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In today’s world there is a continued quest to develop high performance materials 

with excellent mechanical properties and resistance against extreme circumstances. A 

material is characterized by a large number of parameters and one of the most 

important parameters is its thermal expansion coefficient which describes the change 

in the dimensions of the material under influence of a temperature change. The 

positive thermal expansion of the majority of materials is widely found and can be 

easily explained by the asymmetry of the vibrational potential well. Nevertheless, 

there are some families of materials which will exhibit shrinkage of their volume upon 

a temperature increase and this phenomenon is the subject in the present study.  

ZrW2O8 is one of the most popular negative thermal expansion materials known. It is 

a ceramic compound with isotropic negative thermal expansion due to its cubic crystal 

structure. Its thermodynamical stability range is situated between 1105 °C and      

1257 °C whereas this material is kinetically stable between - 273 °C and 770 °C. The 

thermal expansion of our best samples can go up to -10 × 10-6 °C-1. This parameter is 

superior in comparison with other materials with negative thermal expansion 

behaviour. Clearly, negative thermal expansion materials, alone or in combination 

with other kinds of materials, are very interesting in the development of new high 

performance materials with tuned thermal expansion.  

The aim of this PhD research is threefold. First of all, a pure, crystalline material was 

synthesized and emphasis was put on the synthetic routes from different precursors 

(soluble or non-soluble) to ZrW2O8. The crystallinity, morphology and thermal 

expansion of the materials obtained are described in detail. Secondly, ZrW2O8 was 

screened for its potential in the processing of ZrW2O8 composite materials with 
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tuned thermal expansion. This study also aimed at obtaining a better insight in the 

mechanism involved in the phase transition occurring in ZrW2O8. Substitution of the 

Zr atom helped us to understand the different aspects influencing this transition.  

As all research starts with an extensive literature research, the most important facts 

and figures are written down in Chapter 1. This chapter describes the thermal 

expansion of materials in general and reveals some mechanisms which lead to 

negative thermal expansion. ZrW2O8 is built from tetrahedrons and octahedrons 

linked to each other in a so-called open framework structure. Low frequency 

librations result in a global shrinkage of the unit cell. This mechanism is described in 

detail. Other framework families and their specific - positive or negative - anisotropic 

or isotropic - thermal expansion behaviour are shown also there.  

Detailed studies of materials and material properties need high quality equipment. In 

Chapter 2 the different experimental techniques and parameters used in this work are 

briefly presented. The techniques are grouped as follows: (1) structural 

characterization by X-rays (diffraction and EXAFS); (2) morphology characterization 

by SEM, density and particle size; (3) thermal analysis by TMA, TGA-DTA and 

DSC; (4) mechanical properties by using a three-point bending test (5) identification 

of the different species by IR and Raman and (6) photoluminescence measurements.  

As described above, this study emphasizes the different synthetic routes to obtain pure 

ZrW2O8. Chapter 3 describes the conventional synthesis method using ZrO2 and WO3 

as precursor materials and using different milling techniques whereas Chapter 4 is 

reserved for the sol-gel synthesis methods using water soluble precursor salts and 

complexing agents such as citric acid and EDTA. The crystallinity of the phases 

formed, particle sizes, morphology and thermal expansion are the main properties 

screened in these two chapters. The morphology of the precursor solutions obtained 

by the citrate – gel method are examined more in detail in Chapter 5 by Extended X-

ray Absorption Fine Structure measurements and photoluminescence measurements. 
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Chapter 6 highlights the exploration of ZrW2O8 as matrix material in ZrO2 – ZrW2O8 

composite materials. The influence of the composition on the thermal expansion 

behaviour is examined as well as on the mechanical properties of these composites. 

These composites allow the preparation of ceramic materials with a tuned thermal 

expansion. This could be a step towards the development of high performance 

materials. As these composites still exhibit a phase transition, Chapter 7 concentrates 

on the shift in the phase transition temperature and represents the study of Sn and Ti 

substituted ZrW2O8 materials. This chapter attempts to explain the mechanism 

followed during phase transition and the influence of the substitution ion properties on 

the thermal expansion behaviour of Zr1-xMxW2O8. 

Most part of this research was already published or accepted for publication in several 

A1 publications. The bibliographic references to these articles are given at the 

beginning of each chapter.  
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De ontwikkeling van nieuwe materialen stelt erg hoge eisen. Ze moeten uitstekende 

mechanische eigenschappen bezitten en bestand zijn tegen extreme omstandigheden. 

Alhoewel een materiaal wordt gekenmerkt door een groot aantal eigenschappen, is de 

thermische expansie één van de belangrijkste materiaaleigenschappen. De thermische 

expansie geeft weer hoe het volume en de afmetingen van het materiaal zullen 

veranderen onder invloed van temperatuurschommelingen. De meeste materialen 

zetten uit bij verwarming wat te wijten is aan de asymmetrische Morse-

potentiaalcurve. Er zijn echter ook materialen die het tegengestelde gedrag vertonen. 

Deze familie kreeg de naam NTE materialen mee: Negatieve Thermische Expansie 

materialen.  

ZrW2O8 is één van de meest besproken en bestudeerde NTE materialen. Het is een 

keramisch materiaal met isotrope negatieve thermische expansie, te danken aan de 

kubische kristalstructuur. ZrW2O8 is thermodynamisch stabiel tussen 1105 °C en  

1257 °C terwijl zijn kinetische stabiliteit het ganse gebied tussen -273 °C en 770 °C 

inneemt. De thermische expansie coëfficiënt kan waarden tot -10 × 10-6 °C-1 

aannemen. Al deze eigenschappen zorgen er voor dat ZrW2O8 superieur is in 

vergelijking met andere materialen die negatief thermisch expansie gedrag vertonen. 

Het spreekt voor zich dat NTE materialen op zichzelf of in combinatie met andere 

materialen een uitstekend startpunt vormen met het oog op ontwikkeling van 

hoogtechnologische materialen met thermische expansie op maat.  

Het onderzoeksgebied van dit proefschrift is drieledig. Eerst en vooral werd er een 

zuiver kristallijn materiaal gesynthetiseerd. Daarvoor werd in dit werk grote aandacht 

besteed aan de ontwikkeling en optimalisatie van verschillende synthesemethoden 
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vertrekkende van de oplosbare of niet-oplosbare precursoren om uiteindelijk 

kristallijn ZrW2O8 te verkrijgen. De kristalstructuur, morfologie en thermische 

expansie werden in detail bestudeerd. ZrW2O8 werd ook gescreend als potentiële 

kandidaat in de ontwikkeling van composietmaterialen met thermische expansie op 

maat. Tenslotte wil deze studie ook een duidelijker beeld scheppen van het 

mechanisme dat achter de fasetransitie schuilt. Substitutie van de Zr positie bracht 

een aantal parameters aan het licht die deze transitie beïnvloeden.  

Alle onderzoek begint met een grondig literatuuronderzoek weergegeven in  

Hoofdstuk 1. Dit hoofdstuk beschrijft het thermische expansiegedrag van materialen 

in het algemeen en toont een aantal mechanismen die kunnen leiden tot negatieve 

thermische expansie. ZrW2O8 is opgebouwd uit tetraëders en octaëders die deel 

uitmaken van een open netwerk structuur. Rotaties en vibraties met een lage 

frequentie leiden tot het verkleinen van de eenheidscel bij toenemende temperatuur. 

Dit mechanisme wordt in detail besproken. Het thermische expansiegedrag van enkele 

andere open netwerk structuur materialen wordt ook even vermeld. 

Studies van materialen en materiaaleigenschappen vereisen meetapparatuur van hoge 

kwaliteit. Hoofdstuk 2 vermeldt de gebruikte experimentele technieken. De 

theoretische aspecten worden kort aangehaald. De technieken worden als volgt 

gegroepeerd: (1) structurele karakterisatie met behulp van X-stralen                 

(diffractie en EXAFS); (2) morfologische studie met behulp van SEM, 

dichtheidsmetingen en deeltjesgrootte; (3) thermische analyse met TMA, TGA-DTA 

en DSC; (4) mechanische eigenschappen werden gemeten met een driepuntsbuigtest 

(5) identificatie gebeurde ondermeer met IR en Raman en (6) fotoluminescentie 

metingen. 

Zoals hierboven vermeld, gaat de aandacht in dit werk uit naar verschillende synthese 

methoden die uiteindelijk leiden tot ZrW2O8. Hoofdstuk 3 beschrijft een conventionele 

synthese methode die ZrO2 en WO3 als precursor materiaal gebruikt terwijl  

Hoofdstuk 4 voorbehouden is voor de sol-gel synthese methoden die wateroplosbare 

precursor zouten en complexantia zoals citroenzuur en EDTA gebruiken. Analyse van 

de kristalstructuur van de gevormde fasen, deeltjesgroottes, morfologie en thermische 

expansie zijn de belangrijkste parameters die in deze twee hoofdstukken bestudeerd 
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worden. De eigenschappen van de precursoroplossing verkregen door de citraat gel 

methode werden onderzocht in Hoofdstuk 5 met behulp van “Extended X-ray 

Absorption Fine Structure” metingen en fotoluminescentie.  

Hoofdstuk 6 toont de exploratie van ZrW2O8 als matrix materiaal in ZrO2 – ZrW2O8 

composiet materialen. De invloed van de samenstelling van de composieten op het 

thermisch expansie gedrag werd onderzocht evenals de andere mechanische 

eigenschappen van deze composieten. Hierdoor werd het mogelijk om keramische 

materialen te synthetiseren met een thermische expansie op maat. Dit kan een grote 

stap voorwaarts betekenen in de ontwikkeling van hoogtechnologische materialen. 

Deze composieten vertonen echter nog steeds een fasetransitie. Daarom concentreert 

Hoofdstuk 7 zich op het verschuiven van de fasetransitietemperatuur door het 

substitueren van de Zr positie met Sn4+ en Ti4+ ionen. Dit hoofdstuk probeert het 

mechanisme van die fasetransitie te verklaren en de invloed van de substituenten op 

het thermisch expansie gedrag van Zr1-xMxW2O8 te verklaren.  

Een deel van dit onderzoek werd reeds gepubliceerd of is aanvaard tot publicatie in 

verscheidene A1 tijdschriften. De bibliografische gegevens van deze artikels worden 

vermeld aan het begin van elk hoofdstuk.  
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Chapter 1  

Thermal expansion of materials 

 
 
 
 
 
 
This chapter summarizes the theoretical principles and formulae concerning the 

thermal expansion in solid materials. Positive thermal expansion is more common in 

daily life and therefore the mechanisms behind the negative thermal expansion (NTE) 

are discussed in more detail. The classification of the different families of negative 

expansion materials is given with some examples. The negative thermal expansion of 

ZrW2O8 is widely explored and the most important features are mentioned.  
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1 Thermal expansion in solids  

1.1 The nature of thermal expansion 1, 2 

Most solid materials expand upon heating and will contract when they are exposed to 

a decrease in temperature. However, it is not uncommon for materials to contract 

upon heating. Examples in this field are many tetrahedrally bonded crystals at low 

temperature and β-quartz at high temperature.  

Thermal expansion can be defined as the temperature dependence of the geometrical 

parameters under specified conditions. Although most of the time the external length 

is measured to determine the thermal expansion, the changes in unit cell parameter, as 

determined from XRD analysis, will also show the thermal expansion of the unit cell 

in detail. The applied conditions can vary according to the different measurements. In 

general, the materials are exposed to constant pressure. 

From an atomic perspective, thermal expansion is reflected by a change in the average 

distance between the atoms with increasing temperature. This phenomenon can be 

understood by using the potential well of a diatomic molecule (figure 1). This 

potential well illustrates the relation between the potential energy and interatomic 

spacing. As the temperature rises the vibrational energy will also increase. This will 

have a positive effect on the average vibrational amplitude of an atom. The 

interatomic distance is calculated by the mean position of the atoms and due to the 

asymmetric curvature of the potential well the interatomic distance will increase as 

the temperature shifts to higher values.  

For each class of materials (polymers, ceramics or metals) the atomic bond energy 

will affect the curvature of the potential well. For strongly bonded atoms, the 

minimum of the potential well will reach lower values and the curve will become 

narrower and more symmetric. This means that the effect of the temperature will be 

less than in the case of weakly bonded atoms.  
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Figure 1: Potential well of a diatomic molecule 

The potential well reveals the most generally accepted mechanism for thermal 

expansion as it states that the atomic vibrations will give rise to thermal expansion 

because of anharmonicity. Nevertheless, it is a simplified model as it uses isolated 

diatomic molecules which are not representative of ceramic materials. Furthermore, it 

doesn’t explain the principle behind negative thermal expansion. The model’s main 

weakness is that only the longitudinal component of the vibrational mode is used. In 

solid materials the transversal vibrational motion may give rise to a second 

mechanism pulling the atoms towards one another and decreasing the interatomic 

spacing (figure 2).  

 

Figure 2: Longitudinal (left) and transversal (right) component of the vibration mode 
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The two mechanisms will have an opposite effect on the interatomic spacing and the 

resulting expansion will be positive or negative depending on which effect is more 

pronounced. The transverse effect will become dominant in solids with an open 

structure where vibrations occur for which the components of relative motion have 

large transversal components along all bond directions.  

Non-vibrational contributions can also occur and may be spectacular, especially at 

low temperatures where the vibrational effects are small. In principle, any 

contribution to the free energy (electronic, magnetic …) is dependent on strain and 

therefore affects the thermal expansion. 

1.2 Definition of the linear and volume expansion 1, 3 

To compare the thermal expansion behaviour of different kinds of materials, there is a 

need for a quantitative analysis of the dimension change. Changing the temperature 

must change the internal pressure and, as a consequence, the dimensions will be 

adjusted to minimize the Gibbs free energy. The magnitude of change is partially 

controlled by the elastic stiffness of the solid.  

The thermodynamic relation between the volume thermal expansion coefficient β, 

pressure P, volume V, compressibility χ and entropy S is given by the following 

equation.  

( )
T

T
V

T
P dV

dS
dT
dP

dT
Vlnd







χ=






χ=






=β  [1] 

 

The sign of dS/dV determines the sign of the expansion coefficient. In most cases, the 

entropy becomes smaller under increasing pressure and the volume is reduced. This 

leads towards positive values for dS/dV and β. However, as mentioned above there 

are solids for which the entropy increases under increasing pressure which will result 

in a negative thermal expansion coefficient.  
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Equation 1 is widely known in a slightly adjusted form (equation 2) which gives a 

direct relation between the volume thermal expansion coefficient and the volume (V) 

of the materials at different temperatures (T). 

( )








−







 −
=






=β

121

12

P TT
1

V
VV

dT
Vlnd  [2] 

 

Linear thermal expansion is defined in the same way as the volumetric expansion with 

the exception of length l instead of volume V. 

( )








−







 −
=






=α

121

12

P TT
1

l
ll

dT
llnd  [3] 

 

For materials with isotropic or cubic symmetry, the linear thermal expansion is 

independent of the direction. For these materials there is a simple relation between the 

volume and their linear thermal expansion coefficient as mentioned in equation 4.  

α×=β 3  [4] 

 

For anisotropic materials the expansion is defined relative to specific directions, most 

frequently the crystallographic vectors along the a-, b- and c-axis. For hexagonal, 

trigonal and tetragonal crystals the thermal expansion is symmetric according to the 

principal axis of symmetry. This results in two independent coefficients of linear 

expansion, α|| along the axis and α⊥ normal to the axis. For materials with 

orthorhombic symmetry the three crystallographic axes are at right angles to each 

other, with three independent linear expansion coefficients αa, αb and αc. For 

monoclinic and triclinic systems, there is also a temperature variation of the angles 

between the axes. All these different linear thermal expansion coefficients must be 

taken into account to describe the thermal expansion behaviour of these materials.  



Chapter 1 
 
 

 6 

1.3 The thermodynamic Grüneisen functions 

Grüneisen established the experimental pattern of behaviour for many crystalline 

materials before 1920 and summarized this in his 1926 review 4. He observed that in 

many solids at normal and elevated temperature, the ratio of the thermal expansion 

coefficient to the heat capacity C is roughly constant with temperature as can be seen 

in equation 5.  

V
C

V
C TVSP χγ

=
χγ

=β  [5] 

 

In this equation CP and CV are the heat capacities of a mole of volume V at constant 

pressure and constant volume respectively. χS and χT are the adiabatic and isothermal 

values of the compressibility of the material. The parameter γ is known as the 

Grüneisen parameter.  

The anharmonicity of the pair potential gives rise to a volume dependence of the 

frequency (νi) described by the Grüneisen parameter.  

Vlnd
lnd i

i
ν

−=γ  [6] 

 

For positive thermal expansion materials, Grüneisen parameters with a value between 

1 to 3 are typical. Negative thermal expansion materials are characterized by a 

negative Grüneisen parameter. This means that the vibrations which increase in 

frequency as the volume increases will give rise to the global shrinkage of the 

material. When a string is plucked, a transversal vibration is induced. When the 

plucked string is stretched, the sound produced by the guitar will shift to higher 

frequencies 5.  
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To estimate the thermal expansion of a material, the distribution among the different 

vibration modes must be known. The total vibrational Grüneisen function is a 

weighted average of all the γi’s. 

∑

∑ γ
=γ

i
i

i
ii

vib c

c
 [7]  

 

In this equation ci stands for the contribution of a specific vibrational mode to the total 

heat capacity CV which can be given by equation 8. 

∑=
i

iV cC  [8] 

 

The vibrational contribution to the volume thermal expansion coefficient is given by: 

V
C Tvibvib χγ

=β  [9] 

 

Transversal vibration modes are most frequently less energetic than the longitudinal 

modes and are therefore activated at lower temperatures. At low temperatures, these 

vibrational modes can dominate the Grüneisen parameter. This can be observed in a 

series of Rubidium halides, Si, Ga, CuCl… Below -151 °C, negative thermal 

expansion behaviour can be observed as can be seen in figure 3.  

 

Figure 3: Thermal expansion behaviour of Si 
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1.4 Thermal expansion behaviour of ceramics in general 

Relatively strong interatomic bonding forces are found in many ceramic materials as 

reflected in their comparatively low thermal expansion coefficients. Typical values 

are in the range between 0.5 – 15  10-6 °C-1. For non-crystalline ceramics and those 

having a cubic crystal structure αl is isotropic. Otherwise the thermal expansion is 

anisotropic and, in fact, some ceramic materials will contract upon heating in some 

crystallographic directions while expanding in others 2. 

Ceramic materials that are to survive larger temperature changes must possess 

relatively low thermal expansion coefficients and need to expand preferably in an 

isotropic way. Otherwise these brittle materials may experience fracture as a 

consequence of non-uniform dimensional changes caused by a thermal shock. 

The thermal expansion properties for a variety of materials are given in table 1 . 

Material α ( 10-6 °C-1)
Al 23.6 (between 0 °C and 100 °C) 
Cu 17.0 (between 0 °C and 100 °C) 
Au 14.2 (between 0 °C and 100 °C) 
Fe 11.8 (between 0 °C and 100 °C) 
Ni 13.3 (between 0 °C and 100 °C) 
W 4.5 (between 0 °C and 100 °C) 
Invar 1.6 (between 0 °C and 100 °C) 
  
Al2O3 7.6 (between 20 °C and 1000 °C) 
Fused SiO2 0.4 (between 20 °C and 1000 °C) 
α-ZrW2O8 -9.1 (between -270 °C and 30 °C) 
MgO 13.5 (at 100°C) 
  
Polyethylene 106 – 198 (at room temperature) 
Polypropylene 145 – 180 (at room temperature) 
Polystyrene 90 – 150 (at room temperature) 
Teflon 126 – 216 (at room temperature) 
Nylon 6,6 144 (at room temperature) 

Table 1: Tabulation of the thermal expansion properties 
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The thermal expansion of ceramics can be divided into 4 groups:  

(1) negative thermal expansion  α < 0 °C-1  

(2) very low expansion   0 °C-1 < α < 2  10-6 °C-1 

(3) low expansion    2  10-6 °C-1 <  α < 8  10-6 °C-1  

(4) high expansion    α > 8  10-6 °C-1. 

Different thermal expansion coefficients will lead towards different relative length 

changes with varying temperature. In figure 4 some examples are given. The slope of 

the curves will increase for higher thermal expansion coefficients. The middle region 

represents the very low expansion materials. These are very useful for industrial 

applications as there is nearly no dimension change. The upper region is occupied by 

positive expansion ceramic materials such as alumina and some metal alloys. The area 

below ∆L/L = 0 is occupied by the NTE materials from which ZrW2O8 is chosen as a 

representative.  

 

Figure 4: Relative length difference according to temperature 
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2 Mechanisms for Negative thermal expansion 

Negative thermal expansion can be induced by several mechanisms which will be 

described in the following paragraph such as phase transitions, phonons, electronic - 

magnetic transitions and the negative thermal expansion of geometrical origin. 

2.1 Phase transitions 5-7 

There must be a structural phenomenon which overrules the normal tendency to 

expand at increasing temperatures in case of a material displaying negative thermal 

expansion. In some situations, a decrease in the average bond distance, at least over a 

narrow temperature range, can be detected.  

The contribution to the overall valence bond sum from a given bond can be 

approximated by the following expression with r0 equal to a constant for an E – X 

combination of elements 8. The individual bond valences are equivalent to the number 

of bonding electrons distributed within the bond. 






 −
=ν

37.0
rr

exp 0  [10] 

 

This leads to an exponential decrease in bond strength with increasing bond length as 

can be seen in figure 5. It can be understood that the average bond length in an 

undistorted MO6 octahedron will always be shorter than the average bond length in a 

distorted octahedron. This effect can be attributed to the fact that anion-anion 

repulsions are minimized as polyhedra become more regular.  
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Figure 5: The form of a typical bond length-bond strength plot 5 

A suitable example to explain this phenomenon is PbTiO3. At room temperature 

PbTiO3 is a ferroelectric material with a tetragonal structure. The ferroelectric – 

paraelectric phase transition is situated around 490 °C. At temperatures above 490 °C, 

lead titanate is cubic with regular PbO12 and TiO6 polyhedra. Below the phase 

transition temperature PbTiO3 contains highly distorted polyhedra. The polyhedra will 

regularize as they approach the phase transition. This effect contributes to a decrease 

in cell volume as the temperature is increased. In the tetragonal structure there is 

thermal expansion along the a - and b - axis and thermal contraction along the c axis 

as shown in figure 6. Once PbTiO3 becomes cubic it shows normal positive thermal 

expansion. 

 

Figure 6: Cell parameters of PbTiO3 as it approaches the tetragonal - cubic phase transition 5 
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2.2 Phonons 7, 9, 10 

Lattice vibrations or phonons play a major part in thermal expansion. As already 

discussed in this chapter, transversal thermal motion of the oxygen atom in an e.g.   

M-O-M linkage can induce shrinkage of the unit cell upon heating. If the M-O bonds 

are strong enough they will show negligible thermal expansion. As the temperature 

increases, the average displacement of the oxygen atom will increase and the vibration 

will pull the metal atoms together. This mechanism can operate in any crystal system. 

2.3 Electronic and Magnetic transitions 11-13 

Besides ceramic materials, some metals and alloys display negative or low thermal 

expansion behaviour.  

For materials with a significant magnetoelastic coupling, the normal positive thermal 

expansion can be compensated by a large contraction due to changes in the magnetic 

structure. Invar, Fe0.65 – Ni0.35, and some transition metals as Mn and Cr show this 

behaviour. RE2Fe17 (RE: Y, Lu) exhibits negative thermal expansion.  

In 1897 Guillaume discovered that an iron-nickel alloy with a nickel concentration of 

around 35 atomic percent exhibits nearly no dimension change as the temperature 

increases. Invar has a thermal expansion coefficient of 0.02  10-6 °C-1 in a wide 

temperature range. The discovery of the so-called Invar effect was a stimulus for 

many scientists to reveal the mechanism. Weiss introduced the 2γ – state model. 

According to this model, there are two possible states for face-centred γ – Fe: the 

ferromagnetic high-volume state and the antiferromagnetic low-volume state. Thermal 

excitations between these two states are supposed to compensate for the usual lattice 

expansion related to the anharmonic effects of the lattice vibrations. Recently studies 

were published which suggest that the invar-system consists of multiple magnetic 

states 13. The magnetic transition is a continuous process from a high volume 

ferromagnetic state to disordered states with non-collinear spin alignments with 

similar energies and lower volumes.  
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YbGaGe is an electrically conductive intermetallic compound with a negligible 

volume change between -170 and 130 °C. YbGaGe crystallizes in the hexagonal 

P63/mmc space group. Figure 7 shows a detail of the crystal structure with an 

indication of GaGe layers (A-D). There are 4 of these layers in the unit cell and they 

sandwich the Yb atoms. Yb(1) atoms are lying between the A-B and C-D layers and 

the Ga atoms provide the binding sites for these Yb atoms whereas for the Yb(2) the 

Ge atoms show the closest approach.  

 

Figure 7: Crystal structure details YbGaGe 12 

Studies by a research group at Michigan State University suggest that the low thermal 

expansion response to an increasing temperature is due to a temperature induced 

valence transition in the Yb atoms. Yb(1) has a mixed valency +2/+3 whereas Yb(2) 

has a fixed valency of +2 12. With an increase in valence, a smaller radius will be 

obtained.  

The temperature induced valence transition is drawn in figure 8. The negative thermal 

expansion depends on the overlap of the Yb 4f and Ga 4p bands. As the temperature 

increases, the electron density shifts from the Yb 4f band to the Ga 4p band. The Yb 

shrinks in size due to its higher valence state whereas at the Ga ion a negligible 

increase in size is created. Strong negative thermal expansion along 2 axes is 

compensated by a strong normal thermal expansion along the third axis.  
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Figure 8: Valence degeneracy as a function of  temperature 11 

This induced valence change is also indicated by magnetic susceptibility 

measurements. Yb3+ (4f13) is a paramagnetic ion with a calculated free ion molar 

susceptibility of 4.54 BM and Yb2+ is diamagnetic. As the temperature rises, the 

magnetic behaviour of YbGaGe changes due to the larger population of paramagnetic 

Yb3+. 

Sm2.75C60 materials can also be situated in this category 14, 15. Sm2.75C60 displays large 

negative thermal expansion behaviour in the temperature range -268.9 °C – -241 °C 

due to a quasi continuous valence change from the larger Sm2+ towards the smaller 

Sm2.3+ ion. This material exhibits not only negative thermal expansion but shows a 

lattice collapse upon application of pressure. Synchrotron X-ray powder diffraction 

measurements at ambient temperature have shown that the Sm2.75C60 structure 

contracts and at 3.95 GPa an abrupt phase transformation accompanied by a more 

pronounced lattice shrinkage sets in. This phase transformation can be interpreted as a 

discontinuous valence change if Sm from the +2.3 towards the +3 state. This leads to 

a smaller size of the rare-earth ions and a collapse of the unit cell parameters. The 

observed pressure and temperature response is similar to that of strongly correlated 

Kondo insulators like SmS with a Sm2+ (4f6) → Sm3+ (4f55d1) electron transfer. 
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2.4 Negative Thermal Expansion of geometrical origin 16-19 

Negative thermal expansion can arise as a geometrical effect in framework structures. 

These are crystal structures consisting of rather stiff atomic units such as AX4 

tetrahedra and AX6 octahedra which are joined by shared X-atoms at the corners. 

Most frequently the place of the X-atom is taken by oxygen atoms. Framework 

structures can be recognized in ZrV2O7 and ZrW2O8, β-quartz, some zeolites… 

The mechanism which will lead towards negative thermal expansion is a combination 

of the geometrical effect of the flexible framework structures associated with the 

rotation of the rigid structural units (i.e. bond bending at the shared oxygen or other 

corner atoms). Figure 9 shows an ideal structure with lattice constant a0 and the result 

of rotating squares by an angle θ. A global shrinkage of the lattice is illustrated. 

 

Figure 9: (a) square lattice of rigid MO4 unit modes (b) Rotational displacements inducing a contraction 
of the lattice 19 

The area A(θ) of the 2D-cell is reduced and is given by equation 11. 

( ) ( ) θ=θη−=θη−=θ 2
0

2
A0

2
A

2
0 cosA1A1a)(A  [11] 

 

with ηA: a geometrical calculable constant (equal to 1 in the case above) and A0: the 

area occupied by the unit cell when no rotations occur. Fluctuating positive and 

negative rotations are a manifestation of the thermal agitation.  
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In this case, as the temperature rises, the angle θ by which the lattice will deform will 

increase resulting in a decrease of the unit cell. 

( )
T

2
A0T 1A)(A θη−=θ  [12] 

 

where 
T

A decreases and
T

2θ increases with T. 

Applying the principle of equipartition of energy to the potential energy of oscillation, 

the rotation due to thermal fluctuation can be written as follows: 

Tk
2
1I

2
1

BT
22 =θν  [13] 

 

Here I is the moment of inertia of the units, ν is the vibrational frequency and kB is 

known as the Boltzmann’s constant. Combining equations 12 and 13 leads towards an 

expression including temperature and vibrational frequency. 









ν
η−=θ 2

B
A0T I

Tk1A)(A  [14] 

 

Taking a closer look at equation 14, one can conclude that thermal agitation will cause 

a deformation of the ideal lattice structure by a reduction of one or more lattice 

parameters. Lower frequency modes will have a larger impact resulting in a larger 

absolute value of the negative thermal expansion coefficient.  

The rotations described in this section are called Rigid Unit Modes or RUM’s. They 

are characterized by large amplitudes and low frequencies. They involve no changes 

in the intrapolyhedral bond distances or bond angles. In some materials these low 

frequency vibrations are accompanied by small distortions of the polyhedra. These are 

called Quasi-Rigid Unit Modes or QRUM’s and these can also give rise to negative 

thermal expansion. In structures where neither RUM’s nor QRUM’s can occur, large 

negative thermal expansion is unlikely. 
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Open framework structures where the following restrictions are taken into account 

have the tendancy to result in negative thermal expansion materials 6, 9. 

- the framework oxygen is coordinated to just two metal ions 

- framework structure exhibits a topology which support low-energy 

transverse vibrational modes  

- the angle of the M – O – M linkage is 180° 

- transversal motion of the oxygen will pull the metal ions closer together  

- the thermal expansion of the M – O bond can be neglected due to the high 

strength of this bond. (M = W6+, V5+, Si4+…)  

- No interstitial framework cations are present 

2.5 Examples of Negative Thermal Expansion in framework structures  

The two most common polyhedra building blocks in framework oxide structures are 

tetrahedra (MO4) and octahedra (AO6). If all polyhedra are corner-sharing with all 

oxygen atoms in two-fold coordination, the generic composition of a framework 

structure is AxMyO3x+2y. A network consisting only of corner sharing octahedra will 

have AO3 as formula whereas a pure tetrahedral composition will end up with the 

MO2 formula. In the following paragraphs a number of these families are discussed 

with extra attention to their thermal expansion behaviour. In the following paragraph 

several families such as MO2, AO3, AMO5, AM2O7, AM2O8, A2M3O12 and CN 

bridged framework materials are described.  

2.5.1 MO2 family 19 

Among the family of MO2 or MO4/2 networks there is the group of framework 

silicates and aluminophosphates which consists of almost ideal SiO4/2, AlO4/2 or PO4/2 

tetrahedra connecting to each other by sharing corners. Most of these framework 

structures contain interstitial ions or molecules which have a significantly impact on 

the thermal expansion properties. Those which lack interstitial ions or molecules 

frequently show NTE behaviour. 
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RUM’s are known to exist in the common crystalline forms of SiO2: quartz, tridymite 

and cristobalite. Strong negative thermal expansion has been found for the pure SiO2 

zeolites, ITQ-1, SSZ-23, CIT-5 and ITQ-3 from 50 – 500 °C and above 20-24. The 

tetrahedral framework structure of the siliceous zeolite CIT-5 can be seen in figure 10. 

The aluminophosphates (AlPO4) are built from of alternating AlO4/2 and                    

PO4/2 tetrahedra 25. It has been shown that these materials have an unusual large 

negative linear thermal expansion coefficient (-11.7  10-6 °C-1) over the temperature 

range -260 °C – 70 °C. The hexagonal crystal structure exhibits negative thermal 

expansion along the a- and c- axes.  

 

Figure 10: The structure of CIT-5 as corner sharing SiO4/2 tetrahedra 16 

The unusual and useful thermal expansion properties of β-eucriptite (LiAlSiO4) have 

been known for many years 26, 27. On heating from room temperature the hexagonal a- 

and b-cell edges increase. However there is a pronounced contraction of the c-cell 

edge resulting in a very low volume expansion material. The framework structure can 

be compared with β-quartz where some of the Si4+ atoms are replaced by Al3+ atoms. 

Charge compensating Li+ ions reside in the interstitial sites, resulting in a material 

with a high ionic conductivity.  
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2.5.2 AO3 family 16, 28 

Several different network structures are known in this family. Thermal expansion has 

been studied in the cubic crystal structures. These cubic networks consist of corner-

shared MO6/2 octahedra. This model is easily illustrated with the cubic ReO3 structure 

as is shown in figure 11. The Re – O – Re bond angles are 180°. Bending of these 

linkages results in a volume decrease of the entire unit cell. Other examples in this 

field are TaO2F and NbO2F. RUM’s appear in these oxides resulting in “rocking 

motions” along each of the three axes resulting in a very low positive thermal 

expansion. The low value is caused by the combination of the transversal vibrations 

and the anharmonicity of the potential well of the Re – O bonds. 

 

Figure 11: Rocking motions within the ReO3 structure 28 

2.5.3 AMO5 or AOMO4 family 6, 16, 29, 30 

From the overall stochiometry two combinations are possible: two 5+ valency cations 

or one 4+ and one 6+ valency cation. So far only the first combination has been 

examined for thermal expansion. The A cations can be Nb, Ta, Mo or V. The screened 

M cations are P, V, As, S, Mo. They form a large family with corner-sharing 

tetrahedra and octahedra. Each AO6/2 octahedron shares corners with four MO4/2 

tetrahedra and 2 other octahedra whereas the tetrahedron shares corners with four 

MO6/2 octahedra.  

The most famous member of this family is NbOPO4 which is composed of NbO6 

octahedra and PO4 tetrahedra. Three polymorphs of NbOPO4 have been reported. It is 

interesting to see that the high temperature polymorphs show more explicit negative 

thermal expansion behaviour related to a higher symmetry. 
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The monoclinic (P21/c) polymorph transforms in the orthorhombic (Pnma) form at 

higher temperatures (figure 12) and both polymorphs show the same connectivity of 

the octahedra and tetrahedra throughout the transition. The length of the a-axis of the 

monoclinic phase will decrease with increasing temperature whereas in the 

orthorhombic polymorph a decrease of all axes is noticed.  

 

Figure 12: Orthorhombic, high T phase (left) and monoclinic, low T phase (right) 29
 

The tetragonal polymorph undergoes a phase transition at about 200 °C. The low 

temperature phase (P4/n) is transformed in a high temperature (P4/nmm) phase. The 

c-cell edges show positive thermal expansion in both phases. The a- and b-cell edges 

show positive thermal expansion below the transition and negative thermal expansion 

after the transition. Both phases are given in figure 13.  

 

Figure 13: The high- (left) and low- (right) temperature phase of tetragonal NbOPO4 29 
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2.5.4 AM2O7 and AM2O8 families 6, 19 

The AM2O7 phases (with A: Ti, Zr, Hf, Sn and M: P or V) are mostly cubic structures 

which display isotropic negative thermal expansion under specified conditions. The 

network structure is composed of AO6 octahedra corner-sharing with M2O7 polyhedra. 

These can be seen as a combination of two tetrahedra sharing one oxygen atom. In 

figure 14 the thermal expansion behaviour of some members of the AM2O7 family is 

displayed. As can be seen from this figure, the tendency to exhibit negative thermal 

behaviour will increase as the unit cell edge increases. This can be understood as 

follows: RUM’s can not occur in these materials as small changes in the polyhedra are 

necessary to allow these rotations. Therefore Quasi-RUM’s are present in this family. 

As the polyhedra become larger, it is easier for them to change shape due to the 

decreased anion-anion distances within the polyhedra. The negative thermal 

expansion behaviour of AM2O7 materials is strongly dependent on the more facile 

rocking motions of the larger polyhedra. ZrV2O7, HfV2O7, ThP2O7 and UP2O7 show 

negative thermal expansion behaviour. 

  

Figure 14: Thermal expansion for some cubic AM2O7 compounds 6 
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Several members of the cubic AM2O7 family have a network collapse phase transition 

with decreasing temperature. Below this transition, the thermal expansion is positive 

and more normal. The structural changes through these transitions have been studied 

in detail for ZrV2O7 and ZrP2O7 31-36. At room temperature, both of these compounds 

have a 3  3  3 superstructure relative to their high-temperature structure as given 

in figure 15.  

 

Figure 15: The high-temperature ideal cubic structure of ZrV2O7 32 

These phase transitions can be seen in the diagram showing the cell parameter of 

ZrV2O7 versus temperature (figure 16). The cell edge at room temperature is 8.765 Å. 

The structure is a superstructure so the actual length of the a-axis is three times this 

size: 26.293 Å. As the temperature increases, the cell parameter value increases. At  

70 °C however the material undergoes a phase transition resulting in an 

incommensurated structure with the following dimensions: ~3a  ~3a  ~3a. At   

160 °C, a second phase transition occurs and induces a transformation of the 

superstructure to a simple cubic cell. This phase shows strong negative thermal 

expansion behaviour with αl= -7.1  10-6 °C-1 between 130 and 230 °C. Starting from 

room temperature one can say that the material will expand to its maximum volume, 

undergoes a phase transition and contracts by the transversal movements of the          

V – O – V bridging oxygen atoms in the framework structure.  

The origin of the incommensurate intermediate phase is somewhat unclear. A possible 

explanation is that this phase is related with a low energy arrangement of the 

polyhedra within the ZrV2O7 structure. In the superstructure, there are 108 octahedra 

and 216 tetrahedra. There is more than one possibility to arrange these units in a way 
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that retains the framework topology and involves minimal polyhedral distortion. As 

the temperature rises, another arrangement can be more favourable and a phase 

transition will be induced. 
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Figure 16: Thermal expansion curve of ZrV2O7 
37 

The thermal expansion properties of ZrP2O7 (figure 17) are somewhat similar. There 

is a phase transition at 300 °C inducing a transformation from a superstructure (Pbca) 

to a simple cubic structure.  
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Figure 17: Thermal expansion of ZrP2O7 35 

The thermal expansion coefficient of the latter is 5.4  10-6 °C-1 between 330 and  

430 °C. In comparison with ZrV2O7 no negative thermal expansion is noticed after the 
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phase transition. This discrepancy lies in the angles between the M – O – M linkages. 

In the case of the pyrovanadates, the bond angle is 180 ° for 2 V – O – V linkages and 

the four others are free to bend away from 180 ° whereas for the pyrophoshate 

compounds an angle of 130 – 160 ° is measured and this will interfere with the Quasi-

RUM’s resulting in a very low positive thermal expansion.  

The cubic structures of the AM2O8 family and the cubic ones of the AV2O7 family are 

closely related to each other as can be seen in figure 18. They both consist of AO6 

octahedra and MO4 tetrahedra. In the case of ZrW2O8 these tetrahedra share 3 oxygen 

atoms with neighbouring octahedra and they end up with one free oxygen atom. In the 

AM2O7 family, the other oxygen atom is shared with a tetrahedron resulting in an 

intra-tetrahedral link. ZrW2O8 exhibits negative thermal expansion over its entire 

stability range to its decomposition temperature at 1260 °C. ZrW2O8 and other 

AM2O8 related structures will be discussed in §3. 

 

Figure 18: Crystal structure of ZrW2O8 (left) and ZrV2O7 (right) 38 

2.5.5 A2M3O12 or A2(MO4)3 family 6, 7, 9, 16, 19, 39 

This family of materials forms a network of corner-shared AO6 octahedra and MO4 

tetraedra. There is a large variety of materials known which can be situated within this 

family. The A cation place can be taken in a trivalent cation with a radius size 

between Al3+ (0.672 Å) and Gd3+ (1.075 Å) such as Sc3+, Y3+, Fe3+, Lu3+, Dy3+, Ho3+, 

Tm3+… The M cations are known by their 6+ valency and in most of the cases W6+ or 

Mo6+ can be found in these structures. Sometimes the trivalent cation is replaced by a 
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higher valency cation such as Zr4+ and Hf4+. The M cation is then replaced by a lower 

valency cation to respect to neutrality of the compound: e.g. Zr2WP2O12, Hf2WP2O12., 

Zr2WMoP2O12 and Hf2MoP2O12. 

 

Figure 19: Open framework structure of Sc2(WO4)3: orthorhombic phase 40 

The relatively open framework structure of Sc2(WO4)3 is shown in figure 19. The 

orthorhombic crystal structure of this family of materials results in an anisotropic 

thermal expansion linked to the a-, b- and c-axis. A decrease in a- and c-parameters 

can be noticed whereas the b-parameters show normal thermal expansions. The 

magnitudes of these individual changes are such that an overall decrease of the cell 

volume is observed.  

 

Figure 20: Thermal expansion of the cell parameters and the cell volume of Sc2(WO4)3  41 
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Some members of the Sc2(WO4)3 family undergo volume reducing phase transitions, 

also known as a network collapse transition, from the high temperature orthorhombic 

phase to a monoclinic structure at low temperature. The temperature of this transition 

varies from < -260 °C for Sc2(WO4)3 till 1050 °C for Fe2(MoO4)3. As an example the 

evolution of the cell volume of Sc2(MoO4)3 as a function of temperature is shown in 

figure 21. On cooling down, a drastic cell volume decrease is noticed around -200 °C. 

The data for some other members of the A2M3O12 are gathered in table 2. 
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Figure 21: Temperature dependence of the cell volume of Sc2(Mo4)3 42 

Compound Transition  
Temperature 

αl (  10-6 °C-1) 
After transition 

References 

Sc2(WO4)3 Below -260 °C -2.2 9, 40 
Sc2(MoO4)3 -100 °C -1.72 9, 42, 43 
Fe2(MoO4)3 1050 °C  9 
Lu2(WO4)3 Below 100 °C -6.8 6, 39 
Al2(WO4)3 Below RT 2.2 41, 44 
(HfMg)(WO4)3 Below RT -3.3 45 
Al2x(HfMg)1-x(WO4)3 Below RT -0.8 46 
Y2(WO4)3 Below -260 °C -7 47-49 
Y2Mo4O15 Below 100 °C 7 50 
Dy2Mo4O15 Below 100 °C 5.75 50 
Ho2Mo4O15 Below 100 °C 11.4 50 
Tm2Mo4O15 Below 100 °C 5.4 50 
Zr2P2WO12 Below -260 °C -3 9, 41 

Table 2: Data of the AM3O12 family 
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A possible cause of the network collapse is oxygen-oxygen attraction 41. Such 

oxygen-oxygen attractive forces must be balanced against repulsive forces arising 

from the fact that oxygen is expected to have some negative charge in a metal oxide 

compound. The effective charge in a metal oxide compound will be directly related to 

the electronegativity of the cations present. As the electronegativity of the A cation 

rises the effective charge on oxygen decreases. The oxygen-oxygen repulsion 

decreases and the oxygen-oxygen attractive forces causes the network collapse 

transition to occur at higher temperatures as can be seen in figure 22. The 

electronegativity of W6+ is less than that of Mo6+ and hereby the phase transition of a 

A2(MoO4)3 compound is always higher than the A2(WO4)3 materials.  

 

Figure 22: Structure collapse temperature plotted against electronegativity of A3+  41 

The A2M3O12 family well illustrates that strong negative thermal expansion behaviour 

can occurs without RUM’s. Strong NTE behaviour has been observed for some 

members of the family after the network collapse transition and the transformation 

from the monoclinic phase to the orthorhombic crystal structure. Presumably 

vibrational modes are frozen out in the monoclinic phase and are released after the 

phase transition at higher temperatures. No classical RUM’s can be identified but 

Quasi-RUM’s are more likely in this family. 

The NZP materials are also part of the AM3O12 family 26, 51-54. NZP’s are based on 

NaZr2P3O12 and a wide variety of adaptations can be made to the basic stochiometry 

by substitutions at all three non-oxygen sites. One of such series is M0.5Ti2(PO4)3 

where M is a divalent cation such as Ca, Sr (SrTP), Ba or Pb. Closely related to this 
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series are NaTi2(PO4)3 (NTP) and La0.33Ti2(PO4)3 (LaTP). Some NZP-type phoshates 

have the following stochiometry PbM3+M4+P3O12 with M3+ = Cr, Fe or In; M4+ = Ti, 

Zr, Hf or Sn. All types of combinations can be made such as PbFeZrP3O12, 

Pb0.5Mo2P3O12 and many more.  

The crystal structure of the prototype composition NaZr2P3O12 has a rhombohedral 

symmetry (R-3c) and the basic structure consists of a framework of corner-shared PO4 

tetrahedra and ZrO6 octahedra which form chains along the c-axis. This polyhedral 

interconnection gives rise to interstitial sites with distinct geometries. In NZP itself, 

all the MI or trigonal anti-prismatic sites are filled with Na+ ions whereas by suitable 

substitution at other sites the MI sites can be made partially or completely vacant as in 

the case of Ca0.5Zr2(PO4)3 (50% vacancy), La0.33Zr2(PO4)3 (67% vacancy) or 

NbZr(PO4)3 (100% vacancy). An example of the differences in site occupancy is 

given in figure 23. Occupancy by divalent cations lowers the symmetry to R-3 

implying alternate ordering of cations and vacancies along the c-axis. 

 

Figure 23: Site occupancy in NTP (left) and SrTP (right) crystal structures 51 

The substitution of the Na+ ions has its effect on the thermal expansion of NZP-based 

materials. Pure NZP has an anisotropic thermal expansion with expansion along the c-

axis and contraction along the a-axis whereas the divalent cations reverse the 

anisotropy resulting in an expansion along the a-axis and a contraction along the c-

axis. Substitution will lead to a large variety of thermal expansion coefficients ranging 

from negative over low thermal expansion to positive values. 
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2.5.6 Cyanide-bridged framework materials 55-57 

The oxide-based framework materials are the most widely studied members of the 

negative thermal expansion materials. Nevertheless, anomalously large and negative 

thermal expansion has been reported for Zn(CN)2, Cd(CN)2, Fe[Co(CN)6]. The crystal 

structure of Zn(CN)2 is shown in Figure 24 and this material has a thermal expansion 

coefficient of - 16.9 × 10-6 °C-1 in the temperature range between -250 °C and 100 °C.  

 

Figure 24: Crystal structure of Zn(CN)2 58 

These cyanide-bridged framework materials have cubic crystal structures containing 

rigid molecular polyhedra but the M – O – M linkages are now replaced by cyanide-

metal bridges: M – (CN) – M. This linear M – (CN) – M linkages might give rise to a 

local NTE effect. Two transverse vibrational modes similar to the bending mode of 

the M – O – M bridges are possible and these are shown in. The first (a) involves 

displacement of the C and N atoms away from the M – M axis in the same direction, 

(b) shows the displacement in opposite directions. Both modes bring the anchoring 

metal atoms closer together.  

 
(a)                            (b) 

Figure 25: Representation of local vibration modes 56 
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3 Isotropic negative thermal expansion behaviour in the         

AM2O8 – family 

3.1 Introduction 

As can be deduced from their molecular formulae, there is a strong relationship 

between the AM2O8 and the AM2O7 families. AM2O8 compounds consist of a network 

where each MO4/2 tetrahedron shares three corners with surrounding AO6/2 octahedra 

and has one free oxygen atom. The isotropic negative thermal expansion makes this 

family of materials very interesting. Most materials exhibiting negative thermal 

expansion exhibit anisotropic expansion. This phenomenon renders them very brittle 

and therefore not usable for technological applications. There are some other ceramic 

materials which show isotropic negative thermal expansion such as amorphous SiO2, 

Cu2O, ZrV2O7…59. In 1996 a highly unusual behaviour was observed for ZrW2O8 and 

HfW2O8. These compounds showed high isotropic negative thermal expansion over a 

large temperature range 60.  

3.2 Strong isotropic negative thermal expansion in ZrW2O8 

ZrW2O8 was first synthesized in 1959 by heating an encapsulated mixture of ZrO2 and 

WO3 at 1200 °C followed by a quenching step 61. The obtained powders exhibit a 

cubic crystal structure which is unstable at room temperature 62. According to a phase 

diagram of the ZrO2 – WO3 binary system published by Chang in 1967 and given in 

figure 26, ZrW2O8 is stable at temperatures ranging from 1105 till 1257 °C 63. When 

the material is cooled down rapidly by immersion into liquid nitrogen, metastable 

ZrW2O8 at room temperature can be obtained. Increasing the temperature will 

decompose the material into its oxides ZrO2 and WO3 at 800 °C. In 1968 Martinek 

and Hummel revealed the negative thermal expansion behaviour in ZrW2O8 64. 
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Figure 26: ZrO2-WO3 binary phase diagram 63 

In 1996 the material gained more interest when Evans, Mary and Sleight reported the 

isotropic negative thermal expansion of ZrW2O8 until the decomposition temperature 

at 777 °C 60. The temperature dependence of the cell parameter of ZrW2O8 over its 

entire stability range is given in figure 27. The thermal expansion coefficient between 

-273 °C and 150 °C is -9.7  10-6 °C-1. Around 150 – 170 °C, there is discontinuity in 

the measured cell parameter caused by an order-disorder transition. After this 

transition the negative thermal expansion behaviour of ZrW2O8 is maintained but the 

thermal expansion coefficient has a smaller absolute value. 
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Figure 27: Thermal expansion behaviour of ZrW2O8. The dotted line is an extrapolation between the 
experimental data below 1000 K and the data collected at 1443 K 5 

3.2.1 Crystal structures of ZrW2O8 60, 65-68 

Being part of the AM2O8 family, zirconium tungstate has ZrO6 octahedra and WO4 

tetrahedra as building blocks. The tetrahedra are connected with three oxygen atoms 

to the octahedra with zirconium as central atom and each WO4 unit has one free 

oxygen atom. The crystal structure of ZrW2O8 at room temperature can be seen in 

figure 28. The arrangement of the WO4 groups is as such that pairs of tetrahedra lie 

along the main three-fold axis of the cubic unit cell with an asymmetric W···O – W 

bridge. This geometry results in one short W – Oterminal bond (1.7 Å). The distance 

between this oxygen atom and the W of an adjacent tetrahedron is significantly longer 

(2.4 Å). 

 

Figure 28: Crystal structure of α-ZrW2O8 60 
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Under ambient conditions zirconium tungstate (α-ZrW2O8) is a cubic compound with 

spacegroup P213. Zirconium tungstate maintains its negative thermal expansion over 

two phase transitions, one at ambient pressure and 160 °C to β-ZrW2O8 and the other 

at room temperature and pressures above 0.2 GPa to γ-ZrW2O8. β-ZrW2O8 has a cubic 

symmetry with Pa-3 as spacegroup whereas the γ-polymorph has an orthorhombic 

structure (P212121). The crystallographic identity cards with the unit cell parameters of 

all three polymorphs are given in table 3. The fractional atomic coordinates are only 

mentioned for the alpha and beta phases. 

α-ZrW2O8 
P213 

Atom 
 

x/a y/b z/c 

Cell parameters 
at 20 °C 

 a 
9.1569(3) 

  

 Zr1 0.0004(3) 0.0004(3) 0.0004(3) 
 W1 0.3409(3) 0.3409(3) 0.3409(3) 
 W2 0.6009(3) 0.6009(3) 0.6009(3) 
 O1 0.0529(3) -0.2069(3) -0.0619(4) 
 O2 0.0697(4) -0.0575(3) 0.2132(3) 
 O3 0.4914(4) 0.4914(4) 0.4914(4) 
 O4 0.2322(3) 0.2322(3) 0.2322(3) 

β-ZrW2O8 
Pa-3 

Atom 
 

x/a y/b z/c 

Cell parameters 
at 210 °C 

 a 
9.1371(5) 

  

 Zr1 0.0000(0) 0.0000(0) 0.0000(0) 
 W1 0.3394(5) 0.3394(5) 0.3394(5) 
 W2 0.6035(5) 0.6035(5) 0.6035(5) 
 O1 0.0549(3) -0.2089(2) -0.0671(3) 
 O3 0.5055(0) 0.5055(0) 0.5055(0) 
 O4 0.2322(4) 0.2322(4) 0.2322(4) 

γ-ZrW2O8 
P212121 

Atom 
 

x/a y/b z/c 

Cell parameters 
at 20 °C 

 a 
9.0608(2) 

b 
27.0141(6) 

c 
8.9191(2) 

Table 3: Crystallographic identity cards of α-ZrW2O8 60, β-ZrW2O8 60 and γ-ZrW2O8 
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a. α -β -phase transition 5, 60, 67, 69, 70 

ZrW2O8 shows dynamic oxygen disorder at unusually low temperatures. This disorder 

is understood to be responsible for an order-disorder phase transition observed at    

150 – 180 °C in which the space group symmetry changes from P213 to Pa-3. The 

transition is related with the orientation of the WO4 tetrahedra along the three-fold 

axis. At room temperature these tetrahedra are ordered and all point in a definite 

direction. In the high temperature β-phase the direction in which the WO4 tetrahedra 

point becomes dynamically disordered. The interaction between two WO4 as 

mentioned above can be seen as a W2O8 unit. The α to β transition involves a formal 

inversion of the W2O8 groups.  

Two mechanisms illustrated in figure 29 can be proposed for this inversion. On the 

left side, Figure 29(a) shows a “coupled SN2” mechanism in which the formation of a 

W1-O3 bond leads to cleavage of the W1-O4 bond and a local inversion of tetrahedra. 

This process can occur in a cooperative way throughout the crystal or proceed via the 

local process as mentioned in equation 15. 

−−− +→ 6
92

2
72

2
4 OWOWWO4  [15] 

 

 (a) 

 (b) 

Figure 29: Schematic diagrams showing two possible mechanisms for oxygen exchange 69 
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An alternative mechanism is mentioned in the figure 29(b). Adjacent tetrahedra could 

rotate as a whole in a “ratchet” motion causing mutual exchange between all oxygen 

sites. 17O NMR is an ideal technique to study these two mechanisms as can be seen in 

figure 30. Peaks first broaden and then coalesce with rising temperature. The chemical 

shift of the single broad centre band peak at 229 °C tends towards the weighted mean 

of all those observed at low temperature (487 ppm). This indicates that all sites are 

involved in exchange at high temperature and that the mechanism involved in the 

order-disorder phase transition is most likely the “ratchet” motion. β-ZrW2O8 shows 

isotropic negative thermal expansion with αl = -5  10-6 °C-1. 

 

Figure 30: Variable temperature 17O MAS spectra of ZrW2O8 69 
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b. α - γ -phase transition 71-78 

At room temperature, the cubic α-phase is stable below 0.21 GPa, above this pressure 

there is a first-order transition to the orthorhombic γ-phase. The orthorhombic phase is 

metastable after the release of pressure. At low temperature, its thermal expansion is 

also negative but an order of magnitude smaller than for the α-phase. Upon increasing 

temperature, the thermal expansion of the γ-phase passes through zero at -45 °C and is 

slightly positive at room temperature. Above room temperature (120 °C) the 

metastable γ-phase transforms back into the cubic α-phase. The orthorhombic unit 

cell is closely related to the cubic phase but with a tripled b-axis as can be seen in 

figure 31. The mechanism involved in the transition from α to γ is again related to 

migration of oxygen atoms in the lattice. The relative volume change at the               

α-γ-transition is -5%. 

 

Figure 31: (A) Polyhedral representation of the structure of γ-ZrW2O8. (B) Schematic representation of 
the 2 WO4 groups of α-ZrW2O8 viewed perpendicular to the threefold axis (C, D and E) 

Representations of the W coordination environments in γ-ZrW2O8 71 
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There are two reasons for this decrease. First, there is a significant decrease in the 

non-bonding W···O distance leading to an increase in the bonding nature of this 

interaction. Secondly, in α-ZrW2O8 the WO4 groups are constrained by symmetry to 

lie on a threefold axis and thus their W – Oterminal vectors are collinear. At the phase 

transition all threefold axes are destroyed and the W···O – W bond angles can deviate 

from 180°. Hereby a closer packing of the WO4 groups is possible. The overall 

coordination of W(5) is increased from 4 to 6, that of O(103) from 1 to 2.  

The increase of the average coordination numbers decreases the flexibility of the 

structure. Hereby the number of low-energy vibrational modes, which require 

minimal distortion of the polyhedra is markedly decreased. This reduction leads to a 

corresponding decrease in magnitude of the negative thermal expansion:                    

αl = -1  10-6 °C-1 between -250 – 25 °C . 

Upon further compression ZrW2O8 irreversibly amorphizes above 1.5 GPa. After 

release of the pressure and re-heating the sample, the material recrystallizes into cubic 

ZrW2O8. In-situ heating of cubic ZrW2O8 at high pressures leads towards new 

polymorphs which are quenchable at ambient conditions. One of them is a α-type 

U3O8-type in wich the Zr and W atoms are six-fold coordinated and statistically 

disordered 79 Amorphous ZrW2O8 has a positive thermal expansion as all low energy-

modes responsible for negative thermal expansion behaviour in α-ZrW2O8 are to be 

frozen in the amorphous phase. A simple heat treatment could induce partially 

relaxation of the amorphous to the crystalline state and hereby the thermal expansion 

can be tuned 80.  
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3.2.2 Mechanisms behind the Negative Thermal Expansion 

It was first suggested that a large transversal vibration of the oxygen atom in the 

middle of the W – O – Zr linkage, which requires corresponding rotations of the 

polyhedra, is the primary origin of negative thermal expansion in this material 60, 67. 

The inherent flexibility of an ideal ZrW2O8 was modelled. It was found that this 

connectivity could support a cell reduction from 9.3 Å to 8.8 Å without distortions of 

the polyhedra (figure 32). Figure 33 shows the calculated effect on the cell parameter 

by libration of the rigid ZrO6 octahedra.  

 

Figure 32: Polyhedral representation of idealized structures down [111]at (a) a cell edge of 9.3 Å and 
(b) at a cell edge of 8.3 Å 60 

 

Figure 33: Tilt angle of ZrO6 octahedra as a function of cell dimension 60 
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The calculation of Rigid Unit Modes in these materials points out that RUM’s are 

possible in ZrW2O8. The low-frequency rotations of the RUM’s contribute mainly to 

the negative thermal expansion behaviour in ZrW2O8 
38. The thermodynamics of this 

system have been investigated by several groups in the recent years. High pressure 

Raman studies 74, 75, inelastic neutron scattering 81, temperature dependence of the cell 

parameter 82, 83 and specific heat data 84 were used to find evidence for these low –

frequency phonon modes 85-87. As mentioned in §1.3, negative thermal expansion 

behaviour is related to negative Grüneisen parameters. Using the modes between  1.5 

meV and 8.5 meV, the Grüneisen parameter was found to be large and negative and 

these modes are most relevant for the contraction of the material. Fitting of specific 

heat data indicates the large influence of the 3.3 meV optical phonons as can be seen 

in the insert in figure 34 using 2 Einstein modes (3.3 and 5.8 meV) and 2 Debye 

modes (with θD = 650 and 200 K). High-pressure Raman studies have indicated that 

modes much higher than 8 meV also contribute significantly to negative thermal 

expansion in ZrW2O8. The phonon density of states and observed Raman mode 

energies are compared in figure 34. Some of the phonons with energies above 8 meV 

have negative Grüneisen parameters and will exhibit negative thermal expansion 

behaviour. 

 

Figure 34: Comparison of phonon density of states g(E) and observed Raman mode energies. The inset 
shows the density of states fitted to the specific heat data 74 
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The local structure of ZrW2O8 was studied by X-ray absorption fine structure 

experiments at the W LIII and Zr K-edge 88, 89. These studies indicated that the 

stiffness of the Zr – O –W linkages makes it hard to believe that transversal vibrations 

of the middle oxygen atom in these linkages could induce such a strong negative 

thermal expansion. The author present a new mechanism based on the correlated 

motion of a WO4 tetrahedron and its three nearest ZrO6 octahedra. This mechanism is 

given in figure 35. As the tungsten atom moves up, the Zr atoms must move together 

to keep the W-Zr linkage rigid. This leads to a net lattice contraction. 

 
(a)                                                                             (b) 

Figure 35: (a) simplified drawing of part of the structure which shows three nearest Zr atoms 
surrounding W(1) or W(2) atoms. (b) A rigid-tentpole model to show the constraint on the correlated 

motions between a W atom and it nearest Zr atoms 89 

Until this moment no new results have confirmed this mechanism. Good single crystal 

measurements of dispersion relation of phonons, providing sharp phonon lines, could 

help in identifying the nature of the soft phonons 90. 

3.2.3 Substituted ZrW2O8 materials  

The large negative thermal expansion in a broad temperature range was discussed in 

the previous sections. Substitution of the Zr(IV) or W(VI) site will strongly affect 

some properties of the material such as phase transition temperature, cell parameter, 

electrical characteristics and many more. The two substitution sites are individually 

discussed in the following parts. 
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a. Zr(IV) substituted materials 

When substitutional solid solutions are to be formed, the ions that are replacing each 

other must be similar in size. For alloys the difference in radii of the metal ions is 

suggested to be smaller than 15%. For non-metallic systems a larger difference is 

allowed 91. Another important issue is the charge neutrality of the materials; therefore 

it is more suitable to replace the zirconium ion by another 4+ valency ion.  

In literature, the most discussed substituted material is HfW2O8 60. The Hf4+ ion obeys 

the two rules mentioned above: it has the same valency and an ionic radius in an 

octahedral coordination of 85 pm whereas the Zr4+ ion in the same surrounding has an 

ionic radius of 86 pm. Indeed hafnium tungstate exhibits the same remarkable 

negative thermal expansion properties as ZrW2O8. The α-phase (a = 0.913 nm at      

20 °C) of the substituted material is isostructural with α-ZrW2O8 (a = 0.9157 nm at  

20 °C). The cubic structure is composed of WO4 tetrahedra and HfO6 octahedra. The 

unusual thermal behaviour is induced by the transversal vibration of the Hf – O – W 

linkages. There are also a few differences between ZrW2O8 and HfW2O8. The first 

remarkable difference is the phase transition temperature. HfW2O8 shows an order-

disorder transition at 190 °C whereas the phase transition temperature of ZrW2O8 is 

situated around 160 °C 92. The increase in temperature is probably reflecting the 

stronger chemical bond of Hf – O in comparison to Zr – O.  

Another difference is situated in the pressure-induced cubic-to-orthorhombic phase 

transformation 93-95. Cubic ZrW2O8 only exists over a 0 – 0.21 GPa pressure range. 

High pressure Raman data indicate that the α - γ transition in HfW2O8 occurs at      

0.6 – 0.9 GPa. The difference in bond strength is again of key importance. 

Not only 4+ valency ions have been examined, some trivalent ions are also used to 

prepare substituted ZrW2O8 materials 96-100. The ions used are mentioned in Table 4. 

The cell parameters and phase transition temperatures given are the result of a 4% 

substitution. The ionic radii of the substituents are larger than Zr4+. Nevertheless an 

overall decrease in cell parameter can be noticed. It is suggested that the oxygen 

defect due to the difference in valency is the main reason for this decrease. The phase 

transition temperature is also affected by the substitution. 
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material ionic radius  
(pm) 

cell parameter 
(nm) 96, 98, 100 

phase transition 
temperature (°C) 

ZrW2O8 86 0.9175 150-160 
Zr1-xYxW2O8-y 104 0.9170 130 
Zr1-xInxW2O8-y 94 0.9165 110 
Zr1-xScxW2O8-y 88.4 0.9150 90 
Zr1-xLuxW2O8-y 98 0.9165 100 

Table 4: Data of the A3+ ZrW2O8 materials 

b. W(VI) substituted materials 

Besides the possibility of changing the occupancy of Zr site, the tungsten ion can also 

be replaced by an ion similar in valence state and ionic radius. The most studied 

substituted material is ZrMo2O8. The Mo(VI) ion in tetrahedral coordination has an 

ionic radius of 41 pm whereas a W(VI) ion in the same surrounding shows an ionic 

radius of 42 pm. Cubic γ-ZrMo2O8 is isostructural with β-ZrW2O8 and belongs to the 

family of materials with negative thermal expansion with α = -5  10-6 °C-1 between 

-262 and 300 °C 101-103. No phase transitions are observed in ZrMo2O8 in this specific 

temperature range. Recently, it has been shown that it is possible to prepare        

ZrW2-xMoxO8 phases over the entire composition range 0 ≤ x ≤ 2 104-106. The phase 

transition temperature shifts to lower values as the amount of Mo present in the 

material increases. For example, the phase transition of ZrMoWO8 is situated at          

-3 °C 107. The oxygen migration related to this transition occurs at lower temperatures 

in comparison with ZrW2O8.  

In comparison to α-ZrW2O8, cubic ZrMo2O8 behaves differently under pressure 108-111. 

When compressed hydrostatically, γ-ZrMo2O8 transforms above 0.7 GPa to an 

undetermined monoclinic φ phase. Under non-hydrostatic conditions, cubic ZrMo2O8 

amorphizes above 0.3 GPa and is transformed into the φ phase during heating at high 

pressures. There are two other known ambient pressure polymorphs of ZrMo2O8: 

trigonal and monoclinic. When the γ-ZrMo2O8 phase is submitted to pressures above 

4 GPa, the recovered crystalline phases are ZrO2 – MoO3 decomposition products. 

The complete reversibility and higher onset pressure of γ - φ - transition might be 

advantageous for application in composites.  
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3.3 Application of ZrW2O8 materials 7, 112-114 

Isotropic negative thermal expansion materials have a wide variety of applications. 

Their use in composites together with the possibility to tailor the thermal expansion to 

a specific value by the combination of a NTE material with a positive thermal 

expansion material is most promising. It may resulting a whole range of new materials 

with a thermal expansion going on from negative over zero to positive values by 

adjusting the volume fraction of the components. Such a new material with controlled 

thermal expansion could be used in electronic devices, optical mirrors, dental fillings, 

fibre optic systems or in thermal packages for fibre Bragg gratings. In fibre optics, it 

can be used to reduce the variation in reflected wavelength due to the temperature 

variation of the refractive index and the thermal expansion of the fibre. The state of 

the art of ZrW2O8 composites is given in Chapter 6-§2. Amorphous ZrW2O8 is 

suggested as oxide ion conducting glass due to its high ZrO2 content 115. 
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Chapter 2  

Experimental Techniques 

 
 
 
 
 
 
During this thesis a large number of techniques were used to identify and characterize 

the synthesized materials. To clarify the main purpose and the possibilities of these 

techniques a short overview is given in the following chapter. The knowledge present 

within the research group of Solid State Chemistry combined with a large range of 

available apparatus within the group and abroad was explored. The main issue of this 

chapter is to reveal some of the most important features of the different techniques 

relevant to the study of negative thermal expansion materials. For more detailed 

information we can refer to literature and the manuals of the used equipment.  
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1 X-Ray Diffraction 1, 2 

In this thesis X-ray diffraction was used for identification of the powder, obtaining 

information about crystallinity, crystallite sizes, unit cell refinement and quantitative 

analysis. All measurements were collected on a Siemens D5000 diffractometer at the 

Department of Solid State Physics of the Ghent University.  

1.1 XRD in general 

X-rays were discovered in 1895 by the German physicist Roentgen and were so 

named because their nature was unknown at that time. Unlike ordinary light, these 

rays are invisible. However they travel in straight lines and affect photographic film in 

the same way as light. In addition, they are much more penetrating than light and can 

easily pass through the human body, wood, relatively thick pieces of metal and other 

“opaque” objects. 

In powder diffraction, characteristic X-rays (for example Cu-Kα1, λ=1.54060 Å and 

Cu-Kα2, λ=1.54443 Å) are used to examine the powder specimens. Copper anodes 

are by far the most common. Single crystal monochromators are usually used to 

produce a beam of a narrower wavelength distribution.  

The incident beam and the diffracted beam are always coplanar and the angle between 

both beams is 2θ. The Bragg law describes the conditions upon which the diffracted 

beams interact constructively resulting in a diffraction peak in the pattern according 

to: 

θ=λ sin.2dn  [1] 

 

In this equation λ is the wavelength of the radiation used, d is the inter-planar spacing 

and θ is the angle between the incident or diffracted beam and the relevant crystal 

plane. The letter n refers to the order of diffraction. Figure 1 is a representation of the 

Bragg law.  
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Figure 1: Representation of Bragg's Law 

During the measurement the incident angle (θ) varies while the scintillation detector is 

rotated by 2θ. This means that the detector will receive a signal when at the surface of 

the powder crystals are orientated in such a way that the (hkl) plane with inter-plane 

distance d(hkl)
 is parallel with the surface and the angle θ obeys the Bragg Law. This 

set-up is referred to as the Bragg-Brentano geometry. The general set-up for a 

diffractometer with a secondary monochromator is given in figure 2. The divergence 

of the beam can be controlled by a divergence slit positioned after the source. The 

divergence of the diffracted beam is controlled by the receiving slit and detector slit.  

 

Figure 2: Bragg-Brentano set-up for a diffractometer with a secondary monochromator 

A step scanning Siemens D5000 diffractometer equipped with a graphite 

monochromator and a scintillation detector was used in standard measurements. The 

step width was 0.02 2θ and the step time was 1.2 s.  
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1.2 Indexing and refinement of the unit cell parameters 3 

The combination of the reflection positions (in 2θ values) and their relative intensities 

is characteristic for the crystal structure. It is therefore of great importance to examine 

the diffraction patterns in the correct way. The dimensions of the unit cell will 

determine the peak positions. From the Bragg law d spacings can be calculated and 

these are related to the unit cell as can be seen by the following formulae for cubic 

symmetry and first order diffraction. 

2

222

2 a
lkh

d
1 ++
=  [2] 

222 lkh
2sin

a ++
θ

λ
=  [3] 

 

The most important equation used for the indexing of the diffraction patterns is the 

reciprocal space metric tensor equation.  

The relation between the d spacings in a material and the d* spacings in the reciprocal 

lattice is 1/d = d*. The reflection indices h, k and l are related to d* according the 

vector equation: 

**** clbkahd rrr
++=  [4] 

d.dd*2
rr

=  [5] 

 

Yielding:  

*********2*22*22*2
2 cosb2hkacosb2hlacosc2klbclbkah

d
1

γ+β+α+++=  [6] 

 

Equation 6 is often written with the six parameters (A-F) as the reciprocal space 

metric tensor equation.  

FhkEhlDklClBkAh
d
1 222

2 +++++=  [7] 
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In the case of cubic symmetry this equation can be simplified as follows. 

222
2 ClBkAh

d
1

++=  [8] 

 

In a unit cell refinement procedure the quantity that is minimized is represented by: 

( )2n(calc)n(obs)
N

n
n 22w θ−θ∑  [9] 

 

where, wn is the weight of the observation and according to the Bragg Law. 













 ++
=θ −

2
ClBkAhλ2sin2

222
1

n(calc)  [10] 

 

Practically, A-F are refined and the lattice parameters are derived from them. The 

least square calculation yields estimated standard deviations which are a measure of 

the precision of the refined parameters.  

In this thesis, the program UNITCELL 4 was used to refine the unit cell parameters. 

Unlike most existing cell refinement programs it does not require initial estimates for 

cell constants. It uses a non-linear least squares fit method, which allows the 

refinement to be carried out on the actual observed data. A minimum of 20 reflections 

was used as input in the program. The reflection positions were corrected by adding 6 

m% LaB6 (SRM660a) as internal standard. The data were collected on the Siemens 

D5000 diffractometer (0.02 2θ, 1s step time and detector slit = 0.02°). 

A second method to retrieve precise lattice parameters is the Nelson-Riley 

extrapolation function.  

θ
θ

+
θ
θ 22 cos

sin
cos  [11] 

 

In this method the lattice parameter is plotted as a function of the extrapolation 
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function and the precise lattice parameter is calculated by the use of the least square 

method at x = 0. 

1.3 Rietveld Refinement 5, 6 

In crystallography, structure refinement is of the greatest importance. The starting 

model which is an approximate model of the structure is refined by the least-squares 

refinement so that the final calculated diffraction pattern resembles the observed 

measured data. The quantity minimized in the least-squares refinement is the residual 

Sy: 

( )2icalciobs
i

iy yywS −= ∑  [12] 

 

where wi = 1/yiobs, with yiobs the observed intensity in the diffractogram at the i-th step 

and yicalc the calculated intensity at the i-th step.  

There are several model parameters that can be refined. First of all there are structural 

parameters which will have a large influence on the peak position and furthermore the 

instrumental parameters which will mostly affect the peak intensities. An overview is 

given in table 1. 

Instrumental Structural 

Zero-error: 2θ error scale factor: s 

peak shape parameter: η fractional atomic coordinates: xi, yi and zi 

peak width parameters: U, V, W anisotropic temperature factor 

Unit cell metric tensor: A-F isotropic temperature factor 

 site occupancy factor 

Table 1: Refinable parameters in a Rietveld Refinement. 

The program FULLPROF 7 was used to refine structures of several materials. A large 

number of programs for indexing, space group determination, calculation of bond 

angles and bond distance… are included in the FullProf Suite software package. 
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2 EXAFS analysis 8, 9 

2.1 Introduction 

X-ray absorption fine structure (XAFS) refers to the details of how X-rays are 

absorbed by an atom at energies near and above the core-level binding energies of that 

atom. XAFS is in fact the modulation of an atom’s X-ray absorption probability due 

to the chemical and physical state and environment of an atom. XAFS spectra are 

sensitive to the oxidation state, coordination chemistry and the distances, coordination 

number and type of atoms immediately surrounding the absorbing element. As a result 

XAFS provides a practical way to determine the chemical state and local atomic 

structure for a selected atom. XAFS measurements do not require crystallinity of the 

materials and can be performed on solid materials and on dissolved species. The X-

ray absorption spectrum is divided into two areas: X-ray near-edge spectroscopy or 

XANES and extended X-ray absorption fine-structure spectroscopy or EXAFS. 

XANES is strongly sensitive to oxidation states and coordination chemistry of the 

selected atoms whereas EXAFS is suitable to determine distances, coordination 

number and species of the neighbouring atoms.  

2.2 X-ray absorption 

X-ray absorption can be understood as an X-ray photon which is absorbed by an 

electron in a tightly bound quantum core level of an atom as can be seen in figure 3. If 

the binding energy of the electron is less than that of the X-ray, the electron may be 

removed from its quantum level. The energy in excess is given to a photo-electron 

that is ejected from the atom. This phenomenon is known as the photo-electric effect. 

The photo-electron must be treated as a wave whose wavelength λ is given by the de 

Broglie relation: 

p
h

=λ  [13] 

 

where p is the momentum of the photo-electron and h is Planck’s constant.  
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The momentum of the photo-electron can be determined by the free electron relation: 

0
2

Eh
2m
p

−ν=  [14] 

 

where m is the mass of the electron, hν is the energy of the X-ray photon and E0 

represents the binding energy of the photo-electron. 

 

Figure 3: The photo-electric effect 

X-ray absorption is immediately related to the absorption coefficient µ as in the 

Lambert- Beer law 

t
0eII µ−=  [15] 

 

where I0 is the X-ray intensity of the incident radiation, I is the intensity of the 

transmitted radiation and t is the thickness of the sample.   

The EXAFS fine-structure function χ(E) can be defined as: 

(E)∆µ
(E)µµ(E)

χ(E)
0

0−
=  [16] 

 

where µ(E) is the measured absorption coefficient, µ0(E) is a smooth background 

function representing the absorption of an isolated atom and ∆µ0 is the measured jump 

in the absorption µ(E) at the threshold energy E0 as given in figure 4. The typical 
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damped oscillatory structure at energy above E0 is superposed on the absorption of the 

isolated atom.  

 

Figure 4: XAFS spectrum for FeO 

EXAFS is best understood in terms of the wave behaviour and the interference with 

the neighbouring atoms. The expression for the EXAFS is then χ(k) with  

2
0 )E2m(E

k
h

−
=  [17] 

 

where E0 is the absorption edge energy , ħ is the reduced Planck’s Constant (h/2π) and 

m is the electron mass.  

The photo-electron can be represented as an outgoing wave. The surrounding atoms 

will scatter the outgoing wave and the final state is the superposition of the outgoing 

and scattered waves. The backscattered wave will add or substract from the outgoing 

wave at the centre depending on their relative phase. The total amplitude of the 

electron wave function will be enhanced or reduced and thus modifying the 

probability of absorption of the X-ray correspondingly. How the phase varies with the 

wavelength of the photo-electron depends on the distance between the centre atom 

and backscattering atom. The variation of the backscattering strength as a function of 

energy of the photo-electron depends on the type of atom responsible for the 

backscattering.  
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The different frequencies apparent in χ(k) correspond to different near – neighbour 

coordination shells which can be described and modelled according to the EXAFS 

equation: 

[ ])k(kR2sin
kR

e)k(fN
)k( jj

j
2

j

k
jj

2
j

2

δ+=χ ∑
σ−

 [18] 

 

where f(k) and δ(k) are scattering properties of the atoms neighbouring the excited 

atom, N is the number of neighbouring atoms, R is the distance to the neighbouring 

atom and σ2 is the disorder in the neighbour distance. The EXAFS equation allows to 

determine N, R and σ2 knowing the scattering amplitude f(k) and the phase-shift δ(k). 

Fourier transformation of the EXAFS equation results in a radial atomic distribution 

plot.  

2.3 Synchrotron radiation 10 

X-ray absorption measurements need an intense and energy-tunable source of X-rays. 

Synchrotron radiation is very suitable for EXAFS experiments. The experimental set-

up of the synchrotron present at the European Synchrotron Radiation Facility 

(Grenoble) consists of 3 major parts as can be seen in Figure 5. First of all, electrons 

emitted by an electron gun are accelerated in a 200 MeV linear accelerator (linac) and 

then transmitted to a second part, the booster synchrotron. They are accelerated to 

reach an energy level of 6 billion electron volts (6 GeV). These high energy electrons 

are injected into a large storage ring (844 meters in circumference) where they 

circulate in a vacuum environment at a constant energy for many hours. The beam is 

guided into the pseudo-circular orbit by 64 bending magnets and is focused by 320 

quadrupoles. The optimal beam intensity can reach 200 mA.  

The storage ring includes straight and curved sections. The electrons pass through 

different types of magnets as they travel round the ring. When the electrons pass 

through the bending magnets, they are deflected from their straight path by several 

degrees. This change in direction causes them to emit synchrotron radiation. This 

synchrotron light consists of very bright X-rays. The beam of X-rays is collimated and 

very intense. The second type of magnets are the focusing magnets which are used to 
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keep the electron beam small and well-defined. These restrictions are necessary to 

obtain a very bright X-ray beam. The last type of magnets consists of undulators 

which force the electron beam to follow a wavy trajectory. This generates a much 

more intense beam of radiation than in the case of the bending magnets. Those 

magnets are given schematically in the upper part of figure 5: from left to right – 

Bending magnets – Focussing magnets – Undulators. 

 

Figure 5: Experimental set-up of the ESRF synchrotron 

The synchrotron beams emitted by the electrons are directed towards the “beamlines” 

which surround the storage ring in the experimental hall. The beamlines include an 

optics cabin housing the optical systems used to tune the X-ray beam to the desired 

experimental characteristics (size, energy …). Next to the optics cabin, there is an 

experimental cabin which contains the support mechanism and sample environment. 

One or more detectors record the information produced as a result of the interaction 

between X-ray beam and sample. A control cabin allows control of experiment and 

the data collection. Each beamline is designed for use with a specific technique of for 

a specific type of research. Our experiments were performed at the DUBBLE 

beamline with financial support of NWO and FWO.  
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3 Morphological analysis 

3.1 Scanning Electron Microscopy 11 

SEM is an electron microscopy measurement and is mostly based on the following 

electron interaction with the specimen: secondary electrons, backscattered electrons 

and X-rays. Usually a standard SEM detects secondary electrons. This results in a 

picture of the morphology of the studied material.  

A schematic diagram of the main components of the SEM equipment is shown in 

figure 6. 

 

Figure 6: Schematic diagram of the main components of a SEM 

A field emission gun is used as electron source to obtain higher resolution in 

comparison to the thermoionic emission types. The electrons are accelerated to an 

energy which is usually between 1 keV and 30 keV. Two or three condenser lenses 

demagnify the electron beam. It may have a diameter of only 2-10 nm as it hits the 

specimen. The objective lens is used to further demagnify the filament image 

producing a probe of a specific diameter on the surface of the specimen. The distance 

between the aperture and the specimen is known as the work distance.  
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X-rays can be formed as secondary effect due to electron interaction. Characteristic 

X-rays can be used to identify the specimen by SEM-EDX (Energy dispersive 

analysis of X-rays). This was very useful in the identification of Zr(40), W(74) and 

O(8). In this thesis the Zr Kα and W Lα lines were used for quantification. 

Simultaneous SEM and EDX were performed on a FEI-200F (FEI). 

3.2 Density measurements 12 

Knowing the density of the material is of utmost importance. The presence of pores 

(open or closed) reduces the density. The volume of the material can be defined by its 

bulk, real or apparent volume. There are different kinds of definition of density each 

with their own special feature. All these terms are explained as follows.  

- Open pores: pores in direct contact with the environment 

- Closed pores: pores encapsulated in the material and therefore not in contact 

to the environment 

- Bulk or geometrical volume: external measured volume of the sample 

- Real volume: volume occupied with sample material  

(Bulk volume – volume (open + closed pores) 

- Apparent volume: Bulk volume – volume (open) pores 

- Geometrical density: ratio of the mass of the sample to the geometrical 

volume 

- Apparent density: ratio of the mass of the sample to the apparent volume 

- Theoretical density: calculated using mass and volume of the unit cell. 

- Porosity (%): % x100% 100
densityltheoretica
densitylgeometrica

−                                    [19] 

The geometrical density is the ratio of the mass of the sample to the bulk volume 

measured with the use of a micrometer. 

The apparent density was determined using an AccyPyc 1330 pycnometer 

(Micromeritics). This is a gas impregnation-type pycnometer.  
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3.3 Particle size measurements 13 

The particle size of a powder mixture is quantifiable in many different ways such as 

microscopy and SEM. Crystallite size can be determined by line broadening in X-ray 

diffractograms. In this work, a non-imaging technique was used. Laser diffraction is a 

suitable tool to measure the particle size and particle size distribution. The 

measurements were carried out on a Malvern Particle Sizer, Series 2600c.  

Low power Helium-Neon laser light is used to form a collimated and monochromatic 

light beam. The beam is sent through a cell in which the sample material is dispersed 

in a liquid. The particle size will influence the angle under which the laser light is 

been scattered. The scattered and unscattered light passes the receiver lens and falls 

onto the detector planes. The detector consists of 31 concentric planes. Each plane 

represents a certain range of particle sizes. By software calculations a differential and 

cumulative distribution pattern is generated. From the cumulative distribution curve, 

the median size d50 and also d90 and d10 can be determined. The d10 size represents the 

particle size below which 10% of the distribution is situated. The particle sizer can 

screen different ranges of particle size depending on the kind of lenses (Beam 

expander lens or range lens) used. The ranges are given in table 2. 

Range Lens 

(mm) 

Beam Expander lens 

(mm) 

Particle size range 

(µm) 

63 10 1.2-118 

100 10 1.9-188 

300 10 5.8-564 

600 18 11.6-1128 

800 18 15.5-1503 

1000 18 19.4-1880 

Table 2: Ranges of particles size according to the lenses used. 
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4  Thermal analysis 

Thermal analysis of materials focuses the response of a material to applied heat. In 

this chapter a range of techniques based on the changes in length, weight, heat 

capacity or exo/endothermal reaction heat are mentioned. 

4.1 Thermogravimetric Analysis – Differential Thermal Analysis 12, 15 

Thermogravimetric Analysis (TGA) measures weight changes in a material as a 

function of temperature (or time) under a controlled atmosphere. Simultaneously, the 

temperature difference (DTA) is measured between the sample and a reference 

(Al2O3). This temperature difference can be due to a difference in heat capacity 

between sample and reference. Reactions in the sample will be indicated by a positive 

(exothermal) or a negative (endothermal) peak in the DTA spectrum. The equipment 

used for this application was a SDT 2690 (TA instruments).  

4.2 Differential Scanning Calorimetry 16 

Differential Scanning Calorimeters (DSC) measures temperatures and heat flows 

associated with thermal transitions in a material as a function of time and temperature. 

The sample heat capacity is determined from the heating power, baseline and 

sensitivity calibrations. Transition enthalpies are calculated by integration of the peak 

in the power versus temperature curve.  

A)T(KH tr φ=∆  [21] 

 

Where ∆Htr is the enthalpy associated with the transition, Kφ(T) is an instrument-

dependent factor and A is the peak area above the baseline. 

The measurements were performed at Hogent on DSC 2910 (TA Instruments). 



Chapter 2 
 
 

 68 

4.3 Thermal Mechanical Analysis 17, 18 

Interesting information can be obtained by measuring the expansion or contraction of 

a sample under negligible loads. The bulk thermal expansion of the materials was 

analysed by a TMA 2940 Thermomechanical Analyzer as can be seen in figure 7. 

 
 

 
 

 

Figure 7: TMA 2940 Thermomechanical Analyzer 

The instrument is constructed with the following parts: 

- The balance enclosure surrounds the TMA balance mechanism which exerts 

a specified force on the sample. 

- The probe assembly is interchangeable for making several different 

measurements on the various sample materials. The macro expansion probe 

is used during these measurements. This type of probe (∅ = 6 mm) covers a 

larger sample surface and gives a more representative reading.  

- The stage is an interchangeable component that supports the sample during 

measurements.  

- The furnace assembly surrounds the stage in order to heat the sample. It 

contains the integral cooling container and the furnace monitor 

chromel/alumel thermocouple. 

- The weight tray holds the weight to exert a known force to the sample. 

thermocouple, 
stage 
 

         probe  
  
     

furnace 

balance  
enclosure,  
LVDT 
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- The linear variable differential analyzer (LVDT) measures the length 

changes of the sample during the thermal program. This is based on a linear 

movement of a small magnet located at the end of the probe into coils, which 

generates a very precise position signal. 

The experiments yield a bulk thermal expansion coefficient according to: 

dt
dTl

dt
dl

0 ⋅α⋅=  [22] 

 

where dl/dt is the measured length change derived to the time, l0 is the initial length,  

α is the bulk thermal expansion coefficient and dT/dt is the applied heating rate. 

Measurements were performed between room temperature and 300 °C using a heating 

rate of 5 °C/min and a load of 0.5 N on 2 mm thick bars. The materials were 

examined with extra attention to the bulk thermal expansion coefficient and the phase 

transition temperature at which the order-disorder reaction occurs. A typical TMA 

graph is given in figure 8. The second order transition will also result in a 

discontinuous behaviour in the thermal expansion coefficient. During the thermal 

contraction measurement the α-value is stable and then drops drastically in the region 

around the transition temperature and rises again to form the almost constant α-value 

of the β-structure of ZrW2O8.  
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Figure 8: Typical TMA graph with indication of the relative dimension change and the bulk thermal 
expansion coefficient  
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5 IR and Raman Spectroscopy 19, 20 

The IR-spectra were collected using a Mattson Research Series I FT-IR spectrometer. 

The Raman-spectra were collected using a Bruker FT spectrophotometer Equinox 55S 

equipped with a Raman module FRA 106. The spectrophotometer is provided with a 

Neodymium Yttrium Aluminum garnet laser. The most important peaks of ZrW2O8 in 

IR/Raman 21 are mentioned in table 3. The phase transition will induced a change in 

the spectral view in the IR measurements. The Raman spectra will experience 

broadening of the peaks. No extra peaks are included due to the Raman inactive 

vibrations coupled with the phase transition. The increase in temperature will harden 

some of the vibration modes whereas others are softened. 

IR (cm-1) Raman (cm-1)  
298K 473K 298K 473K assignments 
  1028m 1024m  
999w  966w 932m ν (WO4) 
908m 914w 929m 896m  
871m 873w 901m   
  887w   
800s 801w 859w   
760m 741w 789s 783s νas (WO4) 
739m 720w 733m 739m  
646w 688w    
 668s   (O-W-O-W-O) 
(600-400)w (650-450)w    
 419m   (O-W-O-W-O) 
  382w 380w δas (WO4) 
  331m  δ (WO4) 
  308w   
  271w   
  234w  lattice modes 
  144m 148w  
  103w   
  84w   
  65m 59m  
  40m 39w  

Table 3: IR and Raman data at 298 and 273K (m = medium, w = weak) 

As can be seen in table 3 the differences occur in the IR-region below 1000 cm-1. In 

this far-IR area most metal-metal and metal-oxygen vibrations are situated. 
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6 Mechanical analysis: three-point bending test 22, 23 

The three-point bending test is a suitable way of testing the mechanical properties of 

solid materials. These measurements were performed at the Laboratory of Mechanical 

Construction and Production at Ghent University. The used equipment is an Instron 

Series 4500 linked with a Series IX Automated Materials Testing System. The shape 

of the measured sample is rectangular with the following dimensions: 2 mm x 2 mm x 

13 mm. The dimensions of the samples are too small to obtain correct values of the 

mechanical properties but the method is suitable to deliver data which can be 

compared relative to one another.  

The stress at fracture is known as the flexural strength (σf). For samples with a 

rectangular cross-section σf equals: 

2f 2.b.d
3.F.L

=σ  [23] 

 

In this equation F is the load at fracture, L is the distance between the two support 

points, d is the height and b is the width of the rectangular bar.  

Another parameter which defines the strength of the material is the modulus of 

bending. Ceramic materials have the tendency to break before or at the elastic limit. 

The modulus of bending is the ratio of the applied stress to the strain. Hereby, the 

modulus is calculated using the strain and stress at the moment of fracture. 

∆D
∆F

4b.d
LE 3

3
=  [24] 

 

where ∆D and ∆F are respectively the strain and applied stress. 
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7 Luminescence measurements 24-26 

A luminescent material can emit radiation after absorption of the excitation energy 

which can be many types of energy. Photoluminescence is excited by electromagnetic 

radiation, cathodoluminescence by a beam of energetic electrons, electroluminescence 

by an electric voltage, chemiluminescence by a chemical reaction and so on. The 

photoluminescence process can be described as follows. The exciting radiation is 

absorbed by a luminescent center, raising it to an excited state. The excited state 

returns to the ground state by emission of radiation. Some materials exhibit only non-

radiative return to the ground state and are non-luminescent species.  

7.1 Absorption - Excitation 

In optical absorption, the center is promoted from its ground state to an excited state. 

This absorption depends on the energy level of the individual ions. For example, 

compounds like CaWO4 have strong and broad bands in their absorption spectra. 

Nevertheless, the electronic configuration of the W ion is a d0 configuration. 

Transition metal ions with d0 configuration can exhibit charge transfer from the ligand 

to the d0 ion. An electron is hereby excited from a non-bonding orbital (ligand) to an 

anti-bonding orbital (ion). The same phenomenon occurs in d10 configurations such as 

Zn2+. 

7.2 Relaxation – Emission 

The principle of excitation-emission is given in a configurational coordinate diagram 

(figure 9). The two parabolas represent the ground state (g) and excited state (e). The 

minima of the parabolas represent the equilibrium distances and these are shifted by 

∆R due to the fact that the chemical bond is different in the ground and the excited 

state. Absorption brings the center in a high vibrational level of the excited state. The 

center returns first to the lowest vibrational level in the excited state. Hereby, the 

excess of energy is passed to the surroundings and the center undergoes relaxation. 

During this relaxation process, there is usually no (visible) emission. From this lowest 

vibrational level of the excited state, the system can return to the ground state 
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spontaneously by emission of radiation. By emission, the center reaches the higher 

vibrational level of the ground state. This process is followed by relaxation to the 

lowest vibrational level of the ground state. The energy difference between the 

maximum of the excitation band and the emission band is defined as the Stokes shift 

and is given in figure 10. Complexes of transition metal ions with a formally empty d 

shell show intense broad-band emission with a large Stokes shift                        

(10000 – 20000 cm-1). 

 

Figure 9: Configurational coordinate diagram 24 

 

Figure 10: Emission and excitation spectra of Bi3+ luminescence in LaOCl:Bi3+  24 
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7.3 Experimental set-up 

A FS920 steady state fluorescence spectrometer (Edinburgh Instruments) was used to 

record high quality photoluminescent excitation and emission spectra (250 – 800 nm). 

A scheme of the spectrometer can be seen in figure 11. A continuous xenon arc lamp 

spectrum is used from which the energy (wavelength) of the excitation light is 

selected by two diffraction grating monochromators. The excitation beam is split in 

two parts: one part is focused towards a Si-diode reference detector and the other part 

continues towards the sample. The emission is collected by a lens and focused on the 

emission monochromator. The emission spectrum itself is recorded with a Hamamatsu 

928 photomultiplier tube with a spectral response from 250 – 800 nm. 

 

Figure 11: Experimental set-up of the spectrophotometer used in luminescence measurements 

There are two different kinds of luminescence measurements. Excitation spectra are 

obtained by variation of the wavelengths of the excitation light beam while 

monitoring the emission intensity at a fixed wavelength. Emission spectra are 

collected after excitation at a chosen wavelength and the emission is recorded in a 

broad wavelength range.  



Experimental Techniques 
 
 

 75

8 References 

1. B.D. Cullity, Elements of X-Ray Diffraction. Addison-Wesley Series in 
Metallurgy and Materials. 1978, Reading, Massachusetts: Addison-Wesley 
Publishing Company Inc. 553. 

2. B.E. Warren, X-ray Diffraction. 1969, Reading, Massachusetts: Addison-
Wesley Publishing Company. 

3. A.R. West, Basic Solid State Chemistry. Second ed. 1999, Chichester, 
England: Whiley & Sons. 480. 

4. T.J.B. Holland and S.A.T. Redfern, Unit cell refinement from powder 
diffraction data: The use of regression diagnostics. Mineralogical Magazine, 
1997. 61: 65-77. 

5. C. Giacovazzo, H.L. Monaco, D. Viterbo, F. Scodari, G. Gilli, G. Zanotti, and 
M. Catti, Fundamentals of Crystallography, ed. Giacovazzo. 1992, Oxford: 
Oxford University Press. 653. 

6. H.M. Rietveld, Journal of Applied Crystallography, 1969. 2: 65. 

7. S. Rodriguez-Carvajal, FULLPROF: A program for Rietveld Refinement and 
Pattern Matching Analysis. Abstracts of the Satellite Meeting on Powder 
Diffraction of the XV Congress of the IUCr., 1990: 127. 

8. M. Newville, Fundamentals of EXAFS. 2004, University of Chigago, IL: 
Chigago. 

9. D.C. Koningsberger and R. Prins, X-ray Absorption: Principles, Applications, 
Techniques of EXAFS, SEXAFS and XANES. 1988, Toronto: John Wiley & 
Sons. 

10. ESRF, A light for Science. 2007, European Synchrotron Radiation Facility: 
Grenoble p. 12. 

11. B.C. De Cooman, Cursus Materiaalkundige Observatietechnieken. 2000: 
Universiteit Gent. 

12. I. Van Driessche, Cursus Anorganische chemie: Anorganische Vaste Stoffen. 
2002: Universiteit Gent. 

13. T. Vande Cavey, Het gebruik van deeltjesgrootte-analyse via laserdiffractie 
bij de synthese van keramische materialen. 2003, Hogeschool Antwerpen. 

14. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity. 1967, 
London: Academic Press. 



Chapter 2 
 
 

 76 

15. M.E. Brown, Introduction to Thermal Analysis: Techniques and Application. 
1988, London: Chapman and Hall. 

16. TA instruments, MDSC: Operator's Manual. 

17. R.E. Taylor, Thermal expansion of solids. 1998: ASM International. 

18. TA instruments, TMA 2940 Thermomechanical Analyzer: Operator's Manual. 
1999. 

19. L. Moens, Cursus Analytische Chemie: Spectroscopische Analysemethoden. 
2000: Universiteit Gent. 

20. F. Verpoort, Cursus Anorganische Chemie: Grondslagen van Moleculaire 
Spectroscopie. 2000: Universiteit Gent. 

21. J.S.O. Evans, T.A. Mary, T. Vogt, M.A. Subramanian, and A.W. Sleight, 
Negative thermal expansion in ZrW2O8 and HfW2O8. Chemistry of Materials, 
1996. 8: 2809-2823. 

22. E. Bruneel, Supergeleidende composieten op basis van Bi1,5Pb0,5Sr2Ca2Cu3Ox. 
2001, Universiteit Gent. 

23. W.D. Callister, Materials Science and Engineering: An Introduction, ed. W. 
Anderson. 2000, Danvers: Wiley & Sons. 

24. G. Blasse and B.C. Grabmaier, Luminescent Materials. 1994, Heidelberg: 
Springer-Verlag. 

25. P.F. Smet, Study of BaAl2S4:Eu and SrS:Cu,Ag as blue emitting materials for 
thin film electroluminescence. 2005, Universiteit Gent. 

26. A. Goeminne, Cursus Anorganische Chemie: Symmetrie en Chemische 
Binding - Transitiemetaalchemie. 2000: Universiteit Gent. 

 
 



Conventional synthesis methods for ZrW2O8 materials 
 
 

 77

Chapter 3  

Conventional synthesis methods for 
ZrW2O8 materials 

 
 
 
 
 
 
The study of every material starts with the synthesis of its pure phase material. 

Several different synthetic approaches are used in this work and will be discussed 

individually in the Chapters 3 and 4. The influence of the synthetic routes on the 

purity, crystallinity, thermomechanical properties and morphology are described in 

detail. The first synthetic route mentioned is the conventional solid state reaction 

using commercially available oxides (ZrO2 and WO3) and is the most explored 

synthetic way to prepare ZrW2O8. The main goal is the preparation of a homogeneous 

oxide precursor mixture. The conventional solid state reaction is described here as it is 

the basic synthesis for the composite materials described in Chapter 6 and substituted 

materials mentioned in Chapter 7.  
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1 Synthesis methods 

Several methods to synthesize ZrW2O8 have been published in the literature and they 

can be divided into two classes depending on the precursor materials used: starting 

from commercially available pure oxides ZrO2 and WO3 in powder form and using 

the conventional solid state reactions 1-3 or starting from solutions of commercial salts 

of zirconium and tungsten using a so-called wet chemical procedure. Mixtures of 

dissolved salts possess the obvious advantage over classical ceramic techniques that 

very homogeneous precursors in the liquid state can be obtained and that is possible to 

maintain this level of homogeneity in the solid precursor state which remains after 

removal of the solvent (Chapter 4). An overview of the different synthetic approaches 

is given in figure 1.  

Synthesis of ZrW2O8

ZrO2 WO3 mixture 

Conventional Solid State route Wet chemical route
Manually co-milled Spray dried
Mechanically co-milled         Solution (+ citric acid)
Spray dried Co-precipitation
        Dispersion Sol -gel reaction

        Citrate-gel method
        EDTA-gel method  

Figure 1: Overview of the synthetic routes for ZrW2O8 

On the left side of this figure the conventional methods are given starting from ZrO2 

and WO3 in powder form while on the right part of the scheme the methods starting 

from the salts can be seen. These salts can be spray dried from a solution 4, 5. Co-

precipitation is also a synthetic route starting from the salts and resulting in cubic 

ZrW2O8. Alternative synthetic routes are the citrate-gel method and EDTA-gel method 

providing homogeneous oxide mixtures and ultra-pure ZrW2O8. The following 

synthetic routes are used in this work: a conventional solid state route with 

mechanically co-milled powders and the wet chemical routes using the citric-gel and 

EDTA-gel method.  
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2 Conventional solid state reaction 

The synthesis of ZrW2O8 by conventional solid state reaction has been reported many 

years ago 6, 7. ZrO2 oxide powder is mixed with WO3 in a 1 : 2 ratio. This powder 

mixture is then thermally treated in order to prepare the negative thermal expansion 

phase ZrW2O8. The most important drawback of this synthetic route is the difficulty 

to prepare a very homogenous oxide powder mixture. This is hindered by the large 

particle sizes of the starting products. Thus, two different milling methods are 

described in this chapter. A schematic overview of the conventional synthetic route 

described in this chapter is mentioned in figure 2.  

Conventional solid state 
reaction

precursor material commercially available oxides
   ZrO2

   WO3

synthetic route       Zr : W ratio
    1 : 2

15 h co-milling            §2.3.1    
(zirconia pearls)

           or

24 h ball milling          §2.3.2    
+ Spray drying 
PEG stabilized
oxide slurry

   ZrO2

   WO3

Synthesis
Sintering
2 -15 h 1180 °C

    ZrW2O8   

Figure 2: Detailed description of the conventional synthetic route 
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2.1 Phase diagram of ZrW2O8 

The phase diagram published by Chang 6 (Chapter 1-§3, figure 24) shows the phase 

relations in the ZrO2 – WO3 system. A mixture containing 33 mol% ZrO2 and           

66 mol% WO3 will lead towards the formation of pure ZrW2O8 when a temperature of 

1105 °C is reached. The ZrW2O8 compound melts incongruently at 1257 °C to form 

ZrO2 and a liquid phase. Below 1105 °C a dissociation of the negative thermal 

expansion material to ZrO2 and WO3 can be seen. 

2.2 Characterization of ZrO2 and WO3 oxides 

The materials used were purchased from Sigma - Aldrich (Germany). The product 

label mentioned a particle size less than 5 µm for ZrO2 whereas the particle size of the 

WO3 oxide powder is stated to have an average value of 20 µm. 

2.2.1 ZrO2 8-10 

ZrO2 is a white crystalline powder which can exhibit three different crystal structures. 

At room temperature, ZrO2 exists as a monoclinic crystal which is converted to the 

tetragonal phase above 1200 °C. The material has a cubic structure at very high 

temperatures (> 2370 °C). Several oxides (MgO, CaO and Y2O3), which can dissolve 

in zirconia, slow down or eliminate these phase changes. When sufficient amounts of 

these oxides are added, the high temperature cubic structure can be maintained down 

to room temperature. The crystallographic information of the ZrO2 polymorphs is 

given in table 1. The commercially obtained ZrO2 powder has a monoclinic crystal 

structure with a theoretical density of 5.85 g/cm3.  

 Monoclinic Tetragonal Cubic 

Space Group P21/c P42/nmc Fm3m 

Lattice constants 11 a = 5.145 Å a = 3.588 Å a = 5.12 Å 

 b = 5.208 Å c = 5.188 Å  

 c = 5.311 Å   

 β = 99.23°   

Table 1: Crystallographic information of the ZrO2 polymorphs extrapolated to room temperature 
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2.2.2 WO3 12-14 

Tungsten trioxide adopts at least five distinct crystallographic modifications between 

absolute zero and its melting point at 1700 K. When the temperature is decreased 

from the melting point the crystallographic symmetry for WO3 changes as follows: 

tetragonal – orthorhombic – monoclinic – triclinic – monoclinic. The known 

polymorphs and their temperature ranges are given in table 2. All of the polymorphs 

of WO3 can be described as distortions from the cubic ReO3 structure               

(Chapter 1-§2.5.1). WO3 undergoes at least four phase transitions, each one resulting 

from a change in octahedral tilting and/or cooperative tungsten shifts. Figure 3 

illustrates the crystal structure of the triclinic polymorph of WO3 with WO6 octahedra 

as building blocks. 

Phase Symmetry Space group Temperature range (K) 

α - WO3 Tetragonal P4/nmm 1010 – 1170 

β - WO3 Orthorhombic Pmnb 600 – 1170 

γ - WO3 Monoclinic P21/n 290 – 600 

δ - WO3 Triclinic P-1 230 – 290 

ε - WO3 Monoclinic Pc 0 – 230 

Table 2: The thermal stability ranges of the WO3 polymorphs at ambient pressure 13 

 

Figure 3: Crystal structure of Triclinic WO3 
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The thermodynamically stable polymorph of WO3 at room temperature is stated to be 

triclinic. Nevertheless the material often contains a mixture of the triclinic and 

monoclinic phase (table 3). It is very hard to distinguish these two phases by X-ray 

diffraction because of the small differences in unit cell dimensions as can be seen in 

table 3. The commercially obtained WO3 is a green, crystalline powder and is most 

probably a mixture of triclinic (ρ = 7.282 g/cm3) and monoclinic polymorphs            

(ρ = 7.278 g/cm3).  

 Triclinic 14 Monoclinic 12 

Space Group P-1 P21/n 

Lattice constants 11 a = 7.309Å a = 7.301 Å 

 b = 7.522 Å b = 7.539 Å  

 c = 7.686 Å c = 7.689 Å 

 α = 89.85°  

 β = 90.91° β = 90.89° 

 γ = 90.94°  

Table 3: Crystallographic information of triclinic and monoclinic WO3 
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2.3 Preparation of the ZrO2 – WO3 oxide powder mixtures 

ZrO2 – WO3 mixtures are prepared by milling in order to reduce the particle size of 

the oxide powders and to improve the homogeneity of the mixtures. Mechanical 

milling techniques used in this work consist of tumbler milling or a planetary ball 

mill.  

2.3.1 Preparation of the oxide mixture by tumbler milling assisted by zirconia pearls 

ZrO2 – WO3 powder mixtures in a 1 : 2 stochiometric ratio (1.05 g ZrO2, 3.95 g WO3) 

are brought into a horizontally disposed glass container (15 cm3) and 5g zirconia 

pearls (Ø = 3.15 mm) are added in a 1 : 1 mass ratio. The glass recipient is closed 

firmly and the powder mixture is put on the rollers for 15 h. Figure 4 schematically 

shows how the milling time influences the particle size. 97 % decrease in particle size 

(d90) is obtained after a period of 5 h. An additional milling period of 10 h is added to 

increase the homogeneity of the powder mixture. No further decrease in particle size 

can be seen during this time.  
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Figure 4: Influence of tumbler milling on the particle size (d90 value) of the oxide mixture 
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The particle sizes of the commercially obtained oxides powders and the powder 

mixtures before and after milling are given in table 4. 

Material Particle size 

 d50 (µm) d90 (µm) 

ZrO2 (commercial)  3.15 6.54 

WO3 (commercial) 18.68 40.78 

ZrO2-WO3 powder mixture 

before milling 

7.92 34.54 

ZrO2-WO3 powder mixture 

after 15 h tumbler milling 

0.64 0.92 

Table 4: Particle sizes of non-milled and milled powders 

The oxide mixtures are pressed at 750 MPa into bars (2 mm  2 mm  13 mm). The 

next step is the thermal treatment at 1180 °C to synthesize ZrW2O8 which will be 

discussed in §2.4. The bars are very fragile before high temperature thermal treatment. 

2.3.2 Preparation of the oxide mixture by ball milling and spray drying 

The commercially available oxide powders are individually milled in this preparation 

route. 20 g of the oxide powders (15.8 g WO3 and 4.2 g ZrO2) are mixed and put in an 

agate mortar (50 cm3) with 2 agate balls (Ø = 20 mm). By the use of this planetary 

ball mill, the powders are crushed for 24 h. As can be seen in table 5 the particle sizes 

are reduced in comparison with the non-milled commercial powders (table 4).  

Material Particle size 

 d50 (µm) d90 (µm) 

ZrO2 (ball-milled, 24h) 1.06 5.14 

WO3 (ball-milled, 24h)  0.62 0.94 

ZrO2-WO3 powder mixture 

(spray drying of the slurry) 

0.79 2.12 

Table 5: Powder specification after ball-milling and spray-drying of the slurry 
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The milled powders are mixed manually. For further manipulation of the mixed 

powders, they need to be pressed into bars. As mentioned before, it is very difficult to 

obtain nice and firm bars using small oxide particles. Therefore polyethylene glycol is 

added as pressing aid. The spray drying technique is used to obtain a thin layer of 

PEG around the oxide particles. This additive possesses the benefit of reducing the 

friction during pressing of the bars. Therefore the desired mixture of ball milled 

oxides is suspended in 250 ml deionised water together with 3 mass% polyethylene 

glycol (calculated on the mass of the oxides). The preparation of the slurry and 

stirring improves the homogeneity of the mixture. The water is removed using the 

spray drying technique (Büchi 190 mini spray dryer) with a 0.5 mm nozzle and a 

feeding rate of 5 ml per minute at inlet temperatures close to 250 °C. The set-up of the 

spray drying equipment is given in figure 5. The spray drying process consists of 4 

major steps. (1) Spraying of the liquid phase – slurry into little droplets, (2) Mixing 

of the spray with a drying medium, (3) Drying: heat transfer of the gas to the droplets 

results in a mass transfer from the droplets to the gas molecules and (4) Separation of 

the formed particles from the gas medium. 

 

Figure 5: Schematic overview of a modified Büchi Spray Dryer: (1) Air inlet, (2) Oven, (3) Dry 
Chamber, (4)  Quartz oven, (5) Cyclone, (6) Water cooling, (7) Aspirator, (8) Collector, (9) In- and 

outlet Temperature sensors, (10) heating (collector) and (11) Temperature sensor (collector) 

The powder assembled in the reservoir consists of PEG coated ZrO2 and WO3 oxide 

particles. The final step is shaping of the oxide mixture (0.3 g) in small bars under the 

same conditions as mentioned above. This bars, compared to these obtained in the 

previous procedure, gained more strength due to the presence of the polyethylene 

glycol. 
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2.4 Synthesis and characterization of ZrW2O8 

High temperature treatment of the oxide mixture induces the formation of ZrW2O8. 

The bars are inserted in a preheated furnace at 1180 °C for a period of 2-15 h. 

Afterwards the bars are immediately immersed into liquid nitrogen. This quenching 

step is necessary to avoid the decomposition of ZrW2O8 into ZrO2 and WO3 at 

temperatures below 1105 °C. Thus the metastable ZrW2O8 phase can be obtained at 

room temperature.  

The X-ray diffraction pattern of an oxide mixture obtained by the ball milling – spray 

drying method described above and before thermal treatment is given in figure 6. 

From this diffraction pattern monoclinic ZrO2 and triclinic (and monoclinic) WO3 can 

be identified. Figure 7 shows the diffractograms of both ball milled and tumbler 

milled precursors after heat treatment. The materials obtained are largely identical and 

the majority phase is ZrW2O8.  
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Figure 6: XRD-pattern of ZrO2 – WO3 oxide mixture (°): WO3 reflections; (*) ZrO2 reflections 
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Figure 7: XRD-pattern of ZrW2O8 obtained by conventional solid state reaction. The ZrO2 – WO3 
oxide mixtures are prepared by (a) tumbler milling or (b) ball milling - spray drying 

Rietveld refinement was performed on ZrW2O8 obtained by conventional solid state 

reaction with tumbler-milling prepared oxide mixture. The input data15 are mentioned 

in figure 8. The following parameters were refined: scale, background polynomial 

parameters, x,y,z positions, zero position, cell parameter a, U,V,W, shape. The output 

data with cell parameter a: 9.1585(1) are given in figure 9. The results of the 

refinements are given in figure 10. Chi2 of the refinement is 7.38 (Rexp: 9.72;          

Rwp: 26.2 and R(F2): 11.3. The results show good resemblance with the data published 

by Mary et al 16. 

Spacegroup : P213 
a : 9.1569(3) Å α : 90° 
b: 9.1569(3) Å  β : 90° 
c: 9.1569(3) Å  γ : 90° 

 
atom occupancy x/a y/b z/c 
Zr1 1/3 0.0004(3) 0.0004(3) 0.0004(3) 
W1 1/3 0.3409(3) 0.3409(3) 0.3409(3) 
W2 1/3 0.6009(3) 0.6009(3) 0.6009(3) 
O1 1 0.0529(3) -0.2069(3) -0.0619(4) 
O2 1 0.0697(4) -0.0575(3) 0.2132(3) 
O3 1/3 0.4941(4) 0.4941(4) 0.4941(4) 
O4 1/3 0.2322(3) 0.2322(3) 0.2322(3) 

  

Figure 8: Input data for Rietveld refinement of ZrW2O8 
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a: 9.1585(1)  Å α : 90° 
b: 9.1585(1)  Å  β : 90° 
c: 9.1585(1)  Å  γ : 90° 

 

Figure 9: Output data file of the Rietveld refinement of ZrW2O8 

 
 

 

Figure 10: Graphical overview of Rietveld refinement of ZrW2O8 

 
In addition to X-ray analysis as identification technique, Raman spectroscopy is very 

useful to determine whether the synthesis has been successful or not. The Raman 

spectrum of ZrW2O8 (figure 11) can be unraveled with the use of the table with 

Raman data (Chapter 2-§4). The most pronounced W – O vibrations are indicated.  
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Figure 11: Raman spectrum of α-ZrW2O8 prepared by tumbler milled precursors after heat treatment 

Finally, the thermal mechanical behaviour of the ZrW2O8 bars is tested and the results 

are shown in figure 12. The phase transition temperature, determined as the 

temperature at which the thermal expansion coefficient changes drastically, is 

determined as 162 °C from the derivative curve. The thermal expansion coefficient of 

the α-ZrW2O8 polymorph is -9.71  10-6 °C-1 (slope of the relative dimension change 

curve between room temperature and 125 °C) whereas for the β-phase a value of          

- 3.19  10-6 °C-1 (slope of the relative dimension change curve between 200 °C and 

300 °C) can be noted. 
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Figure 12: Thermal expansion properties of ZrW2O8 (oxide mixture - ball milling - spray drying) 
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Another important parameter is the morphology of the synthesized material. A 

scanning electron micrograph image of ZrW2O8, synthesized from PEG coated oxide 

powders heated at 1180 °C for 2h, is shown in figure 13. The evaporation of the 

polyethylene glycol at elevated temperatures causes pores within the ZrW2O8 

samples. These results are compared with ZrW2O8 samples prepared out of tumbler 

milled oxide mixtures (figure 14). No PEG was present in the precursor mixture so no 

pores should be present. Nevertheless large pores can be seen presumably due to the 

evaporation of WO3 and to poor stacking of the powder during pressing. The 

sublimation of WO3 above 1130 °C can not be neglected and will affect the porosity 

of the ZrW2O8 sintered materials.  

 

Figure 13: SEM micrograph of ZrW2O8 (oxide mixture prepared by ball milling - spray drying) 

 

Figure 14: SEM micrograph of ZrW2O8 (oxide mixture prepared by tumbler - milling) 
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3 Conclusions 

The conventional solid state reaction is a suitable synthesis method for the preparation 

of ZrW2O8. Conventional solid state reactions use commercially available oxides as 

precursor material. The oxides can be applied after co-milling in a tumbler mill or 

ball-milling. Ball milled powders are dispersed in a PEG slurry and spray dried to 

improve the homogeneity and to coat the oxide particles with a thin polyethylene 

glycol layer. This layer reduces the friction while pressing resulting in firm bars 

before the heat treatment. The oxide mixtures are submitted to a suitable temperature 

treatment including a high temperature treatment at 1180 °C for several hours which 

results in α - ZrW2O8.  

The destruction of PEG at high temperatures leads to pores which can be detected by 

SEM. No organic material is used for the oxide mixtures which are treated in a 

tumbler mill. Nevertheless, pores can be seen in these materials after heat treatment. 

These pores are most likely due to poor stacking of the powder during pressing and 

evaporation of WO3. 

Alternatives can be found in the wet chemical routes. Water soluble salts, used as 

precursor material, can improve the homogeneity drastically. In the next chapter, sol-

gel routes are described for the synthesis of ZrW2O8 material.  
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Chapter 4  

Sol-gel synthesis methods for 
ZrW2O8 materials 

 
 
 
 
 
 
Novel sol-gel synthetic routes using water soluble precursor salts are described as a 

synthetic path for negative thermal expansion materials. These synthetic routes 

involve an adapted citrate-gel method and a sol-gel method with the use of EDTA as 

complexing agent and are described in detail.  

 

Chapter 4-§3 is adapted from: 

“Aqueous sol-gel processing of precursor oxides for ZrW2O8 synthesis”  
 
K. De Buysser, P.F. Smet, B. Schoofs, E. Bruneel, D. Poelman, S. Hoste and I. Van 

Driessche  

Published in Journal of Sol-Gel Science and Technology, 43 (2007) 347-353 

“EDTA assisted sol-gel synthesis of ZrW2O8” 

K. De Buysser, I. Van Driessche and S. Hoste  

Submitted to Journal of Sol-Gel Science and Technology 
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1 Sol-gel chemistry 1 

The citrate-gel method described in this chapter is a sol-gel process 2-7. The name sol-

gel is an abbreviation for solution-gelling. This method employs judiciously chosen 

metal salts and complexants at a specific pH to form a stable, quasi solid gel in which 

homogeneity at the ionic level is preserved. The gel can be thermally reacted to form 

the required ceramic phases at elevated temperatures. This method has the potential 

technological advantages in comparison with other synthetic approaches, not only to 

achieve homogeneous mixing of the component cations on atomic scale, but also to 

form fibres or films from gels as shown in figure 1. 

 

 

solution gel

uniform particles 

xerogel film 

dense film 

aerogel 

xerogel

bulk or powder

 

Figure 1: Overview of the sol-gel process 1 

The most demanding issue of sol-gel synthesis is the ability to prepare a stable 

precursor solution which can be transformed into a homogeneous gel. Hydrolysis of 

the metal cations and condensation (olation and oxolation) are the main reactions 

involved in the transformation of the solution to the gel.  



Sol-gel synthesis methods for ZrW2O8 materials 
 
 

 97

1.1 Hydrolysis 

When dissolved in pure water, metal cations, Mz+, are solvated by water molecules 

according to figure 2. There are three types of metal - ligands combinations present in 

hydrolysates depending of the water acidity and charge of the cation. 

Mz+ +        : O
H

H
M O

H

H

z+

(b)[M(OH2)]z+ [M-OH](z-1)+ + H+ [M=O](z-2)+ + 2H+

(a)

Aquo Hydroxo Oxo

: :Mz+ +        : O
H

H
M O

H

H

z+

(b)[M(OH2)]z+ [M-OH](z-1)+ + H+ [M=O](z-2)+ + 2H+

(a)

Aquo Hydroxo Oxo

: :

 

Figure 2: (a) Hydratation of cations (b) Different kinds of ligands obtained under controlled hydrolysis 

1.2 Condensation reactions 

Condensation reactions are chemical reactions which include the elimination of a 

small molecule such as H2O, HCl… Two different types of condensation reactions are 

present in the aqueous sol-gel chemistry: olation and oxolation. 

1.2.1 Olation 

Olation is a condensation process in which a hydroxyl bridge is formed between two 

metal centers. The olation reaction corresponds to the nucleophilic addition of a 

negatively charged hydroxyl group onto a positively charged hydrated metal cation. 

Two examples of olation reactions are given in figure 3. Polycation species can be 

formed by olation reactions such as the zirconyltetramer mentioned in §2.4. 

M          OH     +         M          OH2

H
M      O     M      +     H2O    

δ − δ +

M          OH     +         M          OH2

H

M             M      +    2 H2O    
δ − δ +

O

H
O

 

Figure 3: Olation mechanisms with formation of hydroxyl bridges 
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1.2.2 Oxolation 

Oxolation is a condensation reaction in which an oxo bridge is formed between two 

metal centers. For coordinately unsaturated metals, oxolation can lead to edge- or 

face-share polyhedra as can be seen in figure 4(a). Nucleophillic addition followed by 

water elimination will form M – O – M bonds in the case of coordinately saturated 

metals (figure 4(b)).  

M       OH     +     M       OH    
H

M      O     M       OH

M             +        M

O

O

M             M

O

O

(a)

H
M      O     M       OH M      O     M      + H2O

(b)

 

Figure 4: Oxolation reaction in coordinately unsaturated (a) and saturated (b) metal centers  
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2 Description of the Zirconium and Tungsten salts 

Water soluble salts are utilized in our wet chemical routes. Three different kinds of 

zirconium salts are used: zirconyl nitrate (ZrO(NO3)2.xH2O), zirconyl chloride 

(ZrOCl2.xH2O) and zirconium hydroxy acetate (Zr(OH)3OAc.xH2O). Ammonium 

metatungstate ((NH4)6H2W12O40.xH2O) is used as tungsten salt. These salts are 

characterized and described in the next sections §2.1 – 5.  

2.1 Zirconyl chloride 1, 8-10 

2.1.1 Structure of zirconyl chloride 

The structure of the ZrOCl2.xH2O or Zr(OH)2Cl2.(x-1)H2O salt has been identified by 

X-ray diffraction. The crystalline structure consists of discrete [Zr4(OH)8.16H2O]8+      

‘cyclic tetramer’ cations, separated from each other in the lattice by chloride anions 

and water molecules. The four zirconium cations are at the corners of a slightly 

distorted square and are linked to each other by bridging hydroxyl-groups along each 

edge. Four water molecules around each Zr4+ ion complete the eight-fold coordination 

as can be seen in figure 5.  

 

Figure 5: Structure of the zirconyl cyclic tetramer 1 

 

2.1.2 Thermal decomposition 

TGA-DTA analysis gives detailed information about thermal decomposition of 

zirconyl chloride as can be seen in figure 6. The first small endothermic peak at 79 °C 

can be attributed to the loss of weakly bonded water. The next two endothermic peaks 
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coupled with a major weight loss are attributed to loss of water and hydrogen 

chloride. A small endothermic peak at 337 °C would be induced by halide       

removal 11-13. The thermal decomposition is complete at 460 °C and ZrO2 is formed. 

ZrO2 crystallizes at 471 °C as can be seen by the small exothermic peak in the DTA 

signal.  

The TGA-DTA data are used to determine the exact degree of hydration. Using the 

remain weight percentage of 39.72 % represented by ZrO2 the exact molecular 

structure of the starting materials can be calculated: Zr(OH)2Cl2.6.33H2O. Figure 7 

and table 1 outline the reactions that most possible take place during the 

decomposition of zirconyl chloride. 
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Figure 6: TGA-DTA analysis of zirconyl chloride - TGA signal (----) DTA signal (___)           
Experiment performed under air, heating rate 5 °C /min, RT till 1000 °C 

Zr(OH)2Cl2.6.33H2O Zr(OH)2(H2O)3Cl2 +   3.33 H2O (1)

Zr(OH)2(H2O)3Cl2 Zr(OH)2Cl2 +   3 H2O (2)

Zr(OH)2Cl2 ZrO2 +   2 HCl (3)  

Figure 7: Decomposition reactions of zirconyl chloride 
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 Reactions Theoretical  

weight loss 

Experimental  

weight loss 

A (1) 80.65 % 80.25 % 

B (2) 63.22 % 61.71 % 

C (3) 39.72 % 39.72 % 

Table 1: Overview of the weight losses of zirconyl chloride detected by TGA-DTA 

2.2 Zirconyl nitrate 10 

2.2.1 Structure of zirconyl nitrate 

Zirconyl nitrate or ZrO(NO3)2.xH2O is the result of a hydrolysis reaction of zirconium 

nitrate (Zr(NO3)4) in water and acid solutions. The crystalline structure was solved 

from powder XRD data and the formula is better stated as Zr(OH)2(NO3)2.(4+x)H2O 

(x≤6). The structure is made up of parallel cationic chains, with the repeating unit 

[Zr(OH)2(NO3)(H2O)2]+ as can be seen in figure 8.  

 

Figure 8: Cationic chains in zirconyl nitrate 10 

The zirconium atoms within each chain are linked by double hydroxyl bridges and 

each zirconium is coordinated by four bridging hydroxyl groups, two water molecules 

and a bidentate nitrate group. This structure can be visualized as ‘cyclic-tetramers” 

that have been opened up and joined into a chain, with a nitrate group coordinated to 

each zirconium atom. For each zirconium atom, there are also 2 to 3 water molecules 

and an additional nitrate group located in between the chains. Half of the nitrate 

groups present in the formula are directly coordinated to the zirconium atoms and the 

other half are ionically bound between the chains in the crystal lattice.  
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2.2.2 Thermal decomposition 

The thermal decomposition behaviour of zirconyl nitrate is given in figure 9. The first 

two peaks in the DTA signal can be attributed to endothermic reactions correlated 

with the loss of weakly bonded water and the conversion of uncoordinated nitrate 

groups to NOx. The exothermic crystallization peak of ZrO2 can be seen at 469 °C. 

The remaining weight percentage after complete decomposition being 37.16 % results 

in a hydration degree of 4.6 in the starting material Zr(OH)2(NO3)2.4.6H2O. The 

decomposition reactions and the corresponding weight losses are given in table 2. 
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Figure 9: TGA-DTA analysis of zirconyl nitrate - TGA signal (----) DTA signal (___)             
Experiment performed under air, heating rate 5 °C /min, RT till 1000 °C  

 
Zr(OH)2(NO3)2.4.6H2O Zr(OH)2(H2O)(NO3)2 +   3.6 H2O (4)

2 Zr(OH)2(H2O)(NO3)2 Zr2O2(OH)2(NO3)2 +   2 NOx +   3 H2O (5)

Zr2O2(OH)2(H2O)(NO3)2 Zr2O3(OH)2 +   2 NOx +   H2O (6)

Zr2O3(OH)2 2 ZrO2 +   H2O (7)  

Figure 10: Decomposition reactions in zirconyl nitrate 
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 Reactions Theoretical  

weight loss 

Experimental  

weight loss 

A (4) 80.46 % 79.35 % 

B (5) 56.14 % 55.03 % 

C (6) 39.87 % 38.78 % 

D (7) 37.16 % 37.16 % 

Table 2: Overview of the weight losses of zirconyl nitrate detected by TGA-DTA 

2.3 Zirconium hydroxyl acetate 11-13 

2.3.1 Structure of zirconium hydroxyl acetate 

Zirconium hydroxyl acetate also called zirconium oxy hydroxy acetate can be 

chemically expressed as follows: Zr(OH)3OAc.xH2O or ZrO(OH)OAc.(x+1)H2O with 

the acetate group acting as a bidentate ligand. This compound is a basic zirconium 

acetate and can be precipitated from a ZrO2.xH2O – acetic acid solution 14. Mostly the 

chemical formula is given as follows: Zr(OH)x(OAc)y.zH2O with x+y = 4.  

2.3.2 Thermal decomposition 

Only a few peaks can be detected in the DTA signal obtained by the decomposition of 

zirconium hydroxyl acetate. The first endothermic peak at 41 °C is caused by the loss 

of weakly bonded water. The exothermic peak at 334 °C is due to the loss of acetate 

and hydroxyl groups and is associated with a large weight loss. Full loss of all carbon 

material is not achieved before 800 °C 15 as can be seen by a small endothermic peak 

at 723 °C accompanied by a small weight loss. All material is then converted into 

ZrO2 with a remaining weight percentage of 57.77 % corresponding to a hypothetical 

molecular formula Zr(OH)3OAc. 0.67H2O. The decomposition reaction and the 

corresponding weight losses are given in figure 12 and table 3. 
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Figure 11: TGA-DTA analysis of zirconium hydroxy acetate - TGA signal (----) DTA signal (___)             
Experiment performed under air, heating rate 5 °C /min, RT till 1000 °C 

Zr(OH)3OAc.0.66H2O Zr(OH)3OAc   +   0.66 H2O (8)

2 Zr(OH)3OAc Zr2O2(OH)2(OAc)2 +   2 H2O (9) 

Zr2O2(OH)2(OAc)2 Zr2O3(OH)2 +   4 CO2 +  3 H2O (10)

Zr2O3(OH)2 2 ZrO2 +   H2O (11)

Zr(OH)3OAc.0.66H2O Zr(OH)3OAc   +   0.66 H2O (8)

2 Zr(OH)3OAc Zr2O2(OH)2(OAc)2 +   2 H2O (9) 

Zr2O2(OH)2(OAc)2 Zr2O3(OH)2 +   4 CO2 +  3 H2O (10)

Zr2O3(OH)2 2 ZrO2 +   H2O (11)  

Figure 12: Decomposition reactions in zirconium hydroxy acetate 

 Reactions Theoretical  

weight loss 

Experimental  

weight loss 

A (8) 94.34 % 93.03 % 

B (9) 85.90 % 83.53 % 

C (10) 61.99 % 62.13 % 

D (11) 57.77 % 57.77 % 

Table 3: Overview of the weight losses of zirconium hydroxyl acetate detected by TGA-DTA 
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2.4 The aqueous chemistry of the zirconium salts 10 

The chemistry of zirconium salt solutions is quite extensive. The Zr4+ compounds are 

very easily hydrolyzed (see §2.1). The zirconium atom favours seven or eight-fold 

oxygen coordination and in solution it will be surrounded by water or hydroxyl 

groups.. A number of polycation species can be formed in solution. The zirconium 

atoms are linked by hydroxyl (Zr-OH-Zr) bridges within these polynuclear species. 

The basic repeating structural unit is [-Zr(OH)2
2+-] with each zirconium atom linked 

to others by two hydroxyl bridges. Any given solution may have a range of species 

present, each with different units and degrees of hydrolysis. There are three main 

factors that control the size and structure of the cation species. Solution and pH 

determine the degree of hydrolysis and the equilibrium size of species, while the 

anion present may form complexes, thus influencing the bonding and geometry. Some 

anions, such as chloride interact very weakly, while others such as sulphate can form 

strong complexes and will compete with the hydroxyl groups to form bridges. 

ZrOCl2 solutions only contain the cyclic tetramer species, with Zr4(OH)8
8+ as 

polynuclear species core framework. The structure of the tetramer species consists of 

four zirconium atoms at the corners of a square, each joined by two bridging hydroxy 

groups (OHb) along the edges. This is in strict correlation with the structure observed 

in solid ZrOCl2.xH2O crystals. When dissolved in water, four water molecules and 

four hydroxy (OH’) ligands will complete the eight-fold coordination around each 

zirconium atom and give a formula of [Zr4(OHb)8(OH’)h(H2O)16-h](8-h)+. The example 

with h=8 is given in figure 13.  

 

Figure 13: Illustration of the cyclic-tetramer cation (with h = 8) 10 
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Although the polynuclear zirconyl species described in the previous section are 

reasonably stable at low pH, they are easily hydrolysed and thus susceptible to 

condensation reactions to form larger oligomers as can be seen in figure 14. 

Zr
O

H

Zr
Zr OH + Zr OH + OH

δ+δ− δ−δ+

Zr
O

H

Zr
Zr OH + Zr OH + OH

δ+δ− δ−δ+

 

Figure 14: Condensation reaction between hydrolyzed zirconyl species 

The condensation process may continue as a polymerization reaction to form colloidal 

particles and/or precipitates. The rate of condensation between species is particularly 

sensitive to the pH of the solution. The appearance of turbidity, indicating the 

precipitation of a solid, was observed in the range of pH 1.9 – 2.3. Coagulation of the 

precipitate occurs at pH 3.5. The condensation reactions are greatly accelerated at 

elevated temperatures (above 80 °C). When polymerisation is allowed above 90 °C, 

precipitation and crystallisation of the monoclinic zirconia phase takes place.  

2.5 Ammonium metatungstate 8, 16-18 

2.5.1 Structure of ammonium metatungstate 

The structure of the metatungstate anion [H2W12O40]6- shown in figure 15, is 

composed of four identical ‘tritungstate’ groups. Each of these groups is made up of 3 

WO6 octahedra joined by shared edges. The four ‘tritungstate’ groups are then 

attached to each other by corner sharing, thus forming a cavity in which the two 

protons of the metatungstate ion are situated. The protons are strongly bonded and are 

necessary to maintain the stability of the structure. 

 

Figure 15: Structure of the metatungstate anion 8 
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2.5.2 Thermal decomposition 

The thermal decomposition of (NH4)6H2W12O40.xH2O yields WO3. The TGA-DTA 

data are given in figure 16.  
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Figure 16: TGA-DTA analysis of ammonium metatungstate – TGA signal (dotted line) DTA signal 
(line) Experiment performed under air, heating rate 5 °C /min, RT till 1000 °C 

4 endothermic peaks can be seen and attributed to the loss of H2O and NH3 gasses. 

The exothermic peak at 448 °C is the result of the decomposition of the intermediate 

H2W12O40 product into crystalline WO3. The remaining weight percentage of 92.86 % 

yields a hydration degree of 1.98 and gives the following formula: 

(NH4)6H2W12O40.1.98H2O. 

 Experimental 

weight loss 

Comments 

A 99.37 % Loss of 1 molecule H2O or NH3 

B 97.44 % Loss of 3.2 molecules H2O or NH3 

C 93.33 % Loss of 6.8 molecules H2O or NH3 

D 92.86 % Loss of 0.78 molecules of H2O and 

formation of 12 molecules of WO3 

Table 4: Overview of the weight losses of ammonium metatungstate detected by TGA-DTA 
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2.6 The aqueous chemistry of the tungstate salts 

Dissolving trioxides of tungsten in aqueous alkali will result in solutions containing 

WO4
2- ions and simple tungstates such as (NH4)2WO4 with a tetrahedral surrounding. 

These tungsten solutions can absorb large quantities of strong acid by mechanisms 

leading to formation of isopolytungstates with octahedral surrounding. When the 

tungsten solution is acidified, precipitates of colloidal tungsten oxide also called 

tungsten acid (WO3.H2O) are eventually formed. A lot of different polyanions are 

formed when the pH is varied between those two extremes. A simplified overview is 

given in figure 17. The polyanions are formed by condensation reactions with slow 

equilibration between the different species. The most important species are the 

paratungstates and metatungstates. The formation of the polyanions is influenced by 

concentration, temperature, counter anion and acidity.  

Strongly acidic WO3.H2O

pH 1-2 Tungstate Y (yellow)
[W10O32]

4-

pH 2-4 Psuedo-metatungstate Metastable W12           Metatungstate
(W11 species) species           [H2W12O40]

6-

"Keggin Structure"

pH 5-9 Paratungstate A Paratungstate B
[W7O24]

6- [H2W12O42]
10-

pH > 9 [WO4]
2-

 

Figure 17: Reaction scheme for the condensation of tungstate ions in aqueous solutions 

There is equilibrium between the tetrahedral tungstate and the metatungstate as given 

below.  

18 H+   +   12WO4
2-                       H2W12O40

6-   +    8H2O 
 

Tetrahedral 
Scheelite 

O
ctahedral 

W
olfram

ite 
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3 Citrate-gel processing of ZrW2O8 

3.1 Coordinative properties of citric acid 

In the so-called citrate gel process, citric acid (figure 18) acts as a metal-ion 

complexant to assure the formation of a homogeneous and stable precursor solution. 

Citric acid is very suitable as complexant due to the presence of four potential 

coordinating functional groups and it simultaneously forms a three-dimensional 

network using its different functional groups (One -OH and three -COOH groups). 

The formation of this three-dimensional network in the liquid state insures the 

homogeneity and applicability by maintaining a liquid sol-gel state but reducing the 

mobility of ionic and chelated species. 

OH OH

O
OHO

O

OH  

Figure 18: Molecular structure of citric acid 

Rajendran et al 19 described the citrate coordination in the zirconyl tetramer in which 

only the carboxylgroups are involved in the complexation as shown in figure 19. In 

our opinion, the structure of the tetramer is not correct as the zirconium atoms are 

linked by oxygen atoms instead of hydroxyl bridges as stated in §2.4. 

 

 

Figure 19: Coordination of the zirconyl tetramer by citric acid 19 
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The coordination of citric acid is investigated using IR. Characteristic symmetric and 

asymmetric carboxylate stretching modes are found around 1400 cm-1 and 1600 cm-1 

respectively. No free carboxyl groups remain after the complexation as indicated by 

the absence of a band around 1720 cm-1.The typical C-O stretch associated with a 

tertiary hydroxyl group, R3C-OH lies around 1050 cm-1 – 1100 cm-1 in citric acid and 

can also be detected in the gel compound. 
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Figure 20: IR spectra of (a) gel obtained from a solution containing zirconium oxychloride, ammonium 
metatungstate and citric acid as chelating compound and (b) citric acid 

The coordination has already been studied by TGA-DTA analysis 20. Therefore, the 

thermal decomposition of the complexes is analysed by simultaneous TGA-DTA and 

additional information is collected by IR-spectroscopy of thermally treated powders in 

a muffle furnace. The experiments are carried out from room temperature to 900 °C. 

The typical R3C-OH stretch at 1050 cm-1 – 1100 cm-1 is still present in the IR-spectra 

of powders which are heated from room temperature up till 300 °C. At higher 

temperatures, the stretch mode disappears. The thermal decomposition mechanism of 

pure citric acid describes the loss of the tertiary hydroxyl group at 140 °C 21, 22. In our 

case, the tertiary hydroxyl group is thus very probably stabilized due to the 

coordination of this tertiary C-OH group to the metal cations. Hereby, it can be 

infered that all functional groups of citric acid are involved in the complexation. 
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3.2 Screening of ideal sol-gel conditions for the preparation of the precursor gels 

Synthesis by Sol-Gel 
precursors

precursor material commercially available salts
ZrOCl2.nH2O

ZrO(NO3)2.nH2O
ZrOAc(OH)3.nH2O

(NH4)6H2W12O40.nH2O

synthetic route Zr : W ratio
 1 : 2

+ citric acid

gelation 
24 h 60 °C

Sol-Gel state

calcination 
12 h 700 - 800 °C

ZrO2

WO3

Synthesis
Sintering

2 -15 h 1180 °C

ZrW2O8  

Figure 21: Detailed description of the sol-gel synthetic route 

Figure 21 mentions the different synthesis steps in the citrate-gel process of ZrW2O8. 

As can be seen in this figure, the first important step is the mixing of the metals salts 

and the formation of a homogenous precursor solution. Storing these solutions in the 

drying furnace at 60 °C for a period of 24 h will induce olation and oxolation reaction 

resulting in a highly viscous gel network.  
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At room temperature, ZrOCl2.xH2O (6.20 g, 20 mmol) was dissolved in 50 mL water 

whereas 50 mL water was added to (NH4)6H2W12O40.xH2O (9.99 g, 3.33 mmol). 

Mixing of those two solutions would immediately induce the precipitation of Zr4+-

ions when dissolved in an aqueous solution of (NH4)6H2W12O40.xH2O. This would 

induce co-precipitation of the salts. The complexing agent citric acid (CA) was added 

to the Zr4+ solution to avoid the precipitation. It is necessary to determine the metal 

ions/complexant ratio and pH needed in the synthesis. Therefore the metal 

ions/complexant ratio was varied from 1 to 6 whereas NH4OH was added to vary the 

pH between 0 and 7. The different combinations are mentioned below and 

photographs of the gel after 12 h in the drying furnace at 60 °C are given. This 

temperature treatment induces the transformation of solution to gel. 

3.2.1 ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O – citric acid (Ratio Zr4+ : CA 1:1) 

Mixing of the ZrOCl2.xH2O : citric acid solution (1:1) and the aqueous ammonium 

metatungstate solution resulted in the formation of a white precipitation. The pH of 

the mixed solution was 0.03, addition of NH4OH dissolved the precipitate at pH 6.82. 

The solution was transferred to a Petri disk and placed in a drying furnace for 24 h at 

60 °C. Figure 22 shows that no clear gel is obtained and a white cackled product is 

left behind in the Petri disk. These conditions are thus not suitable for the sol-gel 

synthesis of ZrW2O8. 

 

Figure 22: ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O citrate gel (1:1 - pH 6.83) 
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3.2.2 ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O – citric acid (Ratio Zr4+ : CA 1:2) 

The ratio of zirconium ion : citric acid was increased to 1:2. The concentrations of 

metal salts used were kept constant. The solution obtained by mixing the two 

solutions was a clear and colourless solution with a pH value of 0. NH4OH was added 

in small amounts to obtain several samples with varied pH values. All samples were 

submitted to a gel step and the results are shown below in figure 23. The sample with 

the lowest pH resulted in a precipitation of all salts whereas the more basified samples 

obtained a “jelly” structure but with traces of white precipitation. For further use, a 

clear gel is an absolute necessity.  

   
pH 0 pH 1.03 pH 4.05 

   
pH 5.06 pH 6.03 pH 7.3 

Figure 23: ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O citrate gel (1:2) 

3.2.3 ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O – citric acid (Ratio Zr4+ : CA 1:3) 

A further increase of the zirconium ion : citric acid ratio was necessary and the results 

are shown in figure 24. All samples yielded high viscosity gels but again precipitation 

was detected but less pronounced than in the earlier mentioned samples. The aqueous 

solution obtained before gelling was clear and colourless (pH 0).  

    
pH 0 pH 1.15 pH 2.03 pH 3.19 
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pH 4.06 pH 5.06 pH 6.06 pH 7.40 

Figure 24: ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O citrate gel (1:3) 

3.2.4 ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O – citric acid (Ratio Zr4+ : CA 1:4) 

As can be seen from figure 25, an extra amount of citric acid till the zirconium ions : 

citric acid ratio reached a value of 1:4 was not sufficient to obtain clear gels after the 

gelation at 60 °C. A diminution of precipitates can be seen which is most pronounced 

as the pH of the precursor solution increases. The ideal parameters for the precursor 

solution will be most likely a zirconium ion : citric acid ratio above 1:5 and pH values 

around 7. 

    
pH 0 pH 1.12 pH 2.14 pH 3.07 

    
pH 4.10 pH5.09 pH 6.10 pH 7.30 

Figure 25: ZrOCl2 - (NH4)6H2W12O40.xH2O citrate gel (1:4) 

3.2.5 ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O – citric acid (Ratio Zr4+ : CA: 1:5) 

As already suggested by the previous experiment a clear gel was indeed obtained 

using a 1:5 ratio and adding NH4OH until pH 7.17 was reached. The last picture in 

figure 26 shows a clear, transparent gel without the presence of any precipitates. This 

could be a suitable candidate for further synthesis. 
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pH 0 pH 1.17 pH 2.07 pH 3.03 

    
pH 4.04 pH 5.02 pH 6.15 pH 7.17 

Figure 26: ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O citrate gel (1:5) 

3.2.6 ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O – citric acid (Ratio Zr4+ : CA 1:6) 

The aqueous solutions with a zirconium ion : citrate ratio of 1:6 described in this work 

yielded perfectly clear and colourless solutions with a low pH (1.4) due to the use of 

citric acid. Samples at varied pH were put aside in the drying furnace to allow gelling 

of the precursor solutions. The results are given in figure 27. Clear and colourless gels 

were obtained at each pH value. We decided to use a zirconium ion : citric acid ratio 

of 1: 6 at a pH value of 7 for all further experiments. Although the whole pH range of 

1-7 was suitable, a value of 7 is safer when keeping the possible industrial application 

of this synthetic route in mind. 

 

   
 pH 1 pH 2 pH 3 

    
pH 4 pH 5 pH 6 pH 7 

Figure 27: ZrOCl2.xH2O - (NH4)6H2W12O40.xH2O citrate gel (1:6) 
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Similar tests were performed for the gels using ZrOAc(OH)3 and ZrO(NO3)2. In a 

zirconium ion : citric acid ratio of 1:6, NH4OH must be added until pH 7 is reached in 

case of the zirconium oxynitrate salts. To avoid precipitation in the case of the 

ZrOAc(OH)3 based gels, the amount of NH4OH necessary is higher and stable gel is 

obtained at pH 10. All gels were colourless immediately after removal out of the 

furnace. This is an important observation in view of later findings in relation to 

photochromic behaviour.  

3.3 Synthesis of ZrW2O8 

After preparation of the precursor gels, a thermal treatment is necessary to transform 

the three-dimensional gel structures into crystals of ZrW2O8 with negative thermal 

expansion. This thermal treatment consists of two steps. In the first heating step    

(12h at 700 / 800 °C) all organic material is removed and the gel is converted into 

oxides. For the zirconyl nitrate based gels, the efficient and complete removal of citric 

acid occurs in an autocatalytic combustion reaction induced by the presence of nitrate 

anions and can be formalized as follows: 

ZrO(NO3)2 + 1/6 (NH4)6H2W12O40 + 5/9 C6H8O7.H2O 

↓ 

ZrO2 + 2 WO3 + 10/3 CO2 + 31/9 H2O + N2 + NH3       

The reaction is fast, yields high purity and homogeneous, crystalline foams which can 

be used in a further solid state reaction 23. Comparable reactions occur in the gels 

manufactured with other zirconium salts.  

The decomposition is associated with a gas production which leads to a spongy 

structure and fine oxide particles. After grounding the spongy structure in an agate 

mortar, these oxide mixtures were pressed at 750 MPa into small bars                   

(2mm  2mm  13mm) and were subjected to a second heating step of 2 hours at 

1180 °C in a preheated furnace. To avoid decomposition of ZrW2O8 into ZrO2 and 

WO3, this sintering process is directly followed by a quenching step from 1180 °C to  

-196 °C by immediate immersion into liquid nitrogen. Afterwards, the samples are 

allowed to heat to room temperature.  



Sol-gel synthesis methods for ZrW2O8 materials 
 
 

 117

The thermal treatment of the decomposing gels was investigated by XRD. In figure 28 

the diffraction peaks are given after the decomposition of a gel containing                

0.2 M ZrOCl2.xH2O, 0.033 M (NH4)6H2W12O40.xH2O and 1.2 M citric acid. The pH 

was set at the optimal value of 7 and the two temperatures examined were 700 °C and 

800 °C. Crystalline material was only obtained above 700 °C. When we compare 

pattern (a) with pattern (b), not all peaks are well defined and the intensity as well as 

the sharpness of the peaks improved drastically when the calcination temperature is 

set at 800 °C. All the diffraction peaks of the oxides formed after the calcination step 

using the 3 different Zr4+ salts can be identified either as the reflections of WO3 or 

ZrO2. Figure 29 outlines the diffraction pattern of ZrW2O8 after sintering at 1180 °C. 

All peaks can be identified as α-ZrW2O8. The 4 most intense reflections (210), (211), 

(311) and (321) are indicated. 
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Figure 28: X-ray diffraction pattern of the precursor oxides (ZrO2 and WO3) - gel decomposition 
temperature: 700 °C (a) or 800 °C (b) - ZrOCl2.xH2O used as Zr4+-source. 
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Figure 29: X-ray diffraction pattern of ZrW2O8 ;(a) ZrOCl2 (b) ZrO(NO3)2 (c) ZrOAc(OH)3 as Zr4+-
source. Diffraction peaks ° =(210) * =(211) ∆ =(311) and • = (321) 

The thermal decomposition of a ZrO(NO3)2.xH2O - (NH4)6H2W12O40.xH2O citrate gel 

(1:6) is given in figure 30. Several endothermic and exothermic peaks can be seen. 

The first two peaks can be attributed to the loss of H2O and NH3 gasses. The 

exothermic peak at 247 °C accompanied by great mass losses is the autocombustion 

reaction mentioned above. Most of the organic material disintegrates before 500 °C is 

reached. Monoclinic ZrO2 crystallizes at 471 °C and the formation of WO3 is 

assembled in this exothermic peak. The formation of ZrW2O8 gives rise to an 

endothermic peak at 1180 °C.  
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Figure 30: Thermal decomposition of a ZrO(NO3)2.xH2O - (NH4)6H2W12O40.xH2O citrate gel (1:6) – 
TGA signal (dotted line) DTA signal (line) Experiment performed under air, heating rate 5 °C /min, RT 

till 1000 °C 
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3.3.1 High Temperature X-ray analysis 

A small slice of a ZrW2O8 bar prepared by the sol-gel method was used to perform 

variable temperature X-ray analysis. In this case, ZrOCl2 was used as Zr4+ source. 

Data between 10 ° and 60 ° 2 theta were collected under He atmosphere. The stepsize 

and steptime were respectively 0.015 ° and 0.07 s. The temperature was increased 

from  40 °C to 300 °C at 5 °C/min. X-ray analysis was performed every 10 °C. The 

results are mentioned in figure 31. A reflection at 33 ° 2theta is caused by interference 

of the Si-wafer on which the sample was positioned. As indicated by the insert in 

figure 31, the 310 reflection characteristic for the alpha phase disappears between 160 

and 170 °C. This means that the phase transition took places between those two 

temperatures.  
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Figure 31: Variable temperature X-ray analysis of spray dried ZrW2O8. ↓ indicates the 310 reflection 

Data points collected at the different temperatures were used to calculate the 

dimension changes of the cell parameter a. The exact reflection positions were 

determined and with the use of the Unitcell 24 software the cell parameter was 

calculated. The results are given in figure 32. An overall decrease in dimension of the 

cell parameters can be seen with a clear distinction between the alpha and the beta 

phase. The alpha phase is characterized by a more negative thermal expansion 

coefficient than in the case of β - ZrW2O8.  
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Figure 32: Evolution in cell parameter a as a function of temperature 

3.3.2 Thermomechanical properties 

The thermal expansion of the materials obtained after sintering at 1180 °C is given in 

figure 33. A drastic change in thermal expansion is noticed at 169 °C which confirms 

the information obtained by HT-XRD. The thermal expansion coefficients of α- and 

β-ZrW2O8 synthesized by the use of the different zirconium salts are given in table 5 

together with their respective transition temperatures. Each measurement was 

performed 3 times. Measurements containing 3 cycles of heating to 300 °C and 

cooling down to room temperature were also performed in order to ascertain the 

absence of hysteresis. 
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Figure 33: TMA of ZrW2O8 with ZrOCl2 as Zr4+-source 
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In order to relate the thermomechanical properties of the material with its structure 

and synthesis method, the α-values and some transition temperatures from 

international literature are added in table 5. The transition temperatures show 

negligible differences which are unlikely to affect the properties of the material. The 

thermal expansion coefficients of the ceramic material obtained by the sol-gel 

synthesis show slightly higher values in comparison with the other preparation 

methods. An α-value of -11  10-6 °C-1 is obtained after taking extreme precautions 

to prevent the WO3 evaporation 25. Furthermore, -10.5  10-6 °C-1 is the result 

obtained by an aerogel synthesis of ZrW2O8 5. The other results, obtained by a 

conventional solid state synthesis 26-31, all give lower values. It has to be mentioned 

that the analysis method used to determine the thermal expansion has also an impact 

on the final results. Bulk measurements used here will include the effects of 

microstructure whereas diffraction measurements do not.  

 
TEC 

α-ZrW2O8 

TEC 

β-ZrW2O8 

Transition 

temperature 

Reference 

(  10-6 °C-1)  (  10-6 °C-1) (°C)   

[50 °C – 125 °C] [200 °C – 300 °C]   

-10.6 -3.3 165 This work (a) 

-10.5 -3.4 170 This work(b) 

-10.7 -2.9 169 This work (c) 

-10.5 - - 5 aerogel 

-11 - - 25 extreme precautions

-9.1 - 175 26 solid state 

-8.8 - - 28, 29, 31 solid state 

Table 5: Thermal expansion of ZrW2O8 obtained by sol gel synthesis with (a) ZrOCl2.xH2O,              
(b) ZrO(NO3)2.xH2O and (c)ZrOAc(OH)3.xH2O as Zr4+-source and literature data 

De Meyer et al 27 have already stressed the importance of the properties of chemically 

prepared oxide mixtures, where homogeneity and smaller particle sizes drastically 

improve the sintering of the oxide mixtures. The results of this investigation are 

compared with the measurements of materials obtained via our sol-gel precursors. The 

end result is mentioned in table 6.  
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Material TEC α-ZrW2O8 

(  10-6 °C-1) 

ZrW2O8 containing a large amount of unreacted zirconia 

and tungsten oxide (spray dried oxide mixture, sintered for 

5 min at 1180 °C in a quartz tube 

- 4.40 

Dense ZrW2O8 obtained by sintering spray dried powders 

for 1 hour at 1180 °C in a quartz tube 
- 8.87 

Dense ZrW2O8 obtained by sintering chemically prepared 

powders via sol-gel for 1 hour at 1180 °C in a Pt dish 
- 10.6 

Table 6: Thermal expansion of bulk ZrW2O8 materials 

The quality of ceramic blocks of the negative thermal expansion material ZrW2O8 is 

strongly affected by the synthesis time and the chosen synthetic routes. Ultra-pure 

ZrW2O8 is desirable for applications where the use of composite materials with 

controlled thermal expansion is envisaged. Materials with positive (Cu, ZrO2 ...) and 

negative thermal expansion (ZrW2O8) can indeed be combined to produce materials 

with controlled or even zero thermal expansion 31, 32. By varying the molar ratios of 

the different components, different thermal expansion coefficients are obtained. It was 

experimentally proven by us that a 33 w% ZrW2O8 – 66 w% ZrO2 results in a material 

which exhibits no dimensional changes as the temperature increases, on the condition 

that the materials used are pure and homogeneously mixed 33, 34. The sol-gel method 

has proven to be a flexible tool for the preparation of the oxide mixtures in the desired 

molar ratios. 

3.3.3 Particle size and morphology 

Methods based on gelation lead towards homogeneous mixtures so that the reaction is 

very fast through the many particle boundaries. The diffusion distance is minimized 

by the small particle size which leads to fast reactions competing advantageously with 

the volatility of WO3. The particle sizes of the oxide mixtures obtained by sol-gel 

preparation are compared with commercially available oxides in table 7 and are 

almost 5 times smaller than commercial WO3 particles. As the dimensions strongly 

influence the sintering ability of materials, a highly pure ceramic is obtained resulting 

in an improved negative thermal expansion behaviour.  
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Material Particle size 

 d50(µm) d90(µm) 

ZrO2 (commercial, Aldrich) 3.15 6.54 

WO3 (commercial, Aldrich) 18.68 40.78 

ZrO2 – WO3 mixture (prepared by sol-gel) 11.44 30.25 

Table 7: Particle size of ZrO2 and WO3 oxide powders 

Electron micrographs were made to compare the influence of the preparation route on 

the morphology and hereby the properties of the formed materials. The comparison 

between the fracture surfaces obtained from sintered co-milled and sol-gel 

synthesized powders are given in figure 34. 

 
                                   (a)                                                                                                     (b) 

Figure 34: Electron micrographs of fracture surfaces of (a) co-milled oxide powders and (b) a sol-gel 
based oxide mixture sintered at 1180°C for 2 hours.  

Both samples were treated for 2 hours at 1180 °C. In the case of ZrW2O8
 prepared by 

sol-gel, the reaction is more complete and less unreacted material with spherical 

morphology is left whereas for the co-milled oxide powders more unreacted particles 

are still present. The particles are identified by EDAX as ZrO2 particles. In both cases 

a more or less smooth matrix of zirconium tungstate can be identified. The distinct 

morphologies of the samples are a consequence of the initial difference in 

morphology and homogeneity of the oxide mixtures. The remarkable absence of pores 

in sol-gel based zirconium tungstate proves that the volatility of WO3 was pushed 

back so that only a very small amount of unreacted ZrO2 remains embedded in the 

zirconium tungstate matrix as can be seen in figure 34(b) indicated by the circles.  

20µm 20µm 
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4 EDTA-gel synthesis of ZrW2O8 

4.1 Coordinative properties of Ethyleen diamine tetraacetic acid 35 

Ethylene diamine tetraacetic acid, better known as EDTA, is here used as an 

alternative for citric acid to avoid the autocombustion reaction and hereby providing a 

sol-gel system which is more suitable for the preparation of thin ZrW2O8 layers. 

EDTA is a tetrabasic compound and besides the 4 carboxylic acid groups, there are 

two nitrogen atoms which can act as possible donor as shown in figure 35. EDTA is 

therefore a potentially hexadentate ligand. The conformation of the ligand can change 

freely by rotation around the C – C and C – N bonds. When (EDTA)4- coordinates to a 

metal ion, it actually wraps itself around the metal ion to form a octahedral 

surrounding.  
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Figure 35: Chemical structure of EDTA in its acid form 

4.2 Synthesis and preparation of the precursor solution 

The synthesis of the Zr – W – EDTA precursor solution is twofold. In a first step, the 

ZrEDTA complex is formed which is then dissolved in the W – EDTA solution. The 

ZrEDTA complex is synthesized according to a synthesis method mentioned in 

literature 36-38.  

4.2.1 Synthesis of ZrEDTA.xH2O 

ZrOCl2.xH2O (6 g, 20 mmol) and Na2H2EDTA (7.44 g, 20 mmol) was dissolved in 

100 mL of distilled water. A thick, white precipitation was obtained which 

disappeared upon heating at 100 °C. The solution was stirred at this temperature for 1 
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hour. Afterwards, the solution was cooled overnight. Colourless crystals were 

produced upon standing. The crystals were filtered off and rinsed three times with 

cold distilled water followed by drying for 24 hours at 110 °C. XRD analysis was 

performed on these crystals and the monoclinic phase of ZrEDTA (ICSD PDF 49-

2452)-was identified as given in figure 36.  
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Figure 36: X-ray diffractogram of the ZrEDTA complex 

The complexation by EDTA is shown schematically in figure 37. Other 

conformations are also possible because of the free rotation along the C – C and C – N 

single bonds as long as the octahedral surrounding is retained. The stability constant 

for ZrEDTA in water at room temperature equals 1029.4 which is very high. 39 
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Figure 37: The coordination of EDTA around Zr4+ 
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TGA-DTA analysis was also performed to determine the amount of crystal water 

present. The results are given in figure 38. The DTA spectrum reveals 3 major peaks. 

The first endothermic signal is due to the loss of water molecules, followed by the 

burning-out of the EDTA ligand which results in an exothermic peak at 409 °C. The 

exothermic peak at 488 °C represents the crystallization of monoclinic ZrO2. The 

weight percentage obtained at 1200 °C is 28.40 % which results in a molecular weight 

of 433.87 g/mol or ZrEDTA. 3.02H2O. 

100

80

60

40

W
ei

gh
t (

%
)

1000800600400200
Temperature (°C)

1.2

0.8

0.4

0.0

-0.4

Tem
perature difference (°C

/m
g)

1

2

3

1     166 °C
2     409 °C
3     488 °C

 

Figure 38: TGA-DTA analysis of ZrEDTA.xH2O – TGA signal (dotted line) DTA signal (line) 
Experiment performed under air, heating rate 5 °C /min, RT till 1000 °C 

4.2.2 Synthesis of the Zr – W EDTA precursor solution 

This fully characterized ZrEDTA complex was further used in the preparation of the    

Zr – W – EDTA precursor solution. 50 mL of a 0.2 M EDTA solution in water was 

prepared. 3 ml of concentrated ammonia (13 M) was added to dissolve the EDTA. 

(NH4)6H2W12O40.xH2O (4.99 g, 1.67 mmol) was dissolved in the EDTA solution and 

the pH was adjusted with acetic acid till a pH of 4.78 was obtained. The ZrEDTA 

crystals (4.33 g, 10 mmol) were dissolved in the W-EDTA solution by mild heating. 

The pH of the Zr – W – EDTA solution was about 4.  

The stability of this precursor solution and the gel was tested. The pH was increased 

by adding diluted ammonia (1.3 M). Precursor solutions at pH 4, 5 and 6 were put 

aside in a drying furnace at 60 °C for 10 hours. Further increase of the pH was not 

preferred because of the presence of precipitation in the precursor solution. The 
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results of the gelled samples are shown in figure 39. Clear gels are obtained at pH 4 

whereas precipitation occurs at higher pH values. The precursor solution at pH 4 was 

used in further experiments.  

   
pH 4 pH 5 pH 6 

Figure 39: Zr – W – EDTA gel 

IR spectra (figure 40) of the pure EDTA (in its acid form), the ZrEDTA complex and 

the  Zr –W – EDTA gel were recorded. The most important peaks are indicated such 

as the C-H stretch between 2950 and 2850 cm-1 and the C-H bending vibrations in the 

region 1370 – 1380 cm-1 and 720 – 725 cm-1. Vibrations due to the carboxylic acid 

can be seen in the carbonyl stretch at 1700 – 1720 cm-1 whereas the C-O stretch 

results in a minimum in transmission between 1210 and 1320 cm-1. C-N stretches 

occurring in the EDTA groups are noticeable at 1095 cm-1 whereas O-H stretches due 

to the presences of water can be seen for the ZrEDTA complex and the                       

Zr – W – EDTA gel around 3300 cm-1. This peak is very broad for the gel because of 

the coexistence of N-H stretch vibration as NH4OH is used to dissolve the EDTA salt 

and to adjust the pH.  
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Figure 40: IR spectra of EDTA, ZrEDTA complex and Zr-W EDTA gel (pH 4) 
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The vibrations below 1000 cm-1 in the IR spectra of the ZrEDTA complex and the gel 

are not only caused by C-H bending vibration. Zr-N (933 cm-1), W-N (957 cm-1),    

W-O (970 – 990 cm-1) and Zr-O (730 – 770 cm-1) stretch vibrations can be situated in 

this region. 

4.3 Decomposition of the gel  

TGA-DTA analysis was used to examine the decomposition process of the gel 

containing ZrEDTA dissolved in the W – EDTA solution at pH 4. The results will 

help to tune the thermal treatment in order to first calcine into a homogenous ZrO2 – 

WO3 mixture followed by the high temperature treatment as discussed above. Figure 

41 outlines the weight percentage and the temperature difference measured during the 

decomposition in air. These results are compared with figure 30 in order to see the 

differences and similarities between the two different sol-gel systems. Two first two 

peaks are similar and are due to the loss of water and ammonia gases. The strong 

exothermic peak at 471 °C in the citrate system has shifted to higher temperature  

(584 °C). The EDTA complex needs higher temperature to decompose completely 

with production of CO2 gas. No more decomposition processes occur above 700 °C 

and all material has been calcined to ZrO2 and WO3. Temperatures above 700 °C are 

suitable for further synthesis in order to obtain a pure oxide precursor mixture suitable 

for ZrW2O8 synthesis.  
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Figure 41: TGA-DTA analysis of the Zr-W EDTA gel at pH 4 – TGA signal (dotted line) DTA signal 
(line) Experiment performed under air, heating rate 5 °C /min, RT till 1000 °C 
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IR spectroscopy was used to get a better view on the different products formed during 

decomposition. Therefore, small amounts of the gel were heated at various 

temperatures (180 °C- 800 °C). The obtained powders are ground and analysed. The 

results are given in figure 42. The intensity stretch vibrations due to the presences of 

the carboxylic acid and amine functions in EDTA slowly fade to disappear completely 

above 750 °C. The O-H and N-H stretch vibrations disappear between 200 and 300 °C 

which is in correlation with the TGA-DTA analysis. Above 750 °C, absorption occurs 

in the region below 1000 cm-1 due to Zr-O and W-O vibrations.  
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Figure 42: IR spectra of the Zr – W – EDTA gel at various temperatures 
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4.4 Synthesis of ZrW2O8 

The ZrO2 – WO3 oxide mixture, obtained out of the Zr – W – EDTA gel after 

calcinations at 800 °C was submitted to X-ray analysis (figure 43 (a)). All reflections 

present in the diffractogram can be identified as resulting from monoclinic ZrO2 or 

triclinic WO3. This calcination step was then followed by the same high temperature 

treatment as described above. ZrO2 – WO3 powder mixtures were ground, pressed 

into bars and kept in a preheated furnace at 1180 °C for 2 hours. The samples were 

quenched afterwards in liquid nitrogen. This high temperature treatment results in 

pure ZrW2O8 as can be seen in figure 43(b). 
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Figure 43: X-ray diffractogram of Zr – W – EDTA gel after heat treatment at (a) 800 °C (b) 1180 °C 
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5 Conclusions 

In addition to the known synthesis methods for ZrW2O8 such as the conventional solid 

state reaction, the use of spray dried powders and the co-precipitation method, the 

synthesis via the citrate-gel method does produce a pure and homogenous oxide 

mixture and is therefore well suitable for the preparation of ZrW2O8. The expansion 

coefficient of α–ZrW2O8 is -10.6  10-6 °C-1 (50 °C – 125 °C) whereas that for the β-

ZrW2O8 is -3.15  10-6 °C-1 (200 °C – 300 °C). These values are similar or higher 

than those obtained using synthetic techniques where extreme measures are taken to 

avoid volatilization. The homogeneity and the small particle sizes are the most 

important factors which improve the negative thermal expansion behaviour by fast 

diffusion and reaction along the many particle boundaries and thus avoiding 

volatilization of WO3. This is proven by morphology studies of zirconium tungstate 

by varied synthetic routes. A negligible difference in α-β phase transition temperature 

is noticed. A second sol-gel synthesis method is based on EDTA as complexing agent. 

Pure gels are obtained which result in a homogenous powder mixture. After heat 

treatment pure zirconium tungstate is obtained.  

Both sol-gel systems are suitable for the synthesis of ZrW2O8 thin layers. A well 

studied heat treatment is of the utmost importance as the decomposition of the gel 

structure includes the losses of the organic material. These losses induce the formation 

of gasses which have a negative influence on the morphology of the layer. A mild 

heating rate may slow down this process and hence improve the quality of the layers 

drastically.  
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Chapter 5  

Luminescent properties and EXAFS 
analysis of the sol-gel precursors 

 
 
 
 
 
 
The precursor solutions prepared by the citrate-gel method resulted in stable blue gels 

at high pH values. This remarkably colour behaviour is mentioned in the previous 

chapter. This chapter provides extra attention to the colouring of the gels and the 

species present in the precursor solution. Luminescence measurements are used to 

identify the photoluminescent behaviour of the gels whereas EXAFS experiments are 

performed to clarify the species present in the precursor solution. Obviously, the 

chapter is limited to materials based on the citrate-gel route.  

The colouring of the citrate based gels and the luminescence measurements are 

mentioned in the following publication: 

“Aqueous sol-gel processing of precursor oxides for ZrW2O8 synthesis”  
 
K. De Buysser, P.F. Smet, B. Schoofs, E. Bruneel, D. Poelman, S. Hoste and I. Van 

Driessche  

Published in Journal of Sol-Gel Science and Technology, 43 (2007) 347-353 
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1 Luminescence of the precursor gels 

A remarkable colour change occurs in some gels discussed in Chapter 4-§3.2 when 

they are exposed to sunlight after heating at 60 °C. After 72h exposure, the gels at low 

pH remained colourless. They exhibit a gradual colour gradation from pink to purple 

to blue when increasing the pH stepwise from 4 to 7. 

The marked colour changes in the gels were examined with optical spectroscopy. 

Normally no detectable UV-Vis signal related to d-electrons is expected for free   

Zr4+, [Kr] 4d0 and free W6+, [Xe] 4f145d0. The colourless aqueous solution seemed to 

confirm this theory but we will demonstrate at the end of this chapter that this has 

another explanation. No colour was noticed immediately after transformation from 

solution to the sol-gel state at 60 °C and removal from the dry furnace, which is again 

in agreement with the presence of empty d-orbitals. Only when the gel was exposed to 

sunlight during several hours a range of stable colours going from light pink (pH=5) 

over purple to blue (pH=7) was obtained. This optical behaviour can be due to charge 

transfer transitions from ligand to metal. The colours are affected by pH and the sol-

gel state plays in this. 

To examine this puzzling optical behaviour in more detail, two series of gels were 

prepared with different Zr salts. Series 1 was obtained by the combination of 

ZrOCl2.xH2O (6.20 g, 20 mmol) : citric acid (25.21g, 120mmol) in a 1:6 ratio with 

(NH4)6H2W12O40.xH2O (9.99 g, 3.33 mmol) addition in 100 mL distilled water 

whereas in series 2 , ZrO(NO3)2.xH2O (6.63 g, 20 mmol) was used as Zr4+ salt. The 

pH was varied stepwise from 1 to 7 by adding NH4OH. The same gradation in colour 

was noticed in both series, so there is no effect due to changing the Zr4+ salts. These 

gels were diluted in water and analyzed by UV-Vis. The λmax of the colours formed in 

the sol-gel state were not affected by the dilution. In figure 1 the transmittance 

spectrum is given for the diluted gels of series 1. Variable absorption features at 

different pH between 450 nm and 750 nm were noticed. When we take a closer look 

at this figure, it can be seen that no difference occurs at pH 1-3. An absorption peak 

appears at pH 4 (520 - 540 nm) and is indicated by an asterisk. This is maintained in 

the other spectra (e-f) but is slightly shifted to lower energy regions. At pH 6 

(spectrum (f)) an additional peak can be observed at ± 640 nm (°). As both series 
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exhibit the same colour behaviour the change in Zr4+ salts seems unlikely to affect the 

photochromic properties of the gels. These properties are most likely to be affected by 

the presence of W6+-species. At this pH value, the metatungstate is transformed into 

the 12-tungstate with their Keggin structure 1. These molecules are composed of 

[WO6] octahedra which are bonded by edge- and corner-sharing to 4 other octahedra. 

The transformation in different polyoxytungstate ions depends on the variation of the 

pH as can be seen in Chapter 4-§2.6, which can be the reason for the differences in the 

transmission spectra after irradiation by sunlight as was noticed in the synthesis.  
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Figure 1: UV-VIS of the sol-gel precursors diluted in water at pH (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 with 
ZrOCl2 as Zr4+-source. 

A similar sol-gel sample was prepared without Zr4+-salt. The pH was adjusted to 

obtain pH 6 and the gel indeed turned blue after irradiation by sunlight. This is an 

indication that W6+ ions are responsible for the photochromic behaviour of the gels. 

One sample was kept in the dark for comparison. The photochromic properties of the 

diluted (NH4)6H2W12O40.xH2O – citric acid gels are studied more extensively by 

subjecting the sample to irradiation with a 100W – Hg lamp. The transmission spectra 

are shown in figure 2.  

After 22 min of irradiation a different transmission pattern occurs with absorption at       

± 350 nm and ± 600 nm. After a longer irradiation time of 40 min the latter shifts 

towards ± 560 nm. In addition absorption appears at ± 450 nm. The absorption at       

± 560 nm leads to a purple tinge of the irradiated sols which is probably related to 

Zr4+ - W6+ 
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figure 1(e-f). This photochromic effect is fully reversible as the transparency is 

restored by keeping the irradiated gels in the dark. Exposure of this gel to sunlight 

irradiation restored the original colour.  
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Figure 2: Transmission spectra of the samples after radiation with UV-light: (a) 0 min, (b) 2 min, (c) 22 
min, (d) 40 min, (e) 130 min. 

Luminescence measurements were performed on two samples for further 

conformation. Sample n°1 is part of the series 1 prepared as described above at pH 7 

with W6+ and Zr4+ ions present and sample n°2 is a pure W6+ salt solution prepared 

under the same conditions with W : citric acid ratio of 1:2. Both solutions exhibit the 

same luminescence behaviour with a strong blue emission upon UV excitation. It 

seems that there is no contribution to the luminescence due to the presence of Zr4+ 

ions. The luminescence of zirconates is known to be excited with wavelengths shorter 

than 220 nm and the emission is mostly centred in the ultraviolet 2. The blue 

luminescence present in the sample is thus only caused by the presence of tungstate 

ions.  

The results of the luminescence measurements of sample n°2 are shown in figure 3. 

The excitation spectrum monitored at 550 nm (figure 3(a)) shows two distinct peaks 

situated at 365 nm and 430 nm. Excitation at 350 nm leads to a strong blue emission, 

with a peak wavelength of 445 nm (figure 3(b)). The Stokes shift, defined as the 

energy difference between excitation and emission, calculated from this spectrum is 

6400 cm-1. The Stokes shift is related to ∆R as given in the configurational coordinate 

W6+ 
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diagram (Chapter 2–§7.2) and a Stokes shift above 5000 cm-1 indicates that the optical 

bands involved in the excitation – emission mechanism are rather broad. Excitation at 

425 nm is related to a much weaker emission band at 510 nm (figure 3(c)).  

Complexes of transition metals with a formally empty d shell such as WO4
2- and 

WO6
6- often show unexpected broad band emission. The excited state is caused by a 

charge transfer reaction in which electronic charge has been moved from the ligands 

(oxygen) to the central metal ion (W). The amount of charge transfer is rather small 

but the electronic reorganisation is considerable. Electrons are promoted from 

bonding orbitals in the ground state to antibonding orbitals in the excited state.  
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Figure 3: (a) Excitation spectrum (RT, emission wavelength of 550 nm) of a (NH4)6H2W12O40.xH2O 
solution. Emission spectra after excitation at (b) 350 nm, RT (c) 425nm, RT. 

As described in Chapter 4-§2.6, tungstates can be divided into two groups with 

different crystal coordination: Scheelites with tetrahedral surrounding around W 

(WO4
2-) and wolframites with an octahedral surrounding around W (WO6

6-). The 

origin of the blue emission at 450 nm as given in figure 3 (b) is generally ascribed to 

electronic transitions of the charge-transfer type between oxygen and tungsten within 

the regular lattice (WO4)2- group while the green component (figure 3(c)) results from 

the relaxed configuration of self-trapped excitons on the d0- octahedral groups or 

defects in the WO3 groups 2-5. An exciton is an excited state of the crystal lattice in 

which pairs of holes and electrons propagate together and transfer their energy to 

imperfections or remain self-trapped. In both cases, electron and hole recombine.  
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The results mentioned above suggest a mixture of tungstate octahedra and tetrahedra. 

But the strong blue emission caused by WO4
2- anions is in contrast with the expected 

Keggin structure built of octahedra.  

The photochromic and electrochromic behaviour of WO3 particles is well  

documented 6-8 and results in blue luminescence. All the research mentioned in the 

literature was performed on small oxide particles, colloids or nanocrystalline films. 

Transparent WO3 and WO3-y films are known to become dark blue after being 

exposed to ultraviolet light. WO3 nanoparticles can transform from white to blue after 

irradiation by a 532 nm laser due to charge transfer reactions. This observation leads 

us to presume the presence of nano WO3-particles as a cause for the photochromic 

properties seen in our experiments.  

This hypothesis is negated by the relatively short decay time of the prepared samples 

(<10 ns). The decay time is defined as the time in which the intensity of the emission 

at a certain wavelength has decreased to 37 % (1/e). The decay spectrum is obtained 

after excitation at one fixed wavelength and recording of decay curve at another 

wavelength integrated over a specific time interval: every 5 ns, 20 ns, 100 ns… The 

intensity at a fixed wavelength is then plotted in a so–called decay curve. Bulk 

materials with many neighbouring WO6 octahedra can transfer energy more easily 

than in the case of the Keggin structure with a limited number of octahedra.  

The absence of nanoparticles is desirable in our present study as the formation of 

discrete particles, even at nanoscale, should be avoided in order to maintain the 

homogeneity within the gel. The luminescence is thus probably caused by the 

tungstate anions itself and not by “bulk species”. 

To explain the different optical properties of ZrW2O8 precursor in the gel state, our 

hypothesis is that the entropy present in the aqueous solution disrupts the specific 

electron de-excitation path so that discrete wavelengths in the visible regions are only 

possible in the isolated structures present in the sol-gel state 9. Those structures 

apparently retain their geometric identities when redispersed into water. Further 

research by EXAFS is necessary to characterize these identities and will be discussed 

in the next section. 
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2 EXAFS analysis of the precursor solutions  

 
 (a)                                                          (b) 

Figure 4: Projections of (a) scheelite and (b) wolframite structures of PbWO4 along the b-axis. 4 

Tungstate compounds can be divided into two large groups depending on the 

environment of the W central atom 10. Tungstates of calcium, strontium and barium 

have a tetragonal symmetry and are called scheelites or stolzites 5. Na2WO4 can also 

be placed in this category 11. The W atom is surrounded by 4 oxygen atoms in a 

tetrahedral or distorted tetrahedral surrounding. MgWO4 is part of the wolframite or 

raspite series where the W atom is in the centre of an octahedron of with oxygen 

atoms. ZnWO4 and CdWO4 are also part of this family 12. Some minerals such as 

PbWO4 can be grown in both crystal structures or show respite inclusions in a 

scheelite structure 4. Figure 4 shows both crystal structures for the PbWO4 mineral 

EXAFS analysis of the precursor solutions containing 0.02 M (NH4)6H2W12O40 and 

0.48 M citric acid and variable amounts of NH4OH were performed to confirm the 

geometry of the species responsible for the luminescent behaviour at higher pH values 

as described above. These measurements reveal the coexistence of WO4 tetrahedra 

and WO6 octahedra. 

Interpretation of such measurements requires reference materials. A Na2WO4 powder 

sample, 0.25 M Na2WO4 solution in water (pH 8.5) and CaWO4 powder sample were 

chosen as representatives for the scheelite family. MgWO4 powder and an acidified 

0.25 M Na2WO4 solution in water (pH 1) were used as wolframite-type reference 
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materials. MgWO4 and CaWO4 were measured in powdered form as they are 

insoluble in water. Powder samples were suspended in grease and pressed between 

two paper sheets. The concentrations of the solutions are chosen as such to obtain an 

edge step of 1. The liquid samples were injected into a copper cell with kapton 

windows. The following sections will describe the different standard materials and the 

examined samples taken from the precursor solution at various pH values. The 

analysis of the EXAFS spectra (Chapter 2-§2) and the fitting was performed using the 

Artemis and Athena software packages 13.  

2.1 EXAFS of scheelite reference materials 

The absorption spectrum was collected between 9.948 and 11.172 keV. The WL III 

edge is situated at 10.207 keV. Figure 5 outlines the absorption spectra of Na2WO4 

(aq) and CaWO4 (s). Although they are both scheelite type of materials the fine 

structure superposed on the absorption is different.  

Na2WO4 shows one maximum at 10.275 eV whereas CaWO4 gives rise to two 

maxima situated just below the edge. Based on the information given in Chapter 2, the 

χ(k) functions of both samples are given in figure 6. In contrary to CaWO4, the 

damped function of Na2WO4 is smoother and shows no splitting of peaks.   
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Figure 5: Absorption spectra at the W LIII edge of a 0.25M Na2WO4 solution (thin line) and solid 
CaWO4 (thick line) The insert is an enlargement of the absorption spectrum close to the edge. 
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Figure 6: k*χ(k) function of (a) 0.25M Na2WO4 solution (pH 8.5) and (b) solid CaWO4 between 3 and 
16 Å. The dashed lines are the calculated k*χ(k) function using the fitting results mentioned below. 

The radial atomic distribution function is obtained by Fourier transformation of the    

k * χ(k) function between 1.5 and 15 Å using a Kaiser – Bessel window. The results 

are given in figure 7. The radial atomic distribution function of the alkaline Na2WO4 

solution shows a single intense peak at 1.4 Å (non-corrected for phase shift) which 

can be linked to the first coordination shell. The plot of CaWO4 is more complex with 

3 peaks. The first coordination shell is again situated at 1.4 Å and two addition peaks 

can be seen with maxima at 2.2 and 3.4 Å. The corrected values of these coordination 

shells are obtained by performing a fit using a suitable model. The crystal structure is 

well known for these standard materials and the input data are mentioned in table 1. 

The fit was performed for a R-range between 0.6 and 2 Å and a k-range between 

2.510 and 13.7 Å-1.  

 Na2WO4 14
 CaWO4 

15 

Space Group F d -3 m s I 41/ a Z 

Lattice constants  a = 9.133 Å a = 5.2425 Å 

 b = 9.133 Å b = 5.2425 Å 

 c = 9.133 Å c = 11.3715 Å 

 α = β = γ = 90° α = β = γ = 90° 

Atom coordinates W   0; 0, 0 W  0; 0.25: 0.125 

 Na  0.625; 0.625; 0;625 Ca 0; 0.25; 0.625 

 O    0.3650; 0.3650; 0.3650 O   0.1497; 0.0093; 0.2097 

Table 1: Crystallographic data of cubic Na2WO4 and tetragonal CaWO4 
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The W – O distance of the first coordination shell is 1.769 Å (1.819 Å). The Debye-

Waller factor is 1.2 Å2 and the goodness of fit is 0.06 which expresses a reasonable 

fit. The fitting of the radial plot of CaWO4 consisted of 3 different paths: scattering by 

4 oxygen atoms at 1.783 Å (1.785 Å); scattering by 4 oxygen atoms at 2.900 Å (2.902 

Å) and scattering by 4 Ca atoms at 3.865 Å (3.7074 Å). The XRD based values are 

mentioned between brackets and the global goodness of fit is 0.03.  
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Figure 7: Radial structure plot of (a) 0.25M Na2WO4 solution (pH 8.5) and (b) solid CaWO4 between 1 
and 5 Å. The dashed lines are the calculated radial plots using the fitting results described above. 

2.2 EXAFS of wolframite reference materials 

As noted before, the wolframite materials (MgWO4 and WO3) are characterized by the 

tungsten atom surrounded by six oxygen atoms. WO3 is built of WO6 octahedra which 

are corner-sharing. An acid solution of 0.25 M Na2WO4 (pH 1) is measured as third 

reference sample. At this pH the tetrahedral surrounding is transformed in a 

wolframite-type with octahedral symmetry. The absorption spectra of these three 

samples are gathered in figure 8. The insert shows a magnification of the area close to 

the edge and no remarkable differences between the samples can be seen.  

The radial atomic distribution plots mentioned in figure 9 are the results of a Fourier 

transformation of k3- weighted χ(k) functions in the k-range 2 Å-1 < k < 8 Å-1 using 

Kaiser – Bessel windows. The radial plots of WO3 and MgWO4 exhibit a number of 

maxima in the R-range between 1 and 4 Å. The first peak around 1.3 Å, uncorrected 

for phase shift, corresponds to the first W coordination shell. In case of MgWO4 these 

6 oxygen atoms can be divided into 3 x 2 atoms located at the same distance from the 
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tungsten atom: 1.825 Å, 1.943 Å and 2.099 Å 16. The next coordination shells are 

formed by W, O and Mg scattering atoms. In WO3 the first coordination shell is made 

up by 6 oxygen atoms, each one with its own unique distance: 1.765 Å, 1.772 Å, 

1.841 Å, 1.994 Å, 2.087 Å and 2.179 Å 17. W and O atoms located further away from 

the central W atom are the building elements of the next coordination shells 18. The 

average closest W – O distance in WO3 (1. 9397 Å) is smaller than in MgWO4 

(1.9557 Å). This is reflected in the small shift of the radial plot to lower R values for 

the peak located between 1 and 2 Å.  
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Figure 8: Absorption spectra at the W LIII edge of a 0.25M Na2WO4 acid solution (thin line), solid 
MgWO4 (thick line) and WO3 (dashed line). The insert is an enlargement of the absorption spectrum 

close to the edge. 
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Figure 9: Radial structure plot of solid MgWO4 (thick line) and WO3 (dashed line) between 0 and 6 Å.  
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Figure 10 shows the k3 weighted radial atomic distribution plots of both the alkaline 

and the acid solution containing 0.25 M Na2WO4. The W – O peak at 1.4 Å loses 

intensity and shifts to lower values. This is the result of destructive phase interference 

of multiple W – O distances which are typically found in octahedral surrounding. 

Acidification of tetrahedral tungstate solutions are known to form isopolytungstate 

anions, containing clusters of corner- and edge-shared octahedra 19. Additional peaks 

between 2 and 4 Å arise from the proximity of the new-formed isopolytungstates and 

from W – O multiple distances.  
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Figure 10: Radial structure plot of a 0.25M Na2WO4 alkaline (thin line) and an acid solution (thick line)  
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2.3 EXAFS of the sol-gel precursor solutions 

The X-ray absorption was measured of an aqueous sample containing 0.02 M 

(NH4)6H2W12O40 and 0.48 M citric acid. The pH of these solutions was increased 

stepwise from pH 1 till pH 8.5 by addition of ammonium hydroxide in order to 

generate the transition from octahedral to tetrahedral coordination. The absorption 

spectra of these samples are given in figure 11. The peak at 10.26 keV splits into two 

as the pH increases.  
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(a)                                                                  (b) 

Figure 11: Absorption spectra at the W LIII edge of 0.02 M (NH4)6H2W12O40 -0.48 M citric acid. NH3 is 
added to tune the pH. The pH increases from bottom to top.  
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Figure 12: k3 * χ(k) oscillatory function of the metatungstate solutions at varied pH 

The changes in fine structure can easily be seen when the data are transformed into 

the k3 * χ(k) oscillatory function which are plotted in figure 12 (k range: 2 - 12 Å-1). 

Only the five samples with the highest pH value can be seen separately, the other data 

files overlap too closely. This differentiation starts from pH 5.5. The two peaks at 4 

and 6 Å-1 have a shoulder peak at slightly higher Å-1 values. As the pH increases, the 

intensity of these shoulder peaks rise. The evolution of the intensities measured at k1 

and k2 at various pH values are given in figure 13. A strong intensity increase starts 

from pH 6. The k3 * χ(k) functions at pH 1 and pH 8.25 show remarkable 

resemblance with k3 * χ(k) of respectively an acid and alkaline solution of Na2WO4 

published by Hoffmann et al 19. This already indicates that there is a change in 

coordination around the tungsten atom for the metatungstate precursor solutions as the 

pH is varied.  
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Figure 13: Intensity of k3 * χ(k) function at 4.0 and 4.8 Å-1 
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When oscillatory functions are Fourier transformed into radial plots, again a drastic 

change starting from pH 6 can be seen in figure 14. The evolution of the maxima of 

the two peaks at R(Å) 1 – 2 with pH is given in figure 15(a) and (b).  
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Figure 14: Radial plots of Fourier transformed of k3 * χ(k) oscillatory function of the metatungstate 
solutions at various pH 
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Figure 15: (a) peak positions and (b) peak intensities of R1 and R2 at various pH values 

Clearly there is a shift in peak position and in peak intensity around pH 6. The change 

in intensity is very much like that of the Na2WO4 solutions. The tetrahedral (alkaline) 

solution has a more intense peak at 1.4 Å in comparison with the octahedral (acid) 

solution due to fewer multiple scatter distances.  
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There is also a decrease in intensity of the peaks above 3 Å. The influence of W and O 

atoms at larger distances becomes less dominant, probably because there is less long 

range order at high pH. The species seem to be more isolated. This may be interpreted 

that the Keggin structure present in the ammonium metatungstate species undergoes a 

transformation at pH 6 from the corner- and edge-shared octahedra to more 

independent tetrahedral–like species.  
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3 Conclusions 

The spontaneous blue colouring of the gels by sunlight irradiation mentioned in 

Chapter 4 was generated by irradiation of the aqueous samples (pH 6) with a light 

source (wavelength 350 and 450 nm). The photoluminescence measurements revealed 

the presence of two bands in the emission spectrum. The blue luminescence is due to 

relaxation of the WO4 tetrahedra whereas a less intense green band can be ascribed to 

the presence of WO6 species. It is know that polyoxytungstates undergo structural 

changes as a response to changes in acidity but WO4
2- anions in the tetrahedral 

coordination are unlikely at pH 6. The low decay time of the luminescence confirmed 

the presence of well dispersed molecules instead of bulk materials. The lack of bulk 

material is beneficial for the homogeneity in the sol-gel precursor.  

EXAFS measurements of the aqueous solutions of ammonium metatungstate 

stabilized with citric acid were used to identify the real nature of the tetrahedral and 

octahedral species. The pH of these samples was gradually increased to see the 

influence of the acidity in the coordination around the central tungsten atom. A shift 

from octahedral to tetrahedral surrounding with increasing pH is suggested by 

differences in the radial plots.  
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Chapter 6  

Synthesis and characterization of 
ZrW2O8 composites 

 
 
The ZrO2 - ZrW2O8  composites studied in this chapter have been prepared in various 

and sometimes innovative ways. The generalities concerning composites are 

discussed in §1. A more conventional method and a novel “in situ” method starting 

from off-stoichiometry mixtures of the pure oxide powders of ZrO2 and WO3 are 

described.  The differences between these two methods are highlighted and the 

advantages of an adjusted sol-gel method used to prepare composites with high 

homogeneity is explored. This chapter draws heavily on the following publications. 

 
Synthesis and thermal expansion of ZrO2/ZrW2O8 composites 
 
P. Lommens, C. De Meyer, E. Bruneel, K. De Buysser, I. Van Driessche, S. Hoste 

Published in Journal of the European Ceramic Society, 25 (2005) 3605-3610 

ZrO2 – ZrW2O8 composites with tailor-made thermal expansion 
 
K. De Buysser, P. Lommens, C. De Meyer, E. Bruneel, S. Hoste, I. Van Driessche 

Published in Ceramics Silikaty, 48 (2004) 139-144 

Synthesis and ZrW2O8 ceramics and composites from aqueous sol-gel precursors 
 
K. De Buysser, S. Hoste, I.Van Driessche 

Published in Advances in Science and Technology, 45 (2006) 218-22 
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1 Composites in general 

1.1 Introduction 

Many of today’s technologies need materials with unusual combinations of properties 

which cannot be obtained by the traditional metal alloys, ceramics and polymeric 

materials. An example is the modern ski. It consists of various components, the 

function of each component is unique and the combination of all functions leads to the 

performance of the material above that of each of its components. Material property 

combinations and ranges have been extended by the development of composite 

materials 1-3.  

A composite material can be defined as follows: 

- It consists of two or more physical or chemically different phases which are 

well distributed and mixed with each other. The phases must be in close 

contact.  

- The material exhibits certain properties which are attributed to the 

combination of the different phases but can not be seen in either of the 

isolated components. 

- The material is obtained by a synthetic method.  

Composites consist of a matrix phase, the continuous solid phase and the disperse 

phase. This phase can be in the solid, liquid or gaseous state. The properties of 

composites are a (not necessarily linear) function of the properties of the constituent 

phases, the relative amount and the geometry of the dispersed phases. This geometry 

can be described by the shape of the particles, the particle size, their distribution and 

orientation. 

There are different ways to group the large family of composites. One of the 

possibilities is to classify them according to the matrix material used: Polymer Matrix 

Composites (PMC), Metal Matrix Composites (MMC) and Ceramic Matrix 

Composites (CMC) Another classification is built on the geometry of the dispersed 
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phase. A simple scheme for the classification is shown in figure 1. The three main 

divisions are the particle reinforced, fiber-reinforced and structural composites. 

Composites

Particle-reinforced Fiber-reinforced Structural

Large
particle

Dispersed
Fine particle

Continuous
(aligned)

Discontinuous
(short)

Aligned

Laminates Sandwich
panels

Randomly

Composites

Particle-reinforced Fiber-reinforced Structural

Large
particle

Dispersed
Fine particle

Continuous
(aligned)

Discontinuous
(short)

Aligned

Laminates Sandwich
panels

Randomly
 

Figure 1: A classification scheme for the various composites types 

The emphasis in this work is on Dispersion strengthened Ceramic Matrix Composites. 

Ceramic materials are somewhat limited in applicability by their mechanical 

properties. Their brittleness renders them mechanically inferior to metals or polymers. 

Nevertheless, their resistance to high temperatures makes it interesting to examine the 

synthesis of ceramic composites with an improved resistance to fracture and tuned 

properties depending on the dispersed phase used.  

1.2 Synthesis of composites 4 

Once the components are chosen, the most suitable synthetic or preparation route 

must be developed. The most important process techniques to prepare ceramic matrix 

composites are stated in the following list.  

First of all, there are the conventional methods. Cold pressing and sintering consist of 

an uni-axial pressing step followed by sintering of the material. HIP or Hot Isostatic 

Pressing combines the pressing and sintering step.  

Some novel techniques have been developed. An in situ method is a chemical 

processing method in which the components gain their final structure during the 

reaction to form the composite. This synthesis step combines the reaction of two or 
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more components leading to the desired end-material together with the shaping of the 

composite. In this work the conventional methods are compared with such novel 

methods.  

1.3 Properties of composites 1, 5 

Composites are synthesized with the aim of obtaining very specific properties. A 

dispersed phase can be added to adjust the colour or to modify the thermal expansion 

but in most of the cases Ceramic Matrix Composites are prepared in order to improve 

the fracture toughness of ceramic materials. In the new generation of CMC’s 

particulates, fibers or whiskers of one ceramic material are embedded into the matrix 

of another ceramic. The influence of the increased fiber content on the mechanical 

properties is illustrated for SiC whisker-reinforced alumina in table 1.  

Whisker Content (w%) Fracture Strength (MPa) 

0 360 ± 23
10 455 ± 55 
20 655 ± 135 
40 850 ± 130 

Table 1: Room Temperature Fracture Strengths for various SiC whisker contents in Al2O3 

The improvement in the fracture properties results from interactions between 

advancing cracks and dispersed phase particles. Crack initiation normally occurs 

inside the matrix phase, whereas crack propagation is impeded by the dispersed phase 

(i.e.particles, fibers or whiskers).  

The properties of a composite material will be influenced by the properties of the 

individual components but also by their relative composition and the geometry. The 

composition of a composite material can be expressed in terms of weight fractions or 

weight percentages. To predict the mechanical characteristics, it is preferable to work 

in volume fractions or volume percentages (ν). 

The rule of mixtures (Eq. 1) is a standard formula used to predict the final properties 

for many characteristics of the composite material. This expression gives the linear 

relation between the individual properties (Χ) where c, m and d are abbreviations 
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respectively of composite, matrix and dispersed phase, and the final characteristics of 

the composite material.  

ddmmc ΧΧΧ ν+ν=  [1] 

 

1.4 Thermal expansion properties of composites 

As this work describes the exceptional negative thermal expansion behaviour of 

ZrW2O8, it is necessary to understand the thermal expansion properties of composites 

in general 6.  

When two materials are combined into a composite, the compatibility of their thermal 

expansion is of the utmost importance. The difference in thermal expansion behaviour 

will give rise to tensions within the composite material. In a metal or polymer matrix, 

these tensions can be accommodated by elasticity of the material. Within ceramic 

matrix composites the tension will lead to cracks and fractures within the material. 

There is no general rule yet which allows the prediction of the differences in thermal 

expansion that will be tolerated or will lead to a specific deformation of the composite 

material.  

Furthermore, the thermal expansion coefficient of a composite material will be 

influenced by micro-cracks, distribution of the grain sizes, properties of the grain 

boundaries and porosity.  

For composites with a very low porosity, where there are no chemical reactions 

between the two components, relatively small differences in elastic moduli and the 

increase in temperature will not induce any cracks or sinter effects, the basic form of 

the rule of mixtures can be used concerning thermal expansion. Equation 1 can be 

rewritten to predict the thermal expansion coefficient as:  

iic V∑α=α  [2] 

 

In this equation αi is the thermal expansion coefficient of the individual components 

and Vi is the volume percentage present in the composite material.  
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2 State of the art of ZrW2O8 composites 

This work stresses the different preparation methods and the resulting microstructure 

and mechanical properties of the ceramic composites. In order to complete this 

chapter on composite materials, the main features and application of composites based 

on NTE materials are reviewed here.  

The first application for negative thermal expansion materials appears to be as 

component of composites to adjust the overall thermal expansion of composites to 

some particular value 7. The composites with ZrW2O8 are a combination of the NTE 

material with metals or metal oxides. 

2.1 Al-ZrW2O8 composites 8 

These composites were synthesized using Pulse Current Sintering followed by an 

adequate heat treatment. A wet mixing step was included in order to improve the 

homogeneity of the composites. The disadvantage of aluminum alloys is its large 

positive thermal expansion. ZrW2O8 was proposed as a candidate for compensating 

with its negative thermal expansion. An Al-75 vol% ZrW2O8 was stated as a nearly-

zero thermal expansion material. 

2.2 Cu-ZrW2O8 composites 9-13 

Metal matrix composites are attractive materials for application where the high 

thermal conductivity of metals and the low thermal expansion of ceramics are 

simultaneously needed. They can be used in electronic heat sinks with high heat 

dissipation and low thermal expansion mismatch with the silicon chip or the alumina 

substrate. Increasing the ceramic content of a composite will decrease its thermal 

expansion and the thermal conductivity. It is important to obtain a             

conductivity / expansion ratio as high as possible. Using Cu as a high-conductivity 

matrix and ZrW2O8 as the ceramic phase with a negative thermal expansion 

coefficient, the final prepared composite will potentially have a very good 

conductivity and a low expansion which is ideal for practical applications. Cu and 

ZrW2O8 were subjected to hot isostatic pressing (100 MPa) at 500 °C for 3 hours. 
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During this isostatic pressing reaction between the two phases occured resulting in a 

number of complex oxides containing Cu, Zr and W. A part of the α-ZrW2O8 phase 

undergoes a phase transition to the orthorhombic γ-phase under the influence of the 

applied pressure which results in a higher thermal expansion as expected from the 

literature.  

2.3 ZrW2O8 – cement based composites 14 

Asphalt concrete or Portland cement concrete (PCC) are used in pavements as a 

surface layer. The temperature differential between the different layers of PCC causes 

deformation. The addition of low, zero or negative thermal expansion materials results 

in a self-compensating material composite which opens a window to many interesting 

practical prospects for a range of materials systems. The authors mentioned that 

additions of ZrW2O8 to a cement-sand mix showed reductions in its thermal 

expansion. The experimental data highlighted that zero thermal expansion was 

obtained with 60 w% ZrW2O8 addition.  

2.4 ZrW2O8 substrates 15, 16 

Fibre Bragg gratings are applied as wavelength filters, dispersion compensators and 

wavelength stabilizers. The refractive index of the fibre Bragg gratings core varies as 

the temperature increases or decreases. The Bragg wavelength is directly coupled to 

this refractive index and will exhibit a temperature dependent variation. It is very 

important to create a system which is independent on any temperature fluctuations. 

ZrW2O8 was used as substrate to establish a hybrid system with a low thermal 

expansion coefficient. To obtain these substrates, ZrO2 – WO3 mixtures were pressed 

into a thin-plate shape and are heated between two platinum plates to allow the 

sample to heat and cool as uniformly as possible and to avoid the volatility of WO3 

during the sintering process. A plate of 3 mm  30 mm  55 mm was made with a 

thermal expansion coefficient of 10.5  10-6 °C-1. These substrates can be used in the 

design of the coating of fibre Bragg gratings. 
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3 Preparation of ZrO2 – ZrW2O8 composites  

3.1 Introduction 

In this chapter three different processes to prepare Ceramic Matrix Composites of 

ZrW2O8 and ZrO2 are described. ZrO2 is chosen because of its earlier applications in 

optical, electrical and energy devices and because of the absence of an intermediate 

phase between ZrO2 and ZrW2O8 17. The composition ranged from 0 to 100 vol% of 

ZrW2O8. The work concerning the conventional preparation route was performed in 

close cooperation with dr. De Meyer. Some results were already published in her PhD 

thesis and the major results are recapitulated here in order to obtain a clear overview 

when comparing these results with those obtained in our new synthetic routes. An 

overview of all used preparation and synthetic routes is given in figure 14 at the end 

of this chapter. 

3.2 Conventional processing of ZrO2 – ZrW2O8 ceramic composites 

In the conventional process, ZrW2O8 prepared using a conventional synthesis method 

described in Chapter 3-§2 was used as ceramic matrix. ZrO2 was used as the dispersed 

phase. The flowchart in figure 2 schematically shows the preparation of the 

composites.  

ZrO2 +  ZrW2O8

(commercial) (conventional synthesis method)

hand milling
mixing
pressing at 750 Mpa

 ZrO2 - ZrW2O8 bars

Sintering
2 h 1180 °C
quenching

ZrO2 -  ZrW2O8

composites  
Figure 2: Synthesis scheme for the preparation of the composites 



Synthesis and characterization of ZrW2O8 composites 
 
 

 163

The ZrW2O8 and ZrO2 powders were manually mixed in different ratios (table 2). The 

properties of these powders are summarized in table 3. By mixing in an agate mortar 

the particle sizes were reduced and the homogeneity of the mixtures was improved. 

The different mixtures were uni-axially, cold pressed into bars (2mm  2mm  13 

mm – 0.3 g) at a pressure of 750 MPa. The same heat treatment procedure was used as 

in the synthesis of pure ZrW2O8. The samples were sintered at 1180 °C for 2 hours in 

a preheated furnace in air. Afterwards the bars were immersed in liquid nitrogen to 

avoid decomposition of ZrW2O8.  

Desired w% ZrW2O8 in 
the composites 

Mass ZrW2O8(g) Mass ZrO2(g) 

100 10.0 0.0
80 8.0 2.0 
50 5.0 5.0 

Table 2: Preparation scheme for ZrO2 – ZrW2O8 composites by a conventional method 

Material Particle size 
d50 (µm) 

 
d90 (µm) 

ZrW2O8 12.77 32.46 
ZrO2 (Aldrich) 3.15  6.54 

Table 3: Powder specifications 

3.3 Synthesis of ZrO2 – ZrW2O8 composites by a novel in situ method using oxides 
precursors 

The ZrW2O8 – ZrO2 composites described here are synthesized starting from off-

stoichiometry mixtures of the pure oxide powders of ZrO2 and WO3. This novel in 

situ process includes a heating step up to 1180 °C which combines the formation of 

ZrW2O8 and the sintering of the ZrW2O8 - ZrO2 composite. The composites were 

prepared according to the scheme in figure 3. In this in situ method, commercial oxide 

powders were first milled in an agate ball mill for 24h in order to reduce the particle 

size and thus improve the homogeneity and the sintering ability of the mixture as 

described in chapter 3- §2.3.b. An average particle size of 0.62 µm for WO3 and 1.06 

µm for ZrO2 was obtained. The particle size and particle size distribution of these 

powders are given in table 4.  
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α - ZrW2O8 + ZrO2

+
Commercial WO3

d50 = 18.68 µm

Spray drying

Pressing 
at 750 MPa

Bars : WO3 + ZrO2

Furnace Program 
RT to 500°C @ 10°C/min
1h @ 500°C
RT to 1180°C @ 10°C/min
2h @ 1180°C

Ball mill 24h

WO3 ,d50= 0.62 µm ZrO2 , d50 = 1.06 µm+ + PEG 

Precursor powder

Commercial ZrO3

d50 = 3.15 µm

α - ZrW2O8 + ZrO2

+
Commercial WO3

d50 = 18.68 µm

Spray drying

Pressing 
at 750 MPa

Bars : WO3 + ZrO2

Furnace Program 
RT to 500°C @ 10°C/min
1h @ 500°C
RT to 1180°C @ 10°C/min
2h @ 1180°C

Ball mill 24h

WO3 ,d50= 0.62 µm ZrO2 , d50 = 1.06 µm+ + PEG 

Precursor powder

Commercial ZrO3

d50 = 3.15 µm

 

Figure 3: Synthesis scheme for composites according to the in situ method 

 
Material Particle size d50 (µm) Particle size d90 (µm) 

ZrO2 (Aldrich) 3.15 6.54
ZrO2 (milled 24h) 1.06 5.14 
WO3 (Aldrich) 18.68 40.78 
WO3 (milled 24h) 0.62 0.94 

Table 4: Powder particle sizes 
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Bars obtained from the direct pressing of the milled powders were of poor quality. 

Therefore an aqueous slurry was prepared containing polyethylene glycol to stabilize 

the slurry. This additive possesses the additional benefit of reducing the friction 

during pressing of the bars. The organic material must be removed before final 

sintering. Thus the desired mixture of ball milled oxides was suspended in 250 ml 

deionised water together with 3 w% polyethylene glycol, calculated on the mass of 

the oxides. The amounts of oxides used in the preparation of the different composites 

are mentioned in table 5. 

Desired w% ZrW2O8 in 
the composites 

Mass WO3(g) Mass ZrO2(g) Mass PEG(g) 

100 6.32 1.68 0.24 
99 4.69 1.31 0.18 
80 6.32 3.68 0.30 
33 5.27 4.73 0.30 

Table 5: Composition of the in situ composites before heat treatment 

The slurry was stirred for 2 h followed by an ultrasonic treatment for 1 h to break the 

agglomerates down followed by spray drying using a Büchi mini spray dryer with a 

0.5 mm nozzle and a feeding rate of 5 ml per minute (Inlet temperature: 160 °C; 

Outlet temperature: 100 °C; gas flow: 800 Nl/h). Afterwards, the powder was uni-

axially, cold pressed to bars (dimensions: 2 x 2 x 13 mm) at a pressure of 750 MPa.  

The bars were thermally treated under air in a covered Pt crucible in a high 

temperature furnace following the temperature program described in figure 3. An 

additional heating stage of 60 min at 500 °C ensures that all organic material will be 

expelled. This will have its effect on the mechanical properties of the composites as 

will be shown later. After heat treatment at 1180 °C, the bars were quenched in liquid 

nitrogen to avoid decomposition of ZrW2O8. Most of the bars prepared by the in situ 

method remain stable and show no cracks after thermal treatment. Nevertheless the 

bars containing less than 40 w% ZrW2O8 show some cracks after quenching. 

Examination of the mechanical properties of these samples is therefore not possible. 
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3.4 Synthesis of ZrO2 – ZrW2O8 composites by the in situ method using sol-gel 
precursors 

The composites were prepared under the same circumstances as the pure ZrW2O8 

prepared by sol-gel (Chapter 4-§3) but with off-stochiometric amounts of Zr4+ and 

W6+ salts. The synthesis data for 100 mL precursor solution with 0.6 M metal ions in 

order to synthesize the different synthesized composites are given in table 6. The pH 

of the solution is adjusted with NH4OH until a neutral pH value is obtained. 

ZrO2 – ZrW2O8 
composite 

 

# mmol 
ZrO(NO3)2  
 

# mmol 
citric acid  

# mmol 
(NH4)6H2W12O40 
 

w% ZrW2O8 vol% ZrW2O8  
100 100 20 120 3.33 
90 91.2 26 156 2.83 
80 82.2 31 186 2.33 
50 53.6 45 270 1.28 

Table 6: Preparation scheme for ZrO2 - ZrW2O8 composites by sol-gel 
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4 Analysis of the composites 

4.1 X-ray analysis and morphology studies 

The composite bars mostly showed no cracks or shape deformation after the sintering 

step of 2h at 1180°C and the subsequent quenching step. This indicates that these bars 

are able to withstand the thermal stresses created during heating and quenching 

remarkably well. These stresses originate from the differences in thermal expansion 

coefficient between ZrW2O8 (-10.4 10-6 °C-1 from 0 to 100 °C and -3.4 10-6 °C-1 

from 200 to 300 °C) and ZrO2 (9.6 10-6 °C-1). X-ray diffraction analysis confirms 

that only α-ZrW2O8 and monoclinic ZrO2 are present as shown for a 50 w% ZrW2O8 

composite prepared by the conventional method and a 40 w% sample prepared by an 

in situ method using oxide precursors in figure 4. The most intense ZrO2 reflections 

are indicated by an asterisk. Not all ZrO2 reflections were indicated for the clarity of 

the diffractogram. 
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Figure 4: X-ray diffraction pattern from (a) pure α-ZrW2O8, (b) 50 w% ZrW2O8 conventional 
composite after sintering and (c) 40 w% ZrW2O8 composite prepared by an in situ method using oxide 

precursors  (*) indicates the most characteristic reflections for monoclinic ZrO2 
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The microstructure of the fractured surfaces of composites with various compositions 

is different as can be seen in the following SEM micrographs. The higher the ZrO2 

content of the composite materials, the more and smaller grains are present within the 

materials. This can be seen in their microstructures given in figure 5.  

 
(a) pure ZrW2O8 

 
(b) 80 w% ZrW2O8 (conventional) 

 
(c) 80 w% ZrW2O8 (in situ – oxides) 

 
(d) 80 w% ZrW2O8 (in situ – sol-gel) 

Figure 5: scanning electron micrograph of a fractured surface from a (a) 100 w% ZrW2O8 sample, (b) 
80 w% ZrW2O8 composite prepared by a conventional method, (c) 80 w% ZrW2O8 composite prepared 
by an in situ method using oxide precursors and (d) 80 w% ZrW2O8 composite prepared by an in situ 

method using sol-gel precursors. 

In pure ZrW2O8 (figure 5(a)) a totally different microstructure is found in comparison 

with the 80 w% composite material (figure 5(b)) prepared by a conventional method. 

The main reason for the difference is the high sintering temperature of ZrO2        

(2100 °C), which is considerably above the sintering step of 1180 °C in our 

preparation method of the composites. The ZrO2 phase remains as loose powder 

between the larger ZrW2O8 grains. Furthermore, its presence hinders the sintering of 

the ZrW2O8 phase. This assumption was confirmed by closer investigation of the 

microstructure. EDAX-mapping of figure 5(b) showed that the sintered, homogeneous 

areas, indicated with an asterisk (*) contain Zr and W atoms while in the area 

*

°



Synthesis and characterization of ZrW2O8 composites 
 
 

 169

consisting of non-sintered grains, indicated with a (°), predominantly Zr atoms are 

found. Increasing the sintering temperature is not an option as the ZrW2O8 will melt at 

1270 °C. 

The in situ method using oxide precursors involves a spray drying step of the 

polyethylene stabilized slurry. This organic material is removed by an additional heat 

treatment at 500 °C. During this evaporation, pores are formed in the composites as 

can be seen in figure 5(c). The pores can also be caused by the volatilization of WO3. 

The electron micrograph of the sol-gel based composites is shown in figure 5(d). 

Fewer pores were detected in the fractured surface of sol-gel based composite bars in 

comparison with the previous mentioned preparation and synthesis routes for ZrO2 – 

ZrW2O8. The synthesis via the citrate-gel method results in a fine, pure and 

homogeneous oxide mixture well suitable for further synthesis. 

The microstructure of the fractured surfaces of composites with identical 

compositions is strongly dependent on the preparation route chosen. The difference is 

clear. In the conventionally obtained composite (figure 5(b)), ZrO2 loose powder 

remains present between the larger ZrW2O8 grains due to the sinter temperature of 

ZrO2, which is much above that of ZrW2O8. The relatively better homogeneity of the 

in situ composite (figure 5(c-d)) can be explained by the small dimensions of the 

starting powder which results in a much more homogeneous mixture. Furthermore, 

because ZrW2O8 is formed in situ, the ZrO2 grains are more dispersed in the 

composite. On the other hand and due to the dispersing agent used in the in situ 

method using oxides additional pores caused by the evaporation of the organic 

material and volatilization of WO3 can be seen. 



Chapter 6 
 
 

 170 

4.2 Flexural strength of the ZrO2 – ZrW2O8 composites 

Handling the bars is not simple because of the brittle nature of these ceramics. The 

mechanical properties were measured by a three-point bending test 1. The standard 

test method for flexural properties of ceramic materials (C674) mentions the desired 

dimensions of the test specimens. The rectangular specimens are 25.4 mm by 12.7 

mm in cross section and at least 114 mm in length. The samples prepared in our 

laboratory with the dimensions 2 mm x 2 mm x 13 mm are much too small to obtain 

objective results. To compare several compositions and materials with one another, I 

have chosen to tabulate relative flexural strengths with the flexural strength of 

ZrW2O8 (14.5 MPa) as 100%. The results are preliminary and a large margin of error 

should be taken into consideration. 

The flexural strength σ can be calculated by the following equation:  

2hb2
FL3

=σ  [3] 

 

where L is the distance between the support points, F the load at rapture, b the cross 

section of the sample and h is defined as the thickness. 

In figure 6 the relative flexural strength is given as a function of vol% ZrW2O8 present 

in the composite prepared using an in situ method with oxide precursors. At first 

sight, there is no relationship between both parameters. There is no particular 

improvement of the mechanical properties of the materials. Besides the tuning of the 

thermomechanical properties by enhancing tailor made thermal expansion, any effect 

on the mechanical strength by ZrO2 particles present in the ZrW2O8 ceramic matrix is 

absent. This is mainly caused by the poor sinterability of ZrO2 at the synthesis 

temperature of the composites. Using polyethylene glycol as dispersant and pressing 

aid causes pores due to evaporation of the organic material. This may overcompensate 

any improvement obtained by crack deflection by the presence of ZrO2. 
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Figure 6: Evolution of the relative flexural strength in ZrW2O8 - ZrO2 composites by in situ processing 
(oxides precursors) 

The porosity and the density of materials are a major parameter in their strength. 

Porosity is deleterious for two reasons. First of all, the pores reduce the cross-

sectional area across which a load is applied. On top of that, they can act as stress 

concentrators. The influence of porosity on strength is rather dramatic. When the data 

is converted into the volume percentage of open and closed pores present in the 

composite material versus the relative flexural strength, it can be seen that the flexural 

strength of the material drops with an increasing porosity and thus a decreasing 

density (figure 7).  
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Figure 7: Relation between the relative flexural strength and vol% of open and closed pores 
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It was stated 1 that an exponential relationship exists between the flexural strength and 

the porosity as given in equation 4. 

nP)exp(0 −σ=σ  [4] 

 

In this expression, P is the volume fraction porosity, σ is the flexural strength and σ0 

and n are experimental constants obtained by a least-squares fit.  

The following experimental parameters are obtained using the data of the relative 

flexural strength (R2 of the least square fit = 0.99).  

σ0 = 2.2075, a material with no porosity present can have a relative flexural strength 

which is more than 2 times larger that the flexural strength of the pure ZrW2O8 sample 

synthesized in this work. 

n = 4.696, this parameter represents the influence of the porosity on the mechanical 

properties of the material. In this case a porosity of 10 vol% will decrease the flexural 

strength by over 35 % from the measured value for the non-porous material. Both the 

organic phase due to the dispergens agent and the high sintering temperature of ZrO2 

will make it very hard to prepare closed packed composites with tailor made 

expansion and mechanical properties suitable for industrial applications. 

It is clear that the visual difference in microstructure (figure 5) must concur with 

differences in mechanical properties of the ceramic matrix composites. In figure 8, the 

flexural strengths are plotted for the pure ZrW2O8 phase (100 w%) and for two 

composites with the same composition (80 w% ZrW2O8) but with a different method 

of preparation. Only one composite was tested because the other composites prepared 

by the conventional method were of such poor quality that they failed before they 

could be tested. The flexural strength is rather similar for the pure phase and the in 

situ composite (oxides as precursors) whereas the composite prepared by the 

conventional method shows a significantly lower flexural strength which was 

expected from the morphological analysis. The total porosity for these composite 

materials prepared by the conventional processing route is 29.56 vol% calculated with 

the use of the geometric and theoretical densities.  



Synthesis and characterization of ZrW2O8 composites 
 
 

 173

Compared with the other two samples given in figure 8 (16.77 vol% for the pure 

ZrW2O8 and 14.90 vol% for the 80 w% in situ (by oxides) composite) there is a 

remarkable difference. The main reason for the decrease of the flexural strength is the 

loose ZrO2 powder as explained above and a larger porosity. Less agglomerates of 

unsintered ZrO2 can be seen in the in situ prepared samples. 
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Figure 8: Relative Flexural strength for (a) pure ZrW2O8, (b) 80 w% in situ using oxides and  
(c) 80 w% conventional processing 

The influence of the porosity on the flexural strength of the composites shown above 

was fitted to equation 4 and the R2 of the least square fit was 0.99. The σ0 parameter 

equals 2.7521 whereas n is calculated to be 5.9165. 
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Figure 9: Relation between the relative strength and the vol% porosity of the samples mentioned in 
figure 8 
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The average porosity of the conventionally processed composites (25%) is larger than 

the ceramic matrix composites prepared by the in situ route using oxides (17%). Two 

examples are given in figure 10. In both cases the conventional route leads to a more 

pronounced porosity. 
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Figure 10: Comparison of the porosity in a 99.13 vol% and an 82.19 vol% ZrW2O8 composite. The 
filled blocks represent a conventional processed composite where the striped ones show the results of 

an in situ composite using oxides 

4.3 Thermomechanical analysis 

The composites consist of a mixture of positive and negative thermal expansion 

material. The thermal expansion coefficient is expected to increase, as the zirconium 

oxide content increases. In figure 11 the thermal expansion coefficients calculated 

from the simple “linear” rule of mixtures (αc = ΣαiVi) at 225 °C are compared to the 

experimental data. 

A negative deviation from the predicted values is found for all preparation and 

synthesis methods but the deviation is smaller for the in situ methods. The results 

prepared by a conventional method are lower compared with the in situ methods. The 

negative deviation is most pronounced in the middle of the compositional range and 

can be explained as follows: the rule of mixtures is only valid for a sample without 

voids, free of thermal stresses and when the different phases have the same elastic 

modulus 4, 18. Here, none of these conditions is fulfilled. Clearly in the middle of the 

compositional region, where the differences in thermal expansion coefficient and 
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elastic modulus cause the highest stresses, the thermal expansion coefficient shows 

the largest deviation from the expected coefficient.  

The rule of mixtures fails to predict the thermal expansion of the composite materials 

because it excludes the influence of the differences in mechanical properties of the 

matrix and the dispersed phase. A negative deviation, which can found in many other 

composite systems 4, can be understood as follows: the materials have a lower 

expansion coefficient than expected from a linear combination of the properties of the 

starting materials. Considerably lower volumes of ZrW2O8 suffice to compensate for 

the positive thermal expansion of the ZrO2 phase than those calculated using this rule. 

A possible explanation is that the open framework structure of ZrW2O8 is crushed by 

the expanding ZrO2 particles. The other way around is the hypothesis that the 

shrinkage of ZrW2O8 is insufficient for complete expansion of the ZrO2 particles 

leading to an overestimation of the thermal expansion coefficient by the rule of 

mixtures. 
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Figure 11: Thermal expansion coefficients for composites prepared by the in situ (by oxides) (▲)  
conventional method (+) and in situ (sol-gel precursors) (□) 

Using the rule of mixtures, the value of the thermal expansion coefficient is predicted 

to remain negative down to a volume ratio of 64 vol% (at 225 °C). However, we 

found that volume ratios well below 64 vol% still yielded negative expansion. The 

experimental data for conventionally prepared composites reveal that zero thermal 

expansion could be obtained using a 62 vol% ZrO2 – 38 vol% ZrW2O8 composite. 
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This may have important technological consequences because it shows that a 

relatively low volume fraction of ZrW2O8 is sufficient to compensate effects of 

thermal expansion in a powderous matrix.  

Our results can also help us to predict the composition required to obtain the desired 

zero thermal expansion. In literature 17, a composite prepared by the conventional 

method and consisting of 66 w% (63.5 vol%) ZrO2 and 33 w% (36.5 vol%) ZrW2O8 

was suggested to result in zero expansion. The change in linear dimensions as a 

function of temperature for a composite with this composition but prepared using an 

in situ method with oxides as precursors is given in figure 12. This composites has 

zero thermal expansion at room temperature. From 160 °C onwards, a slight thermal 

expansion is noted. This is coincident with the occurrence of the α to β transition and 

can be explained as follows. The β-phase possesses a lower negative thermal 

expansion coefficient (-3.4 10-6 °C-1) than the α-phase (-10.4 10-6 °C-1) and this 

obviously changes the compensatory effect of the ZrO2 which exhibits a strongly 

positive expansion coefficient (9.6 10-6 °C-1) which remains constant in the entire 

temperature region. Looking back at figure 11, the data points collected at 225 °C     

(β-phase) already suggested a positive thermal expansion coefficient for the chosen 

composition. An in situ composite with zero thermal expansion starting from 160 °C 

should contain 55 vol% ZrW2O8 and 45 vol% ZrO2. 
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Figure 12: Thermal expansion for ZrO2 (+), ZrW2O8 (∆) and 36.5 vol% in situ composite (o) 
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In some cases a synergy effect occurs where the properties of the composites are 

superior to the combination of the individual characteristics of the isolated 

components. In order to describe those in a quantitative way, we propose to use a 

modified form of the linear rule of mixtures. In cases where deviation can be thought 

as arising from “product properties” or “synergy effects” the following descriptor 

model is described.  

[ ])1()1(fΧΧΧ ddmmddmmc ν−Χ×ν−Χ+ν+ν=  [5] 

 

where parameter f represents the weight of the synergy contribution. 

As can be seen in figure 13 (a-c), the curve obtained by equation 5 can be fitted to the 

experimental results by adjusting parameter f. The optimal f value and the average 

deviation of the experimental results to the fit are mentioned in the graphs. The larger 

deviation of the rule of mixtures in the conventional prepared composites is translated 

in a larger f value whereas the in situ composites prepared by oxides show the best fit 

with a much lower f value. A high f value symbolizes a large deviation of the 

experimental results to the rule of mixtures and thus a less “ideal” composite material 

by the influence of the synergy effect.  

A possible explanation is already cited above and can be confirmed by the data 

mentioned in table 7. The particle sizes of the precursor materials used in the in situ 

synthesis using ZrO2 and WO3 are much smaller in comparison with the other 

materials resulting in a homogeneous end material. Nevertheless the particle sizes of 

the sol-gel precursors are comparable with those of the conventional preparation 

route, the benefit of the “in situ” synthesis combining sintering and synthesis results 

in a “better” composite material (lower f value). 

Material Particle size d50 (µm) Particle size d90 (µm) 

ZrW2O8 12.77 32.46
ZrO2 (Aldrich) 3.15 6.54 
ZrO2 (milled 24h) 1.06 5.14 
WO3 (milled 24h) 0.62 0.94 
sol-gel precursor mixture 11.44 30.25 

Table 7: Overview of the particles sizes of the precursor materials 
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Figure 13: Fitting of the experimental results according to equation 5. (a) "in situ” synthetic route - 
oxides (b) "in situ” synthetic route – sol-gel (c) “conventional” preparation route 
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5 Conclusions 

Several synthesis and preparation methods for the preparation of ZrO2 – ZrW2O8 

composites are described in detail in this chapter. First of all, there is the conventional 

processing route starting with ZrO2 and ZrW2O8. These composites show very low 

homogeneity. The ZrO2 particles are not well distributed resulting in ceramic 

materials with poor mechanical properties. The synthesis temperature of 1180 °C 

doesn’t allow the composites to sinter completely as the sintering temperature of ZrO2 

lies well above that of ZrW2O8.  

The second group of synthetic routes uses a mixture of off-stochiometry co-milled 

ZrO2 and WO3 powders. The composites prepared show an improved homogeneity in 

comparison with the previously mentioned preparation route. The ZrO2 particles are 

now well distributed among the ZrW2O8 matrix. This has a positive influence on the 

mechanical properties of the material. A sol-gel method was also used to prepare a 

homogeneous ZrO2 – WO3 powder mixture ideal for the preparation of in situ 

composites.  

By comparison of these methods it can be clearly seen that the porosity affects the 

mechanical properties in a drastic but predictable way. The lack of well sintered ZrO2 

particles in the composites prohibits the strengthening of the ZrW2O8 so that the 

strength of the prepared bars is exponentially dependent on the total porosity of the 

composite materials. 

The thermal expansion coefficients of the composites do not comply with the linear 

rule of mixtures: considerably lower volumes of ZrW2O8 suffice to compensate for 

the positive thermal expansion of the ZrO2 phase than those calculated using this rule. 

This deviation may be due to the porosity and the changes between mechanical and 

elastic properties of the individual component used in the composites. This can be 

illustrated by comparing the conventional method and the in situ method. The 

deviation of the rule of mixtures is larger in the first synthesis method as this method 

results in a larger porosity. By modifying the rule of mixtures and including synergy 

effects, the influence of the synthetic route or processing method can be deduced from 

the experimental data.  
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Figure 14: Overview of all preparation and synthetic routes described in this chapter 
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Chapter 7  

Synthesis and analysis of Zr-
substituted Zr1-xMxW2O8 materials 

 
 
 
 
 
ZrW2O8 composite materials were described in the previous chapter. Although the use 

of ZrW2O8 lowers the thermal expansion of the composite materials the ever present 

phase transition represents a drawback. The phase transition temperature (160 °C) 

separates two domains of slightly different expansion coefficients. A composite of 

ZrW2O8 – ZrO2 composite with zero thermal expansion over a very large temperature 

range is therefore impossible to synthesize. Shifting the phase transition temperature 

is of great practical importance because it allows in principle to exclude a disturbing 

shift in thermal expansion to outside the range of practical application of the material. 

In this chapter, we attempt to modulate the phase transition temperature by 

substituting the Zr4+ ions in the octahedra with other suitable M4+ ions such as: Ti4+, 

Sn4+ and Ce4+… Extensive analysis of the substituted materials by X-ray analysis, 

thermomechanical analysis and differential scanning calorimetry is used to understand 

the mechanisms of the phase transition and the parameters which can influence the 

phase transition temperature.  

This chapter is strongly related to the following article: 

“Study of Ti 4+ substitution in ZrW2O8 negative thermal expansion materials” 
 
Klaartje De Buysser, Isabel Van Driessche, Bart Vande Putte, Joseph Schaubroeck, 

Serge Hoste 

Published in Journal of Solid State Chemistry, 180 (2007) 2310-2315 
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1 Introduction 

O17 NMR studies have partly revealed the mechanism behind the phase transition. It 

was confirmed that all oxygen atoms in the structure undergo an exchange even below 

the phase transition. At the phase transition temperature, adjacent tetrahedra will 

rotate as a whole in a “ratchet” motion causing mutual exchange between all oxygen 

sites. This implies breaking of all the Zr – O bounds involved in the Zr – O – W 

linkages 1. In that sense, it is clear that substitution of the Zr4+ ion within the crystal 

structure should strongly affect the phase transition temperature. According to 

conventional knowledge the occurrence of substitutional solid solutions requires that 

the ions that are replacing each other must be similar in size.2  

Obviously the charge neutrality of the materials restricts our choice to ions with        

4+ valency. Solid solutions were obtained by substituting Zr4+ ions (86 pm) 3 by other 

4+ valency ions such as Sn4+(83 pm) 4 and Hf4+ (85 pm). 

The most widely discussed substituted material is HfW2O8 5, 6. Hafnium tungstate 

exhibits the same remarkable negative thermal expansion properties as ZrW2O8. The 

α-phase (a = 0.9157 nm at 20 °C) is isostructural with α- ZrW2O8 7. HfW2O8 shows 

an order-disorder transition at 190 °C. Substitution of the Zr site in ZrW2O8 by Sn4+ 

ions induces a decrease in phase transition temperature 4. In addition to tetravalent 

substituents, some trivalent ions such as Y3+, Lu3+, Sc3+ and In3+ were also used to 

prepare substituted ZrW2O8 (O-deficient) materials 8-12. Again, the phase transition 

temperature was affected by the substitution as a decrease in phase transition 

temperature was noticed.  

Substitution of the tungsten ion is most widely studied in ZrMo2O8. Cubic γ-ZrMo2O8 

is isostructural with β-ZrW2O8 13-15. Recently, it has been shown that it is possible to 

prepare ZrW2-xMoxO8 phases over the entire composition range 0 ≤ x ≤ 2 16-18. The 

phase transition temperature shifts to lower values as the amount of Mo present in the 

material increases. For example, the α → β phase transition temperature of ZrMoWO8 

is reduced by 160 °C compared to the parent compound 19.  
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2 Synthesis 

The Zr1-xTixW2O8 (x= 0–0.10), Zr1-xCexW2O8 (x= 0–0.05) and Zr1-xSnxW2O8          

(x= 0–0.05) materials were synthesized using a solid state reaction (Chapter 3-§2.3.a) 

starting from the commercially available oxides ZrO2, TiO2 and SnO2 (Aldrich) and 

WO3 was obtained from Acros Organics. CeO2 was prepared by calcination of 

Ce(NO3)3.6H2O (Aldrich) in air at 800 °C for 4 h. The amounts of oxides needed are 

given in table 1. The oxide mixtures were co-milled for 24 h in a tumbler mill filled 

with zirconia pearls. The powders were put in a horizontally disposed glass container 

(15 cm3) and zirconia pearls (Ø = 3.15 mm) are added in a 1:1 mass ratio. These oxide 

mixtures were pressed at 750 MPa into small bars of 0.3 g (2mm  2mm  13mm). 

The bars were sintered for 15 h in a preheated furnace at 1180 °C, followed by 

quenching in liquid nitrogen to avoid decomposition into the metal oxide precursors.  

Zr1-xMxW2O8 
 

mass  
ZrO2 (g) 

mass  
WO3 (g) 

mass  
TiO2 (g) 

mass 
SnO2 (g) 

mass  
CeO2 (g) 

ZrW2O8 1.050 3.950    

Zr0.99Ti0.01W2O8 1.040 3.953 0.007   

Zr0.98Ti0.02W2O8 1.030 3.956 0.014   

Zr0.975Ti0.025W2O8 1.025 3.958 0.017   

Zr0.97Ti0.03W2O8 1.021 3.959 0.021   

Zr0.96Ti0.04W2O8 1.011 3.962 0.273   

Zr0.95Ti0.05W2O8 1.001 3.965 0.034   

Zr0.975Sn0.025W2O8 1.022 3.946  0.032  

Zr0.95Sn0.05W2O8 0.995 3.940  0.064  

Zr0.975Ce0.025W2O8 1.021 3.942   0.037 

Zr0.95Ce0.05W2O8 0.933 3.934   0.073 

Table 1: Preparation scheme for the Zr1-xMxW2O8 solid solutions 
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3 X-ray analysis and thermomechanical properties of the 
substituted materials 

Samples of Zr1-xTixW2O8 (x= 0–0.10), Zr1-xCexW2O8 (x=0–0.05) and Zr1-xSnxW2O8 

(x=0–0.05) were analyzed by powder X-ray diffraction to determine the solubility 

limit for substitution. As can be seen in figure 1 for the Zr1-xTixW2O8 series, no other 

reflections besides those belonging to ZrW2O8 are present expect for the WO3 

reflections at 28.3 and 31.5 2 theta and the TiO2 (*) reflections in the Zr0.9Ti0.10W2O8 

composition. It is hereby proven that this composition exceeds the limit of the solid 

solution. 
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Figure 1: X-ray diffraction patterns of Zr1-xTixW2O8 (x=0 – 0.) at room temperature (25 °C) 
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No reflections of impurity phases can be remarked Zr1-xSnxW2O8 series mentioned in 

figure 2. This is a first indication that a solid solution is formed in this range of 

composition. De Meyer et al published a solid solid limit of x=0.2 for this type of 

substitution. For the Ce samples however, a weak reflection at 25.4 2theta can be seen 

beside the reflections of ZrW2O8. This reflection, indicated by an asterisk, is most 

likely caused by the [-1-21] reflection of CeO2-y.  
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Figure 2: X-ray diffraction patterns of Zr1-xSnxW2O8 (x=0.025 (a); 0.05 (b)) and Zr1-xCexW2O8 
(x=0.025 (c); 0.05 (d)) at room temperature (25 °C) 

The change in unit cell parameter caused by substitution of the Zr site with cations 

with a smaller ionic radius was investigated for all the samples mentioned in figures 1 

and 2. The lattice parameters were calculated using 30 reflections between 30 and 80 

2theta by a least-square fit after correcting 2θ with Nelson-Riley’s method 20. 6 w% 

LaB6 was added to the samples as internal standard. 
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Figure 3 shows evolution in the cell parameter a for ZrW2O8, Zr1-xTixW2O8 (x = 0.01-

0.10), Zr1-xCexW2O8 (x = 0.025 and 0.05) and Zr1-xSnxW2O8 (x = 0.025 and 0.05) at 

298 K. For Ti4+ and Sn4+, the relative magnitude of the decrease in unit cell parameter 

is nicely linked to the relative sizes of the substituting ions versus the size of Zr4+. The 

linear decrease in unit cell parameter with increasing degree of substitution follows 

Vegard’s law 2, 4. The Zr0.9Ti0.1W2O8 material does not obey this law. The cell 

parameter does not further decrease in comparison with the 5% substituted material 

which means that the limit for substitution of Ti4+ at the Zr4+ position is obtained at 

5%, which proves the earlier mentioned observations in XRD analysis. The decrease 

of unit cell parameter in the case of Ti and Sn substitution follows the trend that was 

already reported for substitution by Hf4+ 5. However, these observations are in 

contrast with the substitution of Zr4+ ion by trivalent ions where a decrease of the unit 

cell parameter is noticed despite the larger radii. The main reason for this behaviour is 

the oxygen deficiency caused by the lower valency of the substituting ions 8. The 

substitution by Ti4+ and Sn4+ respects the electroneutrality of the compound without 

any need for changes in the oxygen content and thus, the smaller ionic radius is 

directly reflected in a decrease in unit cell parameter.  
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Figure 3: Lattice parameters of ZrW2O8 (x=0), Zr1-xTixW2O8 (x = 0.01-0.10) ( ), Zr1-xSnxW2O8 (x = 
0.025 and 0.05) ( ) and Zr1-xCexW2O8 (x = 0.025 and 0.05) ( ) at 298 K. The linearity according to 

Vegard’s Law is indicated by the dotted lines. 
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Only a small increase of the lattice parameter is detected for Ce4+ containing samples. 

We attribute the lack of substitution to the fact that the ionic radius of Ce4+ (101 pm) 

is too large to fit in the Zr-site even though earlier reports mention the successful 

substitution of Y3+ (104 pm) and Lu3+ (100.1 pm). Here again the discrepancy is most 

likely due to the oxygen deficiency related to the lower valence state of the replacing 

ions in comparison with Zr4+ providing more space to the substitutes 10, 12. To 

determine in more detail the percentage of Ce4+ substitution, the influence of the      

Ce-amount on the phase transition temperature was investigated. As can be seen in 

figure 4 no noticeable shift in phase transition temperature is detected for any of the 

composites. Sintered mixtures of CeO2-WO3-ZrO2 oxide powders will therefore 

preferably form a CeO2 – ZrW2O8 composite instead of a Zr1-xCexW2O8 solid solution 

as already indicated by the X-ray analysis. Those composites are not expected to 

exhibit a variation in phase transition temperature 21. As the amount of the positive 

thermal expansion material CeO2 increases, the negative thermal expansion decreases. 
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Figure 4: Relative length differences of sintered Zr1-xCexW2O8 (x = 0.00-0.025-0.05) bars as a function 
of temperature 
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Figure 5 shows the thermomechanical analysis of Zr1-xTixW2O8 (x = 0.00-0.05) 

samples. The upper curve represents a pure ZrW2O8 sample. The phase transition 

temperatures of ZrW2O8, Zr1-xTixW2O8 (x = 0.01-0.05) and Zr1-xSnxW2O8 (x = 0.025 

and 0.05) are gathered in figure 6. The phase transition temperature decreases as the 

Ti4+ substitution degree increases. Translated into the order-disorder theory this means 

that, with increasing substitution, less thermal energy (reflected in a lower phase 

transition temperature) is needed to induce the disordering of the WO4 tetrahedra. 
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Figure 5: Relative length differences of sintered Zr1-xTixW2O8 (x = 0.00-0.05) bars as a function of 
temperature. The upper curve is measured on a pure ZrW2O8 bar as indicated by (*) 
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Figure 6: Phase transition temperatures ZrW2O8 (x=0)( ), Zr1-xTixW2O8 (x = 0.01-0.05) ( ) and      
Zr1-xSnxW2O8 (x = 0.025 and 0.05) ( ) 
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An even more pronounced decrease in phase transition temperature can be noticed for 

Sn4+ substituted solid solutions. Some authors state that the main reason for the lower 

phase transition temperature is the presence of a locally disordered state induced by 

the substituting ion 12. The disturbance of the periodic order of some WO4 tetrahedra 

clusters in the orientationally disordered state in Zr1-xTixW2O8 can be confirmed by an 

increase of the FWHM of the [310] reflection. An increase in FWHM of 15% was 

obtained from Zr1-xTixW2O8 (x = 0.00-0.05) samples as given in figure 7. 
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Figure 7: FWHM obtained for the [310] reflection of Zr1-xTixW2O8 (x=0 – 0.05) solid solutions 

The effect of Hf4+ substitution mentioned in literature is in contrast with our findings 

as the phase transition temperature increases with increasing Hf substitution. An 

explanation for this, as stated in literature 6 is that the phase transition of                 

Zr1-xHfxW2O8 (x = 0-1) solid solutions is dependent on the free lattice volume. The 

free lattice volume is defined as the unit cell volume minus the sum of the volumes 

for all ions occupying the unit cell. The increase in the phase transition temperature is 

considered to be due to hindrance related to the decrease of the free space around the 

WO4 tetrahedra. This free lattice volume was calculated for Zr1-xTixW2O8                   

(x = 0.00-0.05) and plotted against the phase transition temperature (figure 8). As can 

be seen in this figure, the phase transition temperature decreases as the lattice free 

volume decreases which, again, is in contrast with the results mentioned for the Hf4+ 

substitution.  
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Figure 8: Phase transition temperatures of Zr1-xTixW2O8 (x = 0.00-0.05) solid solutions versus the 
calculated lattice free volumes in the unit cell at 25 °C 

There is however a parameter which cannot be neglected. The order-disorder 

transition mechanism, revealed by O17 NMR, indicated that during the ratchet motion 

Zr – O bonds in the Zr – O – W linkages were broken. Substitution of the Zr4+ site by 

another ion may increase or decrease the bond strength. The ionic radii and bond 

dissociation energy data are assembled in table 1. From this table, it can be seen that 

the reason for the higher phase transition temperature of Hf substituted ZrW2O8 

materials must be sought in the higher dissociation energy of the Hf – O bond in 

comparison with the Zr – O bond. For the Ti4+ substitution however, the lower 

dissociation energy of the Ti – O bond in comparison with the Zr – O bond will 

compensate the effect of the smaller lattice free volume resulting in an overall 

decrease of the phase transition temperature as the substitution degree increases. The 

literature data for Y3+ and Lu3+also mention a decrease in phase transition temperature 

which we can attribute to differences in bond strength. Further confirmation of our 

proposal can be found in the fact that the decrease of phase transition temperature is 

larger in the case of Zr1-xSnxW2O8 materials than for Zr1-xTixW2O8 solid solutions due 

to the higher dissociation energy of Ti – O in comparison with a Sn – O bond.  
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Zr1-xMxW2O8  

with M: 

Ionic radius 

(pm) 3 

M – O bond 

dissociation energy 

(kJ/mol) 22 

Zr4+ 86 776.1 ± 9.2 

Hf4+ 85 801.7 ± 13.4 

Sn4+ 83 531.8 ± 12.6 

Ce4+ 101 795 ± 8 

Ti4+ 74.5 672.4 ± 9.2 

Y3+ 104 719.6 ± 11.3 

Lu3+ 100.1 678 ± 8 

Table 2: Ionic radii and M –O bond dissociation energies of the substituent ions of the Zr1-xMxW2O8 
materials described in this chapter 



Chapter 7 
 
 

 194 

4 DSC analysis of the substituted materials 

4.1 Experimental set-up  

Quantitative information concerning the reaction or transition enthalpy and entropy 

can be obtained using three different DSC measurements.  

- (a) Measurement of two empty aluminum pans: correction for any 

asymmetry in the heat flow of the system 

- (b) Measurement of an empty aluminum pan and a reference material 

(sapphire) must be performed. This provides a calibration factor that 

translates the measured heat flow units (mW) into heat capacity units (J/g °C) 

- (c) Measurement of the empty aluminum pan and the sample results in the 

heat flow of the sample (mW) 

The measurements were performed under N2(g) atmosphere (50 mL/min). The 

thermal procedure was optimized to obtain a maximal signal-noise ratio. The system 

was allowed to equilibrate at 35°C for 3 min, followed by heating to 200 °C at 20 

°C/min. The pans were standard aluminum pans which were non-hermetically closed. 

The results of these three measurements for a ZrW2O8 sample are given in figure 9.  
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Figure 9: Heat flow measurements of (a) 2 empty pans, (b) empty pan and reference material (sapphire) 
and (c) empty pan and sample. The insert gives a detail of the measurement of the sample 
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These data files are combined to calculate the heat capacity of the measured sample 

using: 

(mW)(mg)
(mW)(mg)C)(J/g

C)(J/g
)qq(mass

)qq(mass)T(C
)T(C

0sapphiresample

0samplesapphiresapphire,p
sample,p −×

−××°
=°  [1] 

 

where Cp,sample and Cp,sapphire are the heat capacities of the sample and reference 

material, respectively; masssample and masssapphire are the weights of the sample and 

reference material in the aluminum pans. Q0 is the heat flow during the DSC 

measurement of two empty pans, whereas qreference and qsample are the results of the 

DSC measurement of an empty pan with an aluminum pan filled with sapphire and 

the sample, respectively. The heat capacity of sapphire at various temperatures was 

calculated using the following expression calculated by the data published by NIST 

(SRM 720) 23, 24. 

C)(C)(J/g °=° ∑
=

=

3n

0n

n
nsapphire,p Ta)T(C  [2] 

 

with a0 = 723.16; a1 = 2.31, a2 = -5.10-3 and a3 = 5.10-6 

Figure 10 shows the results for the heat capacity of the ZrW2O8 sample.  
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Figure 10: Heat capacity of the ZrW2O8 sample 
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An anomaly in the heat capacity is seen around 160 °C. This temperature corresponds 

to the phase transition as detected by thermomechanical analysis and X-ray analysis. 

The shape of the anomaly in the heat capacity indicates that the α to β transition is a  

λ type transition typical for a second order transition 6-8, 25-29. This λ shape indicates 

that the phase transition starts at temperatures considerably lower than the phase 

transition temperature. This is in strict alignment with the temperature dependence of 

the order parameter, indicated by the fractional occupancy of the W(1) and W(2) 

atoms in the two possible tetrahedral orientations along the [1 1 1] diagonal direction 

determined by neutron powder diffraction 30.  

The baseline of the heat capacity was determined by extrapolating the heat capacities 

in both higher- and lower temperature ranges excluding the phase transition. The 

excess heat capacity due to the phase transition was obtained by subtracting the 

baseline and the result is given in figure 11. The lambda shape can be clearly seen and 

the maximum excess of 17.7 J/mol °C is reached at 160 °C. This maximum is used to 

extract the phase transition temperature from the DSC measurements.  
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Figure 11: Excess heat capacity of the ZrW2O8 sample used for calculation of the transition enthalpy 

The transition enthalpies and entropies were estimated from numerical integration of 

the excess heat capacity according to equation 3 and 4. The excess heat capacity had 

to be divided by the temperature (in Kelvin) to obtain the right data points for the 

calculation of the transition entropy as can be seen in figure 12.  
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dTCH p∫ ∆=∆ (J/mol)  [3] 
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Figure 12: ∆Cp/T of the ZrW2O8 material used for calculation of the transition entropy 

These calculations lead to a transition enthalpy of 490.44 J/mol and the transition 

entropy is 1.16 J/mol K. The magnitudes of ∆Htr and ∆Str are strongly dependent on 

the chosen baseline. Although these thermodynamical data have been obtained by 

other techniques and are generally higher in value (1.56 kJ/mol 29 and 907 J/mol 25), 

these measurements represent the first DSC-data available for these materials.  

The positive value for the entropy change results from disordering of the orientation 

of the two WO4 tetrahedrons lying along the [1 1 1] direction. It is stated by Pryde 31 

that the available space for the two WO4 tetrahedrons in the β phase suggest that only 

two orientations can be taken into consideration. This would mean that the entropy for 

the phase transition is expected to be R ln2 (5.8 J/mol K). If the two tetrahedrons 

could independently take the two possible orientations, the entropy change would 

shift to R ln4 (11.5 J/mol K). However the value measured by this DSC experiment 

reveals a lower value for ∆Str (20 % of R ln2). Other studies by Adiabatic Scanning 

Calorimetry (4.09 J/K mol 29 and 2.1 J/K mol 25) also indicated a discrepancy for the 

theoretical value. As the magnitude of the experimental value lies closer to R ln2 than 

to R ln4, the order-disorder transition is supposed to be the result of the two WO4 

tetrahedrons along the [1 1 1] with only 2 conformations in a concerted manner. 
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4.2 Calorimetric data of the substituted materials 

DSC measurements were performed for Zr1-xTixW2O8 (x = 0.01-0.05) and               

Zr1-xSnxW2O8 (x = 0.025 and 0.05) and were compared with the results of the pure 

ZrW2O8 sample. The same conditions as mentioned above (§4.1) were used for all 

samples. The DSC measurements are used to confirm the hypothesis (§3) described 

above. This hypothesis highlights the influence of the metal ion – oxygen bond 

strength in comparison with the original Zr – O bond. This should be translated into a 

decrease of transition enthalpy as the substitution degree by Ti4+ or Sn4+ ions 

increases.  

The phase transition temperature is the first parameter examined. The comparison 

between the data obtained by TMA (minimum in the thermal expansion coefficient) 

and DSC (maximum in the excess heat capacity diagram) is made in figure 13. The 

same tendency can be noticed. The differences between the two analysis techniques 

are due to differences in the samples (powders (DSC) versus bars (TMA)), differences 

in heat rate (5 °C/min for TMA versus 20 °C/min for DSC) and differences in gas 

flow (N2 (g) during the DSC experiments versus no gas flow during TMA 

experiments). The gas influences the thermal equilibration whereas a higher heating 

rate will result in an overshoot of the phase transition temperature. Powder 

measurements exclude the influence of porosity or cracks present in the bars.  
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Figure 13: Comparison between Ttr obtained by TMA and Ttr obtained by DSC 



Synthesis and analysis of Zr-substituted Zr1-xMxW2O8 materials 
 
 

 199

The shift in phase transition temperature can be directly deduced from the heat flow 

measurements. As the substitution degree by Ti4+ or by Sn4+ ions increases, a shift to 

the lower temperature region is seen. This effect is more strongly present in the case 

of substitution by Sn4+ ions which is consisted with the thermomechanical 

experiments.  

The evolution of the phase transition enthalpy with degree of substitution is given in 

figure 14. A decrease in phase transition enthalpy is noticed as the substitution degree 

increases. The decrease is more pronounced for the Sn4+ substituted materials which 

can be understood by the lower Sn – O bond strength (versus Ti – O) which facilitates 

the ratchet motion, breaking of the M – O bonds and lowers the phase transition 

temperature. The DSC measurements prove that the thermodynamical parameters 

indeed vary with different substitutional degree. It is clear that our findings support 

the view of a transition mechanism in which a ratchet motion of tetrahedra is 

involved. Indeed, the alternatively proposed mechanism only involves breaking of the 

W – O bond and its thermodynamics would not be affected by substitution at the      

Zr site.  
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Figure 14: Phase transition enthalpies of substituted Zr1-xMxW2O8 materials 

The data obtained for the substituted materials were further examined by the use of 

equation 4 to deduce information concerning the phase transition entropy change. The 

results are mentioned in figure 15. Again a decrease can be seen as the substitutional 

degree increases. The effect of substitution by Sn4+ ions is again more marked than 
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that of Ti4+ ions. Nakajima 6 found that the entropy value is not affected by Hf 

substitution because the same order-disorder transition occurs in which the WO4 

tetrahedra along the [1 1 1] direction only have two conformations in a concerted 

manner. On the other hand, Yamamura 12 stressed the presence of locally disordered 

regions within the ordered α domain. This should result in a lower entropy increase 

during the phase transition. As the substitutional degree increases, the disorder in the 

crystal structure increases and hereby the entropy change after transition decreases.  
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Figure 15: Phase transition entropies of substituted Zr1-xMxW2O8 materials 
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4.3 Pre-treatment of the samples 

Some DSC measurements showed two peaks during the first heating cycle. The peak 

at 133 °C was no longer detected during a second heating cycle as can be seen in 

figure 16.  
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Figure 16: Heat capacity of the substituted materials during first (---) and second (___) heat cycle 

This phenomenon is in literature attributed to the loss of water 32. The authors 

confirmed this hypothesis by TGA – MS. TGA – DTA on our materials does not 

indicate the loss of water (figure 17a) nor does IR spectroscopy shows the presence of 

O – H stretch vibrations (figure 17b). The TGA trace shows a little increase in weight 

due to drift.  
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Figure 17: TGA-DTA analysis of ZrW2O8 (a)  IR spectroscopy of Zr0.97Ti0.03W2O8 (b)  
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Heat treatment of materials before they are used is common used to soften steel and 

other metals33. It can be used to relieve stress that has been caused by uneven cooling 

or other treatment. The materials discussed in this chapter are submitted to extreme 

cooling from 1180 °C to -200 °C. So it not so unrealistic to think that these materials 

show internal stresses. Therefore all samples are preheated at 220 °C before the actual 

recording of the heat flow data, used in the previous mentioned experiments, starts. 

Strangely enough these stresses do not affect the crystal structure as the cell parameter 

a do not change after a preheating treatment. The thermomechanical properties of the 

material were also examined before and after heating. The cycle given in figure 18 is 

the result of heating a ZrW2O8 bars to 300 °C and cooling down to room temperature 

for three times. There is no change in phase transition temperature or in thermal 

expansion behaviour as can be seen in this figure. 
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5 Conclusion 

We have shown that Ce4+ ions are not able to form Zr1-xCexW2O8 solid solutions. 

Consequently, a CeO2 – ZrW2O8 composite was obtained and no noticeable shift in 

phase transition temperature was noticed in comparison with pure ZrW2O8. On the 

other hand, substitution of Zr4+ ions by Ti4+ resulted in successful synthesis of         

Zr1-xTixW2O8 solid solutions with x= 0.00 – 0.05. A steady decrease in lattice 

parameters could be identified and was attributed to a smaller ionic radius (74.5 pm) 

of the substituting metal. The decrease in phase transition temperature noticed in these 

solid solutions is thought to result from the combination of the presence of a larger 

disorder state (broadening of the [310] reflection) and a lower bond dissociation 

energy of the Ti – O bond in comparison with the Zr – O bond which compensates for 

the decrease in free lattice volume. 

Calorimetric analysis of the Ti4+ and Sn4+ substituted materials revealed that a 

decrease in reaction enthalpy could be seen. The excess of the heat capacity decreases 

as the substitution degree increase. This results in a decrease in phase transition 

temperature. The difference in bond strength between Ti – O and Sn – O is translated 

to a smaller decrease of the reaction enthalpy in the case of Ti4+ substituted materials. 

A small decrease in reaction entropy is also detected. Substitution can distort the 

crystal structure of the materials locally. As the phase transition is an order-disorder 

transition, small distortion of the material before the phase transition will lower the 

reaction entropy during transition. 
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The positive thermal expansion of most materials is widely known, nevertheless there 

are materials which show the opposite behaviour. These “negative thermal expansion” 

(NTE) materials exhibit shrinkage of the unit cell parameters upon heating which 

renders them attractive for the development of new high performance materials.  

ZrW2O8 is the most intensely studied and published representative of the NTE 

materials. It offers possibilities which are not completely explored yet. Novel 

synthetic routes were described in this work as well as some applications such as zero 

expansion composites materials or ZrW2O8 solid solutions.  

The synthetic routes themselves were described in Chapter 3 and 4. Chapter 3 

described the conventional solid state reaction using commercially available ZrO2 and 

WO3 as precursor oxides. The oxide mixture needed to be pre-treated to optimize the 

homogeneity of the mixtures. Two milling techniques were described: (1) tumbler 

milling with zirconia pearls and (2) ball milling with agate balls followed by spray-

drying of the PEG-stabilized oxide slurry. High temperature treatment of both oxide 

mixtures resulted in pure ZrW2O8
 although the morphology of the sintered bars 

showed some drawbacks. Destruction of PEG lead to pores but even the tumbler 

milled mixtures without addition of any organic materials resulted in a porous 

materials. Poor stacking of the powder during pressing is most likely the cause of this 

porosity.  

Milling of the powders is a very energy consuming process. Aqueous solutions of 

precursor salts containing Zr4+ and W6+ are an attractive starting point. Two sol-gel 

routes, one using citric acid and one using EDTA, were suggested. These complexing 

agents are necessary to maintain the homogeneity of the solutions in a large pH range. 
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It must be understood that any form of precipitation or coagulation will drastically 

lower the homogeneity. Both sol-gel routes resulted in pure ZrW2O8 with a thermal 

expansion coefficient close to those obtained by synthesis routes which take strict 

precautions to avoid any volatilization of WO3. Fast diffusion and reaction along grain 

boundaries in homogeneous and small particles improve the negative thermal 

expansion behaviour of ceramic blocks. Water-based sol-gel systems are a green 

alternative for the organic sol-gel routes. Further exploration of the sol-gel routes 

could result in deposition of thin layers of ZrW2O8 provided research is performed to 

tune the heat treatment. 

The gels obtained by the citrate gel route with pH values above 6 showed blue 

colouring after irradiation with sun light. Photoluminescence behaviour of the gels 

was interpreted on the existence of small, discrete molecular WO4
2- and WO6

6- 

polyhedra in solution. The presence of WO4
2- tetrahedral species is somewhat 

unexpected as ammonium metatungstate at pH 7 has the typical Keggin structure with 

corner and edge share octahedrons. EXAFS studies confirmed the WO4
2- structures in 

the solutions above pH 6. A shift from octahedral to tetrahedral surrounding of the 

tungsten atom is suggested by changes noticed in the radial distribution plots. More 

extensive EXAFS studies could lead towards improved understanding of the 

chemistry in the precursor solution and the transformation from aqueous solution to 

the high viscosity gel-state.  

The different synthetic routes described above are not only suitable for the synthesis 

of pure ZrW2O8. They can also be used in the preparation of ZrW2O8 based 

composites. In this work ZrO2 was chosen as a dispersed phase and the synthesis 

strategies described can be divided into two large classes. The first route used ZrW2O8 

and ZrO2. No new phases were formed. These composites showed very low 

homogeneity as the ZrO2 particles were not well distributed in the ZrW2O8 matrix. 

This also affects the mechanical properties of the composite materials. The negative 

thermal expansion can be controlled but the low composite strength is an enormous 

drawback. An alternative route was a synthetic route using a mixture of off-

stochiometric co-milled ZrO2 and WO3 powders. ZrW2O8 was formed “in situ” and 

the excess of ZrO2 was now well dispersed into the ZrW2O8 sintered matrix. This 
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positively influences the mechanical properties of the composites. A third synthetic 

route used off-stochiometric precursor salts in the sol-gel route as described above.  

All composites showed a negative deviation of the rule of mixtures. This deviation is 

caused by the porosity and the differences between mechanical and elastic properties 

of the components present in the composites. The comparison between the composites 

obtained by the conventional preparation route and the “in situ” synthesis methods 

showed that deviation of the rule of mixtures is more pronounced in the first method 

due to the higher porosity percentage.  

The composition of a zero-thermal expansion composite was predicted using curve 

fitting to experimental data for different compositions. This composite showed zero 

thermal expansion but only in a limited range. ZrW2O8 undergoes a phase transition 

together with a change in thermal expansion regime. This phase transition was also 

noticed in the ZrO2 – ZrW2O8 composite material.  

It is know from literature that the phase transition temperature of ZrW2O8 is affected 

by substitution of the Zr or W site. A large shift of the α - β transition could increase 

the temperature range with zero thermal expansion. Ce4+ and Ti4+ were screened for 

their potential as substituent for the Zr position in the ZrW2O8 crystal structure. Both 

ions have the same valence state as Zr and the electroneutrality is preserved.          

Ce4+ (101 pm) substitution, most likely due to its large ionic radius in comparison 

with Zr4+ (86 pm). Inserting Ti4+ (74.5) in the crystal structure resulted in a stable   

Zr1-xTixW2O8 (0 ≤ x ≤ 0.05) solid solution. The cell parameter decreased linearly with 

increased substitution and the transition temperature shifted to lower values. 

Comparison with literature results and experiments with Zr1-xSnxW2O8 indicated that 

the bond energy is an important partner in this process. Lower bond energy results in 

a lower phase transition temperature. This hypothesis was confirmed by DSC 

analysis: both reaction enthalpy and reaction entropy decreased as the substitution 

degree increased. These results also reconfirmed the ratchet motion during the phase 

transition where Zr – O – W linkages are broken. Information concerning bond 

energy, valence state and ionic radius could allow suggesting the increase or decrease 

of the phase transition according to the chosen ion as substituent.  
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Materialen met positieve thermische expansie zijn algemeen gekend. De 

kristalstructuur van negatieve thermische expansie materialen vertoont een afname 

van de eenheidcel wanneer deze onderworpen wordt aan een temperatuurstijging 

waardoor deze materialen aantrekkelijk worden met het oog op de ontwikkeling van 

hoog-technologische materialen.  

ZrW2O8 is één van de meest bestudeerde partners van de NTE materialen. Dit 

materiaal biedt vele mogelijkheden die nog niet volledig geëxploreerd zijn. In dit 

werk werden enkele vernieuwende syntheseroutes beschreven en werd er aandacht 

geschonken aan ZrW2O8 in solid solutions en thermisch invariante composiet 

materialen.  

De syntheseroutes zelf zijn beschreven in hoofdstuk 3 en 4. Het hoofdstuk 3 beschrijft 

de conventionele vaste stof reactie waarin ZrO2 en WO3 als precursormaterialen 

worden gebruikt. Dit oxidemengsel moet gehomogeniseerd worden vooraleer men 

met de thermische behandeling kan beginnen. Twee maalmethodes werden 

beschreven: (1) samen vermalen van de oxides in de aanwezigheid van zirconia parels 

en (2) malen met behulp van een balmolen gevolgd door het sproeidrogen van een 

slurry bestaande uit het fijngemalen poeder in een polyethyleen glycol oplossing. 

Hoge temperatuursbehandeling van beide oxidemengsels resulteerde in de vorming 

van puur ZrW2O8 maar de morfologie van de gesinterde balkjes was niet optimaal. 

Ontbinding van PEG leidde tot porievorming maar ook de mengsels zonder 

organische componenten resulteerden in een poreus materiaal. Dit kan 
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hoogstwaarschijnlijk verklaard worden door een slechte stapeling van de 

poederkorreltjes tijdens het persen van de balkjes.  

Vermalen van poeders is een energierovend proces. Waterige oplossingen van 

wolfraam- en zirconiumzouten zijn een aantrekkelijk uitgangspunt. Twee sol-gel 

routes die gebruik maken ofwel citroenzuur ofwel EDTA werden voorgesteld. De 

toevoeging van de complexantia was noodzakelijk om de homogeniteit van de 

oplossingen over een groot pH gebied te vrijwaren. Elke vorm van neerslag of 

samenklitten moet vermeden worden omdat deze de homogeniteit drastisch verlagen. 

Beide sol-gel methodes resulteerden in een zuiver zirconiumwolframaat dat 

gekenmerkt wordt door een thermische expansiecoëfficiënt die dicht in de buurt ligt 

van deze bekomen door vroeger gepubliceerde synthesemethodes die de sublimatie 

van WO3 proberen tegen te gaan. Deze sublimatie zorgt immers voor bijkomende 

poriën en verstoort de stoëchiometrische verhouding. De homogeniteit en de kleine 

deeltjesgroottes van de poeders verkregen via de sol-gel methode zorgen voor een 

snelle diffusie en reactie via de vele deeltjesgrenzen. Water gebaseerde sol-gel 

methodes bieden ook een “groen” alternatief voor de organische sol-gel routes. Deze 

sol-gel routes zouden ook geschikt kunnen zijn voor het afzetten van dunne lagen 

ZrW2O8 op een geschikt substraat na verder grondig onderzoek naar het fijnregelen 

van het thermisch proces. 

De gels bekomen door de citraat-gel methode bij een pH boven 6 vertonen een blauwe 

verkleuring wanneer ze blootgesteld worden aan het zonlicht. Het fotoluminescente 

gedrag kan toegeschreven worden aan kleine, discrete WO4
2- en WO6

6- polyeders in 

oplossing. De aanwezigheid van WO4
2- tetraëders is eerder onverwacht aangezien het 

ammonium metawolframaat gekenmerkt wordt door de Keggin structuur die 

opgebouwd is uit octaëders. EXAFS analyses bevestigen de aanwezigheid van de 

WO4
2- species in de waterige oplossingen (pH 6 – 8). De verandering van 6- naar 4-

coördinatie rond het centrale wolfraamatoom wordt gesuggereerd door veranderingen 

waargenomen in de radiale plots. Doorgedreven EXAFS studies zouden een beter 

inzicht kunnen verschaffen in de chemie heersend in de precursoroplossing en de 

structurele veranderingen van een waterige oplossing tot een hoog-visceuze gel.  
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De bovenvermelde synthesemethoden zijn niet alleen geschikt voor de bereiding van 

zuiver ZrW2O8. Ze kunnen daarenboven ook aangewend worden voor de synthese van 

ZrW2O8 composiet materialen. De keuze viel op ZrO2 als tweede component in het 

composiet en de bereidings- en/of synthesemethoden kunnen in twee grote groepen 

ingedeeld worden. De eerste route gebruikt ZrW2O8 en ZrO2 als uitgangsproducten en 

kan meer een bereidingsmethode benoemd worden aangezien er geen nieuwe fasen 

worden gevormd. In deze composieten waren de ZrO2 deeltjes zeer inhomogeen 

verdeeld. Dit beïnvloedt de mechanische eigenschappen van het composietmateriaal 

in negatieve zin. De andere methode kan gerangschikt worden als een 

synthesemethode en gebruikt een niet-stoëchiometrisch mengsel van ZrO2 en WO3 

oxide poeders. ZrW2O8 wordt “in situ” gevormd en hierdoor zijn de ZrO2 partikels 

wel mooi verspreid in de ZrW2O8 matrix met betere mechanische eigenschappen tot 

gevolg.  

Alle composieten vertoonden een negatieve afwijking van de mengregel. Deze 

afwijking wordt veroorzaakt door de porositeit en de verschillen in mechanische 

eigenschappen van de individuele componenten. De vergelijking tussen composieten 

bereid via de conventionele route en deze gesynthetiseerd met de “in situ” methode 

toonden aan dat de afwijking van de mengregel opvallender was bij composieten die 

via de eerste methode “bereid” waren. De samenstelling van een thermisch invariant 

composiet kon voorspeld worden door een curve te fitten aan de experimentele 

gegevens bij verschillende samenstellingen. Dit composietmateriaal vertoonde 

inderdaad geen thermische expansie maar helaas slechts in een beperkt 

temperatuursgebied. ZrW2O8 vertoont een fasetransitie die gepaard gaat met een 

verschil in expansiegedrag. Deze transitie kon ook waargenomen worden bij de 

composieten. 

Die fasetransitietemperatuur wordt beïnvloed door de substitutie van de zirconium- en 

wolfraamatomen in het kristalrooster. Een verschuiving van deze temperatuur kan 

voor bovenvermeld composiet het gebied waarin er geen thermische expansie optreedt 

verlengen. Ce4+ en Ti4+ werden onderzocht als potentiële kandidaten om de Zr positie 

in ZrW2O8 in te nemen. Beide ionen hebben dezelfde valentie als Zr zodat de 

neutraliteit van het kristal bewaard blijft. Ce4+ (101 pm) bleek niet geschikt voor 

substitutie en de relatief grote ionenstraal in vergelijking met Zr4+ (86 pm) zou hier 
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een belangrijke rol in spelen. Substitutie van Zr4+ door Ti4+ (74.5) resulteerde in een 

Zr1-xTixW2O8 (0 ≤ x ≤ 0.05) solid solution. De celparameter daalde lineair in dit 

gebied en ook de transitietemperatuur ondervond een daling. Het vergelijken van deze 

waarnemingen met resultaten vermeld in literatuur en experimenten met                  

Zr1-xSnxW2O8 solid solutions toonde aan dat de bindingsterkte (M – O) een 

belangrijke invloed heeft op de transitie. Een lagere bindingssterkte zal een verlaging 

van de fasetransitietemperatuur tot gevolg hebben. Deze veronderstelling werd 

bevestigd door DSC analyse van Ti en Sn gesubstitueerde materialen. Zowel de 

reactie enthalpie als de entropie daalden bij toenemende substitutiegraad. Deze 

bevindingen herbevestigden ook het ratelmodel als drijfveer voor de fasetransitie. 

Bindingssterkte, valentie en ionenstraal zou het hierdoor mogelijk kunnen maken om 

de verschuiving van de fasetransitietemperatuur te voorspellen.  
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°C  degree Celsius 

Å   Ångström (10-10m) 

Ø  Diameter 

A  area of a 2D cell 

A  cell parameter (x-axis) 

B  cell parameter (y-axis) 

B  width  

BET  Brunauer, Emmet and Teller  

C  cell parameter (z-axis) 

ci  contribution of a specific vibrational mode 

C  heat capacity 

CP  heat capacity at constant pressure 

CV  heat capacity at constant temperature 

CA  Citric Acid 

CIT-5  [Si32O60] Californian Institute of Technology 

CMC  Ceramic Matrix Composite 

D  inter-planar spacing 

D  height 

d50  50th percentile of the particle size distribution 

d90  90th percentile of the particle size distribution 

DSC  Differential Scanning Calorimetry 

E  modulus of bending 

E0  binding energy of the photo-electron 

DUBBLE  Dutch Belgian BeamLine at ESRF 
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EDTA  Ethylene Diamine Tetraacetic Acid 

ESRF  European Synchrotron Radiation Facility 

EXAFS  Extended X-ray Absorption Fine Structure 

F  load at fracture 

f  Weight of the synergy contribution 

f(k)  scattering properties 

FT  Fourier Transformed 

FWHM  Full Width at Half Maximum 

g  Gram 

GeV  gigaelectron volt (109 eV) 

h  Hour 

h  Miller indices h: x/a 

h  Planck’s constant: 6.62608 10-34 J s 

ħ  Reduced Planck’s constant: h/2π: 1.05457 10-34 J s 

HIP  Hot Isostatic Pressing 

HT – XRD   High Temperature – X-Ray Diffraction 

I  moment of Inertia 

I, I0  Intensity of incident (I0), transmitted (I)radiation 

IR  Infra Red 

ITQ-1  |H2.4
+Na3.1

+|[Al0.41B0.51Si66.5O144] Instituto de Technologia 

Quimica Valencia 

ITQ-3  [Si64O128] Instituto de Technologia Quimica Valencia 

k  Miller indices (z/c) 

k  wavenumber of the photo-electron 

kB  Boltzmann’s constant: 1.38066 10-23 J K-1 

keV  kilo electron volt (103 eV) 

kJ  kilo Joule (103 J) 

L  distance between the supports 

L  total orbital momentum 

l  Length 

l  Miller indices (y/b) 

LaTP  La0.33Ti2(PO4)3 

M  Molarity (mol/L) 
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m  Mass 

mA  Milliampere (10-3 A) 

mass%  weight percentage 

meV  millielectron volt (10-3 eV) 

MMC  Metal Matrix Composite 

mmol  millimol (10-3 mol) 

MPa  Megapascal (106 Pa) 

mW  milliwatt (10-3 W) 

N  number of neighbouring atoms 

n  order of diffraction 

nm  nanometer (10-9 m) 

NASICON  Sodium Super-Ionic conductor 

NTP  NaTi2(PO4)3 

NTE   Negative Thermal Expansion 

NWO  Nederlands fonds voor Wetenschappelijk Onderzoek 

P  volume fraction porosity 

P, p  Pressure 

p  momentum 

PEG  Polyethylene glycol 

pm  picometer (10-12 m) 

PMC  Polymer Matrix Composite 

ppm  parts per million 

R  distance to the neighbouring atoms 

r  bond length 

RE  Rare Earth elements 

RT  Room temperature (20 °C) 

RUM  Rigid Unit Mode 

S  Entropy 

S  Spin quantum momentum 

Sy  Residual 

SEM  Scanning Electron Microscopy 

SEM-EDX  Scanning Electron Microscopy (Energy Dispersive analysis of 

X-rays 
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SrTP  Sr0.5Ti2(PO4)3 

SSZ-23  |(C13H24N+)4.1F3.3
-(OH-)0.8|[Si64O128] Standard oil Synthetic 

Zeolite 

T  Temperature 

TT  Transition Temperature 

TGA – DTA  Thermo Gravimetric Analysis – Differential Temperature 

Analysis 

TGA – MS   Thermo Gravimetric Analysis – Mass Spectrometry 

TMA  Thermal Mechanical Analysis 

V  Volume 

V%  Volume fraction 

W  weight of the observation 

w%  weight percentage 

XANES  X-ray analysis Near-Edge spectroscopy  

XRD  X-Ray Diffraction 

Y  observed/calculated intensity 

 
 
Greek Symbols 
 
α  bonding angle (between y- and z-axis) 

α  linear thermal expansion coefficient 

Β  bonding angle (between x- and z-axis) 

β   volume thermal expansion coefficient 

Γ  bonding angle (between x- and y-axis) 

Γ  Grüneisen parameter 

∆CP  Excess Heat capacity 

∆D  strain 

∆F  stress 

∆H  Enthalpy 

∆S  Entropy 

δ(k)  phase shift 

η  geometrical calculable constant 

θ  angle between incident or diffracted beam 
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θ  rotation angle 

λ  wavelength of radiation 

µm  micrometer (10-6 m) 

µ  absorption coefficient 

ν  vibrational frequency 

ν  Volume fraction 

ρ  density  

σf  Flexural Strength 

σ2  Debye-Waller factor: disorder 

χ(k)  oscillations as a function of photo-electron wavenumber 

χT  isothermal compressibility 

χS  adiabatic compressibility 

χ  compressibility 

 



 



Appendix: Crystallographic data 
 
 

 

Crystallographic data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Pattern : 00-050-1868 Radiation = 1.540598 Quality : High

ZrW2O8

Zirconium Tungsten Oxide

Lattice : Cubic

S.G. : P213     (198)

a = 9.15510

Z =      4

Mol. weight =  586.92

Volume [CD] = 767.34

Dx = 5.080

Sample preparation: Zr W2 O8 was prepared by heating a mixture of Zr O2 
and W O3 in the correct stoichiometric proportion in a sealed platinum tube at 
1473 K for 48 hours. Cubic Zr W2 O8 was maintained metastably at ambient 
conditions by quenching the sample in water.
Color: Colorless
Temperature of data collection: Pattern taken at room temperature.
Data collection flag: Ambient.                             

Perottoni, C., da Jornada, J., Univ. Federal do Rio Grande do Sul, Porto 
Alegre, Brazil., Private Communication (1999)

Radiation : CuKa1 

Lambda : 1.54056

SS/FOM : F30=1000(0.0002,30)

Filter : Monochromator crystal

d-sp : Calculated spacings

       

2th i h k l

13.667 4 0 1 1
16.759 133 1 1 1
19.375 122 0 0 2
21.689 999 0 1 2
23.788 772 1 1 2
27.535 252 0 2 2
29.241 88 1 2 2
30.861 166 0 1 3
32.408 322 1 1 3
33.892 9 2 2 2
35.320 198 0 2 3
36.700 359 1 2 3
39.334 25 0 0 4
40.597 123 0 1 4
41.828 7 0 3 3
43.031 43 1 3 3
44.207 91 0 2 4
45.358 188 1 2 4
46.488 33 2 3 3
48.685 194 2 2 4
49.756 77 0 3 4
50.811 176 0 1 5
51.850 278 1 1 5
53.885 191 0 2 5
54.883 44 1 2 5
56.843 171 0 4 4
57.808 43 1 4 4
58.762 64 0 3 5
59.706 32 1 3 5
60.640 30 0 0 6
61.567 13 0 1 6
62.486 171 1 1 6
65.197 105 0 4 5
66.088 62 1 4 5
66.972 8 3 3 5
67.851 31 2 2 6
68.724 74 0 3 6
69.592 83 1 3 6
71.314 4 4 4 4
72.168 56 2 3 6
73.018 99 0 1 7
73.864 48 1 1 7
74.707 11 0 4 6
75.546 63 0 2 7
76.383 20 1 2 7
78.046 87 2 4 6
78.874 14 2 2 7
79.701 14 0 3 7
80.523 84 1 3 7
82.164 25 0 5 6
82.982 11 1 5 6
84.615 3 0 0 8
85.429 54 0 1 8
86.242 47 1 1 8
87.056 13 3 3 7
87.867 18 0 2 8
88.679 17 1 2 8
89.491 25 3 5 6
91.113 102 0 6 6
91.924 16 0 3 8
92.736 42 0 5 7
93.549 24 1 5 7
94.362 2 2 6 6
95.176 35 2 3 8
95.991 33 2 5 7



Pattern : 00-032-1395 Radiation = 1.540598 Quality : High

WO3

Tungsten Oxide

Lattice : Anorthic (triclinic)

S.G. : P-1      (2)

a = 7.30900

b = 7.52200

c = 7.67800

a/b = 0.97168

c/b = 1.02074

alpha = 88.81

beta = 90.92

gamma = 90.93

Z =      8

Mol. weight =  231.85

Volume [CD] = 421.92

Dx = 7.300

Dm = 7.270

General comments: Stable from -40 C to 17 C.
General comments: Single-crystal data used.
Additional pattern: See 20-1323.
Data collection flag: Ambient.                                                   

Diehl, R. et al., Acta Crystallogr., Sec. B, volume 34, page 1105 (1978)

Radiation : CuKa  

Lambda : 1.54180

SS/FOM : F25= 21(0.0140,87)

Filter : Beta

d-sp : Guinier

Internal standard : NaCl  

2th i h k l

23.144 85 0 0 2
23.643 100 0 2 0
24.367 100 2 0 0
26.490 9 -1 2 0
26.619 13 0 -2 1
26.840 8 -2 0 1
28.383 7 -1 1 2
28.634 13 -1 2 1
28.842 18 1 1 2
28.928 20 -1 -1 2
29.069 8 1 -1 2
33.000 20 0 2 2
33.577 35 -2 0 2
33.677 25 0 -2 2
33.916 25 -2 2 0
34.105 35 2 0 2
34.493 25 2 2 0
35.001 3 -1 2 2
35.388 4 -2 1 2
35.509 4 1 2 2
35.668 7 -2 2 1
35.896 7 1 -2 2
40.705 3 3 -1 1
40.954 17 -2 2 2
41.871 30 2 2 2



Pattern : 00-037-1484 Radiation = 1.540598 Quality : High

ZrO2

Zirconium Oxide
Also called: zirconium dioxide, Baddeleyite, syn, zirkite, zirconia

Lattice : Monoclinic

S.G. : P21/a    (14)

a = 5.31290

b = 5.21250

c = 5.14710

a/b = 1.01926

c/b = 0.98745

beta = 99.22

Z =      4

Mol. weight =  123.22

Volume [CD] = 140.70

Dx = 5.817

I/Icor =   2.60

Sample source or locality: Sample was obtained from Titanium Alloy 

Manufacturing Co. (1990) and was heated to 1300° for 48 hours.
Analysis: Spectrographic analysis showed that this sample contained less 
than 0.01% each of Al, Hf and Mg and between 0.1 and 0.01% each of Fe, Si 
and Ti.
Structure: The structure of Zr O2 (baddeleyite) was determined by 
McCullough and Trueblood (1) and confirmed by Smith and Newkirk (2).
Polymorphism: There are a number of polymorphic forms of Zr O2 stable at 
different temperatures and pressures.
Temperature of data collection: The mean temperature of the data 

collection was 25.5°.
Additional pattern: To replace 13-307 and 36-420 and validated by 
calculated pattern 24-1165.
General comments: Pattern reviewed by Holzer, J., McCarthy, G., North 
Dakota State Univ., Fargo, North Dakota, USA, ICDD Grant-in-Aid (1990). 
Agrees well with experimental and calculated patterns.  Additional weak 
reflections [indicated by brackets] were observed.
Color: Colorless
Additional pattern: See ICSD 18190 (PDF 72-1669); 15983 (PDF 72-597); 
26488 (PDF 74-815); See ICSD 60903 (PDF 78-50).
Data collection flag: Ambient.                

McMurdie, H., Morris, M., Evans, E., Paretzkin, B., Wong-Ng, W., Hubbard, 
C., Powder Diffraction, volume 1, page 275 (1986)

CAS Number: 1314-23-4

Radiation : CuKa1 

Lambda : 1.54060

SS/FOM : F30=111(0.0073,37)

Filter : Monochromator crystal

d-sp : Diffractometer

Internal standard : Ag FP 

2th i h k l

17.419 3 0 0 1
24.048 14 1 1 0
24.441 10 0 1 1
28.175 100 -1 1 1
31.468 68 1 1 1
34.160 21 2 0 0
34.383 11 0 2 0
35.309 13 0 0 2
35.900 2 -2 0 1
38.396 1 -2 1 0
38.541 4 1 2 0
39.411 1 0 1 2
39.990 1 -2 1 1
40.725 12 -1 1 2
41.150 5 2 0 1
41.374 5 -1 2 1
44.826 7 2 1 1
45.522 6 -2 0 2
48.949 2 -2 1 2
49.266 18 2 2 0
50.116 22 0 2 2
50.559 13 -2 2 1
51.193 5 -1 2 2
54.104 11 0 0 3
54.680 1 2 2 1
55.270 11 1 2 2
55.400 11 3 1 0
55.570 9 -3 1 1
55.883 6 0 3 1
57.168 7 -1 1 3
57.861 4 -1 3 1
58.268 3 -2 2 2
59.775 8 1 3 1
60.055 7 -2 0 3
61.367 5 3 1 1
61.984 5 -3 1 2
62.838 8 1 1 3
64.079 1 3 2 0
64.250 2 2 3 0
64.966 1 0 3 2
65.384 2 -2 3 1
65.700 6 0 2 3
65.884 4 -1 3 2
68.912 1 2 3 1
69.620 1 3 2 1
70.190 1 -3 2 2
71.071 2 -2 2 3
71.300 4 -4 0 1
71.950 1 4 0 0
72.104 1 -2 3 2
72.450 1 0 4 0
72.642 1 3 1 2
73.580 1 -3 1 3
74.682 2 0 0 4
75.046 4 1 4 0
76.410 1 -1 1 4
77.392 1 3 3 0
78.079 1 4 0 1
78.866 1 0 3 3



Pattern : 01-089-4203 Radiation = 1.540598 Quality : Calculated

TiO2

Titanium Oxide
Anatase, syn

Lattice : Tetragonal

S.G. : P42/mnm  (136)

a = 3.78500

c = 9.51400

Z =      2

Mol. weight =   79.90

Volume [CD] = 136.30

Dx = 1.947

I/Icor =   5.04

ICSD collection code: 044882
Remarks from ICSD/CSD: REM      M PDF 21-1272.
Remarks from ICSD/CSD: REM      M z(O) in abstract = .2066.
Temperature factor: ITF
Data collection flag: Ambient.                                                            

Cromer, T.D., Herrington, K., J. Am. Chem. Soc., volume 77, page 4708 
(1955)
Calculated from ICSD using POWD-12++

Radiation : CuKa1 

Lambda : 1.54060

SS/FOM : F30=1000(0.0001,38)

Filter : Not specified

d-sp : Calculated spacings

       

2th i h k l

18.638 59 0 0 2
25.304 999 1 0 1
33.454 431 1 1 0
36.949 56 1 0 3
37.793 88 0 0 4
38.566 36 1 1 2
44.247 1 1 1 3
48.036 119 2 0 0
51.350 116 1 1 4
51.960 16 2 0 2
53.886 148 1 0 5
55.061 146 2 1 1
58.128 12 0 0 6
62.107 23 2 1 3
62.684 52 2 0 4
68.756 24 1 1 6
70.287 25 2 2 0
73.449 5 2 2 2
74.053 5 1 0 7
75.046 74 2 1 5
76.032 20 3 0 1
78.657 15 2 0 6
78.936 8 1 1 7
80.117 30 3 1 0
80.740 2 0 0 8
82.156 5 3 0 3
82.672 18 2 2 4
83.154 8 3 1 2
83.463 4 2 1 6
86.925 1 3 1 3
89.452 1 2 2 5



Pattern : 00-041-1445 Radiation = 1.540598 Quality : High

SnO2

Tin Oxide
Cassiterite, syn
Also called: tin stone, wood tin

Lattice : Tetragonal

S.G. : P42/mnm  (136)

a = 4.73820

c = 3.18710

Z =      2

Mol. weight =  150.69

Volume [CD] =  71.55

Dx = 6.994

Dm = 7.020

I/Icor =   1.90

Color: White
Additional pattern: To replace 1-657, 14-567 and 21-1250.
Optical data: B=2.006, Q=2.0972, Sign=+
Additional pattern: See ICSD 39173 (PDF 77-447).
Data collection flag: Ambient.                                   

Welton, J., McCarthy, G., North Dakota State University, Fargo, North 
Dakota, USA., ICDD Grant-in-Aid (1988)
Powder Diffraction, volume 4, page 156 (1989)

Radiation : CuKa1 

Lambda : 1.54060

SS/FOM : F30=105(0.0095,30)

Filter : Monochromator crystal

d-sp : Diffractometer

Internal standard : Si    

2th i h k l

26.611 100 1 1 0
33.893 75 1 0 1
37.950 21 2 0 0
38.969 4 1 1 1
42.635 1 2 1 0
51.781 57 2 1 1
54.759 14 2 2 0
57.819 6 0 0 2
61.872 11 3 1 0
62.591 1 2 2 1
64.719 12 1 1 2
65.938 14 3 0 1
69.231 1 3 1 1
71.278 6 2 0 2
71.773 1 3 2 0
74.452 1 2 1 2
78.714 9 3 2 1
81.139 3 4 0 0
83.714 6 2 2 2
84.179 1 4 1 0
87.228 3 3 3 0
89.766 7 3 1 2
90.890 8 4 1 1
93.266 3 4 2 0
93.924 1 3 3 1
95.980 3 1 0 3
98.896 1 3 2 2
99.041 1 1 1 3

100.007 1 4 2 1
108.256 4 4 0 2
108.407 7 2 1 3
111.464 1 4 1 2
111.972 3 5 1 0
114.752 3 3 3 2
115.984 8 5 0 1
118.310 1 2 2 3



Pattern : 00-049-2452 Radiation = 1.540598 Quality : High

C10H12N2O18Zr·4H2O
/Zr(C10H12N2O8)·4H2O

Zirconium edtate tetrahydrate
Also called: zirconium EDTA, zirconium ethylenediaminetetraacetate 
tetrahydrate

Lattice : Base-centered monoclinic

S.G. : C2/c     (15)

a = 11.49500

b = 11.58200

c = 12.17900

a/b = 0.99249

c/b = 1.05155

beta = 102.84

Z =      4

Mol. weight =  611.49

Volume [CD] = 1580.91

Dx = 2.569

I/Icor =   2.30

Sample preparation: Synthesized from a suspension of 
ethylenediaminetetraacetic acid and a water solution of Zr O Cl2 at 100 C, 
followed by slow crystallization while cooling and recrystallization from water.
Unit cell: The structure was refined from single-crystal x-ray data: a=11.48(5), 

b=12.13(5), c=11.58(5), γ=102.0(3), S.G.=`B2/b`, Z=4 [Pozhidaev, A., Porai-
Koshits, M., Polynova, T., Z. Struct. Chim. (Russ.), 15 644 (1974)].
Sample source or locality: The sample was provided by Kuzmina, N., 
Moscow State Univ., Russia.
Color: White
Temperature of data collection: Pattern taken at 20 C.
General comments: Data collected in transmission mode.
Data collection flag: Ambient.                           

Mironov, A., Antipov, E., Moscow State Univ., Russia., ICDD Grant-in-Aid 
(1997)

CAS Number: 51321-09-6

Radiation : CuKa1 

Lambda : 1.54060

SS/FOM : F30= 55(0.0121,45)

Filter : Monochromator crystal

d-sp : Diffractometer

External standard : Si    

2th i h k l

12.241 100 -1 1 1
14.216 67 1 1 1
14.901 27 0 0 2
15.283 33 0 2 0
15.787 6 2 0 0
19.189 17 -2 0 2
21.423 3 0 2 2
22.044 1 2 2 0
24.112 2 2 0 2
24.396 9 2 2 1
24.566 6 -3 1 1
25.002 13 -1 3 1
26.026 8 1 3 1
26.341 1 -3 1 2
26.611 33 1 1 3
27.276 3 0 2 3
27.710 1 -1 3 2
28.670 1 2 2 2
28.964 9 -2 2 3
29.614 17 1 3 2
29.998 7 -3 1 3
30.376 2 -1 1 4
30.826 1 0 4 0
31.765 3 0 4 1
31.906 5 4 0 0
32.129 4 -1 3 3
32.979 11 -3 3 1
33.346 14 3 3 0
33.868 1 0 2 4
34.185 1 2 2 3
34.439 2 0 4 2
34.566 3 1 3 3
34.840 8 -4 2 1

*34.840 8 2 4 0
35.410 2 3 3 1
35.552 2 4 2 0
35.751 3 -4 2 2
36.474 1 2 4 1
36.597 3 -2 4 2
37.285 6 2 0 4
37.711 2 -1 1 5
38.264 1 -4 2 3
38.503 4 0 4 3
38.939 1 3 3 2

*38.939 1 -4 0 4
39.742 4 1 5 0

*39.742 4 -2 4 3
40.005 2 -5 1 1
40.502 8 2 2 4
40.824 1 1 5 1
41.003 1 0 2 5
41.305 3 1 1 5
41.579 1 4 2 2
42.062 1 -4 2 4
42.386 6 -5 1 3
43.310 4 1 5 2
43.641 1 3 3 3
43.887 5 -1 3 5
44.140 1 -2 4 4
45.083 2 -1 5 3
45.798 5 -3 5 1
46.371 1 4 2 3
46.968 7 -4 2 5
47.738 5 0 6 1
48.654 2 6 0 0
49.105 1 2 4 4
49.461 3 -2 4 5
50.051 2 4 4 2
50.474 3 -4 4 4
51.331 1 6 2 0
51.711 3 5 1 3
52.329 3 5 3 2
52.753 2 0 6 3
53.388 1 -1 1 7
53.715 1 -2 6 3
54.273 1 4 4 3
54.838 3 -4 4 5
55.217 2 -5 1 6

*55.217 2 2 4 5
55.603 1 3 3 5

*55.603 1 -2 4 6
56.214 1 0 4 6
56.731 1 5 3 3
57.108 3 6 2 2
57.659 1 -7 1 3
57.890 2 -1 7 2

2th i h k l

58.298 1 -1 3 7
59.041 1 -6 4 3
59.595 2 -3 3 7
59.978 1 -5 3 6
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