x = x). This is trivial
to deduce.

If t does contain ι-terms, call its top-level ι-terms TLI(t) ≡ ιx1ψ1
(ϕ1),

ιx2ψ2
(ϕ2), . . . , ιxmψm(ϕm). We then have to prove that{

` D(ψ1 & ψ2 & · · ·& ψm)

R(ψ1 & ψ2 & · · ·& ψm) ` R(t = t) &R(ψ1) &R(ψ2) & · · ·&R(ψm)

The first sequent is easy to deduce, since we have ` D(ψi) from the uniqueness
conditions.
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To deduce the second sequent, it is sufficient to deduce
R(ψ1 & ψ2 & · · ·& ψm) ` R(t = t), which is

R(ψ1 & ψ2 & · · ·& ψm)

` ∃u1 . . . ∃um∃v1 . . . ∃vm
(
R([u1/x]ϕ1) & · · ·&R([um/x]ϕm)

&R([v1/x]ϕ1) & · · ·&R([vm/x]ϕm) & q
)

where q is obtained from t = t by replacing the top-level ι-terms in the left
hand side of the equals sign by u1, u2, . . . , um and in the right hand side by
v1, v2, . . . , vm.

Applying lemma 13, this simplifies to

R(ψ1 & ψ2 & · · ·& ψm)

` ∃u1 . . . ∃um∃v1 . . . ∃vm
(
R([u1/x]ϕ1) & · · ·&R([um/x]ϕm)

& u1 = v1 & · · ·& um = vm & q
)

from which we can deduce

R(ψ1 & ψ2 & · · ·& ψm)

` ∃u1∃u2 . . . ∃um
(
R([u1/x]ϕ1) & . . .& [u1/v1

] [u2/v2
]· · · [um/vm]q

)
Now we notice that [u1/v1

] [u2/v2
]· · · [um/vm]q is of the form t′ = t′ for some t′;

hence the last sequent is equivalent with

R(ψ1 & ψ2 & · · ·& ψm) ` ∃u1∃u2 . . . ∃um
(
R([u1/x]ϕ1) & · · ·&R([um/x]ϕm)

)
which we can deduce easily from the uniqueness conditions.

Second equality rule

• First, we prove the rule for terms of the form t ≡ y. The rule then reduces
to

Σ; Γ `ι α
Σ; Γ, x = y `ι [y/x]α

The first sequents of the translation of the premise and the conclusion are
the same:

` D(σ1 & σ2 & · · ·& σn)

For the second sequent, the premise yields

R(Σ) ` D(γ1) &D(γ2) & · · ·&D(γm)
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and we have to deduce

R(Σ) ` D(γ1) &D(γ2) & · · ·&D(γm) &D(x = y)

Since D(x = y) ≡ ∀x(x = x), a validity, this is trivial.
The translation of the last sequent of the premise is equivalent with

R(Σ) ,R(Γ) ` Ry(α) &Dy(α)

Applying the equality rule of the Hermes calculus yields

R(Σ) ,R(Γ) , x = y ` [y/x]Ry(α) & [y/x]Dy(α)

Using lemmata 8 and 17 yields the translation of the last sequent of the
conclusion.
•We already derived the translation of Σ; Γ, x = y `ι [y/x]α. If we choose

y such that y does not occur in Γ and α, we can now apply the substitution
rule of the pitfol calculus to get the sequent

∆(t) ,Σ; Γ, x = t `ι [t/y] [y/x]α

and because y does not occur in α, we have that [t/y] [y/x]α ≡ [t/x]α.
This is the desired sequent up to the order of the context, which needs to be
Σ,∆(t). To make this change of order, we only need to deduce

` D(σ1 & σ2 & · · ·& σn & ∆(t))

i.e., ` D(σ1 & σ2 & · · ·& σn) & (R(σ1 & σ2 & · · ·& σn) ⇒ D(∆(t))) But we
already have ` D(σ1 & σ2 & · · ·& σn): it is the first sequent of the translation
of the premise. Moreover, D(∆(t)) is a validity according to lemma 10.

ι-rule

First, we note that the substitution [ιxψ(ϕ)/x]ϕ̃ is always defined.
Next, we remark that one easily proves that R(α) a` R(α̃) and D(α) a`

D(α̃) using induction on the complexity of α.
We have to prove that{

` D(ψ)

R(ψ) ` R([ιxψ(ϕ)/x]ϕ̃) &D([ιxψ(ϕ)/x]ϕ̃)

We get the first sequent from the translation of the uniqueness condition for
ιxψ(ϕ).
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Using lemma 15, the second sequent can be rewritten as

R(ψ) ` ∀x(R(ϕ)⇒ R(ϕ̃)) &D([ιxψ(ϕ)/x]ϕ̃)

Since from our remark above, ` R(ϕ) ⇒ R(ϕ̃), this sequent is equivalent
with

R(ψ) ` D([ιxψ(ϕ)/x]ϕ̃)

From the translation of the uniqueness condition for ιxψ(ϕ), we easily
get R(ψ) ` D(∃x(ϕ)), i.e., R(ψ) ` ∀x(D(ϕ)). Using our remark, this is
equivalent with R(ψ) ` ∀x(D(ϕ̃)). Combining this with corollary 18, we get
R(ψ) ` D([ιxψ(ϕ)/x]ϕ̃).

Note that it is necessary to rename the bound variables in case ϕ contains
a variable symbol both bound and free. For example, the substitution

[ιx(x = y & ∃y(x = y))/x](x = y & ∃y(x = y))

is not defined, but

[ιx(x = y & ∃y(x = y))/x](x = y & ∃y′(x = y′))

poses no problems. In case ϕ does not contain a variable symbol both bound
and free, it is not strictly necessary to rename the bound variables, but we
chose to do so to keep the formulation of the rule more uniform.

UC rule

For all the other rules, it was sufficient to only consider the premises of the
rule. The UC rule is an exception: here, we have to look at the whole proof
leading to the premise Σ; Γ `ι α.

We will prove that we can derive the translation of ψ `ι ∃!x(ϕ) by in-
duction on the length of the proof of Σ; Γ `ι α, where ιxψ(ϕ) is a ι-term
occurring in Σ, Γ or α.

If the proof has length 1, it must consist of a single application of ass, eq
without premises.

For the ass rule, UC(α) has to be empty (i.e., α must not contain any
ι-terms), and Σ has to be empty. The conclusion is thus α `ι α and there
are no ι-terms present.

For the eq rule we can use a similar argument.

For the induction step, suppose we have a proof of length n > 1 of
Σ; Γ `ι α. By induction, we can assume that we can derive the translation of
the uniqueness condition of any ι-term in the first n−1 sequents of the proof,
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and more in particular, of the premises of the rule used to obtain the last
formula of the proof. We will show that using these uniqueness conditions,
we can derive the translation of ψ `ι ∃!x(ϕ). We consider the rule used to
obtain the last sequent of the proof.

• For the ass rule, the only new formula in the last sequent of the proof
is α, and this rule requires UC(α) as a premise. Analogous for contra
and eq.

• The &-elim, rem, contra, ∀-intro, ∀-elim, defAnt, defCons, toCtxt and
fromCtxt rules do not introduce any new ι-terms in the last sequent of
the proof.

• For the subst and eqSubst rule, we have to show that given the trans-
lation of the uniqueness condition of a ι-term ιyΨ(Φ) occurring in the
last premise of the rule, and the translation of UC(t), we can derive the
translation of the uniqueness condition of [t/x]ιyΨ(Φ), which is precisely
what we proved in lemma 19.

• For the iota rule, we have to show that we can derive the translations
of UC(ψ) and UC([ιxψ(ϕ)/x]ϕ̃). By induction, we can derive the trans-
lations of UC(ψ) and UC(ϕ). It is not difficult to show that from the
latter, we can derive the translations of UC(ϕ̃). Lemma 19 then yields
the translations of UC([ιxψ(ϕ)/x]ϕ̃).

• For the UC rule itself, by induction, we can derive the translations of
UC(ιxψ(ϕ)).

3.6.7 ∆-rules

defAnt

We have to show that{
` D(σ1 & σ2 & . . . σn)

R(Σ) ` R(∆(α)) &D(∆(α))

The first sequent is identical to the first sequent of the translation of the
premise.
The second sequent of the translation of the premise is

R(Σ) ` D(γ1) &D(γ2) & · · ·&D(γm) &D(α)

Using again lemmas 9 and 10, we quickly get the second sequent of the
translation of the conclusion.
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defCons

The first and second sequents of the translation of the conclusion are identical
to those of the premise, so we only have to handle the third sequent of the
translations.
The premise gives us

R(Σ) ,R(Γ) ` R(α) &D(α)

and we have to prove

R(Σ) ,R(Γ) ` R(∆(α)) &D(∆(α))

which is not difficult, again using lemmas 9 and 10.

3.6.8 Contextual rules

These rules are proved similarly.

3.7 Soundness

We first prove a connection between the semantics and the operations R and
D.

Lemma 20 Given a formula α of the pitfol calculus and an interpretation
I. Suppose that the uniqueness conditions of α are valid in I. Then

α is valid in I ⇔ D(α) &R(α) is valid in I (in the Hermes calculus)
α is invalid in I ⇔ D(α) & ¬R(α) is valid in I (in the Hermes calculus)

α is undefined in I ⇔ ¬D(α) is valid in I (in the Hermes calculus)

Proof.
We prove this by induction on the complexity of α.

• If α is atomic and does not contain any ι-terms, then R(α) ≡ α and
D(α) is a validity. Also note that in this case, the interpretation of α
as a formula of the pitfol calculus is the same as its interpretation as
a formula of the Hermes calculus. Finally, it is clear from the definition
of an interpretation of a formula that α can never be undefined. From
these observations, this case is easily proved.

• Suppose α is atomic and contains ι-terms. Hence α ≡ p(t1, . . . , tn),
where we treat the case α ≡ t1 = t2 analogously.
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– Suppose α is valid in I. Call its top-level ι-terms TLI(α) ≡
ιx1ψ1

(ϕ1), ιx2ψ2
(ϕ2), . . . , ιxmψm(ϕm) We then have to prove, with

the usual notation for q, that

R(ψ1) & . . .&R(ψm)

& ∃u1 . . . ∃um (R([u1/x1
]ϕ1) & · · ·&R([um/xm]ϕm) & q)

is valid in I.

It is easy to see that all ιxiψi(ϕi) must be defined in I, so ψi must
be valid in I and by induction, D(ψi) &R(ψi) must be valid too.

Since the uniqueness conditions are valid in I, for each top-level
ι-term ιxiψi(ϕi), there exists only one ai such that ϕi is valid in
Iaixi , from which it easily follows that [ui/xi]ϕi is valid in Ia1

u1

a2
u2

...

...
am
um .

Hence, by induction, Ia1
u1

a2
u2

...

...
am
um [ui/xi]R(ϕi) is valid too.

It is easy to see that I(α) ≡ IIιx1ψ1
(ϕ1)

u1
...
...
Iιxmψm (ϕm)

um q. Be-
cause of the definition of interpretation of ι-terms, we see that
I(ιxiψi(ϕi)) = ai, so Ia1

u1

a2
u2

···
···
am
um(q) also holds, hence

∃u1 . . . ∃um (R([u1/x1
]ϕ1) &R([u2/x2

]ϕ2) & · · ·&R([um/xm]ϕm) & q)

is valid too in I.

– If α is invalid in I, then we have to prove that

R(ψ1) & . . .&R(ψm)

& ¬∃u1 . . . ∃um (R([u1/x1
]ϕ1) & · · ·&R([um/xm]ϕm) & q)

is valid in I. Analogously as above, the R(ψi) are all valid in I.
Since the uniqueness conditions hold, we have that the interpre-
tation of ¬∃u1 . . . ∃um (R([u1/x1

]ϕ1) & · · ·&R([um/xm]ϕm) & q) is
the same as that of

∃u1 . . . ∃um (R([u1/x1
]ϕ1) & · · ·&R([um/xm]ϕm) & ¬q) ,

which we can show to be valid analogously as above.

– If α is undefined in I, then at least one I(ti) is undefined, hence
at least one I(ιxiψi(ϕi)) is undefined, which means that either ψi
is invalid in I (and hence, by induction, D(α) & ¬R(ψi) is valid
in I) or there are no or multiple a such that ϕi is valid in Iax . The
latter case is impossible since we supposed that the uniqueness
condition for I(ιxiψi(ϕi)) is valid.
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We also have to prove the converse: if D(α) &R(α) is valid in I, then
α must be valid in I. This follows easily from the fact that exactly one
of D(α) &R(α), D(α) & ¬R(α) and ¬D(α) must be valid. Indeed, if
D(α) &R(α) is valid, then D(α) & ¬R(α) cannot be valid and hence
α cannot be invalid; also, ¬D(α) cannot be valid and hence α cannot
be undefined. The only remaining possibility is that α is valid.
The other two cases follow analogously.

• The cases where α is not atomic are proved easily.

2

Theorem 21 (Soundness of the pitfol calculus) If Γ `ι α, then also
Γ |=ι α.

Proof.
We know that if we have a pitfol proof of Γ `ι α, we can translate this

into a proof in the Hermes calculus, i.e., we obtain a proof of the sequents{
` D(γ1) &D(γ2) & . . .&D(γm)

R(γ1) ,R(γ2) , . . . ,R(γm) ` D(α) &R(α)

We have to prove Γ |=ι α, which means that

• For any interpretation I, if γ1, γ2, . . . , γm are valid in I, then α is valid
too in I. Using the previous lemma, this is equivalent with proving in
the Hermes calculus that if D(γ1) & R(γ1) & · · · & D(γm) & R(γm) is
valid, then D(α) &R(α) is valid, i.e.,

D(γ1) ,R(γ1) , . . . ,D(γm) ,R(γm) |= R(α) &D(α)

Because of the soundness of the Hermes calculus, this amounts to

D(γ1) ,R(γ1) , . . . ,D(γm) ,R(γm) ` R(α) &D(α)

which follows easily from the second sequent of the translation given.

• There exist no interpretations in which a γi is undefined. Hence, in
each interpretation, γi must be valid or invalid, which we can express
using the previous lemma as |= (D(γi) & R(γi)) ∨ (D(γi) & ¬R(γi))
which is equivalent with |= D(γi). Again, because of the completeness
of the Hermes calculus, we have to prove that ` D(γi), which follows
easily from the first sequent of the translation.

2
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3.8 Derived rules

In this section, we will develop some derived rules. Most of them are adap-
tations of the derived rules in [Hermes 1973].

We start with the self-assertion rule:

SeAs
Σ; Γ,¬α `ι α prem

Σ; `ι ∆(α) defAnt
Σ;α `ι α ass
Σ; Γ `ι α rem

We note the name of the rule, SeAs, in a box at the top. For each sequent,
we supply a justification in the rightmost column. The first line(s) are the
premise(s) of the rule, if any (hence the justification ‘prem’ in the first line)
and the last line is its conclusion.

Note that, strictly speaking, the assumption introduction rule needs
UC(α) as premise(s), which we have not explicitly derived. However, the
formula α occurs in the premise and the UC rule immediately yields all
uniqueness conditions required. Hence, we will silently ignore such UC(. . .)
premises in the future.

Finally, note that strictly speaking, we need to supply another proof
when ∆(α) ≡ >, since in that case we cannot apply defAnt. In most cases,
it is easy to supply an alternative derivation for these cases, so we will not
explicitly derive them. In the SeAs rule, it suffices to drop the defAnt line
from the proof:

SeAs
Σ; Γ,¬α `ι α prem

α `ι α ass
Σ; Γ `ι α rem

As stated before, by convention, if a premise of a rule would have > as
consequent, that premise may be dropped. For example, the NN1 rule (which
will follow shortly) has Σ;`ι ∆(α) as its single premise; if we want to apply
this rule to a formula α for which ∆(α) is >, we can immediately apply the
rule without any premises.

From now on, we are allowed to use a new rule

SeAs

Σ; Γ,¬α `ι α
Σ; Γ `ι α
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in our proofs. It is easy to see that this does not change the power of the
logic, since one can simply replace each use of this new rule with its derivation
given above.

A similar rule is the self-denial rule:

SeDe
Σ; Γ, α `ι ¬α prem

Σ; `ι ∆(α) defAnt
Σ;¬α `ι ¬α ass

Σ; Γ `ι ¬α rem

A variant of the assumption rule when ∆(α) ≡ >, where we set Γ ≡
γ1, γ2, . . . , γn:

Ass2
Σ; Γ `ι β prem

`ι x = x eq
Σ; Γ `ι β & x = x &-intro
Σ; Γ `ι x = x &-elim

When ∆(γ1) 6≡ >
Σ; `ι ∆(γ1) defAnt

Σ;¬γ1 `ι ¬γ1 ass
Σ;¬γ1 `ι x = x& ¬γ1 &-intro
Σ;¬γ1 `ι x = x &-elim

When ∆(γ1) ≡ >
¬γ1 `ι ¬γ1 ass
¬γ1 `ι x = x& ¬γ1 &-intro
¬γ1 `ι x = x &-elim

Σ; γ2, . . . , γn `ι x = x rem
...

Σ; γn `ι x = x rem

When ∆(γn) 6≡ >
Σ; `ι ∆(γn) defAnt

Σ;¬γn `ι ¬γn ass
Σ;¬γn `ι x = x& ¬γn &-intro
Σ;¬γn `ι x = x &-elim

When ∆(γn) ≡ >
¬γn `ι ¬γn ass
¬γn `ι x = x& ¬γn &-intro
¬γn `ι x = x &-elim

Σ; `ι x = x rem
α `ι α ass

Σ;α `ι x = x& α &-intro
Σ;α `ι α &-elim

When Γ is empty, we can use
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Ass2
Σ; `ι β prem
α `ι α ass

Σ;α `ι α & β &-intro
Σ;α `ι α &-elim

We see that in case ∆(α) is >, we can add a context Σ to the resulting
sequent using the Ass2 rule, just as in the assumption rule when ∆(α) is not
>. However, one is not entirely free in the choice of the context Σ: it has
to have been already used before as a context. Indeed, if we were allowed
to choose Σ at will, we would be able to obtain unsound sequents such as
ιyx 6=0(x · y = 1) 6= 0;α `ι α.

Next, we prove two weakening rules for contexts:

WeakCtxtL
Σ1; Γ `ι α prem
Σ2; ∆ `ι β prem

Σ1;x = x `ι x = x Ass2
`ι x = x eq

¬(x = x) `ι ¬(x = x) ass
¬(x = x) `ι x = x contra

Σ1; `ι x = x rem
Σ1,Σ2; ∆ `ι x = x& β &-intro
Σ1,Σ2; ∆ `ι β &-elim

WeakCtxtR
Σ1; Γ `ι α prem
Σ2; ∆ `ι β prem

Σ1;x = x `ι x = x Ass2
`ι x = x eq

¬(x = x) `ι ¬(x = x) ass
¬(x = x) `ι x = x contra

Σ1; `ι x = x rem
Σ2,Σ1; ∆ `ι β & x = x &-intro
Σ2,Σ1; ∆ `ι β &-elim

If there is a γ ∈ Γ for which ∆(γ) 6≡ > it is possible to use a shorter
derivation:

WeakCtxtL
Σ1; Γ `ι α prem
Σ2; ∆ `ι β prem

Σ1; `ι ∆(γ) defAnt
Σ1,Σ2; ∆ `ι ∆(γ) & β &-intro
Σ1,Σ2; ∆ `ι β &-elim

WeakCtxtR
Σ1; Γ `ι α prem
Σ2; ∆ `ι β prem

Σ1; `ι ∆(γ) defAnt
Σ2,Σ1; ∆ `ι β & ∆(γ) &-intro
Σ2,Σ1; ∆ `ι β &-elim

We already indicated that the choice of Σ1,Σ2 as context of a conclusion
of a rule was arbitrary in the sense that we could just as well have built
a corresponding rule with Σ2,Σ1 as context instead. For example, with the
&-intro rule, we can transform Σ1,Σ2; Γ,∆ `ι α&β into Σ2,Σ1; Γ,∆ `ι α&β
using the WeakCtxtL rule together with the sequent Σ1; Γ `ι α. (Note that
in the resulting sequent, we would have Σ2,Σ1,Σ2 as context, but since we
agreed that we are allowed to only keep the first occurrence of formulae that
occur more than once in contexts, this reduces to Σ2,Σ1.)
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Double negation rules:

NN1
Σ; `ι ∆(α) prem

Σ;α `ι α ass
Σ;¬α `ι ¬α ass

Σ;α,¬α `ι ¬¬α contra
Σ;α `ι ¬¬α SeDe

NN2
Σ; `ι ∆(α) prem

Σ;¬α `ι ¬α ass
Σ;¬¬α `ι ¬¬α ass

Σ;¬α,¬¬α `ι α contra
Σ;¬¬α `ι α SeAs

If ∆(α) ≡ > and Σ is not empty, we need Σ;`ι β as a premise instead:

NN1
Σ; `ι β prem
α `ι α ass
¬α `ι ¬α ass

α,¬α `ι ¬¬α contra
α `ι ¬¬α SeDe

Σ;α `ι ¬¬α & β &-intro
Σ;α `ι ¬¬α &-elim

NN2
Σ; `ι β prem
¬α `ι ¬α ass
¬¬α `ι ¬¬α ass

¬α,¬¬α `ι α contra
¬¬α `ι α SeAs

Σ;¬¬α `ι α & β &-intro
Σ;¬¬α `ι α &-elim

DefCtxt
Σ, σ; Γ `ι α prem

Σ;σ & Γ `ι α fromCtxt
Σ; `ι ∆(σ & γ1) fromCtxt (*)
Σ; `ι ∆(σ) &-elim

(*) If Γ is empty, then we immediately get the next line of the proof.

If ∆(α) is not >:

Cut
Σ1; Γ `ι α prem

Σ2; ∆, α `ι β prem
Σ2; `ι ∆(α) defAnt

Σ2;¬α `ι ¬α ass
Σ1,Σ2; Γ,¬α `ι β contra
Σ2,Σ1; Γ,∆ `ι β rem
Σ1,Σ2; Γ,∆ `ι β WeakCtxtL

If ∆(α) ≡ >:

Cut
Σ1; Γ `ι α prem

Σ2; ∆, α `ι β prem
¬α `ι ¬α ass

Σ1; Γ,¬α `ι β contra
Σ2,Σ1; Γ,∆ `ι β rem
Σ1,Σ2; Γ,∆ `ι β WeakCtxtL

Variant of fromCtxt:
If Γ ≡ γ1, γ2, . . . , γn is not empty:

FromCtxt2
Σ1; Γ,∆ `ι α prem
Σ2, σ; Γ `ι β prem

Σ2;σ & Γ `ι β fromCtxt
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When ∆(σ) 6≡ >
Σ2; `ι ∆(σ & γ1) defAnt
Σ2; `ι ∆(σ) &-elim

Σ2;σ `ι σ ass

When ∆(σ) ≡ >
Σ2;σ `ι σ Ass2

When ∆(γ1) 6≡ >
Σ1; `ι ∆(γ1) defAnt

Σ1; γ1 `ι γ1 ass

When ∆(γ1) ≡ >
Σ1; γ1 `ι γ1 Ass2

Σ2,Σ1; γ1, σ `ι σ & γ1 &-intro
Σ2,Σ1;σ, γ1, σ & γ2, σ & γ3, . . . `ι β Cut

When ∆(γ2) 6≡ >
Σ1; `ι ∆(γ2) defAnt

Σ1; γ2 `ι γ2 ass

When ∆(γ2) ≡ >
Σ1; γ2 `ι γ2 Ass2

Σ2,Σ1; γ2, σ `ι σ & γ2 &-intro
Σ2,Σ1;σ, γ1, γ2, σ & γ3, . . . `ι β Cut

...
Σ2,Σ1;σ,Γ `ι β Cut
Σ1,Σ2;σ,Γ `ι β WeakCtxtL

If Γ is empty then we have to use this variant:

FromCtxt2
Σ1; ∆ `ι α prem
Σ2, σ; `ι β prem
Σ2;σ `ι β fromCtxt

Σ1,Σ2;σ `ι β WeakCtxtL

Semantically, we can interpret this rule as follows. Without the first premise,
we can only derive

Σ2;σ & Γ `ι β
If we want to get rid of σ&Γ and have σ,Γ instead, we need the first premise,
which asserts that Γ is defined in the context of Σ1. We already have that
σ is defined in the context of Σ2; the FromCtxt2 rule allows us to derive the
expected

Σ1,Σ2;σ,Γ `ι β

Repeated application of FromCtxt2 allows us to retrieve a list of formulae
Σ from the context:
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FromCtxt2*
Σ1; Σ,Γ,∆ `ι α prem

Σ2,Σ; Γ `ι β prem
Σ1,Σ2, σ1, σ2, . . . , σn−1;σn,Γ `ι β FromCtxt2

Σ1,Σ2, σ1, σ2, . . . , σn−2;σn−1, σn,Γ `ι β FromCtxt2
...

Σ1,Σ2; Σ,Γ `ι β FromCtxt2

We illustrate a contextual version of a derived rule. In contrast with the
approach with contextless sequents, we can actually reuse the proof of the cut
rule. Other rules can be given contextual versions in an analogous manner.

Cut2
Σ1; Γ `ι α prem

Σ2; ∆, γ & α `ι β prem
Σ2, γ; ∆, α `ι β toCtxt

Σ1,Σ2, γ; Γ,∆ `ι β Cut
Σ1,Σ2; Γ,∆, γ & α `ι α & β &-intro

Σ1,Σ2; γ,Γ,∆ `ι β FromCtxt2

Another variant:

Cut3
Σ1; Γ `ι α prem

Σ2,∆(α) ;α `ι β prem
Σ1; Γ `ι ∆(α) defCons
Σ1; Γ `ι ∆(α) & α &-intro

Σ2; ∆(α) & α `ι β fromCtxt
Σ1,Σ2; Γ `ι β Cut

Contraposition rules:

CoPo1
Σ1; Γ, α `ι β prem

Σ2; `ι ∆(β) prem
Σ1; `ι ∆(α) defAnt

Σ2;¬β `ι ¬β ass
Σ1,Σ2; Γ, α,¬β `ι ¬α contra

Σ1,Σ2; Γ,¬β `ι ¬α SeDe

CoPo2
Σ1; Γ, α `ι ¬β prem

Σ2; `ι ∆(β) prem
Σ1; `ι ∆(α) defAnt

Σ2; β `ι β ass
Σ1,Σ2; Γ, α, β `ι ¬α contra

Σ1,Σ2; Γ, β `ι ¬α SeDe
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CoPo3
Σ1; Γ,¬α `ι β prem

Σ2; `ι ∆(β) prem
Σ1; `ι ∆(α) defAnt

Σ2;¬β `ι ¬β ass
Σ1,Σ2; Γ,¬α,¬β `ι α contra

Σ1,Σ2; Γ,¬β `ι α SeAs

CoPo4
Σ1; Γ,¬α `ι ¬β prem

Σ2; `ι ∆(β) prem
Σ1; `ι ∆(α) defAnt

Σ2; β `ι β ass
Σ1,Σ2; Γ,¬α, β `ι α contra

Σ1,Σ2; Γ, β `ι α SeAs

Ex contradictione quodlibet:

XQ1

Σ; `ι ∆(α) prem
Σ;α `ι α ass

Σ;¬α `ι ¬α ass
Σ;α,¬α `ι β contra

Weakening rules:

Weak*
Σ1; Γ `ι α prem
Σ2; ∆ `ι β prem

Σ1,Σ2; Γ,∆ `ι α & β &-intro
Σ1,Σ2; Γ,∆ `ι α &-elim

Weak
Σ1; Γ `ι α prem

Σ2; `ι ∆(β) prem
Σ2; β `ι β ass

Σ1,Σ2; Γ, β `ι α Weak*

An example of a contextual version of derived rules with one premise:

SeAsCtxt
Σ; Γ, γ & ¬α `ι α prem

Σ, γ; Γ,¬α `ι α toCtxt
Σ, γ; Γ `ι α SeAs
Σ; γ,Γ `ι α FromCtxt2

SeDeCtxt
Σ; Γ, γ & α `ι ¬α prem

Σ, γ; Γ, α `ι ¬α toCtxt
Σ, γ; Γ `ι ¬α SeDe
Σ; γ,Γ `ι ¬α FromCtxt2

Deduction rules:

DdRu1
Σ; Γ `ι α⇒ β prem

Σ,Γ; `ι α⇒ β toCtxt(*)
Σ,Γ; `ι ∆(α & β) defCons

Σ,Γ;α & ¬β `ι α & ¬β ass
Σ,Γ;α & ¬β `ι β contra

Σ,Γ;α `ι β SeAsCtxt
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DdRu2
Σ; Γ, α `ι β prem
Σ,Γ;α `ι β toCtxt(*)

Σ,Γ, α; `ι β toCtxt
Σ,Γ, α; `ι ∆(β) defCons

Σ,Γ, α;¬β `ι ¬β ass
Σ,Γ, α;¬β `ι α⇒ β contra

Σ,Γ;α & ¬β `ι α⇒ β fromCtxt
Σ,Γ; `ι α⇒ β SeDe
Σ; Γ `ι α⇒ β FromCtxt2*

where ‘toCtxt(*)’ indicates a repeated application of the toCtxt rule.
Note that in DdRu1, Γ is pushed into the context. Semantically, this

is necessary because from the premise, we can’t conclude that α is defined
when all Σ are valid, but we only know α to be defined when both Σ and Γ
are defined.
If we have also Σ2;`ι ∆(α), we can get Γ out of the context again:

Σ; Γ `ι α⇒ β prem
Σ,Γ;α `ι β DdRu1

Σ2;α `ι α ass
Σ,Σ2; Γ, α `ι α⇒ β & α &-intro
Σ,Σ2; Γ, α `ι β FromCtxt2*

Definedness of definedness:

Theorem 22 (Ddef rule) For each term t of the pitfol calculus, given
UC(t), if ∆(∆(t)) is not >, then we can derive `ι ∆(∆(t)).

For each formula α of the pitfol calculus, the analogous theorem holds.

Proof.
We prove this by induction on the complexity of α and t.

• If t is a variable symbol, then ∆(t) ≡ > and hence ∆(∆(t)) ≡ >, so
we have nothing to prove.

• If t ≡ f(t1, t2, . . . , tn) or t ≡ t1 = t2, then we derive

`ι ∆(∆(t1) & (∆(t2) & (· · ·& (∆(tn−1) & ∆(tn))))

i.e.,

`ι∆(∆(t1)) & (∆(t1)⇒ (∆(∆(t2)) & ∆(t2)⇒ (

· · · ⇒ (∆(∆(tn−1)) & (∆(tn−1)⇒∆(∆(tn))))))),
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as follows:

`ι ∆(∆(tn)) induction
`ι ∆(∆(tn−1)) induction

∆(tn−1) `ι ∆(∆(tn)) Weak
`ι ∆(tn−1)⇒∆(∆(tn)) DdRu2
`ι ∆(∆(tn−1)) & (∆(tn−1)⇒∆(∆(tn))) &-intro

...
`ι ∆(∆(t2)) & (∆(t2)⇒ (∆(∆(t3)) & ∆(t3)⇒ (. . . )) &-intro
`ι ∆(∆(t1)) induction

∆(t1) `ι ∆(∆(t2)) & (∆(t2)⇒ (∆(∆(t3)) & ∆(t3)⇒ (. . . )) Weak
`ι ∆(t1)⇒ (∆(∆(t2)) & (∆(t2)⇒ (. . . )) DdRu2
`ι ∆(t1) & (∆(t1)⇒ (∆(∆(t2)) & (∆(t2)⇒ (. . . ))) &-intro

• If t ≡ ιxψ(ϕ) then we have

ψ `ι ∃!x(ϕ) prem
`ι ∆(ψ) defAnt

• If α ≡ p(t1, t2, . . . , tn) then we proceed as in the case t ≡
f(t1, t2, . . . , tn).

• If α ≡ ¬β, then by induction, we have `ι ∆(∆(β)), which is the
required sequent.

• If α ≡ β & γ, then we have to derive `ι ∆(∆(β) & (β ⇒∆(γ))), i.e.
`ι ∆(∆(β)) & (∆(β)⇒∆(β ⇒∆(γ))):

`ι ∆(∆(β)) induction
∆(β) `ι ∆(β) ass

∆(β) ; `ι ∆(β) toCtxt
`ι ∆(∆(γ)) induction

∆(β) ; β `ι ∆(∆(γ)) Weak
∆(β) ; `ι β ⇒∆(∆(γ)) DdRu2
∆(β) ; `ι ∆(β) & (β ⇒∆(∆(γ))) &-intro
∆(β) `ι ∆(β ⇒∆(γ)) fromCtxt

`ι ∆(β)⇒∆(β ⇒∆(γ)) DdRu2
`ι ∆(∆(β)) & (∆(β)⇒∆(β ⇒∆(γ))) &-intro

• If α ≡ ∀x(β), then induction yields `ι ∆(∆(β)); applying the ∀-intro
rule yields the desired sequent.
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2

Decomposition and unification of antecedent:

AnDc
Σ1; Γ, α & β `ι γ prem

Σ2; `ι ∆(β) prem
Σ1; `ι ∆(α & β) defAnt
Σ1; `ι ∆(α) &-elim

Σ1;α `ι α ass
Σ2; β `ι β ass

Σ1,Σ2;α, β `ι α & β &-intro
Σ1,Σ2; Γ, α, β `ι γ Cut

AnU
Σ; Γ, α, β `ι γ prem

Σ; `ι ∆(α) defAnt
Σ; `ι ∆(β) defAnt

Σ;α `ι ∆(β) Weak
Σ; `ι α⇒∆(β) DdRu2
Σ; `ι ∆(α & β) &-intro

Σ;α & β `ι α & β ass
Σ;α & β `ι α &-elim

Σ; Γ, α & β, β `ι γ Cut
Σ;α & β `ι β &-elim

Σ; Γ, α & β `ι γ Cut

Modus Ponens:

MP
Σ1; Γ `ι α prem
Σ2; ∆ `ι α⇒ β prem

Σ2,∆;α `ι β DdRu1
Σ1,Σ2,∆; Γ `ι β Cut
Σ1,Σ2; Γ,∆ `ι β FromCtxt2*

Contextual version of assumption rule:

AssCtxt
UC(α)
`ι ∆(∆(α)) Ddef

∆(α) `ι ∆(α) ass
∆(α) ; `ι ∆(α) toCtxt

∆(α) ;α `ι α ass
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Introduction of the implication:

⇒-intro
UC(α), UC(β)

∆(β & α) ; β & α `ι β & α AssCtxt
∆(β & α) ; β & α `ι β &-elim

∆(β & α) , β;α `ι β toCtxt
∆(β & α) , β; `ι α⇒ β DdRu2
∆(β & α) ; β `ι α⇒ β fromCtxt

Antecedent as consequent:

Cons
Σ; Γ, α `ι β prem

Σ; `ι ∆(α) defAnt
Σ;α `ι α ass

Σ; Γ, α `ι α & β &-intro
Σ; Γ, α `ι α &-elim

Context as consequent:

ConsCtxt
Σ1, α,Σ2; Γ `ι β prem

Σ1, α, σ1, σ2, . . . , σn−1;σn & Γ `ι β fromCtxt
...

Σ1;α & σ1 & σ2 & · · ·& σn & Γ `ι β fromCtxt
Σ1;α & σ1 & σ2 & · · ·& σn & Γ `ι α & σ1 & σ2 & · · ·& σn & γ1 Cons
Σ1;α & σ1 & σ2 & · · ·& σn & Γ `ι α &-elim

Σ1, α;σ1 & σ2 & · · ·& σn & Γ `ι α toCtxt
...

Σ1, α,Σ2; Γ `ι α toCtxt

with Σ2 ≡ σ1, σ2, . . . , σn and Γ ≡ γ1 & γ2 & · · · & γm. (If Γ is empty, then
setting γ1 = > yields a proof for this case.)

Cut rule where the formula to be cut appears inside a context:

CutCtxt
Σ; Γ `ι α prem

Σ1, α,Σ2; ∆ `ι β prem
Σ,Γ; `ι α toCtxt*

Σ1, α, σ1, σ2, . . . , σn−1;σn & ∆ `ι β fromCtxt
...

Σ1;α& (σ1 & (σ2 & (· · ·& (σn & δ1)))),
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. . . , α& (σ1 & (· · ·& (σn & δm))) `ι β fromCtxt
Σ1; `ι ∆(α& (σ1 & (· · ·& (σn & δ1))))defAnt
Σ1; `ι α⇒∆(σ1 & (· · ·& (σn & δ1))) &-elim

Σ,Γ,Σ1; `ι ∆(σ1 & (· · ·& (σn & δ1))) MP
Σ1,Σ,Γ;α, σ1 & (σ2 & (· · ·& (σn & δ1))),

α& (σ1 & (σ2 & (· · ·& (σn & δ2)))),
. . . , α& (σ1 & (· · ·& (σn & δm))) `ι β AnDc

Σ1; `ι ∆(α& (σ1 & (· · ·& (σn & δ2))))defAnt
Σ1; `ι α⇒∆(σ1 & (· · ·& (σn & δ2))) &-elim

Σ,Γ,Σ1; `ι ∆(σ1 & (· · ·& (σn & δ2))) MP
Σ1,Σ,Γ;α, σ1 & (σ2 & (· · ·& (σn & δ1))),

σ1 & (σ2 & (· · ·& (σn & δ2))),
α& (σ1 & (σ2 & (· · ·& (σn & δ3)))),

. . . , α& (σ1 & (· · ·& (σn & δm))) `ι β AnDc
...

Σ1,Σ,Γ;α, σ1 & (σ2 & (· · ·& (σn & δ1))),
. . . , σ1 & (· · ·& (σn & δm)) `ι β AnDc

Σ,Σ1,Γ; Γ, σ1 & σ2 & · · ·& ∆ `ι β Cut
Σ,Σ1,Γ;σ1 & σ2 & · · ·& ∆ `ι β toCtxt*

Σ,Σ1,Γ,Σ2; ∆ `ι β toCtxt*

with Σ2 ≡ σ1, σ2, . . . , σn and ∆ ≡ δ1, δ2, . . . , δm; we denote a repeated
application of the toCtxt rule as toCtxt*.

Variant of the previous rule:

CutCtxtCtxt
Σ; Γ `ι α prem

Σ1, α,Σ2; ∆ `ι β prem
Σ,Σ1,Γ,Σ2; ∆ `ι β CutCtxt

Σ1, α,Σ2; `ι ∆(δ1) defAnt
Σ1, α, σ1, . . . , σn−1;σn `ι ∆(δ1) fromCtxt

...
Σ1;α & σ1 & · · ·& σn `ι ∆(δ1) fromCtxt

Σ1,Σ,Γ,Σ2; ∆ `ι β WeakCtxtR

with again Σ2 ≡ σ1, σ2, . . . , σn.

Associativity of the conjunction.
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AssocConj1

Σ; Γ `ι α & (β & γ) prem
Σ; Γ `ι α &-elim
Σ; Γ `ι β & γ &-elim
Σ; Γ `ι β &-elim
Σ; Γ `ι γ &-elim
Σ; Γ `ι α & β &-intro
Σ; Γ `ι (α & β) & γ &-intro

AssocConj2

Σ; Γ `ι (α & β) & γ prem
Σ; Γ `ι α & β &-elim
Σ; Γ `ι γ &-elim
Σ; Γ `ι α &-elim
Σ; Γ `ι β &-elim
Σ; Γ `ι β & γ &-intro
Σ; Γ `ι α & (β & γ) &-intro

DefAssocConj1

Σ; Γ `ι ∆(α & (β & γ)) prem
Σ; Γ `ι ∆(α) &-elim
Σ; Γ `ι α⇒∆(β & γ) &-elim

Σ,Γ;α `ι ∆(β & γ) DdRu1
Σ,Γ;α `ι ∆(β) &-elim
Σ,Γ;α `ι β ⇒∆(γ) &-elim

Σ,Γ; `ι α⇒∆(β) DdRu2
Σ; Γ `ι α⇒∆(β) fromCtxt(*)
Σ; Γ `ι ∆(α & β) &-intro

Σ,Γ, α; β `ι ∆(γ) DdRu1
Σ,Γ;α & β `ι ∆(γ) fromCtxt

Σ,Γ; `ι (α & β)⇒∆(γ) DdRu2
Σ; Γ `ι (α & β)⇒∆(γ) fromCtxt(*)
Σ; Γ `ι ∆((α & β) & γ) &-intro

DefAssocConj2

Σ; Γ `ι ∆((α & β) & γ) prem
Σ; Γ `ι ∆(α & β) &-elim
Σ; Γ `ι (α & β)⇒∆(γ) &-elim
Σ; Γ `ι ∆(α) &-elim
Σ; Γ `ι α⇒∆(β) &-elim

Σ,Γ;α & β `ι ∆(γ) DdRu1
Σ,Γ, α; β `ι ∆(γ) toCtxt

Σ,Γ, α; `ι β ⇒∆(γ) DdRu2
Σ,Γ;α `ι β ⇒∆(γ) fromCtxt
Σ,Γ;α `ι ∆(β) DdRu1
Σ,Γ;α `ι ∆(β & γ) &-intro

Σ,Γ; `ι α⇒∆(β & γ) DdRu2
Σ; Γ `ι α⇒∆(β & γ) fromCtxt(*)
Σ; Γ `ι ∆(α & (β & γ)) &-intro

where fromCtxt(*) indicates a repeated use of the fromCtxt rule. Note that
these rules not yet show that everywhere in a formula, we can apply associa-
tivity of the conjunction; that will have to wait until property 34.
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Decomposition and unification of context:

CtxtDc
Σ1, α& β,Σ2; Γ `ι γ prem

Σ1, α& β, σ1, σ2, . . . , σn−1;σn & Γ `ι γ fromCtxt
Σ1, α& β, σ1, σ2, . . . , σn−2;

σn−1 & (σn & γ1), . . . , σn−1 & (σn & γm) `ι γ fromCtxt
...

Σ1; (α& β) & (σ1 & (σ2 & (· · ·& (σn & γ1)))),
. . . , (α& β) & (σ1 & (σ2 & (· · ·& (σn & γm)))) `ι γ fromCtxt

Σ1; `ι ∆((α& β) & (· · ·& (σn & γ1))) defAnt
Σ1; `ι ∆(α& (β & (· · ·& (σn & γ1)))) DefAssocConj2

Σ1;α& (β & (· · ·& (σn & γ1))) `ι α& (β & (· · ·& (σn & γ1))) ass
Σ1;α& (β & (· · ·& (σn & γ1))) `ι (α& β) & (· · ·& (σn & γ1)) AssocConj1

Σ1;α& (β & (· · ·& (σn & γ1))),
(α& β) & (σ1 & (σ2 & (· · ·& (σn & γ2)))),

. . . , (α& β) & (σ1 & (σ2 & (· · ·& (σn & γm)))) `ι γ Cut
...

Σ1;α& (β & (· · ·& (σn & γ1))),
α& (β & (· · ·& (σn & γ2))),

(α& β) & (σ1 & (σ2 & (· · ·& (σn & γ3)))),
. . . , (α& β) & (σ1 & (σ2 & (· · ·& (σn & γm)))) `ι γ Cut

...
Σ1;α& (β & (· · ·& (σn & γ1))),
. . . , α& (β & (· · ·& (σn & γm))) `ι γ Cut

Σ1, α;β & (· · ·& (σn & γ1)),
. . . , β & (· · ·& (σn & γm)) `ι γ toCtxt

...
Σ1, α, β, σ1, σ2, . . . ;σn & Γ `ι γ toCtxt

Σ1, α, β,Σ2; Γ `ι γ toCtxt

with Σ2 ≡ σ1, σ2, . . . , σn and Γ ≡ γ1, γ2, . . . , γm.

CtxtU
Σ1, α, β,Σ2; Γ `ι γ prem

Σ1, α, β, σ1 & σ2 & · · ·& σn−1;σn & Γ `ι γ fromCtxt
Σ1, α, β, σ1, σ2, . . . , σn−2;

σn−1 & (σn & γ1), . . . , σn−1 & (σn & γm) `ι γ fromCtxt
...

Σ1;α& (β & (σ1 & (σ2 & (· · ·& (σn & γ1))))),
. . . , α& (β & (σ1 & (σ2 & (· · ·& (σn & γm))))) `ι γ fromCtxt

Σ1; `ι ∆(α& (β & (· · ·& (σn & γ1)))) defAnt
Σ1; `ι ∆((α& β) & (· · ·& (σn & γ1))) DefAssocConj1

Σ1; (α& β) & (· · ·& (σn & γ1)) `ι (α& β) & (· · ·& (σn & γ1)) ass
Σ1; (α& β) & (· · ·& (σn & γ1)) `ι α& (β & (· · ·& (σn & γ1))) AssocConj2

Σ1; (α& β) & (σ1 & (σ2 & (· · ·& (σn & γ1)))),
α& (β & (σ1 & (σ2 & (· · ·& (σn & γ2))))),

. . . , α& (β & (σ1 & (σ2 & (· · ·& (σn & γm))))) `ι γ Cut
Σ1; (α& β) & (σ1 & (σ2 & (· · ·& (σn & γ1)))),
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(α& β) & (σ1 & (σ2 & (· · ·& (σn & γ2)))),
α& (β & (σ1 & (σ2 & (· · ·& (σn & γ3))))),

. . . , α& (β & (σ1 & (σ2 & (· · ·& (σn & γm))))) `ι γ Cut
...

Σ1; (α& β) & (σ1 & (σ2 & (· · ·& (σn & γ1)))),
. . . , (α& β) & (σ1 & (σ2 & (· · ·& (σn & γm)))) `ι γ Cut

Σ1, α& β;σ1 & (σ2 & (· · ·& (σn & γ1))),
. . . , σ1 & (σ2 & (· · ·& (σn & γm))) `ι γ toCtxt

...
Σ1, α& β,Σ2; Γ `ι γ toCtxt

Two variants of ∨-introduction:

∨-intro
UC(α), UC(β)

∆(α) ;α `ι α AssCtxt
∆(α ∨ β) ;¬α & ¬β `ι ¬α & ¬β AssCtxt
∆(α ∨ β) ;¬α & ¬β `ι ¬α &-elim

∆(α ∨ β) ; `ι ∆(α) defCons
∆(α ∨ β) ;α `ι α CutCtxt

∆(α ∨ β) ;α,¬α & ¬β `ι α ∨ β contra
∆(α ∨ β) ;α `ι α ∨ β SeDe

∨-intro
UC(α), UC(β)

∆(α & ¬β) ;α & ¬β `ι α & ¬β AssCtxt
∆(α & ¬β) , α;¬β `ι α & ¬β toCtxt
∆(α & ¬β) , α,¬β; `ι α & ¬β toCtxt
∆(α & ¬β) , α,¬β; `ι α &-elim
∆(α & ¬β) , α,¬β; `ι ∆(α) defCons

∆(α & ¬β) , α,¬β;¬α `ι ¬α ass
∆(α & ¬β) , α;¬β & ¬α `ι ¬α fromCtxt

∆(α & ¬β) ; `ι ∆(α) DefCtxt
∆(α & ¬β) ;α `ι α ass
∆(α & ¬β) , α; `ι α toCtxt

∆(α & ¬β) , α;¬β & ¬α `ι ¬(¬β & ¬α) contra
∆(α & ¬β) , α; `ι β ∨ α SeDe
∆(α & ¬β) ;α `ι β ∨ α fromCtxt

∨-elim
Σ1; Γ1 `ι α ∨ β prem



3.8. DERIVED RULES 111

Σ2; Γ2, α `ι γ prem
Σ3; Γ3, β `ι γ prem
Σ2; Γ2, α `ι ∆(γ) defCons
Σ3; Γ3, β `ι ∆(γ) defCons

`ι ∆(∆(γ)) Ddef
Σ2; Γ2,¬∆(γ) `ι ¬α CoPo1
Σ3; Γ3,¬∆(γ) `ι ¬β CoPo1

Σ2,Σ3; Γ2,Γ3,¬∆(γ) `ι ¬α & ¬β &-intro
Σ2,Σ3,Σ1; Γ1,Γ2,Γ3,¬∆(γ) `ι ∆(γ) contra

Σ2,Σ3,Σ1; Γ1,Γ2,Γ3 `ι ∆(γ) SeAs
Σ2,Σ3,Σ1,Γ1,Γ2,Γ3; `ι ∆(γ) toCtxt*

Σ2,Σ3,Σ1,Γ1,Γ2,Γ3; Γ2,¬γ `ι ¬α CoPo1
Σ3; Σ2,Σ1,Γ1,Γ2,Γ3; Γ3,¬γ `ι ¬β CoPo1

Σ2,Σ3,Σ1,Γ1,Γ2,Γ3; Γ2,Γ3,¬γ `ι ¬α & ¬β &-intro
Σ2,Σ3,Γ1,Γ2,Γ3,Σ1; Γ2,Γ3,¬γ `ι γ contra

Σ2,Σ3,Γ1,Γ2,Γ3,Σ1; Γ2,Γ3 `ι γ SeAs
Σ1,Σ2,Σ3,Γ1,Γ2,Γ3; Γ2,Γ3 `ι γ WeakCtxtL

Σ1,Σ2,Σ3,Γ1,Γ2; Γ2,Γ3 `ι γ FromCtxt2*
Σ1,Σ2,Σ3,Γ1; Γ2,Γ3 `ι γ FromCtxt2*
Σ1,Σ2,Σ3; Γ1,Γ2,Γ3 `ι γ FromCtxt2*

where toCtxt* indicates a repeated application of the toCtxt rule.

Simultaneous generalisation. For this rule, x must not be a free variable
of Σ or Γ.

SimGen
Σ; Γ, α `ι β prem

Σ; `ι ∆(α) defAnt
Σ; `ι ∀x(∆(α)) ∀-intro

Σ;∀x(α) `ι ∀x(α) ass
Σ;∀x(α) `ι α ∀-elim

Σ; Γ,∀x(α) `ι β Cut
Σ; Γ,∀x(α) `ι ∀x(β) ∀-intro

Substitution and generalisation; y must not be a free variable of Σ or Γ
and x must not be a free variable of α.

First we suppose that x 6≡ y; choose z such that z does not occur in Σ, Γ
or ∀x([x/y]α).
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SG
Σ; Γ `ι α prem

[z/x]Σ; [z/x]Γ `ι α subst
[z/x]Σ; [z/x]Γ `ι [x/y]α subst
[z/x]Σ; [z/x]Γ `ι ∀x([x/y]α) ∀-intro

Σ; Γ `ι ∀x([x/y]α) subst

If x ≡ y, then we get the conclusion using a single application of the ∀-intro
rule.

Renaming of bound variables in generalisations. For this rule, y must not
be a free variable of α.

RenG
UC(α)

∀x(∆(α));∀x(α) `ι ∀x(α) AssCtxt
∀x(∆(α));∀x(α) `ι α ∀-elim
∀x(∆(α));∀x(α) `ι ∀y([y/x]α) SG

Renaming of bound variables in particularisations. For this rule, y must
not be a free variable of α.

RenP
UC(α)

∀y(∆([y/x]α));∀y(¬ [y/x]α) `ι ∀y(α) RenG
`ι ∀x(∆(∆(α))) Ddef

∀x(∆(α)) `ι ∀x(∆(α)) ass
∀x(∆(α)) `ι ∆(α) ∀-elim
∀x(∆(α)) `ι ∀y([y/x]∆(α) SG

∀x(∆(α));∀y(¬ [y/x]α) `ι ∀y(α) CutCtxt
∀x(∆(α));∃y(α) `ι ∃y([y/x]α) CoPo1

Particularisation in antecedent when x is not a free variable of Σ, Γ or β:
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PartAnt
Σ; Γ, α `ι β prem

`ι ∆(∆(β)) Ddef
∆(β) `ι ∆(β) ass

∆(β) ; `ι ∆(β) toCtxt
Σ,∆(β) ; Γ,¬β `ι α CoPo1
Σ,∆(β) ; Γ,¬β `ι ∀x(α) ∀-intro

Σ; `ι ∆(α) defAnt
Σ; `ι ∆(∀x(α)) ∀-intro

Σ,∆(β) ; Γ,¬∀x(¬α) `ι β CoPo3
Σ; Γ, α,¬∀x(¬α) `ι β Weak

Σ; ∆(β) ,Γ,¬∀x(¬α) `ι β FromCtxt2
Σ; Γ, α `ι ∆(β) defCons

Σ; Γ,¬∆(β) `ι ¬α CoPo1
Σ; Γ,¬∆(β) `ι ∀x(¬α) ∀-intro

Σ; Γ,¬∀x(¬α) `ι ∆(β) CoPo3
Σ; Γ,∃x(α) `ι β Cut

Particularisation in consequent:

PartCons
Σ; Γ `ι α prem
Σ; Γ `ι ∆(α) defCons
Σ; Γ `ι ∆(α) & α &-intro

`ι ∆(∆(α)) DefCons
∆(α) `ι ∆(α) ass

`ι ∆(α)⇒∆(α) DdRu2
`ι ∆(∆(α) & α) &-intro
`ι ∀x(∆(∆(α) & α)) ∀-intro

∀x(¬(∆(α) & α)) `ι ∀x(¬(∆(α) & α)) ass
∀x(¬(∆(α) & α)) `ι ¬(∆(α) & α) ∀-elim

Σ; Γ,∀x(¬(∆(α) & α)) `ι ¬∀x(¬(∆(α) & α)) contra
Σ; Γ `ι ∃x(∆(α) & α) SeDe

Note that we need ∆(α) in the conclusion. Consider our running example of
a theory describing real numbers, where from

x = 0.2 `ι
1

x
= 5

we cannot conclude

x = 0.2 `ι ∃x
(

1

x
= 5

)
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since this would entail (via the defCons rule)

x = 0.2 `ι ∀x(¬(x = 0))

which is clearly an unsound sequent.
We can simplify the conclusion if we provide an extra premise:

PartCons2
Σ1; Γ `ι α prem

Σ2; `ι ∀x(∆(α)) prem
Σ2;∀x(¬α) `ι ∀x(¬α) ass
Σ2;∀x(¬α) `ι ¬α ∀-elim

Σ1,Σ2; Γ,∀x(¬α) `ι ¬∀x(¬α) contra
Σ1,Σ2; Γ `ι ∃x(α) SeDe

In the example above, the extra premise would be

`ι ∀x
(

∆

(
1

x
= 5

))
i.e.,

`ι ∀x(¬(x = 0))

∃-ElimAnt
Σ; Γ,∃x(α) `ι β prem

Σ; `ι ∆(∀x(α)) defAnt
Σ; `ι ∆(α) ∀-elim

Σ;α `ι α ass
Σ;α `ι ∃x(α) PartCons2

Σ; Γ, α `ι β Cut

For this rule, x must not be a free variable of t:

Existence
UC(t)

∆(t) ;¬(x = t) `ι ¬(x = t) AssCtxt
∆(t) ;∀x(¬(x = t)) `ι ∀x(¬(x = t)) SimGen
∆(t) ;∀x(¬(x = t)) `ι ¬(x = t) ∀-elim
∆(t) ;∀x(¬(x = t)) `ι ¬(t = t) subst
∆(t) ;∀x(¬(x = t)) `ι ¬(t = t) subst

∆(t) `ι t = t eq
∆(t) ; `ι t = t toCtxt

∆(t) ;∀x(¬(x = t)) `ι ∃x(x = t) contra
∆(t) ; `ι ∃x(x = t) SeDe
∆(t) `ι ∃x(x = t) fromCtxt



3.8. DERIVED RULES 115

The following rule functions as “inverse” of eqSubst:

EqSubst2

Σ; Γ `ι [t/x]α prem
∆(α) ;¬α `ι ¬α AssCtxt

∆(α) ,∆(t) ;x = t,¬α `ι ¬ [t/x]α eqSubst
Σ,∆(α) ,∆(t) ; Γ, x = t,¬α `ι α contra

Σ,∆(α) ,∆(t) ; Γ, x = t `ι α SeAs

Symmetry rule for equality, where t1 and t2 are arbitrary terms and x, y
and z are three different variable symbols not occurring in t1 or t2:

ESy

UC(t1), UC(t2)
x = z `ι x = z ass

x = z, x = y `ι y = z eqSubst
x = x, x = y `ι y = x subst

`ι x = x eq
x = y `ι y = x Cut

∆(t2) ;x = t2 `ι t2 = x subst
∆(t1) ,∆(t2) ; t1 = t2 `ι t2 = t1 subst

ESy2

Σ; Γ `ι t1 = t2 prem
∆(t1) ,∆(t2) ; t1 = t2 `ι t2 = t1 ESy

∆(t1) & ∆(t2) ; t1 = t2 `ι t2 = t1 CtxtU
Σ; Γ `ι t2 = t1 Cut3

Transitivity rule for equality, where t1, t2 and t3 are arbitrary terms and
x, y and z are three different variable symbols not occurring in t1, t2 or t3:

ET
UC(t1), UC(t2), UC(t3)

x = y `ι x = y ass
x = y, y = z `ι x = z eqSubst

∆(t3) ;x = y, y = t3 `ι x = t3 subst
∆(t2) ,∆(t3) ;x = t2, t2 = t3 `ι x = t3 subst

∆(t1) ,∆(t2) ,∆(t3) ; t1 = t2, t2 = t3 `ι t1 = t3 subst
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ET2
Σ1; Γ `ι t1 = t2 prem
Σ2; ∆ `ι t2 = t3 prem
Σ1; Γ `ι ∆(t1) & ∆(t2) defCons
Σ1; Γ `ι ∆(t1) &-elim
Σ1; Γ `ι ∆(t2) &-elim
Σ2; ∆ `ι ∆(t2) & ∆(t3) defCons
Σ2; ∆ `ι ∆(t3) &-elim

Σ1,Σ2; Γ,∆ `ι t1 = t2 & t2 = t3 &-intro
Σ1,Σ2; Γ,∆ `ι ∆(t3) & (t1 = t2 & t2 = t3) &-intro
Σ1,Σ2; Γ,∆ `ι ∆(t2) &

(∆(t3) & (t1 = t2 & t2 = t3)) &-intro
Σ1,Σ2; Γ,∆ `ι ∆(t1) & (∆(t2) &

(∆(t3) & (t1 = t2 & t2 = t3))) &-intro
∆(t1) ,∆(t2) ,∆(t3) ; t1 = t2, t2 = t3 `ι t1 = t3 ET

∆(t1) ,∆(t2) ,∆(t3) ; t1 = t2 & t2 = t3 `ι t1 = t3 AnU
∆(t1) ,∆(t2) ; ∆(t3) & (t1 = t2 & t2 = t3) `ι t1 = t3 fromCtxt

∆(t1) ;
∆(t2) & (∆(t3) & (t1 = t2 & t2 = t3)) `ι t1 = t3 fromCtxt

∆(t1) &
(∆(t2) & (∆(t3) & (t1 = t2 & t2 = t3))) `ι t1 = t3 fromCtxt

Σ1,Σ2; Γ,∆ `ι t1 = t3 Cut

Replacement rule for equality with predicate symbols, where
x1, x2, . . . , xn are different variable symbols not occurring in the terms
t1, t2, . . . , tn, t

′
1, t
′
2, . . . , t

′
n:

ERp

UC(t1), UC(t′1), . . . , UC(tn), UC(t′n)
p(x1, x2, . . . , xn) `ι p(x1, x2, . . . , xn) ass

∆(t′1) ; p(x1, x2, . . . , xn), x1 = t′1 `ι p(t′1, x2, . . . , xn) eqSubst
∆(t′1) ,∆(t′2) ; p(x1, x2, . . . , xn), x1 = t′1, x2 = t′2 `ι p(t′1, t′2, x3, . . . , xn)eqSubst

...
∆(t′1) ,∆(t′2) , . . . ,∆(t′n) ; p(x1, x2, . . . , xn),

x1 = t′1, x2 = t′2, . . . , xn = t′n `ι p(t′1, t′2, . . . , t′n) eqSubst
...

∆(tn) ,∆(t′1) , . . . ,∆(t′n) ; p(x1, . . . , xn−1, tn),
x1 = t′1, x2 = t′2, . . . , xn−1 = t′n−1, tn = t′n `ι p(t′1, t′2, . . . , t′n) subst

...
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∆(t2) ,∆(t3) , . . . ,∆(tn) ,∆(t′1) , . . . ,∆(t′n) ;
p(x1, t2, . . . , tn), x1 = t′1, t2 = t′2, . . . , tn = t′n `ι p(t′1, t′2, . . . , t′n) subst

∆(t1) ,∆(t2) , . . . ,∆(tn) ,∆(t′1) , . . . ,∆(tn) ;
p(t1, t2, . . . ), t1 = t′1, t2 = t′2, . . . , tn = t′n `ι p(t′1, t′2, . . . , t′n) subst

Variant of ERp:

ERp2

Σ1; Γ1 `ι t1 = t′1 prem
Σ2; Γ2 `ι t2 = t′2 prem

...
Σn; Γn `ι tn = t′n prem

p(x1, x2, . . . , xn) `ι p(x1, x2, . . . , xn) ass
∆(t′1) ; p(x1, x2, . . . , xn), x1 = t′1 `ι p(t′1, x2, . . . , xn) eqSubst

Σ1; Γ1 `ι ∆(t1) & ∆(t′1) defCons
Σ1; Γ1 `ι ∆(t′1) &-elim

Σ1,Γ1; p(x1, x2, . . . , xn), x1 = t′1 `ι p(t′1, x2, . . . , xn) CutCtxt
Σ1,Γ1,∆(t′2) ; p(x1, x2, . . . , xn), x1 = t′1, x2 = t′2 `ι p(t′1, t′2, x3, . . . , xn) eqSubst

Σ2; Γ2 `ι ∆(t2) & ∆(t′2) defCons
Σ2; Γ2 `ι ∆(t′2) &-elim

Σ2,Σ1,Γ1,Γ2; p(x1, x2, . . . , xn), x1 = t′1, x2 = t′2 `ι p(t′1, t′2, x3, . . . , xn) CutCtxt
...

Σn, . . . ,Σ1,Γ1, . . . ,Γn; p(x1, x2, . . . , xn),
x1 = t′1, x2 = t′2, . . . , xn = t′n `ι p(t′1, t′2, . . . , t′n) CutCtxt

∆(tn) ,Σn, . . . ,Σ1,Γ1, . . . ,Γn;
p(x1, . . . , xn−1, tn),

x1 = t′1, . . . , xn−1 = t′n−1, tn = t′n `ι p(t′1, t′2, . . . , t′n) subst
Σn; Γn `ι ∆(tn) &-elim

Σn,Γn,Σn−1, . . . ,Σ1,
Γ1, . . . ,Γn−1; p(x1, . . . , xn−1, tn),
x1 = t′1, . . . , xn−1 = t′n−1, tn = t′n `ι p(t′1, t′2, . . . , t′n) CutCtxt

Σn,Γn; `ι tn = t′n toCtxt*

Σn,Γn,Σn−1, . . . ,Σ1,
Γn,Γ1, . . . ,Γn−1; p(x1, . . . , xn−1, tn),

x1 = t′1, . . . , xn−1 = t′n−1 `ι p(t′1, t′2, . . . , t′n) Cut
...

Σ1,Γ1, . . . ,Σn,Γn; p(t1, . . . , tn) `ι p(t′1, t′2, . . . , t′n) Cut

where x1, x2, . . . , xn are different variable symbols not occurring in the terms
t1, t2, . . . , tn, t

′
1, t
′
2, . . . , t

′
n,Σ1, . . . ,Σn,Γ1,Γ2, . . . ,Γn and toCtxt* denotes a re-

peated application of the toCtxt rule.



118 CHAPTER 3. PARTIALLY DEFINED IOTA TERMS

Replacement rule for equality with function symbols, where
x1, x2, . . . , xn, y1, y2, . . . , yn are different variable symbols not occurring
in the terms t1, t2, tn, . . . , t

′
1, t
′
2, . . . , t

′
n.

ERf
UC(t1), UC(t′1), . . . , UC(tn), UC(t′n)

f(x1, x2, . . . , xn) = f(y1, y2, . . . , yn) `ι f(x1, . . . , xn) = f(y1, . . . , yn) ass
∆
(
t′1
)

; f(x1, x2, . . . , xn) =
f(y1, y2, . . . , yn), y1 = t′1 `ι f(x1, . . . , xn) = f(t′1, y2, . . . , yn)eqSubst

...
∆
(
t′1
)
, . . . ,∆

(
t′n
)

;
f(x1, . . . , xn) = f(y1, . . . , yn),

y1 = t′1, . . . , yn = t′n `ι f(x1, . . . , xn) = f(t′1, . . . , t
′
n) eqSubst

∆
(
t′1
)
, . . . ,∆

(
t′n
)

;
f(x1, . . . , xn) = f(x1, y2, . . . , yn),

x1 = t′1, y2 = t′2, . . . , yn = t′n `ι f(x1, . . . , xn) = f(t′1, . . . , t
′
n) subst

∆
(
t′1
)
, . . . ,∆

(
t′n
)

;
f(x1, . . . , xn) = f(x1, x2, y3, . . . , yn),
x1 = t′1, x2 = t′2, y3 = t′3, . . . , yn = t′n `ι f(x1, . . . , xn) = f(t′1, . . . , t

′
n) subst

...
∆
(
t′1
)
, . . . ,∆

(
t′n
)

;
f(x1, . . . , xn) = f(x1, . . . , xn),

x1 = t′1, . . . , xn = t′n `ι f(x1, . . . , xn) = f(t′1, . . . , t
′
n) subst

`ι f(x1, . . . , xn) = f(x1, . . . , xn) eq
∆
(
t′1
)
, . . . ,∆

(
t′n
)

;x1 = t′1, . . . , xn = t′n `ι f(x1, . . . , xn) = f(t′1, . . . , t
′
n) Cut

∆(tn) ,∆
(
t′1
)
, . . . ,∆

(
t′n
)

;
x1 = t′1, . . . , xn−1 = t′n−1, tn = t′n `ι f(x1, . . . , xn−1, tn) = f(t′1, . . . , t

′
n) subst

...
∆(t2) , . . . ,∆(tn) ,∆

(
t′1
)
, . . . ,∆

(
t′n
)

;
x1 = t′1, t2 = t′2, . . . , tn = t′n `ι f(x1, t2, . . . , tn) = f(t′1, . . . , t

′
n) subst

∆(t1) , . . . ,∆(tn) ,∆
(
t′1
)
, . . . ,∆

(
t′n
)

;
t1 = t′1, . . . , tn = t′n `ι f(t1, t2, . . . , tn) = f(t′1, . . . , t

′
n) subst

Variant of ERf:

ERf2
Σ1; Γ1 `ι t1 = t′1 prem
Σ2; Γ2 `ι t2 = t′2 prem

...
Σn; Γn `ι tn = t′n prem

∆(t1) , . . . ,∆(tn) ,∆
(
t′1
)
, . . . ,∆

(
t′n
)

;
t1 = t′1, t2 = t′2, . . . , tn = t′n `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) ERf
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Σ1,∆(t1) , . . . ,∆(tn) ,
∆
(
t′1
)
, . . . ,∆

(
t′n
)

;
Γ1, t2 = t′2, . . . , tn = t′n `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) Cut

...
Σn−1, . . . ,Σ,∆(t1) , . . . ,∆(tn) ,

∆
(
t′1
)
, . . . ,∆

(
t′n
)

; Γ1, . . . ,Γn−1, tn = t′n `ι f(t1, . . . , tn) = f(t′1, . . . , t
′
n) Cut

Σn, . . . ,Σ1,∆(t1) , . . . ,∆(tn) ,
∆
(
t′1
)
, . . . ,∆

(
t′n
)

; Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t
′
n) Cut

Σ1; Γ1 `ι ∆(t1) & ∆
(
t′1
)

defCons
Σ1; Γ1 `ι ∆(t1) &-elim
Σ1; Γ1 `ι ∆

(
t′1
)

&-elim
...

Σn; Γn `ι ∆
(
t′n
)

&-elim
Σn, . . . ,Σ1,∆(t1) , . . . ,∆(tn) ,

∆
(
t′1
)
, . . . ,∆

(
t′n−1

)
,Γn; Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) CutCtxt

Σn, . . . ,Σ1,∆(t1) , . . . ,∆(tn) ,
∆
(
t′1
)
, . . . ,∆

(
t′n−1

)
; Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) FromCtxt2

Σn−1,Σn,Σn−2, . . . ,Σ1,
∆(t1) , . . . ,∆(tn) ,

∆
(
t′1
)
, . . . ,∆

(
t′n−2

)
,Γn−1; Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) CutCtxt

Σn−1,Σn,Σn−2, . . . ,Σ1,
∆(t1) , . . . ,∆(tn) ,

∆
(
t′1
)
, . . . ,∆

(
t′n−2

)
; Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) FromCtxt2

...
Σ1, . . . ,Σn,∆(t1) , . . . ,∆(tn) ,

Γ1; Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t
′
n) CutCtxt

Σ1, . . . ,Σn,∆(t1) , . . . ,∆(tn) ;
Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) FromCtxt2

Σn,Σ1, . . . ,Σn−1,∆(t1) , . . . ,∆(tn−1) ,
Γn; Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) CutCtxt

Σn,Σ1, . . . ,Σn−1,∆(t1) , . . . ,∆(tn−1) ;
Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) FromCtxt2

...
Σ1, . . . ,Σn; Γ1, . . . ,Γn `ι f(t1, . . . , tn) = f(t′1, . . . , t

′
n) FromCtxt2

3.8.1 Equivalent and interchangeable formulae

In this section, we will investigate some equivalences.
Recall that already in the Hermes calculus, we called two formulae α and

β equivalent when α a` β and equivalent under the condition γ when
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α, γ ` β and β, γ ` α.
It will appear that in the pitfol calculus, these notions will be replaced

by the following definitions: we call α and β interchangeable when
∆(α) ;α `ι β
∆(β) ; β `ι α

∆(α) `ι ∆(β)

∆(β) `ι ∆(α)

We will call these four sequents the interchangeability conditions; when
these are derivable, we will write α 
 β.

Given a list of formulae Σ, we call α and β interchangeable under the
context Σ when 

Σ,∆(α) ;α `ι β
Σ,∆(β) ; β `ι α

Σ; ∆(α) `ι ∆(β)

Σ; ∆(β) `ι ∆(α)

which we will denote as α
Σ

 β.

Furthermore, we extend these notions to terms: we call t1 and t2 inter-
changeable when {

∆(t1) `ι t1 = t2

∆(t2) `ι t1 = t2

(which we will also call the interchangeability conditions and also denote
as t1 
 t2) and interchangeable under the context Σ when{

Σ; ∆(t1) `ι t1 = t2

Σ; ∆(t2) `ι t1 = t2

which we denote as t1
Σ

 t2.

We call α replaceable by β when{
∆(α) ;α `ι β
∆(α) ; β `ι α

and t1 replaceable by t2 when

∆(t1) `ι t1 = t2

We denote this as α ⇀ β and t1 ⇀ t2.
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Semantically, this expresses that α and β (resp. t1 and t2) have the same
interpretation, except that α may be undefined when β is defined (we could
say that β is “defined in more cases than α”). In other words, when α is
defined, it has the same interpretation as β; when α is undefined, β may have
another interpretation.

For example, α ≡ x = ιzw 6=0(z = y) and β ≡ x = y express both that
x and y are equal, but β is always defined whereas α is only defined when
w 6= 0; and indeed, it is easy to derive

x = ιzw 6=0(z = y) ⇀ x = y.

We call α replaceable by β under the context Σ when{
Σ,∆(α) ;α `ι β
Σ,∆(α) ; β `ι α

and t1 replaceable by t2 when

Σ; ∆(t1) `ι t1 = t2

We denote this as α
Σ
⇀ β and t1

Σ
⇀ t2.

Theorem 23 (replacement theorem) 1. Given α ⇀ β, then A(α) ⇀
A(β), i.e., {

∆(A(α)) ;A(α) `ι A(β)

∆(A(α)) ;A(β) `ι A(α)

where A(α) is a formula possibly containing α and A(β) is the same
formula where a number of instances of α are replaced by β, and t(α) ⇀
t(β), i.e.,

∆(t(α)) `ι t(α) = t(β)

where t(α) is a term possibly containing α and t(β) is the same term
where a number of instances of α are replaced by β.

These results only hold if the uniqueness conditions for A(α), resp. t(α)
can be derived.

2. Given t1 ⇀ t2, then analogously, A(t1) ⇀ A(t2) and t(t1) ⇀ t(t2), i.e.,
∆(A(t1)) ;A(t1) `ι A(t2)

∆(A(t1)) ;A(t2) `ι A(t1)

∆(t(t1)) `ι t(t1) = t(t2)

These results only hold if the uniqueness conditions for A(t1), resp.
t(t1) can be derived.
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3. Given a formula α and the formula α̃ obtained from α by renaming all
its bound variables (as in the statement of the ι-rule). Then α ⇀ α̃.

Given a term t and the term t̃ obtained from t by renaming all its bound
variables. Then t ⇀ t̃.

These results only hold if the uniqueness conditions for α, resp. t can
be derived.

Informally, the theorem then expresses that under the context ∆(A(α)), one
may always replace a formula α by a formula β that is “more defined” than
α. In other words, this expresses that when α is undefined (when w = 0 in
the example above), we could interpret it in any way we like. To clarify this,
consider

α ⇀ (∆(α)⇒ α) & (¬∆(α)⇒ β)

where β is an arbitrary formula. One checks easily that this choice of β
fulfills the requirements of the lemma; semantically, this means that under
the context ∆(A(α)), we can interpret α as (∆(α) ⇒ α) & (¬∆(α) ⇒ β),
where the interpretation of (∆(α) ⇒ α) & (¬∆(α) ⇒ β) coincides with α
when α is defined and with our arbitrary formula γ when α is undefined.
In the first example above, this expresses that when α is undefined (when
w = 0), we could interpret it in any way we like (for example as x = y).

In this theorem, we see the formal counterpart of the semantic require-
ment that when evaluating a valid sequent, we never should encounter an
invalid term or formula. Indeed, using this theorem, we can derive another
sequent in which the invalid term or formula is replaced by a term or for-
mula that interprets in any way we like (see also the following corollary), so
it would indeed be impossible for our interpretation to depend on it.
Proof.

We prove this by induction on the nesting depth of the ι-terms in A(α),
t(α) for the first part, in A(t1), t(t1) for the second part, α and t for the third
part.

In the base case, there are no ι-terms present in the formulae and terms
under consideration. We handle this case by induction on cplA(α), cpl t(α),
cplA(t1), cpl t(t1), cpl(α) + 1 and cpl(t) + 1.

For (1) we have the following cases:

• t(α) ≡ x Since there are no subformulae to replace, t(α) ≡ t(β)
and we have to derive `ι x = x, which is trivial.

• t(α) ≡ f(t1(α), t2(α), . . . , tn(α)) Induction on t1 yields ∆(t1(α)) `ι
t1(α) = t1(β) and we get similar sequents for t2, . . . , tn. We can use
these in the following derivations:
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`ι ∆(∆(t(α))) Ddef
∆(t(α)) `ι ∆(t1(α)) & ∆(t2(α)) & · · ·& ∆(tn(α)) ass
∆(t(α)) `ι ∆(t1(α)) &-elim
∆(t(α)) `ι t1(α) = t1(β) Cut
∆(t(α)) `ι ∆(t2(α)) & · · ·& ∆(tn(α)) &-elim
∆(t(α)) `ι ∆(t2(α)) &-elim
∆(t(α)) `ι t2(α) = t2(β) Cut

...
∆(t(α)) `ι tn(α) = tn(β) Cut
∆(t(α)) `ι t(α) = t(β) ERf2

• A(α) ≡ p(t1(α), t2(α), . . . , tn(α)) We treat the case A(α) ≡ t1(α) =
t1(β) likewise. Induction on t1 yields ∆(t1(α)) `ι t1(α) = t1(β) and we
get similar sequents for t2, . . . , tn. We can use these in the following
derivations:

`ι ∆(∆(t(α))) Ddef
∆(t(α)) `ι ∆(t1(α)) & · · ·& ∆(tn(α)) ass
∆(t(α)) `ι ∆(t1(α)) &-elim
∆(t(α)) `ι t1(α) = t1(β) Cut
∆(t(α)) `ι ∆(t2(α)) & · · ·& ∆(tn(α)) &-elim
∆(t(α)) `ι ∆(t2(α)) &-elim
∆(t(α)) `ι t2(α) = t2(β) Cut

...
∆(t(α)) `ι tn(α) = tn(β) Cut

∆(t(α)) ; p(t1(α), t2(α), . . . , tn(α)) `ι p(t1(β), t2(β), . . . , tn(β)) ERp2

`ι ∆(∆(t(α))) Ddef
∆(t(α)) `ι ∆(t1(α)) & · · ·& ∆(tn(α)) ass
∆(t(α)) `ι ∆(t1(α)) &-elim
∆(t(α)) `ι t1(α) = t1(β) Cut
∆(t(α)) `ι t1(β) = t1(α) ESy2
∆(t(α)) `ι ∆(t2(α)) & · · ·& ∆(tn(α)) &-elim
∆(t(α)) `ι ∆(t2(α)) &-elim
∆(t(α)) `ι t2(α) = t2(β) Cut
∆(t(α)) `ι t2(β) = t2(α) ESy2

...
∆(t(α)) `ι tn(β) = tn(α) ESy2

∆(t(α)) ; p(t1(β), t2(β), . . . , tn(β)) `ι p(t1(α), t2(α), . . . , tn(α)) ERp2
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• A(α) ≡ B(α) & C(α)

∆(B(α) & C(α)) ;B(α) & C(α) `ι B(α) & C(α) AssCtxt
∆(B(α) & C(α)) ;B(α) & C(α) `ι B(α) &-elim

∆(B(α)) ;B(α) `ι B(β) induction
∆(B(α) & C(α)) ;B(α) & C(α) `ι B(β) Cut3
∆(B(α) & C(α)) ;B(α) & C(α) `ι C(α) &-elim

∆(C(α)) ;C(α) `ι C(β) induction
∆(B(α) & C(α)) ;B(α) & C(α) `ι C(β) Cut3
∆(B(α) & C(α)) ;B(α) & C(α) `ι B(β) & C(β) &-intro

`ι ∆(∆(B(α) & C(α))) Ddef
∆(B(α) & C(α)) `ι ∆(B(α) & C(α)) ass
∆(B(α) & C(α)) `ι ∆(B(α)) &-elim
∆(B(α)) ;B(β) `ι B(α) induction

∆(B(α)) ; `ι ∆(B(β)) defAnt
∆(B(α)) `ι ∆(B(β)) fromCtxt

∆(B(α) & C(α)) `ι ∆(B(β)) Cut
∆(B(α) & C(α)) `ι B(α)⇒∆(C(α)) &-elim

∆(B(α) & C(α)) ;B(α) `ι ∆(C(α)) DdRu1
∆(C(α)) ;C(β) `ι C(α) induction

∆(C(α)) ; `ι ∆(C(β)) defAnt
∆(C(α)) `ι ∆(C(β)) fromCtxt

∆(B(α) & C(α)) ;B(α) `ι ∆(C(β)) Cut
∆(B(α) & C(α)) ; `ι ∆(B(β)) toCtxt

∆(B(α) & C(α)) ;B(β) `ι B(β) ass
∆(B(α) & C(α)) ; `ι ∆(B(α)) toCtxt

∆(B(α) & C(α)) ;B(β) `ι ∆(B(α)) &B(β) &-intro
∆(B(α)) &B(β) `ι B(α) fromCtxt

∆(B(α) & C(α)) ;B(β) `ι B(α) Cut
∆(B(α) & C(α)) ;B(β) `ι ∆(C(β)) Cut

∆(B(α) & C(α)) ; `ι B(β)⇒∆(C(β)) DdRu2
∆(B(α) & C(α)) ; `ι ∆(B(β) & C(β)) &-intro

∆(B(α) & C(α)) ;B(β) & C(β) `ι B(β) & C(β) ass
∆(B(α) & C(α)) ;B(β) & C(β) `ι B(β) &-elim
∆(B(α) & C(α)) ;B(β) & C(β) `ι B(α) Cut
∆(B(α) & C(α)) ;B(β) & C(β) `ι C(β) &-elim
∆(B(α) & C(α)) ;B(β) & C(β) `ι ∆(C(α)) Cut
∆(B(α) & C(α)) ;B(β) & C(β) `ι ∆(C(α)) & C(β) &-intro

∆(C(α)) & C(β) `ι C(α) fromCtxt
∆(B(α) & C(α)) ;B(β) & C(β) `ι C(α) Cut
∆(B(α) & C(α)) ;B(β) & C(β) `ι B(α) & C(α) &-intro
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• A(α) ≡ ¬B(α)

`ι ∆(∆(B(α))) Ddef
∆(B(α)) `ι ∆(B(α)) ass

∆(B(α)) ; `ι ∆(B(α)) toCtxt
∆(B(α)) ;B(β) `ι B(α) induction

∆(B(α)) ;¬B(α) `ι ¬B(β) CoPo1

∆(B(α)) ;B(α) `ι B(β) induction
∆(B(α)) ;B(β) `ι B(α) induction

∆(B(α)) ; `ι ∆(B(β)) defAnt
∆(B(α)) ;¬B(β) `ι ¬B(α) CoPo1

• A(α) ≡ ∀x(B(α))

∆(∀x(B(α))) ;∀x(B(α)) `ι ∀x(B(α)) AssCtxt
∆(∀x(B(α))) ;∀x(B(α)) `ι B(α) ∀-elim

∆(B(α)) ;B(α) `ι B(β) induction
∆(∀x(B(α))) ;∀x(B(α)) `ι B(β) Cut3
∆(∀x(B(α))) ;∀x(B(α)) `ι ∀x(B(β)) ∀-intro

`ι ∆(∆(∀x(B(α)))) Ddef
∆(∀x(B(α))) `ι ∆(∀x(B(α))) ass
∆(∀x(B(α))) `ι ∆(B(α)) ∀-elim

∆(B(α)) ;B(β) `ι B(α) induction
∆(B(α)) ; `ι ∆(B(β)) defAnt
∆(B(α)) `ι ∆(B(β)) fromCtxt

∆(∀x(B(α))) `ι ∆(B(β)) Cut
∆(∀x(B(α))) ; `ι ∆(B(β)) toCtxt
∆(∀x(B(α))) ; `ι ∆(∀x(B(β))) ∀-intro

∆(∀x(B(α))) ;∀x(B(β)) `ι ∀x(B(β)) ass
∆(∀x(B(α))) ;∀x(B(β)) `ι B(β) ∀-elim

∆(∀x(B(α))) ; `ι ∆(B(α)) toCtxt
∆(∀x(B(α))) ;∀x(B(β)) `ι ∆(B(α)) &B(β) &-intro

∆(B(α)) &B(β) `ι B(α) fromCtxt
∆(∀x(B(α))) ;∀x(B(β)) `ι B(α) Cut
∆(∀x(B(α))) ;∀x(B(β)) `ι ∀x(B(α)) ∀-intro

The cases for (2) are similar, essentially by replacing A(α) by A(t1), A(β)
by A(t2), . . . ; we only explicitly mention
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• t(t1) ≡ x Either no replacements occur and t(t1) ≡ t(t2), in which
case we have to derive `ι x = x, which is trivial. Else, the whole term
t(t1) is replaced by t2 (i.e., t(t2) ≡ t2) and we have to derive `ι t1 = t2,
which is given.

For (3), we have:

• α ≡ β & γ Because we performed induction on cpl(α) + 1, and not
on cpl(α), we can apply induction on (1), yielding{

∆(β & γ) ; β & γ `ι β̃ & γ (1)

∆(β & γ) ; β̃ & γ `ι β & γ (2)

and also ∆
(
β̃ & γ

)
; β̃ & γ `ι β̃ & γ̃ (3)

∆
(
β̃ & γ

)
; β̃ & γ̃ `ι β̃ & γ (4)

and ∆
(
β̃ & γ

)
; β̃ & γ `ι β & γ (5)

∆
(
β̃ & γ

)
; β & γ `ι β̃ & γ (6)

using which we can derive ∆(β & γ) ; β & γ `ι β̃ & γ̃ by applying Cut3
on (1) and (3), and

∆
(
β̃ & γ

)
; β̃ & γ̃ `ι β & γ Cut3 on (4) and (5)

∆(β & γ) ; `ι ∆
(
β̃ & γ

)
DefAnt on (2)

∆(β & γ) ; β̃ & γ̃ `ι β & γ CutCtxt

• α ≡ ∀x(β)

∆(α) ;α `ι ∀x(β) AssCtxt
∆(α) ;α `ι β ∀-elim

∆(β) ; β `ι β̃ induction

∆(α) ;α `ι β̃ Cut3

∆(α) ;α `ι ∀x(β̃) ∀-intro

∆(α) ;α `ι ∀y([y/x] β̃) SG
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∆
(
∀y([y/x] β̃

)
;∀y([y/x] β̃ `ι ∀y([y/x] β̃) AssCtxt

∆
(
∀y([y/x] β̃

)
;∀y([y/x] β̃ `ι [y/x] β̃ ∀-elim

∆
(
∀y([y/x] β̃

)
;∀y([y/x] β̃ `ι β̃ subst

∆
(
β̃
)

; β̃ `ι β induction

∆
(
∀y([y/x] β̃

)
;∀y([y/x] β̃ `ι β Cut3

∆
(
∀y([y/x] β̃

)
;∀y([y/x] β̃ `ι ∀x(β) ∀-intro

`ι ∆(∆(∀x(β))) Ddef
∆(∀x(β)) `ι ∆(∀x(β)) ass
∆(∀x(β)) `ι ∆(β) ∀-elim

∆(β) ; β̃ `ι β induction

∆(β) ; `ι ∆
(
β̃
)

defAnt

∆(β) `ι ∆
(
β̃
)

fromCtxt

∆(∀x(β)) `ι ∆
(
β̃
)

Cut

∆(∀x(β)) `ι ∀x(∆
(
β̃
)

) ∀-intro

∆(∀x(β)) `ι ∀y([y/x]∆
(
β̃
)

) SG

∆(∀x(β)) ;∀y([y/x] β̃ `ι ∀x(β) CutCtxt

The other cases are analogous.
This concludes the base case of the induction on the nesting depths of

ι-terms; we handle the induction step again by structural induction. The
cases are identical to the cases above, except for (1) the extra case

• t(α) ≡ ιxψ(α)(ϕ(α)) We have to our disposal the sequent

ψ(α) `ι ∃x(ϕ(α)) & ∀x∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y)

where y does not occur in ϕ(α).

First, we will derive

ψ(β) `ι ∃x(ϕ(β)) & ∀x∀w((ϕ(β) & [w/x]ϕ(β))⇒ x = w)

where w does not occur in ϕ(α).

Choose z different from x and not occurring in ϕ(α) and ϕ(β) in the
following derivation:
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∆(ψ(α)) ;ψ(α) `ι ψ(β) induction
`ι ∆(ψ(α)) defAnt

ψ(α) `ι ψ(β) CutCtxt
ψ(β) `ι ∃x(ϕ(α)) & ∀x∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) Cut

∆(∀y(. . . )) ;∀y(. . . ) `ι ∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) AssCtxt
∆(∀y(. . . )) ;∀y(. . . ) `ι ∀z((ϕ(α) & [z/x]ϕ(α))⇒ x = z) RenG
∆(∀z(. . . )) ;∀z(. . . ) `ι ∀z((ϕ(α) & [z/x]ϕ(α))⇒ x = z) AssCtxt
∆(∀z(. . . )) ;∀z(. . . ) `ι ∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) RenG

∆(∀y(. . . )) `ι ∆(∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y)) Ddef
∆(∀y(. . . )) `ι ∆(∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y)) ass
∆(∀y(. . . )) `ι ∆(∀z((ϕ(α) & [z/x]ϕ(α))⇒ x = z)) RenG

∆(∀y(. . . )) ;∀z(. . . ) `ι ∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) RenG
∆(. . . ) ; . . . `ι ∃x(ϕ(α)) & ∀x∀z((ϕ(α) & [z/x]ϕ(α))⇒ x = z) induction

ψ(β) `ι ∃x(ϕ(α)) & ∀x∀z((ϕ(α) & [z/x]ϕ(α))⇒ x = z) Cut3
∆(ϕ(α)) ;ϕ(α) `ι ϕ(β) induction
∆(ϕ(α)) ;ϕ(β) `ι ϕ(α) induction

∆(. . . ) ; . . . `ι ∃x(ϕ(β)) & ∀x∀z((ϕ(β) & [z/x]ϕ(α))⇒ x = z) induction
ψ(β) `ι ∃x(ϕ(β)) & ∀x∀z((ϕ(β) & [z/x]ϕ(α))⇒ x = z) Cut3

∆([z/x]ϕ(α)) ; [z/x]ϕ(α) `ι [z/x]ϕ(β) subst
∆([z/x]ϕ(α)) ; [z/x]ϕ(β) `ι [z/x]ϕ(α) subst

∆(. . . ) ; . . . `ι ∃x(ϕ(β)) & ∀x∀z((ϕ(β) & [z/x]ϕ(β))⇒ x = z) induction
ψ(β) `ι ∃x(ϕ(β)) & ∀x∀z((ϕ(β) & [z/x]ϕ(β))⇒ x = z) Cut3
ψ(β) `ι ∃x(ϕ(β))

& ∀x∀w((ϕ(β) & [w/x]ϕ(β))⇒ x = w) analogous

We see here why we needed to perform induction on the nesting
depths of the ι-terms first: the formula ∃!x(ϕ(α)) can have a complex-
ity much larger than cpl(α), so we cannot apply structural induction on
∃!x(ϕ(α)). But the nesting depth of the ι-terms of ∃!x(ϕ(α)) is always
1 less than that of ιxψ(α)(ϕ(α)), so the induction on the nesting depths
helps us out here.

Choose z different from x and not occurring in ϕ(α), ψ(α), ϕ(β) and
ψ(β). Using both uniqueness conditions, we can derive

∆(. . . ) ; . . . `ι ∀x∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) AssCtxt
∆(. . . ) ; . . . `ι ∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) ∀-elim
∆(. . . ) ; . . . `ι (ϕ(α) & [y/x]ϕ(α))⇒ x = y ∀-elim

∆(. . . ) ; . . . `ι (ϕ̃(α) & [z/x]ϕ̃(β))⇒ x = z analogous

ψ(α),∆(. . . ) ; . . . `ι (
[
ιxψ(α)(ϕ(α))/x

]
ϕ̃(α) & [z/x]ϕ̃(β))

⇒ ιxψ(α)(ϕ(α)) = z subst

ψ(β), ψ(α),∆(. . . ) ; . . . `ι (
[
ιxψ(α)(ϕ(α))/x

]
ϕ̃(α) &

[
ιxψ(β)(ϕ(β))/x

]
ϕ̃(β))
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⇒ ιxψ(α)(ϕ(α)) = ιxψ(β)(ϕ(β)) subst

ψ(α) `ι
[
ιxψ(α)(ϕ(α))/x

]
ϕ̃(α) iota

ψ(β) `ι
[
ιxψ(β)(ϕ(β))/x

]
ϕ̃(β) iota

ψ(α) `ι
[
ιxψ(β)(ϕ(β))/x

]
ϕ̃(β) Cut

ψ(α) `ι
[
ιxψ(α)(ϕ(α))/x

]
ϕ̃(α) &

[
ιxψ(β)(ϕ(β))/x

]
ϕ̃(β) &-intro

ψ(α); `ι
[
ιxψ(α)(ϕ(α))/x

]
ϕ̃(α) &

[
ιxψ(β)(ϕ(β))/x

]
ϕ̃(β) toCtxt

ψ(α),∆(. . . ) ; . . . `ι ιxψ(α)(ϕ(α)) = ιxψ(β)(ϕ(β)) MP
ψ(α) `ι ιxψ(α)(ϕ(α)) = ιxψ(β)(ϕ(β)) Cut3

and an analogous case for (2).
For (3), the extra case is

• t ≡ ιxψ(ϕ)

∆(ψ) ;ψ `ι ψ̃ induction

∆(ψ) ; ψ̃ `ι ψ induction
ψ `ι ιxψ(ϕ) = ιx eψ(ϕ) induction

∆(ϕ) ;ϕ `ι ϕ̃ induction
∆(ϕ) ; ϕ̃ `ι ϕ induction

∆([y/x]ϕ) ; [y/x]ϕ `ι [y/x]ϕ̃ subst
∆([y/x]ϕ) ; [y/x]ϕ̃ `ι [y/x]ϕ subst

ψ̃ `ι ιx eψ(ϕ) = ιx eψ([y/x]ϕ̃) induction

`ι ∆(ψ) Ddef

ψ `ι ψ̃ CutCtxt
ψ `ι ιx eψ(ϕ) = ιx eψ([y/x]ϕ̃) Cut

ψ `ι ιxψ(ϕ) = ιx eψ([y/x]ϕ̃) ET2

2

As indicated earlier, some of the proofs need to be slightly modified
when the definedness of some subformulae is >. In the case A(α) ≡
B(α) & C(α) there are a lot of possible variants in the derivation of
∆(B(α) & C(α)) ;B(β) & C(β) `ι B(α) & C(α); hence we will elaborate
this case.

The proof already given handles the case ∆(B(α)) 6≡ > 6≡ ∆(C(α)). If
∆(B(β)) and/or ∆(C(β)) would be >, the convention we adopted earlier
holds: the proof stays valid by removing the lines from the proof in which
the consequent is >.

If ∆(B(α)) ≡ >, then the proof simplifies to
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B(β) `ι B(α) induction
`ι ∆(B(β)) defAnt

∆(C(α)) ;C(β) `ι C(α) induction
∆(C(α)) ; `ι ∆(C(β)) defAnt

∆(C(α)) ;B(β) `ι ∆(C(β)) Weak
∆(C(α)) ; `ι B(β)⇒∆(C(β)) DdRu2
∆(C(α)) ; `ι ∆(B(β) & C(β)) &-intro

∆(C(α)) ;B(β) & C(β) `ι B(β) & C(β) ass
∆(C(α)) ;B(β) & C(β) `ι B(β) &-elim
∆(C(α)) ;B(β) & C(β) `ι B(α) Cut
∆(C(α)) ;B(β) & C(β) `ι C(β) &-elim
∆(C(α)) ;B(β) & C(β) `ι C(α) Cut
∆(C(α)) ;B(β) & C(β) `ι B(α) & C(α) &-intro

Again, If ∆(B(β)) and/or ∆(C(β)) is >, remove the appropriate lines from
the proof.

Finally, if ∆(C(α)) ≡ >, we have

∆(B(α)) ;B(β) `ι B(α) induction
∆(B(α)) ; `ι ∆(B(β)) defAnt

C(β) `ι C(α) induction
`ι ∆(C(β)) defAnt

∆(B(α)) ;B(β) `ι ∆(C(β)) Weak
∆(B(α)) ; `ι B(β)⇒∆(C(β)) DdRu2
∆(B(α)) ; `ι ∆(B(β) & C(β)) &-intro

∆(B(α)) ;B(β) & C(β) `ι B(β) & C(β) ass
∆(B(α)) ;B(β) & C(β) `ι B(β) &-elim
∆(B(α)) ;B(β) & C(β) `ι B(α) Cut
∆(B(α)) ;B(β) & C(β) `ι C(β) &-elim
∆(B(α)) ;B(β) & C(β) `ι C(α) Cut
∆(B(α)) ;B(β) & C(β) `ι B(α) & C(α) &-intro

Corollary 24 (Replacement in sequents) Given α ⇀ β, then

Σ; Γ `ι A(α)
Σ; Γ `ι A(β)

Σ; Γ, A(α) `ι γ
Σ; Γ, A(β) `ι γ

Σ1, A(α),Σ2; Γ `ι γ
Σ1, A(β),Σ2; Γ `ι γ

Analogously, given
∆(t1) `ι t1 = t2,

then
Σ; Γ `ι A(t1)
Σ; Γ `ι A(t2)

Σ; Γ, A(t1) `ι γ
Σ; Γ, A(t2) `ι γ

Σ1, A(t1),Σ2; Γ `ι γ
Σ1, A(t2),Σ2; Γ `ι γ
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Proof.
We only present the proof for replacement of subformulae; the proofs for

replacement of subterms are analogous.

Σ; Γ `ι A(α) prem
∆(A(α)) ;A(α) `ι A(β) Theorem 23

Σ; Γ `ι A(β) Cut3

Σ; Γ, A(α) `ι γ prem
∆(A(α)) ;A(β) `ι A(α) Theorem 23

Σ; `ι ∆(A(α)) defAnt
Σ;A(β) `ι A(α) CutCtxt

Σ; Γ, A(β) `ι γ Cut

For the last rule, we have

Σ1, A(α), σ1, σ2, . . . , σn; Γ `ι γ

where Σ2 ≡ σ1, . . . , σn. Repeatedly applying fromCtxt, we get

Σ1;A(α) & σ1 & σ2 & · · ·& σn & Γ `ι γ

Using the previous case, we can transform this into

Σ1;A(β) & σ1 & σ2 & · · ·& σn & Γ `ι γ

and repeatedly applying toCtxt yields the desired sequent. 2

Theorem 25 (interchange theorem) 1. If α and β are two inter-
changeable formulae, then so are A(α) and A(β), where A(α) is a
formula possibly containing α and A(β) is the same formula where a
number of occurrences of α are replaced by β, and analogously, t(α)
and t(β) are two interchangeable terms, where t(α) is a term possibly
containing α and t(β) is the same term where a number of instances of
α are replaced by β.

These results only hold if the uniqueness conditions for A(α) or A(β),
resp. t(α) or t(β) can be derived.
If the uniqueness conditions for A(α) or t(α) hold, then the uniqueness
conditions for A(β), resp. t(β) hold too and vice versa.

2. If t1 and t2 are two interchangeable terms, then so are A(t1) and A(t2),
resp. t(t1) and t(t2), with a similar remark about the uniqueness con-
ditions as in the first case.
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3. Given a formula γ and the formula γ̃ obtained from γ by renaming all
its bound variables. Then γ and γ̃ are interchangeable. Analogously, a
term t is interchangeable with t̃.

Proof.

1. Suppose for example that we are given the uniqueness conditions for
A(α).

∆(α) ;α `ι β given
∆(β) ; β `ι α given

∆(α) `ι ∆(β) given
∆(α) ; β `ι α CutCtxt

∆(A(α)) ;A(α) `ι A(β) Th. 23
∆(A(α)) ;A(β) `ι A(α) Th. 23

∆(A(α)) ; `ι ∆(A(β)) defAnt
∆(A(α)) `ι ∆(A(β)) fromCtxt

∆(β) `ι ∆(α) given
∆(β) ;α `ι β CutCtxt

∆(A(β)) ;A(β) `ι A(α) Th. 23
∆(A(β)) ;A(α) `ι A(β) Th. 23

∆(A(β)) ; `ι ∆(A(α)) defAnt
∆(A(β)) `ι ∆(A(α)) fromCtxt

∆(α) ;α `ι β given
∆(β) ; β `ι α given

∆(α) `ι ∆(β) given
∆(α) ; β `ι α CutCtxt
∆(t(α)) `ι t(α) = t(β) Th. 23

∆(β) `ι ∆(α) given
∆(β) ;α `ι β CutCtxt
∆(t(β)) `ι t(β) = t(α) Th. 23
∆(t(β)) `ι t(α) = t(β) ESy2

2. Analogously.

3. Analogously, using theorem 23.3.

2

Note that if we are given an equivalence α a`ι β, then we can apply the
previous theorem, since using the defAnt rule on α `ι β yields `ι ∆(α) and
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we can obtain `ι ∆(β) analogously. From this observation, it is not difficult
to derive the two equivalences required for the application of the previous
theorem.

Finally, we remark that that given two out of three of
∆(α) & α a`ι ∆(β) & β

∆(α) & ¬α a`ι ∆(β) & ¬β
∆(α) a`ι ∆(β)

one can derive the remaining sequent and hence apply the previous theorem.

This is similar to the two-valued setting, where given one out of two of{
α a` β
¬α a` ¬β

is sufficient to derive the other sequent, and this is sufficient to apply a similar
substitution theorem in the two-valued calculus.

Looking at the semantics, this analogy becomes even stronger: for each
truth-value v, we have to deduce

α has truth-value v if and only if β has truth-value v

and if the interpretation has n truth values, then it is sufficient to derive only
n− 1 of these equivalences.

We will only give the derivations of the `ι direction; the derivations for
aι are analogous.

∆(β) & β `ι ∆(α) & α prem
∆(β) `ι ∆(α) prem

∆(β) & β `ι α &-elim
∆(β) ; β `ι α toCtxt

∆(β) ; `ι ∆(α) toCtxt
∆(β) ;¬α `ι ¬β CoPo1

∆(α) `ι ∆(β) prem
∆(α) ;¬α `ι ¬β CutCtxt

∆(α) & ¬α `ι ¬β fromCtxt
∆(α) & ¬α `ι ∆(β) defCons
∆(α) & ¬α `ι ∆(β) & ¬β &-intro
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∆(β) & ¬β `ι ∆(α) & ¬α prem
∆(β) `ι ∆(α) prem

∆(β) & ¬β `ι ¬α &-elim
∆(β) ;¬β `ι ¬α toCtxt

∆(β) ; `ι ∆(α) toCtxt
∆(β) ;α `ι β CoPo4

∆(α) `ι ∆(β) prem
∆(α) ;α `ι β CutCtxt

∆(α) & α `ι β fromCtxt
∆(α) & α `ι ∆(β) defCons
∆(α) & α `ι ∆(β) & β &-intro

∆(α) & ¬α `ι ∆(β) & ¬β prem
∆(α) & α `ι ∆(β) & β prem

∆(α) & ¬α `ι ∆(β) &-elim
∆(α) ;¬α `ι ∆(β) toCtxt
∆(α) & α `ι ∆(β) &-elim
∆(α) ;α `ι ∆(β) toCtxt

∆(α) ; `ι ∆(β) rem
∆(α) `ι ∆(β) fromCtxt

Corollary 26 (Interchange of equivalent subformulae in sequents)
Given two interchangeable formulae α and β. Then

Σ; Γ `ι A(α)
Σ; Γ `ι A(β)

Σ; Γ, A(α) `ι γ
Σ; Γ, A(β) `ι γ

Σ1, A(α),Σ2; Γ `ι γ
Σ1, A(β),Σ2; Γ `ι γ

The analogous theorem for two interchangeable terms also holds.

Proof.
As in the previous theorem, we quickly obtain that the required sequents

for corollary 24 are derivable. 2

Theorem 27 (replacement under context) 1. Given α
Σ
⇀ β, then

A(α)
Σ
⇀ A(β), i.e., {

Σ,∆(A(α)) ;A(α) `ι A(β)

Σ,∆(A(α)) ;A(β) `ι A(α)
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where A(α) is a formula possibly containing α and A(β) is the same

formula where a number of instances of α are replaced by β, and t(α)
Σ
⇀

t(β), i.e.,
Σ; ∆(t(α)) `ι t(α) = t(β)

where t(α) is a term possibly containing α and t(β) is the same term
where a number of instances of α are replaced by β.

These results only hold if all of the following restrictions are met:

• If α is replaced by β inside a ∀x quantifier, then x must not be a
free variable of Σ.

• The uniqueness conditions for A(α), resp. t(α) must be derivable.

• When α is replaced by β inside a ι-term ιxψ(α)(ϕ(α)), then the
uniqueness conditions for both ιxψ(α)(ϕ(α)) and ιxψ(β)(ϕ(β)) must
be derivable and x must not be a free variable of Σ.

2. Given t1
Σ
⇀ t2 then analogously A(t1)

Σ
⇀ A(t2) and t(t1)

Σ
⇀ t(t2), i.e.,

Σ,∆(A(t1)) ;A(t1) `ι A(t2)

Σ,∆(A(t1)) ;A(t2) `ι A(t1)

Σ; ∆(t(t1)) `ι t(t1) = t(t2)

with analogous restrictions as in the first case.

Proof.
Analogous to theorem 23, essentially by adding Σ in front of the context

of all sequents involved.
For the case A(α) ≡ ∀x(B(α)), the restriction is necessary to be able to

apply the ∀-intro rule in the proof of theorem 23.
For the case t(α) ≡ ιxψ(α)(ϕ(α)), the problem is that in general, given

ψ(α) `ι ∃!x(ϕ(α)) we only can derive σ;ψ(β) `ι ∃!x(ϕ(β)). Given both
uniqueness conditions, we can proceed to derive the required sequent in an
analogous manner as in theorem 23, where moreover we choose z such that
it is not a free variable of σ. There, we also need the condition that x must
not be free in σ. 2

Note that all restrictions above are necessary:
The restriction on replacements inside ∀ quantifiers is motivated by the

following counterexample: under the context x = y, the terms x and y are
interchangeable (the necessary sequents are easily derived). If the theorem
would hold in this case, we would obtain x = y;∀x(f(x) = x) `ι ∀x(f(x) =
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y); that this sequent is unsound can be easily appreciated by noting that
the antecedent expresses that the interpretation of f is the identity function,
whereas the consequent expresses that f is to be interpreted as a constant
function.

If the replacement occurs inside a ι-term, it is indeed possible that the
uniqueness conditions of t(t1) are derivable but not those of t(t2). Indeed,
under the context x = y, the terms x and y are interchangeable, but the
uniqueness condition of ιx(x = y) is easily derivable, whereas the uniqueness
condition of ιx(x = x) is not.

Finally, it is necessary to require that x must not be a free variable of Σ
in the last restriction. Consider for example in the theory of real numbers
the two terms ιxy≥0(x · y = 1 & x ≥ 0) and ιxx≥0(x · x = 1 & x ≥ 0). The
interpretation of the former is “ 1

y
when y ≥ 0 and undefined otherwise”; the

interpretation of the latter is “1 when x ≥ 0 and undefined otherwise”, so
we clearly do not expect

x = y `ι ιxy≥0(x · y = 1 & x ≥ 0) = ιxx≥0(x · x = 1 & x ≥ 0)

to be derivable. However, the uniqueness conditions of both ι-terms are
derivable, and under x = y, the definiens and domain formulae of both ι-
terms are interchangeable.

When the replacement occurs inside a ι-term ιxψ(α)ϕ(α), we have to sup-
ply both the uniqueness condition ψ(α) `ι ∃!xϕ(α) and ψ(β) `ι ∃!xϕ(β).
If we only have the first one, then a sufficient condition for being able to
derive the other one is that x be not a free variable of Σ = σ1, σ2, . . . , σn and
that ψ(β) `ι σ1 & σ2 & · · · & σn. Indeed, we then can perform the following
derivation, choosing z different from x and not occurring free in ϕ(β) and
Σ. Note that we can easily obtain that [z/x]ϕ(α) is interchangeable with
[z/x]ϕ(β) under the context Σ, which we will use in the following derivation:

ψ(α) `ι ∃x(ϕ(α)) &-elim
Σ,∆(∃x(ϕ(α))) ;∃x(ϕ(α)) `ι ∃x(ϕ(β)) Th. 29

Σ;ψ(α) `ι ∃x(ϕ(β)) Cut3
ψ(α) `ι ∀x∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) &-elim

∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι ∀x∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) AssCtxt
∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι ∀y((ϕ(α) & [y/x]ϕ(α))⇒ x = y) ∀-elim
∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι (ϕ(α) & [y/x]ϕ(α))⇒ x = y ∀-elim
∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι (ϕ(α) & [z/x]ϕ(α))⇒ x = z subst

Σ,∆(. . . ) ;
(ϕ(α) & [z/x]ϕ(α))⇒ x = z `ι (ϕ(β) & [z/x]ϕ(α))⇒ x = z Th. 29
Σ; ∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι (ϕ(β) & [z/x]ϕ(α))⇒ x = z Cut3

Σ,∆(. . . ) ;
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(ϕ(β) & [z/x]ϕ(α))⇒ x = z `ι (ϕ(β) & [z/x]ϕ(β))⇒ x = z Th. 29
Σ; ∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι (ϕ(β) & [z/x]ϕ(β))⇒ x = z Cut3
Σ; ∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι ∀z((ϕ(β) & [z/x]ϕ(β))⇒ x = z) ∀-intro
Σ; ∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι ∀w((ϕ(β) & [w/x]ϕ(β))⇒ x = w) RenG
Σ; ∆(∀x∀y(. . . )) ,∀x∀y(. . . ) `ι ∀x∀w((ϕ(β) & [w/x]ϕ(β))⇒ x = w) ∀-intro

Σ;ψ(α) `ι ∃!x(ϕ(β)) &-elim
Σ,∆(ψ(β)) ;ψ(β) `ι ψ(α) Th. 29
Σ,∆(ψ(β)) ;ψ(β) `ι ∃!x(ϕ(β)) Cut

`ι ∆(ψ(β)) defAnt
ψ(β) `ι ψ(β) ass
ψ(β) `ι ∆(ψ(β)) & ψ(β) &-intro
ψ(β) `ι σ & ∆(ψ(β)) & ψ(β) &-intro

Σ; ∆(ψ(β)) & ψ(β) `ι ∃!x(ϕ(β)) fromCtxt
Σ & ∆(ψ(β)) & ψ(β) `ι ∃!x(ϕ(β)) fromCtxt

ψ(β) `ι ∃!x(ϕ(β)) Cut

Corollary 28 (Replacement under context in sequents) Given α
Π
⇀

β where Π is a list of formulae, then

Σ; Γ `ι A(α)
Σ,Π; Γ `ι A(β)

Σ; Γ, A(α) `ι γ
Σ,Π; Γ, A(β) `ι γ

Σ1, A(α),Σ2; Γ `ι γ
Σ1,Π, A(β),Σ2; Γ `ι γ

provided that the following restrictions are obeyed:

• If α is replaced by β inside a ∀x quantifier, then x must not be a free
variable of Π.

• When α is replaced by β inside a ι-term ιxψ(α)(ϕ(α)), then the unique-
ness conditions for ιxψ(β)(ϕ(β)) must be derivable and x must not be a
free variable of Π.

Analogously, given

Π; ∆(t1) `ι t1 = t2,

then

Σ; Γ `ι A(t1)
Σ,Π; Γ `ι A(t2)

Σ; Γ, A(t1) `ι γ
Σ,Π; Γ, A(t2) `ι γ

Σ1, A(t1),Σ2; Γ `ι γ
Σ1,Π, A(t2),Σ2; Γ `ι γ

with similar restrictions as above.

Proof.
Analogous to corollary 24; we show the first two cases explicitly:
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Σ; Γ `ι A(α) prem
Π,∆(A(α)) ;A(α) `ι A(β) Theorem 27.1

Σ,Π; Γ `ι A(β) Cut3

Σ; Γ, A(α) `ι γ prem
Π,∆(A(α)) ;A(β) `ι A(α) Theorem 27.1

Σ; `ι ∆(A(α)) defAnt
Σ,Π;A(β) `ι A(α) CutCtxt

Σ,Π; Γ, A(β) `ι γ Cut

2

Remark that using the WeakCtxtL rule, we can also derive

Σ; Γ `ι A(α)
Π,Σ; Γ `ι A(β)

Σ; Γ, A(α) `ι γ
Π,Σ; Γ, A(β) `ι γ

Σ1, A(α),Σ2; Γ `ι γ
Π,Σ1, A(β),Σ2; Γ `ι γ

Theorem 29 (interchange under context) 1. If α and β are inter-
changeable formulae under the context σ, then A(α) and A(β) are in-
terchangeable formulae under the context σ and t(α) and t(β) are in-
terchangeable terms under the context σ.

These results are subject to the following restrictions:

• If α is replaced by β inside a ∀x quantifier, then x must not be a
free variable of σ.

• The uniqueness conditions for A(α) or A(β), resp. t(α) or t(β)
must be derivable.
We also prove that, except when the replacement occurs inside a
ι-term, if the uniqueness conditions for A(α) or t(α) hold, then
the uniqueness conditions for A(β), resp. t(β) hold too and vice
versa.

• When α is replaced by β inside a ι-term ιxψ(α)(ϕ(α)), then the
uniqueness conditions for both ιxψ(α)(ϕ(α)) and ιxψ(β)(ϕ(β)) must
be derivable and x must not be a free variable of σ.

2. If t1 and t2 are interchangeable terms under the context σ, then A(t1)
and A(t2) are interchangeable formulae under the context σ and t(t1)
and t(t2) are interchangeable terms under the context σ, with similar
restrictions as in the first case.
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Proof.
Analogous to theorem 25. 2

Corollary 30 Given two formulae α and β which are interchangeable under
the context Π. Then

Σ; Γ `ι A(α)
Σ,Π; Γ `ι A(β)

Σ; Γ, A(α) `ι γ
Σ,Π; Γ, A(β) `ι γ

Σ1, A(α),Σ2; Γ `ι γ
Σ1,Π, A(β),Σ2; Γ `ι γ

subject to the same restrictions as corollary 28.
The analogous theorem for two interchangeable terms also holds.

Proof.
Analogous to corollary 26. 2

Corollary 31 (Cut rule for interchangeability) If α and β are inter-
changeable under the context σ and we have ψ `ι σ, then α and β are inter-
changeable under the context ψ. (The analogous property for t1 and t2 holds
too.)

Proof.
From the interchangeability conditions for the interchangeability of α and

β under σ, we get the required interchangeability conditions for interchange-
ability under ψ using the CutCtxt rule. For example,

σ,∆(α) ;α `ι β interchangeability
ψ `ι σ prem

ψ,∆(α) ;α `ι β CutCtxt

2

Theorem 32 If α and β, resp. t1 and t2, are interchangeable under the
context σ, then so are ∆(α) and ∆(β), resp. ∆(t1) and ∆(t2).

Proof.
We have to derive

σ,∆(∆(α)) ; ∆(α) `ι ∆(β)

σ,∆(∆(β)) ; ∆(β) `ι ∆(α)

σ; ∆(∆(α)) `ι ∆(∆(β))

σ; ∆(∆(β)) `ι ∆(∆(α))
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σ,∆(∆(t1)) ; ∆(t1) `ι ∆(t2)

σ,∆(∆(t2)) ; ∆(t2) `ι ∆(t1)

σ; ∆(∆(t1)) `ι ∆(∆(t2))

σ; ∆(∆(t2)) `ι ∆(∆(t1))

which is easy. 2

Theorem 33 For each formula α and term t of the pitfol calculus, if the
substitution [t/x]α is defined, then also the substitution [t/x]∆(α) is defined.

If the uniqueness conditions for α and t are derivable, then ∆([t/x]α) `ι
[t/x]∆(α).

The analogous theorem for terms τ of the pitfol calculus also holds.

Proof.
By induction on the complexity of τ and α.

• τ ≡ x The consequent of the sequent to derive is >; hence, by
convention, we have nothing to derive.

• τ ≡ y with y 6≡ x We have nothing to derive.

• τ ≡ f(t1, t2, . . . , tn) We have to derive

∆([t/x]t1) & ∆([t/x]t2) & · · ·& ∆([t/x]tn)

`ι [t/x]∆(t1) & [t/x]∆(t2) & · · ·& [t/x]∆(tn)

which is easy by applying induction on t1, t2, . . . , tn.

• τ ≡ ιyψ(ϕ)

– x ≡ y or x is not a free variable of ϕ If x is not a free variable
of ψ, then we have to derive ψ `ι ψ, which is easy.
Else, we have to derive ∆(t) & [t/x]ψ `ι [t/x]ψ:

`ι ∆(ψ) defAnt
ψ `ι ψ ass

∆(t) ; [t/x]ψ `ι [t/x]ψ subst
∆(t) & [t/x]ψ `ι [t/x]ψ fromCtxt

– x 6≡ y and x is a free variable of ϕ We again have to derive
∆(t) & [t/x]ψ `ι [t/x]ψ, cfr. supra.

• α ≡ p(t1, t2, . . . , tn) Analogous to the case τ ≡ f(t1, t2, . . . , tn).
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• α ≡ β & γ

`ι ∆(∆([t/x](β & γ))) defAnt
∆([t/x](β & γ)) `ι ∆([t/x](β & γ)) ass
∆([t/x](β & γ)) `ι ∆([t/x]β) &-elim

∆([t/x]β) `ι [t/x]∆(β) induction
∆([t/x](β & γ)) `ι [t/x]∆(β) &-elim
∆([t/x](β & γ)) `ι [t/x]β ⇒∆([t/x]γ) &-elim

∆([t/x](β & γ)) ; [t/x]β `ι ∆([t/x]γ) DdRu1
∆([t/x]γ) `ι [t/x]∆(γ) induction

∆([t/x](β & γ)) ; [t/x]β `ι [t/x]∆(γ) Cut
∆([t/x](β & γ)) ; `ι [t/x]β ⇒ [t/x]∆(γ) DdRu2
∆([t/x](β & γ)) `ι [t/x]β ⇒ [t/x]∆(γ) fromCtxt
∆([t/x](β & γ)) `ι [t/x]∆(β & γ) &-intro

• α ≡ ¬β Induction on β immediately yields the required sequent.

• α ≡ ∀y(β) If y ≡ x then we have to derive ∆(∀x(β)) `ι ∆(∀x(β)),
which is easy; else, induction on β yields ∆([t/x]β) `ι [t/x]∆(β) and
using the SimGen rule, we obtain the required sequent.

2

Using this theorem, we can derive the following rule.

PartCons3
Σ; Γ `ι [t/x]α prem
Σ; Γ `ι ∆([t/x]α) defCons

∆([t/x]α) `ι [t/x]∆(α) Th. 33
Σ; Γ `ι [t/x]∆(α) Cut
Σ; Γ `ι [t/x]∆(α) & [t/x]α &-intro

`ι ∆(∆(α)) Ddef
∆(α) `ι ∆(α) ass

`ι ∆(α)⇒∆(α) DdRu2
`ι ∆(∆(α) & α) &-intro
`ι ∀x(∆(∆(α) & α)) ∀-intro

∀x(¬(∆(α) & α)) `ι ∀x(¬(∆(α) & α)) ass
∀x(¬(∆(α) & α)) `ι ¬(∆(α) & α) ∀-elim

∆(t) ;∀x(¬(∆(α) & α)) `ι ¬([t/x]∆(α) & [t/x]α) subst
Σ,∆(t) ; Γ,∀x(¬(∆(α) & α)) `ι ¬∀x(¬(∆(α) & α)) contra

Σ,∆(t) ; Γ `ι ∃x(∆(α) & α) SeDe

Note that just as in the PartCons rule, ∆(α) is needed in the conclusion. For
a counterexample, consider the valid sequent x 6= 0 `ι 1

1
x

6= 0, from which we
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cannot deduce x 6= 0 `ι ∃x( 1
x
6= 0)—otherwise the defCons rule would yield

x 6= 0 `ι ∀x(x 6= 0).

Property 34 Associativity of the conjunction

Proof.
We will prove that the & operator is associative, i.e., we may substitute

α& (β & γ) for (α& β) & γ and vice versa. We will derive the four sequents
comprising the interchangeability conditions.

∆(α & (β & γ)) ;α & (β & γ) `ι α & (β & γ) AssCtxt
∆(α & (β & γ)) ;α & (β & γ) `ι (α & β) & γ AssocConj1

`ι ∆(∆(α & (β & γ))) Ddef
∆(α & (β & γ)) `ι ∆(α & (β & γ)) ass
∆(α & (β & γ)) `ι ∆((α & β) & γ) DefAssocConj1

The derivation of the other two sequents is similar. 2

Property 35 Commutativity of the conjunction α & β when ∆(α & β) `ι
∆(β) and ∆(β & α) `ι ∆(α) are given

Proof.

∆(α & β) ;α & β `ι α & β AssCtxt
∆(α & β) ;α & β `ι α &-elim
∆(α & β) ;α & β `ι β &-elim
∆(α & β) ;α & β `ι β & α &-intro

`ι ∆(∆(α & β)) Ddef
∆(α & β) `ι ∆(α & β) ass
∆(α & β) `ι ∆(α) &-elim

∆(α & β) ; `ι ∆(β) toCtxt
∆(α & β) ; β `ι ∆(α) Weak

∆(α & β) ; `ι β ⇒∆(α) DdRu2
∆(α & β) `ι β ⇒∆(α) fromCtxt
∆(α & β) `ι ∆(β & α) &-intro

Analogously, we derive ∆(β & α) ; β & α `ι α & β and ∆(β & α) `ι
∆(α & β). 2
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Note that the conditions given are equivalent with ∆(α & β) a`ι
∆(β & α):

∆(α & β) `ι ∆(β & α) prem
∆(α & β) `ι ∆(β) &-elim

∆(α & β) `ι ∆(β) prem
∆(α & β) ; `ι ∆(β) toCtxt

`ι ∆(∆(α & β)) Ddef
∆(α & β) `ι ∆(α & β) ass
∆(α & β) `ι ∆(α) &-elim

∆(α & β) ; `ι ∆(α) toCtxt
∆(α & β) ; β `ι ∆(α) Weak

∆(α & β) ; `ι β ⇒∆(α) DdRu2
∆(α & β) `ι β ⇒∆(α) fromCtxt
∆(α & β) `ι ∆(β & α) &-intro

The sequent ∆(β & α) `ι ∆(α & β) is derived analogously.
Note that instead of requiring ∆(α & β) `ι ∆(β), we can equivalently

require ∆(α) ;¬α `ι ∆(β). Indeed, we have

∆(α) ;α `ι α AssCtxt
`ι ∆(∆(α)) Ddef

∆(α) `ι ∆(α) ass
∆(α) ; `ι ∆(α) toCtxt

`ι ∆(∆(β)) Ddef
∆(α) ;α `ι ∆(∆(β)) Weak*

∆(α) ; `ι α⇒∆(∆(β)) DdRu2
∆(α) ; `ι ∆(α⇒∆(β)) &-intro

∆(α) ;α⇒∆(β) `ι α⇒∆(β) ass
∆(α) ;α, α⇒∆(β) `ι ∆(β) MP

∆(α) ;¬α `ι ∆(β) given
∆(α) ;α⇒∆(β) `ι ∆(β) rem

∆(α & β) `ι ∆(β) fromCtxt

and

∆(α & β) `ι ∆(β) given
∆(α) ;α⇒∆(β) `ι ∆(β) toCtxt

∆(α) ;¬α `ι ¬α AssCtxt
∆(α) `ι ∆(α) ass

∆(α) ; `ι ∆(α) toCtxt
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`ι ∆(∆(β)) Ddef
∆(α) ;α `ι α AssCtxt
∆(α) ;α `ι ∆(∆(β)) Weak*

∆(α) ; `ι α⇒∆(∆(β)) DdRu2
∆(α) ; `ι ∆(α & ¬∆(β)) &-intro

∆(α) ;α & ¬∆(β) `ι α & ¬∆(β) ass
∆(α) ;α & ¬∆(β) `ι α &-elim

∆(α) ;¬α, α & ¬∆(β) `ι α⇒∆(β) contra
∆(α) ;¬α `ι α⇒∆(β) SeAs
∆(α) ;¬α `ι ∆(β) Cut

Finally, we remark that it is not necessary that α or β is always defined
to apply the commutative property. For example,

∀x(x = x) & y =
1

x

 y =

1

x
& ∀x(x = x)

x = 0 & y =
1

x

 y =

1

x
& x = 0

where 1
x

is as usual shorthand for ιzx 6=0(x · z = 1).

Property 36 Commutativity of the disjunction α ∨ β when ∆(α ∨ β) `ι
∆(β) and ∆(β ∨ α) `ι ∆(α) are given

Proof.

`ι ∆(∆(α ∨ β)) Ddef
∆(α ∨ β) `ι ∆(α ∨ β) ass
∆(α ∨ β) `ι ∆(α) &-elim

∆(α ∨ β) ; `ι ∆(β) toCtxt
∆(α ∨ β) ,¬β `ι ∆(α) Weak

∆(α ∨ β) `ι ¬β ⇒∆(α) DdRu2
∆(α ∨ β) `ι ∆(β ∨ α) &-intro

We use this result to derive

∆(α ∨ β) ;α ∨ β `ι α ∨ β AssCtxt
∆(¬β & ¬α) ;¬β & ¬α `ι ¬β & ¬α AssCtxt
∆(¬β & ¬α) ;¬β & ¬α `ι ¬β &-elim
∆(¬β & ¬α) ;¬β & ¬α `ι ¬α &-elim
∆(¬β & ¬α) ;¬β & ¬α `ι ¬α & ¬β &-intro

∆(α ∨ β) ;¬β & ¬α `ι ¬α & ¬β CutCtxt
∆(α ∨ β) ;α ∨ β,¬β & ¬α `ι β ∨ α contra

∆(α ∨ β) ;α ∨ β `ι β ∨ α SeDe
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Analogously, we derive ∆(β ∨ α) `ι ∆(α ∨ β) and ∆(β ∨ α) ; β ∨ α `ι
α ∨ β. 2

Analogously to the commutativity of the conjunction, one shows that the
conditions given are equivalent with ∆(α ∨ β) a`ι ∆(β ∨ α) and that in-
stead of requiring ∆(α ∨ β) `ι ∆(β), we can equivalently require ∆(α) ;α `ι
∆(β).

Property 37 Interchangeability of α and ¬¬α

Proof.

`ι ∆(∆(α)) Ddef
∆(α) `ι ∆(α) ass

∆(α) ; `ι ∆(α) toCtxt
∆(α) ;α `ι ¬¬α NN1

`ι ∆(∆(α)) Ddef
∆(α) `ι ∆(α) ass

∆(α) ; `ι ∆(α) toCtxt
∆(α) ;¬¬α `ι α NN2

Finally, we have to derive ∆(α) a`ι ∆(α), which is trivial. 2

Property 38 Interchangeability of ∀x(α & β) and ∀x(α) & ∀x(β)

These can be only interchanged if we first also derive

∆(∀x(α) & ∀x(β)) `ι α⇒∆(β) (∗)

Proof.
Again, we prove the four sequents necessary for an application of corol-

lary 26.

∆(∀x(α & β)) ;∀x(α & β) `ι ∀x(α & β) AssCtxt
∆(∀x(α & β)) ;∀x(α & β) `ι α & β ∀-elim
∆(∀x(α & β)) ;∀x(α & β) `ι α &-elim
∆(∀x(α & β)) ;∀x(α & β) `ι β &-elim
∆(∀x(α & β)) ;∀x(α & β) `ι ∀x(α) ∀-intro
∆(∀x(α & β)) ;∀x(α & β) `ι ∀x(β) ∀-intro
∆(∀x(α & β)) ;∀x(α & β) `ι ∀x(α) & ∀x(β) &-intro
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∆(∀x(α) & ∀x(β)) ;∀x(α) & ∀x(β) `ι ∀x(α) & ∀x(β) AssCtxt
∆(∀x(α) & ∀x(β)) ;∀x(α) & ∀x(β) `ι ∀x(α) &-elim
∆(∀x(α) & ∀x(β)) ;∀x(α) & ∀x(β) `ι ∀x(β) &-elim
∆(∀x(α) & ∀x(β)) ;∀x(α) & ∀x(β) `ι α ∀-elim
∆(∀x(α) & ∀x(β)) ;∀x(α) & ∀x(β) `ι β ∀-elim
∆(∀x(α) & ∀x(β)) ;∀x(α) & ∀x(β) `ι α & β &-intro
∆(∀x(α) & ∀x(β)) ;∀x(α) & ∀x(β) `ι ∀x(α & β) ∀-intro

`ι ∆(∆(∀x(α & β))) Ddef
∆(∀x(α & β)) `ι ∆(∀x(α & β)) ass
∆(∀x(α & β)) `ι ∆(α & β) ∀-elim
∆(∀x(α & β)) `ι ∆(α) &-elim
∆(∀x(α & β)) `ι α⇒∆(β) &-elim
∆(∀x(α & β)) `ι ∀x(∆(α)) ∀-intro

∆(∀x(α & β)) ;α `ι ∆(β) DdRu1
∆(∀x(α & β)) ;∀x(α) `ι ∀x(∆(β)) SimGen

∆(∀x(α & β)) ; `ι ∀x(α)⇒ ∀x(∆(β)) DdRu2
∆(∀x(α & β)) `ι ∀x(α)⇒ ∀x(∆(β)) fromCtxt
∆(∀x(α & β)) `ι ∆(∀x(α) & ∀x(β)) fromCtxt

`ι ∆(∆(∀x(α) & ∀x(β))) Ddef
∆(∀x(α) & ∀x(β)) `ι ∆(∀x(α) & ∀x(β)) ass
∆(∀x(α) & ∀x(β)) `ι ∆(∀x(α)) &-elim
∆(∀x(α) & ∀x(β)) `ι ∆(α) ∀-elim
∆(∀x(α) & ∀x(β)) `ι α⇒∆(β) (∗)
∆(∀x(α) & ∀x(β)) `ι ∆(α & β) &-intro
∆(∀x(α) & ∀x(β)) `ι ∀x(∆(α & β)) ∀-intro

For the last proof, we need the extra sequent (∗): we can derive . . . `ι
∀x(α)⇒∆(∀x(β)) but we need . . . `ι ∀x(α⇒∆(β)). 2

Note that we cannot dispense of the sequent (∗). Consider the case α ≡
x = 0 and β ≡ 1

x
= 5 with the usual notations. In this case, ∀x(α & β)

is defined when ∀x(x = 0 ⇒ x 6= 0), which is an invalid formula in any
interpretation, but ∀x(α) & ∀x(β) is defined when ∀x(x = 0) ⇒ ∀x(x 6= 0),
which is a validity in the theory of real numbers. In this case, (∗) is the
sequent

∀x(x = 0)⇒ ∀x(x 6= 0) `ι x = 0⇒ x 6= 0

which is clearly underivable.
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In the sequel, we will apply this property in situations where β is of the
form ∆(γ). We will show that in this case, the extra sequent (∗) can always
be deduced:

`ι ∆(∆(∀x(α) & ∀x(β))) Ddef
∆(∀x(α) & ∀x(β)) `ι ∆(∀x(α) & ∀x(β)) ass
∆(∀x(α) & ∀x(β)) `ι ∆(∀x(α)) &-elim
∆(∀x(α) & ∀x(β)) `ι ∆(α) ∀-elim

`ι ∆(∆(γ)) Ddef
∆(∀x(α) & ∀x(β)) ; `ι ∆(α) toCtxt

∆(∀x(α) & ∀x(β)) ;α `ι ∆(∆(γ)) Weak
∆(∀x(α) & ∀x(β)) ; `ι α⇒∆(∆(γ)) DdRu2
∆(∀x(α) & ∀x(β)) ; `ι α⇒∆(∆(γ)) fromCtxt

When α is of the form ∆(γ) and β of the form γ ⇒ ∆(δ), the extra
sequent (∗) can always be deduced, too:

`ι ∆(∆(δ)) Ddef
`ι ∆(∆(γ)) Ddef

∆(γ) `ι ∆(γ) ass
∆(γ) ; `ι ∆(γ) toCtxt

∆(γ) ; γ `ι ∆(∆(δ)) Weak
∆(γ) ; `ι γ ⇒∆(∆(δ)) DdRu2
∆(γ) `ι γ ⇒∆(∆(δ)) fromCtxt
∆(γ) `ι ∆(γ ⇒∆(δ)) &-intro

`ι ∆(γ)⇒∆(γ ⇒∆(δ)) DdRu2
`ι ∆(∆(∀x(α) & ∀x(β))) Ddef

∆(∀x(α) & ∀x(β)) `ι ∆(γ)⇒∆(γ ⇒∆(δ)) Weak

Property 39 Interchangeability of α and ∀x(α)

Proof.
This requires that x is not a free variable of α. The four required sequents

can be deduced easily. 2

Property 40 Interchangeability of ∀x∀y(α) and ∀y∀x(α)

Proof.

∆(∀x∀y(α)) ;∀x∀y(α) `ι ∀x∀y(α) AssCtxt
∆(∀x∀y(α)) ;∀x∀y(α) `ι ∀y(α) ∀-elim
∆(∀x∀y(α)) ;∀x∀y(α) `ι α ∀-elim
∆(∀x∀y(α)) ;∀x∀y(α) `ι ∀x(α) ∀-intro
∆(∀x∀y(α)) ;∀x∀y(α) `ι ∀y(∀x(α)) ∀-intro

The deductions of the other three required sequents are similar. 2
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Property 41 Interchangeability of ∀x(α⇒ β) and ∃x(α)⇒ β

Proof.
This requires that x is not a free variable of β.

∆(∀x(α⇒ β)) ;∀x(α⇒ β) `ι ∀x(α⇒ β) AssCtxt
∆(∀x(α⇒ β)) ;∀x(α⇒ β) `ι α⇒ β ∀-elim

∆(∀x(α⇒ β)) ,∀x(α⇒ β);α `ι β DdRu1
∆(∀x(α⇒ β)) ,∀x(α⇒ β);∃x(α) `ι β PartAnt

∆(∀x(α⇒ β)) ,∀x(α⇒ β); `ι ∃x(α)⇒ β DdRu2
∆(∀x(α⇒ β)) ;∀x(α⇒ β) `ι ∃x(α)⇒ β fromCtxt

∆(∃x(α)⇒ β) ;∃x(α)⇒ β `ι ∃x(α)⇒ β AssCtxt
∆(∃x(α)⇒ β) ,∃x(α)⇒ β;∃x(α) `ι β DdRu1

∆(∃x(α)⇒ β) ,∃x(α)⇒ β;α `ι β ∃-ElimAnt
∆(∃x(α)⇒ β) ,∃x(α)⇒ β; `ι α⇒ β DdRu2
∆(∃x(α)⇒ β) ;∃x(α)⇒ β `ι α⇒ β fromCtxt
∆(∃x(α)⇒ β) ;∃x(α)⇒ β `ι ∀x(α⇒ β) ∀-intro

`ι ∆(∆(∀x(α⇒ β))) Ddef
∆(∀x(α⇒ β)) `ι ∆(∀x(α⇒ β)) ass
∆(∀x(α⇒ β)) `ι ∆(α⇒ β) ∀-elim
∆(∀x(α⇒ β)) `ι ∆(α) &-elim
∆(∀x(α⇒ β)) `ι α⇒∆(β) &-elim
∆(∀x(α⇒ β)) `ι ∆(∀x(α)) ∀-intro

∆(∀x(α⇒ β)) ;α `ι ∆(β) DdRu1
∆(∀x(α⇒ β)) ;∃x(α) `ι ∆(β) PartAnt

∆(∀x(α⇒ β)) ; `ι ∃x(α)⇒∆(β) DdRu2
∆(∀x(α⇒ β)) `ι ∃x(α)⇒∆(β) fromCtxt
∆(∀x(α⇒ β)) `ι ∆(∃x(α)⇒ β) fromCtxt

`ι ∆(∆(∃x(α)⇒ β)) Ddef
∆(∃x(α)⇒ β) `ι ∆(∃x(α)⇒ β) ass
∆(∃x(α)⇒ β) `ι ∆(∀x(α)) &-elim
∆(∃x(α)⇒ β) `ι ∃x(α)⇒∆(β) &-elim

∆(∃x(α)⇒ β) ;∃x(α) `ι ∆(β) DdRu1
∆(∃x(α)⇒ β) ;α `ι ∆(β) ∃-ElimAnt

∆(∃x(α)⇒ β) ; `ι α⇒∆(β) DdRu2
∆(∃x(α)⇒ β) `ι ∆(α) ∀-elim
∆(∃x(α)⇒ β) `ι ∆(α⇒ β) &-intro
∆(∃x(α)⇒ β) `ι ∀x(∆(α⇒ β)) ∀-intro

2
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Property 42 ∆(∃!x(α)) a`ι ∀x(∆(α))

Note that ∀x(∆(α)) ≡∆(∃x(α)).
Proof.

The `ι direction is easy:

`ι ∆(∆(∃!x(α))) Ddef
∆(∃!x(α)) `ι ∆(∃!x(α)) ass
∆(∃!x(α)) `ι ∆(∃x(α)) &-elim

For the other direction, we have (note that y does not occur in α):

`ι ∆(∆(∀x(α))) Ddef
∀x(∆(α)) `ι ∀x(∆(α)) ass
∀x(∆(α)) `ι ∆(α) ∀-elim
∀x(∆(α)) `ι ∆([y/x]α) subst
∀x(∆(α)) `ι ∆(α) & ∆([y/x]α) &-intro
∀x(∆(α)) `ι ∀y(∆(α) & ∆([y/x]α)) ∀-intro
∀x(∆(α)) `ι ∀x∀y(∆(α) & ∆([y/x]α)) ∀-intro
∀x(∆(α)); `ι ∀x∀y(∆(α) & ∆([y/x]α)) toCtxt
∀x(∆(α)); `ι ∀x(∆(α)) toCtxt

∀x(∆(α));∃x(α) `ι ∀x∀y(∆(α) & ∆([y/x]α)) Weak
∀x(∆(α)); `ι ∃x(α)⇒ ∀x∀y(∆(α) & ∆([y/x]α)) DdRu2
∀x(∆(α)); `ι ∆(∃!x(α)) &-intro

2

Next, we prove a derived rule, where Σ is a possibly empty list of formulae.
In the derivation, z is to be chosen different from x and not free in Σ, ψ1, ψ2

and ϕ1; w is to be chosen different from z and not free in Σ, ψ1, ψ2, ϕ1 and
ϕ2.
For readability, we abbreviate the formula ∀x∀y((ϕ1 & [y/x]ϕ1)⇒ x = y) as
Ξ.

Eq-ι

ψ1 `ι ∃!x(ϕ1) prem
ψ2 `ι ∃!x(ϕ2) prem

Σ;ψ1, ψ2 `ι ∀x(ϕ1 ⇔ ϕ2) prem
Σ;ψ1 `ι ∀x∀y((ϕ1 & [y/x]ϕ1)⇒ x = y) &-elim

∆(Ξ) ; Ξ `ι ∀x∀y((ϕ1 & [y/x]ϕ1)⇒ x = y) AssCtxt
∆(Ξ) ; Ξ `ι ∀y((ϕ1 & [y/x]ϕ1)⇒ x = y) ∀-elim
∆(Ξ) ; Ξ `ι (ϕ1 & [y/x]ϕ1)⇒ x = y ∀-elim
∆(Ξ) ; Ξ `ι (ϕ1 & [z/x]ϕ1)⇒ x = z subst
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∆(Ξ) ; Ξ `ι ([w/x]ϕ1 & [z/x]ϕ1)⇒ w = z subst
∆(Ξ) ,Ξ; [w/x]ϕ1 & [z/x]ϕ1 `ι w = z DdRu1

∆(Ξ) ,Ξ, [w/x]ϕ1; [z/x]ϕ1 `ι w = z toCtxt
∆(∀x(ϕ1 ⇔ ϕ2)) ;∀x(ϕ1 ⇔ ϕ2) `ι ∀x(ϕ1 ⇔ ϕ2) AssCtxt
∆(∀x(ϕ1 ⇔ ϕ2)) ;∀x(ϕ1 ⇔ ϕ2) `ι ϕ1 ⇔ ϕ2 ∀-elim
∆(∀x(ϕ1 ⇔ ϕ2)) ;∀x(ϕ1 ⇔ ϕ2) `ι ϕ2 ⇒ ϕ1 &-elim
∆(∀x(ϕ1 ⇔ ϕ2)) ;∀x(ϕ1 ⇔ ϕ2) `ι [z/x]ϕ2 ⇒ [z/x]ϕ1 subst

Σ;ψ1, ψ2 `ι [z/x]ϕ2 ⇒ [z/x]ϕ1 Cut3
Σ, ψ1, ψ2; [z/x]ϕ2 `ι [z/x]ϕ1 DdRu1

Σ, ψ1, ψ2,∆(Ξ) ,Ξ, [w/x]ϕ1; [z/x]ϕ2 `ι w = z Cut
ϕ1 
 ϕ̃1 Th. 25.3

[w/x]ϕ1 
 [w/x]ϕ̃1 subst

Σ, ψ1, ψ2,∆(. . . ) ,
∀x∀y(. . . ), [w/x]ϕ̃1; [z/x]ϕ2 `ι w = z Th. 26

ϕ2 
 ϕ̃2 Th. 25.3
[z/x]ϕ2 
 [z/x]ϕ̃2 subst

Σ, ψ1, ψ2,∆(Ξ) ,
Ξ, [w/x]ϕ̃1; [z/x]ϕ̃2 `ι w = z Th. 26

Σ, ψ1, ψ2,∆(Ξ) ,Ξ,
[ιxψ1(ϕ1)/x]ϕ̃1; [z/x]ϕ̃2 `ι ιxψ1(ϕ1) = z subst

Σ, ψ1, ψ2,∆(. . . ) ,Ξ,
[ιxψ1(ϕ1)/x]ϕ̃1; [ιxψ2(ϕ2)/x]ϕ̃2 `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) subst

Σ, ψ1, ψ2,∆(Ξ) ,Ξ;
[ιxψ1(ϕ1)/x]ϕ̃1 & [ιxψ2(ϕ2)/x]ϕ̃2 `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) fromCtxt

ψ1 `ι [ιxψ1(ϕ1)/x]ϕ̃1 iota
ψ1; `ι [ιxψ1(ϕ1)/x]ϕ̃1 toCtxt
ψ2 `ι [ιxψ2(ϕ2)/x]ϕ̃2 iota
ψ2; `ι [ιxψ2(ϕ2)/x]ϕ̃2 toCtxt

ψ1, ψ2; `ι [ιxψ1(ϕ1)/x]ϕ̃1 & [ιxψ2(ϕ2)/x]ϕ̃2 &-intro
ψ1, ψ2,Σ,∆(. . . ) ,∀x∀y(. . . ); `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) Cut

ψ1 `ι ∀x∀y((ϕ1 & [y/x]ϕ1)⇒ x = y) &-elim
ψ1; `ι ∀x∀y((ϕ1 & [y/x]ϕ1)⇒ x = y) toCtxt

ψ1, ψ2,Σ,∆(Ξ) ; Ξ `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) fromCtxt
ψ1, ψ2,Σ; `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) Cut3
Σ, ψ1, ψ2; `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) WeakCtxtL
Σ, ψ1;ψ2 `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) fromCtxt

Σ;ψ1 & ψ2 `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) fromCtxt
`ι ∆(ψ2) defAnt

Σ;ψ1, ψ2 `ι ιxψ1(ϕ1) = ιxψ2(ϕ2) AnDc

In case ϕ1 ≡ ϕ2 and Σ is empty, one can easily derive the third premise
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from the first two, and we get the following rule:

Eq-ι

ψ1 `ι ∃!x(ϕ)

ψ2 `ι ∃!x(ϕ)
ψ1, ψ2 `ι ιxψ1(ϕ) = ιxψ2(ϕ)

To see where this rule might be useful, consider again the theory of real
numbers. One expects to have x ≥ 0 `ι ∃!y(y ≥ 0 & x = y2), expressing that√
x exists for non-negative x, and likewise x ≤ 0 `ι ∃!y(y ≥ 0 & x = −y2),

expressing that
√
−x exists for negative x. Using the rule, we then get

x ≥ 0, x ≤ 0 `ι ιyx≥0(y ≥ 0 &x = y2) = ιyx≤0(y ≥ 0 &x = −y2), i.e. if x = 0
then

√
x =

√
−x. From this example, we can see that in general, both ψ1

and ψ2 are required in the antecedent of the conclusion of the rule (for any
x 6= 0, the consequent becomes undefined).

Note that in general, we cannot simplify the third premise to ψ1, ψ2 `ι
ϕ1 ⇔ ϕ2. A counterexample in the theory of real numbers is given by the
three derivable sequents

y 6= 0 `ι ∃!x(x · y = 1)

x = y & x ≥ 0 `ι ∃!x(x · x = 1 & x ≥ 0)

y 6= 0, x = y & x ≥ 0 `ι x · y = 1⇔ (x · x = 1 & x ≥ 0)

Yet we don’t expect

y 6= 0, x = y & x ≥ 0 `ι ιxy 6=0(x · y = 1) = ιxx=y&x≥0(x · x = 1 & x ≥ 0)

to be derivable, since the interpretation of the first ι-term is “ 1
y

when y 6= 0
and undefined otherwise” and the interpretation of the second one is “1 when
x = y & x ≥ 0 and undefined otherwise”.
And indeed, the Eq-ι rule does not allow this sequent to be derived, since we
cannot derive

y 6= 0, x = y & x ≥ 0 `ι ∀x(x · y = 1⇔ (x · x = 1 & x ≥ 0)).

The next rule is an analogue of the RenG rule for ι-terms. It is applicable
if y is not a free variable of ϕ.

In the next derivation, w is to be chosen different from x, y and z and be
not a free variable of ϕ.
For readability, we abbreviate the formula ∀x∀y((ϕ& [y/x]ϕ)⇒ x = y) as Ξ.
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Ren-ι
ψ `ι ∃!x(ϕ) prem
ψ `ι ∃x(ϕ) &-elim

∀x(∆(ϕ));∃x(ϕ) `ι ∃y([y/x]ϕ) RenP
ψ `ι ∃y([y/x]ϕ) CutCtxt
ψ `ι ∀x∀y((ϕ& [y/x]ϕ)⇒ x = y) &-elim

∆(Ξ) ; Ξ `ι ∀x∀y((ϕ& [y/x]ϕ)⇒ x = y) AssCtxt
∆(Ξ) ; Ξ `ι ∀y((ϕ& [y/x]ϕ)⇒ x = y) ∀-elim
∆(Ξ) ; Ξ `ι (ϕ& [y/x]ϕ)⇒ x = y ∀-elim
∆(Ξ) ; Ξ `ι ([w/x]ϕ& [y/x]ϕ)⇒ w = y subst
∆(Ξ) ; Ξ `ι ([w/x]ϕ& [z/x]ϕ)⇒ w = z subst
∆(Ξ) ; Ξ `ι ([y/x]ϕ& [z/x]ϕ)⇒ y = z subst
∆(Ξ) ; Ξ `ι ∀z(([y/x]ϕ& [z/x]ϕ)⇒ y = z) ∀-intro
∆(Ξ) ; Ξ `ι ∀x∀z(([y/x]ϕ& [z/x]ϕ)⇒ y = z) ∀-intro

ψ `ι ∀x∀z(([y/x]ϕ& [z/x]ϕ)⇒ y = z) Cut
ψ `ι ∃!y([y/x]ϕ) &-intro

ψ `ι [ιyψ([y/x]ϕ)/y] [̃y/x]ϕ iota
ϕ 
 ϕ̃ Th. 25.3

[y/x]ϕ 
 [̃y/x]ϕ Th. 25.3

∆(Ξ) ; Ξ `ι (ϕ̃& [̃y/x]ϕ)⇒ x = y Th. 26
[w/y]ψ `ι ∃!x(ϕ) subst
[w/y]ψ `ι

[
ιx[w/y]ψ(ϕ)/x

]
ϕ̃ iota

[w/y]ψ,∆(Ξ) ; Ξ `ι (
[
ιx[w/y]ψ(ϕ)/x

]
ϕ̃& [̃y/x]ϕ)

⇒ ιx[w/y]ψ(ϕ) = y subst
[w/y]ψ `ι ∃!y([y/x]ϕ) &-intro

[w/y]ψ `ι
[
ιy[w/y]ψ([y/x]ϕ)/y

]
[̃y/x]ϕ iota

[w/y]ψ `ι
[
ιx[w/y]ψ(ϕ)/x

]
ϕ̃&

[
ιy[w/y]ψ([y/x]ϕ)/y

]
[̃y/x]ϕ &-intro

[w/y]ψ; `ι
[
ιx[w/y]ψ(ϕ)/x

]
ϕ̃&

[
ιy[w/y]ψ([y/x]ϕ)/y

]
[̃y/x]ϕ toCtxt

[w/y]ψ,∆(Ξ) ; Ξ `ι (
[
ιx[w/y]ψ(ϕ)/x

]
ϕ̃&

[
ιy[w/y]ψ([y/x]ϕ)/y

]
[̃y/x]ϕ)

⇒ ιx[w/y]ψ(ϕ) = ιy[w/y]ψ([y/x]ϕ) subst

[w/y]ψ,∆(Ξ) ; Ξ `ι ιx[w/y]ψ(ϕ) = ιy[w/y]ψ([y/x]ϕ) MP
ψ,∆(Ξ) ; Ξ `ι ιxψ(ϕ) = ιyψ([y/x]ϕ) subst

ψ; `ι ∀x∀y((ϕ& [y/x]ϕ)⇒ x = y) toCtxt
ψ,∆(Ξ) ; `ι ιxψ(ϕ) = ιyψ([y/x]ϕ) Cut
ψ; ∆(Ξ) ; `ι ιxψ(ϕ) = ιyψ([y/x]ϕ) fromCtxt

ψ; `ι ∆(∀x∀y((ϕ& [y/x]ϕ)⇒ x = y)) defCons
ψ; `ι ιxψ(ϕ) = ιyψ([y/x]ϕ) Cut
ψ `ι ιxψ(ϕ) = ιyψ([y/x]ϕ) fromCtxt
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Corollary 43 Interchangeability of ιxψ(ϕ) and ιyψ([y/x]ϕ) when y is not a
free variable of ϕ and ψ `ι ∃!x(ϕ) is given.

Proof.

The sequent we have to supply is immediately obtained by the Ren-ι rule.
2

Theorem 44 Given terms t1, t2 and a formula α or term τ , for which all
the uniqueness conditions can be derived.

If t1 and t2 are interchangeable, then so are [t1/x]α and [t2/x]α if these
substitutions are defined and analogously, so are [t1/x]τ and [t2/x]τ .

Proof.

We prove this by structural induction on α and τ .

• τ ≡ x We have to show that t1 and t2 are interchangeable, which
is the statement of the lemma.

• τ ≡ y where y is a variable symbol different from x Both terms are
y.

• τ ≡ f(τ1, τ2, . . . ) Easy using induction on the τi and the ERf2 rule.

• τ ≡ ιyψ(ϕ) where x ≡ y or x is not a free variable of ϕ If x is also
not a free variable of ψ, then both terms are simply ιyψ(ϕ), so let us
suppose x is free in ψ. Then we have to show

{
∆(t1) & [t1/x]ψ `ι ιy∆(t1)&[t1/x]ψ(ϕ) = ιy∆(t2)&[t2/x]ψ(ϕ)

∆(t2) & [t2/x]ψ `ι ιy∆(t1)&[t1/x]ψ(ϕ) = ιy∆(t2)&[t2/x]ψ(ϕ)

which is not difficult:
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ψ `ι ∃!y(ϕ) UC(τ)
∆(t1) ; [t1/x]ψ `ι ∃!y(ϕ) subst

∆(t1) & [t1/x]ψ `ι ∃!y(ϕ) fromCtxt
∆(t2) & [t2/x]ψ `ι ∃!y(ϕ) analogous

∆(t1) & [t1/x]ψ,∆(t2) & [t2/x]ψ `ι ιy∆(t1)&[t1/x]ψ(ϕ) = ιy∆(t2)&[t2/x]ψ(ϕ) Eq-ι
ψ `ι ψ ass

∆(t1) ; [t1/x]ψ `ι [t1/x]ψ subst
∆([t1/x]ψ) ; [t1/x]ψ `ι [t2/x]ψ induction

∆(t1) ; [t1/x]ψ `ι [t2/x]ψ Cut3
∆(t1) `ι t1 = t2 statement
∆(t1) `ι ∆(t1) & ∆(t2) defCons
∆(t1) `ι ∆(t2) &-elim

∆(t1) ; `ι ∆(t2) toCtxt
∆(t1) ; [t1/x]ψ `ι ∆(t2) & [t2/x]ψ &-intro

∆(t1) & [t1/x]ψ `ι ∆(t2) & [t2/x]ψ fromCtxt
∆(t1) & [t1/x]ψ `ι ιy∆(t1)&[t1/x]ψ(ϕ) = ιy∆(t2)&[t2/x]ψ(ϕ) Cut

The other sequent is derived analogously.

• τ ≡ ιyψ(ϕ) where x 6≡ y and x is a free variable of ϕ For the
substitutions to be defined, y must not be a free variable of t1 and t2.
We have to show that ιy∆(t1)&[t1/x]ψ([t1/x]ϕ) and ιy∆(t2)&[t2/x]ψ([t2/x]ϕ) are
interchangeable:

ψ `ι ∃!y(ϕ) UC(τ)
∆(t1) ; [t1/x]ψ `ι ∃!y([t1/x]ϕ) subst

∆(t1) & [t1/x]ψ `ι ∃!y([t1/x]ϕ) fromCtxt
∆(t2) & [t2/x]ψ `ι ∃!y([t2/x]ϕ) analogous

∆([t1/x]ϕ) ; [t1/x]ϕ `ι [t2/x]ϕ induction
∆([t1/x]ϕ) ; `ι [t1/x]ϕ⇒ [t2/x]ϕ DdRu2
∆([t1/x]ϕ) `ι [t1/x]ϕ⇒ [t2/x]ϕ fromCtxt
∆([t2/x]ϕ) `ι [t2/x]ϕ⇒ [t1/x]ϕ analogous

∆([t1/x]ϕ) ,∆([t2/x]ϕ) `ι [t1/x]ϕ⇔ [t2/x]ϕ &-intro
∆(t1) ; [t1/x]ψ `ι ∃y([t1/x]ϕ) &-elim
∆(t1) ; [t1/x]ψ `ι ∀y(∆([t1/x]ϕ)) defCons

∆(t1) ; [z/y] [t1/x]ψ `ι ∀y(∆([t1/x]ϕ)) subst
∆(t1) ; [z/y] [t1/x]ψ `ι ∆([t1/x]ϕ) ∀-elim

∆(t1) & [z/y] [t1/x]ψ `ι ∆([t1/x]ϕ) toCtxt
∆(t2) & [z/y] [t2/x]ψ `ι ∆([t2/x]ϕ) analogous

∆(t1) & [z/y] [t1/x]ψ,∆(t2) & [z/y] [t2/x]ψ `ι [t1/x]ϕ⇔ [t2/x]ϕ Cut (twice)
∆(t1) & [z/y] [t1/x]ψ,∆(t2) & [z/y] [t2/x]ψ `ι ∀y([t1/x]ϕ⇔ [t2/x]ϕ) ∀-intro
∆(t1) & [z/y] [t1/x]ψ,∆(t2) & [z/y] [t2/x]ψ `ι ιy∆(t1)&[z/y][t1/x]ψ([t1/x]ϕ)
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= ιy∆(t2)&[z/y][t2/x]ψ([t2/x]ϕ) Eq-ι

∆(t1) & [t1/x]ψ,∆(t2) & [t2/x]ψ `ι ιy∆(t1)&[t1/x]ψ([t1/x]ϕ)
= ιy∆(t2)&[t2/x]ψ([t2/x]ϕ) subst

where we choose z different from y and not occurring in t1, t2 and ϕ.

As in the previous case, we can derive ∆(t1)&[t1/x]ψ a`ι ∆(t2)&[t2/x]ψ
and the required sequents are easily obtained.

• The other cases are straightforward.

2

3.9 Completeness

In this section we will prove the completeness of the pitfol calculus, i.e.,

if Γ |=ι α then also Γ `ι α

Denote Γ ≡ γ1, γ2, . . . , γm. By definition, Γ |=ι α means that for any
interpretation I,

• whenever all γi are valid in I, then so is α. Using lemma 20, this is
equivalent with

D(γ1) &R(γ1) ,D(γ2) &R(γ2) , . . . ,D(γm) &R(γm) |= D(α) &R(α)

• all γi are defined in I, which is by the same lemma equivalent with
|= D(γ1)
|= D(γ2)
|= . . .
|= D(γm)

Using the completeness of the Hermes calculus, what we have to prove is
reduced to a syntactical problem:

if



D(γ1) &R(γ1) , . . . ,D(γm) &R(γm) ` D(α) &R(α)

` D(γ1)

` D(γ2)

` . . .
` D(γm)

then also Γ `ι α
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We will first prove some properties we will need later.

Lemma 45 If the uniqueness condition for ιxψ(ϕ) is derivable, and y is not
a free variable of ϕ, then ψ;`ι [y/x]ϕ⇔ y = ιxψ(ϕ).

Proof.

If y is different from x and z (where z is the variable symbol used in the
uniqueness condition), we can proceed as follows:

ψ `ι ∃!x(ϕ) UC
ψ `ι ∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) &-elim

∆(. . . ) ;∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) `ι ∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) AssCtxt
∆(. . . ) ;∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) `ι ∀z((ϕ& [z/x]ϕ)⇒ x = z) ∀-elim
∀z(∆(. . . ));∀z((ϕ& [z/x]ϕ)⇒ x = z) `ι ∀y((ϕ& [y/x]ϕ)⇒ x = y) RenG
∆(. . . ) ;∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) `ι ∀y((ϕ& [y/x]ϕ)⇒ x = y) Cut3
∆(. . . ) ;∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) `ι (ϕ& [y/x]ϕ)⇒ x = y ∀-elim
∆(. . . ) ;∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) `ι (ϕ̃& [y/x]ϕ)⇒ x = y Th. 25.3

ψ,∆(. . . ) ;∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) `ι ([ιxψ(ϕ)/x]ϕ̃& [y/x]ϕ)
⇒ ιxψ(ϕ) = y subst

ψ; `ι ∀x∀z((ϕ& [z/x]ϕ)⇒ x = z) toCtxt
ψ; `ι ([ιxψ(ϕ)/x]ϕ̃& [y/x]ϕ)

⇒ ιxψ(ϕ) = y Cut3

ψ; [ιxψ(ϕ)/x]ϕ̃& [y/x]ϕ `ι ιxψ(ϕ) = y DdRu1
ψ, [ιxψ(ϕ)/x]ϕ̃; [y/x]ϕ `ι ιxψ(ϕ) = y toCtxt

ψ `ι [ιxψ(ϕ)/x]ϕ̃ iota
ψ; [y/x]ϕ `ι ιxψ(ϕ) = y CutCtxt
ψ; [y/x]ϕ `ι y = ιxψ(ϕ) ESy2

If y ≡ z, then we cannot apply RenG in the proof above, but by removing
the RenG and Cut3 line of the proof above, we get a correct proof for this
case.

Finally, if y ≡ x, first choose a variable symbol y′ not occurring in ψ,
different from x and not a free variable of ϕ. Then the above reasoning
yields a proof of

ψ; [y
′
/x]ϕ `ι y′ = ιxψ(ϕ)

Applying the subst rule yields the desired sequent.

For the other direction, we have
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ψ `ι [ιxψ(ϕ)/x]ϕ̃ iota
ψ; `ι [ιxψ(ϕ)/x]ϕ̃ toCtxt

ψ,∆(ϕ̃) ;x = ιxψ(ϕ) `ι ϕ̃ EqSubst2
∆(ϕ̃) ; ϕ̃ `ι ∆(ϕ) & ϕ Th. 25.3
∆(ϕ̃) ; ϕ̃ `ι ϕ &-elim

ψ,∆(ϕ̃) ;x = ιxψ(ϕ) `ι ϕ Cut3
ψ `ι ∃!x(ϕ) UC
ψ `ι ∃x(ϕ) &-elim
ψ `ι ∀x(∆(ϕ)) defCons
ψ `ι ∆(ϕ) ∀-elim

∆(ϕ) `ι ∆(ϕ̃) Th. 25.3
ψ `ι ∆(ϕ̃) Cut

ψ;x = ιxψ(ϕ) `ι ϕ CutCtxt
ψ; y = ιxψ(ϕ) `ι [y/x]ϕ subst

2

Property 46 Interchangeability of [y/x]ϕ and y = ιxψ(ϕ) under the context
ψ when the uniqueness condition for ιxψ(ϕ) is derivable, and y ≡ x or y is
not a free variable of ϕ. Moreover, y = ιxψ(ϕ) ⇀ [y/x]ϕ.

Proof.
For the interchangeability, we have to derive these sequents:

ψ,∆([y/x]ϕ) ; [y/x]ϕ `ι y = ιxψ(ϕ)

ψ; y = ιxψ(ϕ) `ι [y/x]ϕ

ψ; ∆([y/x]ϕ) `ι ψ
ψ;ψ `ι ∆([y/x]ϕ)

We derive these sequents easily using the previous lemma:

ψ; [y/x]ϕ `ι y = ιxψ(ϕ) Lemma 45
`ι ∆(∆([y/x]ϕ)) Ddef

ψ; ∆([y/x]ϕ) , [y/x]ϕ `ι y = ιxψ(ϕ) Weak
ψ,∆([y/x]ϕ) ; [y/x]ϕ `ι y = ιxψ(ϕ) toCtxt

ψ; y = ιxψ(ϕ) `ι [y/x]ϕ Lemma 45
ψ `ι ∃!x(ϕ) UC
`ι ∆(ψ) defAnt

ψ;ψ, y = ιxψ(ϕ) `ι [y/x]ϕ Weak
ψ; y = ιxψ(ϕ) `ι [y/x]ϕ toCtxt
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ψ `ι ∃!x(ϕ) UC
`ι ∆(ψ) defAnt

ψ `ι ψ ass
ψ; `ι ψ toCtxt
`ι ∆(∆([y/x]ϕ)) Ddef

ψ; ∆([y/x]ϕ) `ι ψ Weak

ψ `ι ∃!x(ϕ) UC
`ι ∆(ψ) defAnt

ψ; [y/x]ϕ `ι y = ιxψ(ϕ) Lemma 45
ψ; `ι ∆([y/x]ϕ) defAnt

ψ;ψ `ι ∆([y/x]ϕ) Weak

We already derived the sequents for y = ιxψ(ϕ) ⇀ [y/x]ϕ:{
ψ; y = ιxψ(ϕ) `ι [y/x]ϕ

ψ; [y/x]ϕ `ι y = ιxψ(ϕ)

2

Lemma 47 For any formula α of the pitfol calculus, given{
∆(α) & α a`ι D(α) &R(α)

∆(α) a`ι D(α)

we can derive

α ⇀ R(α) , i.e.,

{
∆(α) ;α `ι R(α)

∆(α) ;R(α) `ι α

Proof.

∆(α) & α `ι D(α) &R(α) given
∆(α) & α `ι R(α) &-elim
∆(α) ;α `ι R(α) toCtxt

D(α) &R(α) `ι ∆(α) & α given
D(α) ;R(α) `ι ∆(α) & α toCtxt

∆(α) `ι D(α) given
∆(α) ;R(α) `ι ∆(α) & α CutCtxt
∆(α) ;R(α) `ι α &-elim

2
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Theorem 48 For any formula α of the pitfol calculus, if the uniqueness
conditions for α are derivable, then{

∆(α) & α a`ι D(α) &R(α)

∆(α) a`ι D(α)

Proof.

We prove this by induction on the complexity of α.

If α has complexity 0, it cannot contain any ι-terms, hence ∆(α) must
be > and D(α) is a validity. What we have to prove is reduced to

{
α a`ι D(α) &R(α)

`ι D(α)

The last sequent is derivable since we remarked that D(α) is a validity. We
then easily can derive the remaining two sequents:

`ι D(α)
α `ι α ass
α `ι D(α) & α &-intro

`ι D(α)
α `ι α ass

α,D(α) `ι α Weak
D(α) & α `ι α AnU

If α has complexity greater than zero, then we have the following cases.

• α ≡ p(t1, t2, . . . , tn) where we treat α ≡ t1 = t2 analogously
If, as usual, we denote the top-level ι-terms of α as TLI(α) ≡
ιx1ψ1

(ϕ1), ιx2ψ2
(ϕ2), . . . , ιxmψm(ϕm) and we denote as q the formula

obtained from α by replacing all the top-level ι-terms ιxiψi(ϕi) by the
corresponding variable symbol ui, then we have to derive

ψ1 & · · ·& ψm & α a`ι R(ψ1) & · · ·&R(ψm)

& ∃u1 . . . ∃um(R([u1/x1
]ϕ1) & · · ·&R([um/xm]ϕm) & q)

ψ1 & · · ·& ψm a`ι R(ψ1) &R(ψ2) & · · ·&R(ψm)

where the ui do not occur in α.

• We will first handle the second equivalence:
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ψ1 `ι ∃!x1(ϕ1) UC
`ι ∆(ψ1) defAnt

ψ1 `ι ψ1 ass
ψ1 `ι ∆(ψ1) defCons
ψ1 `ι ∆(ψ1) & ψ1 &-intro

∆(ψ1) & ψ1 `ι D(ψ1) &R(ψ1) induction
ψ1 `ι D(ψ1) &R(ψ1) Cut
ψ1 `ι R(ψ1) &-elim

...
ψ2 `ι R(ψ2) &-elim

ψ1, ψ2 `ι R(ψ1) &R(ψ2) &-intro
ψ1 & ψ2 `ι R(ψ1) &R(ψ2) AnU

...
ψ1 & ψ2 & · · ·& ψm `ι R(ψ1) &R(ψ2) & · · ·&R(ψm) AnU

and for the other direction

R(ψ1) `ι R(ψ1) ass
ψ1 `ι ∃!x1(ϕ1) UC
`ι ∆(ψ1) defAnt

∆(ψ1) `ι D(ψ1) induction
`ι D(ψ1) Cut

R(ψ1) `ι D(ψ1) &R(ψ1) &-intro
D(ψ1) &R(ψ1) `ι ∆(ψ1) & ψ1 induction

R(ψ1) `ι ∆(ψ1) & ψ1 Cut
R(ψ1) `ι ψ1 Cut

...
R(ψ2) `ι ψ2 Cut

R(ψ1) ,R(ψ2) `ι ψ1 & ψ2 &-intro
R(ψ1) &R(ψ2) `ι ψ1 & ψ2 AnU

...
R(ψ1) &R(ψ2) & · · ·&R(ψm) `ι ψ1 & ψ2 & · · ·& ψm AnU

• For the first equivalence, we proceed as follows.
We will abbreviate

∀u1 . . . ∀um(¬(u1 = ιx1ψ1
(ϕ1) & · · ·& um = ιxmψm(ϕm) & q))

as Ξ. In the following derivation, we choose z different from u1, . . . , um:
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ψ1 & ψ2 & · · ·& ψm;α `ι α AssCtxt
ψ1 `ι ιx1ψ1

(ϕ1) = ιx1ψ1
(ϕ1) eq

ψ2 `ι ιx2ψ2
(ϕ2) = ιx2ψ2

(ϕ2) eq
ψ1, ψ2 `ι ιx1ψ1

(ϕ1) = ιx1ψ1
(ϕ1)

& ιx2ψ2
(ϕ2) = ιx2ψ2

(ϕ2) &-intro
ψ1 & ψ2 `ι ιx1ψ1

(ϕ1) = ιx1ψ1
(ϕ1)

& ιx2ψ2
(ϕ2) = ιx2ψ2

(ϕ2) AnU
...

ψ1 & ψ2 & · · ·& ψm `ι ιx1ψ1
(ϕ1) = ιx1ψ1

(ϕ1) & . . .
& ιxmψm(ϕm) = ιxmψm(ϕm) AnU

ψ1 & ψ2 & · · ·& ψm; `ι ιx1ψ1
(ϕ1) = ιx1ψ1

(ϕ1) & . . .
& ιxmψm(ϕm) = ιxmψm(ϕm) toCtxt

ψ1 & ψ2 & · · ·& ψm;α `ι ιx1ψ1
(ϕ1) = ιx1ψ1

(ϕ1) & . . .
& ιxmψm(ϕm) = ιxmψm(ϕm) & α &-intro

`ι z = z eq
ψ1;u1 = ιx1ψ1

(ϕ1) `ι z = z eqSubst
ψ1, ψ2;u1 = ιx1ψ1

(ϕ1),
u2 = ιx2ψ2

(ϕ2) `ι z = z eqSubst
ψ1, ψ2;u1 = ιx1ψ1

(ϕ1)
&u2 = ιx2ψ2

(ϕ2) `ι z = z AnU
...

ψ1, ψ2, . . . , ψm;
u1 = ιx1ψ1

(ϕ1) & . . .
&um = ιxmψm(ϕm) `ι z = z AnU

ψ1, ψ2, . . . , ψm; `ι ∆
(
u1 = ιx1ψ1

(ϕ1) & · · ·& um = ιxmψm(ϕm)
)

defAnt
ψ1, ψ2, . . . , ψm; `ι ∀um(∆

(
u1 = ιx1ψ1

(ϕ1) & · · ·& um = ιxmψm(ϕm)
)
) ∀-intro

...
ψ1, ψ2, . . . , ψm; `ι ∆(Ξ) ∀-intro

ψ1, ψ2, . . . , ψm; Ξ `ι Ξ ass
ψ1, ψ2, . . . , ψm; Ξ `ι ∀u2 . . . ∀um(¬(u1 = ιx1ψ1

(ϕ1)
& · · ·& um = ιxmψm(ϕm) & q)) ∀-elim

...
ψ1, ψ2, . . . , ψm; Ξ `ι ¬(u1 = ιx1ψ1

(ϕ1)
& · · ·& um = ιxmψm(ϕm) & q) ∀-elim

ψm, ψ1, ψ2, . . . , ψm−1; Ξ `ι ¬
(
u1 = ιx1ψ1

(ϕ1) & . . .
& um−1 = ιxm−1ψm−1

(ϕm−1)
& ιxmψm(ϕm) = ιxmψm(ϕm) &

[
ιx1ψ1

(ϕ1)/u1

]
q
)

subst
ψm−1, ψm,

ψ1, ψ2, . . . , ψm−2; Ξ `ι ¬
(
u1 = ιx1ψ1

(ϕ1) & . . .
& um−2 = ιxm−2ψm−2

(ϕm−2)
& um−1 = ιxm−1ψm−1

(ϕm−1)
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& ιxmψm(ϕm) = ιxmψm(ϕm) &
[
ιx1ψ1

(ϕ1)/u1

]
q
)

subst
...

ψ1, ψ2, . . . , ψm; Ξ `ι ¬(ιx1ψ1
(ϕ1) = ιx1ψ1

(ϕ1) & . . .
& ιxmψm(ϕm) = ιxmψm(ϕm) & α) subst

ψ1 & ψ2, . . . , ψm; Ξ `ι ¬(ιx1ψ1
(ϕ1) = ιx1ψ1

(ϕ1) & . . .
& ιxmψm(ϕm) = ιxmψm(ϕm) & α) CtxtU

...
ψ1 & ψ2 & · · ·& ψm; Ξ `ι ¬(ιx1ψ1

(ϕ1) = ιx1ψ1
(ϕ1) & . . .

& ιxmψm(ϕm) = ιxmψm(ϕm) & α) CtxtU
ψ1 & ψ2 & · · ·& ψm; Ξ, α `ι ¬Ξ contra
ψ1 & ψ2 & · · ·& ψm;α `ι ¬Ξ SeDe
ψ1 & ψ2 & · · ·& ψm;α `ι ¬(∀u1¬¬∀u2 . . . ∀um(

¬(u1 = ιx1ψ1
(ϕ1) & . . .

& um = ιxmψm(ϕm) & q))) Corr. 26, Prop. 37
ψ1 & ψ2 & · · ·& ψm;α `ι ¬(∀u1¬¬∀u2¬¬∀u3 . . . ∀um(

¬(u1 = ιx1ψ1
(ϕ1) & . . .

& um = ιxmψm(ϕm) & q))) Corr. 26, Prop. 37
...

ψ1 & ψ2 & . . . , ψm;α `ι ∃u1∃u2 . . . ∃um(u1 = ιx1ψ1
(ϕ1)

& · · ·& um = ιxmψm(ϕm) & q) Corr. 26, Prop. 37
ψ1 & ψ2 & · · ·& ψm `ι ψ1 &-elim
ψ1 & ψ2 & · · ·& ψm `ι ψ2 & ψ3 & · · ·& ψm &-elim

ψ1 & ψ2 & · · ·& ψm;α `ι ∃u1∃u2 . . . ∃um([u1/x1]ϕ1 & u2 = ιx2ψ2
(ϕ2)

& · · ·& um = ιxmψm(ϕm) & q) Corr. 24, Prop. 46
ψ1 & ψ2 & · · ·& ψm `ι ψ2 &-elim
ψ1 & ψ2 & · · ·& ψm `ι ψ3 & ψ4 & · · ·& ψm &-elim

ψ1 & ψ2 & · · ·& ψm;α `ι ∃u1∃u2 . . . ∃um([u1/x1]ϕ1 & [u2/x2]ϕ2 & u3 = ιx3ψ3
(ϕ3)

& · · ·& um = ιxmψm(ϕm) & q) Corr. 24, Prop. 46
...

ψ1 & ψ2 & · · ·& ψm;α `ι ∃u1∃u2 . . . ∃um([u1/x1]ϕ1 & . . .
& [um/xm]ϕm & q) Corr. 24, Prop. 46

By induction, we can now use lemma 47 on the formulae [ui/xi]ϕi, which
we can replace with their reductions using corollary 24 to get

ψ1&ψ2&· · ·&ψm;α `ι ∃u1 . . . ∃um(R([u1/x1
]ϕ1)&· · ·&R([um/xm]ϕm)&q)

We can combine this with the already derived sequent

ψ1 & ψ2 & · · ·& ψm `ι R(ψ1) &R(ψ2) & · · ·&R(ψ2)

to easily obtain the required sequent.
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Finally, we have to derive the other direction, i.e.,

R(ψ1) & · · ·&R(ψm)

& ∃u1∃u2 . . . ∃um
(
R([u1/x1

]ϕ1) & · · ·&R([um/xm]ϕm) & q
)

`ι ψ1 & · · ·& ψm & α

We already obtained R(ψ1)&R(ψ2)& · · ·&R(ψm) `ι ψ1 &ψ2 & · · ·&ψm
so it is sufficient to derive

R(ψ1) & · · ·&R(ψ1)

& ∃u1∃u2 . . . ∃um(R([u1/x1
]ϕ1) & · · ·&R([um/xm]ϕm) & q) `ι α

Noting that q does not contain any ι-terms, we derive

q `ι q ass
ψ1; q, u1 = ιx1ψ1(ϕ1) `ι

[
ιx1ψ1(ϕ1)/u1

]
q eqSubst

ψ1, ψ2;
q, u1 = ιx1ψ1(ϕ1), u2 = ιx2ψ2(ϕ2) `ι

[
ιx1ψ1(ϕ1)/u1

][
ιx2ψ2(ϕ2)/u2

]
q eqSubst

...
ψ1, ψ2, . . . , ψm;

q, u1 = ιx1ψ1(ϕ1), . . . , um = ιxmψm
(ϕm) `ι

[
ιx1ψ1(ϕ1)/u1

]
· · ·
[
ιxmψm

(ϕm)/um
]
q eqSubst

ψ1, ψ2, . . . , ψm;
q, u1 = ιx1ψ1(ϕ1) & u2 = ιx2ψ2(ϕ2),
u3 = ιx3ψ3(ϕ3), . . . , um = ιxmψm

(ϕm) `ι α AnU
...

ψ1, ψ2, . . . , ψm;
q, u1 = ιx1ψ1(ϕ1) & · · ·& um = ιxmψm

(ϕm) `ι α AnU
ψ1, ψ2, . . . , ψm;

u1 = ιx1ψ1(ϕ1) & · · ·& um = ιxmψm
(ϕm) & q `ι α AnU

ψ1, ψ2, . . . , ψm;
∃um(u1 = ιx1ψ1

(ϕ1) & · · ·& um = ιxmψm(ϕm) & q) `ι α PartAnt

ψ1, ψ2, . . . , ψm;
∃um−1∃um(u1 = ιx1ψ1

(ϕ1) & · · ·& um = ιxmψm(ϕm) & q) `ι α PartAnt
...

ψ1, ψ2, . . . , ψm;
∃u1 . . . ∃um(u1 = ιx1ψ1

(ϕ1) & · · ·& um = ιxmψm(ϕm) & q) `ι α PartAnt

ψ1 & ψ2, ψ3, . . . , ψm;
∃u1 . . . ∃um(u1 = ιx1ψ1

(ϕ1) & · · ·& um = ιxmψm(ϕm) & q) `ι α CtxtU
...
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ψ1 & ψ2 & · · ·& ψm;
∃u1 . . . ∃um(u1 = ιx1ψ1

(ϕ1) & · · ·& um = ιxmψm(ϕm) & q) `ι α CtxtU

R(ψ1) &R(ψ2) & · · ·&R(ψm) ;
∃u1 . . . ∃um(u1 = ιx1ψ1

(ϕ1) & · · ·& um = ιxmψm(ϕm) & q) `ι α CutCtxt

Using property 46, we can replace the ιxiψi(ϕi) with [ui/xi]ϕi. We
can now transform the obtained sequent into the required one using
again lemma 47 on the formulae [ui/xi]ϕi, to replace them with their
reductions using corollary 24.

• α ≡ ¬β From the induction hypothesis{
∆(β) & β a`ι D(β) &R(β)

∆(β) a`ι D(β)

we have to derive {
∆(β) & ¬β a`ι D(β) &R(¬β)

∆(β) a`ι D(β)

so we already have the last equivalence. The first one is not difficult:

∆(β) & β `ι D(β) &R(β) induction
∆(β) & β `ι R(β) &-elim
∆(β) ; β `ι R(β) toCtxt

∆(β) ;¬R(β) `ι ¬β CoPo1
D(β) `ι ∆(β) induction

D(β) ;¬R(β) `ι ¬β CutCtxt
D(β) ; `ι ∆(β) toCtxt

D(β) ;¬R(β) `ι ∆(β) & ¬β &-intro
D(β) & ¬R(β) `ι ∆(β) & ¬β fromCtxt

D(β) &R(β) `ι ∆(β) & β induction
D(β) &R(β) `ι β &-elim
D(β) ;R(β) `ι β toCtxt

D(β) `ι ∆(β) induction
D(β) ; `ι ∆(β) toCtxt

D(β) ;¬β `ι ¬R(β) CoPo1
∆(β) `ι D(β) induction

∆(β) ;¬β `ι ¬R(β) CutCtxt
∆(β) ; `ι D(β) toCtxt

∆(β) ;¬β `ι D(β) & ¬R(β) &-intro
∆(β) & ¬β `ι D(β) & ¬R(β) fromCtxt
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• α ≡ β & γ From the induction hypotheses{
∆(β) & β a`ι D(β) &R(β)

∆(β) a`ι D(β)

{
∆(γ) & γ a`ι D(γ) &R(γ)

∆(γ) a`ι D(γ)

we have to derive{
∆(β & γ) & β & γ a`ι D(β & γ) &R(β & γ)

∆(β & γ) a`ι D(β & γ)

We start with the second equivalence:

`ι ∆(∆(β & γ)) Ddef
∆(β) & (β ⇒∆(γ)) `ι ∆(β) & (β ⇒∆(γ)) ass
∆(β) & (β ⇒∆(γ)) `ι ∆(β) &-elim
∆(β) & (β ⇒∆(γ)) `ι β ⇒∆(γ) &-elim

∆(β) `ι D(β) induction
∆(β) & (β ⇒∆(γ)) `ι D(β) Cut
∆(β) ; (β ⇒∆(γ)) `ι β ⇒∆(γ) toCtxt

∆(β) , (β ⇒∆(γ)); β `ι ∆(γ) DdRu1
D(β) &R(β) `ι ∆(β) & β induction
D(β) &R(β) `ι β &-elim
D(β) ;R(β) `ι β toCtxt
∆(β) ;R(β) `ι β CutCtxt

∆(β) , (β ⇒∆(γ));R(β) `ι ∆(γ) Cut
∆(γ) `ι D(γ) induction

∆(β) , (β ⇒∆(γ));R(β) `ι D(γ) Cut
∆(β) , (β ⇒∆(γ)); `ι R(β)⇒ D(γ) DdRu2
∆(β) ; (β ⇒∆(γ)) `ι R(β)⇒ D(γ) fromCtxt

∆(β) & (β ⇒∆(γ)) `ι R(β)⇒ D(γ) fromCtxt
∆(β) & (β ⇒∆(γ)) `ι D(β) & (R(β)⇒ D(γ)) &-intro

D(β) & (R(β)⇒ D(γ)) `ι D(β) & (R(β)⇒ D(γ)) ass
D(β) & (R(β)⇒ D(γ)) `ι D(β) &-elim
D(β) & (R(β)⇒ D(γ)) `ι R(β)⇒ D(γ) &-elim

D(β) `ι ∆(β) induction
D(β) & (R(β)⇒ D(γ)) `ι ∆(β) Cut
D(β) ; (R(β)⇒ D(γ)) `ι R(β)⇒ D(γ) toCtxt

D(β) , (R(β)⇒ D(γ));R(β) `ι D(γ) DdRu1
∆(β) & β `ι D(β) &R(β) induction
∆(β) & β `ι R(β) &-elim
∆(β) ; β `ι R(β) toCtxt



166 CHAPTER 3. PARTIALLY DEFINED IOTA TERMS

D(β) ; β `ι R(β) CutCtxt
D(β) , (R(β)⇒ D(γ)); β `ι D(γ) Cut

D(γ) `ι ∆(γ) induction
D(β) , (R(β)⇒ D(γ)); β `ι ∆(γ) Cut
D(β) , (R(β)⇒ D(γ)); `ι β ⇒∆(γ) DdRu2
D(β) ; (R(β)⇒ D(γ)) `ι β ⇒∆(γ) fromCtxt
D(β) & (R(β)⇒ D(γ)) `ι β ⇒∆(γ) fromCtxt
D(β) & (R(β)⇒ D(γ)) `ι ∆(β) & (β ⇒∆(γ)) &-intro

Using this equivalence, we can also handle the first one:

∆(β & γ) ; β & γ `ι β & γ AssCtxt
∆(β & γ) ; β & γ `ι β &-elim
∆(β & γ) ; β & γ `ι ∆(β) defCons
∆(β & γ) ; β & γ `ι ∆(β) & β &-intro

∆(β) & β `ι D(β) &R(β) induction
∆(β & γ) ; β & γ `ι D(β) &R(β) Cut
∆(β & γ) ; β & γ `ι R(β) &-elim
∆(β & γ) ; β & γ `ι γ &-elim
∆(β & γ) ; β & γ `ι ∆(γ) defCons
∆(β & γ) ; β & γ `ι ∆(γ) & γ &-intro

∆(γ) & γ `ι D(γ) &R(γ) induction
∆(β & γ) ; β & γ `ι D(γ) &R(γ) Cut
∆(β & γ) ; β & γ `ι R(γ) &-elim
∆(β & γ) ; β & γ `ι R(β) &R(γ) &-intro

∆(β & γ) `ι D(β & γ) 2nd equiv.
∆(β & γ) ; `ι D(β & γ) toCtxt

∆(β & γ) ; β & γ `ι D(β & γ) &R(β) &R(γ) &-intro
∆(β & γ) & β & γ `ι D(β & γ) &R(β) &R(γ) fromCtxt

D(β & γ) &R(β & γ) `ι D(β & γ) &R(β & γ) ass
D(β & γ) &R(β & γ) `ι R(β & γ) &-elim
D(β & γ) &R(β & γ) `ι R(β) &-elim
D(β & γ) &R(β & γ) `ι D(β & γ) &-elim
D(β & γ) &R(β & γ) `ι D(β) &-elim
D(β & γ) &R(β & γ) `ι D(β) &R(β) &-intro

D(β) &R(β) `ι ∆(β) & β induction
D(β & γ) &R(β & γ) `ι ∆(β) & β Cut
D(β & γ) &R(β & γ) `ι β &-elim

D(β & γ) &R(β & γ) `ι R(γ) &-elim
D(β & γ) &R(β & γ) `ι R(β)⇒ D(γ) &-elim
D(β & γ) &R(β & γ) `ι D(γ) MP
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D(β & γ) &R(β & γ) `ι D(γ) &R(γ) &-intro
D(γ) &R(γ) `ι ∆(γ) & γ induction

D(β & γ) &R(β & γ) `ι ∆(γ) & γ Cut
D(β & γ) &R(β & γ) `ι γ &-elim

D(β & γ) &R(β & γ) `ι β & γ &-intro
D(β & γ) &R(β & γ) `ι ∆(β & γ) defCons
D(β & γ) &R(β & γ) `ι ∆(β & γ) & β & γ &-intro

• α ≡ ∀x(β) From the induction hypothesis{
∆(β) & β a`ι D(β) &R(β)

∆(β) a`ι D(β)

we have to derive{
∀x(∆(β)) & ∀x(β) a`ι ∀x(D(β)) & ∀x(R(β))

∀x(∆(β)) a`ι ∀x(D(β))

To obtain the second equivalence, we simply apply the SimGen rule.

For the first equivalence, we also apply SimGen followed by property 38.
To be able to apply this property, we need to derive

∆(∀x(∆(β)) & ∀x(β)) `ι ∆(β)⇒∆(β)

which is easy, and

∆(∀x(D(β)) & ∀x(R(β))) `ι D(β)⇒∆(R(β))

which is void, since ∆(R(β)) is > and hence so is the right hand side
of the sequent, so it is to be dropped.

2

Theorem 49 If the Hermes calculus is complete, then so is the pitfol cal-
culus.

Proof.
Remember that we have reduced the problem to the following: given

D(γ1) &R(γ1) , . . . ,D(γm) &R(γm) ` D(α) &R(α)
` D(γ1)
` D(γ2)
` . . .
` D(γm)
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we have to derive Γ `ι α.
Note that, since each Hermes proof is also a pitfol proof, we have

D(γ1) &R(γ1) , . . . ,D(γm) &R(γm) `ι D(α) &R(α)
`ι D(γ1)
`ι D(γ2)
`ι . . .
`ι D(γm)

We then derive the required sequent as follows:

∆(γ1) & γ1 `ι D(γ1) &R(γ1) Th. 48
∆(γ1) & γ1,D(γ2) &R(γ2) , . . . ,D(γm) &R(γm) `ι D(α) &R(α) Cut

∆(γ2) & γ2 `ι D(γ2) &R(γ2) Th. 48

∆(γ1) & γ1,∆(γ2) & γ2,
D(γ3) &R(γ3) , . . . ,D(γm) &R(γm) `ι D(α) &R(α) Cut

...
∆(γ1) & γ1, . . . ,∆(γm) & γm `ι D(α) &R(α) Cut

D(α) &R(α) `ι ∆(α) & α Th. 48
∆(γ1) & γ1, . . . ,∆(γm) & γm `ι ∆(α) & α Cut
∆(γ1) & γ1, . . . ,∆(γm) & γm `ι α &-elim

D(γ1) `ι ∆(γ1) Th. 48
`ι ∆(γ1) Cut

∆(γ1) , γ1,∆(γ2) & γ2, . . . ,∆(γm) & γm `ι α AnDc
γ1,∆(γ2) & γ2, . . . ,∆(γm) & γm `ι α Cut

...
Γ `ι α Cut

2



Chapter 4

Refining substitution

The calculus as presented so far has a rather ‘crude’ handling of substitution
[Vernaeve & Hoogewijs 2007b].

For example, consider the term

τ ≡ ιzx=0∨y 6=0((x 6= 0⇒ x = y · z) & (x = 0⇒ z = 0))

Under the intended interpretation of our running example, this term denotes
“x
y
” where we define “ 0

y
” (and in particular “0

0
”) to be 0, i.e., a kind of ‘top

to bottom with short circuit evaluation division’.
Now consider [t/y]τ , which yields

ιz∆(t)&x=0∨t6=0((x 6= 0⇒ x = t · z) & (x = 0⇒ z = 0))

However, this requires t to be defined even when x = 0, which contradicts
the short circuit evaluation idea; we would have liked to get instead the term

ιz∆(x=0∨t6=0)&(x=0∨t6=0)((x 6= 0⇒ x = t · z) & (x = 0⇒ z = 0))

i.e.,

ιz(x 6=0⇒∆(t))&(x=0∨t6=0)((x 6= 0⇒ x = t · z) & (x = 0⇒ z = 0))

which obeys the short circuit evaluation.

Not only the operation of substitution can be refined, the substitution rule
has a similar defect. For empty contexts and antecedents, the substitution
rule reduces to

subst

UC(t)

`ι α
∆(t) ; `ι [t/x]α

169
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whereas for similar reasons, we would prefer

subst’

UC(t)

`ι α
∆([t/x]α) ; `ι [t/x]α

For example, given `ι y > 0 ⇒ x2 · y ≥ 0, the substitution rule with t ≡
ιxy 6=0(x · y = 1) yields

y 6= 0 `ι y > 0⇒ (ιxy 6=0(x · y = 1))2 · y ≥ 0

whereas we would like to get

y > 0⇒ y 6= 0 `ι y > 0⇒ (ιxy 6=0(x · y = 1))2 · y ≥ 0

because here the antecedent is a validity in the theory of real numbers.

Using the deduction rules we have obtained until now, it is possible to
introduce defined symbols g for which ∆(g(t1, t2, . . . , tn)) ≡∆(t1) & ∆(t2) &
· · ·&∆(tn)&G, where G is a formula that depends on the terms t1, . . . , tn and
the exact definition of g. We will not go into detail about this process; as an
example, we could introduce the defined symbol div as div(x, y) = ιzy 6=0(x ·
y = 1) and then it would turn out that ∆(div(t1, t2)) ≡ ∆(t1) & ∆(t2) &
[t2/y]∆(ιzy 6=0(x · y = 1)) ≡ ∆(t1) & ∆(t2) & t2 6= 0. We observe that these
defined symbols are strict with respect to undefined values, i.e., if one of the
arguments ti is undefined, then so is the whole expression g(t1, t2, . . . , tn).

In the sequel, we will develop a refined version of substitution and show
that we can use this to overcome this limitation and introduce non-strict
defined symbols.

The next lemma generalises the method we used in §3.1 to ‘fix’ the defi-
nitions of

√
z and x

y
:

Lemma 50 Given ψ `ι ∃!x(ϕ) and x is not a free variable of ψ, we can
derive `ι ∃!x((ψ ⇒ ϕ) & (¬ψ ⇒ x = y)) where y 6≡ x.

Proof.

To simplify the notation, we will set ϕ′ ≡ (ψ ⇒ ϕ) & (¬ψ ⇒ x = y).
First, we derive `ι ∃x(ϕ′):
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ψ `ι ∃x(ϕ) &-elim
`ι ∆(ψ) defAnt

ψ `ι ∆(∀x(ϕ)) defCons
ψ `ι ∆(ϕ) ∀-elim
`ι ψ ⇒∆(ϕ) DdRu2
`ι ∆(ψ & ϕ) &-intro

ψ ⇒ ϕ `ι ∆(ψ) Weak
`ι (ψ ⇒ ϕ)⇒∆(ψ) DdRu2
`ι ∆(ϕ′) &-intro
`ι ∆(∀x(ϕ′)) ∀-intro

∀x(¬ϕ′) `ι ∀x(¬ϕ′) ass
∀x(¬ϕ′) `ι ¬ϕ′ ∀-elim

¬ψ & ¬(x = y) `ι ¬ψ & ¬(x = y) ass
¬ψ & ¬(x = y) `ι ¬ψ &-elim

ψ & ϕ `ι ψ & ϕ ass
ψ & ϕ `ι ψ &-elim

ψ & ϕ,¬ψ & ¬(x = y) `ι ¬(¬ψ & ¬(x = y)) contra
ψ & ϕ `ι ¬(¬ψ & ¬(x = y)) SeDe

ψ & ¬ϕ `ι ψ & ¬ϕ ass
ψ & ¬ϕ `ι ¬ϕ &-elim
ψ & ϕ `ι ϕ &-elim

ψ & ϕ, ψ & ¬ϕ `ι ¬(ψ & ¬ϕ) contra
ψ & ϕ `ι ¬(ψ & ¬ϕ) SeDe
ψ & ϕ `ι ϕ′ &-intro
ψ;ϕ `ι ϕ′ toCtxt

ψ;¬ϕ′ `ι ¬ϕ CoPo1
ψ & ¬ϕ′ `ι ¬ϕ fromCtxt
ψ,¬ϕ′ `ι ¬ϕ AnDc

ψ,∀x(¬ϕ′) `ι ¬ϕ Cut
ψ,∀x(¬ϕ′) `ι ∀x(¬ϕ) ∀-intro
ψ,∀x(¬ϕ′) `ι ∃x(ϕ′) contra

ψ `ι ∃x(ϕ′) SeDe
ψ & ¬ϕ `ι ψ & ¬ϕ ass
ψ & ¬ϕ `ι ψ &-elim
¬ψ `ι ¬ψ ass

¬ψ, ψ & ¬ϕ `ι ¬(ψ & ¬ϕ) contra
¬ψ `ι ¬(ψ & ¬ϕ) SeDe

¬ψ & ¬(x = y) `ι ¬ψ & ¬(x = y) ass
¬ψ & ¬(x = y) `ι ¬(x = y) &-elim

x = y `ι x = y ass
x = y,¬ψ & ¬(x = y) `ι ¬(¬ψ & ¬(x = y)) contra

x = y `ι ¬(¬ψ & ¬(x = y)) SeDe
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¬ψ, x = y `ι ϕ′ &-intro
¬ψ,¬ϕ′ `ι ¬(x = y) CoPo1

¬ψ,∀x(¬ϕ′) `ι ¬(x = y) Cut
¬ψ,∀x(¬ϕ′) `ι ¬(x = x) subst

`ι x = x eq
¬ψ,∀x(¬ϕ′) `ι ∃x(ϕ′) contra

¬ψ `ι ∃x(ϕ′) SeDe
`ι ∃x(ϕ′) rem

Note that this derivation is also correct when x ≡ y; however, to complete
the derivation of `ι ∃!x(ϕ′), we next derive `ι ∀x∀z((ϕ′ & [z/x]ϕ′)⇒ x = z).
Here, we will use the condition that x 6≡ y.

Note that in the last part of the proof as given below, w is not a free
variable of ϕ and we choose u such that it is not a free variable of ψ and ϕ.

ψ `ι ∀x∀w((ϕ& [w/x]ϕ)⇒ x = w) &-elim
ψ `ι ∀w((ϕ& [w/x]ϕ)⇒ x = w) ∀-elim
ψ `ι ϕ& [w/x]ϕ⇒ x = w ∀-elim

∆(. . . ) ;∀x∀w((ϕ& [w/x]ϕ)⇒ x = w) `ι ∀x∀w((ϕ& [w/x]ϕ)⇒ x = w) AssCtxt
∆(. . . ) ;∀x∀w((ϕ& [w/x]ϕ)⇒ x = w) `ι ∀w((ϕ& [w/x]ϕ)⇒ x = w) ∀-elim
∆(. . . ) ;∀x∀w((ϕ& [w/x]ϕ)⇒ x = w) `ι (ϕ& [w/x]ϕ)⇒ x = w ∀-elim
∆(. . . ) ;∀x∀w((ϕ& [w/x]ϕ)⇒ x = w) `ι (ϕ& [z/x]ϕ)⇒ x = z subst

ψ `ι (ϕ& [z/x]ϕ)⇒ x = z Cut3
ψ;ϕ& [z/x]ϕ `ι x = z DdRu1

ψ & ϕ& [z/x]ϕ `ι x = z fromCtxt
ψ,ϕ& [z/x]ϕ `ι x = z AnDC

ψ `ι ψ ass
ψ ⇒ ϕ `ι ψ ⇒ ϕ ass

ψ,ψ ⇒ ϕ `ι ϕ MP
ψ ⇒ [z/x]ϕ `ι ψ ⇒ [z/x]ϕ subst

ψ,ψ ⇒ [z/x]ϕ `ι [z/x]ϕ MP
ψ,ψ ⇒ ϕ,ψ ⇒ [z/x]ϕ `ι ϕ& [z/x]ϕ &-intro
ψ,ψ ⇒ ϕ,ψ ⇒ [z/x]ϕ `ι x = z Cut

¬ψ `ι ¬ψ ass
¬ψ ⇒ (x = y) `ι ¬ψ ⇒ (x = y) ass

¬ψ,¬ψ ⇒ (x = y) `ι x = y MP
¬ψ ⇒ (z = y) `ι ¬ψ ⇒ (z = y) ass

¬ψ,¬ψ ⇒ (z = y) `ι z = y MP
¬ψ,¬ψ ⇒ (z = y) `ι y = z ESy2

¬ψ,¬ψ ⇒ (x = y),¬ψ ⇒ (z = y) `ι x = z ET2
ψ ⇒ ϕ,ψ ⇒ [z/x]ϕ,

¬ψ ⇒ (x = y),¬ψ ⇒ (z = y) `ι x = z rem
ϕ′, ψ ⇒ [z/x]ϕ,¬ψ ⇒ (z = y) `ι x = z AnU

ϕ′, [z/x]ϕ′ `ι x = z AnU
ϕ′ & [z/x]ϕ′ `ι x = z AnU

`ι (ϕ′ & [z/x]ϕ′)⇒ x = z DdRu2
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`ι ∀z((ϕ′ & [z/x]ϕ′)⇒ x = z) ∀-intro
`ι ∀x∀z((ϕ′ & [z/x]ϕ′)⇒ x = z) ∀-intro
`ι ∃!x(ϕ′) &-intro

2

Note that in general, the lemma does not hold if x is a free variable of ψ.
For example, we have ¬(x = z) `ι ∃!x(x = z), whereas

`ι ∃!x((¬(x = z)⇒ x = z) & (¬¬(x = z)⇒ x = y))

is clearly not derivable, for it is equivalent with

`ι ∃!x(x = z & x = y)

which is in turn equivalent with `ι y = z which is not derivable (semanti-
cally,it expresses that all models have only one single element).

Theorem 51 For each formula α and term t of the pitfol calculus for
which the uniqueness conditions are derivable,

∀x(∆(α)); ∆([t/x]α) ,∀x(α) `ι [t/x]α

if the substitutions are defined.

Proof.
We first consider the case where t ≡ ιyψ(ϕ) and y is not a free variable

of ψ. Define the term

t′ ≡ ιy((ψ ⇒ ϕ) & (¬ψ ⇒ y = a))

with a a variable symbol different from y. The previous lemma yields the
uniqueness condition of t′.

We will show shortly that ∆([t/x]α) ; [t
′
/x]α `ι [t/x]α, which we can use in

the following proof

∀x(∆(α));∀x(α) `ι ∀x(α) assCtxt
∀x(∆(α));∀x(α) `ι α ∀-elim

∀x(x = x),∀x(∆(α));∀x(α) `ι [t
′
/x]α subst

`ι x = x eq
`ι ∀x(x = x) ∀-intro

∀x(∆(α));∀x(α) `ι [t
′
/x]α CutCtxt

∀x(∆(α)),∆([t/x]α) ;∀x(α) `ι [t/x]α Cut
∀x(∆(α)); ∆([t/x]α) & ∀x(α) `ι [t/x]α fromCtxt

∀x(∆(α)); `ι ∀x(∆(α)) defAnt
∀x(∆(α)); ∆([t/x]α) ,∀x(α) `ι [t/x]α AnDc
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We have yet to show that ∆([t/x]α) ; [t
′
/x]α `ι [t/x]α; actually we will prove

that for each formula α of the pitfol calculus for which the uniqueness
conditions are derivable,

∆([t/x]α) ; [t
′
/x]α `ι [t/x]α

∆([t/x]α) ; [t/x]α `ι [t
′
/x]α

if the substitutions are defined, and for each term τ of the pitfol calculus
for which the uniqueness conditions are derivable,

∆([t/x]τ) `ι [t
′
/x]τ = [t/x]τ

if the substitutions are defined. We will prove this by structural induction
on α and τ .

• τ ≡ x We have to show that ψ `ι t′ = t. The Eq-ι rule yields
∀x(x = x);ψ `ι t′ = t from which the desired sequent is easily obtained.

• τ ≡ z with z 6≡ x We have to show that `ι z = z, which is trivial.

• τ ≡ f(t1, t2, . . . , tn) We have to show that

∆([t/x]t1)&· · ·&∆([t/x]tn) `ι f([t
′
/x]t1, . . . , [t

′
/x]tn) = f([t/x]t1, . . . , [t/x]tn)

Induction yields ∆([t/x]t1) `ι [t
′
/x]t1 = [t/x]t1 etc.; applying the ERf

rule one easily gets the desired sequent.

• τ ≡ ιzΨ(Φ) with x ≡ z or x not a free variable of Φ.

– x is not a free variable of Ψ We have to prove Ψ `ι τ = τ ,
which is trivial.

– x is a free variable of Ψ We have to prove

ψ & [t/x]Ψ `ι ιz∀x(x=x)&[t
′
/x]Ψ(Φ) = ιzψ&[t/x]Ψ(Φ)
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Ψ `ι ιzΨ(Φ) = ιzΨ(Φ) eq
ψ; [t/x]Ψ `ι ιzψ&[t/x]Ψ(Φ) = ιzψ&[t/x]Ψ(Φ) subst

ψ & [t/x]Ψ `ι ∃!z(Φ) UC

∀x(x = x); [t
′
/x]Ψ `ι ιz∀x(x=x)&[t

′
/x]Ψ(Φ) = ιz∀x(x=x)&[t

′
/x]Ψ(Φ) subst

∀x(x = x) & [t
′
/x]Ψ `ι ∃!z(Φ) UC

∀x(x = x) & [t
′
/x]Ψ,
ψ & [t/x]Ψ `ι ιz∀x(x=x)&[t

′
/x]Ψ(Φ) = ιzψ&[t/x]Ψ(Φ) Eq-ι

`ι ∆(Ψ) defAnt
Ψ `ι Ψ ass

ψ; [t/x]Ψ `ι [t/x]Ψ subst
ψ; `ι ∆([t/x]Ψ) defAnt

∆([t/x]Ψ) ; [t/x]Ψ `ι [t
′
/x]Ψ induction

ψ; [t/x]Ψ `ι [t
′
/x]Ψ CutCtxt

ψ & [t/x]Ψ `ι [t
′
/x]Ψ fromCtxt

`ι x = x eq
`ι ∀x(x = x) ∀-intro

ψ & [t/x]Ψ `ι ∀x(x = x) & [t
′
/x]Ψ &-intro

ψ & [t/x]Ψ `ι ιz∀x(x=x)&[t
′
/x]Ψ(Φ) = ιzψ&[t/x]Ψ(Φ) Cut

• τ ≡ ιzΨ(Φ) with x 6≡ z and x a free variable of Φ We have to derive

ψ & [t/x]Ψ `ι ιz∀x(x=x)&[t
′
/x]Ψ([t

′
/x]Φ) = ιzψ&[t/x]Ψ([t/x]Φ)

Using induction on Φ, we easily derive the interchangeability conditions
to show that [t

′
/x]Φ and [t/x]Φ are interchangeable under the context

∀z(∆([t/x]Φ)) :
∀z(∆([t/x]Φ)),∆([t

′
/x]Φ) ; [t

′
/x]Φ `ι [t/x]Φ

∀z(∆([t/x]Φ)),∆([t/x]Φ) ; [t/x]Φ `ι [t
′
/x]Φ

∀z(∆([t/x]Φ)); ∆([t
′
/x]Φ) `ι ∆([t/x]Φ)

∀z(∆([t/x]Φ)); ∆([t/x]Φ) `ι ∆([t
′
/x]Φ)

which we can use in the following proof:

Ψ `ι ιzΨ(Φ) = ιzΨ(Φ) eq
∀x(x = x);

[
t′/x
]
Ψ `ι ιz∀x(x=x)&[t

′
/x]Ψ(

[
t′/x
]
Φ)

= ιz∀x(x=x)&[t
′
/x]Ψ(

[
t′/x
]
Φ) subst

∀x(x = x) &
[
t′/x
]
Ψ `ι ∃!z(

[
t′/x
]
Φ) UC

ψ; [t/x]Ψ `ι ιzψ&[t/x]Ψ([t/x]Φ) = ιzψ&[t/x]Ψ([t/x]Φ) subst
ψ & [t/x]Ψ `ι ∃!z([t/x]Φ) UC
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ψ & [t/x]Ψ `ι ∀z(∆([t/x]Φ)) & (∃z([t/x]Φ)⇒∆(. . . ))defCons
ψ & [t/x]Ψ `ι ∀z(∆([t/x]Φ)) &-elim

∆([t/x]Φ) ; [t/x]Φ `ι
[
t′/x
]
Φ induction

∆([t/x]Φ) ; `ι [t/x]Φ⇒
[
t′/x
]
Φ DdRu2

∆([t/x]Φ) ;
[
t′/x
]
Φ `ι [t/x]Φ induction

∆([t/x]Φ) ; `ι
[
t′/x
]
Φ⇒ [t/x]Φ DdRu2

∆([t/x]Φ) ; `ι
[
t′/x
]
Φ⇔ [t/x]Φ &-intro

∆([t/x]Φ) `ι
[
t′/x
]
Φ⇔ [t/x]Φ fromCtxt

∀z(∆([t/x]Φ)) `ι ∀z(
[
t′/x
]
Φ⇔ [t/x]Φ) SimGen

ψ & [t/x]Ψ `ι ∀z(
[
t′/x
]
Φ⇔ [t/x]Φ) Cut

∀x(x = x) &
[
t′/x
]
Ψ, ψ & [t/x]Ψ `ι ∀z(

[
t′/x
]
Φ⇔ [t/x]Φ) Weak*

∀x(x = x) &
[
t′/x
]
Ψ, ψ & [t/x]Ψ `ι ιz∀x(x=x)&[t

′
/x]Ψ(

[
t′/x
]
Φ)

= ιzψ&[t/x]Ψ([t/x]Φ) Eq-ι
ψ & [t/x]Ψ `ι ∀x(x = x) &

[
t′/x
]
Ψ see above

ψ & [t/x]Ψ `ι ιz∀x(x=x)&[t
′
/x]Ψ(

[
t′/x
]
Φ)

= ιzψ&[t/x]Ψ([t/x]Φ) Cut

• α ≡ p(t1, t2, . . . , tn) We have to derive{
∆([t/x]t1) & · · ·& ∆([t/x]tn) ; p([t

′
/x]t1, . . . , [t

′
/x]tn) `ι p([t/x]t1, . . . , [t/x]t1)

∆([t/x]t1) & · · ·& ∆([t/x]tn) ; p([t/x]t1, . . . , [t/x]t1) `ι p([t
′
/x]t1, . . . , [t

′
/x]tn)

Induction yields ∆([t/x]t1) `ι [t
′
/x]t1 = [t/x]t1 etc. Using ERp2 we get

∆([t/x]t1) , . . . ,∆([t/x]tn) ; p([t
′
/x]t1, . . . , [t

′
/x]tn) `ι p([t/x]t1, . . . , [t/x]tn)

from which the first sequent is easily obtained. We get the second
desired sequent by first using the ESy rule before applying ERp2.

• α ≡ ¬β Induction yields{
∆([t/x]β) ; [t

′
/x]β `ι [t/x]β

∆([t/x]β) ; [t/x]β `ι [t
′
/x]β

and Theorem 23.1 immediately yields the required sequents.

• α ≡ β & γ We have to derive{
∆([t/x](β & γ)) ; [t

′
/x](β & γ) `ι [t/x](β & γ)

∆([t/x](β & γ)) ; [t/x](β & γ) `ι [t
′
/x](β & γ)

Using induction on γ, Theorem 23.1 yields{
∆([t/x]β & [t/x]γ) ; [t/x]β & [t

′
/x]γ `ι [t/x]β & [t/x]γ (1)

∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι [t/x]β & [t
′
/x]γ (2)
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Using induction on β, the same theorem yields{
∆([t/x]β & [t

′
/x]γ) ; [t

′
/x]β & [t

′
/x]γ `ι [t/x]β & [t

′
/x]γ (3)

∆([t/x]β & [t
′
/x]γ) ; [t/x]β & [t

′
/x]γ `ι [t

′
/x]β & [t

′
/x]γ (4)

using which we have the following proofs:

∆([t/x]β & [t
′
/x]γ) ,∆([t/x]β & [t/x]γ) ;

[t
′
/x]β & [t

′
/x]γ `ι [t/x]β & [t/x]γ Cut(1)(3)

∆([t/x]β & [t/x]γ) ; `ι ∆([t/x]β & [t
′
/x]γ) defAnt(1)

∆([t/x]β & [t/x]γ) ; [t
′
/x]β & [t

′
/x]γ `ι [t/x]β & [t/x]γ CutCtxt

∆([t/x]β & [t/x]γ) ,∆([t/x]β & [t
′
/x]γ) ;

[t/x]β & [t/x]γ `ι [t
′
/x]β & [t

′
/x]γ Cut(2)(4)

∆([t/x]β & [t/x]γ) ; `ι ∆([t/x]β & [t
′
/x]γ) defAnt(1)

∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι [t
′
/x]β & [t

′
/x]γ CutCtxt

• α ≡ ∀x(β) We only have to derive the single sequent

∆(α) ;α `ι α

which we immediately get using the AssCtxt rule.

• α ≡ ∀y(β) with x 6≡ y We have to derive the two sequents{
∀y(∆([t/x]β));∀y([t

′
/x]β) `ι ∀y([t/x]β)

∀y(∆([t/x]β));∀y([t/x]β) `ι ∀y([t
′
/x]β)

which we easily obtain using induction on β and theorem 23.1.

Next, we consider the case where t ≡ ιyψ(ϕ) and y is a free variable of ψ.
Applying the previous case with t = ιzψ([z/y]ϕ) where z not a free variable
of ψ and ϕ, yields

∀x(∆(α)); ∆([ιzψ([z/y]ϕ)/x]α) , ∀x(α) `ι [ιzψ([z/y]ϕ)/x]α

Using corollary 43 and theorem 44, we get the desired sequent.

Now we are left to handle the general case where t is not a ι-term. We
can apply the previous case to the ι-term ιy∆(t)(y = t) where y is not a free
variable of t. In order to do this, we need to derive its uniqueness condition:
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∆(t) `ι ∃y(y = t) Existence
∆(t) ; y = t, t = z `ι y = z ET

∆(t) ; z = t `ι t = z ESy
∆(t) ; y = t, z = t `ι y = z Cut

∆(t) ; y = t& z = t `ι y = z AnU
∆(t) ; `ι (y = t& z = t)⇒ y = z DdRu2
∆(t) `ι (y = t& z = t)⇒ y = z fromCtxt
∆(t) `ι ∀z((y = t& z = t)⇒ y = z) ∀-intro
∆(t) `ι ∀y∀z((y = t& z = t)⇒ y = z) ∀-intro
∆(t) `ι ∃!y(y = t) &-intro

This yields

∀x(∆(α)); ∆
([
ιy∆(t)(y = t)/x

]
α
)
, ∀x(α) `ι

[
ιy∆(t)(y = t)/x

]
α

If we can show that ιy∆(t)(y = t) is interchangeable with t, an application
of theorem 44 proves this case. The required sequent is derived as follows:

∆(t) `ι ιy∆(t)(y = t) = t̃ iota

∆(t) `ι t = t̃ Th. 25.3

∆(t) `ι t̃ = t ESy2
∆(t) `ι ιy∆(t)(y = t) = t ET2

2

We are now easily able to present a more refined version of the substitu-
tion rule:

Subst2
UC(t) prem
`ι α prem

∀x(∆(α)); ∆([t/x]α) ,∀x(α) `ι [t/x]α Th. 51
`ι ∀x(α) ∀-intro

∀x(∆(α)); ∆([t/x]α) `ι [t/x]α Cut
`ι ∆(∀x(α)) defCons

∆([t/x]α) `ι [t/x]α CutCtxt

However, we can generalise this. With the same definition of t′ as in theo-
rem 51, we get
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Subst2
UC(t) prem

σ1, σ2, . . . , σn; γ1, γ2, . . . , γm `ι α prem
[t
′
/x]σ1, [t

′
/x]σ2, . . . , [t

′
/x]σn; [t

′
/x]γ1, [t

′
/x]γ2, . . . , [t

′
/x]γm `ι [t

′
/x]α subst

∆([t/x]γm) ; [t/x]γm `ι [t
′
/x]γm Th. 51

∆([t/x]γm) , [t
′
/x]σ1, . . . , [t

′
/x]σn; [t

′
/x]γ1, [t

′
/x]γ2, . . . , [t/x]γm `ι [t

′
/x]α Cut

...
∆([t/x]γ2) , . . . ,∆([t/x]γm) ,

[t
′
/x]σ1, . . . , [t

′
/x]σn; [t

′
/x]γ1, [t/x]γ2, . . . , [t/x]γm `ι [t

′
/x]α Cut

∆([t/x]γ1) ; [t/x]γ1 `ι [t
′
/x]γ1 Th. 51

∆([t/x]γ1) , . . . ,∆([t/x]γm) ,
[t
′
/x]σ1, [t

′
/x]σ2, . . . , [t

′
/x]σn; [t/x]γ1, [t/x]γ2, . . . , [t/x]γm `ι [t

′
/x]α Cut

∆([t/x]σn) ; [t/x]σn `ι [t
′
/x]σn Th. 51

∆([t/x]σn) ,∆([t/x]γ1) , . . . ,∆([t/x]γm) ,
[t
′
/x]σ1, [t

′
/x]σ2, . . . , [t/x]σn; [t/x]γ1, . . . , [t/x]γm `ι [t

′
/x]α CutCtxt

...
∆([t/x]σ2) , . . .∆([t/x]σn) ,∆([t/x]γ1) , . . . ,∆([t/x]γm) ,

[t
′
/x]σ1, [t/x]σ2, . . . , [t/x]σn; [t/x]γ1, . . . , [t/x]γm `ι [t

′
/x]α CutCtxt

∆([t/x]σ1) ; [t/x]σ1 `ι [t
′
/x]σ1 Th. 51

∆([t/x]σ1) , . . .∆([t/x]σn) ,∆([t/x]γ1) , . . . ,∆([t/x]γm) ,
[t/x]σ1, [t/x]σ2, . . . , [t/x]σn; [t/x]γ1, . . . , [t/x]γm `ι [t

′
/x]α CutCtxt

∆([t/x]α) ; [t
′
/x]α `ι [t/x]α Th. 51

∆([t/x]σ1) , . . .∆([t/x]σn) ,∆([t/x]γ1) , . . . ,∆([t/x]γm) ,
[t/x]σ1, [t/x]σ2, . . . , [t/x]σn,∆([t/x]α) ; [t/x]γ1, . . . , [t/x]γm `ι [t/x]α CutCtxt

Note that in general, we cannot have a simpler Subst2 rule. For example, in
the case n = 0,m = 1, naively, one could be inclined to expect that

Subst3?

UC(t)

γ `ι α
∆([t/x]γ) ; [t/x]γ `ι [t/x]α

be a valid rule. However, this expectation is proven wrong: when γ `ι α, it is
still possible that ∆([t/x]γ) ; [t/x]γ 6`ι ∆([t/x]α). For example, if γ ≡ ∀x(x =
x) and α ≡ x = x, then the rule breaks down, since in general,

∀x(x = x) 6`ι ∆(t = t)
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Hence, the simplest form of the rule is indeed

Subst2

UC(t)

γ `ι α
∆([t/x]γ) ,∆([t/x]α) ; [t/x]γ `ι [t/x]α

We have gained semantical accuracy but we have to pay with extra syntactical
complexity.

4.1 Refined substitution

We will now define a kind of substitution which is better suited to our pur-
poses, which we will call refined substitution and denote as Jt/xKα and
Jt/xKτ , where as usual, t and τ are terms of the pitfol calculus and α is a
formula of the pitfol calculus.

The only way in which it differs from the ‘crude’ substitution we used up
to now is the case τ ≡ ιyψ(ϕ):

• x ≡ y or x is not a free variable of ϕ

– x is not a free variable of ψ Jt/xKιyψ(ϕ) ≡ ιyψ(ϕ)

– x is a free variable of ψ

Jt/xKιyψ(ϕ) ≡
{
ιy∆(Jt/xKψ)&Jt/xKψ(ϕ) when ∆(t) 6≡ >
ιyJt/xKψ(ϕ) when ∆(t) ≡ >

• x 6≡ y and x is a free variable of ϕ and y is not a free variable of t

– x is not a free variable of ψ

Jt/xKιyψ(ϕ) ≡
{
ιy∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) when ∆(t) 6≡ >
ιyψ(Jt/xKϕ) when ∆(t) ≡ >

– x is a free variable of ψ

Jt/xKιyψ(ϕ) ≡
{
ιy∆(Jt/xKψ)&∀y(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ) when ∆(t) 6≡ >
ιyJt/xKψ(Jt/xKϕ) when ∆(t) ≡ >

• If x 6≡ y and x is a free variable of ϕ and y is a free variable of t, then
Jt/xKιyψ(ϕ) is undefined; we say that the substitution would capture
the free variable y of t.

Note that the inclusion of the conjunct ∀y(∆(Jt/xKϕ)) in the domain
formula of certain cases is necessary to guarantee that when the uniqueness
condition for ιyψ(ϕ) is derivable, then so is the uniqueness condition for
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Jt/xKιyψ(ϕ). For example, consider the term ιxy 6=0(x ·y = z) (intuitively, “ z
y
”)

and the substitution Jt/zKιxy 6=0(x · y = z) where t is a term of the pitfol
calculus with ∆(t) 6≡ >. If this substitution were defined as ιxy 6=0(x · y = t),
then its uniqueness condition, y 6= 0 `ι ∃!x(x · y = t) would not be derivable,
since we then easily could derive y 6= 0 `ι ∀x(∆(t)), and it is clear that in
general, this is not a derivable sequent.

One easily proves the corresponding versions of properties 1–5. It is also
easy to see that the substitution [t/x]α is defined if and only if the substitution
Jt/xKα is defined (and analogously for [t/x]τ and Jt/xKτ).

Note that there are a lot of different cases in the definition of refined
substitution. The main reason for distinguishing whether ∆(t) ≡ > or not
is to make sure that substituting a variable symbol x for another y consists
only in changing all free occurrences of y into x.

The next theorem will reduce the number of cases, which will simplify
proofs later on. Moreover, we show that theorem 51 also holds for refined
substitution.

Theorem 52 1. For all terms t and τ of the pitfol calculus of which the
uniqueness conditions are derivable, if τ ≡ ιyψ(ϕ) and the substitution
Jt/xKτ is defined, then Jt/xKτ is interchangeable with{

ιy∆(Jt/xKψ)&Jt/xKψ(ϕ) if x ≡ y or x is not a free variable of ϕ
ιy∆(Jt/xKψ)&∀y(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ) if x 6≡ y and x is a free variable of ϕ

(and hence, in particular, the uniqueness condition for Jt/xKτ is deriv-
able).

2. For each term t and formula α of the pitfol calculus of which the
uniqueness conditions are derivable,

∆([t/x]α) `ι ∆(Jt/xKα)

∆(t) ,∆(Jt/xKα) `ι ∆([t/x]α)

∆([t/x]α) ; Jt/xKα `ι [t/x]α

∆([t/x]α) ; [t/x]α `ι Jt/xKα

if the substitutions are defined. For all terms t and τ of the pitfol
calculus of which the uniqueness conditions are derivable,

∆([t/x]τ) `ι ∆(Jt/xKτ)

∆(t) ,∆(Jt/xKτ) `ι ∆([t/x]τ)

∆([t/x]τ) `ι Jt/xKτ = [t/x]τ
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3. For each formula α and each term t of the pitfol calculus for which
the uniqueness conditions are derivable,

∀x(∆(α)); ∆(Jt/xKα) ,∀x(α) `ι Jt/xKα

if the substitutions are defined.

Proof.

We prove all three parts simultaneously by induction on the nesting
depths of the ι-terms of α and τ . This in turn we prove by induction on
the complexity of α and τ .

First, we handle all possible cases for the first part.

• x ≡ y or x is not a free variable of ϕ

– x is not a free variable of ψ We have to show that ιyψ(ϕ) and
ιy∆(ψ)&ψ(ϕ) are interchangeable. First, we derive the uniqueness
condition for ιy∆(ψ)&ψ(ϕ) from the given uniqueness condition ψ `ι
∃!y(ϕ):

∆(ψ) ;ψ `ι ψ AssCtxt
∆(ψ) & ψ `ι ψ fromCtxt
∆(ψ) & ψ `ι ∃!y(ϕ) Cut

To establish interchangeability, we derive

∆(ψ) & ψ, ψ `ι ιyψ(ϕ) = ιy∆(ψ)&ψ(ϕ) Eq-ι
`ι ∆(ψ) defAnt

ψ `ι ψ ass
ψ `ι ∆(ψ) & ψ &-intro
ψ `ι ιyψ(ϕ) = ιy∆(ψ)&ψ(ϕ) Cut

∆(ψ) & ψ, ψ `ι ιyψ(ϕ) = ιy∆(ψ)&ψ(ϕ) Eq-ι
∆(ψ) ;ψ `ι ψ AssCtxt

∆(ψ) & ψ `ι ψ fromCtxt
∆(ψ) & ψ `ι ιyψ(ϕ) = ιy∆(ψ)&ψ(ϕ) Cut

The remaining two sequents are easy.

– x is a free variable of ψ We first derive
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`ι ψ ⇒ ∃!y(ϕ) DdRu2
∀x(∆(ψ ⇒ ∃!y(ϕ)));

∆(Jt/xKψ ⇒ ∃!y(ϕ)) , ∀x(ψ ⇒ ∃!y(ϕ)) `ι Jt/xKψ ⇒ ∃!y(ϕ) induction
`ι ∀x(ψ ⇒ ∃!y(ϕ)) ∀-intro
`ι ∆(∀x(ψ ⇒ ∃!y(ϕ))) defCons

∆(Jt/xKψ ⇒ ∃!y(ϕ)) , ∀x(ψ ⇒ ∃!y(ϕ)) `ι Jt/xKψ ⇒ ∃!y(ϕ) CutCtxt
∆(Jt/xKψ ⇒ ∃!y(ϕ)) `ι Jt/xKψ ⇒ ∃!y(ϕ) Cut

∆(Jt/xKψ) ; Jt/xKψ ⇒∆(∃!y(ϕ)) `ι Jt/xKψ ⇒ ∃!y(ϕ) toCtxt
ψ `ι ∆(∃!y(ϕ)) defCons
`ι ψ ⇒∆(∃!y(ϕ)) DdRu2

∀x(∆(ψ ⇒∆(∃!y(ϕ))));
∆(Jt/xKψ ⇒∆(∃!y(ϕ))) ,

∀x(ψ ⇒∆(∃!y(ϕ))) `ι Jt/xKψ ⇒∆(∃!y(ϕ)) induction
`ι ∀x(ψ ⇒∆(∃!y(ϕ))) ∀-intro
`ι ∆(∀x(ψ ⇒∆(∃!y(ϕ)))) defCons

∆(Jt/xKψ ⇒∆(∃!y(ϕ))) ,
∀x(ψ ⇒∆(∃!y(ϕ))) `ι Jt/xKψ ⇒∆(∃!y(ϕ)) CutCtxt

∆(Jt/xKψ ⇒∆(∃!y(ϕ))) `ι Jt/xKψ ⇒∆(∃!y(ϕ)) Cut
∆(Jt/xKψ) ; Jt/xKψ ⇒∆(∆(∃!y(ϕ))) `ι Jt/xKψ ⇒∆(∃!y(ϕ)) toCtxt

`ι ∆(∆(∃!y(ϕ))) Ddef
`ι ∆(∆(Jt/xKψ)) Ddef

∆(Jt/xKψ) `ι ∆(Jt/xKψ) ass
∆(Jt/xKψ) ; `ι ∆(Jt/xKψ) toCtxt

∆(Jt/xKψ) ; Jt/xKψ `ι ∆(∆(∃!y(ϕ))) Weak
∆(Jt/xKψ) ; `ι Jt/xKψ ⇒∆(∆(∃!y(ϕ))) DdRu2
∆(Jt/xKψ) ; `ι Jt/xKψ ⇒∆(∃!y(ϕ)) Cut
∆(Jt/xKψ) ; `ι Jt/xKψ ⇒ ∃!y(ϕ) Cut

∆(Jt/xKψ) ; Jt/xKψ `ι ∃!y(ϕ) DdRu1
∆(Jt/xKψ) & Jt/xKψ `ι ∃!y(ϕ) fromCtxt

∗ ∆(t) 6≡ > Both terms are ιy∆(Jt/xKψ)&Jt/xKψ(ϕ) and we al-
ready have derived the uniqueness condition.

∗ ∆(t) ≡ > We have to show that ιyJt/xKψ(ϕ) and
ιy∆(Jt/xKψ)&Jt/xKψ(ϕ) are interchangeable. First, we derive
the uniqueness conditions. The derivation of ∆(Jt/xKψ) &
Jt/xKψ `ι ∃!y(ϕ) is identical to the previous case. From it, we
derive the other uniqueness condition as follows:

∆([t/x]ψ) `ι ∆(Jt/xKψ) induction
`ι ∆(ψ) defAnt

ψ `ι ψ ass
[t/x]ψ `ι [t/x]ψ subst
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`ι ∆([t/x]ψ) defAnt
`ι ∆(Jt/xKψ) Cut

∆(Jt/xKψ) ; Jt/xKψ `ι ∃!y(ϕ) toCtxt
Jt/xKψ `ι ∃!y(ϕ) CutCtxt

The interchangeability conditions are now easy to derive.

• x 6≡ y and x is a free variable of ϕ and y is not a free variable of t
We first derive

`ι ψ ⇒ ∃!y(ϕ) DdRu2
∀x(∆(ψ ⇒ ∃!y(ϕ)));

∆(Jt/xKψ ⇒ ∃!y(Jt/xKϕ)) ,∀x(ψ ⇒ ∃!y(ϕ)) `ι Jt/xKψ ⇒ ∃!y(Jt/xKϕ) induction
`ι ∀x(ψ ⇒ ∃!y(ϕ)) ∀-intro
`ι ∆(∀x(ψ ⇒ ∃!y(ϕ))) defCons

∆(Jt/xKψ ⇒ ∃!y(Jt/xKϕ)) ,∀x(ψ ⇒ ∃!y(ϕ)) `ι Jt/xKψ ⇒ ∃!y(Jt/xKϕ) CutCtxt
∆(Jt/xKψ ⇒ ∃!y(Jt/xKϕ)) `ι Jt/xKψ ⇒ ∃!y(Jt/xKϕ) Cut

∆(Jt/xKψ) ; Jt/xKψ ⇒∆(∃!y(Jt/xKϕ)) `ι Jt/xKψ ⇒ ∃!y(Jt/xKϕ) toCtxt
`ι ∆(∆(Jt/xKψ)) Ddef
`ι ∆(∆(∃!y(Jt/xKϕ))) Ddef

∆(Jt/xKψ) `ι ∆(Jt/xKψ) ass
∆(Jt/xKψ) ; `ι ∆(Jt/xKψ) toCtxt

∆(∃!y(Jt/xKϕ)) `ι ∆(∃!y(Jt/xKϕ)) ass
∆(Jt/xKψ) ; ∆(∃!y(Jt/xKϕ)) , Jt/xKψ `ι ∆(∃!y(Jt/xKϕ)) Weak

∆(Jt/xKψ) ; ∆(∃!y(Jt/xKϕ)) `ι Jt/xKψ ⇒∆(∃!y(Jt/xKϕ))DdRu2
∆(Jt/xKψ) ; ∆(∃!y(Jt/xKϕ)) `ι Jt/xKψ ⇒ ∃!y(Jt/xKϕ) Cut
∆(Jt/xKψ) ; ∆(∀y(Jt/xKϕ)) `ι Jt/xKψ ⇒ ∃!y(Jt/xKϕ) Prop. 42

∆(Jt/xKψ) ,∆(∀y(Jt/xKϕ)) ; Jt/xKψ `ι ∃!y(Jt/xKϕ) DdRu1
∆(Jt/xKψ) ; ∆(∀y(Jt/xKϕ)) & Jt/xKψ `ι ∃!y(Jt/xKϕ) fromCtxt

∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) & Jt/xKψ `ι ∃!y(Jt/xKϕ) fromCtxt

– x is not a free variable of ψ

∗ ∆(t) 6≡ > We have to show that ιy∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ)
and ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) are interchangeable. We al-
ready have obtained ∆(ψ)&∆(∀y(Jt/xKϕ))&ψ `ι ∃!y(Jt/xKϕ)
Continuing the derivation above, we also obtain the second
uniqueness condition:

∆(ψ) ; ∆(∀y(Jt/xKϕ)) & ψ `ι ∃!y(Jt/xKϕ) see above
`ι ∆(ψ) defAnt

∆(∀y(Jt/xKϕ)) & ψ `ι ∃!y(Jt/xKϕ) CutCtxt

Next, we establish interchangeability:
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∀y(∆(Jt/xKϕ)) & ψ,
∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ιy∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ)

= ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) Eq-ι

`ι ∆(∀y(∆(Jt/xKϕ)) & ψ) defAnt
∀y(∆(Jt/xKϕ)) & ψ `ι ∀y(∆(Jt/xKϕ)) & ψ ass

`ι ∆(ψ) defAnt
∀y(∆(Jt/xKϕ)) & ψ `ι ∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ &-intro
∀y(∆(Jt/xKϕ)) & ψ `ι ιy∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ)

= ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) Cut

∀y(∆(Jt/xKϕ)) & ψ,
∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ιy∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ)

= ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) Eq-ι

`ι ∆(∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ) defAnt
∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ ass
∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ∀y(∆(Jt/xKϕ)) & ψ &-elim
∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ιy∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ)

= ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) Cut

The other two required sequents are easily derived.

∗ ∆(t) ≡ > We have to show that ιyψ(Jt/xKϕ) and
ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) are interchangeable. First, we de-
rive the remaining uniqueness condition from the one we al-
ready obtained:

`ι ∆(ψ) defAnt
ψ `ι ∃!y([t/x]ϕ) subst
ψ `ι ∆(∃!y([t/x]ϕ)) defCons

∆(∃!y([t/x]ϕ)) `ι ∆(∃!y(Jt/xKϕ)) induction
ψ `ι ∆(∃!y(Jt/xKϕ)) Cut
ψ `ι ∀y(∆(Jt/xKϕ)) Prop. 42
ψ `ι ψ ass
ψ `ι ∀y(∆(Jt/xKϕ)) & ψ &-intro
ψ `ι ∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ &-intro
ψ `ι ∃!y(Jt/xKϕ) Cut

Now, interchangeability is easy to show:

ψ,∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ιyψ(Jt/xKϕ)
= ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) Eq-ι

∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ιyψ(Jt/xKϕ)
= ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) Cut
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ψ,∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ιyψ(Jt/xKϕ)
= ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) Eq-ι

`ι ∆(∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ) defAnt
∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ ass
∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ψ &-elim
∆(ψ) & ∀y(∆(Jt/xKϕ)) & ψ `ι ιyψ(Jt/xKϕ)

= ιy∆(ψ)&∀y(∆(Jt/xKϕ))&ψ(Jt/xKϕ) Cut

The remaining two sequents are easy to derive.

– x is a free variable of ψ

∗ ∆(t) 6≡ >
Both terms are ιy∆(Jt/xKψ)&∀y(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ) and we al-
ready derived the uniqueness condition.

∗ ∆(t) ≡ > We have to show that ιyJt/xKψ(Jt/xKϕ) and
ιy∆(Jt/xKψ)&∀y(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ) are interchangeable. First,
we derive the remaining uniqueness condition:

∆([t/x]ψ) `ι ∆(Jt/xKψ) induction
`ι ∆(ψ) defAnt

ψ `ι ψ ass
[t/x]ψ `ι [t/x]ψ subst

`ι ∆([t/x]ψ) defAnt
`ι ∆(Jt/xKψ) Cut

[t/x]ψ `ι ∃!y([t/x]ϕ) subst
[t/x]ψ `ι ∆(∃!y([t/x]ϕ)) defCons

∆(∃!y([t/x]ϕ)) `ι ∆(∃!y(Jt/xKϕ)) induction
[t/x]ψ `ι ∆(∃!y(Jt/xKϕ)) Cut

∆([t/x]ψ) ; Jt/xKψ `ι [t/x]ψ induction
Jt/xKψ `ι [t/x]ψ CutCtxt
Jt/xKψ `ι ∆(∃!y(Jt/xKϕ)) Cut
Jt/xKψ `ι ∀y(∆(Jt/xKϕ)) Prop. 42
Jt/xKψ `ι Jt/xKψ ass
Jt/xKψ `ι ∀y(∆(Jt/xKϕ)) & Jt/xKψ &-intro
Jt/xKψ `ι ∆(Jt/xKψ) & ∀y(∆(Jt/xKϕ)) & Jt/xKψ &-intro
Jt/xKψ `ι ∃!y(Jt/xKϕ) Cut

The four sequents required to show interchangeability are de-
rived analogously to the previous cases.

Next, we give the cases for the second part:
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• τ ≡ x We have to derive ∆(t) `ι ∆(t) and ∆(t) `ι t = t, which is
easy

• τ ≡ y with y 6≡ x We only have to derive ∆(t) `ι y = y, which is
easy.

• τ ≡ f(t1, t2, . . . , tn) We have to derive
∆([t/x]t1) & · · ·& ∆([t/x]tn) `ι ∆(Jt/xKt1) & · · ·& ∆(Jt/xKtn)

∆(t) ,∆(Jt/xKt1) & · · ·& ∆(Jt/xKtn) `ι ∆([t/x]t1) & · · ·& ∆([t/x]tn)

∆([t/x]t1) & · · ·& ∆([t/x]tn) `ι f(Jt/xKt1, . . . , Jt/xKtn)

= f([t/x]t1, . . . , [t/x]tn)

which is easy by applying induction on the terms t1, t2, . . . , tn.

• τ ≡ ιyψ(ϕ)

– x ≡ y or x is not a free variable of ϕ

∗ x is not a free variable of ψ We have to derive
ψ `ι ψ

∆(t) , ψ `ι ψ
ψ `ι ιyψ(ϕ) = ιyψ(ϕ)

which is trivial.

∗ x is a free variable of ψ Using the result of the first part,
whether ∆(t) ≡ > or not, we have to derive

∆(t) & [t/x]ψ `ι ∆(Jt/xKψ) & Jt/xKψ
∆(t) ,∆(Jt/xKψ) & Jt/xKψ `ι ∆(t) & [t/x]ψ

∆(t) & [t/x]ψ `ι ιx∆(Jt/xKψ)&Jt/xKψ(ϕ) = ιx∆(t)&[t/x]ψ(ϕ)

For the first sequent, we have

∆([t/x]ψ) ; [t/x]ψ `ι Jt/xKψ induction
`ι ∆(ψ) defAnt

ψ `ι ψ ass
∆(t) , [t/x]ψ `ι [t/x]ψ subst

∆(t) `ι ∆([t/x]ψ) defAnt
∆(t) ; [t/x]ψ `ι Jt/xKψ CutCtxt

∆(t) & [t/x]ψ `ι Jt/xKψ fromCtxt
∆(t) & [t/x]ψ `ι ∆(Jt/xKψ) defCons
∆(t) & [t/x]ψ `ι ∆(Jt/xKψ) & Jt/xKψ &-intro
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and for the second sequent,

∆([t/x]ψ) ; Jt/xKψ `ι [t/x]ψ induction
∆(t) ,∆(Jt/xKψ) `ι ∆([t/x]ψ) induction

∆(t) ,∆(Jt/xKψ) ; Jt/xKψ `ι [t/x]ψ CutCtxt
∆(t) ; ∆(Jt/xKψ) & Jt/xKψ `ι [t/x]ψ fromCtxt

∆(t) & ∆(Jt/xKψ) & Jt/xKψ `ι [t/x]ψ fromCtxt
∆(Jt/xKψ) ; Jt/xKψ `ι Jt/xKψ AssCtxt

∆(Jt/xKψ) & Jt/xKψ `ι Jt/xKψ fromCtxt
`ι ∆(∆(Jt/xKψ) & Jt/xKψ) defAnt

∆(t) ,∆(Jt/xKψ) & Jt/xKψ `ι [t/x]ψ AnDc
`ι ∆(∆(t)) Ddef

∆(t) `ι ∆(t) ass
∆(t) ,∆(Jt/xKψ) & Jt/xKψ `ι ∆(t) & [t/x]ψ &-intro

The third sequent is derived as follows:

∆(Jt/xKψ) & Jt/xKψ `ι ∃!y(ϕ) part 1
∆(t) ; [t/x]ψ `ι ∃!y(ϕ) subst

∆(t) & [t/x]ψ `ι ∃!y(ϕ) toCtxt
∆(Jt/xKψ) & Jt/xKψ,∆(t) & [t/x]ψ `ι ιx∆(Jt/xKψ)&Jt/xKψ(ϕ)

= ιx∆(t)&[t/x]ψ(ϕ) Eq-ι

∆(t) & [t/x]ψ `ι ∆(Jt/xKψ) & Jt/xKψ first sequent
∆(t) & [t/x]ψ `ι ιx∆(Jt/xKψ)&Jt/xKψ(ϕ)

= ιx∆(t)&[t/x]ψ(ϕ) Cut

– x 6≡ y and x is a free variable of ϕ and y is not a free variable of
t Using part 1, whether ∆(t) ≡ > or not, whether x is a free
variable of ψ or not, it suffices to derive


∆(t) & [t/x]ψ `ι ∆(Jt/xKψ) & ∀y(∆(Jt/xKϕ)) & Jt/xKψ

∆(t) ,∆(Jt/xKψ) & ∀y(∆(Jt/xKϕ)) & Jt/xKψ `ι ∆(t) & [t/x]ψ
∆(t) & [t/x]ψ `ι ιy∆(Jt/xKψ)&∀y(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ)

= ιy∆(t)&ψ([t/x]ϕ)

For the first sequent, we have

ψ `ι ∃y(ϕ) &-elim
∆(t) ; [t/x]ψ `ι ∃y([t/x]ϕ) subst
∆(t) ; [t/x]ψ `ι ∆(∀y([t/x]ϕ)) defCons

∆([t/x]∀y(ϕ)) `ι ∆(Jt/xK∀y(ϕ)) induction
∆(t) ; [t/x]ψ `ι ∆(∀y(Jt/xKϕ)) defCons
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`ι ∆(ψ) defAnt
ψ `ι ψ ass

∆(t) ; [t/x]ψ `ι [t/x]ψ subst
∆([t/x]ψ) , [t/x]ψ `ι Jt/xKψ induction

∆(t) ; [t/x]ψ `ι Jt/xKψ Cut3
∆(t) ; [t/x]ψ `ι ∆(Jt/xKψ) defCons
∆(t) ; [t/x]ψ `ι ∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) &-intro
∆(t) ; [t/x]ψ `ι ∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) & Jt/xKψ &-intro

∆(t) & [t/x]ψ `ι ∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) & Jt/xKψ fromCtxt

and for the second sequent

∆(t) ,∆(Jt/xKψ) `ι ∆([t/x]ψ) induction
∆([t/x]ψ) ; Jt/xKψ `ι [t/x]ψ induction

∆(t) ,∆(Jt/xKψ) ; Jt/xKψ `ι [t/x]ψ CutCtxt
`ι ∆(∆(∀y(Jt/xKϕ))) Ddef

∆(t) ,∆(Jt/xKψ) ; ∆(∀y(Jt/xKϕ)) , Jt/xKψ `ι [t/x]ψ Weak
∆(t) ,∆(Jt/xKψ) ; ∆(∀y(Jt/xKϕ)) & Jt/xKψ `ι [t/x]ψ &-intro

∆(t) ; ∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) & Jt/xKψ `ι [t/x]ψ fromCtxt
`ι ∆(∆(t)) Ddef

∆(t) `ι ∆(t) ass
∆(t) ; `ι ∆(t) toCtxt

∆(t) ; ∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) & Jt/xKψ `ι ∆(t) & [t/x]ψ &-intro
∆(t) & ∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) & Jt/xKψ `ι ∆(t) & [t/x]ψ fromCtxt

`ι ∆(∆(Jt/xKψ)) Ddef
∆(Jt/xKψ) `ι ∆(Jt/xKψ) ass

∆(Jt/xKψ) ,∆(∀y(Jt/xKϕ)) `ι ∆(Jt/xKψ) Weak
∆(Jt/xKψ) `ι ∆(∀y(Jt/xKϕ))⇒∆(Jt/xKψ) DdRu2
∆(Jt/xKψ) `ι ∆(∆(∀y(Jt/xKϕ))) Weak
∆(Jt/xKψ) `ι ∆(∆(∀y(Jt/xKϕ)) & Jt/xKψ) &-intro

`ι ∆(Jt/xKψ)⇒
∆(∆(∀y(Jt/xKϕ)) & Jt/xKψ)DdRu2

`ι ∆
(
∆(Jt/xKψ) &

∆(∀y(Jt/xKϕ)) & Jt/xKψ
)

&-intro
∆(t) ,∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) & Jt/xKψ `ι ∆(t) & [t/x]ψ AnDc

For the third one, part 1 gives us the uniqueness condition for
ιy∆(Jt/xKψ)&∀y(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ) and the other one is easy to de-
rive. This enables us to derive

∆(t) & [t/x]ψ,∆(Jt/xKψ)
&∀y(∆(Jt/xKϕ)) & Jt/xKψ `ι ιy∆(Jt/xKψ)&∀y(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ)

= ιy∆(t)&ψ([t/x]ϕ) Eq-ι
∆(t) & [t/x]ψ `ι ∆(Jt/xKψ) & ∆(∀y(Jt/xKϕ)) & Jt/xKψ first sequent
∆(t) & [t/x]ψ `ι ιy∆(Jt/xKψ)&∀y(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ)

= ιy∆(t)&ψ([t/x]ϕ) Cut
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• α ≡ p(t1, t2, . . . , tn) We have to derive



∆([t/x]t1) & · · ·& ∆([t/x]tn) `ι ∆(Jt/xKt1) & ∆(Jt/xKt2)

∆(t) ,∆(Jt/xKt1) & · · ·& ∆(Jt/xKtn) `ι ∆([t/x]t1) & · · ·& ∆([t/x]tn)

∆(Jt/xKt1) & · · ·& ∆(Jt/xKtn) ;

p(Jt/xKt1, . . . , Jt/xKtn) `ι p([t/x]t1, . . . , [t/x]tn)

∆(Jt/xKt1) & · · ·& ∆(Jt/xKtn) ;

p([t/x]t1, . . . , [t/x]tn) `ι p(Jt/xKt1, . . . , Jt/xKtn)

Using induction on t1, t2, . . . , tn, the first two sequents are easily de-
rived. The last two are not difficult, too, using ERp2 (and ESy for the
last one).

• α ≡ β & γ We have to derive


∆([t/x]β & [t/x]γ) `ι ∆(Jt/xKβ & Jt/xKγ)

∆(t) ,∆(Jt/xKβ & Jt/xKγ) `ι ∆([t/x]β & [t/x]γ)

∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι [t/x]β & [t/x]γ

∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι Jt/xKβ & Jt/xKγ

`ι ∆(∆([t/x]β & [t/x]γ)) Ddef
∆([t/x]β & [t/x]γ) `ι ∆([t/x]β & [t/x]γ) ass
∆([t/x]β & [t/x]γ) `ι ∆([t/x]β) &-elim

∆([t/x]β) `ι ∆(Jt/xKβ) induction
∆([t/x]β & [t/x]γ) `ι ∆(Jt/xKβ) Cut

∆([t/x]β) ; [t/x]β ⇒∆([t/x]γ) `ι ∆(Jt/xKβ) toCtxt
∆([t/x]β) ; [t/x]β ⇒∆([t/x]γ) `ι [t/x]β ⇒∆([t/x]γ) Cons

∆([t/x]β) , [t/x]β ⇒∆([t/x]γ) ; [t/x]β `ι ∆([t/x]γ) DdRu1
∆([t/x]γ) `ι ∆(Jt/xKγ) induction

∆([t/x]β) , [t/x]β ⇒∆([t/x]γ) ; [t/x]β `ι ∆(Jt/xKγ) Cut
∆([t/x]β) ; Jt/xKβ `ι [t/x]β induction

∆([t/x]β) , [t/x]β ⇒∆([t/x]γ) ; Jt/xKβ `ι ∆(Jt/xKγ) Cut
∆([t/x]β) , [t/x]β ⇒∆([t/x]γ) ; `ι Jt/xKβ ⇒∆(Jt/xKγ) DdRu2
∆([t/x]β) ; [t/x]β ⇒∆([t/x]γ) `ι Jt/xKβ ⇒∆(Jt/xKγ) fromCtxt
∆([t/x]β) ; [t/x]β ⇒∆([t/x]γ) `ι ∆(Jt/xKβ & Jt/xKγ) &-intro

∆([t/x]β & [t/x]γ) `ι ∆(Jt/xKβ & Jt/xKγ) fromCtxt
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`ι ∆(∆(Jt/xKβ & Jt/xKγ)) Ddef
∆(Jt/xKβ & Jt/xKγ) `ι ∆(Jt/xKβ & Jt/xKγ) ass
∆(Jt/xKβ & Jt/xKγ) `ι ∆(Jt/xKβ) &-elim

∆(t) ,∆(Jt/xKβ) `ι ∆([t/x]β) induction
∆(t) ,∆(Jt/xKβ & Jt/xKγ) `ι ∆([t/x]β) Cut

∆(Jt/xKβ & Jt/xKγ) `ι Jt/xKβ ⇒∆(Jt/xKγ) &-elim
∆(Jt/xKβ) ; Jt/xKβ ⇒∆(Jt/xKγ) `ι Jt/xKβ ⇒∆(Jt/xKγ) toCtxt

∆(Jt/xKβ) , Jt/xKβ ⇒∆(Jt/xKγ) ; Jt/xKβ `ι ∆(Jt/xKγ) DdRu1
∆([t/x]β) ; [t/x]β `ι Jt/xKβ induction
∆(t) ,∆(Jt/xKβ) `ι ∆([t/x]β) induction

∆(t) ,∆(Jt/xKβ) ; [t/x]β `ι Jt/xKβ CutCtxt
∆(Jt/xKβ) , Jt/xKβ ⇒∆(Jt/xKγ) ,∆(t) ; [t/x]β `ι ∆(Jt/xKγ) Cut

∆(t) ,∆(Jt/xKγ) `ι ∆([t/x]γ) induction
∆(t) ; ∆(Jt/xKγ) `ι ∆([t/x]γ) toCtxt

∆(Jt/xKβ) , Jt/xKβ ⇒∆(Jt/xKγ) ,∆(t) ; [t/x]β `ι ∆([t/x]γ) Cut
∆(Jt/xKβ) , Jt/xKβ ⇒∆(Jt/xKγ) ,∆(t) ; `ι [t/x]β ⇒∆([t/x]γ) DdRu2
∆(Jt/xKβ) , Jt/xKβ ⇒∆(Jt/xKγ) ; ∆(t) `ι [t/x]β ⇒∆([t/x]γ) fromCtxt

∆(Jt/xKβ) ; (Jt/xKβ ⇒∆(Jt/xKγ)) & ∆(t) `ι [t/x]β ⇒∆([t/x]γ) fromCtxt
∆(Jt/xKβ & Jt/xKγ) & ∆(t) `ι [t/x]β ⇒∆([t/x]γ) fromCtxt

`ι ∆(∆(t)) Ddef
∆(Jt/xKβ & Jt/xKγ) ,∆(t) `ι [t/x]β ⇒∆([t/x]γ) AnDc
∆(t) ,∆(Jt/xKβ & Jt/xKγ) `ι ∆([t/x]β & [t/x]γ) &-intro

∆(Jt/xKβ & Jt/xKγ) ; Jt/xKβ & Jt/xKγ `ι Jt/xKβ & Jt/xKγ AssCtxt
∆([t/x]β & [t/x]γ) `ι ∆(Jt/xKβ & Jt/xKγ) first sequent

∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι Jt/xKβ & Jt/xKγ CutCtxt
∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι Jt/xKβ &-elim

∆([t/x]β) ; Jt/xKβ `ι [t/x]β induction
`ι ∆(∆([t/x]β & [t/x]γ)) Ddef

∆([t/x]β & [t/x]γ) `ι ∆([t/x]β & [t/x]γ) ass
∆([t/x]β & [t/x]γ) `ι ∆([t/x]β) &-elim

∆([t/x]β & [t/x]γ) ; Jt/xKβ `ι [t/x]β CutCtxt
∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι [t/x]β Cut
∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι ∆([t/x]β & [t/x]γ) ConsCtxt
∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι [t/x]β ⇒∆([t/x]γ) &-elim
∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι ∆([t/x]γ) MP
∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι Jt/xKγ &-elim
∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι ∆([t/x]γ) & Jt/xKγ &-intro

∆([t/x]γ) ; Jt/xKγ `ι [t/x]γ induction
∆([t/x]γ) & Jt/xKγ `ι [t/x]γ fromCtxt
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∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι [t/x]γ Cut
∆([t/x]β & [t/x]γ) ; Jt/xKβ & Jt/xKγ `ι [t/x]γ & [t/x]γ &-intro

∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι [t/x]β & [t/x]γ AssCtxt
∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι [t/x]β &-elim

∆([t/x]β) ; [t/x]β `ι Jt/xKβ induction
∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι Jt/xKβ Cut3
∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι [t/x]γ &-elim

∆([t/x]γ) ; [t/x]γ `ι Jt/xKγ induction
∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι Jt/xKγ Cut3
∆([t/x]β & [t/x]γ) ; [t/x]β & [t/x]γ `ι Jt/xKβ & Jt/xKγ &-intro

• α ≡ ¬β We immediately obtain the first two sequents by induction
and the last two are not difficult either:

∆([t/x]β) ; [t/x]β `ι Jt/xKβ induction
∆([t/x]β) `ι ∆(Jt/xKβ) induction

∆([t/x]β) ; `ι ∆(Jt/xKβ) toCtxt
∆([t/x]β) ;¬ Jt/xKβ `ι ¬ [t/x]β CoPo1

∆([t/x]β) ; Jt/xKβ `ι [t/x]β induction
`ι ∆(∆([t/x]β)) Ddef

∆([t/x]β) `ι ∆([t/x]β) ass
∆([t/x]β) ; `ι ∆([t/x]β) toCtxt

∆([t/x]β) ;¬ [t/x]β `ι ¬ Jt/xKβ CoPo1

• α ≡ ∀y(β) with x ≡ y or x not a free variable of β In this case,
[t/x]α ≡ ∀x(β) ≡ Jt/xKα and the required sequents are easy to derive.

• α ≡ ∀y(β) with x 6≡ y and x a free variable of β The first two
required sequents are obtained by applying induction on β and invoking
the SimGen rule (remember that for the substitution to be defined, y
must not be a free variable of t).

The third sequent is derived as follows:

∆([t/x]β) ; Jt/xKβ `ι [t/x]β induction
`ι ∆(∆([t/x]β)) Ddef
`ι ∀y(∆(∆([t/x]β))) ∀-intro

∀y(∆([t/x]β)) `ι ∀y(∆([t/x]β)) ass
∀y(∆([t/x]β)) `ι ∆([t/x]β) ∀-elim

∀y(∆([t/x]β)); Jt/xKβ `ι [t/x]β CutCtxt
∀y(∆([t/x]β));∀y(Jt/xKβ) `ι ∀y([t/x]β) SimGen

and the last one likewise.
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Finally, we prove the third part. We proceed analogously as in theorem 51
and first consider the case that t ≡ ιyΨ(Φ) and y is not a free variable of Ψ.
We again define the term

t′ ≡ ιy((Ψ⇒ Φ) & (¬Ψ⇒ y = a))

with a a variable symbol different from y. Lemma 50 yields its uniqueness
condition.

The proof is analogous to theorem 51, but in this case we will derive for
each formula α of the pitfol calculus for which the uniqueness conditions
are derivable, {

∆(Jt/xKα) ; [t
′
/x]α `ι Jt/xKα

∆(Jt/xKα) ; Jt/xKα `ι [t
′
/x]α

if the substitutions are defined, and for each term τ of the pitfol calculus
for which the uniqueness conditions are derivable,

∆(Jt/xKτ) `ι [t
′
/x]τ = Jt/xKτ

if the substitutions are defined.
Most of the cases are identical to theorem 51; we only need to mention

• τ ≡ ιzψ(ϕ) with x ≡ z or x not a free variable of ϕ Using part 1,
what we have to derive is

∆(Jt/xKψ) & Jt/xKψ `ι ιzψ(ϕ) = ιz∆(Jt/xKψ)&Jt/xKΨ(ϕ)

when x is not a free variable of ψ or

∆(Jt/xKψ) & Jt/xKψ `ι ιz∀x(x=x)&[t
′
/x]ψ(ϕ) = ιz∆(Jt/xKψ)&Jt/xKψ(ϕ)

when x is a free variable of ψ.

We will only handle the last case explicitly; the case where x is not free
in ψ is even easier.

We have the uniqueness condition of τ at our disposal, from which we
get

∀x(x = x); [t
′
/x]ψ `ι ∃!z(ϕ) subst

∀x(x = x) & [t
′
/x]ψ `ι ∃!z(ϕ) fromCtxt

and part 1 yields the uniqueness condition of ιz∆(Jt/xKψ)&Jt/xKψ(ϕ).

Combining these sequents, we finally get
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∀x(x = x) & [t
′
/x]ψ,

∆(Jt/xKψ) & Jt/xKψ `ι ιz∀x(x=x)&[t
′
/x]ψ(ϕ) = ιz∆(Jt/xKψ)&Jt/xKψ(ϕ) Eq-ι

∆(Jt/xKψ) ; Jt/xKψ `ι [t
′
/x]ψ induction

∆(Jt/xKψ) & Jt/xKψ `ι [t
′
/x]ψ fromCtxt

`ι x = x eq
`ι ∀x(x = x) ∀-intro

∆(Jt/xKψ) & Jt/xKψ `ι ∀x(x = x) & [t
′
/x]ψ &-intro

∆(Jt/xKψ) & Jt/xKψ `ι ιz∀x(x=x)&[t
′
/x]ψ(ϕ) = ιz∆(Jt/xKψ)&Jt/xKψ(ϕ) Cut

• τ ≡ ιzψ(ϕ) with x 6≡ z and x a free variable of ϕ Again invoking
part 1, it is sufficient to derive

∆(Jt/xKψ) & ∀z(∆(Jt/xKϕ)) & Jt/xKψ
`ι ιz∀x(x=x)&[t

′
/x]ψ([t

′
/x]ϕ) = ιz∆(Jt/xKψ)&∀z(∆(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ)

From the uniqueness condition of τ , we derive the first uniqueness
condition:

∀x(x = x); [t
′
/x]ψ `ι ∃!z([t

′
/x]ϕ) subst

∀x(x = x) & [t
′
/x]ψ `ι ∃!z([t

′
/x]ϕ) fromCtxt

and again, part 1 gives us the second uniqueness condition.

As in the previous case, we finally combine both uniqueness conditions.
To ease the notation, we will abbreviate ψ1 ≡ ∀x(x = x) & [t

′
/x]ψ and

ψ2 ≡∆(Jt/xKψ) & ∀z(∆(Jt/xKϕ)) & Jt/xKψ.

∆(Jt/xKϕ) ; [t
′
/x]ϕ `ι Jt/xKϕ induction

∆(Jt/xKϕ) ; `ι [t
′
/x]ϕ⇒ Jt/xKϕ DdRu2

∆(Jt/xKϕ) ; Jt/xKϕ `ι [t
′
/x]ϕ induction

∆(Jt/xKϕ) ; `ι Jt/xKϕ⇒ [t
′
/x]ϕ DdRu2

∆(Jt/xKϕ) ; `ι [t
′
/x]ϕ⇔ Jt/xKϕ &-intro

∆(Jt/xKϕ) `ι [t
′
/x]ϕ⇔ Jt/xKϕ fromCtxt

`ι ∆(ψ2) defAnt
ψ2 `ι ψ2 ass
ψ2 `ι ∀z(∆(Jt/xKϕ)) &-elim

[w/z]ψ2 `ι ∀z(∆(Jt/xKϕ)) subst
[w/z]ψ2 `ι ∆(Jt/xKϕ) ∀-elim
[w/z]ψ2 `ι [t

′
/x]ϕ⇔ Jt/xKϕ Cut

[w/z]ψ2 `ι ∀z([t
′
/x]ϕ⇔ Jt/xKϕ) ∀-intro

`ι ∆(ψ1) defAnt
`ι [w/z]∆(ψ1) subst
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[w/z]ψ1, [w/z]ψ2 `ι ∀z([t
′
/x]ϕ⇔ Jt/xKϕ) Weak

[w/z]ψ1, [w/z]ψ2 `ι ιz[w/z]ψ1([t
′
/x]ϕ) = ιz[w/z]ψ2(Jt/xKϕ) Eq-ι

ψ1, ψ2 `ι ιzψ1([t
′
/x]ϕ) = ιzψ2(Jt/xKϕ) subst

ψ2 `ι ∆([t/x]ψ) &-elim
∆(Jt/xKψ) ; Jt/xKψ `ι [t

′
/x]ψ induction

ψ2 `ι [t
′
/x]ψ Cut3

`ι x = x eq
`ι ∀x(x = x) ∀-intro

ψ2 `ι ∀x(x = x) & [t
′
/x]ψ &-intro

ψ2 `ι ιzψ1([t
′
/x]ϕ) = ιzψ2(Jt/xKϕ) Cut

where w is a variable symbol different from z and not occurring in any
of ψ1, ψ2, ϕ, t and t′.

2

We can now derive a substitution rule analogous to Subst2: With the
same definition of t′ as in theorem 51, we get

RefSubst
UC(t) prem

σ1, σ2, . . . , σn; γ1, γ2, . . . , γm `ι α prem
[t
′
/x]σ1, [t

′
/x]σ2, . . . , [t

′
/x]σn; [t

′
/x]γ1, [t

′
/x]γ2, . . . , [t

′
/x]γm `ι [t

′
/x]α subst

∆(Jt/xKγm) ; Jt/xKγm `ι [t
′
/x]γm Th. 52

∆(Jt/xKγm) , [t
′
/x]σ1, . . . , [t

′
/x]σn;

[t
′
/x]γ1, [t

′
/x]γ2, . . . , Jt/xKγm `ι [t

′
/x]α Cut

...
∆(Jt/xKα) ; [t

′
/x]α `ι Jt/xKα Th. 52

∆(Jt/xKσ1) , . . .∆(Jt/xKσn) ,
∆(Jt/xKγ1) , . . . ,∆(Jt/xKγm) ,

Jt/xKσ1, . . . , Jt/xKσn,∆(Jt/xKα) ; Jt/xKγ1, . . . , Jt/xKγm `ι Jt/xKα CutCtxt
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Chapter 5

Defined symbols using
simultaneous substitution

5.1 Simultaneous substitution

Given a formula α, terms t1, . . . , tn and variable symbols x1, . . . , xn of the
pitfol calculus, where all xi are different, we introduce the simultaneous

substitution
r
t1
x1
· · · tn

xn

z
α of α, and likewise for a term τ . It is defined as

follows when n > 0:

•
r
t1
x1
· · · tn

xn

z
x ≡ x if x is not one of x1, x2, . . . , xn.

•
r
t1
x1
· · · tn

xn

z
xi ≡ ti

•
r
t1
x1
· · · tn

xn

z
f(τ1, τ2, . . . , τm) ≡ f

(r
t1
x1
· · · tn

xn

z
τ1, . . . ,

r
t1
x1
· · · tn

xn

z
τm

)
•

r
t1
x1
· · · tn

xn

z
ιxψ(ϕ) ≡ ιx

∆
“r

t1
x1
··· tn
xn

z
ψ
”

&∀x
“
∆
“r

t1
x1
··· tn
xn

z
ϕ
””

&
r
t1
x1
··· tn
xn

z
ψ
(
r
t1
x1
··· tn
xn

z
ϕ)

if x is not one of x1, x2, . . . , xn. However, the substitution is not defined
when there exists a j such that both xj is a free variable of ϕ and x is
a free variable of tj; in that case, we say that the substitution would
capture the free variable x of tj.

•
r
t1
x1
· · · tn

xn

z
ιxiψ(ϕ) ≡

ιxi
∆(J t1x1 ··· tnxn Kψ)&∀xi

„
∆

„s
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tnxn

{
ϕ

««
&J t1x1 ··· tnxn Kψ

“r
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ϕ
”

However, the substitution is not defined when there exists a j different
from i such that both xj is a free variable of ϕ and xi is a free variable
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of tj; in that case, we say that the substitution would capture the free
variable xi of tj.

Note that if n = 1, this reduces to

s
t1
x1

{
ιx1ψ(ϕ) ≡ ιx1∆

“r
t1
x1

z
ψ
”

&∀x1(∆(ϕ))&
r
t1
x1

z
ψ
(ϕ)

since we will define JKα ≡ α.

•
r
t1
x1
· · · tn

xn

z
¬α ≡ ¬

r
t1
x1
· · · tn

xn

z
α

•
r
t1
x1
· · · tn

xn

z
(α & β) ≡

r
t1
x1
· · · tn

xn

z
α &

r
t1
x1
· · · tn

xn

z
β

•
r
t1
x1
· · · tn

xn

z
p(τ1, τ2, . . . , τm) ≡ p(

r
t1
x1
· · · tn

xn

z
τ1, . . . ,

r
t1
x1
· · · tn

xn

z
τm)

•
r
t1
x1
· · · tn

xn

z
∀x(α) ≡ ∀x

(r
t1
x1
· · · tn

xn

z
α
)

if x is not one of x1, x2, . . . , xn.

However, the substitution is not defined when there exists a j such that
both xj is a free variable of α and x is a free variable of tj; in that case,
we say that the substitution would capture the free variable x of tj.

•
r
t1
x1
· · · tn

xn

z
∀xi(α) ≡ ∀xi

(r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tn

xn

z
α
)

. However, the

substitution is not defined when there exists a j different from i such
that both xj is a free variable of α and xi is a free variable of tj; in that
case, we say that the substitution would capture the free variable xi
of tj.

If n = 0 then we define JKα ≡ α.

For convenience, we will again set
r
t1
x1
· · · tn

xn

z
> ≡ >.

Property 53 For any formula α and terms t1, . . . , tn of the pitfol calculus,r
t1
x1
· · · tn

xn

z
α does not contain ι-terms if and only if α does not contain ι-

terms and for each i = 1, . . . , n either xi is not free in α or ti does not
contain ι-terms.

The analogous theorem for terms τ also holds.

Proof.
Easy by structural induction on α and τ . 2
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Property 54 For any formula α and terms t1, . . . , tn of the pitfol calculus,

x is free in
r
t1
x1
· · · tn

xn

z
α if and only if either x is free in α and x is not one

of the xi’s, or for at least one i, xi is free in α and x is free in ti.
The analogous theorem for terms τ also holds.

Proof.
Easy by structural induction on α and τ . 2

Property 55 If the term t1 is interchangeable with the term s1, t2 is in-
terchangeable with s2, . . . and the uniqueness conditions of at least one

of
r
t1
x1
· · · tn

xn

z
α and

r
s1
x1
· · · sn

xn

z
α are derivable, then

r
t1
x1
· · · tn

xn

z
α is inter-

changeable with
r
s1
x1
· · · sn

xn

z
α, if both of these simultaneous substitutions are

defined.
The analogous property for terms τ of the pitfol calculus also holds.

Proof.
We prove this by structural induction.

• τ ≡ xi We have to show that ti and si are interchangeable, which
we already assumed in the statement of the property.

• τ ≡ x where x 6∈ {x1, x2, . . . , xn} Both terms are x.

• τ ≡ f(τ1, τ2, . . . , τm) Easy using induction on the τi and the ERf2
rule.

• τ ≡ ιxψ(ϕ) Suppose x 6∈ {x1, x2, . . . , xn}; the other
case is similar. We have to show the interchangeability of

ιx
∆
“r

t1
x1
··· tn
xn

z
ψ
”

&∀x
“
∆
“r

t1
x1
··· tn
xn

z
ϕ
””

&
r
t1
x1
··· tn
xn

z
ψ

(r
t1
x1
· · · tn

xn

z
ϕ
)

and

ιx
∆
“r

s1
x1
··· sn
xn

z
ψ
”

&∀x
“
∆
“r

s1
x1
··· sn
xn

z
ϕ
””

&
r
s1
x1
··· sn
xn

z
ψ

(r
s1
x1
· · · sn

xn

z
ϕ
)

which is

easy using induction on ψ and ϕ and theorem 25.

• The other cases are straightforward.

2

Lemma 56 For all terms t1, t2,. . . and for each formula α of the pitfol
calculus for which the uniqueness conditions are derivable, if the substitutionr
t1
x1
· · · tn

xn

z
α is defined, then

∀x1∀x2 . . . ∀xn(∆(α)); ∆

(s
t1
x1

· · · tn
xn

{
α

)
,∀x1∀x2 . . . ∀xn(α) `ι

s
t1
x1

· · · tn
xn

{
α
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Proof.
• First, suppose all ti are of the form ιyiψi(ϕi) and yi is not a free variable
of ψi. We define the terms t′1, t′2,. . . as before:

t′i ≡ ιyi((ψi ⇒ ϕi) & (¬ψi ⇒ yi = a))

where a is a variable symbol different from all the yi; lemma 50 yields their
uniqueness conditions.

We will shortly prove that

∆

(s
t1
x1

· · · tn
xn

{
α

)
; [t
′
1/z1

] . . . [t
′
n/zn] [z1/x1

] . . . [zn/xn]α `ι
s
t1
x1

· · · tn
xn

{
α

where the zi are all different, are different from the xi and do not occur in
the ti and do not occur in α. It is easy to see that these substitutions are
always defined and that the formula [t

′
1/z1

] . . . [t
′
n/zn] [z1/x1

] . . . [zn/xn]α does
not depend on the exact choice of the zi; we will denote this formula as[
t′1
x1
· · · t′n

xn

]
α.

With this sequent at our disposal, we then can easily handle this case:

∀x1 . . . ∀xn(∆(α));∀x1 . . . ∀xn(α) `ι ∀x1 . . . ∀xn(α) assCtxt
∀x1 . . . ∀xn(∆(α));∀x1 . . . ∀xn(α) `ι α ∀-elim*

∀x(x = x),∀x1 . . . ∀xn(∆(α));∀x1 . . . ∀xn(α) `ι
[
t′1
x1

· · · t
′
n

xn

]
α subst*

`ι x = x eq
`ι ∀x(x = x) ∀-intro

∀x1 . . . ∀xn(∆(α));∀x1 . . . ∀xn(α) `ι
[
t′1
x1

· · · t
′
n

xn

]
α CutCtxt

∀x1 . . . ∀xn(∆(α)),∆

(s
t1
x1

· · · tn
xn

{
α

)
;

∀x1 . . . ∀xn(α) `ι
s
t1
x1

· · · tn
xn

{
α Cut

∀x1 . . . ∀xn(∆(α));

∆

(s
t1
x1

· · · tn
xn

{
α

)
, ∀x1 . . . ∀xn(α) `ι

s
t1
x1

· · · tn
xn

{
α FromCtxt2

To derive the missing sequent, we will prove that for each formula α for
which the uniqueness conditions are derivable,

∆

(s
t1
x1

· · · tn
xn

{
α

)
;

[
t′1
x1

· · · t
′
n

xn

]
α `ι

s
t1
x1

· · · tn
xn

{
α

∆

(s
t1
x1

· · · tn
xn

{
α

)
;

s
t1
x1

· · · tn
xn

{
α `ι

[
t′1
x1

· · · t
′
n

xn

]
α
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provided the substitutions are defined and for each term τ for which the
uniqueness conditions are derivable,

∆

(s
t1
x1

· · · tn
xn

{
τ

)
`ι
[
t′1
x1

· · · t
′
n

xn

]
τ =

s
t1
x1

· · · tn
xn

{
τ

provided the substitutions are defined.

We prove this by induction on the number of ι symbols in α and τ . This
in turn we prove this by structural induction on α and τ :

• τ ≡ xi We have to derive ∆(ti) `ι t′i = ti, which we already did in
the proof of theorem 51.

• τ ≡ x where x 6∈ {x1, x2, . . . , xn} We have to derive `ι x = x, which
is trivial.

• τ ≡ f(τ1, τ2, . . . , τm) We have to derive

∆

(s
t1
x1

· · · tn
xn

{
τ1

)
& · · ·& ∆

(s
t1
x1

· · · tn
xn

{
τm

)
`ι f

([
t′1
x1

· · · t
′
n

xn

]
τ1, . . . ,

[
t′1
x1

· · · t
′
n

xn

]
τm

)
= f

(s
t1
x1

· · · tn
xn

{
τ1, . . . ,

s
t1
x1

· · · tn
xn

{
τm

)
which is not difficult using induction on the τi and the ERf2 rule.

• τ ≡ ιyψ(ϕ) We will assume that y 6∈ {x1, x2, . . . , xn} (the other
case is analogous).

It is easy to see that[
t′1
x1

· · · t
′
n

xn

]
ιxψ(ϕ) ≡ ιx

∆(t′1)&···&∆(t′n)&
h
t′1
x1
··· t
′
n
xn

i
ψ

([
t′1
x1

· · · t
′
n

xn

]
ϕ

)
where some ∆(t′i) may be missing (in case xi is not free in both ϕ and
ψ). All the ∆(t′i) are the validity ∀x(x = x), so it is easily proved that[
t′1
x1
· · · t′n

xn

]
ιxψ(ϕ) is interchangeable with ιxh t′1

x1
··· t
′
n
xn

i
ψ

([
t′1
x1
· · · t′n

xn

]
ϕ
)

.

Next, we derive the uniqueness conditions for both ι-terms:
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ψ `ι ∃!x(ϕ) UC
`ι ψ ⇒ ∃!x(ϕ) DdRu2

∀x1 . . . ∀xn(∆(ψ ⇒ ∃!x(ϕ)));

∆
(s

t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ))

)
,

∀x1 . . . ∀xn(ψ ⇒ ∃!x(ϕ)) `ι
s
t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ)) induction

`ι ∀xn(ψ ⇒ ∃!x(ϕ)) ∀-intro
...
`ι ∀x1 . . . ∀xn(ψ ⇒ ∃!x(ϕ)) ∀-intro
`ι ∀x1 . . . ∀xn(∆(ψ ⇒ ∃!x(ϕ))) defCons

∆
(s

t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ))

)
,

∀x1 . . . ∀xn(ψ ⇒ ∃!x(ϕ)) `ι
s
t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ)) CutCtxt

∆
(s

t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ))

)
`ι

s
t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ)) Cut

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
;

s
t1
x1
· · · tn

xn

{
ψ ⇒∆

(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

))
`ι

s
t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ)) toCtxt

`ι ∆
(
∆
(s

t1
x1
· · · tn

xn

{
ψ

))
Ddef

`ι ∆
(
∆
(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

)))
Ddef

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
`ι ∆

(s
t1
x1
· · · tn

xn

{
ψ

)
ass

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
; `ι ∆

(s
t1
x1
· · · tn

xn

{
ψ

)
toCtxt

∆
(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

))
`ι ∆

(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

))
ass

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
;

∆
(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

))
,

s
t1
x1
· · · tn

xn

{
ψ `ι ∆

(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

))
Weak

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
; ∆
(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

))
`ι

s
t1
x1
· · · tn

xn

{
ψ

⇒∆
(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

))
DdRu2

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
; ∆
(
∃!x
(s

t1
x1
· · · tn

xn

{
ϕ

))
`ι

s
t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ)) Cut

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
; ∆
(
∀x
(s

t1
x1
· · · tn

xn

{
ϕ

))
`ι

s
t1
x1
· · · tn

xn

{
(ψ ⇒ ∃!x(ϕ)) Prop. 42

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
,
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∆
(
∀x
(s

t1
x1
· · · tn

xn

{
ϕ

))
;
s
t1
x1
· · · tn

xn

{
ψ `ι ∃!x

(s
t1
x1
· · · tn

xn

{
ϕ

)
DdRu1

Applying fromCtxt twice yields the first uniqueness condition.

The second one is derived as follows:

ψ `ι ∃!x(ϕ) UC
[zn/xn]ψ `ι ∃!x([zn/xn]ϕ) subst

...
[z1/x1

] . . . [zn/xn]ψ `ι ∃!x([z1/x1
] . . . [zn/xn]ϕ) subst

[tn/zn] [z1/x1
] . . . [zn/xn]ψ `ι ∃!x([t

′
n/zn] [z1/x1

] . . . [zn/xn]ϕ) subst
...

[t
′
1/z1

] . . . [t
′
n/zn] [z1/x1

] . . . [zn/xn]ψ `ι ∃!x([t1/z1
] . . . [tn/zn] [z1/x1

] . . . [zn/xn]ϕ) subst

We can use these uniqueness conditions to derive the required sequent.

We will abbreviate ∆
(r

t1
x1
· · · tn

xn

z
ψ
)

& ∆
(
∀x
(r

t1
x1
· · · tn

xn

z
ϕ
))

&
r
t1
x1
· · · tn

xn

z
ψ as Ψ.

Ψ `ι ∃x
(s

t1
x1
· · · tn

xn

{
ϕ

)
∀-elim

Ψ `ι ∀x
(
∆
(s

t1
x1
· · · tn

xn

{
ϕ

))
defCons

[z/x]Ψ `ι ∀x
(
∆
(s

t1
x1
· · · tn

xn

{
ϕ

))
subst

[z/x]Ψ `ι ∆
(s

t1
x1
· · · tn

xn

{
ϕ

)
∀-elim

∆
(s

t1
x1
· · · tn

xn

{
ϕ

)
;
[
t′1
x1
· · · t

′
n

xn

]
ϕ `ι

s
t1
x1
· · · tn

xn

{
ϕ induction

∆
(s

t1
x1
· · · tn

xn

{
ϕ

)
; `ι

[
t′1
x1
· · · t

′
n

xn

]
ϕ⇒

s
t1
x1
· · · tn

xn

{
ϕ DdRu2

∆
(s

t1
x1
· · · tn

xn

{
ϕ

)
;
s
t1
x1
· · · tn

xn

{
ϕ `ι

[
t′1
x1
· · · t

′
n

xn

]
ϕ induction

∆
(s

t1
x1
· · · tn

xn

{
ϕ

)
; `ι

s
t1
x1
· · · tn

xn

{
ϕ⇒

[
t′1
x1
· · · t

′
n

xn

]
ϕ DdRu2

∆
(s

t1
x1
· · · tn

xn

{
ϕ

)
; `ι

[
t′1
x1
· · · t

′
n

xn

]
ϕ⇔

s
t1
x1
· · · tn

xn

{
ϕ &-intro

∆
(s

t1
x1
· · · tn

xn

{
ϕ

)
`ι
[
t′1
x1
· · · t

′
n

xn

]
ϕ⇔

s
t1
x1
· · · tn

xn

{
ϕ fromCtxt

[z/x]Ψ `ι
[
t′1
x1
· · · t

′
n

xn

]
ϕ⇔

s
t1
x1
· · · tn

xn

{
ϕ Cut
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[z/x]Ψ `ι ∀x
([

t′1
x1
· · · t

′
n

xn

]
ϕ⇔

s
t1
x1
· · · tn

xn

{
ϕ

)
∀-intro

Ψ `ι ∀x
([

t′1
x1
· · · t

′
n

xn

]
ϕ⇔

s
t1
x1
· · · tn

xn

{
ϕ

)
subst

`ι ∆
([

t′1
x1
· · · t

′
n

xn

]
ψ

)
defAnt[

t′1
x1
· · · t

′
n

xn

]
ψ,Ψ `ι ∀x

([
t′1
x1
· · · t

′
n

xn

]
ϕ⇔

s
t1
x1
· · · tn

xn

{
ϕ

)
Weak[

t′1
x1
· · · t

′
n

xn

]
ψ,Ψ `ι ιxh t′1

x1
··· t
′
n
xn

i
ψ

([
t′1
x1
· · · t

′
n

xn

]
ϕ

)
= ιxΨ

(s
t1
x1
· · · tn

xn

{
ϕ

)
Eq-ι

`ι ∆(Ψ) defAnt
Ψ `ι Ψ ass

Ψ `ι
s
t1
x1
· · · tn

xn

{
ψ &-elim

∆
(s

t1
x1
· · · tn

xn

{
ψ

)
;
s
t1
x1
· · · tn

xn

{
ψ `ι

[
t′1
x1
· · · t

′
n

xn

]
ψ induction

Ψ `ι
[
t′1
x1
· · · t

′
n

xn

]
Cut3

Ψ `ι ιxh t′1
x1
··· t
′
n
xn

i
ψ

([
t′1
x1
· · · t

′
n

xn

]
ϕ

)
= ιxΨ

(s
t1
x1
· · · tn

xn

{
ϕ

)
Cut

where we choose z different from x and not occurring in ϕ, t1, t′1, . . . ,
tn and t′n.

• The other cases are not difficult.

• If not all ti are ι-terms, then we can proceed as follows. Choose y such
that it does not occur in any ti. If ti ≡ ιyiψi(ϕi) and yi is a free variable of
ψi, then ti is interchangeable with ιyψ([y/yi]ϕ). If ti is not a ι-term, then it is
interchangeable with ιy∆(ti)(y = ti). Hence, every ti is interchangeable with
a suitable ι-term for the previous case; using property 55 we then obtain the
desired sequent. 2

Corollary 57 If the uniqueness conditions of t1, t2,. . . and α are derivable,

and the substitution
r
t1
x1
· · · tn

xn

z
α is defined, then the uniqueness conditions

of
r
t1
x1
· · · tn

xn

z
α are also derivable.
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Proof.
We can invoke the previous lemma; applying the UC rule yields the de-

sired uniqueness conditions. 2

The following lemma is analogous to theorem 33:

Lemma 58 If the uniqueness conditions of t1, t2,. . . and α are derivable,

and the substitution
r
t1
x1
· · · tn

xn

z
α is defined, then so is the substitution

r
t1
x1
· · · tn

xn

z
∆(α) and ∆

(r
t1
x1
· · · tn

xn

z
α
)
`ι

r
t1
x1
· · · tn

xn

z
∆(α). Likewise for

terms τ .

Proof.
We prove this by structural induction on α and τ .

• τ is a variable symbol The consequent of the sequent we have to
derive is >.

• τ ≡ f(τ1, τ2, . . . , τm) We have to derive

∆

(s
t1
x1

· · · tn
xn

{
τ1

)
& · · ·& ∆

(s
t1
x1

· · · tn
xn

{
τm

)
`ι

s
t1
x1

· · · tn
xn

{
∆(τ1) & · · ·&

s
t1
x1

· · · tn
xn

{
∆(τm)

which is easily obtained using induction on τ1, τ2, . . . , τm.

• τ ≡ ιxψ(ϕ) where x is not one of x1, x2, . . . , xn We have to derive

∆

(s
t1
x1

· · · tn
xn

{
ψ

)
& ∀x

(
∆

(s
t1
x1

· · · tn
xn

{
ϕ

))
&

s
t1
x1

· · · tn
xn

{
ψ

`ι
s
t1
x1

· · · tn
xn

{
ψ

which is easy.

• τ ≡ ιxiψ(ϕ) We have to derive

∆

(s
t1
x1

· · · tn
xn

{
ψ

)
&∀x(∆

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
ϕ

)
)&

s
t1
x1

· · · tn
xn

{
ψ

`ι
s
t1
x1

· · · tn
xn

{
ψ

which is easy.
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• α ≡ ∀x(β) where x is not one of x1, x2, . . . , xn We have to derive

∀x
(
∆
(r

t1
x1
· · · tn

xn

z
β
))
`ι ∀x

(r
t1
x1
· · · tn

xn

z
∆(β)

)
which is easy using

induction on α.

• α ≡ ∀xi(β) We have to derive

∀xi
(

∆

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
β

))
`ι ∀xi

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
∆(β)

)
which is easy using induction on α.

• The other cases are easy.

2

Lemma 59 If the uniqueness conditions of t1, t2,. . . and α are derivable, xi

is not a free variable of α, and one of the substitutions
r
t1
x1
· · · tn

xn

z
α and

r
t1
x1
· · · ti−1

xi−1

t′i
xi

ti+1

xi+1
· · · tn

xn

z
α is defined, then both formulae are identical and

interchangeable with
r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tn

xn

z
α.

The analogous property for terms τ of the pitfol calculus also holds.

Proof.
We prove this by structural induction on τ and α. The only interesting

case is τ ≡ ιxψ(ϕ).

• If x 6∈ {x1, x2, . . . } then we have to show that

ιx
∆
“r

t1
x1
··· tn
xn

z
ψ
”

&∀x
“
∆
“r

t1
x1
··· tn
xn

z
ϕ
””

&
r
t1
x1
··· tn
xn

z
ψ

(r
t1
x1
· · · tn

xn

z
ϕ
)

is iden-

tical to

ιx
∆
“r

t1
x1
··· ti−1
xi−1

t′i
xi

ti+1
xi+1

··· tn
xn

z
ψ
”

&∀x
“
∆
“r

t1
x1
··· ti−1
xi−1

t′i
xi

ti+1
xi+1

··· tn
xn

z
ϕ
””

&
r
t1
x1
··· ti−1
xi−1

t′i
xi

ti+1
xi+1

··· tn
xn

z
ψ

(s
t1
x1

· · · ti−1

xi−1

t′i
xi

ti+1

xi+1

· · · tn
xn

{
ϕ

)

and interchangeable with

ιx
∆
“r

t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ψ
”

&∀x
“
∆
“r

t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ϕ
””

&
r
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ψ

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
ϕ

)

which is easy using induction.
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• If x ≡ xi then if n > 1 we have to show that

ιx
∆
“r

t1
x1
··· tn
xn

z
ψ
”

&∀x
“
∆
“r

t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ϕ
””

&
r
t1
x1
··· tn
xn

z
ψ

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
ϕ

)

is identical to

ιx
∆
“r

t1
x1
··· ti−1
xi−1

t′i
xi

ti+1
xi+1

··· tn
xn

z
ψ
”

&∀x
“
∆
“r

t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ϕ
””

&
r
t1
x1
··· ti−1
xi−1

t′i
xi

ti+1
xi+1

··· tn
xn

z
ψ

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
ϕ

)

and interchangeable with

ιx
∆
“r

t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ψ
”

&∀x
“
∆
“r

t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ϕ
””

&
r
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ψ

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
ϕ

)

which is easy using induction.

If n = 1 then this reduces to showing that ιx
∆
“r

t1
x1

z
ψ
”

&∀x(∆(ϕ))&
r
t1
x1

z
ψ
(ϕ)

is identical to ιx
∆
“r

t′1
x1

z
ψ
”

&∀x(∆(ϕ))&
r
t′1
x1

z
ψ
(ϕ) and interchangeable with

ιxψ(ϕ), which is not difficult.

• If x ≡ xj and j 6≡ i, where we suppose i < j for the ease of notation,
then if n > 2 we have to show that

ιx
∆
“r

t1
x1
··· tn
xn

z
ψ
”

&∀x
„
∆

„s
t1
x1
··· tj−1
xj−1

tj+1
xj+1

··· tn
xn

{
ϕ

««
&

r
t1
x1
··· tn
xn

z
ψ

(r
t1
x1
· · · tj−1

xj−1

tj+1

xj+1
· · · tn

xn

z
ϕ
)

is identical to

ιx
∆
“r

t1
x1
··· ti−1
xi−1

t′i
xi

ti+1
xi+1

··· tn
xn

z
ψ
”

&∀x
„
∆

„s
t1
x1
··· ti−1
xi−1

t′i
xi

ti+1
xi+1

··· tj−1
xj−1

tj+1
xj+1

··· tn
xn

{
ϕ

««
&

r
t1
x1
··· ti−1
xi−1

t′i
xi

ti+1
xi+1

··· tn
xn

z
ψ

(r
t1
x1
· · · ti−1

xi−1

t′i
xi

ti+1

xi+1
· · · tj−1

xj−1

tj+1

xj+1
· · · tn

xn

z
ϕ
)

and interchangeable with

ιx
∆
“r

t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ψ
”

&∀x
„
∆

„s
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tj−1
xj−1

tj+1
xj+1

··· tn
xn

{
ϕ

««
&

r
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
ψ

(r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tj−1

xj−1

tj+1

xj+1
· · · tn

xn

z
ϕ
)
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If n = 2 then i = 1 and j = 2 and we have to

show that ιx
∆
“r

t1
x1

t2
x2

z
ψ
”

&∀x
“
∆
“r

t1
x1

z
ϕ
””

&
r
t1
x1

t2
x2

z
ψ

(r
t1
x1

z
ϕ
)

is identical to

ιx
∆
“r

t′1
x1

t2
x2

z
ψ
”

&∀x
“
∆
“r

t′1
x1

z
ϕ
””

&
r
t′1
x1

t2
x2

z
ψ

(r
t′1
x1

z
ϕ
)

and interchangeable with

ιx
∆
“r

t2
x2

z
ψ
”

&∀x(∆(ϕ))&
r
t2
x2

z
ψ
(ϕ).

Both cases are analogous to the previous ones.

2

Note that in general, if xi is not a free variable of α, then
r
t1
x1
· · · tn

xn

z
α

is not identical to
r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tn

xn

z
α but only interchangeable. For ex-

ample, if x1 is not a free variable of α, then the first formula is
r
t1
x1

z
ιxψ(ϕ) ≡

ιx
∆
“r

t1
x1

z
ψ
”

&∀x(∆(ϕ))&
r
t1
x1

z
ψ
(ϕ) which is in general not identical to ιxψ(ϕ).

Lemma 60 If the uniqueness conditions of t1, t2, . . . , tn, s1, s2, . . . , sm
and α are derivable, {x1, x2, . . . , xn}∩ (FV (α)\{y1, y2, . . . , ym}) = ∅ and the

substitutions
r
t1
x1
· · · tn

xn

z r
s1
y1
· · · sm

ym

z
α are defined, then this formula is inter-

changeable with
rr

t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
α when the uniqueness conditions

of one of both are derivable.
The analogous property for terms τ of the pitfol calculus also holds.

Proof.
We prove this by structural induction on α and τ .

• If τ ≡ yi then both terms are
r
t1
x1
· · · tn

xn

z
si.

• If τ ≡ xi then the statement of the lemma requires that xi ∈
{y1, y2, . . . , ym}, so we already handled that case.

• If τ is a variable symbol not in {x1, x2, . . . , xn, y1, y2, . . . , ym} then both
terms are τ .

• If τ ≡ f(τ1, . . . , τk) then induction on the τi and the ERf2 rule easily
yield the desired result.

• If τ ≡ ιxψ(ϕ) and x 6∈ {y1, y2, . . . , ym} then we have to show the inter-
changeability of
s
t1
x1

· · · tn
xn

{
ιx

∆
“r

s1
y1
··· sm
ym

z
ψ
”

&∀x
“
∆
“r

s1
y1
··· sm
ym

z
ϕ
””

&
r
s1
y1
··· sm
ym

z
ψ

(s
s1

y1

· · · sm
ym

{
ϕ

)
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and ιx∆(ψ2)&∀x(∆(ϕ2))&ψ2(ϕ2) where we abbreviate ψ2 :≡rr
t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
ψ and ϕ1 :≡

rr
t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
ϕ.

If also x 6∈ {x1, x2, . . . , xn} then the first term is ιx∆(ψ1)&∀x(∆(ϕ1))&ψ1(ϕ1)
where we abbreviate

ψ1 :≡
r
t1
x1
· · · tn

xn

z(
∆
(r

s1
y1
· · · sm

ym

z
ψ
)

&∀x
(
∆
(r

s1
y1
· · · sm

ym

z
ϕ
))

&
r
s1
y1
· · · sm

ym

z
ψ

)
and ϕ1 :≡

r
t1
x1
· · · tn

xn

z r
s1
y1
· · · sm

ym

z
ϕ.

By induction, ϕ1 and ϕ2 are interchangeable. We will now show that
∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 and ∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 are also inter-
changeable.

It is easy to derive `ι ∆(∆(ψ1) & ∀x(∆(ϕ1)) & ψ1) and `ι
∆(∆(ψ2) & ∀x(∆(ϕ2)) & ψ2), hence we only have to derive ∆(ψ1) &
∀x(∆(ϕ1)) & ψ1 a`ι ∆(ψ2) & ∀x(∆(ϕ2)) & ψ2.

∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 ass
∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ∀x(∆(ϕ1)) & ψ1 &-elim
∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ψ1 &-elim

∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι
s
t1
x1

· · · tn
xn

{ s
s1

y1

· · · sm
ym

{
ψ &-elim

∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ψ2 induction
∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ∆(ψ2) defCons
∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ∀x(∆(ϕ1)) &-elim
∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ∀x(∆(ϕ2)) induction, Th. 32
∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ∆(ψ2) & ∀x(∆(ϕ2)) &-intro
∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 `ι ∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 &-intro

∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 ass
∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∀x(∆(ϕ2)) & ψ2 &-elim
∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ψ2 &-elim

∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι
s
t1
x1
· · · tn

xn

{ s
s1

y1
· · · sm

ym

{
ψ induction

∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∆
(s

t1
x1
· · · tn

xn

{ s
s1

y1
· · · sm

ym

{
ψ

)
defCons

∆
(s

t1
x1
· · · tn

xn

{ s
s1

y1
· · · sm

ym

{
ψ

)
`ι

s
t1
x1
· · · tn

xn

{
∆
(s

s1

y1
· · · sm

ym

{
ψ

)
Lemma 58

∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι
s
t1
x1
· · · tn

xn

{
∆
(s

s1

y1
· · · sm

ym

{
ψ

)
Cut

∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∀x(∆(ϕ2)) &-elim
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∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∀x(∆(ϕ1)) induction, Th. 32

∆(ϕ1) `ι
s
t1
x1
· · · tn

xn

{
∆
(s

s1

y1
· · · sm

ym

{
ϕ

)
Lemma 58

∀x(∆(ϕ1)) `ι ∀x
(s

t1
x1
· · · tn

xn

{
∆
(s

s1

y1
· · · sm

ym

{
ϕ

))
SimGen

∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∀x
(s

t1
x1
· · · tn

xn

{
∆
(s

s1

y1
· · · sm

ym

{
ϕ

))
Cut

∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι
s
t1
x1
· · · tn

xn

{
∆
(s

s1

y1
· · · sm

ym

{
ψ

)
& ∀x

(s
t1
x1
· · · tn

xn

{
∆
(s

s1

y1
· · · sm

ym

{
ϕ

))
&-intro

∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ψ1 &-intro
∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∆(ψ1) defCons
∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∆(ψ1) & ∀x(∆(ϕ1)) &-intro
∆(ψ2) & ∀x(∆(ϕ2)) & ψ2 `ι ∆(ψ1) & ∀x(∆(ϕ1)) & ψ1 &-intro

If however x ≡ xi then the first term again
has the form ιx∆(ψ1)&∀x(∆(ϕ1))&ψ1(ϕ1) where now

ϕ1 ≡
r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tn

xn

z r
s1
y1
· · · sm

ym

z
ϕ and ψ1 ≡

r
t1
x1
· · · tn

xn

z(
∆
(r

s1
y1
· · · sm

ym

z
ψ
)

& ∀x(∆
(r

s1
y1
· · · sm

ym

z
ϕ
)

) &
r
s1
y1
· · · sm

ym

z
ψ
)

.

This case is analogous to the previous one, except that here we we
cannot apply induction directly to show that ϕ1 and ϕ2 are inter-
changeable.

If n = 1, then ϕ1 ≡
r
s1
y1
· · · sm

ym

z
ϕ ≡ ϕ2 and we are done.

If n > 1, we will show for j = 0, 1, . . . ,m
that ϕ2 is interchangeable with Φj :≡sr

t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sj

yj

r
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
sj+1

yj+1
· · ·

r
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
sm

ym

{
ϕ

where Φ0 ≡
sr

t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· ti−1
xi−1

ti+1
xi+1

··· tn
xn

z
sm

ym

{
ϕ and

Φm ≡ ϕ2. We do this by showing that Φj is interchangeable with
Φj+1 for j = 0, 1, . . . ,m − 1. The construction of these two formulas
only differs in the term which is substituted for yj. Because we

assumed the substitution
r
s1
y1
· · · sm

ym

z
ιxiψ(ϕ) to be defined, we have

two possibilities:

– yj is not a free variable of ϕ. Hence, by the previous lemma,
Φj ≡ Φj+1.
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– xi is not a free variable of sj. Again invoking the previous

lemma, we get that
r
t1
x1
· · · tn

xn

z
and

r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tn

xn

z
are in-

terchangeable. Using property 55, we get the interchangeability
of Φj and Φj+1.

We have obtained that ϕ2 is interchangeable with Φ0; induction imme-
diately yields that Φ0 is interchangeable with ϕ1.

• If τ ≡ ιxψ(ϕ) and x ≡ yk then we have to show the interchangeability
of
s
t1
x1

· · · tn
xn

{
ιx

∆
“r

s1
y1
··· sm
ym

z
ψ
”

&∀x
„
∆

„s
t1
x1
··· tk−1
xk−1

tk+1
xk+1

··· tn
xn

{
ϕ

««
&

r
s1
y1
··· sm
ym

z
ψ

(s
t1
x1

· · · tk−1

xk−1

tk+1

xk+1

· · · tn
xn

{
ϕ

)

and ιx∆(ψ2)&∀x(∆(ϕ2))&ψ2(ϕ2) where

ϕ2 ≡
rr

t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sk−1

yk−1

r
t1
x1
··· tn
xn

z
sk+1

yk+1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
ϕ

and ψ2 ≡
rr

t1
x1
··· tn
xn

z
s1

y1
· · ·

z
ψ. This case is analogous to the previous

one.

• The other cases are easy.

2

5.2 Defined symbols

We will extend the pitfol calculus with a finite number of so called defined
function symbols and defined predicate symbols. We will denote the
resulting extension as the pitfol’ calculus. Instead of ∆ (which is only
defined on terms and formulae of the pitfol calculus), this calculus will use
∆′, which is defined in the same way as ∆ except on defined symbols.

These defined symbols are supposed to be added to the calculus in a
certain order. Hence we can speak of defined symbols added before a certain
defined symbol, etc. We call the position of a defined symbol in the series of
defined symbols its index; the first defined symbol has index 1 and so on.
For convenience, we define the index of a function or predicate symbol that
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is not a defined symbol as 0, so we always can talk about “the highest index
of defined symbols in a given formula or term”.

We will add a ι′ subscript to the ` symbol to indicate sequents of the
pitfol′ calculus.

For a defined function symbol g, we define

∆′(g(t1, t2, . . . , tn)) := ∆′
(s

t1
x1

· · · tn
xn

{
g̃∗
)

where g∗ is a term of the pitfol’ calculus containing only symbols defined
before g. As before, g̃∗ is obtained from g∗ by changing the names of all bound
variables, but here we require that the bound variables all be renamed such
that they are different from the free variables of t1, t2, . . . , tn. This renaming
is necessary to ascertain that the simultaneous substitution is always defined.
For each defined function symbol, we require that UC(g∗) be derivable. We
also add a new rule to the calculus:

definition

UC(t1), UC(t2), . . . , UC(tn)

∆′(g(t1, . . . , tn)) `ι′ g(t1, . . . , tn) =

s
t1
x1

· · · tn
xn

{
g̃∗

We will call g∗ the defining term of g.
For a defined predicate symbol q, we define

∆′(q(t1, t2, . . . , tn)) := ∆′
(s

t1
x1

· · · tn
xn

{
q̃∗
)

where q∗ is a formula of the pitfol’ calculus containing only symbols defined
before q and for which UC(q∗) is derivable. We again add a new rule to the
calculus:

definition

UC(t1), UC(t2), . . . , UC(tn)

∆′(q(t1, . . . , tn)) `ι′ q(t1, . . . , tn)⇔
s
t1
x1

· · · tn
xn

{
q̃∗

We will call q∗ the defining formula of q.
We call x1, . . . , xn the argument variable symbols of g∗ and q∗ and

require that FV (g∗) ⊆ {x1, x2, . . . , xn} and likewise for q∗.
We will abbreviate “the defined function symbol g with argument sym-

bols x1, x2, . . . , xn and with defining term g∗ ≡ ϕ” as “the definition
g(x1, x2, . . . , xn) = ϕ”, e.g. “the definition frac(x, y) = ιz¬(y=0)(z · y = x)”.

Note that in contrast to PVS, the addition of a defined symbol does not
cause an extra formula to appear in the context of sequents.
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5.2.1 Well-foundedness of the definition of ∆′

Remark that we define ∆′ recursively; it is not immediately clear that this
recursion is well-founded. Contrast this with the definition of ∆ where it is
clear that to calculate ∆(α) we recursively need to calculate ∆ of formulae
or terms with smaller complexity than α. However, in the calculation ∆′ of a

defined symbol application g(t1, . . . , tn), the complexity of
r
t1
x1
· · · tn

xn

z
q̃∗ can

be much larger than the complexity of g(t1, . . . , tn): we need to search for an
other measure than complexity to show that the recursion always terminates.

We define the expansion rank ρ(α) resp. ρ(τ) of a formula α or term τ
of the pitfol’ calculus as

• ρ(x) := 0

• ρ(f(τ1, τ2, . . . , τn)) := maxi ρ(τi); if f has no arguments, then ρ(f()) :=
0.

• ρ(ιxψ(ϕ)) := max(ρ(ψ) , ρ(ϕ))

• ρ(g(τ1, τ2, . . . , τn)) := N j + maxi ρ(τi) where g is the j-th defined func-
tion symbol; if g has no arguments, then ρ(g()) := N j.

• ρ(p(τ1, τ2, . . . , τn)) := maxi ρ(τi); if p has no arguments, then ρ(p()) :=
0.

• ρ(q(τ1, τ2, . . . , τn)) := N j + maxi ρ(τi) where q is the j-th defined pred-
icate symbol; if q has no arguments, then ρ(q()) := N j.

• ρ(¬α) := ρ(α)

• ρ(α & β) := max(ρ(α) , ρ(β))

• ρ(∀x(α)) := ρ(α)

where we choose N such that for all defined symbols, ρ(g∗) < N j where g is
the j-th defined function or predicate symbol.

It is indeed possible to find such a N : one sees easily that ρ(g∗) is a
polynomial Pj(N) with non-negative coefficients of degree at most j − 1 in
N where g is the j-th defined symbol. Since there are only a finite number of
defined symbols, by choosing N large enough, we can indeed satisfy Pj(N) <
N j for all j.

For convenience, we set ρ(>) ≡ 0.

We define a sequence of metalogical operators ∆′k where k > 0 which
transform a formula or term with expansion rank at most k into another
formula or term or the symbol >:
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• ∆′0(α) := ∆(α) and ∆′(τ) := ∆(τ)

• For k > 0, ∆′k is defined analogously to ∆, for example

∆′k(α & β) := ∆′k(α) & (α⇒∆′k(β))

with the extra rule

∆′k(q(t1, t2, . . . , tn)) := ∆′k−1

(s
t1
x1

· · · tn
xn

{
q̃∗
)

where q is a defined predicate symbol, and likewise for defined function
symbols.

We will show shortly (see corollary 62) that ρ
(r

t1
x1
· · · tn

xn

z
q̃∗
)
< k so

∆′k−1 can indeed be applied to the formula
r
t1
x1
· · · tn

xn

z
q̃∗.

We now define ∆′(α) := ∆′ρ(α)(α).

Theorem 61 Given a formula α and n terms t1, t2, . . . , tn of the pitfol’
calculus. If the operators ∆′0, . . . ,∆

′
ρ(α)+maxni=1 ρ(ti)

are already defined, and

ρ(∆′(ti)) ≤ ρ(ti) for all i = 1 . . . n then

ρ

(
∆′ρ(α)+maxni=1 ρ(ti)

(s
t1
x1

· · · tn
xn

{
α

))
≤ ρ

(s
t1
x1

· · · tn
xn

{
α

)
≤ ρ(α)+

n
max
i=1

ρ(ti)

if the simultaneous substitution is defined. Likewise for terms τ .
For n = 0, this collapses to

ρ(∆′(α)) ≤ ρ(α) if ∆′0, . . . ,∆
′
ρ(α) are already defined.

Proof.
We prove this by induction on the highest index of defined symbols in α

and τ . This we prove by structural induction on α and τ :

• τ ≡ xi We have to show that ρ
(
∆′maxni=1 ρ(ti)

(ti)
)
≤ ρ(ti) ≤

maxi ρ(ti), which was already assumed in the statement of the theo-
rem.

• τ ≡ x with x 6∈ {x1, x2, . . . , xn} We have to show that 0 ≤
maxi ρ(ti), which is trivial.

• τ ≡ f(τ1, . . . , τm) We have to show that

maxi ρ
(
∆′ρ(τ)+maxni=1 ρ(ti)

(r
t1
x1
· · · tn

xn

z
τi

))
≤ maxi ρ

(r
t1
x1
· · · tn

xn

z
τi

)
≤

maxi ρ(τi) + maxi ρ(ti) which immediately follows from structural
induction on the τi.
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• τ ≡ g(τ1, . . . , τm) where g is the j-th defined function symbol We
have to show that

ρ

(
∆′ρ(τ)+maxni=1 ρ(ti)

(tr
t1
x1
· · · tn

xn

z
τ1

y1

· · ·

r
t1
x1
· · · tn

xn

z
τm

ym

|

g̃∗

))

≤ N j + max
i
ρ

(s
t1
x1

· · · tn
xn

{
τi

)
≤ N j + max

i
ρ(τi) + max

i
ρ(ti) .

We can apply structural induction on all τi to obtain that

ρ
(
∆′ρ(τi)+maxni=1 ρ(ti)

(r
t1
x1
· · · tn

xn

z
τi

))
≤ ρ

(r
t1
x1
· · · tn

xn

z
τi

)
≤ ρ(τi) +

maxi ρ(ti), from which the second inequality readily follows.

To obtain the first inequality, we apply induction on g̃∗, since
it contains only defined symbols with index < j, to obtain
that if ∆′0, . . . ,∆

′
ρ(fg∗)+maxi ρ

“r
t1
x1
··· tn
xn

z
τi

” are already defined—which

is the case, because we supposed ∆′ρ(τ)+maxni=1 ρ(ti)
to be defined

and noting that by definition ρ(g∗) < N j, we have ρ
(
g̃∗
)

+

maxi ρ
(r

t1
x1
· · · tn

xn

z
τi

)
≤ N j + maxi ρ(τi) + maxi ρ(ti) = ρ(τ) +

maxni=1 ρ(ti)—and if ρ
(
∆′
(r

t1
x1
· · · tn

xn

z
τi

))
≤ ρ

(r
t1
x1
· · · tn

xn

z
τi

)
—

which we just proved—then

ρ

(
∆′
ρ(fg∗)+maxi ρ

“r
t1
x1
··· tn
xn

z
τi

”
(tr

t1
x1
· · · tn

xn

z
τ1

y1

. . .

r
t1
x1
· · · tn

xn

z
τm

ym

|

g̃∗

))

≤ ρ

(tr
t1
x1
· · · tn

xn

z
τ1

y1

. . .

r
t1
x1
· · · tn

xn

z
τm

ym

|

g̃∗

)

≤ ρ
(
g̃∗
)

+ max
i
ρ

(s
t1
x1

· · · tn
xn

{
τi

)
.

• τ ≡ ιxiψ(ϕ) We have to show that

max

 ρ

(
∆′k

(s
t1
x1

· · · tn
xn

{
ψ

))
, ρ

(
∆′k

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
ϕ

))
,

ρ

(s
t1
x1

· · · tn
xn

{
ψ

)


≤ max

 ρ

(
∆′k

(s
t1
x1

· · · tn
xn

{
ψ

))
, ρ

(
∆′k

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
ϕ

))
,

ρ

(s
t1
x1

· · · tn
xn

{
ψ

)
, ρ

(s
t1
x1

· · · ti−1

xi−1

ti+1

xi+1

· · · tn
xn

{
ϕ

)




216
CHAPTER 5. DEFINED SYMBOLS USING SIMULTANEOUS

SUBSTITUTION

≤ max(ρ(ψ) , ρ(ϕ)) + max
i
ρ(ti) ,

where k = ρ(τ) + maxni=1 ρ(ti), which is easy using the structural in-
duction on ψ and ϕ.

• τ ≡ ιxψ(ϕ) where x 6∈ {x1, x2, . . . , xn} Analogous.

• τ ≡ p(τ1, . . . , τm) Analogous to the case f(τ1, . . . , τm).

• τ ≡ q(τ1, . . . , τm) where q is the j-th defined predicate symbol Anal-
ogous to the case g(τ1, . . . , τm).

• α ≡ ¬β Replacing α by β does not change the desired inequalities,
so we get them by applying structural induction on β.

• α ≡ β & γ We have to show that

max
(
ρ
(
∆′k

(r
t1
x1
· · · tn

xn

z
β
))

, ρ
(r

t1
x1
· · · tn

xn

z
β
)
, ρ
(
∆′k

(r
t1
x1
· · · tn

xn

z
γ
)))

≤

max
(
ρ
(r

t1
x1
· · · tn

xn

z
β
)
, ρ
(r

t1
x1
· · · tn

xn

z
γ
))

≤ max(ρ(α) , ρ(β)) +

maxi ρ(ti) where k = ρ(α) + maxni=1 ρ(ti) which we obtain immediately
using structural induction on α and β.

• α ≡ ∀xi(β) We have to show that

ρ
(
∆′k

(r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tn

xn

z
β
))
≤ ρ

(r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tn

xn

z
β
)
≤

ρ(β) + maxi ρ(ti) where k = ρ(α) + maxni=1 ρ(ti). By in-
duction on β, the first two comparands are actually at most
ρ(β) + max(ρ(t1) , . . . , ρ(ti−1) , ρ(ti+1) , . . . , ρ(tn)).

• α ≡ ∀x(β) where x 6∈ {x1, x2, . . . , xn} Replacing α by β does not
change the desired inequalities, so we get them by applying structural
induction on β.

2

Now we can show that D′k is well defined:

Corollary 62 Suppose ∆′0, . . . ,∆
′
k−1 are defined. If ρ(q(t1, . . . , tn)) ≤ k,

then ρ
(r

t1
x1
· · · tn

xn

z
q̃∗
)
< k where q is a defined predicate or function symbol.

Proof.
The previous theorem yields that ρ(∆′(ti)) ≤ ρ(ti) when ∆′ρ(ti) is defined,

which is the case since ρ(ti) < N j +maxni=1 ρ(ti) = ρ(q(t1, . . . , tn)) ≤ k where
j is the index of q.
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Hence we can again apply the previous theorem to obtain that

ρ

(s
t1
x1

· · · tn
xn

{
q̃∗
)
≤ ρ
(
q̃∗
)

+
n

max
i=1

ρ(ti)

provided ∆′
ρ( eq∗)+maxni=1 ρ(ti)

is defined. This is again the case because ρ
(
q̃∗
)

+

maxni=1 ρ(ti) < N j + maxni=1 ρ(ti) < k. 2

Corollary 63 Given a formula α and n terms t1, t2, . . . , tn of the pitfol’
calculus. Then

ρ

(
∆′k

(s
t1
x1

· · · tn
xn

{
α

))
≤ ρ

(s
t1
x1

· · · tn
xn

{
α

)
≤ ρ(α) +

n
max
i=1

ρ(ti)

if the simultaneous substitution is defined, and likewise for terms τ .

For n = 0, this again collapses to

ρ(∆′(α)) ≤ ρ(α) .

Corollary 64 Given n terms t1, t2, . . . , tn of the pitfol’ calculus. Then

ρ
(r

t1
x1
· · · tn

xn

z
g̃∗
)
< ρ(g(t1, . . . , tn)) where g is a defined function or predicate

symbol.

5.3 Expansion of proofs

We will prove that adding defined symbols to the logic does not modify its
consistency.

To prove this, we define the expansion E (α) and E (t) of a formula α
or term t of the pitfol’ calculus. These both yield a formula resp. term of
the pitfol calculus. We will then show that when we replace in a proof all
formulae by their expansions, we get a correct proof in the pitfol calculus—
just like we did before with R and D.

The expansion of formulae and terms is defined as follows:

• E (x) ≡ x

• E (f(t1, t2, . . . , tn)) ≡ f(E (t1) , E (t2) , . . . , E (tn)) if f is not a defined
function symbol
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• E (g(t1, . . . , tn)) ≡
r
E(t1)
x1
· · · E(tn)

xn

z
E
(
g̃∗
)

if g is a defined function sym-

bol; x1, . . . , xn are the argument variable symbols used in the definition
of g; g̃∗ is as before obtained from g∗ by changing the names of all bound
variables, but here we require that the bound variables all be renamed
such that they are different from the free variables of t1, t2, . . . , tn.
This renaming is again necessary to ascertain that the simultaneous
substitution is always defined.

• E (ιxψ(ϕ)) ≡ ιxE(ψ)(E (ϕ))

• E (p(t1, t2, . . . , tn)) ≡ p(E (t1) , E (t2) , . . . , E (tn)) if p is not a defined
predicate symbol, and likewise E (t1 = t2) ≡ E (t1) = E (t2)

• E (q(t1, t2, . . . , tn)) ≡
r
E(t1)
x1
· · · E(tn)

xn

z
E
(
q̃∗
)

if q is a defined predicate

symbol; x1, . . . , xn are the argument variable symbols used in the defi-
nition of q; again, q̃∗ is obtained from q∗ by renaming all bound variables
to variables different from different from the free variables of t1, t2, . . . ,
tn.

• E (¬α) ≡ ¬E (α)

• E (α & β) ≡ E (α) & E (β)

• E (∀x(α)) ≡ ∀x(E (α))

• For definedness properties, it will be handy to define E (>) ≡ >.

Lemma 65 For any formula α and terms t1, . . . , tn of the pitfol’ calculus,

E
(r

t1
x1
· · · tn

xn

z
α
)

does not contain ι-terms if and only if E (α) does not con-

tain ι-terms and for each i = 1, . . . , n either xi is not free in E (α) or E (ti)
does not contain ι-terms.

The analogous theorem for terms τ also holds.

Proof.
We prove this by structural induction on α and τ . The interesting cases

are

• τ ≡ g(τ1, . . . , τm) where g is a defined function symbol We have to
show thatr
E
“r

t1
x1
··· tn
xn

z
τ1
”

y1
· · · E

“r
t1
x1
··· tn
xn

z
τm
”

ym

z
E
(
g̃∗
)

does not contain ι-terms (A)

if and only ifr
E(τ1)
y1
· · · E(τm)

ym

z
E
(
g̃∗
)

does not contain ι-terms &∀i
(
xi 6∈
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FV (
r
E(τ1)
y1
· · · E(τm)

ym

z
E
(
g̃∗
)
) ∨ E (ti) does not contain ι-terms

)
.

(B)

By property 53, (A) is equivalent with: E
(
g̃∗
)

does not contain ι-terms

&∀j
(
yj 6∈ FV (E

(
g̃∗
)
) ∨ E

(r
t1
x1
· · · tn

xn

z
τj

)
does not contain ι-terms

)
.

Using induction, this is in turn equivalent with: E
(
g̃∗
)

does not con-

tain ι-terms &∀j
(
yj 6∈ FV (E

(
g̃∗
)
) ∨
(
E (τj) does not contain ι-terms

&∀i(xi 6∈ FV (E (τj)) ∨ E (ti) does not contain ι-terms)
))

. (A’)

Next, consider (B). Using properties 53 and 54 this is equivalent with:
E
(
g̃∗
)

does not contain ι-terms &∀j
(
yj 6∈ FV (E

(
g̃∗
)
)∨ E (τj) does not

contain ι-terms
)

&∀i
( (
xi 6∈ FV (E

(
g̃∗
)
) ∨ xi ∈ {y1, . . . , ym}

)︸ ︷︷ ︸
(∗)

&∀j
(
yj 6∈

FV (E
(
g̃∗
)
) ∨ xi 6∈ FV (E (τj))

)
∨E (ti) does not contain ι-terms

)
. (B’)

Note that FV (E
(
g̃∗
)
⊆ FV (g) ⊆ {y1, . . . , ym}, so (∗) is a tautology.

One now easily sees that (A’) and (B’) are equivalent.

• τ ≡ ιxψ(ϕ) Since both α and E
(r

t1
x1
· · · tn

xn

z
α
)

are ι-terms, this

case is trivial.

2

Property 66 For all formulae α of the pitfol’ calculus ∆(E (α)) ≡ > if
and only if E (∆′(α)) ≡ > and likewise for terms τ .

Proof.
We prove this by induction on ρ(α) and ρ(τ), which we in turn prove by

structural induction α and τ . The interesting cases are

• τ ≡ g(τ1, . . . , τn) where g is a defined function symbol We

have to show that ∆
(r
E(τ1)
x1
· · · E(τn)

xn

z
E
(
g̃∗
))
≡ > if and only if

E
(
∆′
(r

τ1
x1
· · · τn

xn

z))
g̃∗ ≡ >.

One shows easily that for any term t of the pitfol’ calculus, ∆′(t) ≡ >
is equivalent with requiring that t does not contain ι-terms, and
likewise for formulae.
Hence, ∆

(r
E(τ1)
x1
· · · E(τn)

xn

z
E
(
g̃∗
))

≡ > if and only if
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r
E(τ1)
x1
· · · E(τn)

xn

z
E
(
g̃∗
)

does not contain ι-terms.

By property 53, this is equivalent with: E
(
g̃∗
)

does not contain ι-terms

and for each i = 1, . . . , n either xi is not free in E
(
g̃∗
)

or E (τi) does
not contain ι-terms.
Using the previous lemma, this in turn is equivalent with requiring

that E
(r

τ1
x1
· · · τn

xn

z
g̃∗
)

does not contain ι-terms.

This is again equivalent with ∆
(
E
(r

τ1
x1
· · · τn

xn

z
g̃∗
))
≡ >. Because of

corollary 64, we can apply induction on the expansion rank to obtain
the required equivalence.

• τ ≡ ιxψ(ϕ) Both terms are E (ϕ) and hence cannot be >.

2

Theorem 67 1. For all formulae α of the pitfol’ calculus for which the
uniqueness conditions are derivable, ∆(E (α)) and E (∆′(α)) are either
interchangeable or both equal to >, and likewise for terms τ .

2. For any formula β of the pitfol calculus and any terms t1, . . . , tn of
the pitfol calculus for which the uniqueness conditions are derivable

and for which the simultaneous substitution
r
t1
x1
· · · tn

xn

z
β is defined,

r
E(t1)
x1
· · · E(tn)

xn

z
E (β) is interchangeable with E

(r
t1
x1
· · · tn

xn

z
β
)

and like-

wise for terms σ.

Proof.
Remark that in the previous property, we showed already that if one of

∆(E (α)) and E (∆′(α)) is >, then so is the other, so we only have to concern
us with establishing their interchangeability when they are not >.

We prove the theorem by simultaneous induction on ρ(α) and ρ(β) +
maxi ρ(ti).

For the base case, ρ(α) is 0, i.e., α does not contain defined symbols.
Hence, E (α) ≡ α, so ∆(E (α)) ≡ ∆(α). Further, ∆′(α) ≡ ∆(α), and this
formula also does not contain defined symbols, so E (∆′(α)) ≡ ∆(α) and we
see that both terms are identical.

For the second part, ρ(β) = ρ(t1) = · · · = ρ(tn) = 0, so no defined

symbols are involved and both simultaneous substitutions are
r
t1
x1
· · · tn

xn

z
β.

For the induction step, we perform structural induction on α and β. We
first prove the first part of the theorem. The interesting cases are:
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• τ ≡ f(τ1, τ2, . . . , τm) We have to show that ∆(E (τ1)) & · · · &
∆(E (τm)) is interchangeable with E (∆′(τ1)) & · · · & E (∆′(τm)), which
is easy by induction on the τi.

• τ ≡ ιxψ(ϕ) We have to show that ∆(E (ψ)) is interchangeable with
E (∆′(ψ)) which we immediately get using structural induction.

• τ ≡ g(τ1, τ2, . . . , τm) We have to show that

∆
(r
E(t1)
x1
· · · E(tm)

xm

z
E (g∗)

)
is interchangeable with

E
(
∆′
(r

t1
x1
· · · tm

xm

z
g∗
))

. Because of corollary 64, we can apply

induction on the first part of the theorem on
r
t1
x1
· · · tn

xn

z
g∗. This

gives us the interchangeability of E
(
∆′
(r

t1
x1
· · · tm

xm

z
g∗
))

with

∆
(
E
(r

t1
x1
· · · tn

xn

z
g∗
))

. What remains is an application of the

second part of the theorem. We can apply it if ρ(g∗) + maxi ρ(ti) <
ρ(g(τ1, τ2, . . . , τm)), i.e., if ρ(g∗) + maxi ρ(ti) < N j + maxi ρ(ti) where
j is the index of g. The inequality easily follows from the way we
defined N .

We now prove the second part of the theorem. We can use the first part on
formulae α for which ρ(α) ≤ ρ(β) + maxi ρ(ti). The interesting cases are:

• σ ≡ f(σ1, σ2, . . . , σm) We have to establish the interchange-

ability of f
(r
E(t1)
x1
· · · E(tn)

xn

z
E (σ1) , . . . ,

r
E(t1)
x1
· · · E(tn)

xn

z
E (σm)

)
and

f
(
E
(r

t1
x1
· · · tn

xn

z
σ1

)
, . . . , E

(r
t1
x1
· · · tn

xn

z
σm

))
, which is easy by ap-

plying the structural induction on all of the τi.

• σ ≡ g(σ1, σ2, . . . , σm) We have to show thatr
E(t1)
x1
· · · E(tn)

xn

z r
E(σ1)
y1
· · · E(σm)

ym

z
E
(
g̃∗
)

is interchangeable with
r
E
“r

t1
x1
··· tn
xn

z
σ1

”
y1

· · · E
“r

t1
x1
··· tn
xn

z
σm
”

ym

z
E
(
g̃∗
)
. On the first term, we

can apply lemma 60, and show that the result is interchangeable
with the second term using property 55. To apply this property

however, we require the interchangeability of
r
E(t1)
x1
· · · E(tn)

xn

z
E (σi) and

E
(r

t1
x1
· · · tn

xn

z
σi

)
for i = 1, 2, . . . ,m, which we obtain by applying

structural induction.



222
CHAPTER 5. DEFINED SYMBOLS USING SIMULTANEOUS

SUBSTITUTION

• σ ≡ ιxψ(ϕ) where x 6∈ {x1, x2, . . . , xn} We have to show that

ιx
∆
“r
E(t1)
x1
···E(tn)

xn

z
E(ψ)

”
&∀x

“
∆
“r
E(t1)
x1
···E(tn)

xn

z
E(ϕ)

””
&

r
E(t1)
x1
···E(tn)

xn

z
E(ψ)

(s
E (t1)

x1

· · · E (tn)

xn

{
E (ϕ)

)

and

ιxE
“
∆′
“r

t1
x1
··· tn
xn

z
ψ
””

&∀x
“
E
“
∆′
“r

t1
x1
··· tn
xn

z
ϕ
”””

&E
“r

t1
x1
··· tn
xn

z
ψ
”(E(s

t1
x1

· · · tn
xn

{
ϕ

))
are interchangeable.

To establish that
r
E(t1)
x1
· · · E(tn)

xn

z
E (ψ) is interchangeable with

E
(r

t1
x1
· · · tn

xn

z
ψ
)

and likewise for ϕ is easy by structural induction.

The interchangeability of ∆
(r
E(t1)
x1
· · · E(tn)

xn

z
E (ψ)

)
and

E
(
∆′
(r

t1
x1
· · · tn

xn

z
ψ
))

and likewise for ϕ is somewhat more in-

volved. By structural induction, the first term is interchangeable

with ∆
(
E
(r

t1
x1
· · · tn

xn

z
ψ
))

. If we can now apply the first part of the

theorem, we are done. To be able to apply induction, we need to check

that ρ
(r

t1
x1
· · · tn

xn

z
ψ
)
≤ ρ(ιxψ(ϕ)) + maxi ρ(ti), which immediately

follows from corollary 63.

2

Note that for the second part of the theorem, it is possible that the simul-

taneous substitution
r
E(t1)
x1
· · · E(tn)

xn

z
E (β) is defined while the simultaneous

substitution
r
t1
x1
· · · tn

xn

z
β is not defined.

For example, if g is a defined function symbol, defined as g(y, z) = y, then the

simultaneous substitution
r
E(u)
y
E(x)
z

z
E (ιx(x = g(y, z))) ≡

r
u
y
x
z

z
ιx(x = y) is

defined, but the simultaneous substitution
r
u
y
x
z

z
ιx(x = g(y, z)) is not de-

fined, because substituting x for z would capture x.
For the following lemmas and theorems, one can construct analogous

examples.

Lemma 68 For any formula α of the pitfol calculus for which the
uniqueness conditions are derivable, and any terms t, t1, . . . , tn of the pit-
fol’ calculus for which the uniqueness conditions are derivable, if x 6∈
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FV (α) \ {x1, x2, . . . , xn} and E ([t/x]ti) is interchangeable with [E (t)/x]E (ti)
under the condition ∆(E (t)) for all i ∈ {1, . . . , n}, and the substitutionsr
E([t/x]t1)

x1
· · · E([t/x]tn)

xn

z
α are defined, then [E (t)/x]

r
E(t1)
x1
· · · E(tn)

xn

z
α is inter-

changeable with
r
E([t/x]t1)

x1
· · · E([t/x]tn)

xn

z
α under the condition ∆(E (t)), and like-

wise for terms τ of the pitfol calculus.

Proof.
We prove this by structural induction.

• τ ≡ xi We have to show that [E (t)/x]E (ti) and E ([t/x]ti) are in-
terchangeable under the condition ∆(E (t)), which we required in the
statement of the lemma.

• If τ is a variable symbol different from the xi’s, then it cannot be x.
Hence both terms are just the variable symbol τ .

• τ ≡ f(τ1, τ2, . . . , τm) We have to show that

f
(

[E (t)/x]
r
E(t1)
x1
· · · E(tn)

xn

z
τ1, . . . , [E (t)/x]

r
E(t1)
x1
· · · E(tn)

xn

z
τm

)
is inter-

changeable with f
(r
E([t/x]t1)

x1
· · · E([t/x]tn)

xn

z
τ1, . . .

)
under the condition

∆(E (t)), which is easy using the ERf2 rule and induction on all the τi.

• τ ≡ ιyψ(ϕ) where y 6∈ {x1, x2, . . . , xn} We have to show that

[E (t)/x]
r
E(t1)
x1
· · · E(tn)

xn

z
τ , i.e.,

[E (t)/x]ιy
∆
“r
E(t1)
x1
···

z
ψ
”

&∀y
“
∆
“r
E(t1)
x1
···

z
ϕ
””

&
r
E(t1)
x1
···

z
ψ

(s
E (t1)

x1

· · · E (tn)

xn

{
ϕ

)
is interchangeable with

ιy
∆
“r
E([t/x]t1)

x1
···

z
ψ
”

&∀y
“
∆
“r
E([t/x]t1)

x1
···

z
ϕ
””

&
r
E([t/x]t1)

x1
···

z
ψ

(r
E([t/x]t1)

x1
· · · E([t/x]tn)

xn

z
ϕ
)

We will abbreviate the latter term as ιxψ2(ϕ2).

Using corollary 57, it is not difficult to derive the uniqueness conditions
for both terms.

– x ≡ y or x is not a free variable of
r
E(t1)
x1
· · · E(tn)

xn

z
ϕ

We first remark that
r
E(t1)
x1
· · · E(tn)

xn

z
ϕ ≡

r
E([t/x]t1)

x1
· · · E([t/x]tn)

xn

z
ϕ.

Indeed, in case x ≡ y, remark that for the substitutionr
E(t1)
x1
· · · E(tn)

xn

z
ιxψ(ϕ) to be defined, either xi is not a free variable
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of ϕ (and then Lemma 59 yields that substituting either E ([t/x]ti)
or E (ti) for xi does not change the resulting formula) or x is not
a free variable of ti, and then E ([t/x]ti) ≡ E (ti).

In the other case, x is not a free variable of
r
E(t1)
x1
· · · E(tn)

xn

z
ϕ; it is

easy to see that both terms are identical.

Next, we investigate the first term to consider,

[E (t)/x]
r
E(t1)
x1
· · · E(tn)

xn

z
τ . Its form depends on whether x is

a free variable of
r
E(t1)
x1
· · · E(tn)

xn

z
ψ. In case x is not free in

r
E(t1)
x1
· · · E(tn)

xn

z
ψ, the first term becomes

ιy
∆
“r
E(t1)
x1
···

z
ψ
”

&∀y
“
∆
“r
E(t1)
x1
···

z
ϕ
””

&
r
E(t1)
x1
···

z
ψ

(s
E (t1)

x1

· · · E (tn)

xn

{
ϕ

)
and again it is easy to see that

r
E(t1)
x1
· · · E(tn)

xn

z
ψ is identical to

r
E([t/x]t1)

x1
· · · E([t/x]tn)

xn

z
ψ and hence both terms to consider are iden-

tical.

If x is a free variable of
r
E(t1)
x1
· · · E(tn)

xn

z
ψ, the first term is

ιy
∆(E(t))&[E(t)/x]∆

“r
E(t1)
x1
···

z
ψ
”

&∀y
“
∆
“r
E(t1)
x1
···

z
ϕ
””

&[E(t)/x]
r
E(t1)
x1
···

z
ψ

(s
E (t1)

x1

· · · E (tn)

xn

{
ϕ

)
which we will abbreviate as ιyΨ1(ϕ1) with Ψ1 ≡ ∆(E (t)) &
[E (t)/x]∆(ψ1) & ∀y(∆(ϕ1)) & [E (t)/x]ψ1.

We already established that ϕ1 and ϕ2 are identical. Hence, in
order to apply theorem 29, we need the uniqueness conditions of
both ι-terms (which we already have), that y be not free in t (see
below) and that Ψ1 and ψ2 be interchangeable under ∆(E (t)):

`ι ∆(Ψ1) defAnt
Ψ1 `ι Ψ1 ass
Ψ1 `ι ∀y(∆(ϕ1)) & [E (t)/x]ψ1 &-elim
Ψ1 `ι [E (t)/x]ψ1 &-elim

∆(E (t)) ; ∆([E (t)/x]ψ1) & [E (t)/x]ψ1 `ι
s
E ([t/x]t1)

x1
· · · E ([t/x]tn)

xn

{
ψ induction

∆(E (t)) ,∆([E (t)/x]ψ1) ; [E (t)/x]ψ1 `ι
s
E ([t/x]t1)

x1
· · · E ([t/x]tn)

xn

{
ψ toCtxt

∆(E (t)) ; Ψ1 `ι
s
E ([t/x]t1)

x1
· · · E ([t/x]tn)

xn

{
ψ Cut3
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∆(E (t)) ; Ψ1 `ι ∆
(s
E ([t/x]t1)

x1
· · · E ([t/x]tn)

xn

{
ψ

)
defCons

Ψ1 `ι ∀y(∆(ϕ1)) &-elim

∆(E (t)) ; Ψ1 `ι ∀y(∆(ϕ2)) &
s
E ([t/x]t1)

x1
· · ·

{
ψ &-intro

∆(E (t)) ; Ψ1 `ι ψ2 &-intro

`ι ∆(ψ2) defAnt
ψ2 `ι ψ2 ass

ψ2 `ι ∀y(∆(ϕ2)) &

s
E ([t/x]t1)

x1

· · ·
{
ψ&-elim

ψ2 `ι
s
E ([t/x]t1)

x1

· · · E ([t/x]tn)

xn

{
ψ &-elim

∆(E (t)) ; ∆

(s
E ([t/x]t1)

x1

· · ·
{
ψ

)
&

s
E ([t/x]t1)

x1

· · · E ([t/x]tn)

xn

{
ψ `ι [E (t)/x]ψ1 induction

∆(E (t)) ,∆

(s
E ([t/x]t1)

x1

· · ·
{
ψ

)
;

s
E ([t/x]t1)

x1

· · · E ([t/x]tn)

xn

{
ψ `ι [E (t)/x]ψ1 toCtxt

∆(E (t)) ;ψ2 `ι [E (t)/x]ψ1 Cut3
ψ2 `ι ∀y(∆(ϕ2)) &-elim

∆(E (t)) ;ψ2 `ι ∀y(∆(ϕ2)) & [E (t)/x]ψ1 &-intro
∆(E (t)) ;ψ2 `ι ∆([E (t)/x]ψ1) defCons

∆([E (t)/x]ψ1) `ι [E (t)/x]∆(ψ1) Th. 33
∆(E (t)) ;ψ2 `ι [E (t)/x]∆(ψ1) Cut
∆(E (t)) ;ψ2 `ι [E (t)/x]∆(ψ1) & ∀y(∆(ϕ2))

& [E (t)/x]ψ1 &-intro
`ι ∆(∆(E (t))) Ddef

∆(E (t)) `ι ∆(E (t)) ass
∆(E (t)) ; `ι ∆(E (t)) toCtxt

∆(E (t)) ;ψ2 `ι Ψ1 &-intro

– If x 6≡ y and x is a free variable of
r
E(t1)
x1
· · · E(tn)

xn

z
ϕ, then the first

term, [E (t)/x]
r
E(t1)
x1
· · · E(tn)

xn

z
τ , is

ιy
∆(E(t))&[E(t)/x]∆

“r
E(t1)
x1
···E(tn)

xn

z
ψ
”

&[E(t)/x]∀y
“
∆
“r
E(t1)
x1
···E(tn)

xn

z
ϕ
””

&[E(t)/x]
r
E(t1)
x1
···E(tn)

xn

z
ψ

(
[E (t)/x]

s
E (t1)

x1

· · · E (tn)

xn

{
ϕ

)
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For the substitution [E (t)/x]
r
E(t1)
x1
· · · E(tn)

xn

z
τ to be defined, y must

not be free in t, and hence the proof is analogous to the first case.

• The other cases are easy.

2

Theorem 69 1. For any formula α and term t of the pitfol’ calculus
for which the uniqueness conditions of the expansion all of its ι-terms
are derivable in the pitfol’ calculus, if the substitution [E (t)/x]E (α) is
defined, then E ([t/x]α) is interchangeable with [E (t)/x]E (α) under the
condition ∆(E (t)), and likewise for terms τ of the pitfol’ calculus.

2. For any formula β of the pitfol calculus for which the unique-
ness conditions are derivable, and any terms t, t1, . . . , tn of the pit-
fol’ calculus, if x 6∈ FV (β) \ {x1, x2, . . . , xn}, and the substitu-

tions [E (t)/x]
r
E(t1)
x1
· · · E(tn)

xn

z
β are defined, then

r
E([t/x]t1)

x1
· · · E([t/x]tn)

xn

z
β

is interchangeable with [E (t)/x]
r
E(t1)
x1
· · · E(tn)

xn

z
β under the condition

∆(E (t)), and likewise for terms σ of the pitfol calculus.

Proof.

We prove both parts simultaneously by induction on cpl(α) resp. cpl(τ)
and

∑
i cpl(ti).

For the base case, we have

• cpl(τ) = 0, i.e., τ is a variable symbol. Then either τ ≡ x and both
terms are E (t) or τ 6≡ x and both terms are τ .

• cpl(ti) = 0 for i = 1, 2, . . . , n. We can apply the previous lemma if the
first part of this theorem holds for τ ≡ ti, which is what we just proved.

Next we handle the induction step.

For the first part, the possible shapes α and τ can take are

• τ ≡ f(τ1, τ2, . . . , τm) Easy using induction on the τi and the ERf2
rule.

• τ ≡ ιyψ(ϕ)
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– If x ≡ y or x is not a free variable of ϕ, then we have the following
situation. Either x is not a free variable of ψ, and both terms
are are ιyE(ψ)(E (ϕ)). Else, we have to show the interchangeability
of ιyE(∆′(t))&E([t/x]ψ)(E (ϕ)) and ιy∆(E(t))&[E(t)/x]E(ψ)(E (ϕ)) under the
condition ∆(E (t)). Using theorem 67.1 and induction, it is not
difficult to show that the domain formulae of both terms are in-
terchangeable.

– If x 6≡ y and x is a free variable of ϕ, then we have to
show the interchangeability of ιyE(∆′(t))&E([t/x]ψ)(E ([t/x]ϕ)) and
ιy∆(E(t))&[E(t)/x]E(ψ)([E (t)/x]E (ϕ)) under the condition ∆(E (t)). It
is again easy to show that the domain formulae of both terms are
interchangeable, but the definiens are only interchangeable under
the condition ∆(E (t)). Note that for the substitution to be de-
fined, y must not be free in t. We choose the variable symbol z
different from y and not occurring in t or ψ:

E (ψ) `ι ∃!y(E (ϕ)) UC
∆(E (t)) ; [E (t)/x]E (ψ) `ι ∃!y([E (t)/x]E (ϕ)) subst

∆(E (t)) ; E ([t/x]ψ) `ι ∃!y(E ([t/x]ϕ)) Th. 29
∆(E (t)) ; [E (t)/x]E (ψ) `ι ∃y([E (t)/x]E (ϕ)) &-elim

∆(E (t)) ; [z/y][E (t)/x]E (ψ) `ι ∃y([E (t)/x]E (ϕ)) subst
∆(E (t)) ; [z/y][E (t)/x]E (ψ) `ι ∀y(∆([E (t)/x]E (ϕ))) defCons
∆(E (t)) ; [z/y][E (t)/x]E (ψ) `ι ∆([E (t)/x]E (ϕ)) ∀-elim

∆(E (t)) ; E ([t/x]ϕ) `ι ∃y(E ([t/x]ϕ)) &-elim
∆(E (t)) ; [z/y]E ([t/x]ϕ) `ι ∃y(E ([t/x]ϕ)) subst
∆(E (t)) ; [z/y]E ([t/x]ϕ) `ι ∀y(∆(E ([t/x]ϕ))) defCons
∆(E (t)) ; [z/y]E ([t/x]ϕ) `ι ∆(E ([t/x]ϕ)) ∀-elim

∆(E (t)) ; ∆([E (t)/x]E (ϕ)) & [E (t)/x]E (ϕ) `ι E ([t/x]ϕ) induction
∆(E (t)) ,∆([E (t)/x]E (ϕ)) ; [E (t)/x]E (ϕ) `ι E ([t/x]ϕ) toCtxt
∆(E (t)) , [z/y][E (t)/x]E (ψ) ; [E (t)/x]E (ϕ) `ι E ([t/x]ϕ) CutCtxt

∆(E (t)) , [z/y][E (t)/x]E (ψ) ; `ι [E (t)/x]E (ϕ)⇒ E ([t/x]ϕ) DdRu2
∆(E (t)) ; [z/y][E (t)/x]E (ψ) `ι [E (t)/x]E (ϕ)⇒ E ([t/x]ϕ) fromCtxt

`ι ∆(∆(E (t))) Ddef
∆(E (t)) ; ∆(E (t)) , [z/y][E (t)/x]E (ψ) `ι [E (t)/x]E (ϕ)⇒ E ([t/x]ϕ) Weak

∆(E (t)) ; ∆(E (t)) & [z/y][E (t)/x]E (ψ) `ι [E (t)/x]E (ϕ)⇒ E ([t/x]ϕ) AnU
∆(E (t)) ; ∆(E ([t/x]ϕ)) & E ([t/x]ϕ) `ι [E (t)/x]E (ϕ) induction
∆(E (t)) ,∆(E ([t/x]ϕ)) ; E ([t/x]ϕ) `ι [E (t)/x]E (ϕ) toCtxt
∆(E (t)) , [z/y]E ([t/x]ψ) ; E ([t/x]ϕ) `ι [E (t)/x]E (ϕ) CutCtxt

∆(E (t)) , [z/y]E ([t/x]ψ) ; `ι E ([t/x]ϕ)⇒ [E (t)/x]E (ϕ) DdRu2
∆(E (t)) ; [z/y]E ([t/x]ψ) `ι E ([t/x]ϕ)⇒ [E (t)/x]E (ϕ) fromCtxt

∆(∆(E (t))) `ι ∆
(
E
(
∆′(t)

))
Th. 67.1

`ι ∆
(
E
(
∆′(t)

))
Cut

∆(E (t)) ; E
(
∆′(t)

)
, [z/y]E ([t/x]ψ) `ι E ([t/x]ϕ)⇒ [E (t)/x]E (ϕ) Weak

∆(E (t)) ; E
(
∆′(t)

)
& [z/y]E ([t/x]ψ) `ι E ([t/x]ϕ)⇒ [E (t)/x]E (ϕ) AnU
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∆(E (t)) ; [z/y]ψ1, [z/y]ψ2 `ι E ([t/x]ϕ)⇔ [E (t)/x]E (ϕ) &-intro
∆(E (t)) ; [z/y]ψ1, [z/y]ψ2 `ι ∀y(E ([t/x]ϕ)⇔ [E (t)/x]E (ϕ)) ∀-intro
∆(E (t)) ; [z/y]ψ1, [z/y]ψ2 `ι ιy[z/y]ψ1

(E ([t/x]ϕ))
= ιy[z/y]ψ2

([E (t)/x]E (ϕ)) CtxtEq-ι
∆(E (t)) ;ψ1, ψ2 `ι ιyψ1(E ([t/x]ϕ))

= ιyψ2([E (t)/x]E (ϕ)) subst

where we used the abbreviations ψ1 ≡ E (∆′(t)) & E ([t/x]ψ) and
ψ2 ≡∆(E (t)) & [E (t)/x]E (ψ)

Using the interchangeability of ψ1 and ψ2, the required sequents easily
follow.

• τ ≡ g(τ1, τ2, . . . , τm) where g is a defined function symbol We have

to show that E (g([t/x]τ1, . . . , [t/x]τm)), i.e.,
r
E([t/x]τ1)

x1
· · · E([t/x]τm)

xm

z
E
(
g̃∗
)
,

is interchangeable with [E (t)/x]
r
E(τ1)
x1
· · · E(τm)

xm

z
E
(
g̃∗
)

under the con-

dition ∆(E (t)), which we can obtain by induction, since indeed∑
i(cpl(τi)) < cpl(τ) = 1 +

∑
i cpl(τi).

• The other cases are easy.

For the second part, we again apply the previous lemma, for which we
need the first part to hold for all ti. We have obviously cpl(ti) ≤

∑
i cpl(ti).

If the inequality is strict, we can apply induction; if both values are equal,
we can use the first part which we just proved for cpl(τ) =

∑
i cpl(ti). 2

5.4 Equiconsistency

We define the expansion E (L) of a list of formulae L := α1, α2, . . . , αn as the
list of its expansions E (α1) , E (α2) , . . . , E (αn) . We also define the expansion
of a pitfol’ sequent Σ; Γ `ι′ α as the pitfol sequent E (Σ) ; E (Γ) `ι E (α).

As already announced, we will show that for each proof of Σ; Γ `ι′ α, we
can derive E (Σ) ; E (Γ) `ι E (α). We prove this by induction on the length of
the proof.

For the base case, a proof of length 1 is either an application of the ass
rule with ∆′(α) ≡ >, the eq rule with ∆′(t) ≡ > or a definition. These
cases are handled analogously to the corresponding cases of the induction
step below.

For the induction step, we examine the rule used to obtain the last sequent
of the proof.
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5.4.1 Expansion of a definition

We will only consider definition of function symbols explicitly; definition of
predicate symbols is handled analogously. By induction, we have E (UC(t1)),
E (UC(t2)) and so on, and we required also E (UC(g∗)) to be derivable. It is
easy to see that E (ψ `ι ∃!x(ϕ)) ≡ E (ψ) `ι ∃!x(E (ϕ)), so we actually have
E (UC(α)) ≡ UC(E (α)). From UC(E (g∗)) we easily obtain UC(E

(
g̃∗
)
).

Hence, by applying corollary 57, we have UC(
r
E(t1)
x1
· · · E(tn)

xn

z
E
(
g̃∗
)
) and we

can apply the eq rule, yielding

∆

(s
E (t1)

x1

· · · E (tn)

xn

{
E
(
g̃∗
))

`ι
s
E (t1)

x1

· · · E (tn)

xn

{
E
(
g̃∗
)

=

s
E (t1)

x1

· · · E (tn)

xn

{
E
(
g̃∗
)

Using theorem 67.2 and theorem 67.1, we get

E
(

∆′
(s

t1
x1

· · · tn
xn

{
g̃∗
))
`ι

s
E (t1)

x1

· · · E (tn)

xn

{
E
(
g̃∗
)

= E
(s

t1
x1

· · · tn
xn

{
g̃∗
)

which is by definition

E (∆′(g(t1, t2, . . . , tn))) `ι E (g(t1, t2, . . . , tn)) = E
(s

t1
x1

· · · tn
xn

{
g̃∗
)
,

the required sequent.

5.4.2 Expansion of the proposition rules

Since E (α & β) ≡ E (α)&E (β) and E (¬α) ≡ ¬E (α), the proof for these rules
is trivial.

Only the assumption rule is somewhat more complicated and we will
handle it explicitly. By induction, we have E (UC(α)) and E (Σ) ;`ι E (∆′(α)).
Using theorem 67.1, we obtain E (Σ) ;`ι ∆(E (α)) and we are able to apply
the assumption rule of the pitfol calculus, yielding the required sequent.

5.4.3 Expansion of the predicate rules

Since E (∀x(α)) ≡ ∀x(E (α)), the proof for the ∀-intro and ∀-elim rules is
trivial.

For the equality and substitution rules, we only handle the subst rule ex-
plicitly. By induction, we have E (UC(t)) and E (Σ) ; E (Γ) `ι E (α). Applying
the subst rule yields

∆(E (t)) , [E (t)/x]E (Σ) ; [E (t)/x]E (Γ) `ι [E (t)/x]E (α) .



230
CHAPTER 5. DEFINED SYMBOLS USING SIMULTANEOUS

SUBSTITUTION

Using theorems 67.1 and 69.1, we obtain the required sequent

E (∆′(t)) , E ([t/x]Σ) ; E ([t/x]Γ) `ι E ([t/x]α) .

5.4.4 Expansion of the other rules

For the iota rule, we are given E (ψ `ι ∃!x(ϕ)). As noted above, this is
identical to E (ψ) `ι ∃!x(E (ϕ)) and the iota rule of the pitfol calculus

yields E (ψ) `ι [E (ιxψ(ϕ))/x] Ẽ (ϕ). Using theorem 69.1, we easily get the
required sequent E (ψ) `ι E ([ιxψ(ϕ)/x]ϕ̃).

The other rules are analogous.

5.5 Derived rules

Most derived rules of the pitfol calculus still work unmodified in the pitfol’
calculus; only those rules that depend on the exact form of ∆(α) or ∆(t)
need to be reconsidered.

5.5.1 Ddef rule

We prove this by induction on ρ(α) and ρ(t). For the base case, α resp. t do
not contain defined symbols and we can use the old Ddef rule unmodified.

We handle the induction step by structural induction. The only new cases
are

• t ≡ g(t1, t2, . . . , tn) where g is the j-th defined function sym-
bol. We have to derive `ι′ ∆′(∆′(g(t1, t2, . . . , tn))), i.e, `ι′
∆′
(
∆′
(r

t1
x1
· · · tn

xn

z
g∗
))

. From corollary 64, we see that we can ap-

ply induction on
r
t1
x1
· · · tn

xn

z
g∗ to get the required sequent.

• t ≡ q(t1, t2, . . . , tn) where q is the j-th defined predicate symbol. This
case is analogous.

All further derived rules up to ERf2 can be copied unmodified from the
pitfol’ calculus. For ERp and ERp2, p is allowed to be a defined predicate
symbol; for ERf and ERf2, f is allowed to be a defined function symbol.

Theorem 23 also applies to the pitfol’ calculus, but since the definition
of ∆′ also uses simultaneous substitution, we have to prove a variant of
property 55 and also lemmas 60, 58 and 59 at the same time, so what we
will prove is
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Theorem 70 1. Given {
∆′(α) ;α `ι′ β
∆′(α) ; β `ι′ α

then {
∆′(A(α)) ;A(α) `ι′ A(β)

∆′(A(α)) ;A(β) `ι′ A(α)

where A(α) is a formula possibly containing α and A(β) is the same
formula where a number of instances of α are replaced by β, and

∆′(t(α)) `ι′ t(α) = t(β)

where t(α) is a term possibly containing α and t(β) is the same term
where a number of instances of α are replaced by β.

These results only hold if the uniqueness conditions for A(α), resp. t(α)
can be derived.

2. Given

∆′(t1) `ι′ t1 = t2

then analogously, 
∆′(A(t1)) ;A(t1) `ι′ A(t2)

∆′(A(t1)) ;A(t2) `ι′ A(t1)

∆′(t(t1)) `ι′ t(t1) = t(t2)

These results only hold if the uniqueness conditions for A(t1), resp.
t(t1) can be derived.

3. Given a formula α and the formula α̃ obtained from α by renaming all
its bound variables (as in the statement of the ι-rule). Then{

∆′(α) ;α `ι′ α̃
∆′(α) ; α̃ `ι′ α

Given a term t and the term t̃ obtained from t by renaming all its bound
variables. Then

∆′(t) `ι′ t = t̃

These results only hold if the uniqueness conditions for α, resp. t can
be derived.
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4. If


∆′(t1) `ι′ t1 = s1

∆′(t2) `ι′ t2 = s2

. . .

∆′(tn) `ι′ tn = sn

and the uniqueness conditions of
r
t1
x1
· · · tn

xn

z
α and

r
s1
x1
· · · sn

xn

z
α, resp.

r
t1
x1
· · · tn

xn

z
τ and

r
s1
x1
· · · sn

xn

z
τ are derivable, then for formulae α resp.

terms τ , we have
∆′
(s

t1
x1

· · · tn
xn

{
α

)
;

s
t1
x1

· · · tn
xn

{
α `ι′

s
s1

x1

· · · sn
xn

{
α

∆′
(s

t1
x1

· · · tn
xn

{
α

)
;

s
s1

x1

· · · sn
xn

{
α `ι′

s
t1
x1

· · · tn
xn

{
α

resp.

∆′
(s

t1
x1

· · · tn
xn

{
τ

)
`ι′

s
t1
x1

· · · tn
xn

{
τ =

s
s1

x1

· · · sn
xn

{
τ

if the simultaneous substitutions are defined.

If moreover ti is interchangeable with si for all i, then it is not necessary

that the uniqueness conditions of
r
s1
x1
· · · sn

xn

z
α resp.

r
s1
x1
· · · sn

xn

z
τ be

given.

5. If the uniqueness conditions of t1, t2, . . . , tn, s1, s2, . . . , sm and α
are derivable, {x1, x2, . . . , xn} ∩ (FV (α) \ {y1, y2, . . . , ym}) = ∅ and the

substitutions
r
t1
x1
· · · tn

xn

z r
s1
y1
· · · sm

ym

z
α are defined, then this formula is

interchangeable with
rr

t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
α when the uniqueness

conditions of one of both are derivable.

The analogous property for terms τ of the pitfol’ calculus also holds.

6. If the uniqueness conditions of t1, t2, . . . , tn and α are derivable,

and the substitution
r
t1
x1
· · · tn

xn

z
α is defined, then so is the substitution

r
t1
x1
· · · tn

xn

z
∆(α) and ∆

(r
t1
x1
· · · tn

xn

z
α
)
`ι

r
t1
x1
· · · tn

xn

z
∆(α). Likewise

for terms τ .

7. If the uniqueness conditions of t1, t2, . . . , tn and α are derivable, xi is

not a free variable of α, and one of the substitutions
r
t1
x1
· · · tn

xn

z
α and
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r
t1
x1
· · · ti−1

xi−1

t′i
xi

ti+1

xi+1
· · · tn

xn

z
α is defined, then both formulae are identical

and interchangeable with
r
t1
x1
· · · ti−1

xi−1

ti+1

xi+1
· · · tn

xn

z
α.

The analogous property for terms τ of the pitfol’ calculus also holds.

Proof.

We prove the theorem by induction on ρ(A(α)) and ρ(t(α)) for the first
part, on ρ(A(t1)) and ρ(t(t1)) for the second part, and on ρ(α) and ρ(τ) for
the other parts.

For the base case, no defined symbols are present in A(α), t(α), . . . and we
can prove the first three parts in the same way as theorem 23, the fifth part
in the same way as lemma 60, the sixth part in the same way as lemma 58
and the seventh part in the same way as lemma 59. (Note that β in part 1,
t2 in part 2, t1, . . . , tn, s1, . . . , sm in part 5 and t1, . . . , tn in part 6 and 7
still may contain defined symbols but this does not affect the proofs.) The
fourth part is proved by structural induction. Most cases are easy; we only
mention

• τ ≡ ιxψ(ϕ) Suppose that x is not one of x1, x2, . . . , xn (the other
case is analogous). Then we have to derive

∆′
(s

t1
x1

· · · tn
xn

{
ψ

)
& ∀x(∆′

(s
t1
x1

· · · tn
xn

{
ϕ

)
) &

s
t1
x1

· · · tn
xn

{
ψ

`ι′ ιx∆′
“r

t1
x1
··· tn
xn

z
ψ
”

&∀x
“
∆′
“r

t1
x1
··· tn
xn

z
ϕ
””

&
r
t1
x1
··· tn
xn

z
ψ

(s
t1
x1

· · · tn
xn

{
ϕ

)
= ιx

∆′
“r

s1
x1
··· tn
xn

z
ψ
”

&∀x
“
∆′
“r

s1
x1
··· tn
xn

z
ϕ
””

&
r
s1
x1
··· tn
xn

z
ψ

(s
s1

x1

· · · tn
xn

{
ϕ

)

which we will abbreviate as

∆′(Ψ1) & ∀x(∆′(Φ1)) & Ψ1 `ι′ ιx∆′(Ψ1)&∀x(∆′(Φ1))&Ψ1(Φ1)

= ιx∆′(Ψ2)&∀x(∆′(Φ2))&Ψ2(Φ2).

The derivation is as follows, where we further abbreviate
∆′(Ψ1) & ∀x(∆′(Φ1)) & Ψ1 as Ψ and where z is a variable sym-
bol different from x and not occurring free in Φ1 and Ψ:
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Ψ `ι′ ∃!x(Φ1) given
Ψ `ι′ ∃x(Φ1) &-elim
Ψ `ι′ ∆′(∀x(Φ1)) defCons

∆′(Ψ1) ; Ψ1 `ι′ Ψ2 induction
∆′(Ψ1) ; `ι′ Ψ1 ⇒ Ψ2 DdRu2

∆′(Ψ1) ; Ψ2 `ι′ Ψ1 induction
∆′(Ψ1) ; `ι′ Ψ2 ⇒ Ψ1 DdRu2
∆′(Ψ1) ; `ι′ Ψ1 ⇔ Ψ2 &-intro

∆′(∀x(Ψ1)) ; `ι′ ∀x(Ψ1 ⇔ Ψ2) SimGen
∆′(∀x(Ψ1)) `ι′ ∀x(Ψ1 ⇔ Ψ2) fromCtxt

Ψ `ι′ ∀x(Ψ1 ⇔ Ψ2) Cut
∆′(Ψ2) & ∀x(∆′(Φ2)) & Ψ2 `ι′ ∃!x(Φ2) given

Ψ,∆′(Ψ2) & ∀x(∆′(Φ2)) & Ψ2 `ι′ ∀x(Ψ1 ⇔ Ψ2) & ∃!x(Φ2) &-intro
Ψ,∆′(Ψ2) & ∀x(∆′(Φ2)) & Ψ2 `ι′ ∀x(Ψ1 ⇔ Ψ2) &-elim
Ψ,∆′(Ψ2) & ∀x(∆′(Φ2)) & Ψ2 `ι′ ιxΨ(Φ1) = ιx∆′(Ψ2)&∀x(∆′(Φ2))(Φ2) iota

`ι′ ∆(Ψ) defAnt
Ψ `ι′ ∆′(Ψ1) & ∀x(∆′(Φ1)) & Ψ1 ass
Ψ `ι′ Ψ1 &-elim

∆′(Ψ1) ; Ψ1 `ι′ Ψ2 induction
Ψ `ι′ Ψ2 Cut3
Ψ `ι′ ∆′(Ψ2) defCons
Ψ `ι′ ∀x(∆′(Φ1)) & Ψ1 &-elim
Ψ `ι′ ∀x(∆′(Φ1)) &-elim

∆′(Φ1) ; Φ2 `ι′ Φ1 induction
∆′(Φ1) ; `ι′ ∆(Φ2) defAnt
∆′(Φ1) `ι′ ∆(Φ2) fromCtxt

∀x(∆′(Φ1)) `ι′ ∀x(∆(Φ2)) SimGen
Ψ `ι′ ∀x(∆′(Φ2)) Cut
Ψ `ι′ ∆′(Ψ2) & ∀x(∆′(Φ2)) &-intro
Ψ `ι′ ∆′(Ψ2) & ∀x(∆′(Φ2)) & Ψ2 &-intro
Ψ `ι′ ιxΨ(Φ1) = ιx∆′(Ψ2)&∀x(∆′(Φ2))(Φ2) Cut

In case the ti are interchangeable with the corresponding si, we can
apply the eq rule, yielding

Ψ `ι ιxΨ(Φ1) = ιx∆′(Ψ1)&∀x(∆′(Φ1))&Ψ1(Φ1).

By induction, Ψ1 and Ψ2 are interchangeable; one easily derives that
also ∆(Ψ1) and ∆(Ψ2) are interchangeable too; the analogous results
for Φ1 and Φ2 also hold. By repeatedly applying the first part, one
easily gets the required sequent

Ψ `ι ιxΨ(Φ1) = ιx∆′(Ψ2)&∀x(∆′(Φ2))&Ψ2(Φ2).
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This concludes the base case on the induction on the expansion ranks.
Note that we were able to prove all parts of the theorem separately, which
will not be possible any more in the induction step (for example, to prove
the induction step for the first part, we need the fourth part).

For the induction step, we again perform induction on the nesting depths
of the ι-terms, which we again prove by induction on cplA(α) and cpl t(α)
for the first part, cplA(t1) and cpl t(t1) for the second part and cpl(α) + 1
and cpl(t) + 1 for the other parts.

For the first part, the new cases are

• t(α) ≡ g(t1(α), t2(α), . . . , tn(α)) where g is a defined function symbol
We can apply induction on g̃∗ on the fourth part, since ρ

(
g̃∗
)
< ρ(t(α)).

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′ g(t1(α), . . . , tn(α)) =

s
t1(α)

x1

· · · tn(α)

xn

{
g̃∗ definition

∆′
(s

t1(β)

x1

· · ·
{
g̃∗
)
`ι′ g(t1(β), . . . , tn(β)) =

s
t1(β)

x1

· · · tn(β)

xn

{
g̃∗ definition

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′

s
t1(α)

x1

· · · tn(α)

xn

{
g̃∗ =

s
t1(β)

x1

· · · tn(β)

xn

{
g̃∗ induction

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′ g(t1(α), . . . , tn(α)) =

s
t1(β)

x1

· · · tn(β)

xn

{
g̃∗ ET2

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′ ∆′

(s
t1(α)

x1

· · ·
{
g̃∗
)

& ∆′
(s

t1(β)

x1

· · ·
{
g̃∗
)

defCons

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′ ∆′

(s
t1(β)

x1

· · · tn(β)

xn

{
g̃∗
)

&-elim

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′ g(t1(β), . . . , tn(β)) =

s
t1(β)

x1

· · · tn(β)

xn

{
g̃∗ Cut

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′

s
t1(β)

x1

· · · tn(β)

xn

{
g̃∗ = g(t1(β), . . . , tn(β)) ESy2

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′ g(t1(α), . . . , tn(α)) = g(t1(β), . . . , tn(β)) ET2

Note that to apply the definition rule, we have to provide UC(t1(α)),
UC(t2(α)), . . . , which are given, and UC(t1(β)), UC(t2(β)), which are
easy to obtain using induction on the ti(α) and the UC rule.

In the proof above, we supposed that in both applications of the defi-
nition rule, the result of renaming the bound variables in g∗ was twice
the same. Since the first application of the definition rule uses a renam-
ing of bound variables of g∗ in which no free variable of ti(α) is bound
and the second application uses a renaming of bound variables of g∗ in
which no free variable of ti(β) is bound, it might well be possible that



236
CHAPTER 5. DEFINED SYMBOLS USING SIMULTANEOUS

SUBSTITUTION

both formulae are different, so we will denote the latter as ˜̃g∗. Finally,
we consider an alphabetic variant of g∗ in which no free variable of
both ti(α) and ti(β) is bound and denote it as ĝ∗. It is easy to see thatr
t1(α)
x1
· · · tn(α)

xn

z
g̃∗ and

r
t1(α)
x1
· · · tn(α)

xn

z
ĝ∗ are alphabetic variants of each

other, and so are
r
t1(β)
x1
· · · tn(β)

xn

z ˜̃g∗ and
r
t1(β)
x1
· · · tn(β)

xn

z
ĝ∗. Hence we

can start our proof as follows:

∆′
(s

t1(α)

x1

· · ·
{
g̃∗
)
`ι′ g(t1(α), . . . , tn(α)) =

s
t1(α)

x1

· · · tn(α)

xn

{
g̃∗ definition

∆′
(s

t1(β)

x1

· · ·
{ ˜̃g∗) `ι′ g(t1(β), . . . , t2(β)) =

s
t1(β)

x1

· · · tn(β)

xn

{ ˜̃g∗ definition

∆′
(s

t1(α)

x1

· · ·
{
ĝ∗
)
`ι′

s
t1(α)

x1

· · · tn(α)

xn

{
ĝ∗ =

s
t1(β)

x1

· · · tn(β)

xn

{
ĝ∗ induction

and then use induction on the third part to obtain

∆′
(s

t1(α)

x1

· · ·
{
ĝ∗
)
`ι′ g(t1(α), . . . , tn(α)) =

s
t1(α)

x1

· · · tn(α)

xn

{
ĝ∗

and

∆′
(s

t1(β)

x1

· · ·
{
ĝ∗
)
`ι′ g(t1(β), . . . , tn(β)) =

s
t1(β)

x1

· · · tn(β)

xn

{
ĝ∗

We then continue the proof as before to end with

∆′
(s

t1(α)

x1

· · · tn(α)

xn

{
ĝ∗
)
`ι′ g(t1(α), . . . , tn(α)) = g(t1(β), . . . , tn(β))

which we can easily transform into the required sequent using induction
on the third part.

• A(α) ≡ q(t1(α), t2(α), . . . , tn(α)) where q is a defined predicate symbol
Analogous.

The new cases for the second part are almost identical.
For the third part, the new cases involving defined symbols are easy:

• t ≡ g(t1, t2, . . . , tn) By structural induction, we have ∆′(ti) `ι′ ti =
t̃i for all i = 1, . . . , n. We can apply induction on the second part
repeatedly (here again we need the induction on cpl(t) + 1 and not
cpl(t)), yielding
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∆′(g(t1, t2, t3, . . . , tn)) `ι′ g(t1, t2, t3, . . . , tn) = g(t̃1, t2, t3, . . . , tn) induction

∆′(g(t1, t2, t3, . . . , tn)) `ι′ ∆′(g(t1, t2, t3, . . . )) & ∆′
(
g(t̃1, t2, t3, . . . )

)
defCons

∆′(g(t1, t2, t3, . . . , tn)) `ι′ ∆′
(
g(t̃1, t2, t3, . . . , tn)

)
&-elim

∆′
(
g(t̃1, t2, t3, . . . , tn)

)
`ι′ g(t̃1, t2, t3, . . . , tn) = g(t̃1, t̃2, t3, . . . , tn) induction

∆′(g(t1, t2, t3, . . . , tn)) `ι′ g(t̃1, t2, t3, . . . , tn) = g(t̃1, t̃2, t3, . . . , tn) Cut

∆′(g(t1, t2, t3, . . . , tn)) `ι′ g(t1, t2, t3, . . . , tn) = g(t̃1, t̃2, t3, . . . , tn) ET2

∆′(g(t1, t2, t3, . . . , tn)) `ι′ ∆′
(
g(t̃1, t2, t3, . . . )

)
& ∆′

(
g(t̃1, t̃2, t3, . . . )

)
defCons

∆′(g(t1, t2, t3, . . . , tn)) `ι′ ∆′
(
g(t̃1, t̃2, t3, . . . )

)
&-elim

∆′
(
g(t̃1, t̃2, t3, . . . , tn)

)
`ι′ g(t̃1, t̃2, t3, . . . , tn) = g(t̃1, t̃2, t̃3, t4, . . . , tn) induction

...

∆′
(
g(t̃1, . . . , t̃n−1, tn)

)
`ι′ g(t̃1, . . . , t̃n−1, tn) = g(t̃1, t̃2, . . . , t̃n−1, t̃n) induction

∆′(g(t1, t2, t3, . . . , tn)) `ι′ g(t̃1, . . . , t̃n−1, tn) = g(t̃1, t̃2, . . . , t̃n−1, t̃n) Cut

∆′(g(t1, t2, t3, . . . , tn)) `ι′ g(t1, t2, t3, . . . , tn) = g(t̃1, t̃2, . . . , t̃n−1, t̃n) ET2

• α ≡ q(t1, t2, . . . , tn) Analogous.

For the fourth part, the new cases are

• t ≡ g(τ1, τ2, . . . , τm) We have to derive

∆′

(tr
t1
x1
· · · tn

xn

z
τ1

y1

· · ·

r
t1
x1
· · · tn

xn

z
τm

ym

|

g̃∗

)

`ι′ g
(s

t1
x1

· · · tn
xn

{
τ1, . . . ,

s
t1
x1

· · · tn
xn

{
τm

)
= g

(s
s1

x1

· · · sn
xn

{
τ1, . . . ,

s
s1

x1

· · · sn
xn

{
τm

)

Induction on the fourth part on
r
τ1
y1
· · · τm

ym

z
g̃∗ yields (the required

uniqueness conditions can be obtained from an application of the defi-
nition rule, as below)

∆′
(s

t1
x1

· · · tn
xn

{ s
τ1

y1

· · · τm
ym

{
g̃∗
)
`ι′

s
t1
x1

· · · tn
xn

{ s
τ1

y1

· · · τm
ym

{
g̃∗

=

s
s1

x1

· · · sn
xn

{ s
τ1

y1

· · · τm
ym

{
g̃∗
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Applying induction on the fifth part, we see that this is interchangeable
with

∆′

(tr
t1
x1
· · · tn

xn

z
τ1

y1

· · ·

|

g̃∗

)
`ι′

tr
t1
x1
· · · tn

xn

z
τ1

y1

· · ·

r
t1
x1
· · · tn

xn

z
τm

ym

|

g̃∗

=

tr
s1
x1
· · · sn

xn

z
τ1

y1

· · ·

|

g̃∗

and using induction on the first part, we actually can derive this se-
quent. The definition rule yields

∆′
(
g

(s
t1
x1
· · · tn

xn

{
τ1, . . .

))
`ι′ g

(s
t1
x1
· · · tn

xn

{
τ1, . . .

)
=

tr
t1
x1
· · · tnxn

z
τ1

x1
· · ·

|

g̃∗

and an analogous sequent for the simultaneous substitu-
tion with the si. (Note that the antecedent is actually

∆′
(rr

t1
x1
··· tn
xn

z
τ1

y1
· · ·

r
t1
x1
··· tn
xn

z
τm

ym

z
g̃∗
)

, given the definition of ∆′.) Using

the ET2 and ERf2 rules, the required sequent is now easily obtained.

• α ≡ q(τ1, τ2, . . . , τm) Analogous.

For the fifth part, the new cases are

• t ≡ g(τ1, τ2, . . . , τk) We have to show

that
r
t1
x1
· · · tn

xn

z r
s1
y1
· · · sm

ym

z
g(τ1, τ2, . . . , τk) and

rr
t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
g(τ1, τ2, . . . , τk) are interchangeable.

Induction on each of the τj yields the interchangeability ofr
t1
x1
· · · tn

xn

z r
s1
y1
· · · sm

ym

z
τj and

rr
t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
τj; hence we

can apply induction on g̃∗ on the fourth part to obtain the in-

terchangeability of
rr

t1
x1
··· tn
xn

zr
s1
y1
··· sm
ym

z
τ1

z1
· · ·

r
t1
x1
··· tn
xn

zr
s1
y1
··· sm
ym

z
τk

zk

z
g̃∗ and

ss
J t1x1 ··· tnxn Ks1

y1
···J t1x1 ··· tnxn Ksm

ym

{
τ1

z1
· · ·

s
J t1x1 ··· tnxn Ks1

y1
···J t1x1 ··· tnxn Ksm

ym

{
τk

zk

{
g̃∗.

Using the definition axiom and the ET2 and ERf2 rules as above,
it is easy to show that the former term is interchangeable with

g
(r

t1
x1
· · · tn

xn

z r
s1
y1
· · · sm

ym

z
τ1, . . . ,

r
t1
x1
· · · tn

xn

z r
s1
y1
· · · sm

ym

z
τk

)
, i.e., the

second term needed, and the latter term is interchangeable with

g
(rr

t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
τ1, . . . ,

rr
t1
x1
··· tn
xn

z
s1

y1
· · ·

r
t1
x1
··· tn
xn

z
sm

ym

z
τk

)
,

i.e., the first term needed.
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• α ≡ q(τ1, τ2, . . . , τk) Analogous.

For the sixth part, the new cases are

• t ≡ g(τ1, τ2, . . . , τk) Induction on
r
τ1
y1
· · · τk

yk

z
g̃∗ yields

∆′
(s

t1
x1

· · · tn
xn

{ s
τ1

y1

· · · τk
yk

{
g̃∗
)
`ι′

s
t1
x1

· · · tn
xn

{
∆′
(s

τ1

y1

· · · τk
yk

{
g̃∗
)
.

Using the fifth part, we can rewrite the antecedent into the required

∆′
(rr

t1
x1
··· tn
xn

z
τ1

y1
· · ·

r
t1
x1
··· tn
xn

z
τk

yk

z
g̃∗
)

.

• α ≡ q(τ1, τ2, . . . , τk) Analogous.

For the seventh part, the new cases are

• t ≡ g(τ1, τ2, . . . , τk) Apply induction on the seventh part on each of
the τi, then apply the second part.

• α ≡ q(τ1, τ2, . . . , τk) Analogous.

2

Corollary 24, theorem 25 and corollary 26 can be transferred unmodified
to the pitfol’ calculus.

Note that these theorems in combination with the definition rule yield

that we may interchange g(t1, t2, . . . , tn) and
r
t1
x1
. . . tn

xn

z
g̃∗ where g is a de-

fined function symbol, and likewise for defined predicate symbols.

Theorem 27 also holds in the pitfol’ calculus; we again have to prove
somewhat more:

Theorem 71 1. Given {
Σ,∆′(α) ;α `ι′ β
Σ,∆′(α) ; β `ι′ α

then {
Σ,∆′(A(α)) ;A(α) `ι′ A(β)

Σ,∆′(A(α)) ;A(β) `ι′ A(α)

where A(α) is a formula possibly containing α and A(β) is the same
formula where a number of instances of α are replaced by β, and

Σ; ∆′(t(α)) `ι′ t(α) = t(β)
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where t(α) is a term possibly containing α and t(β) is the same term
where a number of instances of α are replaced by β.

These results only hold if all of the following restrictions are met:

• If α is replaced by β inside a quantifier ∀x, then x must not be a
free variable of Σ.

• The uniqueness conditions for A(α), resp. t(α) must be derivable.

• When α is replaced by β inside a ι-term ιxψ(α)(ϕ(α)), then the
uniqueness conditions for both ιxψ(α)(ϕ(α)) and ιxψ(β)(ϕ(β)) must
be derivable and x must not be a free variable of Σ.

2. Given
Σ; ∆′(t1) `ι′ t1 = t2

then analogously,
Σ,∆′(A(t1)) ;A(t1) `ι′ A(t2)

Σ,∆′(A(t1)) ;A(t2) `ι′ A(t1)

Σ; ∆′(t(t1)) `ι′ t(t1) = t(t2)

with analogous restrictions as in the first case.

3. If


Σ; ∆′(t1) `ι′ t1 = s1

Σ; ∆′(t2) `ι′ t2 = s2

. . .

Σ; ∆′(t2) `ι′ tn = sn

and the uniqueness conditions of
r
t1
x1
· · · tn

xn

z
α and

r
s1
x1
· · · sn

xn

z
α, resp.

r
t1
x1
· · · tn

xn

z
τ and

r
s1
x1
· · · sn

xn

z
τ are derivable, then for formulae α resp.

terms τ , we have
Σ,∆′

(s
t1
x1

· · · tn
xn

{
α

)
;

s
t1
x1

· · · tn
xn

{
α `ι′

s
s1

x1

· · · sn
xn

{
α

Σ,∆′
(s

t1
x1

· · · tn
xn

{
α

)
;

s
s1

x1

· · · sn
xn

{
α `ι′

s
t1
x1

· · · tn
xn

{
α

resp.

Σ; ∆′
(s

t1
x1

· · · tn
xn

{
τ

)
`ι′

s
t1
x1

· · · tn
xn

{
τ =

s
s1

x1

· · · sn
xn

{
τ

These results only hold if all of the following restrictions are met:
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• For each subformula of α of the form ∀x(β), x must not be a free
variable of Σ.

• For each subterm of α of the form ιxψ(ϕ), x must not be a free
variable of Σ.

and similar restrictions for terms τ .

Proof.
Analogous to theorem 70, by adding Σ in front of the context of all

sequents involved. 2

Corollary 28 transfers unmodified to the pitfol’ calculus, just as all fol-
lowing theorems and corollaries up to theorem 32.

In general, theorem 33 does not hold in the pitfol’ calculus. As a coun-
terexample, define g(x, y) as ιxy=ιx∀x(x=x)∨x=x(x=y)(x = y) and take a term t
for which x is not a free variable of t. Then we have

∆′([t/x]g(x, y)) ≡∆′(g(t, y))

≡∆′
(s

t

x

y

y

{
ιxy=ιx∀x(x=x)∨x=x(x=y)(x = y)

)

≡∆′

ιx∆′(J tx yyK(y=ιx∀x(x=x)∨x=x(x=y)))
&J tx yyK(y=ιx∀x(x=x)∨x=x(x=y))

(x = y)


≡ (¬(∀x(x = x))⇒ (∆′(t) & ∆′(t))) & ∆′(t) & (∀x(x = x) ∨ t = t)

& y = ιx(¬(∀x(x=x))⇒(∆′(t)&∆′(t)))&∆′(t)&(∀x(x=x)∨t=t)(x = y)

≡ ((¬∀x(x = x))⇒ (∆′(t) & ∆′(t))) & ∆′(t) & (∀x(x = x) ∨ t = t)

and

[t/x]∆′(g(x, y)) ≡ [t/x]∆′
(s

x

x

y

y

{
ιxy=ιx∀x(x=x)∨x=x(x=y)(x = y)

)

≡ [t/x]∆′

ιx∆′(Jxx yyK(y=ιx∀x(x=x)∨x=x(x=y)))
&Jxx yyK(y=ιx∀x(x=x)∨x=x(x=y))

(x = y)


≡ [t/x]∆′

(
ιx(∀x(x=x)∨x=x)&y=ιx∀x(x=x)∨x=x(x=y)(x = y)

)
≡ [t/x]

(
(∀x(x = x) ∨ x = x) & y = ιx∀x(x=x)∨x=x(x = y)

)
≡ (∀x(x = x) ∨ t = t) & y = ιx∆′(t)&(∀x(x=x)∨t=t)(x = y)
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It is not difficult to see that ∆′([t/x]g(x, y)) is a validity, so if theorem 33
would hold, we could derive

`ι′ (∀x(x = x) ∨ t = t) & y = ιx∆′(t)&(∀x(x=x)∨t=t)(x = y)
`ι′ y = ιx∆′(t)&(∀x(x=x)∨t=t)(x = y) &-elim
`ι′ ∆′(t) & (∀x(x = x) ∨ t = t) defCons
`ι′ ∆′(t) &-elim

for any term t. Taking t ≡ ιx¬∀x(x=x)(x = y), this would yield a derivation
of `ι′ ¬∀x(x = x), which is impossible by the equiconsistency result.

However, in the sequel we will prove a variant of theorem 33 (theorem 73).
Since we used theorem 33 in the derivation of the PartCons3 rule, we cannot
use this rule in the pitfol’ calculus; in the sequel, we will prove the slightly
modified PartCons4 rule.

For property 34 until corollary 43, the proofs are unmodified in the pit-
fol’ calculus.

For theorem 44, extra cases are

• τ ≡ g(τ1, τ2, . . . , τn) We have to derive

∆′
(r

[t1/x]τ1
x1

. . . [t1/x]τn
xn

z
g̃∗
)
`ι′ g([t1/x]τ1, . . . , [t1/x]τn) = g([t2/x]τ1, . . . , [t2/x]τn)

and an analogous sequent where t1 and t2 are interchanged. We will
only derive the first sequent explicitly. Using the interchange theorem,
it suffices to derive

∆′
(s

[t1/x]τ1

x1

. . .
[t1/x]τn
xn

{
g̃∗
)
`ι′

s
[t1/x]τ1

x1

. . .
[t1/x]τn
xn

{
g̃∗

=

s
[t2/x]τ1

x1

. . .
[t2/x]τn
xn

{
g̃∗

which is readily obtained by theorem 70.4.

• τ ≡ q(τ1, τ2, . . . , τn) Analogous.

Lemma 45 and property 46 can also be transferred unmodified.
Since R and D are not defined for formulae containing defined symbols,

we will skip the next few theorems.
Lemma 50 transfers unmodified to the pitfol’ calculus.
Next we consider theorem 51. The new cases are

• τ ≡ g(t1, t2, . . . , tn) We will only derive one of the two required se-
quents; the other is analogous. Induction yields ∆′([t/x]ti) `ι′ [t

′
/x]ti =

[t/x]ti for i = 1, 2, . . . , n. We can again use theorem 70.4 which yields

∆′
(s

[t/x]t1
x1

· · · [
t/x]tn
xn

{
g̃∗
)
`ι′

s
[t/x]t1
x1

· · · [
t/x]tn
xn

{
g̃∗ =

s
[t′/x]t1
x1

· · · [
t′/x]tn
xn

{
g̃∗
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and again invoke the interchange theorem to obtain the required se-
quent.

• τ ≡ q(t1, t2, . . . , tn) Analogous.

Theorem 52 also holds in the pitfol’ calculus:
Proof.

The proof of the first part also holds here.
For the second part, new cases arise when α or τ is a defined symbol.

We will consider the case τ ≡ g(t1, . . . , tn); the case α ≡ q(t1, . . . , tn) is
analogous. Induction and the ESy2 rule yield ∆([t/x]ti) `ι [t/x]ti = Jt/xKti
for all i = 1, . . . , n; hence we can apply theorem 70.4 to obtain

∆′
(r

[t/x]t1
x1
· · · [t/x]tn

xn

z
ĝ∗
)
`ι′

r
[t/x]t1
x1
· · · [t/x]tn

xn

z
ĝ∗ =

r
Jt/xKt1
x1
· · · Jt/xKtn

xn

z
ĝ∗

where ĝ∗ is an alphabetic variant of g∗ in which the bound variables differ
from the free variables of t and the ti. Using the definition rule and theo-
rem 70.3, we can easily show to be interchangeable with

∆′(g([t/x]t1, . . . , [t/x]tn)) `ι′ g([t/x]t1, . . . , [t/x]tn) = g(Jt/xKt1, . . . , Jt/xKtn)

Applying ESy2 then finally yields the third required sequent, from which the
first one readily follows.

To derive the second sequent, note that by induction, we have that [t/x]ti
and Jt/xKti are interchangeable under the condition ∆(t) for all i = 1, . . . , n;
hence we can apply theorem 71.3 to get the sequent

∆′(t) ; ∆′
(s

Jt/xKt1
x1

· · · J
t/xKtn
xn

{
ĝ∗
)
`ι′

s
[t/x]t1
x1

· · ·
{
ĝ∗ =

s
Jt/xKt1
x1

· · ·
{
ĝ∗,

from which we easily obtain the required sequent.
For the third part, again new cases arise when α or τ is a defined symbol;

these are handled easily using theorem 70.4. 2

Property 55 also holds in the pitfol’ calculus; this follows easily from
theorem 70.4.

Lemma 56 also holds in the pitfol’ calculus.
Proof.

We again only explicitly mention the case τ ≡ g(τ1, τ2, . . . , τm). Induction
yields for all i

∆

(s
t1
x1

· · · tn
xn

{
τi

)
`ι
[
t′1
x1

· · · t
′
n

xn

]
τi =

s
t1
x1

· · · tn
xn

{
τi
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hence we can apply theorem 70.4 to get

∆′

(tr
t1
x1
· · · tn

xn

z
τ1

y1

· · ·

|

ĝ∗

)
`ι′

tr
t1
x1
· · · tn

xn

z
τ1

y1

· · ·

r
t1
x1
· · · tn

xn

z
τm

ym

|

ĝ∗

=

t[
t′1
x1
· · · t′n

xn

]
τ1

y1

[
t′1
x1
· · · t′n

xn

]
τm

ym
· · ·

|

ĝ∗

where ĝ∗ is an alphabetic variant of g∗ whose bound variables do not occur

free in all
r
t1
x1
· · · tn

xn

z
τi and

[
t′1
x1
· · · t′n

xn

]
τi.

Using the machinery developed above, this sequent is easily transformed
into the required sequent. 2

Corollary 57 also holds in the pitfol’ calculus and we already established
the same about lemmas 58 up to 60 in the proof of theorem 70.

As already announced, we will prove a variant of theorem 33; first we
prove the following lemma.

Lemma 72 For each formula α and term t of the pitfol’ calculus of which
the uniqueness conditions are derivable, Jt/xKα and

q
t
x

y
α are interchangeable

if at least one of both substitutions is defined (and then, so is the other one).
Analogously for terms τ .

Proof.
We prove this by structural induction. The only case where the definition

of both substitutions differs is the case τ ≡ ιyψ(ϕ); the other cases are easy.
Using theorem 52.1 and the definition of simultaneous substitution, we

have the following possibilities:

• x ≡ y We have to show

ιy∆′(Jt/xKψ)&Jt/xKψ(ϕ) 
 ιy∆′(J txKψ)&∀y(∆′(ϕ))&J txKψ(ϕ).

• x 6≡ y and x is not free in ϕ We have to show

ιy∆′(Jt/xKψ)&Jt/xKψ(ϕ) 
 ιy∆′(J txKψ)&∀y(∆′(J txKϕ))&J txKψ

(s
t

x

{
ϕ

)
.

Since x is not free in ϕ, the latter term is ιx∆′(J txKψ)&∀y(∆′(ϕ))&J txKψ(ϕ).

• x 6≡ y and x is free in ϕ We have to show

ιy∆′(Jt/xKψ)&∀y(∆′(Jt/xKϕ))&Jt/xKψ(Jt/xKϕ) 
 ιy∆′(J txKψ)&∀y(∆′(J txKϕ))&J txKψ

(s
t

x

{
ϕ

)
.
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Applying structural induction immediately yields the last case.
For the first two cases, one easily derives ∆′

(q
t
x

y
ψ
)

& ∀y(∆′(ϕ)) &
q
t
x

y
ψ ⇀

∆′(Jt/xKψ) & Jt/xKψ so we only have left to derive ∆′(Jt/xKψ) & Jt/xKψ ⇀
∆′
(q

t
x

y
ψ
)
&∀y(∆′(ϕ))&

q
t
x

y
ψ which is easy except for ∆′(Jt/xKψ)&Jt/xKψ ⇀

∀y(∆′(ϕ)):

ψ `ι′ ∃!y(ϕ) uniqueness condition
ψ `ι′ ∃y(ϕ) &-elim
ψ `ι′ ∀y(∆′(ϕ)) defCons

∆′(Jt/xKψ) ,∆′(Jt/xK∀y(∆′(ϕ)))︸ ︷︷ ︸
≡∆′(∀y(∆′(ϕ)))

; Jt/xKψ `ι′ Jt/xK∀y(∆′(ϕ))︸ ︷︷ ︸
≡∀y(∆′(ϕ))

RefSubst

`ι′ ∆′(∆′(∀y(ϕ))) Ddef
∆′(Jt/xKψ) ; Jt/xKψ `ι′ ∀y(∆′(ϕ)) CutCtxt

∆′(Jt/xKψ) & Jt/xKψ `ι′ ∀y(∆′(ϕ)) FromCtxt

2

Theorem 73 For each formula α and term t of the pitfol’ calculus of which
the uniqueness conditions are derivable, if the substitution Jt/xKα is defined,
then also the substitution Jt/xK∆′(α) is defined.

If the uniqueness conditions for α and t are derivable, then ∆′(Jt/xKα) `ι′
Jt/xK∆′(α).

The analogous theorem for terms τ of the pitfol’ calculus also holds.

Proof.
By induction on ρ(τ) and ρ(α), which we prove in turn by induction on

the complexity of τ and α. Most cases are analogous to theorem 33.

• τ ≡ ιyψ(ϕ)

– x ≡ y or x is not a free variable of ϕ Using theorem 52.1, we
have to prove ∆′(Jt/xKψ) & Jt/xKψ `ι′ Jt/xKψ, which is easy:

∆′(Jt/xKψ) ; Jt/xKψ `ι′ Jt/xKψ AssCtxt
∆′(Jt/xKψ) & Jt/xKψ `ι′ Jt/xKψ fromCtxt

– x 6≡ y and x is a free variable of ϕ Again using theorem 52.1,
we have to prove ∆′(Jt/xKψ) & ∀y(∆′(Jt/xKϕ)) & Jt/xKψ `ι′ Jt/xKψ:

∆′(Jt/xKψ) ; Jt/xKψ `ι′ Jt/xKψ AssCtxt
`ι′ ∆′(∆′(∀y(Jt/xKϕ))) Ddef

∆′(Jt/xKψ) ;∀y(∆′(Jt/xKϕ)), Jt/xKψ `ι′ Jt/xKψ Weak
∆′(Jt/xKψ) ;∀y(∆′(Jt/xKϕ)) & Jt/xKψ `ι′ Jt/xKψ AnU

∆′(Jt/xKψ) & ∀y(∆′(Jt/xKϕ)) & Jt/xKψ `ι′ Jt/xKψ fromCtxt
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• τ ≡ g(t1, . . . , tn) where g is a defined function symbol We have to
derive

∆′
(s

Jt/xKt1
x1

. . .
Jt/xKtn
xn

{
g̃∗
)
`ι′ Jt/xK∆′

(s
t1
x1

. . .
tn
xn

{
g̃∗
)

Using theorem 55 and lemma 72, we have

∆′
(s

Jt/xKt1
x1

. . .
Jt/xKtn
xn

{
g̃∗
)
`ι′ ∆′

(sq
t
x

y
t1

x1

. . .

q
t
x

y
tn

xn

{
g̃∗
)

Using theorem 70.5, we get

∆′
(s

Jt/xKt1
x1

. . .
Jt/xKtn
xn

{
g̃∗
)
`ι′ ∆′

(s
t

x

{ s
t1
x1

. . .
tn
xn

{
g̃∗
)

Again using lemma 72, we transform this into

∆′
(s

Jt/xKt1
x1

. . .
Jt/xKtn
xn

{
g̃∗
)
`ι′ ∆′

(
Jt/xK

s
t1
x1

. . .
tn
xn

{
g̃∗
)

Using induction on the ρ(τ), we obtain the required sequent.

2

Since we used theorem 33 in the derivation of the PartCons3 rule, we
cannot use this rule in the pitfol’ calculus. However, we are now able to
derive

PartCons4
Σ; Γ `ι′ Jt/xKα prem
Σ; Γ `ι′ ∆′(Jt/xKα) defCons

∆′(Jt/xKα) `ι′ Jt/xK∆′(α) Theorem 73
Σ; Γ `ι′ Jt/xK∆′(α) Cut
Σ; Γ `ι′ Jt/xK(∆′(α) & α) &-intro

`ι′ ∆(∆(α)) Ddef
∆(α) `ι ∆(α) ass

`ι′ ∆(α)⇒∆(α) DdRu2
`ι′ ∆(∆(α) & α) &-intro
`ι′ ∀x(∆′(∆′(α) & α)) ∀-intro

∀x(¬(∆′(α) & α)) `ι′ ∀x(¬(∆′(α) & α)) ass
∀x(¬(∆′(α) & α)) `ι′ ¬(∆′(α) & α) ∀-elim

∆′(∀x(∆′(α) & α)) ,
∆′(Jt/xK(∆′(α) & α)) ;

∀x(¬(∆′(α) & α)) `ι′ Jt/xK¬(∆′(α) & α) RefSubst
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∆′(Jt/xK(∆′(α) & α)) ;∀x(¬(∆′(α) & α)) `ι′ Jt/xK¬(∆′(α) & α) CutCtxt

Σ,∆′(Jt/xK(∆′(α) & α)) ;
Γ,∀x(¬(∆′(α) & α)) `ι′ ¬∀x(¬(∆′(α) & α)) contra

Σ,∆′(Jt/xK(∆′(α) & α)) ; Γ `ι′ ¬∀x(¬(∆′(α) & α)) SeDe
Σ; ∆′(Jt/xK(∆′(α) & α)) ,Γ `ι′ ¬∀x(¬(∆′(α) & α)) FromCtxt2

Σ; Γ `ι′ ∆′(Jt/xK(∆′(α) & α)) defCons
Σ; Γ `ι′ ¬∀x(¬(∆′(α) & α)) Cut

5.6 Semantics

We extend the notion of interpretation from the pitfol calculus to the
pitfol’ calculus with

• If g is a defined function symbol, then I(g(t1, t2, . . . , tn)) :=
IIt1x1

It2
x2

...

...
Itn
xn (g∗).

• If q is a defined predicate symbol, then I(q(t1, t2, . . . , tn)) :=
IIt1x1

It2
x2

...

...
Itn
xn (q∗).

Note that it is possible that one or more of the ti are undefined in I,
whereas in the definition of interpretation we required that a variable symbol
always be interpreted as an element of the domain ω. Hence we define an
extended interpretation which is identical to an “ordinary” interpretation,
with the exception that a variable symbol may be given the status ‘undefined’
in an extended interpretation (in other words, I(x) = ⊥). We will call an
interpretation in which all variables are interpreted as elements of the domain
ω an ordinary interpretation to highlight the difference with extended
interpretations. Given an (extended or ordinary) interpretation I and a
variable symbol x, the notation I⊥x then indicates the extended interpretation
which is identical to I except that I⊥x (x) = ⊥.

Remark that even in an extended interpretation I, the formula ∀x(α) is
valid if for each a ∈ ω, α is valid in Iax , so even in extended interpretations,
we still do not consider the cases where I(x) is undefined to determine the
interpretation of ∀x(α). The same holds for the interpretation of ι-terms.
Also remark that the definitions of consequence and sound sequent are
unchanged and only consider ordinary interpretations.

Theorem 74 1. Given a formula α and terms t1, t2, . . . , tn of the pit-
fol’ calculus. If the uniqueness conditions of α, t1, . . . and tn hold and
the uniqueness conditions of all defining terms and formulae hold, then

for any ordinary interpretation I, I
(r

t1
x1
· · · tn

xn

z
α
)

= IIt1x1

...

...
Itn
xn (α) if

the simultaneous substitution is defined, and likewise for terms τ .
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2. Given a formula β of the pitfol’ calculus for which the uniqueness
conditions hold. If the uniqueness conditions of all defining terms and
formulae hold, then for any ordinary interpretation I, β is defined in
I if and only if either ∆′(β) is > or valid in I and β is undefined in I
if and only if ∆′(β) 6≡ > and ∆′(β) is invalid in I.

The analogous theorem for terms σ also holds.

Note that the second part implies that ∆′(β) is either > or defined in I.
Proof.

We prove this by simultaneous induction on ρ
(r

t1
x1
· · · tn

xn

z
α
)

and ρ(β),

which we prove in turn by structural induction. The interesting cases are

• If τ ≡ xi then we for the first part, have to show that I(ti) =
IIt1x1

...

...
Itn
xn (xi), which is trivial.

• If σ ≡ x then we note that x is defined in any interpretation, and
∆(xi) ≡ >.

• If τ ≡ g(τ1, τ2, . . . , τm) where g is a defined function symbol, we have
to show that

I
(
g

(s
t1
x1

· · · tn
xn

{
τ1, . . . ,

s
t1
x1

· · · tn
xn

{
τm

))
= IIt1x1

...

...
Itn
xn (g(τ1, . . . , τm))

i.e.,

I
I
r
t1
x1
··· tn
xn

z
τ1

y1
...
...

I
r
t1
x1
··· tn
xn

z
τm

ym (g∗) = IIt1x1

...

...
Itn
xn
Iτ1
y1

...

...
Iτm
ym (g∗)

Induction on each of the τi yields that the left hand side equals

II
It1
x1

...

...
Itn
xn (τ1)
y1

...

...

IIt1x1
...
...
Itn
xn (τm)
ym (g∗)

Since the only free variables of g∗ are (a subset of) {y1, y2, . . . , ym}, it
is now easy to see that this is equal to IIt1x1

...

...
Itn
xn
Iτ1
y1

...

...
Iτm
ym (g∗).

• If σ ≡ g(σ1, σ2, . . . , σm) where g is a defined function symbol, we first

have to show that if σ is defined in I, then ∆′
(r

σ1

y1
· · · σm

ym

z
g̃∗
)

is either

> or is valid in I and vice versa.

By definition, σ is defined in I if and only if g∗ is defined in IIσ1
y1

...

...
Iσm
ym ;

one sees easily that this in turn is equivalent with g̃∗ being defined in
IIσ1
y1

...

...
Iσm
ym .
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By corollary 64, ρ
(r

σ1

y1
· · · σm

ym

z
g̃∗
)
< ρ(g(σ1, . . . , σm)), so we can apply

induction on the first part and get that g̃∗ is defined in IIσ1
y1

...

...
Iσm
ym if and

only if
r
σ1

y1
· · · σm

ym

z
g̃∗ is defined in I. Applying induction on the second

part, this finally is equivalent with ∆
(r

σ1

y1
· · · σm

ym

z
g̃∗
)

being either >
or valid in I.

Next, we must prove σ is undefined in I, whenever ∆′
(r

σ1

y1
· · · σm

ym

z
g̃∗
)

is not > and is invalid in I. This is done analogously to the first
equivalence.

• If τ ≡ ιxψ(ϕ) then we must show that

I(ιxΨ(Φ)) = IIt1x1

...

...
Itn
xn (ιxψ(ϕ))

when x 6∈ {x1, . . . , xn} (the other case is analogous) where

Ψ := ∆′
(s

t1
x1

· · · tn
xn

{
ψ

)
&∀x

(
∆′
(s

t1
x1

· · · tn
xn

{
ϕ

))
&

s
t1
x1

· · · tn
xn

{
ψ

and Φ :=
r
t1
x1
· · · tn

xn

z
ϕ.

First, we show that when ιxΨ(Φ) is undefined in I, so is ιxψ(ϕ) in
IIt1x1

...

...
Itn
xn . The possible cases in which ιxΨ(Φ) is undefined in I are:

– Ψ is undefined in I. Since by induction on the second part of

the theorem, ∆′
(r

t1
x1
· · · tn

xn

z
ψ
)

and ∀x
(
∆′
(r

t1
x1
· · · tn

xn

z
ϕ
))

are

always defined in I, we conclude that
r
t1
x1
· · · tn

xn

z
ψ is undefined

in I. Hence, by structural induction, ψ is undefined in IIt1x1

...

...
Itn
xn ,

so ιxψ(ϕ) is undefined in IIt1x1

...

...
Itn
xn .

– Ψ is invalid in I. Then at least one of ∆′
(r

t1
x1
· · · tn

xn

z
ψ
)

,

∀x
(
∆′
(r

t1
x1
· · · tn

xn

z
ϕ
))

and
r
t1
x1
· · · tn

xn

z
ψ is invalid in I. Using

structural induction on the first part of the theorem, we easily con-
clude that ψ is undefined in IIt1x1

...

...
Itn
xn , ∀xϕ is undefined in IIt1x1

...

...
Itn
xn ,

or ψ is invalid in IIt1x1

...

...
Itn
xn . In the first and the last case, we see

immediately that ιxψ(ϕ) is undefined in IIt1x1

...

...
Itn
xn . In the second

case, there exists an a ∈ ω such that ϕ is undefined in IIt1x1

...

...
Itn
xn

a
x.

But since the uniqueness condition of ιxψ(ϕ) holds, ψ cannot be
defined or valid in IIt1x1

...

...
Itn
xn .
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– Ψ is valid in I and there is no a such that Φ is valid in Iax or
there are multiple such a. Using structural induction, we get that
the same holds about ϕ in IIt1x1

...

...
Itn
xn and hence again ιxψ(ϕ) is

undefined in IIt1x1

...

...
Itn
xn .

Next, we show that when ιxΨ(Φ) is defined in I, so is ιxψ(ϕ) in IIt1x1

...

...
Itn
xn

and their interpretations are the same.

When ιxΨ(Φ) is defined in I, Ψ is valid in I and there exists an unique

a such that Φ is valid in I. Hence
r
t1
x1
· · · tn

xn

z
ψ is valid in I and by

induction, ψ is valid in IIt1x1

...

...
Itn
xn . Also by induction, the unique a for

which Φ is valid in I is the same a for which ϕ is valid in IIt1x1

...

...
Itn
xn .

We now only have to show the other direction, i.e., when ιxψ(ϕ) is
undefined in IIt1x1

...

...
Itn
xn , so is ιxΨ(Φ) in I, and when ιxψ(ϕ) is defined in

IIt1x1

...

...
Itn
xn , so is ιxΨ(Φ) in I and their interpretations are the same. This

is easy using contraposition.

• If σ ≡ ιxψ(ϕ) then first we must show that ιxψ(ϕ) is defined in I
whenever ψ is valid in I.
By definition, ιxψ(ϕ) is defined in I whenever ψ is valid in I and there
exists a unique a ∈ ω such that ϕ is valid in Iax . Conversely, if ψ is
valid in I, the unique existence of such an a follows from the uniqueness
condition of σ.

Next, we have to prove that ιxψ(ϕ) is undefined in I whenever ψ is
invalid in I.
By definition, ιxψ(ϕ) is undefined in I whenever ψ is invalid or unde-
fined in I or there does not exist a unique a ∈ ω such that ϕ is valid
in Iax . Note that because the uniqueness condition of σ holds, if there
does not exist a unique a ∈ ω such that ϕ is valid in Iax , ψ cannot be
valid in I. Moreover, because of the uniqueness condition, ψ cannot
be undefined in I either.

2

Lemma 75 Given a formula α of the pitfol’ calculus and an ordinary in-
terpretation I. Suppose that the uniqueness conditions of α are valid in I.
Then

α is valid in I ⇔ E (α) is valid in I
α is invalid in I ⇔ E (α) is invalid in I

α is undefined in I ⇔ E (α) is undefined in I
Given a term t of the pitfol’ calculus and an interpretation I for which all
uniqueness conditions are valid in I. Then I(t) = I(E (t)).
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Note that E (α) and E (t) are formulae without defined symbols, and the
definition of interpretation in the pitfol’ calculus coincides with that of the
pitfol calculus. Hence, we have a connection between the interpretation
of a formula or term in the pitfol’ calculus and the interpretation of its
expansion in the pitfol calculus.

Proof.

We prove this by induction on the complexity of α and t. The interesting
cases are

• α = p(t1, . . . , tn) If α is valid in I, then all I(ti)
are defined and I(p)(I(t1), . . . , I(tn)) holds. By induction,
I(p)(I(E (t1)), . . . , I(E (tn))) also holds, i.e., p(E (t1) , . . . , E (tn)) is
valid in I.

The other two equivalences are proved analogously.

• α = q(t1, . . . , tn) where q is a defined predicate symbol We have

to show that the interpretations of q(t1, . . . , tn) and
r
t1
x1
· · · tn

xn

z
q̃∗ are

identical, which is easy using theorem 74.

2

Theorem 76 (Soundness of the pitfol’ calculus) If Γ `′ι α then Γ |=′ι
α.

Proof.

We know that we can translate a pitfol’ proof of Γ `′ι α to a pitfol proof
of E (Γ) `ι E (α). Because we showed the pitfol calculus to be complete, we
can conclude that E (Γ) |=ι E (α). Since expansions do not contain defined
symbols, we also have E (Γ) |=ι′ E (α). Applying lemma 75 completes the
proof. 2

Theorem 77 Each pitfol’ formula α is interchangeable with its expansion
E (α) and likewise for terms t.

Proof.

We prove this by induction on the expansion rank which we then prove
by structural induction. Interesting cases are
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• α ≡ q(t1, . . . , tn) We have to show that α is interchangeable withr
E(t1)
x1
· · · E(tn)

xn

z
E
(
q̃∗
)
. Using theorem 67, the latter term is interchange-

able with E
(r

t1
x1
· · · tn

xn

z
q̃∗
)

. Using induction on the expansion rank,

this is in turn interchangeable with
r
t1
x1
· · · tn

xn

z
q̃∗. Using the definition

rule, we immediately get the required sequents.

• t ≡ g(t1, . . . , tn) Analogous.

2

Theorem 78 If the pitfol calculus is complete, then so is the pitfol’
calculus.

Proof.
Suppose Γ |=ι′ α. Using lemma 75, we obtain that E (Γ) |=ι′ E (α).

Because this sequent does not contain defined symbols, this is equivalent with
E (Γ) |=ι E (α). Applying the completeness of the pitfol calculus yields that
E (Γ) `ι E (α). Because each pitfol proof is also a pitfol’ proof, we have
E (Γ) `ι′ E (α). Finally, using the previous theorem we get Γ `ι′ α. 2

5.7 Defined symbols with predicate argu-

ments

We still are not able to define symbols such as ⇒ or ⇔ because they don’t
have terms but formulae as arguments. For this purpose, we enhance the
definition of simultaneous substitution: as before, we allow a variable symbol
to be substituted by a term, but now we also allow a predicate constant to
be substituted by a formula. For example,

s
x = y

p1

y = x

p2

{
¬(p1 & ¬p2) ≡ ¬(x = y & ¬y = x).

In general, we allow an arbitrary number of both kinds of substitutions to
happen simultaneously, i.e., the general form of a simultaneous substitution

is now
r
t1
x1
· · · tn

xn

α1

p1
· · · αm

pm

z
α.

Formally, we extend the definition of simultaneous substitution with the
cases



5.8. DEFINED QUANTIFIER SYMBOLS 253

•
r
t1
x1
· · · tn

xn

α1

p1
· · · αm

pm

z
pi ≡ αi

•
r
t1
x1
· · · tn

xn

α1

p1
· · · αm

pm

z
q ≡ q when q is a predicate symbol different from

p1, . . . , pm.

We can use this extended notion of simultaneous substitution to intro-
duce defined symbols in the same way as before. For instance, by defining
implies(α1, α2) = ¬(α1 & ¬α2), the definition rule yields, given UC(α) and
UC(β), the sequent

∆′(α) & α⇒∆(β) `ι′ implies(α, β) = ¬(α & ¬β)

for any two formulae α and β.

Note that as before, when renaming the bound variable of q∗ we need
to avoid the free variables of t1, . . . , tn and α1, . . . , αm. Also note that a
defined symbol is allowed to have both terms and formulae as arguments.
We illustrate both observations with the example definition

ifthen(f, a, b) = ιx((f ⇒ x = a) & ((¬f)⇒ x = b))

where f is a function symbol and a and b are variable symbols. Semantically,
ifthen(f, a, b) equals a when f is true and b otherwise. The definition rule
then yields for example

`ι′ ifthen(x = y, 1, 0) = ιz((x = y ⇒ z = 1) & ((¬(x = y))⇒ z = 0))

If we did not rename x to z, we would have obtained the term

ιx((x = y ⇒ x = 1) & ((¬(x = y))⇒ x = 0))

of which we cannot prove the uniqueness condition (to see this, note that
when y = 0, there is no x satisfying the definiens).

5.8 Defined quantifier symbols

The only abbreviations left in our system are the quantifiers ∃ and ∃!, so we
will extend the definition mechanism to defined quantifier symbols.
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5.8.1 Examples

Some quantifiers we would like to be able to define are

∃x(p(x)) = ¬∀x(¬p(x))

∃!x(p(x)) = ∃x(p(x)) & ∀x∀y((p(x) & p(y))⇒ x = y)

µx(f(x)) = ιy∃y(∀x(f(x)≥y)&∀z(∀x(f(x)>z)⇒y≥z))

(
∀x(f(x) ≥ y)

& ∀z(∀x(f(x) ≥ z)⇒ y ≥ z)

)

νx(f(x), a, b) = ιy∃y(... )

(
∀x((a ≤ x& x ≤ b)⇒ f(x) ≥ y)

& ∀z(∀x((a ≤ x& x ≤ b)⇒ f(x) ≥ z)⇒ y ≥ z)

)
{x : p(x)} = ιy∃y∀x(x∈y⇔p(x))(∀x(x ∈ y ⇔ p(x)))

{(x, y) : p(x, y)} = {z : ∃y∃z(z = (x, y) & p(x, y))}
The third example, µx(f(x)), presumes a theory of real numbers and

denotes the minimum value of its argument f ; it is undefined if f does not
have a minimum.

Likewise, νx(f(x), a, b) denotes the minimum value of the function on the
closed interval [a, b] if f has a minimum value on that interval. Here we see
that the first argument f(x) is bound by the ν quantifier but the other two
arguments are not bound.

The last examples illustrate set builder notation in a theory of sets. The
last one illustrates a quantifier binding two variables x and y.

5.8.2 Extending simultaneous substitution

To be able to define quantifier symbols, we again extend the definition of
simultaneous substitution: we allow a function or predicate symbols applied
to variable symbols to be substituted by a term resp. a formula. So we will
have s

x = z

p(x)

{
∃x(p(x)) ≡ ∃x(x = z).

Formally, we define
r

τ1
f1(y11 ,...,y

1
N1

)
· · · τn

fn(yn1 ,...,y
n
Nn

)
α1

p1(x1
1,x

1
2,...,x

1
M1

)
· · · αm

pm(xm1 ,...,x
m
Mm

)

z
pi(y1, y2, . . . , yMi

)

≡
[
y1

xi1
· · · yMi

xiMi

]
αi

Note that to uniformise our treatment, we don’t substitute variable symbols
anymore; otherwise, the notation would have become

r
T1

z1
· · · Tk

zk

τ1
f1(y11 ,...,y

1
N1

)
· · · τn

fn(yn1 ,...,y
n
Nn

)
α1

p1(x1
1,x

1
2,...,x

1
M1

)
· · · αm

pm(xm1 ,...,x
m
Mm

)

z
. . .



5.8. DEFINED QUANTIFIER SYMBOLS 255

We can use function constant symbols to fulfill the function variable sym-
bols held before.

Note that the simultaneous substitution
r

τ1
f1(y11 ,...,y

1
N1

)
· · · τn

fn(yn1 ,...,y
n
Nn

)
α1

p1(x1
1,x

1
2,...,x

1
M1

)
· · · αm

pm(xm1 ,...,x
m
Mm

)

z
pi(t1, t2, . . . , tni)

is only defined when all ti are variable symbols.

5.8.3 Extending the definition rule

We are now in a position to develop a variant of the def-
inition rule for defined quantifiers. A definition of a defined
quantifier is of the form Qz1 . . . zk(f1(y1

1, . . . , y
1
N1

), . . . , fn(yn1 , . . . , y
n
Nn

),
p1(x1

1, x
1
2, . . . , x

1
M1

), . . . , pm(xm1 , . . . , x
m
Mm

)) = Q∗. We call Q∗ the defini-
tion of Q and f1(y1

1, . . . , y
1
N1

), . . . , fn(yn1 , . . . , y
n
Nn

), p1(x1
1, x

1
2, . . . , x

1
M1

), . . . ,
pm(xm1 , . . . , x

m
Mm

) the argument symbols of Q∗. We call the variable sym-
bols z1, . . . , zk the binding variables of the definition.

Note that to uniformise the treatment of argument symbols, the argument
symbols cannot be free variables anymore. Instead, we can use a constant
symbols, that is, function symbols without arguments (so Ni = 0). This is
illustrated in the definition of νx(f(x), a, b) where a and b are indeed constant
symbols.

The definition rule for defined quantifiers is

definition

UC(t1), UC(t2), . . . , UC(tn), UC(α1), UC(α2), . . . , UC(αm)
∆′(Qu1 . . . uk(. . . )) `ι′ Qu1 . . . uk(t1, . . . , tn, α1, . . . , αm)

=

s
t1h

u1
z1
···uk
zk

i
f1(y11 ,...,y

1
N1

)
· · · αmh

u1
z1
···uk
zk

i
pm(xm1 ,...,x

m
Mm

)

{
Q̃∗

where Q∗ is a term containing only symbols defined before Q where we define

∆′(Qu1 . . . uk(t1, . . . , tn, α1, . . . , αm))

:≡∆′
(s

t1h
u1
z1
···uk
zk

i
f1(y11 ,...,y

1
N1

)
· · · αmh

u1
z1
···uk
zk

i
pm(xm1 ,...,x

m
Mm

)

{
Q̃∗
)

or

definition

UC(t1), UC(t2), . . . , UC(tn), UC(α1), UC(α2), . . . , UC(αm)
∆′(Qu1 . . . uk(. . . )) `ι′ Qu1 . . . uk(t1, . . . , tn, α1, . . . , αm)

⇔
s

t1h
u1
z1
···uk
zk

i
f1(y11 ,...,y

1
N1

)
· · · αmh

u1
z1
···uk
zk

i
pm(xm1 ,...,x

m
Mm

)

{
Q̃∗
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where Q∗ is a formula containing only symbols defined before Q and
∆′(Qy(τ1, . . . , τn, α1, . . . , αm)) is defined as above.

We require that Q∗ does not contain any free variables. We obtain Q̃∗ by
renaming the bound variables of Q∗ as follows:

• A binding variable zi of the definition must be renamed to ui

• The other bound variables have to be renamed such that they are dif-
ferent from u1, . . . , uk and from FV (t1) \ {y1

1, . . . , y
1
N1
}, . . . , FV (tn) \

{yn1 , . . . , ynNn}, FV (α1)\{x1
1, . . . , x

1
M1
}, . . . and FV (αn)\{xn1 , . . . , xmMm

}.

The effect is that the variables
[
u1

z1
· · · uk

zk

]
yi1, . . . ,

[
u1

z1
· · · uk

zk

]
yiNi of

τi are bound by the defined quantifier Q and likewise the variables[
u1

z1
· · · uk

zk

]
xi1, . . . ,

[
u1

z1
· · · uk

zk

]
xiNi of αi.

For example, in νx(α1, τ1, τ2), the quantifier ν binds x in α1 but binds no
variables in τ1 and τ2.

Accordingly, we define substitution of defined binders as

[t/x]Qz1 . . . zk(τ1, . . . , τn, α1, . . . , αm) :≡ Qz1 . . . zk(τ
′
1, . . . , τ

′
n, α

′
1, . . . , α

′
m)

where τ ′i :≡ [t/x]τi when x is not free in
[
u1

z1
· · · uk

zk

]
fi(y

i
1, . . . , y

i
Ni

) and

τ ′i :≡ τi otherwise; likewise, α′i :≡ [t/x]αi when x is not free in[
u1

z1
· · · uk

zk

]
pi(x

i
1, . . . , x

i
Mi

) and α′i :≡ αiotherwise.

If one of the necessary substitutions [t/x]τi or [t/x]αi is not defined, then the
substitution [t/x]Qz1 . . . zk(τ1, . . . , τn, α1, . . . , αm) is also not defined.

5.8.4 Example

We illustrate the working of the definition rule with an example introduced
earlier. We have

`ι′ ∃!y(x = y) =

s
x = y

p(y)

{
∃y(p(y)) & ∀y∀z((p(y) & p(z))⇒ y = z)

i.e.,

`ι′ ∃!y(x = y) = ∃y(x = y) & ∀y∀z((x = y & x = z)⇒ y = z)



Chapter 6

Conclusions

6.1 Summary

The pitfol calculus encompasses the following 17 deduction rules:
ass

UC(α)

Σ; `ι ∆(α)
Σ;α `ι α
When ∆(α) is >, the context Σ must be empty.

&-intro

Σ1; Γ `ι α
Σ2; ∆ `ι β

Σ1,Σ2; Γ,∆ `ι α & β

&-elim

Σ; Γ `ι α & β
Σ; Γ `ι α

&-elim

Σ; Γ `ι α & β
Σ; Γ `ι β

rem

Σ1; Γ, α `ι β
Σ2; ∆,¬α `ι β

Σ1,Σ2; Γ,∆ `ι β

contra

UC(β)

Σ1; Γ `ι α
Σ2; ∆ `ι ¬α

Σ1,Σ2; Γ,∆ `ι β

∀-intro

Σ; Γ `ι α
Σ; Γ `ι ∀x(α)

provided x is not free in Γ and Σ

∀-elim

Σ; Γ `ι ∀x(α)
Σ; Γ `ι α

subst

UC(t)

Σ; Γ `ι α
∆(t) , [t/x]Σ; [t/x]Γ `ι [t/x]α

eq

UC(t)
∆(t) `ι t = t

257
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eqSubst

UC(t)

Σ; Γ `ι α
Σ,∆(t) ; Γ, x = t `ι [t/x]α

iota

ψ `ι ∃!x(ϕ)
ψ `ι [ιxψ(ϕ)/x]ϕ̃

UC

Σ; Γ `ι α
ψ `ι ∃!x(ϕ)

where ιxψ(ϕ) is a ι-term occurring in Σ, Γ or α.

defAnt

Σ; Γ, α `ι β
Σ; `ι ∆(α)

defCons

Σ; Γ `ι α
Σ; Γ `ι ∆(α)

toCtxt

Σ;σ & Γ,∆ `ι α
Σ, σ; Γ,∆ `ι α

fromCtxt

Σ, σ; Γ `ι α
Σ;σ & Γ `ι α

The pitfol’ calculus adds rules introducing defined symbols:

definition

UC(t1), UC(t2), . . . , UC(tn), UC(α1), UC(α2), . . . , UC(αm)

∆′(g(t1, . . . , αm)) `ι′ g(t1, . . . , tn, α1, . . . , αm) =

s
t1
x1

· · · tn
xn

α1

p1

· · · αm
pm

{
g̃∗

definition

UC(t1), UC(t2), . . . , UC(tn), UC(α1), UC(α2), . . . , UC(αm)

∆′(q(t1, . . . , αm)) `ι′ q(t1, . . . , tn, α1, . . . , αm)⇔
s
t1
x1

· · · tn
xn

α1

p1

· · · αm
pm

{
q̃∗

definition

UC(t1), UC(t2), . . . , UC(tn), UC(α1), UC(α2), . . . , UC(αm)
∆′(Qu1 . . . uk(. . . )) `ι′ Qu1 . . . uk(t1, . . . , tn, α1, . . . , αm)

=

s
t1h

u1
z1
···uk
zk

i
f1(y11 ,...,y

1
N1

)
· · · αmh

u1
z1
···uk
zk

i
pm(xm1 ,...,x

m
Mm

)

{
Q̃∗

definition

UC(t1), UC(t2), . . . , UC(tn), UC(α1), UC(α2), . . . , UC(αm)
∆′(Qu1 . . . uk(. . . )) `ι′ Qu1 . . . uk(t1, . . . , tn, α1, . . . , αm)

⇔
s

t1h
u1
z1
···uk
zk

i
f1(y11 ,...,y

1
N1

)
· · · αmh

u1
z1
···uk
zk

i
pm(xm1 ,...,x

m
Mm

)

{
Q̃∗
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6.2 Treatment of partially defined terms

In this section, we will summarise how the calculus handles partially defined
terms. The main idea is that we can only talk about a potentially undefined
term under conditions where one is sure that the undefinedness will not occur.
For example, we can only mention y

x
under the condition x 6= 0. This already

implies a semantics where the evaluation order of different parts of a formula
is fixed, since we will want to ascertain that the condition x 6= 0 is evaluated
before y

x
. We will require that when we would encounter an undefined term

when evaluating a formula following this fixed evaluation order, the whole
formula becomes undefined. A consequence of this requirement is that the
semantics is monotone with respect to undefinedness: when we replace an
undefined subterm or subformula by a defined one, the resulting term or
formula cannot become ‘less defined’: if it was defined, it cannot become
undefined because of the replacement.

The calculus determines these conditions from the uniqueness conditions
of partially defined ι-terms. In our example, y

x
is defined as ιzy 6=0(z · y = x).

The uniqueness condition of this ι-term is y 6= 0 `ι ∃!z(z · y = x), which we
expect to be able to derive in a theory of real numbers.

All rules of the calculus guarantee that the sequents they produce only
contain ι-terms for which the uniqueness conditions are derivable. Hence,
if we were to consider a ι-term whose uniqueness condition is not derivable,
such as ιz(z · y = x), we are not able to prove anything about it.

Another property of the calculus is that the only ‘source of undefinedness’
are the ι-terms. Since we know explicitly when these are or aren’t defined
(we just have to look at the domain formula of the ι-term), we can always
mechanically compute a formula indicating when a given term or formula
is (un)defined. We call this formula the definedness of the given term or
formula and note the operation of calculating it as ∆.

Being able to mechanically compute the definedness of a formula is one
of the reasons we note the domain formula of a ι-term explicitly. Moreover,
ι-terms with the same definiens but different domain formulae can occur.
For example, we can also reason about the ι-term ιzx>0&y>0(z ·y = x), which
represents division restricted to positive numbers. In general, one can always
restrict the domain of a ι-term arbitrarily; the extreme is ιz∀x(x 6=x)(ϕ), which
is always undefined (and whose uniqueness condition is always derivable for
any formula ϕ).

Looking at the substitution rules, we see that they have to guarantee that
the uniqueness conditions of [t/x]α must be derivable when those of α and
t are derivable. This requirement has its implications on the definition of
substitution: in some cases, an extra ∆(t) appears in the domain formula of
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the newly created ι-terms.
The substitution rules also must maintain the restriction that the newly

created ι-terms only occur in situations where their domain formulae will
be fulfilled; hence, an extra ∆(t) appears also in the context of the newly
derived sequent.

We also investigate the addition of partial function and predicate sym-
bols to the calculus. We again have to put some restrictions on the partial
functions and predicates we admit: they have to be defined by a formula
or term already present in the calculus. This ensures that we again can
mechanically compute the definedness of a formula and prevents one from
introducing non-monotone functions or predicates.

Adding non-strict functions and predicates requires us to introduce a
more refined variant of the substitution operation and the substitution de-
duction rules. The main reason is that the primitive rules of the system add
∆(t) to the resulting term or formula ‘too soon’ in the evaluation order when
substituting a term t for a variable (see the beginning of chapter 4 for an
example).

6.3 Example

In [Suppes 1972], a book about Zermelo-Fraenkel set theory, set abstraction
is defined by

{x : ϕ(x)} := y ⇔ [(∀x(x ∈ y ⇔ ϕ(x))) & y is a set]

∨ [y = ∅&¬∃B∀x(x ∈ B ⇔ ϕ(x))]

In other words, if the set {x : ϕ(x)} is a set containing exactly those x
satisfying ϕ(x), except when there exists no such set, in which case the
‘convenient value’ ∅ is chosen. This leads to the strange situation that two
theorems are proved in [Suppes 1972]:

∅ = {x : x 6= x} and ∅ = {x : x = x}

The first one is what one would expect: the empty set contains all objects
satisfying a contradictory condition, in other words, no elements at all. The
second one is a ‘pathological theorem’ as we called it in the introduction: the
universal set is too big to be a Zermelo-Fraenkel set, so the set abstraction
construct evaluates to the ‘convenient value’ ∅.

Let us investigate how the pitfol’ calculus handles this situation. We
define the set abstraction as

{x : p(x)} = ιy∃y∀x(x∈y⇔p(x))(∀x(x ∈ y ⇔ p(x)))
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The definition rule then yields

∃y∀x(x ∈ y ⇔ x 6= x) `ι′ {x : x 6= x} = ιy∃y∀x(x∈y⇔x 6=x)(∀x(x ∈ y ⇔ x 6= x))

One easily shows that x ∈ y ⇔ x 6= x and x /∈ y are interchangeable, so we
can derive

∃y∀x(x /∈ y) `ι′ {x : x 6= x} = ιy∃y∀x(x/∈y)(∀x(x /∈ y))

Since `ι′ ∃y∀x(x /∈ y) is an axiom of Zermelo-Fraenkel set theory (expressing
the existence of an empty set), we can easily derive

`ι′ {x : x 6= x} = ιy(∀x(x /∈ y))

and after adding the definition ∅ = ιy(∀x(x /∈ y)) we indeed obtain

`ι′ {x : x 6= x} = ∅

On the other hand, another application of the definition rule yields

∃y∀x(x ∈ y ⇔ x = x) `ι′ {x : x = x} = ιy∃y∀x(x∈y⇔x=x)(∀x(x ∈ y ⇔ x = x))

which we easily can transform into

∃y∀x(x ∈ y) `ι′ {x : x = x} = ιy∃y∀x(x∈y)(∀x(x ∈ y))

However, `ι′ ¬∃y∀x(x ∈ y) is a theorem of Zermelo-Fraenkel set theory, so
the sequent obtained is ‘vacuously valid’, and the ι-term occurring in it is
always undefined.

6.4 Implementing the calculus

As already stated in the introduction, a computerised implementation of the
calculus is highly desirable, since writing and checking proofs by hand gets
tedious quickly.

In this section, we will describe how one could go about implementing
the pitfol calculus.

6.4.1 LCF-style implementation

The kernel of such an implementation can be rather small: we only need the
17+4 primitive deduction rules stated at the beginning of this chapter.
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Next to the classical ingredients such as a representation for terms, for-
mulae, lists of formulae, sequents, . . . , this also requires an implementation
of ∆, substitution, simultaneous substitution, alphabetic variants of a for-
mula, and the generation of the list of uniqueness conditions of the top-level
ι-terms of a formula: all of these are not hard to implement (we have done
this in an experimental implementation).

All other rules can then be implemented on top of this kernel: in the
resulting system, sequents are only produced by the routines corresponding
to the primitive deduction rules. In other words, a derived rule can use the
primitive rules or other derived rules (which will in eventually result in a
number of calls to the primitive rules), but not create sequents at random.

This is the so called LCF approach to theorem proving: supposing that
the kernel is implemented correctly (which is doable, since it is as indicated
a very small piece of software), if one would make a programming mistake in
a derived rule, one can never derive invalid sequents. The kind of errors that
can happen in the implementation of derived rules are typically attempts to
apply a primitive rule when it is not applicable, in which case the error is
detected by the kernel of the system.

One could even use the mechanisms of expansion and translation of proofs
to transform all generated proofs back into proofs of the classical calculus and
use a classical theorem checker to check all proofs generated by the system.

6.4.2 Implementation on top of another system

Since the pitfol calculus is an extension of the classical first order logic, one
can take an existing first order prover and extend its rules.

The advantage of this approach is that one makes use of a (hopefully)
well-tested system with a large library of theorems and derived rules.

The drawback is that the existing theorems and derived rules will not
make use of the facilities for partially defined terms provided by our calculus,
so one will have to adapt these too.

6.5 Future Research

Firstly, the further elaboration of the existing experimental implementation
of the pitfol system would be desirable: the best way to verify that a
system is “reasonably faithful to mathematical practice” is to see whether
mathematicians want to actually use it!

A computerised implementation calls for a proof procedure that is able
to handle trivial proofs automatically. The adaptation of tableau methods
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to the pitfol calculus seems a promising area of research.

We expect that we can exploit the tableau method to prove that one
needs the Definition rule for each combination of arguments, i.e., that just
adding

∆′(g∗) `ι′ g(x1, . . . , xn) = g̃∗

and then using a substitution rule to try and get

∆′(g(t1, . . . , tn)) `ι′ g(t1, . . . , tn) =

s
t1
x1

· · · tn
xn

{
g̃∗

is in general not possible.

It would also be interesting to investigate the use of ε-terms in addi-
tion to or in replacement of ι-terms, since one can consider the ε operator
as a stronger version of the ι operator. One would expect that instead of
the uniqueness conditions, an ε-term εxψ(ϕ) would only need an existence
condition ψ ` ∃x(ϕ), that the rule

epsilon

ψ `ι ∃x(ϕ)
ψ `ι [εxψ(ϕ)/x]ϕ̃

is added, . . . but we expect that the general framework of the calculus will
not have to be changed radically to accommodate these changes.
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Summary

In chapter 1, we introduce the concept of formalisation of mathematics, and
indicate the need for a treatment of partially defined functions which is faith-
ful to mathematical practice.

In chapter 2, we describe our starting point: the well known first order
predicate calculus with identity. This calculus has no support for partially
defined functions.

In chapter 3, we add support for partially defined functions.

Section 3.1 introduces the way we will let undefinedness enter the cal-
culus: we extend Hilbert and Bernays’ method of adding iota terms to the
calculus to adding partially defined iota terms.

In section 3.2, syntactical issues are handled: we introduce the metalog-
ical definedness operator ∆ and define the way partially defined iota terms
behave under substitutions.

In section 3.3, we discuss how undefined values are treated semantically in
the calculus: the basic idea is that when one respects a left-to-right evaluation
order, one will never encounter an undefined value when evaluating a valid
sequent.

In sections 3.4, and 3.5, we introduce deduction rules for our calculus.
These are an extension of the rules of the calculus of chapter 2.

In section 3.6, we show that our calculus is consistent, provided the origi-
nal calculus was consistent. This means that we prove that using the deduc-
tion rules, one cannot derive a contradiction (i.e., a proof of a theorem and
its negation). We do this by showing that each proof in our calculus can be
translated into a similar proof in the original calculus; if one would obtain a
proof of contradiction in our calculus, by translating it, one would also have
a proof of a contradiction in the original calculus.

In section 3.7, we show that our calculus is sound with respect to the
semantics given. This means that using the deduction rules, one cannot
derive a false theorem.

265
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In section 3.8, we introduce a number of derived rules, which make the
calculus easier to use for the sequel. Each application of a derived rule can
be considered as an abbreviation of an application of a number of earlier
defined rules.

In section 3.9, we show that our calculus is complete, provided the original
one was complete: if a theorem is true, one must be able to produce a
derivation of it using the deduction rules. We prove this by transforming the
problem into a problem of the original calculus and exploiting its assumed
completeness.

In chapter 4, we introduce a more sophisticated variant of substitution,
which will be useful in the following section. Our original substitution is
syntactically simpler; the variant is semantically subtler.

Chapter 5 discusses the addition of defined symbols to the calculus, which
makes it possible to add definitions without affecting the consistency, sound-
ness and completeness of the calculus.

In chapter 6, we give a concise overview of the pitfol calculus and its
treatment of partially defined terms, indicate how one could implement the
calculus and suggest topics for future research.



Samenvatting

Je n’ai fait celle-ci plus longue
que parce que je n’ai pas eu le loisir

de la faire plus courte.
—Blaise Pascal, “Lettres provinciales, Lettre xvi”

In hoofdstuk 1 stellen we het concept formele wiskunde voor, en wijzen
we op de nood aan een ondersteuning voor partieel gedefinieerde functies die
getrouw is aan de gangbare wiskundige praktijk.

In hoofdstuk 2 beschrijven we ons vertrekpunt: de bekende eerste orde
predicaatrekening met gelijkheid. Deze calculus bevat geen ondersteuning
voor partieel gedefinieerde functies.

In hoofdstuk 3 voegen we aan deze calculus ondersteuning toe voor par-
tieel gedefinieerde functies.

Sectie 3.1 brengt de wijze aan waarop we ongedefinieerdheid toevoegen
aan de calculus: we breiden Hilbert en Bernays’ methode voor het toe-
voegen van iota-termen aan de calculus uit tot het toevoegen van partieel
gedefinieerde iota-termen.

In sectie 3.2 behandelen we syntactische onderwerpen: we definiëren
de metalogische gedefineerdheids-operator ∆ en leggen vast hoe partieel
gedefinieerde iota-termen zich gedragen onder substituties.

In sectie 3.3 tonen we hoe ongedefinieerde waarden semantisch verwerkt
worden in de calculus: het basisidee is dat er nooit een ongedefinieerde waarde
zal optreden wanneer een geldige sequent ‘van links naar rechts’ geëvalueerd
wordt.

In secties 3.4 en 3.5 stellen we de afleidingsregels van onze calculus voor.
Ze zijn een uitbreiding van de regels van de calculus uit hoofdstuk 2.

In sectie 3.6 tonen we aan dat onze calculus consistent is, vooropgesteld
dat de originele calculus dat ook was. Dit betekent dat we bewijzen dat
door gebruik te maken van de afleidingsregels nooit een contradictie (d.i.
een bewijs van een stelling en haar ontkenning) bekomen kan worden. We
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bewijzen dit door aan te tonen dat elk bewijs in onze calculus vertaald kan
worden naar een gelijkaardig bewijs in de oorspronkelijke calculus; als we dus
een bewijs van een contradictie zouden kunnen bekomen in onze calculus, dan
zouden we door dat bewijs te vertalen ook een bewijs van een contradictie
vinden in de originele calculus.

In sectie 3.7 tonen we aan dat onze calculus betrouwbaar is ten opzichte
van de eerder gegeven semantiek. Dit betekent dat het onmogelijk is een
onware stelling af te leiden met behulp van de afleidingsregels.

In sectie 3.8 voeren we een aantal afgeleide regels in, die het gebruik van
de calculus makkelijker zullen maken in de volgende secties. Elke toepassing
van een afgeleide regel kan opgevat worden als een afkorting van een aantal
eerder gedefinieerde regels.

In sectie 3.9 tonen we aan dat onze calculus volledig is, vooropgesteld
dat de originele calculus dat ook was: als een stelling waar is, moet ze ook
afleidbaar zijn met behulp van de afleidingsregels. We bewijzen dit door
het probleem om te zetten in een probleem van de originele calculus en de
volledigheid van de orignele calculus uit te buiten.

In hoofdstuk 4 ontwikkelen we een meer gesofistikeerde variant van de
substitutie, die van pas zal komen in de volgende sectie. Onze oorspronkelijke
substitutie is syntactisch eenvoudiger; de variant is semantisch subtieler.

Hoofdstuk 5 behandelt het toevoegen van gedefinieerde symbolen aan de
calculus, waardoor definities kunnen toegevoegd worden zonder de consis-
tentie, betrouwbaarheid en volledigheid van de calculus in het gedrang te
brengen.

In hoofdstuk 6 geven we een beknopt overzicht van de pitfol calculus
en de manier waarop partieel gedefinieerde termen behandeld worden, geven
aan hoe de calculus gëımplementeerd kan worden en stellen onderwerpen
voor toekomstig onderzoek voor.
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