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They are ill discoverers that think there is no land

when they can see nothing but sea.

Francis Bacon,
philosopher and statesman

There ain’t no rules around here! We’re trying to accomplish something!

Thomas Edison, inventor
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en grote frustraties én overwinningen. Bart en Pieter, de bureauconversaties met jul-
lie waren een inspiratie in moeilijke tijden - het zal wennen worden zonder. Klaas,
je hebt mijn computer meermaals van de dood gered; merci dat je deur (bijna) altijd
openstond. Dank ook aan alle andere collega’s en ex-collega’s, die “het leven zoals het
is: INW” zo uniek en plezant maakten: Stijn, Veerle, Kris, Wim, Simon, Arne, Natalie,
Peter, Pascal, Cris, ... de lijst gaat door. Ook een dikke merci aan alle vrienden buiten
de werkomgeving, die me steeds met beide voeten op de grond hielden.



ii
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CHAPTER

1

Introduction

A strong catalyst of scientific progress has always been the desire to see beyond the
confines of our everyday experience of time and space. Paradoxically, this fascination
with the vastness of the universe is paralleled by a mounting interest in processes at
ever smaller distance scales. In the cores of stars and the depths of interstellar space,
phenomena are observed which, on earth, only occur under artificial circumstances
such as those created in particle accelerators. As a rule, the larger the available ener-
gies in a reaction, the smaller the resolution at which the participating particles can
be probed. A firm grasp of the fundamental building blocks is therefore essential to
understand the multitude of exotic processes occurring in our universe.

The standard model and QCD

A landmark in our understanding of the microscopic world has been the develop-
ment of the “standard model” [1], as summarized in Fig. 1.1. This model classifies all
elementary particles into two categories of fermions: leptons, with the electron and
electron-neutrino as best-known examples, and quarks, which form the constituents
of hadrons such as the proton and neutron. It turns out that the seemingly infinite
variety of processes occurring in nature can be understood on the basis of four funda-
mental forces. The standard model unites three of these: the weak, electromagnetic and
strong interactions, which are understood to be mediated by the exchange of bosons.
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Figure 1.1 Schematic overview of the fundamental particles according to the standard model:
six quarks (up, down, charm, strange, top, bottom - of which only u, d and to a minor degree
s are found in non-exotic matter); six leptons (electron, muon and tau, plus the corresponding
neutrinos); and three types of force-carrying bosons (photons, gluons, and the Z/W bosons, re-
sponsible for the electromagnetic, strong and weak interactions, respectively). Particle masses
are given in MeV.

The fourth and weakest force, gravity, is the subject of heated debates, centered around
the validity of string theory as a possible candidate for a unified theory of matter.

The three standard-model forces are well understood. For each, a field-theoretical
framework is available which describes how the force-carrying bosons couple to the
elementary fermions. Knowledge of the behavior of the fundamental constituents of
matter does not guarantee an understanding of larger-scale processes, however, just
like knowledge of the laws of mechanics does not enable one to predict the weather. In
this respect the strong interaction, described by the theory of quantum chromodynam-
ics (QCD), is by far the most challenging. This is due to a unique characteristic of the
strong coupling constant αs, which measures the strength of the inter-quark force. In
contrast to the weak and electromagnetic couplings, αs does not decrease but increases
when the interacting particles move further apart [2–5].

An interesting side effect of this behavior is the phenomenon called “confinement”.
This entails that quarks cannot be observed as free objects, but only in bound states of
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several quarks and/or antiquarks. On the other hand, quarks contained in a very lim-
ited space behave as quasi-free particles, a property known as “asymptotic freedom”.
Unfortunately, the region in which quarks may be considered asymptotically free is
not relevant to the energy scales typical for “common” matter. By QCD standards, dis-
tances of the order of the nucleon size imply values of αs that are too large for the usual
perturbative approaches. While a numerical approach to QCD in the medium-energy
region, called “lattice QCD” [6], does exist, at this point only static hadron properties
have been obtained with any level of confidence. As a consequence, the interpretation
of dynamical hadronic processes still hinges in significant degree on models containing
some phenomenological ingredients.

Probing the nucleon spectrum

The main objective of the study of hadronic physics is to gain insight into the transi-
tion between quark-gluon and hadronic degrees of freedom. Over the years, consider-
able effort has been invested into improving the existing picture of the nucleon spec-
trum [7]. Like the excited states of atoms have taught about the governing interactions,
knowledge of the nucleon excitations or “resonances” (abbreviated as N∗s) is expected
to provide essential information concerning the behavior of quarks at hadronic scales.

One of the central question marks in the field of N∗ physics is the so-called “missing-
resonance problem”. It turns out that many of the resonances predicted by constituent-
quark models (CQMs) [8–12] are yet to receive experimental confirmation. By defini-
tion, a CQM describes the nucleon as a bound state of three effective or constituent
quarks. These can be visualized as “naked” quarks enveloped by an ever-changing
sea of gluons and quark-antiquark pairs. Two possible explanations for the missing-
resonance issue have been put forward, the first and most drastic one being that con-
stituent quarks may not represent the proper degrees of freedom. Quark-diquark mod-
els, which contain fewer degrees of freedom, may be more appropriate [13, 14]. Alter-
natively, Koniuk and Isgur [15] indicated the possibility that these resonances do exist,
but manifest themselves in different reaction channels than those traditionally mea-
sured.

A great deal of experimental and theoretical interest has been directed to exploring
the latter hypothesis. Most of the available information concerning the N∗ spectrum
was gathered through experiments involving pion-nucleon final states. As several of
the “missing” resonances are predicted to couple weakly to the πN channel, it should
come as no surprise that they have so far remained unobserved. There are, however,
indications that some missing states have a larger probability of decaying into alterna-
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tive reaction channels, like ωN, ηN, ππN, KΛ and KΣ [16, 17].
Although the largest count rates are obtained in hadronic processes, use of an elec-

tromagnetic (EM) probe has a distinct advantage. Indeed, all EM ingredients in the
reaction amplitude can be straightforwardly expressed in the context of quantum elec-
trodynamics or QED, the well-established theory of EM interactions. The scattering
of photons and electrons from nucleons and nuclei constitutes the backbone of the
physics program at facilities such as JLab, MIT-Bates, MAMI, ELSA, SPring-8, and
GRAAL.

Strangeness production and effective fields

Electromagnetic reactions with either “open” or “closed” strangeness in the final state
are particularly interesting because of the involvement of a strange quark-antiquark
pair from the sea. In this work, we focus on the open-strangeness case, particularly the
production of a ground-state kaon and hyperon (i.e. a baryon with nonzero strangeness,
commonly abbreviated as Y) from a free nucleon.

Theoretical approaches to EM strangeness production generally fall into two cate-
gories. In parton-based models, the quark-gluon structure of the interacting hadrons
is explicitly tied in with the reaction dynamics. A successful example of such a strat-
egy is the work of Li and Saghai et al., in which the interaction vertices are constructed
directly from a chiral constituent-quark model [18–22]. Alternatively, hadrodynamic
approaches consider the interacting hadrons themselves as the basic degrees of free-
dom of the effective field theory. Thereby, the inter-particle interactions are modeled
in terms of effective Lagrangians. Because the mathematical structure of these La-
grangians is not a priori known, their construction relies for the most part on symmetry
arguments. The various strong and electromagnetic coupling strengths can be deter-
mined either from experiment or by resorting to more fundamental models. In this
respect, effective-field approaches provide a direct link between quark-model predic-
tions for mesonic/baryonic properties and experimentally accessible quantities, such
as scattering cross sections.

Starting from the late eighties, various groups have developed a particular type of
effective-Lagrangian model, commonly referred to as the “isobar” approach [23–30].
In these models, the reaction amplitude is constructed from a number of lowest-order
(or “tree-level”) Feynman diagrams. For γ(∗)p → KY (with γ(∗) a real (virtual) photon),
this implies two vertices connected by one intermediate N∗, K∗ or Y∗ particle. Dia-
grams containing intermediate N∗s are denoted as “resonant”, since they can produce
peaks (resonances) in the cross section. Intermediate kaons and hyperons cause no
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such peaking behavior, and are called “background” contributions.
While shown to provide a satisfactory description of photo- and electroproduction

observables for energies up to 2-3 GeV, such an approximation has its limitations. To
account for the N∗ resonances’ finite lifetimes, decay widths must be introduced, re-
sulting in a breaking of unitarity. Further, higher-order mechanisms like final-state in-
teractions and channel couplings are not included in a tree-level framework. The tree-
level coupling constants obtained from fits to experiment should therefore be regarded
as effective values. These cannot be directly compared to quark-model predictions, be-
cause the latter are meant to be plugged into the untruncated amplitudes instead. It
has been demonstrated by Chiang et al. [31] that the contribution of the intermediate
πN channel to the p(γ,K+)Λ cross sections is of the order of 20%.

In order to resolve some of these problems, several groups have focused on the de-
velopment of “coupled-channels” strategies [31–35]. These aim at providing a unified
description of a set of channels (including γN, πN, ηN, KY, ...) by simultaneously
modeling all electromagnetic and hadronic reactions which couple them. However,
coupled-channels approaches also face unresolved challenges, such as accounting for
the ππN channels, which are responsible for about half of the γN total cross section
in the higher-mass N∗ region. Furthermore, the large number of parameters involved
poses a serious complication. In our opinion, the challenge of clearing up the various
ambiguities can be tackled efficiently at the level of the individual reaction channels,
where the number of parameters and uncertainties can be kept at a manageable level.
In addition, the extension from photo- to electroproduction is relatively straightfor-
ward in a tree-level model, whereas, to our knowledge, no coupled-channels approach
to kaon electroproduction has as yet been proposed.

Regge phenomenology and the RPR approach

While adopting hadronic degrees of freedom is justifiable near the KY production
threshold, the quark-gluon structure of the interacting particles is bound to manifest
itself as higher energies are reached. Not surprisingly, all hadrodynamic approaches,
both isobar and coupled-channels, are deficient in their high-energy behavior. While
the cross-section data gradually decrease as the energy of the incoming photon in-
creases, the computed cross sections exhibit an unrealistic rise with energy.

This pathology can be remedied without explicitly invoking partonic degrees of
freedom. The key is provided by Regge phenomenology, a high-energy framework de-
veloped in the late fifties as an alternative approach to quantum-mechanical potential
scattering [36]. In its simplest form, the Regge model can be formulated as a modified
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version of the isobar approach. It is distinguished by the property that each interme-
diate state in the Regge amplitude comprises an entire family of hadrons, rather than a
single meson or baryon. The members of such a family are characterized by a linear re-
lation between their spin and squared mass, and are said to lie on a “Regge trajectory”.
The exchange of these trajectories is formally described through the introduction of
Regge propagators.

The Regge amplitude is considerably simpler than its isobar-model counterpart, as
it does not contain any intermediate N∗ states but consists solely of background dia-
grams. This reflects the observation that an ever larger fraction of the nucleon spec-
trum can be accessed as the photon energy increases. Since most of the contributing
N∗s have decay widths of several hundreds of MeVs, the resonant structures in the
cross section are gradually washed out as the number of overlapping states grows. By
the time the photon energy has increased beyond a few GeV, all visible traces of indi-
vidual N∗s have vanished. Under those circumstances, the amplitude can be described
by a pure background model. The latter can be explained through the duality hypothesis
which roughly states that, on average, the sum of all contributing N∗ resonances equals
the sum of all possible K∗- or Y∗-trajectory exchanges. Figure 1.2 illustrates the above
situation.

Figure 1.2 Schematic representation of the total KY photoproduction cross section as a function
of the incoming photon energy (in the lab frame). In the resonance region, up to a few GeV,
the measured observables exhibit specific structures. This indicates that both background (K∗

and/or Y∗) and resonant (N∗) contributions take part in the reaction dynamics. At higher ener-
gies, the presence of a large number of overlapping N∗s results in a smooth falloff with energy.
The corresponding amplitude may be modeled assuming only background diagrams.
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Although Regge phenomenology is a high-energy tool by construction, it has been
observed to reproduce the trends of the experimental meson production cross sections
down to photon energies of a few GeV. This is not only the case for the pseudoscalar K

and π mesons [37–40], but also for vector particles like the ω [41]. It can therefore be
assumed that, even in the low-energy domain, the background part of the various me-
son production amplitudes can be adequately described in the Regge framework. On
the other hand, the low-energy cross sections exhibit structures which cannot be repro-
duced in a pure background model. This obstacle can be surmounted by adding to the
Regge amplitude a number of Feynman diagrams containing intermediate N∗s or ∆∗s.
These resonant contributions should vanish at high energies, where the pure Regge
model is valid. This strategy has been applied successfully to high-energy double-
pion production in [42], and to the production of η and η ′ mesons in [43]. In this thesis,
a “Regge-plus-resonance” (or, RPR) model for the γp → KY and ep → e ′KY processes
(Y = Λ,Σ) will be developed.

The proposed RPR approach has a number of assets. Firstly, an appropriate high-
energy behavior for the observables is automatically ensured. In addition, the fact
that the high-energy amplitude only contains background diagrams allows one to de-
termine the background coupling constants from the high-energy data. This leaves
the resonance couplings as the sole parameters to be determined in the resonance re-
gion. Where traditional effective-Lagrangian models require hadronic form factors,
i.e. scalar functions of the exchanged four-momentum, to constrain the high-energy
behaviour of the background terms, the use of Regge propagators eliminates the need
for such an intervention. In this way, the Regge model allows to circumvent a num-
ber of issues, such as how to determine these form factors, and how to remedy the
breaking of gauge invariance entailed by their introduction [44].

Outline

In this work, we will construct a Regge-plus-resonance framework for the electromag-
netic production of kaons from the proton.

Chapter 2 describes the effective-field formalism used to model the p(γ,K)Y and
p(e, e ′K)Y reaction amplitudes. We start by defining the various photo- and electro-
production observables and the relevant kinematical variables. Next, we sketch the in-
gredients of the traditional approach to KY production in the resonance region, known
as the isobar model. We then present a strategy to correct the erroneous high-energy
behavior of the cross sections obtained in the isobar approach. This involves express-
ing the high-energy part of the amplitudes in terms of Regge-trajectory exchanges in
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the t channel. The t-channel Regge propagator, describing the exchange of kaonic tra-
jectories, is discussed in some detail. By supplementing the reggeized background am-
plitude with a number of s-channel resonances, we extend the Regge model towards
the resonance region.

In Chapter 3, we derive the Regge amplitudes for the K+Λ, K+Σ0 and K0Σ+ photo-
production reactions. It is shown that the charged-kaon channels are dominated by
the exchange of the K(494) and K∗(892) trajectories, whereas the K0Σ+ channel requires
the inclusion of an additional K∗(1410) trajectory. The sensitivity of the calculated ob-
servables to the various model ingredients, including the Regge-trajectory phases, is
investigated in detail.

An RPR description of the p(γ,K)Y processes in the resonance region is presented
in Chapter 4. Apart from the usual S11(1650), P11(1710) and P13(1720) nucleon reso-
nances, we consider contributions from the two-star P13(1900), as well as the ∆∗ states
S31(1900), P31(1910), D33(1700) and P33(1920). We also explore the possibility of a
missing D13(1900) or P11(1900). The various resonance parameters are fitted to the
resonance-region observables. We compare the results of our RPR calculations with
the available photoproduction data.

In Chapter 5, we discuss predictions for the K+Λ and K+Σ0 electroproduction ob-
servables. Thereby, we use the RPR amplitudes derived from the photoproduction
study, modified by appropriate electromagnetic form factors. We explain how the
form factors of the resonant contributions are obtained using the covariant constituent-
quark model developed by the Bonn group [45].

Chapter 6 states our conclusions and presents a brief outlook for the future. In Ap-
pendix A, we list the various interaction Lagrangians assumed for our calculations.
Appendix B sketches the fitting procedure followed in this work. A list of the ex-
tracted background and resonance parameters can be found there as well. The main
steps in deriving the Regge amplitude for spinless external particles are summarized
in Appendix C.



CHAPTER

2
Models for the p(γ, K)Y and
p(e, e ′K)Y reactions

Since its initial formulation, quantum chromodynamics (QCD) has been thoroughly
tested in reactions at very high energies. From the outset, however, efforts to apply it
to hadronic processes have been thwarted by several complicating factors. Arguably
the most fundamental of these is the non-perturbative nature of the strong interaction
at the energy scales typical to “everyday” matter. Although significant progress has
been made in ab initio computations of QCD on the lattice [6], at this point only static
hadron properties have been computed with a reasonable level of confidence. While
steps have recently been taken to tackle the ∆(1232) → γ + p transition using lattice
QCD [46], reliable results for other reactions, particularly strong decays, are not ex-
pected in the near future. The interpretation of dynamical hadronic processes thus
continues to hinge on models containing some phenomenological ingredients.

A topic which has attracted considerable interest over the years is the transition
between the high- and intermediate-energy regimes, where the behavior of hadronic
matter is governed by partonic and hadronic degrees of freedom, respectively. Long-
standing questions concerning the nature of this transition include the emergence of
constituent quarks as effective degrees of freedom, and the origin of spontaneously
broken chiral symmetry. We will introduce two complementary theoretical frame-
works, either of which allows to tackle a variety of hadronic processes in a specific
energy region. The isobar model (Sec. 2.3) is commonly applied to the near-threshold
kinematical region, involving center-of-mass energies up to a few GeV. Higher-energy
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processes, on the other hand, can be efficiently treated with the aid of Regge phe-
nomenology (Secs. 2.4.1 and 2.4.2). The main objective of this work is to construct a
hybrid “Regge-plus-resonance” (RPR) framework, valid over the entire energy region
covered by the isobar and Regge descriptions (Sec. 2.4.3). We start out by putting the
p(γ(∗), K)Y reaction into the more general context of hadronic physics (Sec. 2.1).

2.1 Studying the strangeness channels

2.1.1 Motivation and challenges

Among all known manifestations of strongly interacting matter, a main protagonist
in the field of hadronic physics is still the most common hadron in existence: the nu-
cleon. Attaining a full picture of its internal structure, as reflected for example by its
excitation spectrum, is envisaged as a stepping-stone to unlocking some of the more
subtle aspects of QCD. The excitation of nucleon resonances (abbreviated N∗s) can be
accomplished through the transfer of energy to a free or bound proton by means of an
external probe.

Since hadronic probes, primarily pions, boast the largest interaction cross sections,
results from pion-induced experiments have long made up the bulk of N∗ data. While
experimentally more challenging to use, leptonic probes have the theoretical advan-
tage of interacting with the struck proton through the electroweak interaction, which
is better understood than the strong one. Ever since the advent of sufficiently sensi-
tive detectors, an impressive amount of effort has been devoted to unraveling the N∗

spectrum through the study of photo- and electroinduced meson production from the
nucleon. A strong motivation for studying this type of reaction involves finding a so-
lution to the so-called “missing-resonance” problem. It turns out that a considerable
fraction of the resonances predicted by constituent-quark (CQ) models [8–12] have so
far remained unobserved. Proof of the existence of these missing states would consti-
tute a strong confirmation of the validity of the CQ concept. On the other hand, if no
solid evidence emerges, the concept of CQs as appropriate degrees of freedom could
be at stake. A quark-diquark picture represents a possible alternative.

Most of the available N∗ information stems from experiments involving πN final
states. It cannot be excluded, though, that a study of alternative reaction channels,
such as γ(∗)N → ωN, ηN, ππN and KY, may reveal the existence of missing N∗s. This
suspicion is backed up by claims from CQ-model calculations that several of the as
yet unobserved resonances couple more strongly to other final states than to the tradi-
tional πN one [16]. Associated open-strangeness production reactions are particularly
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Figure 2.1 Dominant contributions making up the total cross section for photoproduction from
a free proton [47]. Data for one- and two-meson final states are displayed.

interesting due to the creation of a strange quark-antiquark pair. A thorough grasp
of the p(γ,K)Y and p(e, e ′K)Y dynamics is also required for the description of photo-
and electroinduced hypernuclear production, a field which has been rapidly gaining
momentum over the past few years.

A detailed study of electromagnetic KY production is considerably more challeng-
ing than πN production. This is illustrated by Fig. 2.1, which compares the total
cross sections for photoproduction of various meson-baryon states. The curves for the
p(γ,K+)Λ,Σ0,+ processes are one to two orders of magnitude below those for p(γ, π0)p,
implying much smaller count rates. Secondly, because the thresholds are significantly
higher, already at the lowest possible energies several overlapping resonances can con-
tribute to the KY production dynamics. This severely complicates the theoretical de-
scription.

2.1.2 Historical context

The starting shot for the experimental study of kaon photoproduction was officially
given in 1957, when both Caltech [48] and Cornell [49] released p(γ,K+)Λ cross-section
data obtained at their electron synchrotrons. The few datapoints reported in these
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pioneering publications were of a limited accuracy, and only the kinematical region
very close to threshold could be probed due to the limited electron energies available
at that time. It was not until the next decade that the first attempts were made to
formulate a theoretical model for the measured observables, first by Kuo [50] and later
by Thom [51].

Further experiments were performed in the 1970s and 1980s, not solely in the US
but also at facilities in Bonn [52] and Tokyo [53]. This prompted Adelseck et al. [54]
to re-evaluate the kaon-production operator originally proposed by Thom. Adelseck’s
model laid the foundations of the most wide-spread theoretical treatment of electro-
magnetic (EM) strangeness production: the isobar approach.

At the end of the nineties the SAPHIR collaboration, operating at the Bonn ELSA
facility, released the first high precision data for all three reaction channels γp → K+Λ,
γp → K+Σ0 and γp → K0Σ+ over the photon energy range from threshold up to 2
GeV [55, 56]. These data triggered a flood of initiatives in the theoretical community,
while also sparking renewed interest in the search for missing resonances.

Over the past years, the p(γ,K)Y database has been supplemented with high-
precision γp → K+Λ and γp → K+Σ0 data from the CLAS [57–59], SAPHIR [60],
LEPS [61, 62] and GRAAL [63] collaborations. SAPHIR has also provided a new anal-
ysis of the γp → K0Σ+ channel [64]. In addition, the CLAS collaboration has analyzed
the p(e, e ′K+)Λ,Σ0 processes [65–67]. Previous measurements of the electroproduction
reactions date back from the late seventies [68–70]. In the light of these developments,
a reassessment of the theoretical descriptions of the γp → KY processes appears to be
in order.

2.2 Kinematics and observables

Due to the small QED coupling constant (αe ≈ 1/137), electromagnetic processes can
be successfully described by perturbation theory. It has long been taken for granted
that a lowest-order approximation suffices for reactions involving a combination of
leptonic and hadronic interactions. Nearly all theoretical approaches to p(e, e ′K)Y are
built upon the supposition that the electron beam and the target proton communicate
through the exchange of a single photon. Figure 2.2 shows a schematic representa-
tion of the p(e, e ′K)Y process in the one-photon exchange approximation (OPEA). The
exchanged (virtual) photon γ∗(k) connects the leptonic and hadronic reaction planes,
which are arranged under an angle ϕK. In the photoproduction case, the photon is
on-shell so Q2 = −k2 = 0, and there is only a hadronic plane.



2 Models for the p(γ,K)Y and p(e, e′K)Y reactions 13

Figure 2.2 Definition of the reference frames and kinematic variables for the p(e, e ′K)Y process.
In photoproduction reactions, there is no leptonic plane.

2.2.1 KY photoproduction

The kinematical quantities involved in the photoproduction reaction

p (p) + γ (k) → K (pK) + Y (pY) , (2.1)

with γ a real photon, are indicated in Fig. 2.2. It is convenient to express the different
four-momenta in the center-of-mass (COM) frame:

k = (ω∗,~k∗) , pK = (E∗
K
,~p∗

K
) ,

p = (E∗
p,−

~k∗) , pY = (E∗
Y
,−~p∗

K
) ,

(2.2)

with E∗
h =

√
m2

h + |~p∗
h|2 (h = p, k, Y), and |~k∗| = ω∗. As the energy-conservation rela-

tion

ω∗ +
√

m2
p + ω∗2 =

√
m2

K
+ |~p∗

K
|
2
+

√
m2

Y
+ |~p∗

K
|
2 (2.3)

determines |~p∗
K| as a function of ω∗, the reaction dynamics depend solely on the COM

kaon scattering angle θ∗
K (defined in Fig. 2.2) and the incoming photon energy. Be-

cause the latter is measured in the laboratory frame, experimental results are usually
presented as a function of ωlab rather than ω∗. The two are linked through a Lorentz
transformation [71]:

ωlab =
ω∗

mp

[
ω∗ +

√
m2

p + ω∗2
]

= ω∗ W

mp

, or (2.4)

ω∗ = ωlab

mp√
(ωlab + mp)

2
− ω2

lab

(2.5)
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where W(= ω∗ + E∗
p) is the total COM energy of the reaction. It is often more useful to

express the observables in terms of the Lorentz invariant Mandelstam variables

s = (k + p)2 ≡ W2 , t = (k − pK)2 , u = (k − pY)
2 , (2.6)

which are related by s + t + u = m2
p + m2

Y + m2
K.

Transition amplitude

The basic expression for the differential p(γ,K)Y cross section is given by [72]

dσ

dΩ∗
K

≡ 1

2π

dσ

d cos θ∗
K

=
1

64 π2

|~p∗
K|

ω∗
1

(ω∗ + E∗
p)

2

∑

λ,λi,λf

|Mλi,λf

λ |2 (2.7)

with λ, λi and λf the photon, proton and hyperon polarizations.
∑

λ,λi,λf
represents the

averaging and/or summing over the initial and/or final polarizations which remain
unobserved experimentally. The squared amplitude assumes the form

∣∣∣Mλiλf

λ

∣∣∣
2

=
(
uλf

Y
(pY) Tµελ

µ uλi
p (p)

) (
uλi

p (p) T
ν
ελ∗

ν uλf
Y

(pY)
)

, (2.8)

introducing Tµ as the “truncated” current, from which the spinors of the external pro-
ton and hyperon fields have been removed. Further, T

µ is defined as γ0 (Tµ)
†
γ0 and ελ

µ

is the photon field polarization four-vector.

Polarized and unpolarized cross sections

It can be demonstrated that, irrespective of the nature of the observed polarizations,
Eq. (2.8) can be re-written as the trace of a product of Dirac matrices. For an unpolar-
ized photon beam, the summation over λ can be carried out using the replacement

∑

λ=±1

ελ
µελ∗

ν → − gµν (2.9)

under the condition that the amplitude is gauge invariant [73]. If the polarization of
the participating hadrons also remains unknown, averaging and summing over λi and
λf reduces the Feynman amplitude to:

∑

λiλfλ

∣∣∣Mλiλf

λ

∣∣∣
2

= −
1

4
Tr

{
(6 pY + mY) Tµ (6 p + mp) Tµ

}
, (2.10)

where we have applied the spin sum rule
∑

λ uλ
a (q) uλ

b (q) = (6q + m)ab, with a and b

Dirac indices.
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When the photon beam is polarized, the four-vectors ελ have to be substituted by
their explicit expressions. For photons that are linearly polarized, for example along ~x

and ~y, these read

ελ=x = (0, 1, 0, 0) , ελ=y = (0, 0, 1, 0) , (2.11)

whereas for circularly polarized photons

ελ=+1 = −
1√
2

(0, 1, i, 0) , ελ=−1 =
1√
2

(0, 1,−i, 0) . (2.12)

When the polarization λp,Y of the proton or hyperon is specified, a spin projection
operator [73]

Π±(np,Y) =
1

2
(1 ± γ5 6 np,Y) , (2.13)

can be inserted in front of the appropriate spinor, after which the spin summation can
be carried out. Again, this allows one to write the polarized cross section in the form
of a trace. In the rest frame of the polarized particle, the spin-projection four vector is
defined as n = (0, ~n), with ~n the unit vector along the spin quantization axis. If q is
the four-momentum in an arbitrary frame, it is therefore guaranteed that n2 = -1 and
(n · q) = 0. The expressions for np and nY in the (x, y, z) and (x ′, y ′, z ′) frames from
Fig. 2.2 are given for example in [74].

Polarization asymmetries

When one or more of the external particles are polarized, the relevant observable is
generally expressed in the form of an asymmetry. Single-polarization asymmetries are
defined as

dσ+ − dσ−

dσ+ + dσ−
, (2.14)

where + (−) refers to a polarization parallel (anti-parallel) with the respective quanti-
zation axis or helicity state. Analogously, one defines double polarization asymmetries
as

dσ(++) + dσ(−−) − dσ(+−) − dσ(−+)

dσ(++) + dσ(−−) + dσ(+−) + dσ(−+)
. (2.15)

All nonzero asymmetry observables are summarized in Table 2.1 along with the usual
choice of quantization axes. It should be noted that the fifteen quantities listed in this
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Observable Required polarization
Beam Target Recoil

Single polarization
Σ linear - -
T - along y -
P - - along y ′

Beam-target polarization
E circular along z -
F circular along x -
G linear along z -
H linear along x -

Beam-recoil polarization
Cx ′ circular - along x ′

Cz ′ circular - along z ′

Ox ′ linear - along x ′

Oz ′ linear - along z ′

Target-recoil polarization
Tx ′ - along x along x ′

Tz ′ - along x along z ′

Lx ′ - along z along x ′

Lz ′ - along z along z ′

Table 2.1 Definition of the polarized photoproduction observables. The quantization axes for
the polarization asymmetries are defined as follows: ~z ∼ ~k, ~y ∼ (~k × ~pK), ~x = ~y × ~z, ~z ′ ∼ ~pK,
~y = ~y ′, ~x ′ = ~y ′ × ~z ′. The two reference frames are also shown in Fig. 2.2. Note that, in
computing the double-polarization observables G, H, Ox ′ and Oz ′ , the photon polarization
directions are generally taken under angles of ±π/4 with respect to the scattering plane. To
obtain the beam asymmetry Σ, the photons are assumed to be polarized along x and y.

table are not independent. They are connected by six non-linear relations [75, 76]:

E2 + F2 + G2 + H2 = 1 + P2 − Σ2 − T 2 ,

FG − EH = P − ΣT ,

C2
x + C2

z + O2
x + O2

z = 1 + T 2 − P2 − Σ2 ,

CzOx − CxOz = T − PΣ ,

T 2
x + T 2

z + L2
x + L2

z = 1 + Σ2 − P2 − T 2 ,

TxLz − TzLx = Σ − PT , (2.16)

For practical reasons, an asymmetry is sometimes expressed in a different reference
frame than the one indicated in Table 2.1. For example, the beam-recoil asymmetries
presented in Ref. [59] are defined with respect to the (xyz) axes instead of the usual
(x ′y ′z ′) ones. In that case, a passive rotation of the coordinate frame allows to convert
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Cx ′,z ′ into Cx,z:

Cx = Cx ′ cos θ∗
K + Cz ′ sin θ∗

K , (2.17)

Cz = −Cx ′ sin θ∗
K + Cz ′ cos θ∗

K . (2.18)

2.2.2 KY electroproduction

In describing the electroproduction reaction

p (p) + e (k1) → e ′ (k2) + K (pK) + Y (pY) , (2.19)

it is convenient to consider the leptonic and hadronic parts of the amplitude in different
reference frames. When expressing the electron kinematics in the laboratory frame
and the hadron kinematics in the virtual photon-proton COM frame, the relevant four-
momenta are given by

k1 = (ε1,~k1) , p = (E∗
p,−

~k∗) , p
µ
K = (E∗

K
,~p ∗

K
) ,

k2 = (ε2,~k2) , k = k1 − k2 = (ω,~k) , p
µ
Y = (E∗

Y
,−~p ∗

K
) .

(2.20)

The virtual photon is responsible for the transfer of information from the leptonic to
the hadronic frame. Its four-momentum components in the lab and COM frames are
connected through the relations

~k∗ = ~k
(mp

W

)
, (2.21)

ω∗ = W − (ω + mp)
mp

W
,

=
s − m2

p − Q2

2W
, (2.22)

with Q2 = −k2.

Transition amplitude

The p(e, e ′K)Y differential cross section assumes the form [73]

dσ

dε2dΩ2dΩ∗
K

=
1

32 (2π)
5

1

mp

|~p ∗
K
|

W

ε2

ε1

∑

λi

|Tλi
|
2

, (2.23)

where
∑

λi

|Tλi
|
2 ≡

∑

λ1λ2λ ′
1
λ ′

2

∣∣∣T λ ′
1λ ′

2

λ1λ2

∣∣∣
2

, (2.24)

with λ1, λ2, λ ′
1 and λ ′

2 the nucleon, hyperon, and initial and final electron polariza-
tions. The transition amplitude T is the product of a leptonic current l

λ ′
1λ ′

2
µ , a photon

propagator, and a hadronic current Jλ1λ2
ν :

T λ ′
1λ ′

2

λ1λ2
= e l

λ ′
1λ ′

2
µ

−gµν

k2
Jλ1λ2
ν . (2.25)
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The relation [73]
∑

λ=0,±1

(−1)
λ
ε

µ∗
λ εν

λ = gµν +
kµkν

Q2
(2.26)

may be used to re-write this as

T λ ′
1λ ′

2

λ1λ2
=

e

Q2

∑

λ=0,±1

(−1)
λ
L

λ ′
1λ ′

2∗
λ Mλ1λ2

λ , (2.27)

under the condition that either the leptonic or the hadronic current (or both) are gauge
invariant. Eq. (2.27) contains the so-called leptonic and hadronic tensors, given by

L
λ ′

1λ ′
2∗

λ = l
λ ′

1λ ′
2

µ ε
µ∗
λ , Mλ1λ2

λ = Jλ1λ2
µ ε

µ
λ . (2.28)

As a result, the unpolarized squared amplitude can be written as:

∑

λi

|Tλi
|
2

=
1

4

e2

Q4

∑

λλ ′=0,±1

Lλλ ′Hλλ ′ , (2.29)

with the leptonic and hadronic contributions

Lλλ ′ =
∑

λ1λ2

(−1)
λ+λ ′

Lλ1λ2

λ

(
Lλ1λ2

λ ′

)†
, (2.30)

Hλλ ′ =
∑

λ1λ2

Mλ1λ2

λ

(
Mλ1λ2

λ ′

)†
. (2.31)

Since the leptonic tensor Lλλ ′ can be calculated from the QED Feynman rules, the right-
hand side of Eq. (2.23) can be interpreted as a linear combination of cross sections for
the p(γ∗, K)Y process, involving virtual photon parameterizations λ and λ ′, multiplied
by factors corresponding to the electron kinematics. Depending on which polarizations
are measured in the reaction, Eq. (2.29) can be cast into a number of more practical
forms.

Unpolarized cross section

It can be demonstrated that the cross section for unpolarized electroproduction may be
expressed as [77, 78]

dσ

dε2dΩ2dΩ∗
K

= Γ

[
dσT

dΩ∗
K

+ ε
dσL

dΩ∗
K

+ ε
dσTT

dΩ∗
K

cos (2ϕ∗
K
) +

√
ε (1 + ε)

dσLT

dΩ∗
K

cos (ϕ∗
K
)

]
. (2.32)

with the virtual photon flux factor given by

Γ =
α

2π2

ε2

ε1

KH

Q2

1

1 − ε
, (2.33)
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and

KH = ωlab −
Q2

2mp

the equivalent real photon lab energy. Further, ε is defined as

ε =

(
1 +

2|~k|2

Q2
tan2 θe

2

)−1

. (2.34)

We should mention that many different conventions for Eq. (2.32) exist in literature.
For example, instead of ε, one can use the quantity εL, for which multiple definitions
exist:

εL =
Q2

|~k|2
ε or

Q2

ω2
ε or

Q2

ω∗2 ε . (2.35)

Alternatively, an extra factor of
√

2 may be included in some of the terms [65]. With
the conventions from Eq. (2.32), the virtual photon cross sections can be calculated as:

dσT

dΩ∗
K

= χ
1

(4π)
2

(H1,1 + H−1,−1) , (2.36)

dσL

dΩ∗
K

= 2 χ
1

(4π)
2
H0,0 , (2.37)

dσTT

dΩ∗
K

= − χ
1

(4π)
2

(H1,−1 + H−1,1) , (2.38)

dσLT

dΩ∗
K

= − χ
1

(4π)
2

(H0,1 + H1,0 − H−1,0 − H0,−1) . (2.39)

with χ a kinematical factor given by:

χ ≡ 1

16

1

Wmp

|~p∗
K
|

KH

. (2.40)

As the ϕ∗
K
-dependence has been isolated from the structure functions (Eq. (2.32)), they

solely depend on the variable set (ω∗, |~k∗|, θ∗
K).

As in the photoproduction case, the hadronic tensor components Hλλ ′ can be re-
written as traces of Dirac matrices. The virtual photon polarization four-vectors are
given by

ελ=0 =
1√
Q2

(|~k∗|, 0, 0,ω∗) , ελ=±1 = ∓ 1√
2

(0, 1,±i, 0) . (2.41)

where a longitudinal polarization (λ = 0) is now possible as well.
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Polarized electrons

With a polarized electron beam, two additional terms enter the expression for the cross
section:

dσ

dε2dΩ2dΩ∗
K

=
dσ

dε2dΩ2dΩ∗
K

∣∣∣∣
unpol

+

h Γ

[√
1 − ε2

dσTT ′

dΩ∗
K

+
√

ε (1 − ε)
dσLT ′

dΩ∗
K

sin (ϕ∗
K
)

]
. (2.42)

Herein, h = ±1 is the helicity of the incident electron, and

dσTT ′

dΩ∗
K

= χ
1

(4π)
2

(H1,1 − H−1,−1) , (2.43)

dσLT ′

dΩK

= − χ
1

(4π)
2

(H1,0 − H0,1 − H−1,0 + H0,−1) . (2.44)

Because of the structure of the hadron current, the TT ′ term is identical to zero if no
baryon polarizations are involved in the process.

Polarized baryons

When the polarization λp,Y of the target proton and/or recoil hyperon is measured, a
similar technique as in the real-photon case can be applied. By inserting the relevant
spin-projection operator(s) Π±

(
n

β,α
p,Y

)
= 1

2

(
1 ± γ5 6 nβ,α

p,Y

)
into the amplitude, the polar-

ized cross section can be expressed in terms of a set of response functions Rαβ. Herein,
α and β correspond to the hyperon and proton polarization directions, respectively:
α = x ′, y ′, z ′ and β = x, y, z. The notation α or β = 0 is used to refer to an unpolarized
hyperon or proton.

In this work, we only consider the situation of a polarized electron beam and po-
larized recoil hyperons. The observables for such an −→e p → e ′K

−→
Λ reaction are usually

formulated as transferred polarization components. While these components depend on
the angle ϕK, the data are usually summed over all ϕK to improve statistical precision.
Using the conventions from Ref. [65], the nonzero ϕK-integrated polarization compo-
nents in the (x, y, z) and (x ′, y ′, z ′) reference frames are given by:

P ′
x ′ = c1 Rx ′0

TT ′ , (2.45)

P ′
x ′ = c1 Rz ′0

TT ′ , (2.46)

P ′
x = c2

(
Rx ′0

LT ′ cos θ∗
K − R

y ′0
LT ′ + Rz ′0

LT ′ sin θ∗
K

)
, (2.47)

P ′
z = c1

(
−Rx ′0

LT ′ sin θ∗
KRz ′0

LT ′ cos θ∗
K

)
, (2.48)
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with c1 =
√

1 − ε2/K0 and c2 =
√

2εL (1 − ε)/2K0, where K0 = R00
T + εL R00

L and εL =

εQ2/ω∗2. The response functions in the (x ′, y ′, z ′) frame, i.e. the natural frame in which
to express the hyperon polarization four-vector nY , are given by

Rα0
TT ′ = ρ−1 χ

1

(4π)
2

(H1,1 − H−1,−1)

cRα0
LT ′ = −ρ−1 χ

1

(4π)
2

(H1,0 + H0,1 + H−1,0 + H0,−1)

sRα0
LT ′ = −ρ−1 χ

i

(4π)
2

(H1,0 − H0,1 − H−1,0 + H0,−1) (2.49)

where the α,β indices of the hadronic tensor have been suppressed. Further, ρ =

|~p∗
K|/|~k∗|, and all hadron tensors should be calculated at ϕ∗

K = 0. More details can be
found for example in Refs. [65, 74, 79].

2.3 Resonance dynamics and the isobar model

Except at very high energies, where QCD can be solved perturbatively, quarks and glu-
ons do not represent the optimum building blocks in hadronic reaction models. More
appropriate degrees of freedom in the nonperturbative regime are constituent quarks
(CQs), to be imagined as elementary quarks “dressed” by a cloud of gluons and quark-
antiquark pairs, and the bound conglomerates of CQs, i.e. mesons and baryons. Be-
cause the properties of these objects are not fully determined by the fundamental field
theories, they are referred to as effective degrees of freedom. Which effective building
blocks to use depends on the energies one aims to describe. Near the p(γ,K)Y thresh-
old there are obvious structures in the cross sections, reflecting the production of indi-
vidual N∗ and/or ∆∗ states. A logical strategy to model these is to employ hadrons in
their entirety as effective degrees of freedom.

2.3.1 Tree-level amplitude

The theoretical description of the p(γ,K)Y and p(e, e ′K)Y processes can be efficiently
realized in an effective-field framework, where the interactions are modelled by means
of effective Lagrangians. Thereby, every hadron is treated as a robust entity, character-
ized by intrinsic properties such as mass, charge, form factors, and coupling constants.
This work adopts the so-called tree-level approximation, implying that only the Feyn-
man diagrams with the smallest possible number of interaction vertices are consid-
ered. Tree-level effective-field approaches are commonly known under the name of
isobar models.
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The different elements of the lowest-order p(γ(∗), K)Y amplitude are shown in Fig. 2.3.
In the OPEA, the p(e, e ′K)Y diagram is obtained by adding a (γ∗ee ′) vertex at the
end of the photon line. As indicated in Fig. 2.3, the various types of tree-level dia-
grams can be classified in several ways. The left column collects the Born terms, which
have a ground-state hadron in the intermediate state. Depending on whether the ex-
changed particle is a nonstrange hadron (N∗ or ∆∗), a kaon, or a hyperon, one fur-
ther distinguishes between s-, t- and u-channel contributions. The pole structure of a
tree-level diagram is determined by its intermediate-particle propagator P ∼ 1

q2−m2 ,
with m and q the mass and four-momentum of the exchanged hadron. Only for the
s-channel terms involving an excited state (red diagram) can these propagators actu-
ally go through their poles and produce resonant structures in the observables. The t-
and u-channel diagrams and the s-channel Born term are background contributions, as
energy-momentum conservation prevents their poles from being reached.

Figure 2.3 Tree-level contributions to the p(γ(∗), K)Y amplitude (Y = Λ, Σ0,+). Note that ∆∗

states can only be produced in the KΣ channels for reasons of isospin conservation.



2 Models for the p(γ,K)Y and p(e, e′K)Y reactions 23

A summary of the strong and electromagnetic Lagrangians used in our calculations
is given in Appendix A.1. The various intermediate-particle propagators are listed
there as well. We have used effective interactions defined as in the work of Janssen [71].

Effective fields and interactions

Although built upon the same set of formal principles, effective-Lagrangian models
face a number of challenges unknown to the fundamental field theories.

Model parameters. Not all ingredients of an effective-field framework can be deter-
mined from first principles. In constructing the various interaction Lagrangians, one
is forced to rely on symmetry arguments and conservation laws. In some situations,
such as for the strong and EM couplings to spin-0 and spin-1/2 hadrons at Q2 = 0, a
unique “standardized” form for the vertex factor is available. Lagrangians for higher-
spin states, however, can seldom be formulated unambiguously. A prime example is
the spin-3/2 field [80–82]. In electroproduction reactions, the situation is even more
complicated due to the off-shellness of the incoming photon. As a consequence, the
EM vertex involves not merely one, but two off-shell particles. Ref. [83] discusses the
impact of off-shell effects on a variety of interaction Lagrangians.

Even when an appropriate form for the Lagrangians has been found, the values of
the interaction parameters remain unknown. Contrary to the nonstrange sector, where
the coupling constants can be determined from NN/πN scattering and photoproduc-
tion, the photon-hyperon and hyperon-nucleon couplings are more difficult to access.
They can either be calculated from quark models or determined through a fit to exper-
iment. The fitting procedure followed in this work is sketched in Appendix B.1.

Form factors. Hadrons are not pointlike, but have an internal structure. As a con-
sequence, they manifest themselves differently according to the resolution at which
they are probed. This can be formally expressed by modifying the effective coupling
constants with appropriate form factors, i.e. scalar functions of a certain off-shell four-
momentum which play the role of “running” coupling constants for the effective the-
ory.

The strong or hadronic form factors are the running coupling constants at the hadronic
vertices. The form most commonly assumed in literature is a dipole [84]

Fx =
Λ4

h

Λ4
h + (x − m2

h)2
, (2.50)
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with x the squared four-momentum of the intermediate hadron h, and mh its mass. The
cutoff mass Λh determines the high-energy (short-range) behavior of the interaction,
which can either be hard (Λh small) or soft (Λh large). It can be used as a free param-
eter when optimizing the model parameters against the data. One usually assumes a
single cutoff value Λres for all resonant diagrams, and another Λbg for all background
contributions.

The electromagnetic form factors depend on Q2 = −k2, with k the incoming photon
momentum. They are normalized so that they reduce to either 0 or 1 in the real-photon
point. Their Q2 evolution can be calculated in a quark model or, in some cases, be
determined experimentally. For the sake of simplicity, many calculations assume a
monopole form factor for mesons and a dipole for baryons. While this is generally
considered to be a good approximation, recent quark-model calculations [83] predict
considerable deviations from the dipole shape for a number of baryon resonances.

Unitarity and the isobar model. Since the unitarity requirement is linked to the con-
servation of probability, it is automatically fulfilled for the fundamental interactions.
In the fundamental field theories, the decay widths of propagating particles are gener-
ated dynamically through a process known as the “dressing ” of propagators. Effective
field theories, on the other hand, are not necessarily unitary by construction. When re-
stricting oneself to the tree-level diagrams, one is forced to plug the decay widths of
the various resonances in by hand. This is accomplished through the substitution

s − m2
R −→ s − m2

R + imR ΓR (2.51)

in the propagator denominators, with mR and ΓR the mass and width of the propa-
gating state (R = N∗, ∆∗). This procedure is applied solely to the resonant diagrams,
where the exchanged particle can be on shell in the physical region of the process.

Higher-order corrections

It is obvious that the isobar approach has its limitations. Firstly, introducing decay
widths to account for the resonances’ finite lifetimes breaks unitarity for the total scat-
tering amplitude. Secondly, by truncating the amplitude at tree level, higher-order
mechanisms like channel couplings and final-state interactions are excluded from the
reaction mechanism. The importance of this issue becomes clear when realizing that
the πN → πN and γN → πN cross sections are many times larger than the γp → KY

ones. In other words, contributions from higher-order processes such as the one shown
in Fig. 2.4, are not necessarily less important than the tree-level diagrams.
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Calculations by Chiang et al. [31] have shown that the contribution of the interme-
diate πN channel to the p(γ,K+)Λ cross sections is of the order of 20%. This does
not imply, though, that tree-level models are unsuitable to describe the KY production
channels. The success of the isobar approach in describing even the most recent data
(see for example Ref. [85]) demonstrates that lowest-order diagrams are well able to
“mimic” certain higher-order effects. Caution is advised, however, when comparing
the coupling constants found in the context of a tree-level model to calculated or mea-
sured values. The tree-level values should be regarded as “dressed” results, which
effectively include higher-order effects like the one shown in the left-hand diagram of
Fig. 2.4.

In recent years, steps have been taken to include higher-order corrections in the con-
text of a “coupled-channels” (CC) framework. CC approaches aim at simultaneously
describing a number of reaction channels, such as πN, γN, ππN and KY, in a consis-
tent way [32–34, 44, 86]. Couplings between different channels and rescattering effects
within each separate channel are explicitly taken into account. In addition, it is possi-
ble to impose the unitarity constraint, for example through the K-matrix formalism. If
the scattering matrix T is assumed to have the form

T =
K

1 − iK
, (2.52)

S = 1 + 2 iT is unitary provided that the kernel K is Hermitian. It should be noted
that, while unitarity can be -artificially- ensured in such a model, no CC calculation
can include all relevant reaction channels. Decay widths accounting for the missing
channels are commonly introduced in the CC frameworks [32, 44].

In this work, channel-coupling effects are neglected. Admittedly, it is debatable
whether the extraction of resonance information can be reliably performed at tree level.
It should be stressed, however, that the current description of some channels, including

Figure 2.4 A typical higher-order contribution to p(γ(∗), K)Y (left), as compared to the direct
process (right).
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the p(γ(∗)K)Y ones, is plagued by severe uncertainties. The choice of gauge-restoration
procedure [87–89] (see Sec. 2.3.3), for example, has recently been demonstrated to have
a large impact on the computed observables [44]. Also, a fundamental understanding
of the functional form of the hadronic form factors and the magnitude of the cutoff val-
ues is still lacking. Settling such issues in the context of a coupled-channels framework
constitutes a gigantic task. We deem that these uncertainties can better be addressed
at the level of the individual reaction channels, where the number of parameters and
uncertainties can be kept at a manageable level. In addition, CC analyses face unre-
solved challenges, such as accounting for the ππN channels, which are responsible for
about half of the total γN cross section in the higher-mass N∗ region. Finally, while the
extension from photo- to electroproduction is relatively straightforward in a tree-level
model, to our knowledge no CC approach to kaon electroproduction has as yet been
proposed.

2.3.2 Background contributions

The obvious challenge for effective-Lagrangian approaches lies in selecting those dia-
grams which dominate in the energy region under study. A central question is how to
model the background part of the amplitude. The p(γ(∗), K)Y processes receive large
background contributions, in contrast to πN photoproduction for example, which is
strongly s-channel dominated in the near-threshold regime. Because the background
diagrams are not restricted to a particular partial wave, their parameterization affects
the extracted properties of all contributing resonances. Thus, constructing an appro-
priate background model is a vital step in extracting reliable resonance information
from the data.

In the absence of strong or EM form factors, the strong gKYp couplings constitute the
sole unknown ingredients of the Born-term part of the amplitude. As demonstrated
in Refs. [90, 91], SU(3)-flavor symmetry allows to relate the various gKYp couplings to
their nonstrange counterparts gπNN, which are well-known from NN and πN scatter-
ing. When assuming a maximum deviation of 20% from the exact SU(3)f value, the
following ranges emerge:

−4.5 ≤ gKΛp√
4π

≤ −3.0 , (2.53)

0.9 ≤ g
K+Σ0p√

4π
≤ 1.3 , (2.54)

and gK0Σ+p =
√

2gK+Σ0p as explained in Appendix A.3. Figure 2.5 shows that, when no
hadronic form factors are present, imposing the limits of Eqs. (2.53) and (2.54) results
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Figure 2.5 Total cross section for the three p(γ, K)Y channels, as computed in an isobar model
consisting solely of Born-term contributions, unmodified by hadronic form factors. The solid
curves represent the result obtained with the exact SU(3)f prediction for gKYp, whereas the
dashed curves correspond to the lower limits of Eqs. (2.53)-(2.54). The figure was taken from
Ref. [71]. The data are from [55, 56].

in a Born contribution which spectacularly overshoots the measured cross sections.
Any reasonable background parameterization should therefore contain an appropriate
mechanism to reduce the Born-term strength. Roughly speaking, three different strate-
gies may be followed in realizing such a reduction. We refer to them as background
models A, B and C, in accordance with Ref. [71]:

- Model A assumes hadronic form factors with a very small cutoff Λbg. When
respecting the SU(3)f constraints for gKYp, values of Λbg as small as 0.4 GeV are
required in Eq. (2.50) in order to make the calculations reproduce the data.

- Model B introduces hyperon resonances in the u channel. It has been shown
that these can strongly reduce the cross sections through destructive interference
with the Born terms. Eqs. (2.53)-(2.54) can then be fulfilled, while still assuming
realistic values for the strong form-factor cutoff (Λbg & 1.5 GeV).

- Model C consists of simply discarding the SU(3)f constraints for the strong Born
couplings. With Λbg of the order of 1.1 GeV, a proper fit of the data requires
values for gKYp which are about 25% of the SU(3)f predictions.
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Figure 2.6 Sensitivity of extracted N∗ coupling constants, derived from a fit to the data of
Ref. [55], to the chosen background parameterization A (•), B (�) or C (N). The figure was
taken from Ref. [23].

Though all of these strategies allow for a reasonable description of the data, the ex-
tracted resonance couplings depend heavily on the employed parameterization [23,92,
93]. This is shown explicitly in Fig. 2.6, which compares the N∗ coupling constants
extracted from the p(γ,K+)Λ data of Ref. [55] using background models A, B and C.
It is clear that this issue needs to be resolved before a reliable extraction of resonance
information can be attempted.

2.3.3 Gauge-invariance restoration

An essential property of any theory dealing with electromagnetic interactions is gauge
invariance, related by the Noether theorem [94] to the principle of charge conservation.
In a Lagrangian framework, the gauge-invariance requirement can be cast into a useful
mathematical form. For any process involving a real or virtual photon, characterized
by a four-momentum k and polarization four-vector ε, the total reaction amplitude can
be written as M = εµMµ. Gauge invariance is then ensured when the Lorentz condition
is fulfilled:

kµMµ = 0 , (2.55)

representing the conservation of the electromagnetic current Mµ.
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KY photoproduction

The p(γ,K)Y interaction Lagrangians are constructed in such a manner that the total
amplitude is gauge invariant in the absence of hadronic form factors. With the La-
grangians from Appendix A.1, it can easily be proven that each individual diagram
with an inelastic EM transition vertex respects gauge invariance. For the Born dia-
grams, however, the EM current contains a so-called electric term, proportional to γµεµ.
This prevents the Lorentz condition from being obeyed for each diagram separately. In
K+ photoproduction, both the s- and t-channel Born amplitudes involve an electric
coupling:

εµM
µ
s−electric = εµ egK+Yp uY γ5

6 p+ 6 k + mp

s − m2
p

γµ up , (2.56)

εµM
µ
t = εµ egK+Yp uY

2p
µ
K − kµ

t − m2
K

γ5 up . (2.57)

Here, p, k and pK represent the four-momenta of the proton, photon and kaon, whereas
up and uY are the proton and hyperon spinors. The s- and u-channel Born terms also
contain a magnetic contribution, proportional to σµνFµν, which is gauge invariant by
construction. Depending on the isospin channels, the electric contributions can occur
in different Born amplitudes. In the n(γ,K+)Σ− case, for example, electric couplings
emerge in the t and u channels. While the currents in Eqs. (2.56) and (2.57) are not
individually gauge invariant, it is straightforward to show that their sum M

µ
s−electric +

M
µ
t vanishes in contraction with kµ. Clearly, this condition is no longer met when the

amplitudes are modified by different hadronic form factors.
As suggested by Haberzettl [88], gauge invariance for the Born diagrams can be

restored by adding a number of well-chosen contact terms, i.e. diagrams which do not
contain any poles. It turns out that adding a contribution of the form

εµM
µ
contact = εµ egK+Λp uΛ γ5

[
2pµ+ 6 kγµ

s − m2
p

(
F̂ − Fs

)

+
2p

µ
K

t − m2
K

(
F̂ − Ft

)]
up (2.58)

results in an exact cancellation of the gauge-violating terms. It can be seen that the
recipe of Eq. (2.58) amounts to replacing the strong form factors of all electric terms
with an identical, new form factor F̂.

With regard to the functional form of F̂, many suggestions have been made. Haberzettl
proposed a linear combination [88]

F̂ = F̂H ≡ asFs (Λ) + atFt (Λ) + auFu (Λ) , (2.59)
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Figure 2.7 Sensitivity of extracted N∗ coupling constants to the functional form of the hadronic
form factor F̂. The left-hand (right-hand) side of the panels corresponds to a fit using back-
ground model A (B) to the data of Ref. [55]. The circles • and triangles N represent a calculation
with the Davidson-Workman recipe F̂DW , whereas the squares � and triangles H were obtained
using the Haberzettl form F̂H. The figure was taken from [23].

with the coefficients satisfying the relation as +at + au = 1. This prescription was crit-
icized by Davidson and Workman [89] who pointed out that, with the F̂H of Eq. (2.59),
Eq. (2.58) contains singularities and can therefore not be considered as a contact term.
They argue that F̂ has to obey the following minimal set of conditions:

F̂(s = m2
p) = Fs , (2.60)

F̂(t = m2
K) = Ft . (2.61)

A solution is provided by the following recipe for F̂:

F̂ = F̂DW ≡ Fs (Λ) + Ft (Λ) − Fs (Λ) Ft (Λ) . (2.62)

Figure 2.7 shows the sensitivity of a number of N∗ coupling constants to the adopted
functional form for F̂. The different values were obtained through a series of fits to the
p(γ,K+)Λ SAPHIR data of Ref. [55], using background models A and B (see Sec. 2.3.2
and Ref. [23]) in combination with the Haberzettl (F̂H, Eq. (2.59)) and Davidson-
Workman (F̂DW , Eq. (2.62)) prescriptions for F̂. It is clear that the extracted resonance
information is strongly affected by the choice of gauge-restoration recipe [23, 26, 44].
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KY electroproduction: the Gross-Riska procedure

While the Haberzettl and Davidson-Workman prescriptions successfully restore gauge
invariance at the real-photon point, the emergence of EM form factors at finite Q2 spoils
this situation. In the p(e, e ′K+)Y case, the EM Lagrangians for the s- and t-channel Born
amplitudes are given by:

Lγ∗pp = −e F
p
1

(
Q2
)
Nγµ NAµ +

eκp

4mp

F
p
2

(
Q2
)

Nσµν NFµν , (2.63)

Lγ∗KK = −ie FK

(
Q2
) (

K†∂µK − K∂µK†)Aµ , (2.64)

whereas the γ∗YY interaction acquires an electric coupling

Lγ∗YY = −e FY

1

(
Q2
)
Y γµ Y Aµ +

eκY

4mp

FY

2

(
Q2
)
Y σµν Y Fµν , (2.65)

with FY

1(0) = 0. It is obvious that, with those modifications, the gauge invariance of the
combined electric terms is lost.

To remedy this situation, Gross and Riska [95] suggested the following replacements
in the vertex functions:

Mµ
s,u−electric ∼ F

p,Y
1

(
Q2
)
γµ −→ F

p,Y
1

(
Q2
) [

γµ +
6 k
Q2

kµ

]

− F
p,Y
1 (0)

6 k
Q2

kµ , (2.66)

Mµ
t ∼ FK

(
Q2
)
(2pK − k)µ −→ FK

(
Q2
) [

(2pK − k)µ +
(2pK − k) · k

Q2
kµ

]

− FK (0)

[
(2pK − k) · k

Q2
kµ

]
. (2.67)

Using the above prescription, it is straightforward to show that the Lorentz condition
for the total amplitude (Eq. (2.55)) is obeyed at any Q2, provided that it is obeyed
at Q2 = 0. In other words, if the EM current is conserved in the real-photon point,
the procedure of Gross and Riska allows to construct a gauge-invariant model for the
virtual-photon process. We point out that the extra terms introduced in Eqs. (2.66) and
(2.67) do not contribute to the observable quantities. They are proportional to the pho-
ton four-momentum kµ which, in the Lorentz gauge assumed in this work, vanishes in
contraction with εµ.

For additional details regarding the isobar model, we refer the reader to the work of
Janssen [71]. The remainder of this chapter focuses on the central subject of this thesis,
i.e. the construction of an alternative effective-field model, avoiding the ambiguities of
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the isobar approach concerning form-factor and gauge-restoration prescriptions. In the
following chapters, it will be shown that Regge phenomenology provides an elegant
solution to this problem.

2.4 Beyond the resonance region: the Regge model

A major shortcoming of the isobar approach introduced in Sec. 2.3 is its limited scope
in energy. Specifically, isobar models fail to meet a necessary condition for unitarity,
known as the Froissart bound, which constitutes an upper limit on the high-energy be-
havior of the cross sections [96]. A realistic total scattering cross section is allowed
to increase with energy no faster than log2

(
s
s0

)
. In an isobar framework, however,

the background contribution rises as a positive power of s. This is illustrated for ex-
ample by Fig. 2.5 from the previous section. Up to a certain energy, this rise can be
compensated by destructive interferences with resonant diagrams. For COM energies
higher than a few GeV, where adding individual resonances no longer makes sense,
unphysical behavior develops.

A solution is provided by a high-energy framework introduced by Regge in 1959
[36]. Originally conceived as an alternative approach to quantum-mechanical poten-
tial scattering, this approach distinguishes itself through its elegant treatment of high-
spin, high-mass particle exchange. Regge’s starting-point was to consider the partial-
wave amplitudes as a function of a complex angular momentum variable. Interestingly,
poles of the amplitude were found to correspond to resonant states, which could be
classified into a number of families. The members of such a family, or Regge trajec-
tory, turned out to share identical internal quantum numbers, such as strangeness and
isospin, while having different total spins. Rather than focusing on the exchange of
individual hadrons, Regge theory considers entire trajectories as intermediate states.

Since its initial formulation, the Regge approach has been extended far beyond
its original scope. It gained momentum in the sixties and early seventies [97–100],
when it was first applied to hadronic scattering processes and meson-production re-
actions at high energies. In the late nineties, it received renewed attention with the
development of a Regge-based effective-Lagrangian model for EM π and K produc-
tion [37–39, 101, 102] by Guidal, Laget and Vanderhaeghen. More recently, several al-
ternative implementations of Regge phenomenology have been proposed, such as the
reggeized unitary isobar model [103, 104] and the quark-gluon string model [105].

In this section, we will take the high-energy Guidal-Laget-Vanderhaeghen (GLV)
approach as a starting point to construct a p(γ(∗), K)Y reaction model valid both in and
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above the resonance region. As the GLV model consists exclusively of background
diagrams, it cannot be expected to account for all aspects of the reaction dynamics at
lower energies. We will show that this can be remedied by superimposing a num-
ber of s-channel (N∗ and/or ∆∗) resonance contributions onto the GLV amplitude.
A similar “Regge-plus-resonance” (RPR) strategy was successfully applied to high-
energy double-pion production in Ref. [42], and to the production of η and η ′ mesons
in Ref. [43].

2.4.1 Regge theory and complex angular momenta

A “Regge trajectory” refers to a class of particles with the same internal quantum
numbers, but different masses and angular momenta. How these trajectories emerge
as formal objects in the Regge framework is considerably more complex. Here, we
will sketch the main ideas behind Regge theory and focus on its application to the
p(γ(∗), K)Y processes. For an in-depth discussion we refer to the works of Collins [106]
and Donnachie [107], as well as to Refs. [108–110].

A central concept behind the Regge formalism is the principle of crossing symmetry.
The amplitude for any process involving a particle X with momentum p in the initial
state equals the amplitude for an otherwise identical process but having an antiparticle
X with momentum p ′ = −p in the final state:

M
(
X(p) + · · · −→ · · ·

)
= M

(
· · · −→ X(p ′ = −p) + · · ·

)
(2.68)

As mentioned in Sec. 2.3, the reaction amplitude for a two-particle scattering process
1 + 2 → 3 + 4 is a function of two independent kinematical quantities. These can for
example be chosen as (s, t) or (s, u), with s = (p1+p2)

2, t = (p1−p3)
2 and u = (p1−p4)

2

the usual Mandelstam variables. Crossing symmetry implies that the crossed t- and u-
channel reactions 1+3 → 2+4 and 1+4 → 2+3 are described by the same function M
as the direct s-channel process, albeit with different values of the variables. Specifically,
if Ms, Mt and Mu represent the amplitudes for the direct and crossed reactions, the
equality

Ms(p1, p2, p3, p4) = Mt(p1,−p3,−p2, p4) = Mu(p1,−p4, p3,−p2) (2.69)

is guaranteed. In terms of the Mandelstam variables, this becomes:

Ms(s, t, u) ≡ Mt(t, s, u) ≡ Mu(u, t, s) . (2.70)

Eqs. (2.69)-(2.70) can be best understood on a diagram-by-diagram basis, as shown
in Fig. 2.8. It is clear that an incoming particle should be replaced by an outgoing
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Figure 2.8 Illustration of crossing symmetry at the Feynman-diagram level. The green (blue)
lines correspond to incoming (outgoing) external particles. By deforming the Feynman di-
agram for the process 1 + 2 → 3 + 4 (center), diagrams for the two crossed reactions may be
obtained. It can easily be seen that an s-channel diagram in the amplitude for the direct process
becomes a t−channel (u-channel) diagram in the crossed reaction 1+ 3 → 2+ 4 (1+ 4 → 2+ 3).

antiparticle with the opposite momentum, and vice versa, in order for the total lepton
number and four-momentum to be conserved.

A useful application of crossing symmetry is that it allows one to obtain the ampli-
tude of the direct s-channel process from that of the crossed t or u channel, by means of
analytic continuation. While this might seem like an unnecessary detour, it turns out to
lead to a very useful formulation of the direct amplitude. The best starting point is to
expand the crossed t- or u-channel amplitude into a Legendre series. For the reaction
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1 + 3 → 2 + 4, such a decomposition takes the form:

Mt(t, s) =

∞∑

l=0

(2l + 1)Ml(t)Pl(cos θt) = Ms(s, t) , (2.71)

with θt the t-channel scattering angle, i.e. the angle between ~p1 and − ~p2 . In the
simplified case of spinless external particles, l can be identified with the spin of a
resonant state formed in the crossed reaction, t being its squared four-momentum.
Unfortunately, Eq. (2.71) does not converge in the physical region of the direct pro-
cess [111, 112], and is therefore not suitable for analytic continuation. It may, however,
be cast into a more practical form by re-writing the sum over l as a contour integral in
the complex angular momentum, or λ, plane. Solving this integral requires a number of
assumptions concerning the analytical structure of the partial-wave amplitude Mλ(t).
Regge postulated that the only singularities of this amplitude in the complex λ plane
are poles, located at λ = αi(t). The situation αi(t) = n, with n a positive integer value,
corresponds to the creation of a physical particle or resonance with mass m =

√
t and

spin n. Precisely these functions αi(t), or equivalently, the sets of resonances that are
their physical manifestations, are known under the name of “Regge trajectories”.

A closed expression for the partial-wave decomposition (2.71) can be obtained in the
limit of very high energies W =

√
s and for small values of t. The resulting amplitude

Ms(s, t) for the direct reaction can be interpreted as corresponding to the exchange of
one or several Regge trajectories in the t channel, and is valid for extreme forward kaon
angles (θ∗

K ≈ 0). Analogously, when taking the crossed u-channel process as a starting
point, the result for Ms(s, u) is valid at high s and small u, i.e. in the extreme backward-
angle (θ∗

K ≈ 180◦) regime, and involves trajectories exchanged in the u channel of the
direct process. The amplitudes obtained in this manner obey the Froissart bound.

We wish to stress that the assumption of Regge poles as the sole singularities of
the scattering amplitude cannot be formally proven. In fact, it has been known for
some time that cuts in the complex λ plane are required to explain some features of, for
example, the np → pn scattering process [113]. Still, the success of Regge-pole models
in describing a variety of hadronic reactions, including the EM production of kaons,
provides ample justification for adopting the Regge-pole assumption.

2.4.2 Amplitudes and propagators in the Regge limit

The focus of this work is on the forward-angle kinematical region which, for elec-
tromagnetic KY production, implies the exchange of kaonic Regge trajectories in the
t channel. Empirically, it is observed that the functions α(t) relating the spins and
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Figure 2.9 Chew-Frautschi plots for the K(494) and K∗(892) trajectories. The meson masses are
from the Particle Data Group [114].

squared masses of the hadronic trajectory members are linear to a very good approx-
imation. Figure 2.9 illustrates this point by showing the J versus m2 plots (Chew-
Frautschi plots) for the trajectories with K(494) and K∗(892) as lightest members, or
“first materializations”.

Since we aim at developing a consistent description of the p(γ(∗), K)Y observables
in and above the resonance region, we opt to embed the Regge formalism into a tree-
level effective-Lagrangian model [115]. This approach was used by Guidal, Laget and
Vanderhaeghen in their treatment of high-energy electromagnetic π and K produc-
tion [37, 38, 102]. In such a framework, it turns out that the amplitude for t-channel
exchange of a linear kaon trajectory

αX(t) = αX,0 + α ′
X (t − m2

X) , (2.72)

with mX and αX,0 the mass and spin of the trajectory’s first materialization X, can be
obtained from the standard Feynman amplitude by replacing the denominator of the
Feynman propagator with a Regge propagator:

1

t − m2
X

−−→ PX
Regge[s, αX(t)] . (2.73)

A closed form can be derived for PX
Regge, starting from the t-channel Regge ampli-

tude for the simplified case of spinless external particles. In the Regge limit of high s
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and low |t|, this amplitude can be written as

M ζ=±
Regge(s, t) = C

(
s

s0

)αζ(t)
βζ(t)

sin
(
παζ(t)

)

× 1 + ζ e−iπαζ(t)

2

1

Γ
(
1 + αζ(t)

) ,

(2.74)

with s0 a scale factor, fixed at 1 GeV2, C an unknown constant, and βζ(t) a yet to be
determined function of t. A detailed derivation of Eq. (2.74) can be found in various
sources [71, 102, 106, 107]. A brief overview is also given in Appendix C.

The above equation in fact represents two separate Regge amplitudes, labeled by
a signature ζ = ±1. This is because, in solving the complex-λ integrals leading to
Eq. (2.74), one has to distinguish between the two signature parts α+(t) and α−(t) of
the trajectory in order to satisfy the convergence criteria. It can be seen that M ζ=±

Regge has
poles at values of t where αζ(t) assumes a non-negative even (ζ = +) or odd (ζ = −)
integer value. These values are precisely the spins of the particles lying on the α±(t)

Regge trajectories, with the corresponding values of t equaling the particles’ squared
masses. Thus, the ζ = + trajectory connects particles with J = 0, 2, 4 etc., and is of the
form

α+(t) = α
′+(t − m2

0) , (2.75)

with m0 the mass of the spin-0 first materialization. Similarly, the negative-signature
trajectory can be written as α−(t) = 1 + α

′−(t − m2
1).

The unknown ingredients C and βζ(t) can be determined by linking the γ(∗) p → KY

amplitude to the amplitude of the crossed t-channel process γ(∗)K → pY. As explained
in Sec. 2.4.1, crossing symmetry implies that both processes can be described by the
same function M in the complex (s, t) plane, albeit with the two Mandelstam vari-
ables s and t interchanged. Regge phenomenology exploits this symmetry by analyt-
ically continuing the reaction amplitude from the t-channel physical region into the
s-channel physical region. In the vicinity of a t-channel pole m2

i , the amplitude for the
crossed process reduces to

MγK→pΛ
Feyn (t, s)

t=m2
i−−−→ βi(t)

t − m2
i

. (2.76)

We now demand that the crossed amplitude, when evaluated at its t-channel pole
closest to the γ(∗) p → KY physical region (where t < 0), equals the Regge amplitude
(2.74). Thus, for the ζ = + case, we have the requirement

Mγ(∗)p→KY, ζ=+
Regge (s, t) =

t=m2
0 Mγ(∗)K→pY

Feyn (t, s) =
β0(t)

t − m2
0

. (2.77)



2.4 Beyond the resonance region: the Regge model 38

If βζ=+(t) is taken to be equal to the residue β0(t) of the crossed Feynman amplitude,
Eq. (2.77) leads to C = πα+ ′. If we now define

Mζ
Regge(s, t) = Pζ

Regge(s, t) × βζ(t) , (2.78)

we finally obtain for the Regge propagator:

P ζ=±
Regge =

(
s
s0

)αζ(t)

sin
(
παζ(t)

) 1 + ζ e−iπαζ(t)

2

πα
′ζ

Γ
(
1 + αζ(t)

) . (2.79)

While the theoretical derivation of the Regge amplitude (2.74) requires a separate
treatment of positive and negative signatures, in practice it is often unnecessary to
make this distinction. For many mesonic trajectories, the ζ = ± parts approximately
coincide (Fig. 2.9). In that case, it can usually be assumed that the positive- and negative-
signature amplitudes have identical residues βζ(t), up to an unknown sign; this is re-
ferred to as strong degeneracy. The ζ = ± amplitudes can then be added so that a
single propagator, incorporating the simultaneous exchange of both trajectory parts, is
obtained. The phase of this propagator can either be constant (1) or rotating (e−iπα(t)),
depending on the relative sign between the residues of the individual signature parts:

PRegge =

(
s
s0

)α(t)

sin
(
πα(t)

)
{

1

e−iπα(t)

}
πα ′

Γ
(
1 + α(t)

) . (2.80)

It is clear that Eq. (2.80) has poles at nonnegative integer values of α(t), corresponding
to the zeroes of sin

(
πα(t)

)
which are not compensated by the poles of Γ

(
1 + α(t)

)
.

Hence the interpretation that the Regge propagator effectively incorporates the ex-
change of all members of the α(t) trajectory. It is worth noting that in the physical
plane of the processes under study (with t < 0), these poles cannot be reached.

Whether or not a trajectory should be treated as degenerate depends less on the
trajectory equations themselves than on the process under study. Non-degenerate tra-
jectories give rise to dips in the differential cross section because they exhibit so-called
wrong-signature zeroes [106]. These are zeroes of the Regge propagator corresponding
to poles of the gamma function which are not removed by the sine function in the de-
nominator. For example, for ζ = + the propagator (2.79) has wrong-signature zeroes at
strictly negative, odd values of α(t). Vice versa, a smooth, structureless cross-section
points to degenerate trajectories. At first thought, it can seem strange that a certain
trajectory may need to be treated as degenerate in one hadronic process, but as non-
degenerate in another. This apparent inconsistency is, however, easily explained when
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realizing that the determining factors for degeneracy are the residues of the positive-
and negative-signature amplitudes, which obviously depend on the specific initial and
final state.

Generalizing Eq. (2.80) to nonscalar particles is nontrivial [106]. We adopt a prag-
matic approach, which consists of the following replacement in the spinless-particle
propagator of Eq. (2.80):

αX(t) −→ αX(t) − αX,0 . (2.81)

With this recipe, it is guaranteed that the condition (2.77) is also fulfilled for trajectories
with a nonscalar first materialization. The altered gamma function further ensures that
the resulting propagator has the correct pole structure, with poles at integer αX(t) ≥
αX,0. The general Regge propagator for degenerate trajectories then takes the form:

PX
Regge(s, t) =

(
s
s0

)αX(t)−αX,0

sin
(
π(αX(t) − αX,0)

)
{

1

e−iπ(αX(t)−αX,0)

}
πα ′

X

Γ
(
1 + αX(t) − αX,0

) . (2.82)

The above prescription allows one to construct the high-energy amplitude by select-
ing the dominant Regge trajectories in the t channel. It turns out that, for fixed s,
|PX

Regge(s, t = 0)| increases with decreasing |αX(0) − αX,0| = α ′
Xm2

X. Because all meson
trajectories have approximately the same slope α ′

X, as a rule of thumb those with a low-
mass first materialization are assumed to dominate. It should be kept in mind, though,
that the coupling strengths contained in the residues βX(t) (Eq. (2.78)) also play a role.

2.4.3 The Regge-plus-resonance approach

As explained in Sec. 2.4.1, Regge theory is a high-energy approach by construction.
Accordingly, the Regge amplitude based on the propagator of Eq. (2.82) should be
interpreted as the asymptotic form of the full amplitude for s → ∞, |t| → 0. The ex-
perimental meson production cross sections appear to exhibit this “asymptotic” Regge
behavior for photon energies down to about 4 GeV [37, 38, 41]. It is evident that a
pure background description such as the Regge-pole model does not suffice to de-
scribe the reaction at energies closer to threshold. There exists, however, a theoretical
connection between the high- and low-energy domain, which is related to the notion
of duality. Simply put, the duality hypothesis states that, on average, the sum of all
resonant contributions in the s channel equals the sum of all Regge poles exchanged
in the t channel. In practice, it is of course impossible to take all s-channel diagrams
explicitly into account. Hence, the standard procedure consists of identifying a small
number of dominant resonances, and supplementing these with a phenomenological
background.
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In Refs. [39,40,59,102] it is demonstrated that, even with the asymptotic form of the
propagators, the gross features of the forward-angle pion and kaon photo- and elec-
troproduction observables in the resonance region are remarkably well reproduced in
a pure t-channel Regge model. These results imply that at forward angles, the global
features of the p(γ,K)Y reaction in the resonance region can be reasonably well repro-
duced in terms of background diagrams. These considerations have prompted us to
adopt the Regge description for the high-energy amplitude to also describe the back-
ground contribution in the resonance region.

The near-threshold cross sections exhibit structures, such as peaks at certain ener-
gies and sudden variations in the angular distributions, which may reflect the presence
of individual resonances. These are incorporated into the RPR framework by supple-
menting the reggeized background with a number of resonant s-channel diagrams. We
will describe these resonant contributions using standard Feynman propagators. As in
the isobar approach, the resonances’ finite lifetimes are taken into account through the
substitution

s − m2
R −→ s − m2

R + imR ΓR (2.83)

in the propagator denominators (R = N∗, ∆∗). In order to minimize the number of free
parameters, we assume the PDG values [114] for the masses and widths of the known
resonances. The strong and electromagnetic interaction Lagrangians for coupling to
spin-1/2 and spin-3/2 resonances are given in Appendix A.1.

In conventional isobar models, the resonance contributions increase with energy.
For our RPR approach to be meaningful, however, the resonance amplitudes should
vanish at high values of ωlab. This is accomplished by including a phenomenological
form factor F(s) at the strong KYR vertices. Instead of the standard dipole parameteri-
zation used in most isobar models (Eq. 2.50), we assume a Gaussian shape

FGauss(s) = exp
{

−
(s − m2

R)2

Λ4
res

}

, (2.84)

with Λres the cutoff value. Both forms are compared in Fig. 2.10. Our primary motiva-
tion for introducing Gaussian form factors is that they fall off much more sharply with
energy than dipoles. Using Gaussian form factors, for ωlab & 4 GeV the resonant con-
tributions to the observables are quenched almost completely, even for cutoff values of
1600 MeV and larger. We found a comparable effect impossible to attain with a dipole,
even using a cutoff mass as small as 800 MeV.

The RPR amplitude is shown schematically in Fig. 2.11. It involves t-channel ex-
changes of kaonic trajectories (K) as well as s-channel Feynman diagrams correspond-
ing to individual baryon resonances (R). In practice, the summations

∑
K and

∑
R run
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Figure 2.10 Dipole and Gaussian form factors as a function of the photon lab energy ωlab, for
a resonance with mass mN∗ = 1710 MeV. The full, dashed and dotted curves correspond to
cutoffs Λres = 800, 1200 and 1600 MeV respectively.

over a limited set of members of the kaon and nonstrange baryon spectra. Depending
on the isospin channel, these sets may or may not include the ground-state K and p, as
will be explained in Secs. 3.1-3.2. By construction, the RPR amplitude is valid over the
entire energy region described by the isobar and Regge models, i.e. from threshold up
to about 20 GeV. In the high-energy regime (ωlab & 4 GeV), all resonant contributions
vanish by construction, so that only the Regge part of the amplitude remains.

The greatest asset of the RPR strategy, apart from its wide scope in energy, lies in
the elegant description of the non-resonant part of the reaction amplitude. In stan-
dard isobar approaches, the determination of the background requires a significantly
larger number of parameters. A typical isobar background amplitude consists of Born
terms (p, K, Λ and Σ0 exchange) complemented by K∗(892) and K1(1270) exchange
diagrams. In some cases, u-channel hyperon resonances are introduced as well. A
Regge-inspired model, on the other hand, is limited to t- or u-channel exchanges, with
only a small number of trajectories required in either case. In addition, the serious

Figure 2.11 General forward-angle RPR amplitude for the γp → KY process.
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issue of unreasonably large Born-term strength, which constitutes a major challenge
for isobar models, does not arise in the RPR approach. Consequently, no strong form
factors are required for the background terms and the introduction of an additional
background cutoff parameter is avoided. The Regge model faces only one additional
uncertainty, namely the choice between constant or rotating trajectories.

One issue which may cloud the presented procedure is double counting, caused by
superimposing a (small) number of individual resonances onto the Regge background.
Since the γp → KY processes are largely background-dominated, the few s-channel
terms may be considered as relatively minor corrections, and double counting is not
expected to pose a very serious concern.



CHAPTER

3
KY photoproduction in the
Regge limit

As explained in Sec. 2.3, a major challenge for effective-field approaches to p(γ(∗), K)Y

in the resonance region is modelling the background strength. In the standard isobar
framework, the extracted resonance parameters are very sensitive to the choice made
for the background parameterization [93]. The RPR approach provides a solution by
offering an alternative method to constrain the background dynamics. As the resonant
contributions to the RPR amplitudes vanish at high energies, one can distill the back-
ground coupling constants from the high-energy p(γ,K)Y data. In a next step, these
values can be used as input for calculations in the resonance region.

In this chapter, we will construct Regge amplitudes describing the K+Λ, K+Σ0 and
K0Σ+ photoproduction processes in the high-energy regime. The relevant background
parameters in our model are products of a strong and an electromagnetic coupling
constant. Through a fit to the available data for ωlab & 4 GeV, optimum values for
these parameters will be obtained. In our treatment of the various reaction channels,
we will focus on the sensitivity of the calculated observables to the different model
ingredients, including the choice of Regge-trajectory phases.
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3.1 The γp → K+Λ channel

3.1.1 Forward-angle amplitude

We deliberately focus on t-channel reggeization. Our main motivation for this is the
observation that most of the high-energy data correspond to forward-angle kinematics.
The scarcity of the data for ωlab & 4 GeV in the backward-angle regime makes it
considerably more difficult to constrain the u-channel Regge amplitude. A second
reason involves the fact that even the lightest hyperon, the Λ, is significantly heavier
than a K meson. This implies that the u-channel poles are much further removed from
the backward-angle kinematical regime than the t-channel poles are from the forward-
angle region. Accordingly, for u-channel reggeization, the procedure of requiring the
Regge propagator to reduce to the Feynman one at the closest crossed-channel pole is
not guaranteed to lead to comparably good results.

K+ and K∗+(892) trajectories: t-channel contribution

We will rely on the t-channel Regge framework outlined in Sec. 2.4. Given the form
of the Regge propagator (2.82), one expects the high-energy observables to be domi-
nated by the Regge trajectories with the lowest-mass first materialization. In the kaon
sector, K(494) and K∗(892) are by far the lightest states serving as first materializa-
tions. Since no obvious structure is present in the p(γ,K+)Λ cross-section data for
ωlab & 4 GeV [116], both the K+ and K∗+(892) trajectories will be assumed to be de-
generate. As is clear from Fig. 2.9 (Sec. 2.4.2), this is certainly justified in the K∗(892)

case. Although the positive- and negative-signature parts of the K trajectory are not as
perfectly collinear, it has been shown by Guidal and Vanderhaeghen that the assump-
tion of degenerate trajectories is a valid one in the context of KY production [37,38,102].
Using the prescription of Eq. (2.82), the relevant Regge propagators for the K+Λ chan-
nel read:

PK+

Regge(s, t) =

(
s

s0

)αK+ (t)
1

sin
(
παK+(t)

) (3.1)

×
{

1

e−iπαK+ (t)

}
πα ′

K+

Γ
(
1 + αK+(t)

) , (3.2)

PK∗+(892)

Regge (s, t) =

(
s

s0

)αK∗+(892)(t)−1
1

sin
(
π(αK∗+(892)(t) − 1)

) (3.3)

{
1

e−iπ(αK∗+(892)(t)−1)

}
πα ′

K∗+(892)

Γ
(
αK∗+(892)(t)

) , (3.4)
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with the trajectory equations given by [71]

αK+(t) = 0.70 GeV−2 (t − m2
K+) , (3.5)

αK∗+(892)(t) = 1 + 0.85 GeV−2 (t − m2
K∗+(892)) . (3.6)

Restoring gauge invariance: s-channel contribution

In Refs. [37, 38, 117] it is argued that apart from the K+ and K∗+(892) trajectory ex-
changes, the Regge amplitude for K+ photoproduction should also include the elec-
tric contribution (defined in Appendix A.1 as the part proportional to γµεµ) to the s-
channel Born term. This can be accomplished through the recipe:

MRegge (γp → K+Λ) = MK+

Regge + MK∗+(892)

Regge

+ Mp,elec
Feyn × PK+

Regge × (t − m2
K+) .

(3.7)

Such a procedure is necessary because of the gauge-breaking nature of the K+-exchange
diagram. As explained in Sec. 2.3.3, in a typical effective-Lagrangian framework the
Born terms Mp,K,Y

Feyn in the s, t and u channels do not individually obey gauge invari-
ance, but their sum does. Because the magnetic parts of the vertices (∼ σµνqνεµ) are
gauge invariant by construction, only the electric parts are of concern. In Sec. 3.1.2, we
will show that implementing this gauge-invariance restoration procedure leads to an
improved description of the high-energy p(γ,K+)Λ differential cross section at |t| → 0.

Model parameters

The diagrams contributing to high-energy, forward-angle K+Λ photoproduction are
shown in Fig. 3.1. Without any exception, they are background terms, since none of
them goes through a pole in the physical plane of the p(γ,K+)Λ process. Appendix A.1
summarizes the strong and electromagnetic interaction Lagrangians needed to calcu-
late the Feynman residues βX(t) accompanying the Feynman propagators (Eq. (2.78)).
Using these interactions, the p(γ,K+)Λ model contains only three parameters:

gK+Λp , Gv,t
K∗+(892) =

egv,t
K∗+(892)Λp

4π
κK+K∗+(892) , (3.8)

with gv,t
K∗+(892) Λp the strong vector and tensor couplings to the K∗+(892) vector-meson

trajectory. These model parameters have to be optimized against the high-energy data
of Refs. [116,118,119]. For gK+Λp we assume SU(3)-flavor symmetry, broken at the 20%
level (see Sec. 2.3.2), which implies the constraint:

−4.5 ≤ gK+Λp√
4π

≤ −3.0 . (3.9)
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Figure 3.1 Feynman diagrams contributing to the p(γ, K+)Λ amplitude for ωlab & 4 GeV at
forward angles: exchange of (a) K+ and (b) K∗+(892) trajectories. (c) The electric part of the
s-channel Born term is added to restore gauge invariance.

The Gv,t
K∗+(892) couplings are left entirely free.

Apart from the three parameters of Eq. (3.8), a choice between constant or rotating
trajectory phases needs to be made. In our analysis, we consider three of the four possi-
ble phase combinations for the K+ and K∗+(892) Regge propagators: rotating K and K∗

phases, constant K plus rotating K∗ phase, and rotating K plus constant K∗ phase. The
option with a constant phase for both propagators is not investigated because the cor-
responding Regge amplitude has no imaginary part. This would result in a vanishing
recoil polarization, contradicting experiment [57].

3.1.2 Results and discussion

In contrast to the favorable experimental situation in the resonance region, the p(γ,K+)Λ

data available for ωlab & 4 GeV are rather scanty. The relevant low-|t| data com-
prise 56 differential cross sections in total, at the selected energies ωlab = 5, 8, 11
and 16 GeV [116]. A limited number of polarization observables are available, in the
form of 7 recoil and 9 photon beam asymmetry points at ωlab = 5 and 16 GeV respec-
tively [118, 119].

While the limited number of couplings contained in the Regge model is certainly an
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BG model K+/K∗+(892) phase gK+Λp√
4π

Gv
K∗+(892) Gt

K∗+(892) χ2

1 rot. K, rot. K∗ -3.23 0.281 1.09 3.17
2 rot. K, rot. K∗ -3.20 0.288 -0.864 2.73
3 rot. K, cst. K∗ -3.00 -0.189 1.17 4.37
4 rot. K, cst. K∗ -3.31 -0.350 -0.703 3.37

Table 3.1 Comparison of the Regge background (BG) model variants (numbered 1 through 4)
found to describe the high-energy, forward-angle p(γ, K+)Λ data [116, 118, 119]. The K+ and
K∗+(892) trajectory phase options are given in the second column, while the last column shows
the attained χ2 value. The remaining columns contain the extracted background parameters.

asset, the scarcity of the data prevents a unique determination of the t-channel back-
ground dynamics. Ultimately, we have identified a total of four plausible t-channel
Regge model variants capable of describing the high-energy data in a satisfactory way.
The model specifications are summarized in Table 3.1. We have performed fits for all
four possible sign combinations for the K∗+(892) vector and tensor couplings. It turns
out that, for a given choice of trajectory phases, two sets of parameters can be found
that produce acceptable results, each with a different sign for Gt

K∗+(892). Table 3.1 does
not mention any model variants with a constant K and a rotating K∗ phase, as all re-
sult in unsatisfactory values of χ2, of the order of 6.5. This can be attributed to these
models’ failure to reproduce the recoil asymmetry, which is found to be the observable
most discriminative with respect to the Regge model variant used.

The calculated high-energy observables for each of the four model variants are com-
pared to the data in Figs. 3.2-3.4.

The differential cross sections are displayed in Fig. 3.2. It turns out that this observ-
able is rather insensitive to the phases chosen for the Regge propagators. Indeed, for
each of the two investigated phase combinations shown, as well as for the constant K

and rotating K∗ phase option, it was found that a fair description of the cross sections
can be achieved for certain combinations of the parameters.

At the level of the unpolarized observables, there is only one notable difference
between the model variants with two rotating phases, and the ones with a constant
plus a rotating phase. While the former option results in differential cross sections
that fall steadily with t, the latter leads to a smooth oscillatory behavior of the cross
sections. This effect can be attributed to interference between the K- and K∗-exchange
diagrams. When e.g. the K∗ phase is constant, the interference terms in question have a
phase e±iπαK(t). Thus, their contribution to the differential cross section is proportional
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to

M K−K∗(892)

interf. ∼ Re [PK (PK∗(892))∗] ∼ cos παK(t)

= cos
{

2π

(
t

2.9 GeV2
− 0.085

)}

,
(3.10)

since in the unpolarized cross section only the real part of the propagator product
PK (PK∗(892))∗ is retained. This corresponds to a harmonic oscillation in t, with a period
of 2.9 GeV2. For the situation with two rotating trajectory phases, the interference term
is proportional to cos π(αK(t)−αK∗(892)(t)), which has a considerably longer oscillation
period of 13.3 GeV2.

Another interesting feature of the differential cross sections is the plateau at extreme
forward angles (t → 0). This particular behavior cannot be reproduced in a model with
only the K+ and K∗+(892) exchange diagrams from Fig. 3.1 (a) and (b). This is due to
the specific structure of the γKK and γKK∗ Lagrangians of Eqs. (A.4) and (A.5), which
result in electromagnetic vertex factors going to zero at t = 0. The presence of a Regge
propagator does not alter that fact since, at low |t|, it approaches the Feynman propa-
gator by construction. Figure 3.2 illustrates the above for the γKK∗ interaction, by also
showing the K∗+(892) contribution (dashed curves) to the differential cross section.
Traditionally, the issue of pure t-channel mechanisms being insufficient to describe the
data was resolved by resorting to so-called (over)absorption mechanisms [120]. The
underlying principle is, simply stated, the following. Elastic and inelastic rescattering
of the initial γp and final K+Λ states result in a loss of flux, and thus a reduction of the
p(γ,K+)Λ amplitude. Hereby, the lower partial waves are absorbed most. As a conse-
quence, the sum of all reduced partial-wave amplitudes will no longer be identically
zero at t = 0. Although this prescription is quite effective in describing the cross-
section data, it results in an unphysical change of sign of the lowest partial waves.
In the model presented here, the plateau in the differential cross section is naturally
reproduced through the inclusion of the gauge-restoring s-channel electric Born term
(Eq. (3.7)). Due to its vertex structure, this diagram has an amplitude which peaks at
extreme forward angles. When |t| increases, its influence gradually diminishes and, as
is clear from Fig. 3.2, the K∗+(892)- exchange diagram starts dominating the process.
The K+ contribution remains quite modest in the entire t region under consideration,
since PRegge ∼ sα(t) and the K+ trajectory has a smaller offset than the K∗+(892) tra-
jectory (Eqs. (3.5) and (3.6)). The inclusion of the s-channel electric Born diagram can
result in either a peak or a plateau, depending on the relative values of the coupling
constants of the K∗+(892)-exchange and nucleon-pole diagram. In the p(γ,K+)Λ case,
the interplay between both diagrams results in a plateau.
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Figure 3.2 Forward-angle differential p(γ, K+)Λ cross sections at photon lab energies of 5 (•),
8 (�), 11 (H) and 16 (4) GeV. The upper panels correspond to the Regge BG models 1 and
2, with a rotating phase for the K+ and K∗+(892) trajectories. In the lower panels, BG models
3 and 4, with a constant K∗+(892) phase, are shown. The full curves represent the complete
result, while for the dashed curves only the K∗+(892) contribution was considered. The data
are from Ref. [116].
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Figure 3.3 displays the photon beam asymmetry Σ at ωlab = 16 GeV. This observ-
able is extremely well reproduced in all four models presented here. Its insensitivity
to the particular choice of background model is even more pronounced than for the
differential cross sections. Only the result for model variant 1 is shown, since the three
other curves are nearly identical. The asymmetry is small at extreme forward angles,
rising quickly towards 1. The fact that the σ⊥ contribution dominates at higher |t| in-
dicates that a natural-parity particle, here the K∗+(892), is exchanged. The exchange of
the unnatural-parity K+ mostly influences σ‖, while the s-channel Born diagram con-
tributes more or less equally to σ⊥ and σ‖. This explains the behavior of Σ at forward
angles, where the dynamics are mostly governed by the s-channel Born diagram.

To our knowledge, the sole high-energy p(γ,K+)Λ recoil asymmetry data available
were collected at a photon energy of 5 GeV in the early seventies [119]. A comparison
with our results for the different Regge model variants is presented in Fig. 3.4. Since
the measured asymmetry is nonzero, we conclude that the t-channel dynamics are
governed by the exchange of two or more trajectories. Indeed, polarized baryon asym-
metries reflect interference effects, requiring at least two non-vanishing contributions
to the amplitude, with different phases.

The recoil asymmetry is an extremely useful observable for constraining the
reggeized background dynamics. Firstly, since it is proportional to Im [PK (PK∗(892))∗],
the assumption of a constant K+ phase would lead to a sin παK∗(t) dependence for
P. The calculated asymmetry would then be exactly zero at t = −0.38 GeV2. This is,
however, precisely the point where the measured asymmetry reaches its maximum.

ωlab = 16 GeV

-t (GeV2)
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σ ⊥
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Figure 3.3 Results for the forward-angle p(γ, K+)Λ photon beam asymmetry at ωlab = 16 GeV.
The curves for the various models are virtually indistinguishable, so for the sake of clarity we
display only the asymmetry for BG model 1. The data are from Ref. [118].
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Figure 3.4 Results for the forward-angle p(γ, K+)Λ recoil asymmetry at ωlab = 5 GeV. The
blue and red curves in the left panel correspond to the Regge BG models 1 and 2, respectively,
with a rotating phase for the K+ and K∗+(892) trajectories. In the right panel, BG models 3
(blue) and 4 (red), with a constant K∗+(892) phase, are shown. The data are from Ref. [119].

This explains why the possibility of a constant K+ trajectory phase is rejected. Sec-
ondly, the sign of the recoil asymmetry is directly linked to the relative signs of the
gK+Λp and Gv,t

K∗+(892) couplings. Indeed, Table 3.1 shows that the negative sign for the
recoil asymmetry imposes severe constraints upon the signs of the K∗+(892) couplings.
For a rotating K∗+(892) phase, the coupling Gv

K∗+(892) should be positive; for a constant
K∗+(892) phase a negative vector coupling is needed. The sign of the tensor coupling
appears to be of less importance.

3.2 The γp → KΣ channels

3.2.1 K+Σ0 photoproduction

Since the interaction Lagrangians for the p(γ,K+)Λ and p(γ,K+)Σ0 processes are es-
sentially identical, the K+Σ0 Regge amplitude can be constructed in complete analogy
to the K+Λ one. Of the three free model parameters

gK+Σ0p , Gv,t
K∗+(892) =

e gv,t
K∗+(892) Σ0p

4π
κK+K∗+(892) , (3.11)

gK+Σ0p is constrained between

0.9 ≤ gK+Σ0p√
4π

≤ 1.3 (3.12)
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on the basis of broken SU(3)-flavor symmetry, whereas the K∗+(892) vector and ten-
sor couplings are left entirely free. For each trajectory, a choice between constant or
rotating phases again needs to be made.

Unfortunately, the published p(γ,K+)Σ0 data for ωlab & 4 GeV are rather scarce.
The relevant low-|t| data comprise 48 differential cross section points in total, at the
selected energies ωlab = 5, 8, 11 and 16 GeV [116], as well as 8 photon beam asymmetry
points at ωlab = 16 GeV [118]. No high-energy hyperon-polarization measurements
have been performed for the KΣ channels.

In our treatment of K+Λ photoproduction (Sec. 3.1), the recoil asymmetry P was
found to be particularly sensitive to the details of the Regge amplitude, much more
so than the unpolarized cross section and photon beam asymmetry. The absence of
high-energy recoil-polarization data for the p(γ,K+)Σ0 process constitutes a serious
hindrance to constraining the various Regge-model parameters. There is, however, a
way to circumvent this problem. While a pure t-channel approach falls short of pro-
viding a quantitative description of the resonance-region data, the Regge model has
been observed to reproduce all trends of the polarized and unpolarized p(γ,K+)Λ,Σ0

observables, including P [37, 38, 102]. In view of these considerations, the procedure
followed in this section amounts to discarding all Regge model variants which fail in
reproducing the sign of the recoil asymmetry in the resonance region. Imposing this ex-
tra requirement reduces the number of possible model variants from sixteen (four com-
binations of signs for Gv,t

K∗+(892) multiplied by four combinations of trajectory phases) to
four. They are classified in Table 3.2 according to the sign of Gv,t

K∗+(892) and the phases
of the K+ and K∗+(892) trajectories. The smaller values of χ2 as compared to what was
found for the K+Λ channel (see Table 3.1) can be attributed to the significantly larger
error bars for the K+Σ0 high-energy cross sections.

A comparison between the calculated high-energy observables, resulting from the

BG model K+/K∗+(892) phase
g

K+Σ0p√
4π

Gv
K∗+(892) Gt

K∗+(892) χ2

1 rot. K, rot. K∗ 1.3 0.32 0.77 1.25
2 rot. K, rot. K∗ 1.3 0.33 -0.86 1.28
3 rot. K, cst. K∗ 1.3 -0.35 0.68 1.31
4 rot. K, cst. K∗ 1.3 -0.32 -0.87 1.27

Table 3.2 Fitted coupling constants for the Regge background (BG) model variants describing
both the high-energy p(γ, K+)Σ0 data [116, 118] and the sign of the recoil polarization in the
resonance region [57]. The phase options for the K+ and K∗+(892) trajectories are listed in the
second column. The last column mentions the attained χ2 value for the high-energy data.
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Figure 3.5 Low-t differential p(γ, K+)Σ0 cross sections at photon lab energies of 5 (•), 8 (�),
11 (H) and 16 (4) GeV. The left panel corresponds to the Regge BG model variants with a
rotating phase for the K+ and K∗+(892) trajectories. In the right panel, the BG models with a
rotating K+ and constant K∗+(892) phase are shown. The data are from Ref. [116].
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Figure 3.6 Results for the forward-angle p(γ, K+)Σ0 photon beam asymmetry at ωlab =

16 GeV. The curves for the various background models are nearly indistinguishable. For the
sake of clarity, only the result for BG model 1 is displayed. The data are from Ref. [118].
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Figure 3.7 Results for the p(γ, K+)Σ0 recoil asymmetry in the resonance region, for 0.4 <

cos θ∗
K < 0.6. The data are from Ref. [57].

four Regge model variants of Table 3.2, and the data is shown in Figs. 3.5 and 3.6. Fig-
ure 3.7 displays the recoil asymmetry in the resonance region for one representative
cos θ∗

K bin. As expected, the differential cross section (Fig. 3.5) and photon beam asym-
metry (Fig. 3.6) are rather insensitive to the choices made with respect to the trajectory
phases and the signs of the coupling constants. On the other hand, the overall positive
sign of the recoil asymmetry is only compatible with the four specific sign and phase
combinations from Table 3.2. In particular, a strong correlation between the phase of
the K∗+(892) trajectory and the sign of the corresponding vector coupling is observed.
A rotating (constant) K∗+(892) phase requires a positive (negative) Gv

K∗+(892) coupling.

It is clear from Table 3.2 and Figs. 3.5-3.6 that the high-energy data do not allow to
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further discriminate between the retained Regge model variants, as all four provide a
comparably good description.

3.2.2 K0Σ+ photoproduction

Due to the lack of γp → K0Σ+ data for ωlab & 4 GeV, we are forced to determine
the Regge amplitude for this process through comparison with the resonance-region
data. We deem this to be a feasible strategy, as the Regge model is known to provide
very reasonable descriptions of the K+Λ and K+Σ0 photoproduction observables in the
resonance region [37, 38, 102].

In principle, isospin arguments allow one to transform a reaction model for γp →

K+Σ0 into one for γp → K0Σ+. By exploiting the fact that the Σ+ and Σ0 hyperons are
members of an isotriplet, any coupling constant occurring in the K+Σ0 photoproduc-
tion amplitude can be converted into the corresponding p(γ,K0)Σ+ parameter. The
strong coupling strengths are linked via SU(2) Clebsch-Gordan coefficients, whereas
for relating the electromagnetic couplings, experimental input in the form of ΓK∗→Kγ

decay widths is required. The isospin relations used in this work can be found in Ap-
pendix A.3.

In practice, developing a common description for isospin-related channels is often
less straightforward than one might infer from the preceding paragraph. Subtle in-
terference effects might, for example, cause certain contributions to be masked in one
channel, but strongly enhanced in the other. In fact, reconciling the p(γ,K+)Σ0 and
p(γ,K0)Σ+ model predictions in the resonance region has proven challenging, as the
measured Σ+ cross-sections are considerably smaller than those for the Σ0 [58, 60, 64].
This observation is in apparent contradiction with the relation

gK0Σ+p =
√

2 gK+Σ0p (3.13)

(see Appendix A.3), with similar expressions holding when a N∗, K∗ or Y∗ resonance is
involved at the vertex.

In isobar models, this difficulty is often circumvented by strongly reducing the gKΣp

coupling in both channels (thus disregarding the SU(3)f constraints of Eq. (3.12)),
and/or by carefully counterbalancing the superfluous strength in the K0Σ+ channel
through destructive interferences induced by other contributions [27, 29]. It shall be
demonstrated that, in the context of the RPR approach, this issue can be elegantly re-
solved at the level of the background terms.

It will become clear that the p(γ,K+)Σ0 Regge model variants proposed in Sec. 3.2.1
cannot be readily extended to the K0Σ+ channel. Since the γKK vertex is proportional
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to the kaon charge, the K-trajectory exchange diagram, as well as the accompanying
gauge-restoring s-channel electric Born term, do not contribute to the K0Σ+ photopro-
duction amplitude. Therefore, the equivalent of Eq. (3.7) in this channel simply reads:

MRegge (γp → K0Σ+) = MK∗0(892)

Regge . (3.14)

Figure 3.8 displays the predictions for the p(γ,K0)Σ+ differential cross section for
one particular cos θ∗

K bin in the resonance region, using the above-mentioned form
for the amplitude. The Gv,t

K∗0(892)
couplings have been determined through the isospin

relations from Appendix A.3, starting from the fitted values listed in Table 3.2. The
same Regge propagator has been assumed for the K∗0(892) and K∗+(892) trajectories.
It is instantly clear that the model parameters determined from the high-energy γp →

K+Σ0 data, when converted to the K0Σ+ channel, result in cross sections that overshoot
the experimental data by a factor of 10. Thus, an amplitude of the type of Eq. (3.14)
apparently does not suffice to provide a reasonable description of the γp → K0Σ+

process 1.
A parallel can be drawn between the Regge descriptions of photoinduced kaon and

pion production. Indeed, in Refs. [37,38,102], Guidal, Laget and Vanderhaeghen mod-
elled the charged-π photoproduction channels through π and ρ trajectory exchanges.

1In this respect, we deem it relevant to mention the K0Σ+ total cross-section result obtained by
Guidal, Laget and Vanderhaeghen [40] by means of Eq. (3.14). As confirmed to us by the authors [121],
the curves shown in Fig. 3 of their article do not take into account the isospin factor of

√
2, relating

the strong gK+Σ0p and gK0Σ+p couplings (Eq. (3.13)). Inclusion of this factor would increase the quoted
cross section by a factor of two, considerably worsening the quality of agreement with the data.
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Figure 3.8 Results for the p(γ, K0)Σ+ differential cross section in the resonance region for 0.4 <

cos θ∗
K < 0.6, obtained by converting the model parameters from Table 3.2 to the K0Σ+ channel

and using Eq. (3.14). The data are from Ref. [64].
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In π0 production, on the other hand, an ω trajectory was introduced to compensate for
the vanishing π-exchange diagram. Similarly, in the absence of a K0 contribution to
the K0Σ+ amplitude, a higher-mass trajectory may become important in this channel,
serving to counterbalance the K∗0(892) strength.

It can be intuitively understood that the strong destructive interference needed to
reduce the predicted cross sections to the level of the data (Fig. 3.8) can be efficiently re-
alized when the added contribution exhibits an angular distribution comparable to that
of the K∗0(892)-exchange diagram. This implies that a natural-parity particle should be
involved. A second K∗ trajectory is likely to realize the required effect. As it turns out,
the PDG tables hint at the presence of such a trajectory, with the K∗(1410) vector par-
ticle as first materialization and the K∗

2(1980) as a probable second member. However,
whereas the meson trajectories tend to possess a more or less universal slope, the slope
of this experimental K∗(1410) trajectory is significantly smaller than those of the well-
known K(494) and K∗(892) trajectories, i.e. 0.53 GeV−2 as compared to 0.7 and 0.85
GeV−2.

As the properties of the K∗(1410) trajectory cannot be put on solid grounds with
the available experimental information, we turned our attention to the predictions of a
constituent-quark model (CQM) calculation of the kaon spectrum. The Lorentz covari-
ant quark model developed by the Bonn group [12] provides a satisfactory description
of the light meson masses and decay properties. Figure 3.9 displays the results of the
calculations using two different options (A and B) for the Dirac structure of the con-
finement potential. After selecting from the predicted spectra the states most likely to
correspond to the K∗(1410) and K∗

2(1980) resonances, and supplementing these with a
set of suitable higher-spin states, a linear relation presents itself.

The slopes of the theoretical and experimental trajectories clearly differ. Strikingly,
however, the two calculated curves have practically identical slopes, which are also
perfectly compatible with those of the K(494) and K∗(892) trajectories (Eqs. (3.5) and
(3.6)). The calculated masses and spins of the members of the K∗(1410) trajectory are
nearly perfectly fitted by a linear curve.

We have opted to use the calculated value of 0.83 GeV−2, corresponding to the Bonn-
model variant A, leading to a trajectory of the form

αK∗(1410)(t) = 1 + 0.83 GeV−2 (t − m2
K∗(1410),PDG) , (3.15)

with mK∗(1410),PDG = 1414 MeV. The corresponding Regge propagator takes on the form
of Eq. (3.4). Again, the trajectory phase may either be constant or rotating.

After adding the K∗0(1410)-trajectory exchange diagram, the γp → K0Σ+ Regge am-
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Figure 3.9 Comparison between the experimental K∗(1410) trajectory and the Bonn-model pre-
dictions [12]. The experimental meson masses are from the Particle Data Group [114].

plitude is given by

MRegge (γp → K0Σ+) = MK∗0(892)

Regge + MK∗0(1410)

Regge (3.16)

and the number of model parameters is increased by two. Contrary to the K∗0(892)

parameters, which are constrained by the high-energy p(γ,K+)Σ0 data, the K∗0(1410)

vector and tensor couplings remain as yet unknown, as does the matching trajectory
phase. In the absence of high-energy data for the K0Σ+ channel, we fix the K∗0(1410)

parameters through a fit to the forward-angle (cos θ∗
K > 0) part of the p(γ,K0)Σ+ dif-

ferential cross-section data for the resonance region.
Table 3.3 displays the extracted K∗0(1410) parameters for each of the background

models proposed in Sec. 3.2.2. The values of the Gv,t
K∗0(892)

couplings can be found from

BG model K∗0(892)/K∗0(1410) phase Gv
K∗0(1410)

Gt
K∗0(1410)

χ2

1 rot. K∗0(892), rot. K∗0(1410) -3.0 -5.0 11.8
2 rot. K∗0(892), rot. K∗0(1410) -3.4 4.5 8.3
3 cst. K∗0(892), cst. K∗0(1410) -3.1 6.1 10.5
4 cst. K∗0(892), cst. K∗0(1410) -2.9 -6.3 10.2

Table 3.3 Extracted K∗0(1410) parameters for each of the background (BG) model variants from
Table 3.2. The trajectory phase options are given in the second column, while the last column
shows the attained χ2 value when comparing to the resonance-region p(γ, K0)Σ+ cross-section
data.
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the Gv,t
K∗+(892) values (Table 3.2) by applying the relations from Appendix A.3. It is clear

from Table 3.3 that the K∗0(892) and K∗0(1410) trajectory phases are strongly coupled. It
can be intuitively understood that destructive interference is strongest when the same
phase choice is adopted for both trajectories. Because of its larger mass, the Regge
propagator for the K∗0(1410) is smaller than the K∗0(892) one, hence a larger coupling
constant is needed to produce contributions of similar magnitude. The results for the
p(γ,K0)Σ+ differential cross sections in the resonance region are shown in Fig. 3.10 for
three bins of cos θ∗

K in the forward hemisphere. Apart from the slight rise with energy
at cos θ∗

K ≈ 0.9, the order of magnitude of the experimental curves is now reason-
ably well-matched by the calculations. While this channel appears to be background-
dominated, some resonance dynamics are clearly missing in the ωlab . 1.7 GeV region,
especially at the more forward angles. This will be remedied in the next chapter.

The inclusion of the K∗0(1410) trajectory in the K0Σ+ channel also affects the high-
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Figure 3.10 Results for the p(γ, K0)Σ+ differential cross section in the resonance region. The
data are from Ref. [64].
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Figure 3.11 Predictions for the low-t differential p(γ, K0)Σ+ cross sections at photon lab en-
ergies of 5, 8, 11 and 16 GeV (the highest energy corresponding to the smallest cross-section)
using Regge model 1. The full curves represent the total amplitude, whereas the dashed curves
show the contribution of the K∗0(892) trajectory.

energy observables. Figure 3.11 displays a prediction for the p(γ,K0)Σ+ differential
cross section, using the Regge model variant 1, at photon lab energies of 5, 8, 11 and
16 GeV. The other three model variants result in a comparable behavior for the cross
section. When comparing Fig. 3.11 with Fig. 3.5, it is clear that the Regge amplitude
of Eq. (3.16), incorporating both K∗0 trajectories (full lines), produces cross sections of
the same order of magnitude as those for the γp → K+Σ0 process. On the other hand,
use of Eq. (3.14), accounting for K∗0(892)-trajectory exchange only (dashed lines), leads
to cross sections that are higher by a factor of 2 up to 10, depending on the energy.
It can be seen that the relative importance of the K∗0(1410) contribution diminishes
with increasing photon energy. We wish to stress that Fig. 3.11 shows a prediction for
the p(γ,K0)Σ+ cross section at high energies, obtained with background parameters
constrained by the resonance-region data. A high-energy measurement performed for
this reaction channel would prove extremely useful in putting these predictions to a
stringent test.



CHAPTER

4
KY photoproduction in the
resonance region

The extraction of resonance information from scattering reactions is one of the core
ongoing projects in the field of hadronic physics. Although the KY channels pose a
greater technical challenge than the πN ones, experimental progress is gradually near-
ing the point where a complete dataset for the resonance region will become avail-
able. Over the past years, the KY photoproduction database has been supplemented
with new high-precision data from the CLAS [57–59], LEPS [61, 62], GRAAL [63] and
SAPHIR [60, 64] facilities. Despite these achievements, considerable diversity of opin-
ion still exists on the theoretical front. The resonance content of the various p(γ,K)Y

channels constitutes a central topic of discussion. Can convincing evidence for any
“missing” resonances as yet be claimed? How likely is it that ill-understood structures
in the observables can be explained through final-state interactions or channel cou-
plings, instead of pointing to actual N∗ or ∆∗ contributions? These and many other
questions continue to call for a convincing answer.

In this chapter, the RPR approach introduced in Sec. 2.4.3 will be applied to the
KY photoproduction reactions in the near-threshold regime (ωlab . 3.5 GeV). When
using the background parameters determined from the high-energy data (Chapter 3),
only the coupling constants of the added s-channel diagrams remain to be constrained
to the resonance-region data. We will compare various implementations of the RPR
model and investigate which known resonance contributions are required to fit the
data presently at hand. In addition, we will examine to what extent the description
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of the data can be improved by introducing “new” resonances. The γ + p → K+Λ

process is tackled in Sec. 4.1, whereas Sec. 4.2 focuses on a simultaneous description of
the γ + p → K+Σ0 and K0Σ+ channels.

4.1 The γ + p → K+Λ channel

In contrast to their smooth behavior at high ωlab, the p(γ,K+)Λ observables exhibit
a richer structure in the near-threshold region. The total cross section is dominated
by a pair of broad shoulders, suggesting contributions from several overlapping res-
onances. In the RPR approach, these are modeled by superimposing a number of s-
channel diagrams onto the reggeized background. For the high-energy description
from Sec. 3.1 to remain valid, it is required that all N∗ contributions vanish in the high-
s limit. As explained in Sec. 2.4.3, the latter is accomplished by introducing a Gaussian
form factor at each of the strong KΛN∗ vertices.

The results presented in this section constitute an update of those contained in
Ref. [122]. The data used in the fitting procedure have been supplemented with new
datapoints from the GRAAL collaboration [63].

4.1.1 N∗ contributions

In previous analyses, the S11(1650), P11(1710) and P13(1720) states (which we will re-
fer to as the “core” N∗s) were identified as the main resonance contributions to the
p(γ,K+)Λ reaction dynamics [28, 123, 124]. While the relevance of these “core” reso-
nances has long been considered a well-established fact, very recently two indepen-
dent analyses have called the importance of the P11(1710) state into question [30, 33].

For most observables, the core set of N∗s falls short of reproducing the experimental
results in the region 1.3 GeV ≤ ωlab ≤ 1.6 GeV (or, 1.8 GeV ≤ W ≤ 2 GeV). The
Particle Data Group mentions the two-star P13(1900) as the sole established nucleon
resonance in the 1900-MeV mass region [114]. Taking into account the width of 500
MeV cited for this resonance, it appears unlikely that the P13(1900) state by itself can
explain the quite narrow structure visible in the measured forward-angle cross sec-
tions [58]. Various authors have suggested that a second, as yet unknown resonance is
manifesting itself in the p(γ,K+)Λ observables.

In the past few years, many claims have been made with respect to the nature of this
missing state. A new D13 resonance was first introduced in Ref. [28] to explain a struc-
ture in the old SAPHIR total cross-section data [55] at W ≈ 1900 MeV. Hitherto unob-
served in πN reactions, this D13 state has been predicted in constituent-quark model
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N∗ S11(1650), P11(1710), P13(1900) D13(1900) P11(1900) NFP
set P13(1720) (“core”) (PDG) (“missing”) (“missing”)
a F – – – 8
b F – – F 9
c F F – – 13
d F – F – 13
e F F – F 14
f F F F – 18

Table 4.1 Sets of N∗ resonances used in the RPR calculations for K+Λ. The last column men-
tions the number of free parameters in the resulting RPR p(γ, K+)Λ amplitude. This number
does not include background couplings, since they were fixed against the high-energy data.

calculations by Capstick and Roberts with a significant branching into the KΛ chan-
nel [16]. The evidence for this “missing” resonance is far from conclusive, however.
While recent results from Diaz et al. [35] and Mart et al. [85] appear to confirm that
a D13 state with a mass around 1900 MeV is required by both the CLAS and SAPHIR
p(γ,K+)Λ data, the analysis of Ref. [30] contradicts this conclusion. Ref. [125] specif-
ically points to a P11(1900) state as a more likely missing-resonance candidate, while
the results from Ref. [34] suggest that a third S11 resonance might be playing a role. A
recent coupled-channels study of the (π, γ)N → KΛ reactions revealed no evidence for
any missing resonance; inclusion of the established P13(1900) state proved sufficient
to describe the measured structures in the p(γ,K+)Λ observables [33]. Following the
discussion in Refs. [30, 85, 124–126], we investigate the options of a missing D13(1900)

or P11(1900) state.

In the following section, we will present the results of numerical calculations per-
formed with different sets of known and (as yet) unobserved resonances. Table 4.1
gathers the various combinations of N∗ states used for these calculations. Since we
wish to keep the model uncertainties at a strict minimum, resonances with spin J larger
than 3/2 are not taken into account because the corresponding Lagrangians cannot
be given in an unambiguous way [80–82]. This choice is supported by the conclu-
sion from Refs. [33, 127] that spin-5/2 resonances do not contribute significantly to the
p(γ,K+)Λ reaction dynamics. We also refrain from including resonances with a mass
above 2 GeV, in order to minimize any double-counting effects that might arise from
superimposing a large number of individual s-channel diagrams onto the t-channel
Regge amplitude.

It is worth noting that the much-debated W ≈ 1900 MeV cross-section peak is angle
dependent in position and shape [58]. This may hint at the interference of two or more
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resonances with a mass in the indicated W range. Alternatively, photoproduction of an
η particle or of KΛ∗ and K∗Λ states could lead to additional structure in the observables
through final-state interactions. We deem that reproducing the angle-dependence of
this structure may be easier to accomplish in a Regge-inspired model than in the stan-
dard isobar approaches, since reggeization requires the forward- and backward-angle
kinematical regions to be treated separately. Here, we direct our efforts towards the
forward-angle observables. An investigation of the structure appearing at backward
angles would require u-channel reggeization.

To our knowledge, the sole other study of the p(γ,K+)Λ process in a mixed Regge-
isobar framework is the one carried out by Mart and Bennhold (MB) [128]. It dif-
fers from ours in many respects. Most importantly, the MB model combines the high-
energy t-channel Regge amplitude with the full Feynman amplitude for the resonance
region. Contrary to our RPR approach, isobar background terms are explicitly in-
cluded, resulting in a larger number of free parameters and a more serious violation
of duality. Furthermore, the transition from the resonance to the high-energy region
involves a phenomenological mixing of the Regge and isobar parts. Finally, Mart and
Bennhold have considered only the case of rotating phases for the K+ and K∗+(892) tra-
jectories. With regard to the s-channel resonances, the MB model contains the “core”
set of S11(1650), P11(1710) and P13(1720) N∗ states, supplemented with a D13(1900). In
Sec. 4.1.2, where we show the RPR results for p(γ,K+)Λ, we will briefly discuss for
each observable how our conclusions compare to those of the MB model.

4.1.2 RPR model variants for p(γ, K+)Λ

The latest p(γ,K+)Λ resonance-region data provided by CLAS and SAPHIR consist
of differential and total cross sections and hyperon polarizations [57, 58, 60] over an
extensive energy range. Differential cross sections and photon beam asymmetries for
the forward-angle kinematical region have been supplied by LEPS [61, 62]. Further,
the GRAAL collaboration has been involved in beam- and recoil- polarization mea-
surements in the first resonance region [63]. The double-polarization results released
by CLAS earlier this year [59] constitute the most recent addition to the p(γ,K+)Λ

database.
The discrepancy between the CLAS and SAPHIR cross sections for the K+Λ final

state has been heavily discussed [30, 33, 85]. This issue has been cleared up somewhat
with the release of new data by CLAS [58], which are in better agreement with those
from SAPHIR [60] than the older CLAS results [57]. Still, a degree of inconsistency
between both datasets remains. We shall limit our analysis to the most recent data
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from CLAS for the sake of consistency, as in Chapter 5 we will be obliged to turn to
CLAS as the main provider of electroproduction data.

Since the forward-angle kinematical region constitutes the focus of our analysis, we
do not consider any datapoints outside the cos θ∗

K > 0 range. For the CLAS data of
Refs. [57, 58], an even stricter selection is required. It turns out that the CLAS results
for cos θ∗

K . 0.35 cannot be described by any of the RPR models, even when the data in
question are included in the fitting procedure. For this reason, we have opted to only
take the cos θ∗

K > 0.35 part of the CLAS dataset into account. This leaves in total 786
data points with which to adjust the model parameters. The quoted number includes
470 differential cross sections, 193 recoil asymmetries (82 from CLAS and 111 from
GRAAL) and 123 photon beam asymmetries (45 from LEPS and 78 from GRAAL).

As data for the double-polarization observables Cx and Cz have only recently be-
come available, we have not been able to use these in the fitting procedure. All results
shown for these observables should therefore be considered as pure predictions.

We started our analysis by combining each of the six N∗ sets (a through f) from
Table 4.1 with the four background model variants (1 through 4) from Table 3.1. This
resulted in twenty-four RPR model variants to be considered. In a second step, the
parameters of these models were determined by a fit to the data of Refs. [57, 58, 61–
63, 116, 118, 119]. While our initial intention was to keep the background couplings
entirely fixed, this was found to result in fits of inferior quality. Instead, we allowed
each background coupling to vary in a small interval [cl, cu] around its high-energy
value ch, determined by χ2(cl,u) ≤ χ2(ch) + 1.

Of the initial twenty-four combinations, six were found to stand out as providing
the best global description of the high- and low-energy observables. The properties
of these “preferred” model variants are summarized in Table 4.2. They are labeled
RPR-2( ′), RPR-3( ′) and RPR-4( ′), corresponding to the background (BG) model variants
2, 3 and 4 respectively. The primed (unprimed) notation indicates that a missing D13

(P11) resonance is included in the amplitude. Apart from this missing state, each model
variant in Table 4.2 contains the “core” resonances S11(1650), P11(1710) and P13(1720),
as well as the 2-star PDG state P13(1900).

The χ2 values cited in Table 4.2 result from a comparison of the p(γ,K+)Λ calcula-
tions with the data in the resonance and high-energy regions. Apart from these “raw”
χ2 values, the number of free parameters (NFPs) serves as an important additional cri-
terion by which to compare the different model variants. For the masses and widths
of the known resonances we have assumed the PDG values [114] instead of treating
them as additional free parameters as is often done. For the cutoff Λres of the strong
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BG mod. N∗ RPR core + P11(1900) D13(1900) Λres NFP χ2

set mod. P13(1900) (MeV)
2: rot.K, rot. f 2 F F – 2461 14 3.2
K∗, Gt

K∗ < 0 e 2’ F – F 1636 18 2.7

3: rot.K, cst. f 3 F F – 2035 14 3.2
K∗, Gt

K∗ > 0 e 3’ F – F 1371 18 3.1

4: rot.K, cst. f 4 F F – 1498 14 3.1
K∗, Gt

K∗ < 0 e 4’ F – F 1460 18 3.1

Table 4.2 RPR model variants providing the best description of the p(γ, K+)Λ data in the high-
energy and resonance regions. Apart from the information also contained in Table 4.1, the
Regge background (BG) model is given (using the numbering from Sec. 3.1), as are the reso-
nance cutoff Λres and the attained value of χ2. “Rot.” and ”cst.” refer to the rotating or constant
Regge trajectory phase assumed for the K(494) and K∗(892) contributions.

resonance form factors, results between 1400 and 2500 MeV were obtained. These are
compatible with the values typically used for the dipole form factors in isobar models.

BG model 1 is missing from Table 4.2, as it failed to produce acceptable results in
combination with any of the proposed N∗ sets. This prompts the conclusion that a
rotating phase for both the K and K∗ trajectories, in combination with positive Gv,t

K∗ cou-
plings, is ruled out by the resonance-region data. We stress again that the high-energy
observables alone do not allow one to distinguish between the background model vari-
ants 1 through 4. In fact, BG model 1 closely resembles the Regge model originally
proposed by Guidal, Laget and Vanderhaeghen for the description of high-energy elec-
tromagnetic production of kaons from the proton [37, 38, 102].

It is clear from Table 4.2 that the best description of the data used in the fitting
procedure is achieved with the RPR-2’ amplitude, which is based on BG model 2 and
contains a missing D13(1900). When employing BG model 3 or 4, the quality of the
fit does not depend on whether a missing D13 and P11 is used, but the attained values
of χ2 are significantly higher than for RPR-2’. On these grounds, we are tempted to
consider D13(1900) as the most likely missing-resonance candidate. However, while
RPR-2’ undeniably produces the best result, it should be realized that this model con-
tains four free parameters more than the “unprimed” models. This becomes clear when
comparing the Lagrangians for coupling to spin-1/2 and spin-3/2 resonances in Ap-
pendix A.1.2. As is discussed in Refs. [93, 125], the inclusion of additional parameters,
while invariably leading to a decrease in χ2, does not always imply an increased likeli-
hood for the resulting model. For this reason, we deem that the presence of a P11(1900)
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contribution cannot be entirely ruled out at this point. A comparison with observables
not included in the fits, such as Cx and Cz (Sec. 4.1.3) and electroproduction responses
(Chapter 5), will prove useful in resolving this issue.

4.1.3 Results and discussion

Unpolarized cross section. Figure 4.1 shows the differential p(γ,K+)Λ cross sections
obtained with the model variants from Table 4.2 and their respective background con-
tributions. Although the pure Regge model leads to smoother behavior than the full
RPR calculations, it produces cross sections having the right order of magnitude. One
would expect the best agreement between the background amplitude and the cross-
section data to be observed in the high-energy, forward-angle region. This condition is
fulfilled by BG models 2 and 4. BG model 3, on the other hand, overestimates the cross
section for ωlab & 2 GeV at forward angles, but matches it at intermediate angles. We
should point out that the BG contribution shown in Fig. 4.1 is not identical to the orig-
inal BG model from Chapter 3.1. As explained in the previous section, its parameters
have been slightly readjusted to fit the data in the resonance region. Apparently, for the
RPR variants using BG model 3, an improved description of the resonance-region ob-
servables could be attained by allowing the background couplings to increase beyond
their high-energy values.

With the exception of the extreme forward-angle range, very comparable results are
produced by the different RPR model variants. In other words, the unpolarized cross
section is not the ideal observable for distinguishing between the various background
and resonant options. Since the energy behavior of the differential cross sections is well
reproduced in all six of the proposed RPR models, we conclude that the problematic
“flattening out” of the resonance peaks found by Mart and Bennhold [128] is not an
issue when the Regge and isobar approaches are combined via the RPR prescription.

Fig. 4.2 illustrates the relative importance of the different s-channel contributions to
the p(γ,K+)Λ cross section for the case of the RPR-2’ model. The P13(1720), P13(1900)

and D13(1900) resonances play a vital role in the description of the unpolarized pro-
cess. Interestingly, the quite reasonable agreement between the background model
and the data is spoiled somewhat when the P13(1720) and P13(1900) resonances are in-
cluded. Particularly striking is the strong destructive interference between the P13(1900)

contribution and the “core” amplitude (compare green and purple curves) at forward
angles and ωlab ≈ 1.7 GeV (W ≈ 2 GeV). This gives rise to a sharp dip in the cross
sections. An additional D13(1900) resonance is needed to temper this structure by in-
terfering destructively with the background and core diagrams. Remarkably, even
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Figure 4.1 Energy dependence of the forward-angle differential p(γ, K+)Λ cross sections in the
resonance region. The RPR (blue curves) and RPR’ (red curves) model calculations include
the core N∗s, the two-star P13(1900), and either a missing P11(1900) or D13(1900). The dashed
orange curve corresponds to the background contribution, which is identical for the “primed”
and “unprimed” variants. The data are from CLAS [58].
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Figure 4.2 Energy dependence of the differential p(γ, K+)Λ cross section in the resonance re-
gion, for three representative bins of cos θ∗

K. The different curves correspond to calculations
within the RPR-2’ model, where the amplitude is built up by adding one N∗ state at a time. The
black curve represents the full RPR-2’ result. The data are from CLAS [58].

though they are generally included in effective-field descriptions of p(γ,K+)Λ, both
the S11(1650) and P11(1710) states turn out to be of minor importance here.

Recoil asymmetry. In Figures 4.3 and 4.4, we compare the computed recoil polariza-
tions P with recent data from CLAS [57]. Figure 4.3 demonstrates that all RPR-model
variants do an excellent job of describing P over the entire angular region considered
for the fitting procedure. Again, the resonance-region data are matched quite well by
the background contribution alone. The difference between the Regge and full RPR re-
sults is practically negligible for all BG models except 4, implying that the recoil asym-
metry is rather insensitive to the number and type of resonant states. Since the RPR-4
and RPR-4’ results are practically indistinguishable, one may conclude that BG model
4 does not support a significant contribution from any “missing” state. As is clear from
Fig. 4.4, P13(1900) and D13(1900) constitute the dominant contributions to the RPR-2’
result for P, corroborating the conclusions drawn from the differential cross-section
data (Fig. 4.3).

In Ref. [128], Mart and Bennhold reported that a satisfactory description of the CLAS
recoil polarization could not be achieved in their Regge-inspired model. Particularly,
the dip in P at W ≈ 1.75 GeV (ωlab ≈ 1.16 GeV) for cos θ∗

K < 0.6 proved problematic
to describe. This discrepancy was tentatively attributed to an unidentified resonance.
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Figure 4.3 Energy dependence of the p(γ, K+)Λ recoil polarization for those bins of cos θ∗
K

considered in the fitting procedure. Line conventions are as in Fig. 4.1. The data are from
CLAS [57].
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Figure 4.5 Angular dependence of the forward-angle p(γ, K+)Λ recoil polarization for five of
the energy bins covered by the GRAAL experiment. Line conventions are as in Fig. 4.1. The
data are from [63].

As is clear from the lower graphs in Fig. 4.3, all “unprimed” model variants are able to
reproduce the dip in the asymmetries, while the three RPR’ variants lead to a smoother
behavior near threshold. Considering the size of the error bars, the importance of this
feature should not be overestimated, though.

Very recently, the GRAAL collaboration has released a set of high-quality recoil-
polarization data for photon energies between 980 and 1470 MeV [63]. Figure 4.5
features a comparison between the RPR calculations and these data for a number of
representative bins in ωlab. As could be expected, the impact of the specific resonance
content of the RPR amplitude is most pronounced at the more backward angles. For
BG models 2 and 3, there is an obvious difference between the model variants contain-
ing a missing D13 and P11 state. This difference is significantly less pronounced when



4.1 The γ + p → K+Λ channel 72

assuming BG model 4.

Photon beam asymmetry. Data for the photon beam asymmetry Σ are available from
the LEPS and GRAAL facilities [61, 63]. Our results for this observable are contained
in Figs 4.6 to 4.8. Since only a limited number of data points are available, these calcu-
lations might be considered more as predictions than as the actual outcome of a fit. As
evidenced by Fig. 4.6, each of the proposed RPR model variants reproduces the beam
asymmetry well at extreme forward angles, as was the case for P. The intermediate an-
gles turn out to present a greater challenge. This observation is compatible with Mart
and Bennhold’s findings, except that their results underestimated the low-energy data,
while we find a more serious discrepancy at the highest energies covered by LEPS.
For the photon asymmetries, the MB approach provides a slightly better description
than the model variants presented in this work. It should be realized, though, that
the number of free parameters contained in the RPR model is considerably smaller.
Again, P13(1720), P13(1900) and D13(1900) dominate the resonant part of the ampli-
tudes (Fig. 4.7). With the exception of BG model 4, the difference between the RPR,
RPR’ and BG results becomes more pronounced with increasing energy and scattering
angle (Fig. 4.8).

Beam-recoil asymmetries. Finally, in Fig. 4.9 we show predictions for the beam-recoil
polarizations Cx and Cz recently measured at CLAS [59]. Of all observables presented
in this section, these are clearly the ones most sensitive to the choice of RPR-model in-
gredients. While all variants perform well at extreme forward angles, the description
in the intermediate-angle region still needs considerable improvement, with the most
flagrant discrepancy occurring for Cz in the W & 2 GeV region. No obvious preference
for any particular model variant is expressed by the data. With a view to further refin-
ing the existing models, it should prove very instructive to include these observables
in the fitting procedure.

Summarizing, we have identified the RPR-2’ model variant as providing the best
overall description of the world K+Λ photoproduction data. While the other five RPR
amplitudes do not produce equally good results as RPR-2’, we deem it inadvisable to
completely discard them at this point. In Chapter 5, we will further test the predictive
power of the different variants by confronting them with the world K+Λ electropro-
duction data.
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Figure 4.6 Results for the forward-angle p(γ, K+)Λ photon beam asymmetry, for 0.5 < cos θ∗
K <

1.0 and for three representative bins of ωlab, corresponding to center-of-mass energy bins
2.28 GeV < W < 2.32 GeV, 2.11 GeV < W < 2.15 GeV, and 1.92 GeV < W < 1.97 GeV.
Line conventions are as in Fig. 4.1. The data are from LEPS [61].
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Figure 4.8 Angular dependence of the forward-angle p(γ, K+)Λ photon beam asymmetry, for
five of the energy bins covered by the GRAAL experiment. Line conventions are as in Fig. 4.1.
The data are from GRAAL [63].



4 KY photoproduction in the resonance region 75

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4
-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

RPR-2/RPR-2’

RPR (P11)
RPR’ (D13)
BG contr.

RPR-3/RPR-3’

cosθK
* = 0.85

RPR-4/RPR-4’
C

x

cosθK
* = 0.45

C
x

C
x

W (GeV)

cosθK
* = 0.05

W (GeV) W (GeV)

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4
-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

RPR-2/RPR-2’

RPR (P11)
RPR’ (D13)
BG contr.

RPR-3/RPR-3’

cosθK
* = 0.85

RPR-4/RPR-4’

C
z

cosθK
* = 0.45

C
z

C
z

W (GeV)

cosθK
* = 0.05

W (GeV) W (GeV)

-2

-1

0

1

2

1.6 1.8 2 2.2 2.4

Figure 4.9 Energy dependence of the p(γ, K+)Λ double polarization asymmetry observables
Cx (top) and Cz (bottom), for three of the energy bins covered by CLAS. Line conventions are
as in Fig. 4.1. The data are from CLAS [59].
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4.2 The γp → KΣ channels

In this section, the RPR prescription is applied to the p(γ,K)Σ photoproduction pro-
cesses. These open a new window onto the hadronic spectrum because the Σ particle’s
isovector nature allows for spin-3/2 states to play a role in the reaction mechanism.
While this implies more resonance candidates to be considered, the number of model
parameters can be kept within bounds by exploiting the isospin relations between the
γp → K+Σ0 and γp → K0Σ+ coupling constants. These have been collected in Ap-
pendix A.3. The results shown in this section are also contained in Ref. [129].

4.2.1 N∗ and ∆∗ contributions

In the literature, a consensus regarding the dominant N∗ and ∆∗ contributions to the
p(γ,K)Σ dynamics is still far from being reached. Rather confusingly, while most
of the published reaction models are based on the SAPHIR data released in the late
nineties [55, 56], the few analyses employing a more recent dataset [60, 64] appear to
yield different conclusions [30, 34].

A continuous point of debate is the sense or not of introducing new resonances in
these channels. Since the K+Σ0 photoproduction data do not exhibit an explicit reso-
nant structure, it was long deemed unnecessary to assume any “missing” states in the
Σ production reactions [29, 32, 44]. The new data, however, are characterized by sig-
nificantly reduced error bars, so that a detailed analysis may reveal effects previously
clouded by experimental uncertainty. Specifically, it has been shown that the K0Σ+ ob-
servables may point to a second S11 resonance [64], indications of which have also been
reported for the K+Λ channel [34]. On the other hand, the recent analysis of the K+Σ0

and K0Σ+ photoproduction channels by Sarantsev et al. [30] calls for the inclusion of
missing D13(1870), D13(2170) and P11(1840) states.

In our calculations, we aim at keeping the number of resonant contributions at a
strict minimum, as each implies the introduction of at least one additional parameter.
Only resonances with spin J ≤ 3/2 and a mass below 2 GeV will therefore be con-
sidered. Furthermore, we restrict our scope to the established PDG states with a star
classification of two or higher. No “missing” states are included at this point.

The six leftmost columns of Table 4.3 gather the combinations of nucleon and ∆

resonances assumed in the various calculations. The simplest resonance set, RS A,
corresponds to the standard combination of states assumed in most of the early isobar
calculations [28, 29, 130]. As in the K+Λ channel, this “core” N∗ set consists of the
S11(1650), P11(1710) and P13(1720) resonances. Two ∆∗ states, S31(1900) and P31(1910),
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RS P13(1900) S31(1900) P31(1910) D33(1700) P33(1920) NFP χ2 for BG mod.
1 2 3 4

A – F F – – 10 10.4 6.0 9.0 3.8
B F F F – – 15 4.4 4.0 4.4 3.4
C F F F F – 20 3.5 3.6 2.2 2.1
D F – F F – 19 3.5 3.7 2.4 2.3
E F F – F – 19 3.7 3.8 3.1 2.4
F F F F – F 20 3.5 3.7 3.2 2.6
G F – F – F 19 3.6 3.7 3.6 2.9
H F F – – F 19 3.7 4.1 3.3 2.7
I F F F F F 25 3.5 2.8 2.0 2.0

Table 4.3 Combinations of resonances used in the calculations, in addition to the “core” N∗

set consisting of S11(1650), P11(1710) and P13(1720). Also mentioned is the number of free
parameters (NFP) for each model variant, not including the background couplings. The nine
resonance sets (RS) can be combined with any of the four background model options 1-4 de-
rived in Sec. 3.2 (Tables 3.2-3.3), resulting in a total of 36 RPR model variants (1A, 1B, 2A etc.).
The last four columns list the values of χ2 attained for each combination, after adjusting the
resonance parameters to the resonance-region data.

each having spin 1/2 and thus involving one extra free parameter, are also included in
RS A. We further consider three additional spin-3/2 resonances: P13(1900), D33(1700)

and P33(1920).
In our treatment of Λ photoproduction (Sec. 4.1), we estimated the importance of the

various N∗ and ∆∗ states by visually comparing the magnitude of their contributions to
the various observables. For the KΣ amplitude, which can contain a considerably larger
number of resonance candidates, we adopt a different strategy. We shall perform not
merely one, but a series of fits to the resonance-region data. Thereby, the resonances
will be added one at a time, and all parameters readjusted after each addition. This
will allow us to check the impact of each candidate on the attained value of χ2 in a
more quantitative way.

4.2.2 RPR model variants for p(γ, K)Σ

For the p(γ,K+)Σ0 reaction, high-precision data are available from CLAS, compris-
ing an extensive set of unpolarized cross sections and hyperon polarizations [57, 58].
Photon-beam asymmetry data for the second and third resonance regions, taken specif-
ically at forward kaon angles, have been provided by LEPS [61]. In addition, the
GRAAL collaboration has been involved in beam- and recoil-polarization measure-
ments in the first resonance region over an extensive angular range [63]. For p(γ,K0)Σ+,
the cross-section and recoil-asymmetry data provided by the SAPHIR collaboration are
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employed [64].

As this work hinges on t-channel reggeization, only the forward-angle portion of the
various datasets is considered for fitting purposes. In order to be consistent with our
analysis of the K+Λ channel, we impose the restriction cos θ∗

K > 0.35 upon the CLAS
data, while taking the entire cos θ∗

K > 0.0 part of the other datasets into account. This
leaves in total 618 data points with which to adjust the model parameters. The quoted
number includes 435 differential cross sections, 53 recoil asymmetries (49 from CLAS
and 4 from GRAAL) and 66 photon beam asymmetries (45 from LEPS and 21 from
GRAAL) for the K+Σ0 channel, and for the K0Σ+ channel 60 differential cross sections
plus 4 recoil asymmetry points. Unlike for Λ production, keeping the p(γ,K)Σ back-
ground parameters fixed to their high-energy values was found to lead to a satisfactory
quality of fit. Thus, the only parameters that remain to be adjusted to the resonance-
region data are the resonance couplings and the strong resonance cutoff Λres. We again
assume the PDG values [114] for the masses and widths of the known resonances.

We have combined all resonance sets (RS) A through I listed in Table 4.3 with each
of the four background options constructed in Sec. 3.2. This amounts to thirty-six RPR
model variants, with parameters fixed to the resonance-region data of Refs. [57, 58, 61,
63, 64]. Table 4.3 lists the attained value of χ2 for each combination.

From Table 4.3, a number of trends may readily be spotted. Only background (BG)
model 1 fails to produce a χ2 smaller than 3.5 in combination with any of the resonance
sets. BG model 2 leads to somewhat better results, although 25 parameters are required
to reduce χ2 below 3.6. Both of the above-mentioned models assume rotating phases
for all Regge trajectories, so one may conclude that this choice - though adequate for
the high-energy description - is less suitable for the resonance region. The models
assuming constant K∗(892) and K∗(1410) phases along with a rotating K(494) phase,
i.e. BG models 3 and 4, perform considerably better. Although the minimal value of
χ2 = 2.0 is identical for both model variants, BG model 4 exhibits significantly less
need for the inclusion of additional resonances than BG model 3. This is evident when
comparing the χ2 values found for the resonance sets with the smallest (RS A) and
largest (RS I) number of free parameters. Note also that all BG model-4 variants with
more than 15 free parameters have a χ2 below 3.0, contrary to BG model 3, for which
only three of the resonance sets (C, D and I) perform this well.

Table 4.3 also prompts a number of conclusions regarding the resonant structure of
the amplitudes. Comparing RS A and B shows that adding the P13(1900) state signif-
icantly improves χ2 for all four Regge model variants. On the other hand, the con-
clusions with regard to the ∆ resonances clearly depend on the background choice.
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BG mod. RS RPR NFP χ2
K+Σ0 χ2

K0Σ+ χ2

mod.
3: rot.K, cst. K∗(892),
cst. K∗(1410), Gt

K∗(892)
> 0 I 3 18 1.8 3.8 2.0

4: rot.K, cst. K∗(892),
cst. K∗(1410), Gt

K∗(892)
< 0 I 4 18 1.9 2.6 2.0

Table 4.4 RPR model variants providing the best common description of the p(γ, K+)Σ0 and
p(γ, K0)Σ+ data. The Regge background (BG) model and resonance set (RS) are given, using
the numbering from Tables 3.2 and 4.3. Also listed are the partial χ2 values for the K+Σ0 and
K0Σ+ channels, as well as the total χ2.

The general trends for the “preferred” background models 3 and 4 are largely compa-
rable, however. Including the D33(1700) state considerably reduces χ2, in contrast to
P33(1920), which has a fairly limited impact on the quality of the fit (compare RS C to
F, D to G, and E to H). Removing either S31(1900) or P31(1910) does not spoil the agree-
ment with the data, indicating that only a single spin-1/2 ∆ resonance is required, the
parity of which remains unclear.

Judging by the χ2 values from Table 4.3, the two RPR model variants providing the
best common description of the high- and low-energy p(γ,K)Σ observables are those
assuming background options 3 and 4, combined with the most complete resonance
set, RS I. These models will be referred to as RPR-3 and RPR-4, respectively. The spec-
ifications for both are summarized in Table 4.4.

4.2.3 Results and discussion

The results of the RPR-3 and RPR-4 calculations for the various p(γ,K)Σ observables
are compared to the world data in Figs. 4.10-4.17. The curves indicated as “BG” cor-
respond to the background contributions to the full RPR amplitudes. Also displayed
are the results for two alternative RPR model variants, consisting of the “core” reso-
nance set A from Table 4.1 in combination with background model variants 3 and 4,
respectively.

The K+Σ0 channel

Differential cross section. Figure 4.10 shows the p(γ,K+)Σ0 differential cross sec-
tion as a function of ωlab. Both RPR-3 and RPR-4 succeed remarkably well in repro-
ducing this observable, including the subtle “shoulder” in the energy dependence at
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Figure 4.10 Energy dependence of the differential p(γ, K+)Σ0 cross sections in the resonance
region, for a number of representative bins in cos θ∗

K. The full curves represent the complete
result, the dotted curves show the contribution of the Reggeized background (BG) amplitude,
whereas the dot-dashed curves correspond to RPR model variants containing only the “core”
resonance set A from Table 4.3 (see text). The data are from CLAS [58].
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ωlab ≈ 1.75 GeV (W ≈ 2.05 GeV), which is likely to arise from destructive inter-
ference of the background with resonances in the 1900-GeV mass range. The “core”
models, containing only lower-mass resonances, clearly fall short on this account. In
addition, they seriously underestimate the value of the cross-section maximum at the
more backward kaon angles. Similar to the KΛ case, the Regge model produces smooth
curves. Towards the highest ωlab measured by CLAS, it describes the unpolarized data
without the inclusion of any resonant diagrams. For ωlab . 2 GeV (W . 2.15 GeV),
s-channel contributions are obviously required.

Recoil and photon beam asymmetry. The computed recoil polarization P and pho-
ton beam asymmetry Σ are shown in Figs. 4.11-4.14. Both the LEPS and GRAAL data
for these observables are well reproduced by RPR-3 and RPR-4. Again, the Regge
contribution in itself provides a good approximation of the experimental hyperon po-
larization. This justifies the choice to constrain the Regge model variants by requiring
them to predict the correct sign for P in the resonance region. In their description of
the recoil asymmetry, the “core” models perform comparably to RPR-3 and RPR-4, in-
dicating that the size of the error bars for this observable hampers the extraction of
information on the underlying resonance structure. While the Regge and core ampli-
tudes reproduce the sign of the photon beam asymmetry, its magnitude and energy
dependence can only be explained by a reaction model containing a sufficiently large
number of resonances. The impact of the resonant part of the amplitude on P and Σ

persists up to significantly higher energies than was the case for the unpolarized cross
section.

Beam-recoil asymmetries. In Fig. 4.15, we show our predictions for the double-
polarization observables Cx and Cz [59] for the K+Σ0 final state. As in Λ production,
the obtained result depends strongly on the background and resonance choices. Quite
surprisingly, the pure background models 3 and 4 perform as well in reproducing Cx

and Cz as their full RPR counterparts. We take this to signify that the dataset employed
in the fitting procedure is insufficiently discriminative with respect to the models’ res-
onance content, because it solely consists of unpolarized and singly-polarized data.
Including the data for Cx and Cz in the fitting procedure should be the logical next step
toward refining the existing models.
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Figure 4.11 Energy dependence of the p(γ, K+)Σ0 recoil polarization for those bins of cos θ∗
K

considered in the fitting procedure. Line conventions are as in Fig. 4.10. The data are from
CLAS [57].
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The K0Σ+ channel

Differential cross section. The differential cross section, displayed in Fig. 4.16, is
quite well reproduced. As explained in Sec. 3.2.2, the good performance of the back-
ground models in this channel hinges entirely on the inclusion of the K∗(1410) tra-
jectory. Specifically, this trajectory provides the necessary destructive interference to
counteract the sharp rise of the cross section with energy, brought about by the K∗(892)

contribution (Fig. 3.8). At the most forward kaon angles, the computed cross sections
exhibit a brief increase around 2.5 GeV, not observed in the data, before dipping back
down to meet their high-energy values (Fig. 3.11). For 0.0 / cos θ∗

K / 0.6, the mea-
sured behavior of the cross sections is well reproduced by both the RPR-3 and RPR-4
models.

Recoil asymmetry. In Fig. 4.17, the p(γ,K0)Σ+ recoil asymmetry is presented. Be-
cause only four data points are available for cos θ∗

K > 0, this result may in fact be
regarded as a prediction. The background contribution equals zero because of the
constant phase assumed for the K∗(892) and K∗(1410) trajectories, which are the only
ingredients of the Regge model in the K0Σ+ channel. Real propagators for K∗(892) and
K∗(1410) result in a real amplitude, and since P is related to the amplitude’s imaginary
part, it vanishes for this background choice. The RPR-3 model provides a slightly bet-
ter overall description of P.

Based on the above results, one should conclude that the p(γ,K)Σ data do not allow
to distinguish between the RPR-3 and RPR-4 model variants, i.e. between the posi-
tive or negative sign for Gt

K∗(892). It will be shown in the next chapter that the K+Σ0

electroproduction observables are considerably more discriminative in this respect.
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Figure 4.16 Energy dependence of the differential p(γ, K0)Σ+ cross sections in the resonance
region, for a number of representative bins in cos θ∗

K. Line conventions are¡ as in Fig. 4.10. The
data are from SAPHIR [64].
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CHAPTER

5
KY electroproduction in the
resonance region

Before the CLAS collaboration released its first KY electroproduction results in 2003 [65,
66], the world p(γ(∗), K)Y database was made up almost exclusively of photoproduc-
tion observables. Consequentially, most theoretical models developed in the 1980s and
1990s applied to real photons only. Even in recent years, relatively little progress has
been made in further developing the electroproduction models on the market [25, 26,
131, 132]. As was shown by Janssen et al., however, even a small set of p(e, e ′K+)Y

datapoints can yield important insights and tight constraints on the KY production dy-
namics [133]. With the release of new high-precision p(e, e ′K+)Λ,Σ0 data by the CLAS
collaboration [67] earlier this year, we are in a unique position to further explore this
conjecture in the context of the RPR approach.

As a combined coupled-channels analysis of p(γ,K)Y and p(e, e ′K)Y has not yet
been realized, a tree-level model currently represents the best possibility of studying
both reactions in the same framework. Remarkably, the new CLAS data appear to fa-
vor a reggeized description of the p(e, e ′K+)Y processes. In particular, Ref. [67] demon-
strates that the Regge model of Guidal [40] describes the data consistently better than
the isobar models of both Janssen [133] and Mart [28]. Although the reasonable perfor-
mance of the pure Regge description for most observables suggests a t-channel domi-
nated process, there are obvious discrepancies between the Regge predictions and the
data, indicative of s-channel dynamics. The RPR approach represents an ideal frame-
work to parameterize these contributions.
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In what follows, we will employ the RPR model variants from Chapter 4 to obtain
predictions for the p(e, e ′K+)Λ,Σ0 processes. Hereby, the electromagnetic form fac-
tors of the intermediate N∗s and ∆∗s will be computed in the Bonn constituent-quark
model [12, 45]. With this input, it turns out that a reasonable description of the data
can be obtained without adding or readjusting any parameters. We will show that
the electroproduction response functions are extremely useful for fine-tuning both the
background and resonant contributions to the RPR amplitudes. A selection of results
was earlier presented in Refs. [134] and [135].

5.1 The RPR amplitude at finite Q2

In this work, it will be assumed that the photo- and electroinduced KY production pro-
cesses can be described by the same type of reaction amplitudes. Under this condition,
extrapolating a photoproduction model to finite values of Q2 simply involves mod-
ifying each EM coupling with a suitable electromagnetic form factor (EMFF). While
results from past analyses [25, 26, 131–133] support such a course of action, it is an
approximate solution. For example, the inelastic EM vertex for coupling to a spin-
1/2 resonance acquires an extra longitudinal contribution (∼ γµεµ) when an off-shell
photon is involved [83]. When explicitly including this term in the electroproduction
calculations, knowledge of both the strong and EM couplings gKYR and κpR is required,
whereas the photoproduction description solely depends on the product gKYR · κpR. A
comparable situation occurs for the EM coupling to spin-3/2 states.

We start out from the RPR photoproduction amplitudes constructed in Chapter 4.
So far, the different model variants have been judged nearly exclusively by their ability
to reproduce the data to which they were fitted. However, the likelihood of a theoreti-
cal description is not solely determined by its adequacy to describe the data, but also
by the number of free parameters and stability of the minimum-χ2 solution [125]. An
alternative measure of a model’s likelihood is its potential to predict observables not
included in the fit. The recent p(e, e ′K+)Y data from CLAS [67] provide a good oppor-
tunity to subject the predictive power of the RPR model to a stringent test. As a first
step, we will determine the necessary background and resonant EMFFs with which to
modify the EM couplings (Secs. 5.1.1 and 5.1.2). Then, we will compare the RPR vari-
ants from the previous chapter with the electroproduction observables without adding
or readjusting any parameters (Sec. 5.2). Since no p(e, e ′K0)Σ+ data are available at this
point, we focus our analysis on the K+Λ and K+Σ0 final states.
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5.1.1 Background contributions

When applying the Gross-Riska procedure to ensure gauge invariance for the elec-
troproduction amplitude (Sec. 2.3.3), three different EMFFs can be assumed at the
γ∗K+K+, γ∗K+K∗+, and γ∗pp vertices:

MRegge (γ∗ p → K+Λ) =

MK+

Regge FK+

(Q2) + MK∗+(892)

Regge FK∗+(892)(Q2)

+ Mp,elec
Feyn F

p
1(Q

2) × PK+

Regge × (t − m2
K+) , (5.1)

where F
p
1 is the proton Dirac form factor, corresponding to the electric part of the vertex

(see Appendix A.1). However, it has been shown by Guidal and Vanderhaeghen that
the measured Q2 behavior of the σL/σT ratio can only be reproduced provided that the
same form factor is used at the γ∗pp and γ∗K+K+ vertices [37]:

F
p
1(Q

2) ≡ FK+(Q2) , (5.2)

a result which is confirmed by our calculations. Since the s-channel electric Born term
of Eq. (5.1) is essentially an artefact of the gauge-breaking nature of the K+-exchange
diagram, this is not only the simplest, but also the most natural way to guarantee
current conservation.

For the K+(494) and K∗+(892) trajectories, a monopole EMFF

FK+(Q2) =
1

1 + Q2/Λ2
K+

, FK+K∗+(Q2) =
1

1 + Q2/Λ2
K∗+

(5.3)

is assumed, with ΛK+ = ΛK∗+ = 1300 MeV, in accordance with Refs. [39, 40]. The
cutoff values were chosen to optimally match the behavior of the electroproduction
data for Q2 & 2.5 GeV2 [66], where the resonant contributions are expected to fade
more quickly than the t-channel background terms.

5.1.2 Resonance form factors and the Bonn model

While some experimental information regarding resonant EMFFs is available, little of
it applies to the mass region of interest to kaon production (mR & 1.6 GeV). For this
reason, most theoretical descriptions of p(e, e ′K)Y opt for a phenomenological dipole
parameterization for the EMFFs of the resonant diagrams [25, 26, 131, 132]. However,
it is our opinion that the degree of arbitrariness in the p(e, e ′K+)Y description can be
considerably reduced by using computed EMFFs instead of the standard dipole shape.
Therefore, we calculate the EMFFs of the contributing N∗ and ∆∗ states within a co-
variant constituent-quark model (CQM), developed by the Bonn group [45, 136–139].
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As the Bonn CQM contains a mere seven parameters, all of which have been fitted
to the baryon spectrum [12], the computation of the EMFFs is parameter-free. It has
been shown that the Bonn EMFF results compare favourably to the existing data for
the low-lying N∗ and ∆∗ states [45].

The Bonn CQM does not provide direct access to the form factors themselves, but
rather to matrix elements of the EM current operator:

〈R (P ′), λ ′ | Jµ(0) | p (P), λ 〉 . (5.4)

Herein, P, λ and P ′, λ ′ are the four-momenta and helicities of the proton p and reso-
nance R involved in the transition. Jµ(0) is related to the γ∗pR interaction Lagrangian
through

〈R (P ′), λ ′ | Lγ∗pR(x) | p (P), λ 〉 = ei(P ′−P)x 〈R (P ′), λ ′ | Jµ(0)Aµ(x) | p (P), λ 〉 . (5.5)

While many current matrix elements (CMEs) of the type (5.4) can be written down,
only a limited number of them are independent. It turns out that there are two inde-
pendent CMEs if R is a spin-1/2 resonance, and three for a spin-3/2 state. A possible
choice is:

M+
1
2
,− 1

2

=

〈
R (P ′),

1

2

∣∣ J1(0) + i J2(0)
∣∣ p (P), −

1

2

〉
, (5.6)

M+
3
2
, 1
2

=

〈
R (P ′),

3

2

∣∣ J1(0) + i J2(0)
∣∣ p (P),

1

2

〉
, (5.7)

M0
1
2
, 1
2

=

〈
R (P ′),

1

2

∣∣ J0(0)
∣∣ p (P),

1

2

〉
. (5.8)

where M+
3
2
, 1
2

only exists if R has a spin of 3/2 or larger. The CMEs from Eqs. (5.6)-(5.8),
which are usually modified with an appropriate kinematical factor, are commonly re-
ferred to as the helicity amplitudes (HAs) of the EM transition. When calculating HAs
using the current derived from a particular Lγ∗pR, one obtains a system of linear equa-
tions relating the HAs to the EMFFs. In order for this system to have a solution, the
number of EMFFs should equal the number of HAs. Strangely enough, this condition
does not seem to be met, as we assume only one EMFF for a spin-1/2 resonance and
two for a spin-3/2 state, i.e. one less than the number of HAs. It should be realized,
though, that the Lagrangians (A.12) and (A.13) from Appendix A.1 do not represent
the most general form of the interactions. As mentioned in the introduction to Sec. 5.1,
the Lagrangians for the spin-1/2 and -3/2 states also contain a longitudinal part, which
vanishes at Q2 = 0 and has been neglected in our calculations. The full interactions are
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given by [82]:

Lγ∗pR(1/2±) = − e F
pR(1/2±)

1 (Q2) RΓµNAµ

+
eκpR(1/2±)

4mp

F
pR(1/2±)

2 (Q2) RΓµνNFµν + h.c. , (5.9)

LγpR(3/2±) = i
eκ

(1)

pR(3/2±)

mR + mp

F
pR(3/2±)

(1)
(Q2) R

µ
θµν (Y) Γ ′

λNFλν

−
eκ

(2)

pR(3/2±)

(mR + mp)2
F

pR(3/2±)

(2)
(Q2) R

µ
θµν (X) Γ (∂λN) Fνλ

+
eκ

(3)

pR(3/2±)

(mR + mp)2
F

pR(3/2±)

(3)
(Q2) R

µ
θµν (V) Γ NδλF

νλ + h.c , (5.10)

with Γµ = γµ (γ5γµ), Γµν = σµν (γ5σµν), Γ = γ5 (1), and Γ
′µ = γ5γµ(γµ) for even

(odd) parity resonances. Fµν and θµν are defined in Appendix A.1. The F
pR(1/2±)

1 term of
Eq. (5.9) and the F

pR(3/2±)

(3)
term of Eq. (5.10) are neglected in the p(e, e ′K)Y calculations.

It is clear, however, that the full expressions should be used to derive the HA/EMFF
relations. After a straightforward but tedious calculation, one finds the following ex-
pressions for the EMFFs of the non-longitudinal terms:

F
pR(1/2)±)

2 (Q2) = f±2 (Q2)/f±2 (0) , (5.11)

with

f±2 (Q2) =
∓1

Q±√Q∓

[
Q2

|~p|
M0

1
2
, 1
2

∓ mR ± mp

2
M+

1
2
,− 1

2

]
. (5.12)

Herein, |~p| is the magnitude of the three-momentum of the proton in the rest frame of
the decaying resonance R (see Ref. [83]), given by

|~p| =



(

m2
p + m2

R + Q2

2mR

)2

− m2
p




1
2

, (5.13)

and Q± = Q2 + (mR ± mp)
2. The spin-3/2 EMFFs can be written as:

F
pR(3/2±)

(i)
(Q2) =

f±
(i)

(Q2)

f±
(i)

(0)
(i = 1, 2) , (5.14)
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Figure 5.1 Resonant EMFFs as computed in the Bonn CQM. The upper graph shows the Pauli
EMFF for the electric γ∗pR(1/2±) (R = N∗, ∆∗) interactions, whereas the lower two graphs
contain the EMFFs needed in the γ∗pR(3/2±) vertices.
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2m2
R

Q∓√Q±M+
3
2
, 1
2

]
. (5.16)

Figure 5.1 displays the results for the S11(1650), P11(1710), P13(1720), D33(1700),
P31(1910) and P33(1920) EMFFs as computed in the Bonn CQM. While most of the
obtained curves resemble the standard dipole shape, the S11(1650) Pauli form factor
exhibits an entirely different Q2 dependence. As the computed form factors of the
P13(1900) turned out to be too small, we used a dipole with a cutoff of 840 MeV [133]
for this resonance. The same parameterization was adopted for the S31(1900), the mass
of which is overestimated in all existing CQMs, and for the missing D13(1900) and
P11(1900) states.
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5.2 Results and discussion

In the previous chapter, we constructed RPR amplitudes for the various KY photopro-
duction channels. A number of model variants were found to provide a comparably
good description of the available data. Their properties are recalled in Table 5.1.

As can be appreciated from Table 5.1, it turned out to be impossible to determine the
sign of Gt

K∗(892) from the photoproduction observables. Futhermore, in the K+Λ channel
two combinations of K and K∗(892) trajectory phases (rotating K and K∗, or rotating K

and constant K∗) produce a comparable quality of agreement with experiment. With
respect to the quantum numbers of a potential “missing” N∗(1900) resonance, both
P11 and D13 emerged as valid candidates, with D13 the likelier of the two. For K+Σ0,
the K and K∗(892) trajectory phases could be fixed by the photoinduced data, and no
“missing” resonances were needed to achieve a fair description of the data.

Without readjusting or tuning any parameter, we now compare the RPR variants
from Table 5.1 with the electroproduction data.

5.2.1 The γp → K+Λ channel

In Fig. 5.2, we display the Q2 dependence of the unseparated differential p(e, e ′K+)Λ

cross section σT + ε σL and its separated components at W = 2.15 GeV. It is clear that

RPR Backgr. D13 P11 χ2

K+Λ RPR-2 rot.K, rot.K∗(892), Gt
K∗(892) < 0 – F 3.2

RPR-2 ′ “ F – 2.7
RPR-3 rot.K, cst.K∗(892), Gt

K∗(892) > 0 – F 3.1
RPR-3 ′ “ F – 3.2
RPR-4 rot.K, cst.K∗(892), Gt

K∗(892) < 0 – F 3.1
RPR-4 ′ “ F – 3.1

K+Σ0 RPR-3 rot.K, cst.K∗(892), Gt
K∗(892) > 0 – – 2.0

RPR-4 rot.K, cst.K∗(892), Gt
K∗(892) < 0 – – 2.0

Table 5.1 RPR variants providing the best description of the high- and low-energy p(γ, K+)Λ

and p(γ, K+)Σ0 data from Refs. [57, 58, 61, 63, 64, 116, 118, 119]. “Rot.” and ”cst.” refer to the ro-
tating or constant Regge trajectory phase. All models include the known S11(1650), P11(1710),
P13(1720) and P13(1900) resonances. Apart from these, each K+Λ variant assumes either a miss-
ing D13(1900) or P11(1900). The K+Σ0 amplitude further contains the D33(1700), S31(1900),
P31(1910) and P33(1920) ∆∗ states.
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RPR-3( ′) and RPR-4( ′) are incompatible with the data for σT , for which they predict an
unrealistically steep decrease as a function of Q2. The RPR-2( ′) variants, on the other
hand, describe the slope of this observable rather well. As the σT +ε σL and σL data are
accompanied by rather large error bars, they do not allow to distinguish between the
different parameterizations.

Figure 5.3 shows the Q2 dependence of the unseparated p(e, e ′K+)Λ differential
cross sections σT + ε σL for three different W bins. The RPR-3( ′) variants underestimate
the data by several factors, whereas RPR-2( ′) and RPR-4( ′) lead to acceptable results at
all but the lowest energy.

The separated observables σL and σT are shown in Fig. 5.4 as a function of cos θ∗
K.

The longitudinal cross section is clearly the least sensitive to the specific structure of the
amplitude, with only the RPR-4( ′) variants failing to reproduce its behavior at higher
energies. The transverse cross section is more difficult to describe, as none of the six
model variants are able to reproduce its magnitude at forward angles and W ≈ 1.75

GeV. At higher energies, the RPR-2 ′ variant with a missing D13(1900) performs rea-
sonably, as do both RPR-3 and RPR-3 ′. The latter two were, however, excluded by
comparison with the unseparated data (Fig. 5.3).

Figure 5.5, which shows the cos θ∗
K dependence of σT + ε σL, as well as of the previ-

ously unmeasured observables σTT and σLT , supports the above conclusions. The RPR-
2 ′ variant reasonably reproduces the trends of the data, including the strong forward-
peaking behavior of the unseparated cross section. The differences between the full
RPR-2 ′ (dashed lines) and background (dotted lines) curves are relatively small. The
RPR-2 option with a missing P11 leads to very poor results for σT + ε σL and σTT . The
RPR-4( ′) results also deviate strongly from the data, as was the case for Fig. 5.4.

We further consider the transferred polarization for the −→e p → e ′K
−→
Λ process. Fig-

ure 5.6 compares our results for the observables P ′
x, P ′

z, P ′
x ′ and P ′

z ′ , obtained with the
RPR-2 and RPR-2 ′ variants, to the data of Ref. [65]. Once more the RPR-2 model, cor-
responding to the P11(1900) option, leads to inferior results. The RPR-2 ′ variant with a
missing D13 provides a fair description of the data.

Based on the above results, the RPR-2 ′ model clearly represents the optimum choice
for describing the combined photo- and electroproduction processes. This result sup-
ports the recent conclusion from Refs. [35,85] that a D13 state with a mass around 1900
MeV is required by both the CLAS and SAPHIR p(γ,K+)Λ data.
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5.2.2 The γp → K+Σ0 channel

For the p(e, e ′K+)Σ0 process, only unpolarized data are available. In Fig. 5.7, the sep-
arated and unseparated cross sections are compared with the results of the RPR-3 and
RPR-4 model variants from the lower part of Table 5.1. Neither σT + ε σL nor its sep-
arated components exhibit a clear preference for either parameterizarion. It turns out
that σT + εσL and σL can be reasonably well described in a pure background model,
whereas reproducing the slope of σT clearly requires some resonant contributions to
the amplitude.

The situation is different for the newly measured observables σTT and σLT , displayed
in Fig. 5.8 along with the unseparated cross section. It is clear that RPR-3 performs
significantly better than RPR-4 in reproducing the global characteristics of the data.
The quality of agreement is, however, considerably worse than for the K+Λ final state,
although the absence of any forward peaking of σT+ε σL is qualitatively reproduced. In
contrast to the RPR-2 ′ model for the p(e, e ′K+)Λ reaction (Fig. 5.5), we find relatively
large contributions beyond the background for both K+Σ0 models, hinting that the
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p(e, e ′K+)Σ0 channel is more likely to provide interesting resonance information.
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CHAPTER

6

Conclusions

We have presented an effective-Lagrangian framework describing the p(γ,K)Y and
p(e, e ′K)Y processes over an energy range from threshold up to ωlab = 16 GeV. To con-
struct the reaction amplitudes, we have resorted to a “Regge-plus-resonance” (RPR)
strategy, involving the superposition of a limited number of s-channel resonances onto
a reggeized t-channel background. The Regge-inspired approach guarantees an appro-
priate high-energy limit of the model, while the s-channel terms provide the necessary
resonant structure to the low-energy observables.

Photoproduction in the Regge limit

In a first step, the parameters of the t-channel background amplitude were fixed against
the p(γ,K+)Λ,Σ0 data for ωlab & 5 GeV. The K+Λ and K+Σ0 photoproduction reac-
tions were assumed to be dominated by K and K∗(892) Regge-trajectory exchanges.
We addressed the question of whether a constant or a rotating phase represents the
optimum choice for these trajectories.

For the K+Λ final state, the option of a constant K-trajectory phase could be ruled out
by comparison with the high-energy recoil asymmetry data. Despite the parameter-
poorness of the Regge amplitude, singling out one particular p(γ,K+)Λ background
model turned out to pose some difficulties due to the scarcity of the high-energy data.
Specifically, it proved impossible to determine either the sign of the K∗(892) tensor
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coupling or the phase of the K∗(892) trajectory.
In the K+Σ0 case, the amount of high-energy data is too limited to constrain the

model parameters adequately. We adopted the strategy of retaining only those Regge
model variants reproducing the sign of the recoil asymmetry in the resonance region.
By imposing this requirement, the option of a constant K-trajectory phase could again
be ruled out. As in the K+Λ case, the K∗(892) phase and the sign of its tensor coupling
remained undetermined.

In principle, isospin considerations allow one to transform the K+Σ0 photoproduc-
tion amplitude into an amplitude applicable to the γp → K0Σ+ process. Because the
K0-exchange diagram vanishes in photoproduction, the K0Σ+ amplitude constructed in
this manner would solely comprise K∗(892) exchange. Such a single-trajectory model
was found to overshoot the p(γ,K+)Σ0 data in the resonance region by several factors.
This could be explained by realizing that, with one of the leading t-channel contribu-
tions missing, higher-mass kaon trajectories are expected to start playing a role. In-
cluding the exchange of an additional K∗(1410) trajectory was found to lead to very
good results. Due to the lack of high-energy p(γ,K0)Σ+ data, the K∗(1410) parameters
and trajectory phase had to be determined against the resonance-region data.

Photoproduction in the resonance region

In a second step, we added s-channel diagrams to the reggeized background ampli-
tudes. In order to minimize any double-counting effects that might arise, the number
of resonances was deliberately constrained. Apart from the well-established S11(1650),
P11(1710) and P13(1720) nucleon resonances, we investigated possible contributions of
the two-star P13(1900) state, as well as of the ∆∗s S31(1900), P31(1910), D33(1700) and
P33(1920). In the K+Λ channel, the missing D13(1900) and P11(1900) states were also
considered as possible resonance candidates.

For the p(γ,K+)Λ process, we tentatively identified a single RPR model as provid-
ing the best description of the collective high- and low-energy data. A rotating phase
was found to be the optimum choice for both the K(494) and K∗(892) trajectories. The
optimum sign for the K∗(892) tensor coupling turned out to be the negative one. It
was further shown that the description of the resonance-region observables could be
significantly improved by including a contribution from a new resonance. A missing
resonance with the quantum numbers D13(1900) was found to be compatible with the
data. The known spin-3/2 resonances P13(1720) and P13(1900) proved to be consid-
erably more important than their spin-1/2 counterparts S11(1650) and P11(1710). This
corroborates the result from Refs. [30, 33], in which the importance of P11(1710) was
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also called into question. Of all quantities measured so far, the double-polarization ob-
servables Cx and Cz are by far the most discriminative with respect to the RPR-model
ingredients. Including these observables in the fitting procedure should be the next
step toward refining the existing models.

For the p(γ,K)Σ channels, the sign of the K∗(892) tensor coupling turned out to
be ill-determined by the photoproduction data. It was found that the K∗(1410) phase
has to match the choice made for K∗(892). Apart from the standard N∗ “core” states
S11(1650), P11(1710) and P13(1720), the two-star P13(1900) was identified as a necessary
contribution, irrespective of the background assumptions. Including either of the spin-
1/2 resonances S31(1900) or P31(1910) turned out to be sufficient, whereas the spin-3/2
D33(1700) state was found to be considerably more important than P33(1920).

Electroproduction in the resonance region

Finally, we compared the various RPR amplitudes constructed for the photoproduction
process with the world electroproduction data without readjusting any parameter. The
electromagnetic form factors of the various N∗ and ∆∗ states were computed using the
Bonn constituent-quark model [45, 136, 139]. It was found that the S11(1650) Dirac
form factor deviates rather strongly from the standard dipole shape. For the other
resonances, a dipole-like behavior of the EMFF was obtained.

We concluded that the electroproduction response functions are particularly useful
in constraining those RPR-model parameters which the p(γ,K)Y data fail to determine.
For K+Σ0 production, only one of the two RPR model variants retained from the photo-
production study could reasonably account for the electroproduction observables. The
preferred model assumes a positive K∗(892) tensor coupling. In the K+Λ channel, the
model preferred from the photoproduction study also turned out to produce the best
description of the electroproduction process.

Although the reasonable performance of the pure Regge description for most
p(e, e ′K)Λ,Σ0 observables [67] suggests a t-channel dominated process, the discrep-
ancies between the pure Regge predictions and the data are obvious footprints of s-
channel dynamics. The RPR strategy provides an ideal framework to parameterize
such contributions. While reasonable predictions could be obtained using the RPR
models derived from the photoproduction study, we expect that a fit to the combined
p(γ,K+)Y and p(e, e ′K+)Y databases could provide even more useful information.
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Outlook

While a reasonable description of the forward-angle part of the p(γ(∗), K)Y database can
be obtained with the RPR models presented here, there is room for improvement. With
a view to future projects, it would be useful to extend the RPR amplitudes towards
backward angles. A number of strategies may be followed in realizing this:

• a simple re-fitting of model parameters to the complete dataset.

• the assumption of saturating instead of linear Regge trajectories.

• the adding of u-channel contributions, either reggeized or not.

A logical next step would then be to incorporate the RPR approach into a coupled-
channels model. Alternative applications of the RPR strategy could involve the de-
scription of ρ or K∗ vector-meson production, of reactions involving a deuteron, or of
the production of hypernuclei.

To conclude, a final word of warning may be in order. Despite the established success
of effective-field approaches in describing a variety of meson production processes, it
should be realized that pinpointing the dominant s-channel diagrams in the context of
such a model is a delicate business. This applies in particular to the search for “miss-
ing” resonances. While the inclusion of additional resonant contributions invariably
leads to a decrease in χ2, this does not automatically imply an increased likelihood for
the constructed model. Furthermore, it is seldom clear whether a similar agreement
with the data cannot be obtained using a different combination of background and
resonance contributions, or a different set of parameters for the same diagrams. As
the number of model parameters increases, it becomes ever harder to check whether
the attained minimum in χ2 is truly a global minimum, and whether or not other such
minima exist. Evidently, this challenge will prove even more daunting in coupled-
channels models than at tree level. It will, however, have to be addressed carefully in
future analyses of weak channels such as kaon photoproduction.



APPENDIX

A
Effective fields and
interactions for p(γ(∗), K)Y

A.1 Effective Lagrangians in the RPR model

In this Appendix, we list the strong and electromagnetic interaction Lagrangians
needed for the RPR calculations. We adopt the same set of interactions as in the work
of S. Janssen [71]. The normalization conventions for the field operators and Dirac
matrices are those of Ref. [140]. The nucleon and hyperon Dirac fields and the kaon
Klein-Gordon field are written as N, Y and K, and the notation R is used for a general
resonant baryon field. The antisymmetric tensor for the photon field Aµ is defined as
Fµν = ∂νAµ−∂µAν. The corresponding tensor for the vector-meson field Vµ is given by
Vµν = ∂νVµ − ∂µVν. The Mandelstam variables for the two-particle scattering process
γ∗(k) + p(p) → K(pK) + Y(pY) are defined in the standard way as

s = (k + p)2 , (A.1)

t = (k − pK)2 , (A.2)

u = (k − pY)2 , (A.3)

with s + t + u = m2
p + m2

K + m2
Y − Q2.
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A.1.1 Background contributions

The electromagnetic interaction Lagrangians contributing to the t-channel background
amplitude are given by:

Lγ∗KK = −ie FK(Q2)
(
K†∂µK − K∂µK†)Aµ , (A.4)

Lγ∗KK∗ =
eκKK∗

4M
FKK∗(Q2) εµνλσFµνVλσK + h. c. , (A.5)

Lγ∗pp = −e F
p
1(Q

2) NγµNAµ

︸ ︷︷ ︸

Lelec
γ∗pp

+
eκp

4mp

F
p
2(Q

2) NσµνNFµν

︸ ︷︷ ︸
Lmagn

γ∗pp

, (A.6)

with “h. c.” denoting the hermitian conjugate. For the proton anomalous magnetic mo-
ment, we assume κp = 1.793 µN [114], whereas κKK∗ is considered as a free parameter.
Further, σµν = i

2
[γµ, γν], and e = +

√
4π/137. By convention, the mass scale M is taken

at 1 GeV. In the real-photon point, the electromagnetic form factors (EMFFs) reduce to

FK+(0) = FK+,0K∗+,0(0) = F
p
1,2(0) = 1 , (A.7)

FK0(0) = 0 . (A.8)

F
p
1 and F

p
2 are known as the proton Dirac and Pauli form factors, respectively. The elec-

tric contribution Lelec
γ∗pp to Eq. (A.6) is included in the t-channel Regge amplitude for

K+ production in order to ensure gauge invariance. While the magnetic term Lmagn
γ∗pp is

generally included in an isobar model, it is not needed for the RPR calculations.

For the strong KYp vertex, either a pseudoscalar or a pseudovector structure can be
assumed. We have opted for a pseudoscalar interaction in accordance with Ref. [71]:

LPS
KYp = −igKYp K† Y γ5 N + h. c. (A.9)

The hadronic K∗Yp vertex is composed of a vector (v) and a tensor (t) part:

LK∗Yp = − gv
K∗Yp YγµNVµ

+
gt

K∗Yp

2 (MY + Mp)
YσµνVµνN + h.c. .

(A.10)

The free parameters in the background diagrams are expressed as

gKYp , Gv,t
K∗ =

egv,t
K∗Yp

4π
κKK∗ . (A.11)
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A.1.2 Resonance contributions

The electromagnetic interaction Lagrangian for spin-1/2 resonances, assumed in this
work, reads:

Lγ∗pR(1/2±) =
eκpR(1/2±)

4mp

F
pR(1/2±)

2 (Q2) RΓµνNFµν + h.c. , (A.12)

with Γµν = σµν (γ5σµν) for even (odd) parity resonances. For spin-3/2 resonances,
two terms appear in the Lagrangian:

LγpR(3/2±) = i
eκ

(1)

pR(3/2±)

mR + mp

F
pR(3/2±)

(1)
(Q2) R

µ
θµν

(
YR(3/2)

)
Γ ′
λ NFλν

−
eκ

(2)

pR(3/2±)

(mR + mp)2
F

pR(3/2±)

(2)
(Q2) R

µ
θµν

(
XR(3/2)

)
Γ (∂λN) Fνλ + h.c , (A.13)

Herein, Γ = γ5 (1) and Γ
′µ = γ5γµ(γµ) for even (odd) parity resonances. Rµ is the

Rarita-Schwinger vector field used to describe the spin-3/2 particle. The function
θµν (V) is defined as [80]

θµν (V) = gµν −

(
V +

1

2

)
γµγν , (A.14)

with V a so-called off-shell parameter.

The strong interaction Lagrangian for a spin-1/2 resonance can have a pseudoscalar or
a pseudovector form. As in Eq. (A.9), we have used the pseudoscalar scheme:

LPS
KYR(1/2) = −igKYR(1/2)K

†Y ΓR + h.c., (A.15)

with Γ defined as before. The hadronic vertex for spin-3/2 exchange is given by

LKYR(3/2) =
fKYR(3/2)

MK

R
µ
θµν

(
ZR(3/2)

)
Γ ′Y (∂νK) + h.c. , (A.16)

with Γ ′ = 1 (γ5) for even (odd) parity resonances.

The fits of the model calculations to the data provide access to the following combina-
tions of coupling constants:

GR(1/2) =
gKYR(1/2)√

4π
κpN∗ (A.17)

for spin-1/2 states, and

G
(1,2)

R(3/2)
=

efKYR(3/2)

4π
κ

(1,2)
pR(3/2) , XR(3/2) , YR(3/2) , ZR(3/2) (A.18)

for spin-3/2 resonance exchange.
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A.2 Feynman Propagators

For the spin-0 and spin-1 Feynman propagators, we adopt the standard expressions:

P0 (q) = i
1

q2 − m2
, (A.19)

Pµν
1 (q) = i

1

q2 − m2

[
−gµν +

qµqν

m2

]
, (A.20)

where q and m are the four-momentum and mass of the propagating particle.

The propagator for spin-1/2 particles reads:

P1/2 (q) = i
6 q + m

q2 − m2
. (A.21)

Although the optimum choice for the spin-3/2 propagator remains a subject of discus-
sion [80], we have used the Rarita-Schwinger form in accordance with Ref. [71]:

Pµν

3/2
(q) = i

6 q + m

3 (q2 − m2)

×
[
3gµν − γµγν −

2qµqν

m2
−

γµqν − γνqµ

m

]
. (A.22)

A.3 Isospin symmetry in the K+Σ0/K0Σ+ channels

In this Appendix, we sketch how isospin arguments can be applied to establish rela-
tions between the coupling constants for the γp → K+Σ0 and γp → K0Σ+ channels.
Only the relations specifically required for this work are mentioned. A more extensive
review can e.g. be found in Ref. [29]. In what follows, the isospin symmetry of the
various meson and baryon multiplets is assumed to be exact.

All hadronic decay processes relevant to the RPR treatment of forward-angle KΣ

photoproduction are either of the type N → KΣ or ∆ → KΣ. Because of the isovector
nature of the Σ particle, the hadronic couplings are proportional to the Clebsch-Gordan
coefficients:

gKΣN ∼ < IK =
1

2
, MK; IΣ = 1, MΣ | IN =

1

2
, MN > , (A.23)

gKΣ∆ ∼ < IK =
1

2
, MK; IΣ = 1, MΣ | I∆ =

3

2
, M∆ > . (A.24)
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When adopting the following conventions for the isospin states of the N, K and Σ

particles,

Σ+ ↔ − |I = 1, M = +1〉 ,

Σ0 ↔ + |I = 1, M = 0〉 ,

Σ− ↔ + |I = 1, M = −1〉 ; (A.25)

p ↔

∣∣∣∣I =
1

2
, M = +

1

2

〉
↔ K+ ,

n ↔

∣∣∣∣I =
1

2
, M = −

1

2

〉
↔ K0 .

(A.26)

these simple relations emerge:

gK0Σ+p =
√

2 gK+Σ0p , (A.27)

gK0Σ+∆+ = −
1√
2

gK+Σ0∆+ , (A.28)

The isospin relations are valid both when ground-state hadrons or hadron resonances
are involved.

Contrary to the hadronic parameters, the relations between electromagnetic cou-
plings have to be distilled from experimental information. In principle, the value of
the magnetic transition moment κK∗K can be determined on the basis of the propor-
tionality κ2

K∗K ∼ ΓK∗→Kγ. Within the context of tree-level models, however, the coupling
constants are frequently considered as “effective couplings” in which, for example,
part of the final-state interaction effects are absorbed. It is a common procedure to
use only the ratios of the measured decay widths to connect isospin-related coupling
constants. Using the PDG values for the K∗+(892) and K∗0(892) widths, i.e. [114]:

ΓK∗+(892)→K+(494)γ = 50 ± 5 keV , (A.29)

ΓK∗0(892)→K0(494)γ = 116 ± 10 keV , (A.30)

the following expression is obtained:

κK∗0(892) K0(494) = −1.52 κK∗+(892) K+(494) . (A.31)

The relative sign in the last expression was selected on the basis of a constituent-quark
model prediction by Singer and Miller [141], which accurately reproduces the experi-
mental widths of Eqs. (A.29) and (A.30).
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APPENDIX

B
Parameters of the RPR
model

B.1 Fitting procedure

The optimum set of coupling constants (c1, ..., cn) for a given set of data points
(D1, ..., DN) is considered to be the one that produces the lowest value for χ2, defined
as

χ2 =
1

N

N∑

i=1

[Di − Pi(c1, · · · , cn)]2

σ2
Di

, (B.1)

where Pi represents the theoretical prediction for the data point Di with standard error
σ2

Di
.

In this work, the complex issue of minimizing χ2 is tackled using a simulated an-
nealing algorithm (SAA) [142] developed by S. Janssen [71]. This algorithm has been
designed to produce parameters near the global minimum of the χ2 surface. A more
detailed explanation is available from Ref. [71].

In our treatment of the KΣ channels, which involve a greater number of parameters
than the KΛ one, we deemed it more efficient to use a combination of the SAA and
the CERN MINUIT [143] package. This work was carried out in collaboration with
D.G. Ireland [93, 125]. Starting points for minimization were obtained from the SAA.
The parameters provided by the SAA were then fed into MINUIT in order to pinpoint
the location of each minimum more precisely, and obtain an error matrix for the fitted
parameters.
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B.2 Extracted coupling constants

In Tables B.2 and B.1, we list the optimum parameter values for the RPR-2 ′ KΛ and the
RPR-3 KΣ models, respectively.

Background
K+(494) / p

gK+Λp

4π
-3.0

K∗+(892) Gv
K∗+(892)Λp 2.607 · 10−1

Gt
K∗+(892)Λp −7.004 · 10−1

N∗ resonances
S11(1650) GS11(1650) −6.349 · 10−3

P11(1710) GP11(1710) −6.623 · 10−2

P13(1720) G
(1)

P11(1720)
4.570 · 10−3

G
(2)

P11(1720)
−3.054 · 10−3

XP11(1720) 1.437 · 102

YP11(1720) 5.696 · 10
ZP11(1720) −3.117 · 10−1

P13(1900) G
(1)

P13(1900)
−1.052 · 10−1

G
(2)

P13(1900)
7.166 · 10−2

XP13(1900) −1.7 · 10
YP13(1900) 2.588

ZP13(1900) −8.878 · 10−1

D13(1900) G
(1)

D13(1900)
1.558 · 10−1

G
(2)

D13(1900)
1.077 · 10−1

XD13(1900) 4.031 · 10
YD13(1900) −1.399 · 10
ZD13(1900) −3.969 · 10−2

Other
cutoff mass Λres (MeV) 1636.53

Table B.1 Numerical values of the coupling constants for the p(γ(∗), K+)Λ process using the
RPR-2 ′ model from Sec. 4.1.
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Background
K+(494) / p

g
K+Σ0p

4π
1.299

K∗+(892) Gv
K∗+(892)Σ0p

−3.505 · 10−1

Gt
K∗+(892)Σ0p

6.813 · 10−1

K∗0(1410) Gv
K∗0(1410)Σ+p

−3.387

Gt
K∗0(1410)Σ+p

4.557

N∗ resonances
S11(1650) GS11(1650) −3.924 · 10−2

P11(1710) GP11(1710) 4.918 · 10−2

P13(1720) G
(1)

P11(1720)
2.187 · 10−2

G
(2)

P11(1720)
9.586 · 10−3

XP11(1720) −6.114

YP11(1720) −4.490 · 10−1

ZP11(1720) 3.276

P13(1900) G
(1)

P13(1900)
1.376 · 10−1

G
(2)

P13(1900)
4.011 · 10−1

XP13(1900) 4.465

YP13(1900) −3.495

ZP13(1900) −5.272 · 10−1

∆∗ resonances
S31(1900) GS31(1900) 9.129 · 10−2

P31(1910) GP31(1910) −7.326 · 10−2

D33(1700) G
(1)

D33(1700)
−2.874 · 10−1

G
(2)

D33(1700)
−3.374 · 10−1

XD33(1700) −4.999

YD33(1700) −4.521

ZD33(1700) −1.577 · 10−1

P33(1920) G
(1)

P33(1920)
6.722 · 10−2

G
(2)

P33(1920)
9.980 · 10−2

XP33(1920) 8.031

YP33(1920) 2.416

ZP33(1920) −5.272 · 10−1

Other
cutoff mass Λres (MeV) 1593.37

Numerical values of the coupling constants for the p(γ(∗), K)Σ processes using the RPR-
3 model from Sec. 4.2.
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APPENDIX

C
Deriving the Regge
propagator

In this Appendix, we sketch the derivation of the Regge propagator for the two-particle
scattering reaction 1+2 → 3+4 in the case of spinless external particles. To simplify the
mathematics, we assume that all particles participating in this process have identical
masses (m). The generalization to non-equal masses is straightforward and has no
impact on the general conclusions. A more detailed account of the different steps in
the derivation is given in Ref. [106].

Partial-wave expansion

When the external particles are on shell, the scattering amplitude M is a function of
two independent variables, which can be chosen for example as s and t 1. It is then
possible to expand M(s, t) in terms of Legendre polynomials:

M (s, t) =

∞∑

l=0

(2l + 1)Ml (s)Pl (cos θs) , (C.1)

where
cos θs = 1 +

2t

s − 4m2
= −

(
1 +

2u

s − 4m2

)
(C.2)

is the angle between the three-momenta of particles 1 and 3. For spinless particles,
l can be identified with the conserved total angular momentum in the reaction. The

1The same reasoning can be made using s and u.
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partial-wave amplitude Ml (s) is given by:

Ml (s) =
1

2

∫+1

−1

d cos θs M
(
s, t (s, cos θs)

)
Pl (cos θs) (l = 0, 1, 2, . . .) . (C.3)

The Legendre expansion of Eq. (C.1) is valid in the physical region of the “direct” or
s-channel process 1 + 2 → 3 + 4, defined by the conditions:

s ≥ 4m2 , −1 ≤ cos θs ≤ +1 or t ≤ 0 . (C.4)

It is, however, not guaranteed to converge beyond those limits.

Crossing symmetry

Regge theory relies heavily on the principle of crossing symmetry (Sec. 2.4.1). This
entails that the “crossed” or t-channel process 1 + 3 → 2 + 4 can be described by the
same complex function M as the direct s-channel process, albeit for different values of
the variables. Specifically,

Ms(s, t) ≡ Mt(t, s) , (C.5)

where Ms (Mt) represents the amplitude for the s- (t-) channel reaction. It is clear that,
if (t, s) belongs to the physical region of the t-channel process,

t ≥ 4m2 , −1 ≤ cos θt ≤ +1 or s ≤ 0 , (C.6)

where
cos θt = 1 +

2s

t − 4m2
= −

(
1 +

2u

t − 4m2

)
, (C.7)

then (s, t) cannot belong to the s-channel physical region, and vice versa. One may,
however, obtain the amplitude for the direct reaction by analytically continuing Mt

from the t-channel to the s-channel physical region. This is, in fact, the central idea
behind Regge theory.

For the crossed amplitude, an analogous decomposition as in Eq. (C.1) can be con-
structed:

Mt(t, s) = Ms(s, t) =

∞∑

l=0

(2l + 1)Ml (t)Pl (cos θt) . (C.8)

In Refs. [111,112], it is demonstrated that the convergence of a partial-wave series of
the type (C.8) can only be guaranteed for t ≥ 4m2 and with cos θt inside the so-called
Lehmann-Martin ellipse, shown in Fig. C.1. It has foci at ±1 and a large axis which is
determined by:

cos θ0 = 1 +
8m2

t − 4m2
. (C.9)
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Figure C.1 The Lehmann-Martin ellipse in the complex cos θt plane, for the equal-mass t-
channel scattering process.

The values cos θt = ± cos θ0 correspond to branch points of the amplitude in the com-
plex cos θt plane (see for example [106]). According to Eq. (C.7), these occur at s = 4m2

and u = 4m2, respectively. Extrapolating Mt towards the physical region of the direct
s-channel process involves crossing the boundaries of the Lehmann-Martin ellipse. In
order to accomplish this, it is necessary to cast Eq. (C.8) into a form more suitable for
analytic continuation.

The Sommerfeld-Watson transformation

The advised strategy is to sum over all t-channel partial waves before attempting to
extrapolate Eq. (C.8) beyond the convergence region. This summation should be per-
formed in such a way that it results in an analytical function of s (or cos θt) and t, which
can be used outside the Lehmann-Martin ellipse. The above can be realized by trans-
forming the sum over l into a contour integral in the complex angular momentum, or
λ, plane. Using the residue theorem, Eq. (C.8) can be re-written as:

M (s, t) = −
1

2i

∮

C1

dλ
(2λ + 1)Mλ (t)Pλ (− cos θt)

sin (πλ)
, (C.10)

where we have omitted the lower index “s” in Ms for conciseness. This technique is
known as the Sommerfeld-Watson transformation. Pλ(z) is the Legendre function of the
first kind, which is an analytical function of λ and z and obeys the relation Pλ(−z) =

(−1)λ Pλ(z). The poles of the integrand are produced by the factor
1

sin (πλ)
since:

sin (πλ)
λ→l−→ (−1)

λ
(λ − l) π . (C.11)

The contour C1 is shown in Fig. C.2. A necessary condition for the Sommerfeld-Watson
transformation is that Mλ (t) is an analytical function of λ. Although this theorem,
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Figure C.2 The contours C1 and C2 in the complex angular-momentum plane. The poles at the
real axis and at α (t) are indicated.

known as the postulate of maximal analyticity of the second kind, cannot be proven on
the basis of fundamental principles, it seems to be supported by strong interaction
models [106] and by the available experimental information.

The Froissart-Gribov projection

The integral in Eq. (C.10) can be simplified by deforming the contour toward infinity.
This requires that we verify the convergence of Mλ (t) at λ → ∞. As a starting point,
we consider a dispersion relation for M (s, t) at fixed t. We use the Cauchy integral
formula, which states that

F(z) =
1

2πi

∮

C

dz ′

z ′ − z
F(z ′) , (C.12)

with C a contour around z which does not contain any singularities of F. For
M (s(cos θt), t), one may use a contour at infinity which “circumvents” the branch
cuts and poles as depicted in Fig. C.3, resulting in:

M (s (cos θt) , t) = pole terms +
1

π

∫+∞

cos θ0

dz ′ Ds (z ′, t)

z ′ − cos θt

−
1

π

∫− cos θ0

−∞

dz ′ Du (z ′, t)

z ′ − cos θt

. (C.13)
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Figure C.3 Contour used to obtain the dispersion relation (C.13). The red lines indicate the
branch cuts of Ms(s, t), whereas the possible poles are indicated as blue dots.

The discontinuity functions along the branch cuts are defined as:

Ds (z, t) = lim
ε→0

1

2i
(M (s + iε, t, u) − M (s − iε, t, u)) , (C.14)

Du (z, t) = lim
ε→0

1

2i
(M (s, t, u + iε) − M (s, t, u − iε)) , (C.15)

where we have introduced the shorthand notation z ≡ cos θt. Herein, s ± iε (u ∓
iε) correspond to values of cos θt just above or below the s (u) branch cut (Eq. C.7).
The dispersion relation (C.13) can be substituted into the definition of the partial-wave
amplitude:

Mλ (t) =
1

2

∫+1

−1

d cos θt M (s (cos θt) , t) Pλ (cos θt) (C.16)

=
1

2

∫+1

−1

d cos θt

1

π

∫+∞

cos θ0

dz ′Pλ (cos θt)

[
Ds (z ′, t)

z ′ − cos θt

+
Du (−z ′, t)

z ′ + cos θt

]

where we have performed the transformation z ′ → −z ′ in the third term of Eq. (C.13).
By introducing the Legendre function of the second kind,

Qλ (z) =
1

2

∫+1

−1

dz ′Pλ (z ′)

z − z ′ , (C.17)

and interchanging the integration variables, one eventually obtains the Froissart-Gribov
projection:

Mλ (t) =
1

π

∫+∞

cos θ0

dz ′ Qλ (z ′)
[
Ds (z ′, t) + (−1)

λ
Du (−z ′, t)

]
. (C.18)

The asymptotic behavior of the Legendre function of the second kind is given by:

Qλ (z)
|λ|→∞−→ λ−1/2e−(λ+1/2) ln(z+

√
z2+1) . (C.19)
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This can be shown to imply that Mλ (t) in Eq. (C.18) converges for large λ, except for
the factor (−1)

λ. This final issue may be solved by distinguishing between two types
of partial waves

Mζ=±
λ (t) =

1

π

∫+∞

cos θ0

dz ′ Qλ (z ′) [Ds (z ′, t) + ζDu (−z ′, t)] , (C.20)

with different signatures ζ = ±. For either possibility, Mζ
λ (t) now converges for |λ| →

∞. The connection to the physical partial-wave amplitudes simply reads:

Mλ (t) = M+
λ (t) , λ = 0, 2, 4 . . . (C.21)

Mλ (t) = M−
λ (t) , λ = 1, 3, 5 . . . (C.22)

Regge poles

The contour C1 from the Sommerfeld-Watson transformation (Eq. (C.10)) can now be
deformed into an alternative contour, C2, also depicted in Fig. C.2. Even if the con-
tributions at infinity vanish, other singularities have to be taken into account. It was
Regge who postulated that the only singularities of the amplitude Mζ

λ (t) are poles in
the complex plane at λ = αζ

i (t). In the vicinity of such a pole, the amplitude assumes
the form:

Mζ
λ (t)

λ→αζ
i
(t)−→

βζ
i (t)

λ − αζ
i (t)

, (C.23)

with βζ
i (t) the residue. The Sommerfeld-Watson representation then becomes:

M̃ζ (s, t) = −
1

2i

∫−1/2+i∞

−1/2−i∞

dλ
(2λ + 1)Mζ

λ (t)Pλ (− cos θt)

sin (πλ)

−π
∑

i

(
2αζ

i (t) + 1
) βζ

i (t)

sin
(
παζ

i (t)
) Pαζ

i
(t) (− cos θt) . (C.24)

The first term is called the background integral. Taking into account the asymptotic
behavior of Pλ (z):

Pλ (z)
z→∞−→






1√
π

Γ(l+1/2)

Γ(λ+1)
(2z)

λ
, Re {λ} ≥ −1/2 ,

1√
π

Γ(−λ−1/2)

Γ(−λ)
(2z)

−λ−1
, Re {λ} ≤ −1/2 ,

(C.25)

this integral can be shown to behave like s−1/2 for s → ∞. It can therefore be neglected
in the high-s limit.

The required conditions (C.21) and (C.22) can be guaranteed by defining the physical
fixed-signature amplitudes Mζ(s, t) as

Mζ (s, t) =
1

2

[
M̃ζ (z, t) + ζ M̃ζ (−z, t)

]
, (C.26)
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where we have written the functional dependencies as (z, t) instead of (s, t), and

M (s, t) = M+ (s, t) + M− (s, t) . (C.27)

Assuming that the background integral in Eq. (C.24) can be neglected, one obtains the
following expression:

Mζ (s, t) = − π
∑

i

(
2αζ

i (t) + 1
) βζ

i (t)

sin
(
παζ

i (t)
) (C.28)

1

2

[
Pαζ

i
(t) (− cos θt) + ζPαζ

i
(t) (cos θt)

]
. (C.29)

The sum of the two Legendre functions can be re-written as:
[(

1 + ζe−iπαζ
i
(t)
)

Pαζ
i
(t) (− cos θt) − ζ

2

π
sin
(
παζ

i (t)
)
Qαζ

i
(t) (− cos θt)

]
. (C.30)

For s → ∞, the term proportional to Qαζ
i
(t) (z) may be neglected due to its asymptotic

behavior:

Qαζ
i
(t) (z)

z→∞−→
√

π
Γ
(
αζ

i (t) + 1
)

Γ
(
αζ

i (t) + 3
2

) (2z)
−αζ

i
(t)−1

. (C.31)

Our final result for the high-s scattering amplitude for a fixed signature ζ reads:

Mζ (s, t) = − π
∑

i

(
2αζ

i (t) + 1
) βζ

i (t)

sin
(
παζ

i (t)
) (C.32)

1 + ζe−iπαζ
i
(t)

2
Pαζ

i
(t) (− cos θt) . (C.33)

The Regge limit

The expression (C.33) can be simplified even further in the so-called Regge limit of
high s and small negative t. In this kinematic region, αζ

i (t) is small and the following
expression for the Regge scattering amplitude is obtained:

Mζ
Regge (s, t) =C

∑

i

(
s

s0

)αζ
i
(t)

βζ
i (t)

sin
(
παζ

i (t)
) (C.34)

1 + ζe−iπαζ
i
(t)

2

1

Γ
(
αζ

i (t) + 1
) . (C.35)

Hereby, use is made of Eq. (C.25) for the high-z behavior of Pα(t) (z), and of the fact
that Γ (α (t) + 1/2) ' √

π and (2α (t) + 1) ' 1 for small α (t). The newly introduced
constant C has to be defined in connection with the residue function β (t). The scale
factor s0 is arbitrarily fixed at 1 GeV2.
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We should recall that Eq. (C.35) has been derived in an equal-mass hypothesis.
When extending the derivation to particles with non-equal masses, the physical re-
gions and the Lehmann-Martin ellipse (Fig. C.1) become distorted. For example, the
physical region of the s-channel process is no longer determined by the conditions
t ≤ 0, u ≤ 0, but acquires s-dependent boundaries tmin (s) and umin (s) [106].
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Nederlandstalige samenvatting

Inleiding

Eén van de mijlpalen in de beschrijving van de subatomaire wereld was de ontwik-
keling van het “standaardmodel” in de tweede helft van de vorige eeuw. Dit model
brengt alle elementaire materiedeeltjes onder in twee klassen van fermionen: leptonen,
met het elektron en elektron-neutrino als meest gekende voorbeelden, en quarks, waar-
uit hadronen zoals het proton en neutron zijn opgebouwd. Het standaardmodel omvat
tevens drie fundamentele wisselwerkingen, de zwakke, elektromagnetische en sterke,
die tot stand komen door de uitwisseling van bosonen. Voor elke wisselwerking is
een afzonderlijk veldtheoretisch raamwerk beschikbaar, dat beschrijft hoe de bosonen
koppelen aan de elementaire fermionen waartussen ze de krachten overbrengen.

Jammer genoeg is een goede kennis van de fundamentele bouwstenen van de materie
nog geen garantie voor het begrijpen van processen die zich op grotere schaal afspelen.
In dit opzicht vormt de sterke interactie, beschreven door de theorie van de kwantum-
chromodynamica (QCD), de grootste uitdaging. Dit is te wijten aan een unieke eigen-
schap van de sterke koppelingsconstante αs, die een maat is voor de sterkte van de
quark-quark kracht. In tegenstelling tussen de zwakke en elektromagnetische koppe-
lingen neemt αs niet af maar net toe met toenemende afstand tussen de deeltjes. Een in-
teressant neveneffect van dit gedrag is het “confinement”-fenomeen, hetgeen inhoudt
dat quarks nooit als vrije objecten kunnen worden waargenomen, maar enkel in ge-
bonden toestanden van verschillende quarks en/of antiquarks. Anderzijds gedragen
quarks opgesloten in een zeer beperkte ruimte zich als quasi-vrije deeltjes, een eigen-
schap die men “asymptotische vrijheid” noemt. Jammer genoeg is het gebied waarin
quarks als asymptotisch vrij kunnen worden beschouwd, niet relevant voor de typi-
sche energieschalen van “alledaagse” (of, niet-exotische) materie. Naar QCD-normen
corresponderen afstanden van de orde van de nucleonstraal met waarden van αs die
veel te groot zijn om de gebruikelijke perturbatieve technieken te kunnen toepassen. Er
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bestaat wel een numerieke aanpak van QCD in het medium-energiegebied, “rooster-
QCD” genaamd, maar tot hiertoe staat deze techniek nog onvoldoende op punt om
aangewend te worden voor de beschrijving van dynamische hadronische processen.
De interpretatie van dergelijke processen steunt dan ook nog zeer sterk op modellen
die een aantal fenomenologische ingrediënten bevatten.

Vreemdheidsproductie en het nucleonspectrum

Het studiegebied van de “hadronenfysica” richt zich op het verwerven van inzicht in
de overgang tussen quark-gluon en hadronische vrijheidsgraden. Eén van de overkoe-
pelende projecten in dit veld is het vervolledigen van het experimentele beeld van het
nucleonspectrum. Zoals het waterstofspectrum ooit essentiële informatie leverde over
de elektromagnetische interactie, hoopt men iets te leren over het gedrag van quarks
op hadronische afstandsschalen door studie van de aangeslagen toestanden (of “reso-
nanties”, afgekort N∗s) van het nucleon.

Een centrale onopgeloste vraag in dit verband betreft het probleem van de zoge-
naamde “ontbrekende resonanties”. Er blijkt dat een aanzienlijk deel van de door
constituente-quarkmodellen (CQMs) voorspelde nucleonresonanties nog niet experi-
menteel zijn waargenomen. In een CQM wordt het nucleon beschreven als een gebon-
den toestand van drie effectieve of constituente quarks, die elk te beschouwen zijn als
een “naakte” quark omgeven door een wolk van gluonen en quark-antiquarkparen.
Indien overtuigend bewijs voor het bestaan van de ontbrekende resonanties uitblijft,
zou dit kunnen betekenen dat constituente quarks niet de aangewezen vrijheidsgra-
den vormen om aangeslagen baryontoestanden te beschrijven. Anderzijds is het mo-
gelijk dat de ontbrekende resonanties wel degelijk bestaan, maar zich voornamelijk
manifesteren in andere reactiekanalen dan diegene die traditioneel gemeten werden.
Het overgrote deel van de experimentele informatie over het N∗-spectrum is namelijk
afkomstig van experimenten met een pion (π) en een nucleon (N) in de finale toe-
stand. Nu blijkt dat voor verscheidene van de “ontbrekende” resonanties inderdaad
zeer kleine koppelingssterktes naar het π N kanaal worden voorspeld, en veel grotere
waarschijnlijkheden om te vervallen naar een toestand als ωN, ηN, ππN, KΛ of KΣ.
Een uitgebreide studie van deze alternatieve reactiekanalen moet uitwijzen of deze
voorspellingen stroken met de werkelijkheid.

Dit werk concentreert zich op de elektromagnetische productie van een kaon en
een hyperon (i.e. een baryon dat een vreemde quark bevat) aan een vrij proton, kort
genoteerd als p(γ(∗), K)Y met γ(∗) een reëel (virtueel) foton. Een dergelijke “open-
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vreemdheidsproductie”-reactie is bijzonder interessant omdat een vreemde quark en
antiquark uit de quarkzee “gepromoveerd” worden tot constituente quarks van de
gevormde deeltjes. Het gebruik van elektromagnetische probes heeft het voordeel
dat een gedeelte van de reactie-amplitude beschreven kan worden aan de hand van
kwantum-elektrodynamica (QED), de goed gekende veldtheorie van de elektromag-
netische wisselwerking. De studie van elektromagnetische verstrooiingsprocessen aan
nucleonen en kernen vormt dan ook een essentieel onderdeel in het programma van
experimentele faciliteiten als JLab en MIT-Bates (VS), MAMI en ELSA (Duitsland),
Spring-8 (Japan), en GRAAL (Frankrijk).

Modellen voor de p(γ(∗), K)Y reacties

Hoofdstuk 2 van dit werk gaat in op de theoretische beschrijving van elektromagneti-
sche vreemdheidsproductie. Ruwweg kunnen de bestaande modellen onderverdeeld
worden in twee categorieën, die elk een ander type van effectieve vrijheidsgraden ver-
onderstellen. Bij parton-gebaseerde beschrijvingen wordt de quark-gluon structuur
van de wisselwerkende deeltjes expliciet verwerkt in het reactiemodel, bijvoorbeeld
door gebruik te maken van een chiraal constituente-quarkmodel. Anderzijds is er de
hadrodynamische aanpak, waarbij de hadronen in hun geheel worden beschouwd als
vrijheidsgraden van de effectieve theorie. In dit laatste geval worden de specifieke
wisselwerkingen gemodelleerd door effectieve Lagrangianen. De structuur van deze
interactie-Lagrangianen is niet a priori gekend, maar kan tot op zekere hoogte berede-
neerd worden op basis van symmetrie-argumenten. De verschillende sterke en elek-
tromagnetische koppelingsconstanten kunnen bepaald worden door vergelijking met
experimentele resultaten, of berekend worden op basis van een fundamenteler model.

Het best gekende en tevens eenvoudigste hadrodynamische model is de zogenaam-
de “isobare” benadering. Hierin wordt de reactie-amplitude samengesteld uit een be-
perkt aantal laagste-orde (of “tree-level”) Feynmandiagrammen. In het geval van het
γp → KY fotoproductieproces bevat een dergelijke laagste-orde bijdrage twee vertices
waartussen een enkel intermediair deeltje propageert. Diagrammen die intermediai-
re N∗s bevatten noemt men “resonant”, vermits ze aanleiding geven tot structuren in
de energie-afhankelijkheid van de werkzame doorsneden. Intermediaire kaon- (K∗)
en hyperon- (Y∗) toestanden leiden tot een zachter verloop van de observabelen, en
worden “achtergrondbijdragen” genoemd.
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Het isobaar model

Bij massacentrumenergieën tot en met enkele GeV vertonen de experimentele werkza-
me doorsneden zichtbare resonante bijdragen, die zich manifesteren als brede structu-
ren bij bepaalde energieën en hoeken. De eerder vermelde experimenten concentreren
zich specifiek op dit energiegebied, dat bekend staat als het “resonantiegebied”. Met
het oog op het in kaart brengen van het nucleonspectrum is men in de eerste plaats
geı̈nteresseerd in het bepalen van de resonante (N∗-) bijdragen. Het mag dan ook
vreemd klinken dat de grootste uitdaging voor hadrodynamische beschrijvingen van
vreemdheidsproductie in feite het modelleren van de achtergrond is. Er blijkt namelijk
dat de werkzame doorsneden zodanig gedomineerd zijn door de achtergrondtermen,
dat interferenties tussen resonante en achtergrondbijdragen (∼ Mres M∗

achtergr) belang-
rijker kunnen worden dan de resonante termen (∼ |Mres|

2) op zich. Dit impliceert op
zijn beurt dat alle uit het experiment afgeleide waarden voor N∗-parameters (massa’s,
koppelingsconstanten, ...) bijzonder sterk afhangen van het gebruikte achtergrondmo-
del. In het geval van de isobare benadering kunnen een groot aantal uiteenlopende
recepten voor de achtergrondtermen worden vooropgesteld, die stuk voor stuk tot an-
dere conclusies leiden wat de resonante bijdragen betreft. Deze recepten onderschei-
den zich onder meer door de keuze van hadronische vormfactoren en de gevolgde
strategie om ijkinvariantie te garanderen.

Buiten de sterke modelafhankelijkheid van de bekomen resonantieparameters kent
het isobaar model nog een tweede belangrijk nadeel. Hoewel het aannemen van ha-
dronische vrijheidsgraden te verantwoorden is dichtbij de KY-productiedrempel, is het
te verwachten dat de quark-gluonstructuur van de deeltjes tot uiting zal komen wan-
neer hogere energieën worden bereikt. Het is dan ook niet verwonderlijk dat hadrody-
namische modellen een foutief hoge-energiegedrag vertonen. Waar de experimentele
werkzame doorsneden geleidelijk afnemen naarmate de fotonenergie stijgt, vertonen
de theoretische curves een onrealistische stijging met de energie.

Het Regge-plus-resonantiemodel

Het is mogelijk om een hadrodynamisch model op te stellen waarin de tekortkomin-
gen van de isobare benadering worden vermeden, zonder dat hadronische vrijheids-
graden daarbij expliciet in rekening moeten worden gebracht. De sleutel hiertoe ligt in
“Regge-fenomenologie”, een hoge-energie benadering ontwikkeld in de vijftiger jaren
als een alternatieve aanpak voor kwantummechanische potentiaalverstrooiing. Het
Regge-raamwerk onderscheidt zich van de traditionele hadrodynamische benaderin-
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gen doordat elke intermediaire toestand in de Regge-amplitude een volledige “fami-
lie” van hadronen omvat, in plaats van een enkel meson of baryon. De leden van
een dergelijke familie zijn verbonden door een lineaire relatie tussen hun totale spins
en gekwadrateerde massa’s. Men noemt de rechte in kwestie een “Regge-trajectorie”.
In zijn eenvoudigste gedaante kan het Regge-raamwerk geformuleerd worden als een
aangepaste versie van het isobaar model, waarbij de uitwisseling van deze trajectories
formeel beschreven wordt door het invoeren van Regge-propagatoren.

De Regge-amplitude voor hoge energie-verstrooiing is een stuk eenvoudiger dan
zijn isobare tegenhanger vermits er geen resonante bijdragen in voorkomen, enkel ach-
tergronddiagrammen. Dit weerspiegelt het feit dat, naarmate de energie beschikbaar
in de reactie toeneemt, steeds meer en hoger aangeslagen nucleontoestanden kunnen
worden geproduceerd. Aangezien de meeste van deze resonanties vervalbreedtes heb-
ben van enkele honderden MeV, zullen de structuren in de werkzame doorsnede gelei-
delijk worden uitgevlakt naarmate het aantal overlappende toestanden toeneemt. Eens
voorbij het resonantiegebied is elk spoor van individuele bijdragen verdwenen, en ken-
nen de observabelen een monotoon dalend verloop. Er blijkt dat de amplitude in dat
geval beschreven kan worden door een zuiver achtergrondmodel, mits vervanging van
de gebruikelijke Feynmanpropagatoren door aangepaste Regge-propagatoren. Men
kan verder aantonen dat de amplitude bij voorwaartse hoeken enkel kaonische trajec-
tories bevat, terwijl bij achterwaartse hoeken enkel hyperonische trajectories optreden.
In dit werk concentreren we ons op de voorwaartse verstrooiingshoeken, aangezien
het overgrote deel van de experimentele gegevens bij hoge energie betrekking hebben
op dit gebied.

Hoewel het Regge-model in essentie een hoge-energie benadering is, slaagt het er-
in om de algemene trends van de experimentele werkzame doorsneden te reprodu-
ceren bij veel lagere energieën dan men zou verwachten. Dit is niet enkel het ge-
val voor de pseudoscalaire K- en π- mesonen, maar ook voor vectordeeltjes zoals de
ω. Dit rechtvaardigt de aanname dat, ook in het resonantiegebied, de achtergrondbij-
dragen tot de mesonproductie-amplitudes kunnen beschreven worden in een Regge-
raamwerk. Vanzelfsprekend bevat een zuiver achtergrondmodel niet de nodige in-
grediënten om gedetailleerde structuren in de observabelen te kunnen reproduceren.
Hieraan kan verholpen worden door aan de Regge-amplitude een aantal Feynmandia-
grammen voor individuele N∗-resonanties toe te voegen. Men dient er wel voor te zor-
gen dat deze resonante bijdragen wegvallen bij voldoende hoge energie, waar het zui-
vere Regge-model geldt. Dit laatste kan verwezenlijkt worden door het invoeren van
gepaste hadronische vormfactoren in de resonante termen. Een dergelijke Regge-plus-
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resonantie (RPR) strategie werd reeds eerder succesvol toegepast op dubbele-pion pro-
ductie en de productie van η en η ′ mesonen. Dit werk richt zich op het ontwikkelen
van een gelijkaardig raamwerk voor de KY foto- en elektroproductiereacties, met Y een
Λ- of Σ-hyperon.

De voorgestelde RPR-benadering heeft een aantal sterke troeven. Eerst en vooral is
een aanvaardbaar hoge-energiegedrag voor de observabelen bij constructie verzekerd.
Doordat de hoge-energie-amplitude enkel achtergronddiagrammen bevat, wordt het
ook mogelijk om de koppelingsconstanten van de achtergrondtermen vast te leggen
door vergelijking met de hoge-energiedata. Bijgevolg dient men in het resonantie-
gebied enkel nog de resonantieparameters te bepalen. Verder zorgt het gebruik van
Regge-propagatoren ervoor dat men in de achtergronddiagrammen geen hadronische
vormfactoren meer hoeft toe te voegen. Op deze manier laat het RPR-model toe de
grote bronnen van onzekerheid uit isobare modellen te vermijden, namelijk hoe deze
vormfactoren te bepalen, en hoe de breking van ijkinvariantie te herstellen die hun
aanwezigheid veroorzaakt.

Resultaten van de RPR-beschrijving

Fotoproductie bij hoge energie

Hoofdstuk 3 bespreekt hoe, door een fit van het Regge-model aan de hoge-energie
p(γ,K+)Λ,Σ0 data, waarden kunnen worden afgeleid voor de parameters van de ach-
tergrondbijdragen. Voor het beschrijven van K+Λ en K+Σ0 fotoproductie volstaat een
Regge-amplitude die enkel de K(494) en K∗(892) trajectories bevat2. Om ijkinvarian-
tie te garanderen moet hieraan ook nog de elektrische s-kanaal Born-term3 worden
toegevoegd. De absolute waarde van de benodigde propagatoren volgt uit het Regge-
model, maar de bijbehorende fases liggen niet volledig vast. Zowel voor de K(494) als
de K∗(892) trajectorie zijn er twee mogelijkheden: de fase is ofwel “constant”, wat met
een zuiver reële propagator overeenkomt, ofwel “roterend”, in welk geval de propa-
gator complex is. We moeten ons dan ook buigen over de vraag welke fasekeuzes het
best te verzoenen zijn met de data.

Voor de K+Λ finale toestand kan worden aangetoond dat de optie van een con-
stante K(494) trajectoriefase niet compatibel is met de gemeten hyperonpolarisaties bij
hoge energie. De hoeveelheid hoge-energiedata blijkt echter te beperkt om het achter-

2Een trajectorie wordt steeds vernoemd naar het lichtste hadron dat er deel van uitmaakt.
3Dit is het niet-ijkinvariante deel van het Feynmandiagram met een proton in de intermediaire toe-

stand.
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grondmodel ondubbelzinnig vast te leggen, ondanks het kleine aantal parameters in de
Regge-amplitude. In het bijzonder blijven het teken van de K∗(892)-tensorkoppeling
en de fase van de K∗(892)-trajectorie onbepaald.

Bij het K+Σ0 fotoproductieproces zijn zelfs nog minder hoge-energiedata beschik-
baar, en is het al helemaal onmogelijk om unieke achtergrondparameters te bepalen
op basis van deze data op zich. We eisen daarom dat de Regge-modelvarianten het
juiste teken voorspellen voor de hyperonpolarisatie in het resonantiegebied. Dit laat op-
nieuw toe om de mogelijkheid van een constante K(494) trajectoriefase uit te sluiten.
De K∗(892)-fase en het teken van de bijbehorende tensorkoppeling kunnen ook hier
niet worden vastgelegd.

In principe laten isospinargumenten toe het K+Σ0 fotoproductiemodel om te vor-
men tot een model voor het γp → K0Σ+ proces. De op die manier geconstrueerde
K0Σ+ amplitude zou enkel de K∗0(892)-trajectorie bevatten, vermits het K0-diagram
verdwijnt in het reële-fotonpunt. Een dergelijk reactiemodel leidt echter tot resultaten
die de data spectaculair overschatten. Men kan intuı̈tief inzien dat, wanneer één van
de dominante kaontrajectories wegvalt, andere trajectories een belangrijkere rol zul-
len spelen. Het in rekening brengen van een extra K∗0(1410)-trajectorie naast de reeds
aanwezige K∗0(892)-bijdrage levert zeer goede resultaten op. Doordat er geen hoge-
energiedata beschikbaar zijn voor dit kanaal, moeten de K∗(1410)-parameters bepaald
worden door vergelijking met de data in het resonantiegebied.

Fotoproductie in het resonantiegebied

Een tweede stap in de opbouw van het RPR-model bestaat erin resonante diagrammen
toe te voegen aan de Regge-achtergrondamplitude. Behalve de S11(1650), P11(1710)

en P13(1720) nucleonresonanties, die in de meeste hadrodynamische benaderingen
standaard vervat zitten, onderzoeken we mogelijke bijdragen van de P13(1900) N∗-
toestand, en voor de KΣ-kanalen tevens van de isospin-3/2 (∆∗) resonanties S31(1900),
P31(1910), D33(1700) en P33(1920). In het K+Λ kanaal worden ook de “ontbrekende”
D13(1900) en P11(1900) resonanties in beschouwing genomen. Beide werden in eerdere
theoretische analyses vooropgeschoven als mogelijke resonantiekandidaten, maar tot
hiertoe werd nog geen consensus bereikt over het al dan niet bestaan van deze toestan-
den.

Voor het p(γ,K+)Λ proces kan een unieke RPR-amplitude worden geı̈dentificeerd
die de beste collectieve beschrijving levert van de hoge- en lage-energie data. Voor zo-
wel de K(494) als de K∗(892) trajectories is een roterende fase de beste keuze. Er kan
verder aangetoond worden dat de beschrijving van de observabelen in het resonan-
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tiegebied sterk wordt verbeterd door de aanname van een nieuwe resonantie. Alleen
de ontbrekende D13(1900) toestand blijkt compatibel te zijn met de data. De geken-
de spin-3/2 resonanties, P13(1720) en P13(1900), dragen beduidend sterker bij tot de
werkzame doorsnedes dan hun tegenhangers met spin 1/2, S11(1650) en P11(1710).
Dit bevestigt de conclusie van een andere recente analyse die eveneens het belang van
de P11(1710) in vraag stelde. Van alle tot hiertoe gemeten grootheden zijn de dubbele
polarisatie-observabelen Cx en Cz veruit het gevoeligst aan de precieze samenstelling
van de RPR-amplitude.

In het geval van de p(γ,K)Σ reactiekanalen blijft, zelfs na toevoegen van de data in
het resonantiegebied, het teken van de K∗(892) tensorkoppeling nog steeds onbepaald.
De conclusies met betrekking tot de resonantiebijdragen blijken wel onafhankelijk te
zijn van deze keuze. Buiten de S11(1650), P11(1710) en P13(1720) resonanties kan ook de
P13(1900) worden geı̈dentificeerd als een dominante term. Wat de ∆∗s betreft, volstaat
het toevoegen van één van beide spin-1/2 toestanden S31(1900) en P31(1910), terwijl
we voor de D33(1700) een beduidend grotere bijdrage vinden dan voor de P33(1920).

Elektroproductie in het resonantiegebied

Tenslotte vergelijken we de RPR-amplitudes geconstrueerd voor KY fotoproductie
met de beschikbare elektroproductiedata. Hiervoor gebruiken we de modelparame-
ters bepaald uit de fotoproductiestudie, waarbij elke elektromagnetische koppeling
moet worden vermenigvuldigd met een passende vormfactor. De elektromagnetische
vormfactoren van de N∗ en ∆∗ resonanties worden berekend in een Lorentzcovariant
constituente-quarkmodel.

Het is meteen duidelijk dat de elektroproductie-observabelen bijzonder nuttig zijn
voor het vastleggen van RPR-modelparameters die niet ondubbelzinnig werden be-
paald door de fotoproductiedata. Voor K+Σ0 productie blijkt dat slechts één van beide
RPR-modelvarianten die compatibel waren met de data in het reële-fotonpunt, name-
lijk diegene met een negatieve K∗(892) tensorkoppeling, tot een aanvaardbare beschrij-
ving van het elektroproductieproces leidt. In het K+Λ kanaal levert het beste model uit
de fotoproductiestudie ook de meest redelijke resultaten voor elektroproductie.

Dat het zuivere Regge-model de meeste elektroproductie-observabelen redelijk
tot zeer goed reproduceert, bevestigt dat de p(e, e ′K)Y reacties sterk achtergrond-
gedomineerd zijn. Er treden echter duidelijke afwijkingen op tussen de Regge-
voorspellingen en de data, te interpreteren als voetafdrukken van individuele nucle-
onresonanties. De RPR-strategie vormt een ideaal raamwerk om dergelijke bijdragen
te modelleren. Hoewel redelijke voorspellingen voor de elektroproductieprocessen be-
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komen worden met een model afgeleid uit de fotoproductiestudie, verwachten we dat
een gezamenlijke fit aan de foto- en elektroproductiedata nog nuttigere en meer pre-
cieze informatie zal kunnen leveren.

Conclusies en vooruitzichten

Hoewel een degelijke beschrijving van de p(γ(∗), K)Y data bij voorwaartse hoeken kan
worden bekomen met de hier voorgestelde RPR-modellen, blijft er ruimte voor ver-
betering. Zo zou het, met het oog op toekomstige projecten, nuttig zijn om de RPR-
amplitudes uit te breiden naar achterwaartse verstrooiingshoeken. Hierbij kunnen
verschillende strategieën worden gevolgd:

• het herfitten van de modelparameters aan een dataset die het complete hoekbe-
reik omvat.

• de aanname van saturerende in plaats van lineaire Regge-trajectories.

• het invoeren van bijdragen van hyperonresonanties, al dan niet ge-”reggeı̈seerd”.

Een voor de hand liggende volgende stap zou eruit bestaan, de RPR-methode te ver-
werken in een gekoppelde-kanalenmodel. Een dergelijk model heeft als doel een vol-
ledige set van reactiekanalen (niet enkel KY maar ook πN, γN, ππN, ...) gezamenlijk te
beschrijven door het modelleren van alle mogelijke elektromagnetische en sterke tran-
sities die deze kanalen verbinden. Het RPR-model in zijn huidige vorm kan verder
worden toegepast op de beschrijving van ρ of K∗ vectormeson-productie, productie
aan een deuteron, of reacties waarbij hyperkernen, i.e. kernen die een vreemd baryon
bevatten, gevormd worden.

Een laatste waarschuwing is hier wellicht op zijn plaats. Ondanks het succes van ef-
fectieve veldentheorieën in de beschrijving van mesonproductieprocessen, moet men
beseffen dat het opsporen van de dominante bijdragen in een dergelijk model een
delicate zaak blijft. Vooral bij de zoektocht naar ontbrekende resonanties is uiterste
voorzichtigheid geboden. Hoewel het toevoegen van extra resonante bijdragen ge-
garandeerd leidt tot een verbeterde fitkwaliteit aangezien het aantal vrije parameters
toeneemt, betekent dit niet altijd dat een model met een groter aantal resonanties ook
meer waarschijnlijk is. Bovendien is het vaak mogelijk om een vergelijkbare overeen-
komst met de data te bekomen door uit te gaan van een andere parameterset of een
andere combinatie van achtergrond- en resonante diagrammen. Het is duidelijk dat
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deze uitdaging in gekoppelde-kanalenmodellen nog groter zal zijn dan in tree-level
beschrijvingen. Hoe dan ook dient deze kwestie uitgebreid onderzocht te worden in
toekomstige analyses van de kaonproductie-kanalen.


