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A couple of hundred years ago, Benjamin Franklin shared with the world the secret of 
his success. Never leave that till tomorrow, he said, which you can do today. You think 
more people would listen to what he had to say. I don't know why we put things off, but 

if I had to guess, I'd have to say it has a lot to do with fear. Fear of failure, fear of 
rejection, sometimes the fear is just of making a decision, because what if you're wrong? 

What if you're making a mistake you can't undo? He who hesitates is lost. We can't 
pretend we hadn't been told. We've all heard the proverbs, heard the philosophers, 

heard our (grand-) parents warning us about wasted time and heard the damn poets 
urging us to seize the day. Still sometimes we have to see for ourselves. We have to make 

our own mistakes. We have to learn our own lessons. We have to sweep today's 
possibility under tomorrow's rug until we can't anymore. Until we finally understand 

for ourselves what Benjamin Franklin really meant. That knowing is better than 
wondering, that waking is better than sleeping, and even the biggest failure, even the 

worst, beat the hell out of never trying. 

M. Grey 
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1.1. PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS 

1.1.1. HISTORY 

A new pig disease causing reproductive failure in sows and severe pneumonia in 

piglets was first reported in the United States in 1987 and Canada in 1988 (Hill, 1990; 

Keffaber, 1989), and Western Europe in 1990 (Wensvoort et al., 1991). The disease 

was characterized by a high frequency of late-term abortions and an increased number 

of mummified, stillborn and weak-born piglets and by reduced conception rates in 

gilts and sows. Clinical signs observed in pigs were coughing, dyspnea, decreased 

feed efficiency, anorexia, growth retardation, increased mortality in pigs between 16 

and 22 weeks of age and mild flu-like signs in nursery, growing, and finishing pigs 

(Christianson et al., 1992; Collins et al., 1992; Keffaber, 1989; Rossow, 1998, 

Zimmerman et al., 2006) and in some affected animals a red-blue discoloration of the 

ears was observed. In the beginning, the disease was named ‘porcine epidemic 

abortion and respiratory syndrome’ or ‘swine infertility and respiratory syndrome’ or 

‘mystery swine disease’ or ‘blue-eared pig disease’ reflecting some of the 

characteristic symptoms. Later on, the disease was called worldwide ‘porcine 

reproductive and respiratory syndrome’ or PRRS (Christianson et al., 1992; Collins et 

al., 1992; Wensvoort et al., 1991). In 1991, researchers from Lelystad (The 

Netherlands) succeeded to isolate a virus from affected animals in primary alveolar 

macrophages, which they called ‘Lelystad virus’, and the clinical picture of PRRS 

could be experimentally reproduced by inoculation of pregnant sows with this virus 

(Terpstra et al., 1991; Wensvoort et al., 1991). Around the same time, American 

scientists were able to grow an American isolate of the virus in CL-2621 cells and 

confirmed its relation with the disease by experimental reproduction and named this 

isolate VR-2332 (Benfield et al., 1992; Collins et al., 1992). In the years following the 

first isolation of porcine reproductive and respiratory syndrome virus (PRRSV), the 

virus was spreading around the world, not only in Europe and the United States, but 

also in Canada and Asian countries (Baron et al., 1992; Dea et al., 1992; Hopper et al., 

1992; Jiang et al., 2000; Plana et al., 1992; Shimizu et al., 1994). The origin of 

PRRSV and how the virus emerged independently on two different continents is still a 

matter of debate. At present, PRRSV is endemic in swine-producing countries 

worldwide (Albina, 1997; Cho & Dee, 2006). Phylogenetic studies have shown that 
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two PRRSV genotypes exist: the European (EU) genotype, with Lelystad virus (LV) 

as prototype EU PRRSV strain; and the North American (NA) genotype, with VR-

2332 as prototype NA PRRSV strain (Collins et al., 1992; Nelsen et al., 1999; Snijder 

et al., 2004; Wensvoort et al., 1991). These genotypes are only far related (55 to 70 % 

nucleotide identity), but also within each genotype a high degree of genetic and 

antigenic variation is seen (Indik et al., 2000; Kapur et al., 1996; Meng et al., 1995; 

Morozov et al., 1995; Nelsen et al., 1999; Stadejek et al., 2002; Stadejek et al., 2006; 

Stadejek et al., 2008). 

At the beginning of the PRRSV outbreaks, the EU genotype was restricted to Europe, 

and the NA genotype was restricted to America (Andreyev et al., 1997) and Asia 

(Shibata et al., 1996). However, the NA genotype appeared in Europe upon use of the 

RespPRRS vaccine, a modified-live vaccine based on VR-2332 (Bøtner, 1997; 

Madsen et al., 1998; van Vugt et al., 2001). In addition, EU genotype isolates 

appeared in North America upon import of European pigs (Dewey et al., 2000). 

Consequently, both genotypes now co-exist in several European, American and Asian 

swine-producing countries (Ropp et al., 2004). PRRSV appears to be continuously 

evolving (Chang et al., 2002; Goldberg et al., 2003; Rowland et al., 1999b), which 

results in the emergence of new PRRSV variants. The pathogenicity of different virus 

variants can vary greatly. While many PRRSV isolates have been described as 

apathogenic or only moderately virulent, different studies report on the emergence of 

higly pathogenic PRRSV variants (Bøtner et al., 1997; Epperson, 1997; Karniychuk et 

al., 2010; Mengeling et al., 1998; Tian et al., 2007; Tong et al., 2007; Zhou et al., 

2008). For example, China and surrounding countries have suffered from an 

extremely severe epidemic that was attributed to a highly virulent PRRSV strain (HP-

PRRSV) (Normile, 2007; Tian et al., 2007). To date, the factors that determine the 

virulence of PRRSV remain poorly understood. Further studies on the PRRSV 

biology, including pathogenesis, immunology and epidemiology are necessary to gain 

better insights into the evolution of this pathogen and its interaction with the host. 

Despite the availability of several attenuated and inactivated PRRSV vaccines and the 

great efforts of pig holders, veterinarians and researchers, the disease remains difficult 

to control (Bøtner et al., 1997; Cano et al., 2007; Epperson, 1997; Labarque et al., 

2004; Prieto et al., 2008; Tian et al., 2007; Tong et al., 2007; Zhou et al., 2008) and 

imposes a substantial burden on swine producers with an estimated annual cost of 560 
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million dollars in the USA (Neumann et al., 2005; Pejsak et al., 1997). The real 

economical impact of the disease is however difficult to assess, since PRRS-related 

problems are not always directly visible, and often involve other viral and bacterial 

pathogens (Neumann et al., 2005; Thacker, 2001). Nevertheless, researchers, 

veterinarians and pig farmers worldwide consider PRRS as a major, if not the most 

important disease affecting the swine industry. 

1.1.2. TAXONOMY 

PRRSV belongs to the family of Arteriviridae (genus Arterivirus), which is grouped 

together with the Coronaviridae (genus Coronavirus and genus Torovirus) and 

Roniviridae (genus Okavirus) in the order of the Nidovirales (Sidell & Snijder, 2008). 

This classification was based on genome organisation and the relatedness of non-

structural proteins used in RNA replication and transcription. The order name is 

derived from “nidus”, latin for “nest”, and refers to the nested set of 3’ co-terminal 

subgenomic-length mRNAs that is generated for expression of the open reading 

frames (ORFs) downstream of the replicase gene (Snijder & Meulenberg, 1998). The 

vast majority of nidoviruses known to date can be assigned to one of these families. In 

addition to PRRSV, the Arterivirus family consists of the ‘lactate-dehydrogenase 

elevating virus’ (LDV) of mice, the ‘equine arteritis virus’ (EAV) of horses and the 

‘simian hemorrhagic fever virus’ (SHFV) of certain monkey species (Conzelmann et 

al., 1993). Although they are derived from a common ancestor and share properties in 

genome organization, the members of the different Nidovirus families are quite 

different in certain features, including virion morphology, number and composition of 

structural proteins, the host, epidemiology, clinical disease, pathogenesis, and 

mechanism of persistent infection (Gorbalenya et al., 2006; Wills et al., 1997). 

Arteriviruses are enveloped single-stranded (ss) RNA viruses with a genome length of 

13-16 kilobases (kb) and a diameter of 40-60 nm (Gorbalenya et al., 2006). The 

envelope contains 3 to 6 structural proteins, but in contrast to Coronaviruses, large 

spikes are absent from the Arterivirus surface (Snijder & Meulenberg, 1998). For all 

Arteriviruses, macrophages and/or endothelial cells are either the exclusive or the 

major target cells in vivo. Another common characteristic for Arteriviruses is the 

ability to establish persistent infections in their respective hosts (Gravell et al., 1986; 

Onyekaba et al, 1989; Timoney & McCollum, 1993; Wills et al., 1997). Phylogenetic 
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analysis based on the most conserved regions in ‘open reading frame’ 1b (ORF1b) 

indicates that PRRSV is most closely related to LDV, but the estimated divergence 

time of PRRSV and LDV from a common ancestor is still a matter of debate (Chen & 

Plagemann, 1995; Forsberg, 2005; Hanada et al., 2005). 

1.1.3. STRUCTURAL BIOLOGY 

Electron microscopical examination of purified extracellular PRRSV reveals that 

PRRS virions are pleiomorphic, but mostly spherical with a diameter of 40 to 60 nm 

(Benfield et al., 1992; Mardassi et al., 1994; Wensvoort et al., 1992). PRRS virions 

contain a nucleocapsid core of 25 to 35 nm, surrounded by a lipid bilayered envelope 

(Benfield et al., 1992; Mardassi et al., 1994; Wensvoort et al., 1992; Dokland, 2010).  

PH and temperature are 2 major factors that determine the stability of PRRSV 

(Bloemraad et al., 1994; Benfield et al., 1992). PRRSV infectivity rapidly decreases at 

37 °C or 56 °C, but remains unchanged for 1 month at 4 °C. At lower temperatures (-

20 °C; -70 °C), PRRSV is stable for months, when the pH of the culture medium is 

approximately 6.0 to 7.5. The virus is sensitive to acidic and alkalic pH, and because 

it is enveloped, it is not resistant to lipid solvents and chloroform (Benfield et al., 

1992; Bloemraad et al., 1994). The complete genomes of several PRRSV strains, 

including LV and VR-2332, have been sequenced (Allende et al., 1999; Conzelmann 

et al., 1993; Gao et al., 2004; Meng et al., 1994; Meulenberg et al., 1993; Nelsen et 

al., 1999). The PRRSV genome is 15.1 kb in length for EU PRRSV strains and 15.4 

kb for NA PRRSV strains (Allende et al., 1999; Meulenberg et al., 1993; Nelsen et 

al., 1999). The PRRSV genome consists of a positive single-stranded RNA molecule 

that contains 9 open reading frames (ORFs) and is expressed through a 3’ coterminal 

nested set of polycistronic mRNAs with a common leader sequence at the 5’ end. 

The ORF1a and ORF1b genes encode two polyproteins that are posttranslationally 

processed into 14 non-structural proteins, while ORF2-ORF7 encode respectively the 

structural proteins GP2a, E, GP3, GP4, GP5, M and N. The structural ORFs are 

partially overlapping, and some parts of different proteins are therefore encoded by 

the same gene sequences. Furthermore, ORF2 encodes two complete structural 

proteins: GP2, encoded by ORF2a, and E, encoded by ORF2b, which is entirely 

embedded in ORF2a (Conzelmann et al., 1993; Meulenberg et al., 1993). For a 

comprehensive description of PRRSV genome organisation, transcription and 
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replication, readers should be referred to Gorbalenya et al. (2006).  

The nucleocapsid of PRRSV is composed of nucleocapsid proteins (N), encoded by 

ORF7. The nucleocapsid was initially supposed to have an icosahedral shape, but a 

recent cryo-electron tomographic analysis indicated that the viral capsid does not 

show a clear isometric structure. More probably, dimers of the N protein are 

organized in a roughly helical organization around the viral RNA and interact with it 

via the N-terminal RNA-binding domain (Dokland, 2010; Spilman et al., 2009). The 

PRRSV envelope surrounds the nucleocapsid and contains six structural proteins: the 

unglycosylated proteins M and E and the glycoproteins GP2, GP3, GP4 and GP5, that 

all bear complex-type N-linked glycans. 

 

 

Figure 1. Schematic representation of the PRRSV genome organization (PhD Debaere M., 2012). The scalebar 
shows the length of the sequence in kb. Numbered grey colored blocks represent the different ORFs (the ORF 
encoding the recently discovered structural ORF5a protein is not depicted). The black box at the 5’ end represents 
the leader sequence. The 3’ end of the genome carries a poly A sequence (A). The black circle in the 
ORF1a/ORF1b overlap region indicates the site where the ribosomal frameshift occurs during translation of the 
ORF1ab polyprotein pp1ab. 

 

GP5 and M are present in the virion as disulphide-linked heterodimers and are 

considered ‘major’ envelope proteins, while the remaining envelope proteins are most 

likely present in much lower amounts and are generally designated as ‘minor’ proteins 

(Meulenberg & Petersen-den Besten, 1996; Meulenberg et al., 1995; van Nieuwstadt 

et al., 1996; Wu et al., 2005). In contrast to M and GP5, the minor proteins are 

probably not essential for virion assembly, but the entire set of envelope proteins 

needs to be incorporated to render virus particles infectious. Furthermore, GP2, GP3 

and GP4 need to be expressed simultaneously for incorporation in the virion, which 

indicates that these proteins interact with each other. However, in contrast to other 

Arteriviruses, there is no evidence for the existence of disulphide linkages between 
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the minor proteins of PRRSV (Wieringa et al., 2003; Wissink et al., 2005).  Only very 

recently, Johnson and coworkers (2011) identified a novel structural PRRSV protein 

encoded by ORF5a (ORF5a protein) (Johnson et al., 2011). It cannot be excluded that 

future research leads to the identification of additional ORFs that encode important 

(non-) structural PRRSV proteins. 

 
Figure 2. PRRS virion structure and morphology (PhD Van Gorp H., 2010). 
(A) Cryo-electron microscopy of PRRSV particles (Spilman et al., 2009). Bar, 50nm. (B) Schematic representation 
of a PRRSV particle. PRRSV is composed of a nucleocapsid that is surrounded by an envelope in which viral 
proteins are embedded. The major membrane proteins are the glycoprotein GP5 and the membrane protein M, 
which are present as heterodimers. The minor membrane proteins are the envelope protein E and the glycoproteins 
GP2, GP3, and GP4, which are present as heterotrimeric complexes. The recently discovered structural ORF5a 
protein is not depicted. 

 

1.1.4. HETEROGENEITY 

PRRSV appeared 20 years ago almost simultaneously in Europe and the US, but it 

became rapidly clear that the virus showed remarkable genetic variation with two 

geographically distinct genotypes at the time of its discovery, indicating the 

possibility of prolonged evolutionary divergence prior to its appearance as a swine 

pathogen (Murtaugh et al., 2010). Therefore, PRRSV strains are classified into a 

European genotype (EU type or type 1) and a North American genotype (NA type or 

type 2), with the EU prototype LV and the NA prototype VR-2332 differing more 

than 40% at amino acid level (Collins et al., 1992; Nelsen et al., 1999; Wensvoort et 

al., 1991). In the nineties, Stadejek et al., (2002) demonstrated that the EU type 

PRRSV isolates that were circulating in Europe were extremely diverse but were all 

belonging to one subtype (subtype 1). However, when PRRSV isolates from countries 

of the former Soviet Union were sequenced, it became clear that these type 1 strains 

were more distant viruses (subtypes 2 and 3) (Stadejek et al., 2006). In time, both EU 
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type and NA type spread geographically, diverged genetically, and acquired new 

phenotypic characteristics, especially increased virulence. NA type PRRSV strains are 

frequently isolated in Europe nowadays and vice versa, and both genotypes are 

circulating in Asia as well (Murtaugh et al., 2010; Nielsen et al., 2001; Ropp et al., 

2004; Shi et al., 2010). In Asia, most of the PRRSV isolates identified are of the NA 

type (Cha et al., 2006; Chueh et al., 1998; Jiang et al., 2000; Yoshii et al., 2005), with 

the exception of China and Thailand where EU type PRRSV was observed (Chen et 

al., 2011; Thanawongnuwech et al., 2004). 

 
Figure 3. A phylogenetic tree of circulating virus isolates in Belgium with the prototype EU strain LV, the 
prototype NA strain VR-2332 and vaccine strains Porcilis® PRRS, and Ingelvac® PRRS MLV based on the 
N amino acid sequences. The neighbouring-joining method was used and numbers indicate bootstrap values of 
100 replicates. Nomenclature of the PRRSV-positive isolates was mostly as follows: Year of isolation, Diagnostic 
number, Age of the animal if PRRSV-positive sample; e.g. 08V120-7w8 (Geldhof et al., 2013). 

 

PRRSV is	
   also	
   largely prevalent in pig farms in Flanders, both in breeding animals 

and in fattening pigs (Geldhof, unpublished data). Virus isolates could be clearly 

grouped into EU type strains and NA type strains. It was shown that all NA type 

isolates were highly related to VR-2332, the strain on which the Ingelvac® PRRS 

MLV vaccine is based. However, it is not known whether the vaccine-like viruses that 

were isolated in this study were indeed underlying the problems that were observed at 

the respective vaccinating farms. NA-type virus was detected in 5 of the 19 herds. 

While animals in 3 of these herds were vaccinated with the corresponding vaccine, 

this vaccine had not been used in the remaining 2 herds. Prior use of this vaccine in 

these herds is unknown. Amongst the EU type strains that were isolated in this study, 

a considerable diversity was observed, and none of the isolates highly resembled the 

prototype EU strain LV, on which the Porcilis® PRRS and Progressis® vaccines are 

based. Furthermore, very closely related virus strains were isolated from the same 
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farm, indicating that they could have arisen from a common virus that had earlier 

been introduced on the farm. In contrast, it was demonstrated that different virus 

variants circulate within a single farm. Here, the two different PRRSV strains were 

probably introduced in the farm by two independent events, rather than being derived 

from one ancestral strain that was circulating in the herd. Surprisingly, similar virus 

strains were prevalent at geographically separated farms. It is currently not clear from 

where these isolates originated, and how they were independently introduced on two 

different farms. Taken together, it is clear that a large variability exists amongst 

PRRSV field strains that circulate on vaccinating farms in Flanders. 

Phylogenetic analysis of PRRSV has provided a broadly applicable means to relate 

diverse isolates, but it does not explain biological variation in virulence or 

immunological cross-protection. Sequencing is best used to show the relatedness of 

strains over time and within a herd. Computer programs compare all possible pairs of 

sequences and phylogenetic trees or dendrograms can be constructed. Thus, at present 

both genotypes are spread across the world, where they keep on evolving with a 

mutation rate that is similar or even higher compared to other RNA viruses (Hanada et 

al., 2005; Prieto et al., 2009). The impact of vaccine usage on PRRSV evolution is at 

present unknown and perhaps the most significant long-term impact on PRRSV 

diversity and evolution will come from management changes preventing PRRS 

(Murtaugh et al., 2010). 

1.1.5. PATHOGENESIS 

Virus is shed in saliva (Wills et al., 1997), nasal discharge (Rossow et al., 1994), urine 

(Wills et al., 1997), semen or artificial insemination (Prieto et al., 1997; Swenson et 

al., 1994; Zimmerman et al., 2006) and feces (Christianson et al., 1993) and may 

cause horizontal PRRSV transmission between animals. Experimental infection can 

be achieved by intranasal, intratracheal, oronasal, oral, intramuscular, intra-uterine, 

intraveneous, intraperitoneal or vaginal inoculation (Albina et al., 1997; Benfield et 

al., 2000; Christianson et al., 1992; Christianson et al., 1993; Collins et al., 1992; 

Nodelijk et al., 2003; Rossow et al., 1994; Swenson et al., 1994; Van Reeth et al., 

1999; Yaeger et al., 1993; Yoon et al., 1999). In the field, pigs are also susceptible to 

parenteral exposure routes by husbandry practices (ear notching, tail docking, teeth 

clipping…) or by normal pig behavior (bites, cuts, scrapes, tail-biting...). Airborne 
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transport of PRRSV has been documented to occur from 4.7-9.2 km, and is dependent 

on the PRRSV strain used (Dee et al., 2009; Otake et al., 2010). Aerosol transmission 

is not an equal component of area spread across NA type and EU type strains. Farms 

located nearby sites where PRRSV is prevalent may be at risk for a PRRSV airborne 

transmission. Air filtration is an effective tool to reduce the risk of external PRRSV 

introduction to breeding herds located in swine dense regions. Studies are currently 

underway to continue to assess the sustainability of air filtration and to calculate its 

cost/benefit (Dee et al., 2010; Linhares et al., 2012). Other ways of indirect 

transmission involves transmission by inanimate items (clothing, boots, equipment…) 

(Otake et al., 2002a), substances (water, food) and living carriers (vectors) (Otake et 

al., 2002b). In addition to horizontal spread, vertical transmission also occurs by 

viremic dams spreading PRRSV transplacentally to fetuses, resulting in fetal death or 

birth of infected pigs that are weak or appear to be normal (Christianson et al., 1992; 

Terpstra et al., 1991). The pathogenesis of PRRSV infection is based on the 

replication of PRRSV in cells of the monocyte/macrophage lineage (Duan et al., 

1997a, b; Wensvoort et al., 1991). After uptake by the host, PRRSV replicates in the 

macrophage subsets of the respiratory tract, draining lymph nodes and tonsils, and 

arrives subsequently in the blood (Beyer et al., 2000; Paton & Drew, 1995; Rossow et 

al., 1995; Rossow et al., 1996). The specific tropism can be explained by the elegant 

interplay between viral and macrophage molecules (reviewed by Van Breedam et al., 

2010). Upon PRRSV infection, there is an acute phase characterized by a high level of 

viremia, followed by a subacute phase with a low level of viremia. The viremia, 

which is not cell-associated, can be detected within 12 hpi to 3 dpi and can last for 28-

42 dpi in suckling, weaned and grower pigs and for 7-14 dpi in sows and boars 

(Bilodeau et al., 1994; Christopher-Hennings et al., 1995a; Duan et al., 1997b; Paton 

& Drew, 1995; Rossow et al., 1995; Yoon et al., 1993). The blood virus titers reach a 

maximum at 5 to 14 dpi and then strongly decrease to lower levels (Christopher-

Hennings et al., 1995a; Duan et al., 1997b; Labarque et al., 2000; Rossow et al., 

1995). During viremia, PRRSV is distributed to macrophages in both lymphoid 

(lymph nodes, spleen, thymus) and non-lymphoid tissues (liver) (Beyer et al., 2000; 

Duan et al., 1997b; Halbur et al., 1995a; Lawson et al., 1997; Rossow et al., 1998). In 

boars, PRRSV is found in the testes and is shed in semen. The duration of semen 

shedding varies widely among boars (Christopher-Hennings et al., 1995a,b; Sur et al., 

1997; Swenson et al., 1994). In pregnant sows, endometrium and placenta are major 
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sites of virus replication and at the end of gestation (> 80 days of gestation) the virus 

can cross the placenta and infect the fetuses. Transplacental spread of the virus during 

the third trimester of gestation may be explained by changes in the placenta during 

this stage of gestation (Christianson et al., 1992; Christianson et al., 1993; Karniychuk 

et al., 2011; Karniychuk et al., 2009; Rowland, 2010).  

Although viremia is generally cleared within a few weeks, the virus can persist in 

lungs and lymphoid organs (tonsils, lymph nodes, spleen) and testes (Allende et al., 

2000; Beyer et al., 2000; Duan et al., 1997a; Labarque et al., 2000; Wills et al., 1997; 

Wills et al., 2003). PRRSV persists in these organs through a low level of replication 

that may decrease over time (Allende et al., 2000). In some animals however, a 

viremia may recur (Christopher-Hennings et al., 1995a, b; Rowland & Yoo, 2003). 

The ability of PRRSV to cause persistent infections indicates that the virus is capable 

of evading the host defense mechanisms. Finally, most pigs resolve PRRSV infection 

within 2 to 4 months (Allende et al., 2000; Wills et al., 1997; Wills et al., 2003). The 

mechanisms responsible for the complete elimination of PRRSV also remain to be 

elucidated. 

1.1.6. CLINICAL PICTURE 

The clinical picture of PRRS in the field is quite variable regarding both the range of 

symptoms and severity. The outcome of a PRRSV infection is often influenced by 

other pathogens, environmental factors and farm management (Brockmeier et al., 

2002). Furthermore, marked differences in virulence have been observed between 

different PRRSV isolates, both in the field and under controlled conditions (Epperson 

& Holler, 1997; Halbur et al., 1995; Halbur et al., 1996b; Mengeling et al., 1998; 

Rossow et al., 1999; Tian et al., 2007; Tong et al., 2007; Zhou et al., 2008), as 

exemplified by the severe PRRS-outbreaks in the USA around 1996, the emergence 

of highly pathogenic PRRSV in China in 2007, and the isolation of a highly virulent 

strain in Belarus (Halbur & Bush, 1997; Karniychuk et al., 2010; Tian et al., 2007). 

Nonetheless, PRRSV-associated disease mainly comprises respiratory distress in 

predominantly young animals and reproductive failure in sows of all parities.  

PRRSV is one of the most frequently isolated pathogens from cases of ‘porcine 

respiratory disease complex’ (PRDC), and experimental co-infection studies have 
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demonstrated that the combination of PRRSV with several bacterial and viral 

pathogens results in a more severe clinical picture than either agent alone. Interactions 

between PRRSV and Haemophilus parasuis, Mycoplasma hyopneumoniae, 

Streptococcus suis, Actinobacillus pleuropneumoniae, and the combination of 

Pasteurella multocida with Bordetella bronchiseptica have been demonstrated 

(Brockmeier et al., 2002; Choi et al., 2003; Thacker, 2001). Furthermore, PRRSV was 

shown to enhance disease caused by porcine respiratory coronavirus and swine 

influenza virus (Van Reeth et al., 1996; Van Reeth et al., 2001). Clinical signs of 

PRDC are coughing, anorexia, growth retardation and increased mortality of piglets 

between 16 and 22 weeks old (Collins et al., 1992; Rossow 1998).  

 
Figure 4. Clinical picture of PRRSV (adapted from www.respig.com; www.thepigsite.com; www.porcilis-
prrs.com). Mummified, stillborn or weakborn piglets and a red-blue discoloration of the ears in affected animals.  

PRRSV-associated reproductive failure generally takes place at the end of gestation 

and is characterized by late-term abortion or early farrowing, with a high number of 

mummified, stillborn or weakborn piglets. The incidence of PRRSV-induced 

abortion, transplacental spread and the birth of weak or dead piglets upon 

experimental infection is limited to the third trimester of gestation (Christianson et al., 

1993; Christianson et al., 1992; Mengeling et al., 1994; Terpstra et al., 1991). Clinical 

signs in infected sows or gilts vary from none to anorexia, fever, lethargy and delayed 
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return to estrus and low conception rates on the subsequent breeding (Done and 

Patton, 1995; Hopper et al., 1992, Mengeling et al., 1994; Terpstra et al., 1991). 

Intra-uterine virus inoculation at different time points revealed that fetuses are 

susceptible to PRRSV-infection throughout the entire gestation period, indicating that 

a barrier in transplacental spread is responsible for the limited time frame during 

which PRRSV-associated reproductive failure can occur (Lager & Mengeling, 1995). 

A possible explanation is that the number of susceptible cells in the uterus, placenta 

and fetal organs increases over time during pregnancy, as recently demonstrated by 

Karniychuk et al. (2010) and Karniychuk & Nauwynck (2009).  However, the exact 

mechanisms of PRRSV-induced reproductive failure and transplacental spread remain 

unresolved at present.  

In PRRSV-infected boars, during acute illness, in addition to anorexia, lethargy and 

respiratory clinical signs, the virus is found in the testes resulting in a temporary 

decrease of sperm quality (decrease in the sperm motility, spermatozoa with 

acrosomal defects) and shedding of the virus via sperm (Benfield et al., 1999; 

Christianson et al., 1994; Prieto & Castro, 2005), which may lead to virus 

transmission to sows.  

1.2. PRRSV-INDUCED IMMUNE RESPONSE 

The immune response is not efficient at all in controlling virus replication. The virus 

developed immune escape mechanisms at the level of both the innate and adaptive 

immune system. This is already visible at very early stages of infection. Nonetheless, 

infected-and-recovered pigs are generally well protected against re-infection with 

homologous virus, demonstrating that a protective immune response against PRRSV 

can indeed developed (Labarque et al., 2004; Labarque et al., 2003b; Lager et al., 

1999; Mengeling et al., 2003; Nielsen et al., 1997). Despite many efforts, serious gaps 

still exist in our knowledge of (i) the events initiating the immune response during 

infection, (ii) key virological targets for both antibody and cell-mediated protection, 

(iii) the molecular and cellular mechanisms regulating induction and maturation of the 

immune responses, (iv) the consequences of genetic diversity in PRRSV on immune 

protection and (v) host genetic variation in pig populations on immune responsiveness 

to PRRSV. For a comprehensive description of PRRSV immunity, its 
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immunopathogenesis and immune evasion, readers are referred to Mateu and Diaz 

(2008) and Kimman et al. (2009). This section briefly summarizes what is known on 

PRRSV-specific immunity. 

1.2.1. INNATE IMMUNITY 

The innate immune system is an important arm of defense to prevent viral invasion 

and replication and to initiate the adaptive arm of the immune system. Adequate early 

activation of the innate immune system is critical to initiate generation of protective 

adaptive immunity to achieve complete viral clearance (Dwivedi et al., 2012). The 

innate immune system consists of humoral (cytokines, acute phase proteins and 

complement) and cellular components (natural killer cells, macrophages, dendritic 

cells, neutrophils and γδ T-lymphocytes). Type I interferons (IFN), including IFNα 

and IFNβ, are essential for the subsequent development of an effective adaptive 

immunity (reviewed in Takoaka & Yanai, 2006). They play a key role in antiviral 

immunity, by stimulating apoptosis in virus-infected cells, rendering cells resistant to 

viral infection, and driving many processes of the cell-mediated immune response 

(reviewed in Biron, 1998; reviewed in Fitzgerald-Bocarsly & Feng, 2007). Recently, 

Calzada-Nova, et al. (2011) found that NA type PRRSV isolates did not induce, or 

even strongly inhibited, IFN-α in plasmacytoid dendritic cells (pDC), representing 

“professional IFN-α-producing cells”. Baumann et al. (2013) further characterized the 

PRRSV effects and host modifying factors on IFN-α responses of pDC and concluded 

that several types (of both EU and NA) stimulated IFN-α secretion by pDC suggesting 

that suppressive activities on pDC, if any, are moderate and strain-dependent. Besides 

type I IFN, other cytokines also contribute to the innate immune response to virus 

infections, such as TNFα/β, IL1, IL6, IL10, IL12, IL15 and IFNγ (reviewed in 

Kimman et al., 2009). For example: Interleukin-10 is involved in suppression of the 

T-helper-1 response, suppression of professional antigen-presenting cells and 

stimulation of B-cell proliferation and survival (Suradhat and Thanawongnuwegh, 

2003) and TNF-α is involved in the induction of fever and the acute-phase response, 

and is able to stimulate macrophage activity (Gimeno et al., 2011). Complement 

activation results in an enzyme cascade, in which an activated component activates 

several molecules of a downstream component. NK cells produce TNFα/β and are the 

major producers of IFNγ during the early phase of infection (Borghetti, 2005; Lodoen 
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& Lanier, 2006; Newman & Riley, 2007; Pintaric et al., 2008). However, the direct 

effects of IFNγ on virus replication in vivo are unknown and the involvement of NK 

cells during PRRSV infection remains to be elucidated. Cao et al. (2012) showed that 

a PRRSV infection down-regulates the NK cell cytotoxicity. These results are in 

line with the study performed by Jung et al. (2009). Activated macrophages are 

important phagocytes, producing pro-inflammatory cytokines and possessing cytolytic 

activity (Janeway et al., 2005). Further, they represent an important connection 

between innate and adaptive immunity, since they process phagocytized antigen and 

present it to T-lymphocytes. Pigs possess a high proportion of circulating γδ T-

lymphocytes: they can produce both T helper 1 cytokines (including IFNγ) and T 

helper 2 cytokines, fulfilling a regulatory function (Takamatsu et al., 2006). The role 

of γδ T-lymphocytes in the anti-PRRSV immune response remains to be elucidated. 

Dendritic cells recognize and process viral components and produce regulatory 

cytokines and leukocyte-attracting chemokines. Further, they transport processed viral 

antigens to the lymph nodes, where they present it to and activate virus-specific T-

lymphocytes (Villadangos & Young, 2008). Neutrophils are normally found in the 

blood stream, but during the acute phase of inflammation, they migrate to the site of 

inflammation.	
   

Although only incomplete, fragmented, and often contradicting data are available on 

the innate immune responses evoked by PRRSV, it can be stated that a strong innate 

immune response is absent upon a first PRRSV-infection. 

1.2.2. ADAPTIVE IMMUNITY 

Both PRRSV-specific cell-mediated and antibody-dependent immune mechanisms 

have been investigated, and some determinants of protective immunity have been 

described. However, it remains unclear to which extent different adaptive immune 

mechanisms contribute to protection against the virus. Like as for the PRRSV-induced 

innate immune response, scarce and often contradictory information is available on 

the PRRSV-specific immune response. Exact causes for the uncommon adaptive 

immune response to PRRSV are not yet known but it seems clear that the virus has 

developed mechanisms for escaping the immune system.  

 



16  Chapter 1 
_____________________________________________________________________ 

 

1.2.2.1. CELL-MEDIATED IMMUNITY 

The cell-mediated immunity plays a critical role in the resolution of many virus 

infections, but is delayed for PRRSV in comparison with other viral infections 

(Bautista & Molitor, 1997). Proliferative T cell responses, mainly characterized by a 

type I cytokine expression phenotype of IFN-γ and IL-2, have been detected between 

4 and 12 weeks after infection. However, the establishment of long-term persistence 

of the virus in the host suggests that cell-mediated immunity, including IFN-γ 

production, is not potent or ineffective in curtailing the infection (Batista et al., 2004; 

Murtaugh et al., 2002), although IFN-γ reduces PRRSV infection in porcine alveolar 

macrophages in vitro. IFN-γ secreting cells are mainly CD4+ CD8+ cells, with a few 

CD4−/CD8αβ+ cytotoxic T cells (Meier et al., 2003).  

Upon virus infection, mature dendritic cells or other antigen-presenting cells present 

viral antigen in association with MHC-I or MHC-II molecules to respectively naïve 

CD8+ or CD4+ T-lymphocytes in the draining lymph nodes (Villadangos & Young, 

2008). Activated CD8+ T-lymphocytes proliferate and differentiate into CD8+ 

cytotoxic T-lymphocytes (CTL) or CD8+ regulatory T-lymphocytes (Treg) (Bettelli et 

al., 2008; Roncarolo et al., 2006). At the place of infection, CD8+ cytotoxic T-

lymphocytes generally locate virus-infected cells by screening MHC-I molecules on 

the cell surfaces and recognition of virus-infected cells results in elimination of these 

cells. Virus-specific CD4+CD8- T cells can either represent T-helper 1 (Th1) or T-

helper 2 (Th2) cells.  The strong IL-10 response that is often observed favors a shift 

towards a Th2-response, although conflicting data exist about the Th1/Th2 balance 

upon PRRSV infection (Diaz et al., 2005; Lopez-Fuertes et al., 2000). The presence of 

functional CTL and the balance of CD4+ Th1 and Th2 lymphocytes during a viral 

infection are believed to determine the outcome of the infection. Virus-specific CD4-

CD8+ T-cells represent CTL, but Costers et al. (2009) demonstrated that these cells 

are not able to eliminate PRRSV-infected macrophages in vitro (Costers et al., 2009). 

This indicates that although PRRSV-specific CTL develop and infiltrate in the lungs, 

they are probably not able to clear infected lung macrophages. However, a not yet 

defined subpopulation of leukocytes is able to efficiently lyse PRRSV-infected 

macrophages (Costers et al, 2009). A transient decrease of CD4+ and CD8+ cells in 

blood is observed during the first days upon PRRSV-infection, together with an influx 

in the lungs of CD8+ cells that initially consist of mainly NK-like cells. NK cells are 



Introduction  17 
_____________________________________________________________________ 

 

suppressed in their cytotoxic function (Renukaradhya et al, 2010). Finally, recent 

studies have demonstrated the potential of PRRSV to stimulate the development of 

Tregs in vitro, although the role of these cells in vivo remains to be elucidated (Silva-

Campa et al., 2009; Wongyanin et al., 2010). Tregs have shown to be negative 

regulators in vitro by blocking lymphocyte proliferation, differentiation and effector 

functions, thereby preventing excessive immune responses (Roncarolo et al., 2006).  

However, a live attenuated PRRSV vaccine that induces high IFN-γ -secreting cell 

frequencies protected pigs against viremia. Levels of IL-10 seemed to inversely 

correlate with interferon-γ responses. These results may indicate a strong involvement 

of T cell immunity, IFN-γ, and possibly of IL-10, in the development of immunity 

against PRRSV (Diaz et al., 2006). Increased levels of IL-10 in particular raise 

concerns that PRRSV is capable of shifting the immune response towards a less 

effective Th2-mediated immune response. 

Activated T cells appear to be directed against the products of ORFs 2, 3, 4, 5, 6, and 

7, but their protective role is unknown (Bautista et al., 1999). A couple of T-cell 

epitopes have been identified in GP4, GP5 and N of LV (Diaz et al., 2009). Vashisht 

et al. (2008) identified two distinct regions (amino acid residues 117–131 and 149–

163) on GP5 of the NA genotype of PRRSV that appeared to contain 

immunodominant T-cell epitopes based on their ability to stimulate IFN-γ secreting 

cells. The sequence of most of these T-cell epitopes is largely conserved amongst the 

EU type field isolates, and for some also between EU- and NA type virus. 

Consequently, it is unknown how and to which extent conserved T cell epitopes are 

involved in PRRSV protective immunity. Still, for some proteins, T cell epitopes have 

not yet been identified at amino acid level. Molecular strategies may help to locate 

these epitopes. Methodological approaches are diverse and may include bio-

informatic prediction, synthesis of peptides and in vivo testing.  

1.2.2.2. HUMORAL IMMUNITY 

1.2.2.2.1. ACTIVE HUMORAL IMMUNITY 

The humoral immunity starts like with other viruses. PRRSV induces a robust 

PRRSV-specific antibody response, which can be detected by the following 5 
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serological tests: indirect fluorescent antibody (IFA), ELISA, blocking ELISA, 

serum-virus neutralization (SN), and immunoperoxidase monolayer assay (IPMA). 

Upon initial PRRSV infection, naïve animals seroconvert between 5 and 14 dpi and 

antibody titers increase rapidly to a maximum level around 4 weeks pi (Diaz et al., 

2005; Meier et al., 2003; Yoon et al., 1995). Early antibodies seem to be mainly 

directed against the N protein and some non-structural proteins, while antibodies 

against the envelope proteins are usually detected at later time points (Oleksiewicz et 

al., 2001). Upon first infection, maximum antibody titers are generally 640 or 1240 

with the IPMA, and a similar magnitude is obtained with the ELISA and IFA (Albina 

et al., 1998b; Batista et al., 2004; Diaz et al., 2005; Labarque et al., 2000; Vezina et 

al., 1996; Yoon et al., 1995). Anti-PRRSV IgM antibodies can be detected in serum 

starting from 6 to 8 dpi (Labarque et al., 2000; Loemba et al., 1996; Mulupuri et al., 

2008), they peak at 8 to 14 dpi and disappear after 21 to 50 dpi (Labarque et al., 2000; 

Loemba et al., 1996; Mulupuri et al., 2008), whereas IgG (both IgG1 and IgG2) 

antibodies peak at 30 to 50 dpi and remain at high levels for months (Joo et al., 1997; 

Labarque et al., 2000; Loemba et al., 1996; Mulupuri et al., 2008; Vezina et al., 1996). 

Antibodies can exert antiviral activities in different ways (Burton, 2002): antibodies 

can protect against viral infections, either by interacting with infectious virions and 

compromising their infectivity, or by binding viral antigens on infected cells, resulting 

in activation of the classical complement cascade or leading to lysis of these cells and 

thus prevention of further viral spread. Cell lysis as a result of virus-specific-

antibody-binding, followed by complement activation is referred to as antibody-

dependent, complement-mediated cell lysis (ADCML). In the latter case, infected 

cells that are opsonized by antibodies and killed by cytotoxicity exerted by immune 

cells with Fc receptors is referred to as antibody-dependent cell-mediated cytotoxicity 

(ADCC) (Burton, 2002; Janeway et al., 2005).  

Antibodies against envelope proteins, amongst PRRSV-neutralizing antibodies, as 

determined by neutralization assays, usually do not increase before 3 to 4 weeks pi or 

do not appear at all (Delputte et al., 2004; Labarque et al., 2000; Loemba et al., 1996; 

Lopez & Osorio, 2004; Nelson et al., 1994). If they appear, they typically peak around 

60 to 90 dpi and persist up to 1 year after infection at low levels (Albina et al., 1998b; 

Yoon et al., 1995). The reason why virus neutralizing (VN) antibodies appear so late 

in infection and remain at such low levels is not yet known. The high variability of the 
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virus, glycan shielding (Ansari et al., 2006; Darwich et al., 2010; Faaberg et al., 2006; 

Vu et al., 2011), decoy activities (Murtaugh et al., 2002; Ostrowski et al., 2002), 

interference with the innate immune response (Darwich et al., 2010; Flores-Mendoza 

et al., 2008), are forwarded as main reasons for the late appearance of VN antibodies.  

The role of VN antibodies in the resolution of a PRRSV infection and protection 

remains unclear. VN antibodies generally appear within the time frame of viral 

clearance from lungs and blood, suggesting that they might be important. A 

correlation has been reported between the appearance of VN antibodies and clearance 

of cell-free virus from circulation / protection against viremia (Murtaugh et al., 2002; 

Pirzadeh & Dea, 1998). Moreover, it has been reported that a passive transfer of VN 

antibodies can protect pregnant sows against PRRSV-associated reproductive failure 

and transplacental spread, as well as against virus replication in tissues and viremia 

upon challenge with infectious virus (Osorio et al., 2002). 

	
  
Figure 5.  Schematic overview of viremia and the virus-specific and virus-neutralizing antibody response 
upon PRRSV infection in pigs (PhD Vanhee M., 2011). 

 

Passive transfer of VN antibodies can also provide sterilizing immunity to the 

offspring, but titers ≥ 32 are needed to prevent viremia (Lopez et al., 2007). These 

findings suggest that VN antibodies can protect animals from PRRSV infection and 
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have the potential to eliminate free virus from circulation.  

On the other hand, other studies do not support a strong correlation between the 

development of VN antibodies and the clearance of viremia (Diaz et al., 2006; Xiao et 

al., 2004; Zuckermann et al., 2007). Also, it was observed that PRRSV might persist 

in the lungs and lymphoid tissues of PRRSV-infected pigs, despite the presence of 

VN antibodies (Labarque et al., 2000; Lopez & Osorio, 2004; Murtaugh et al., 2002; 

Osorio et al., 2002; Wills et al., 1997).  

Importantly however, the VN antibodies are to a large extent strain specific, much 

more than the non-neutralizing antibodies and a lack in cross-neutralization often 

occurs even between genetically closely related virus strains (Kim & Yoon, 2008; 

Okuda et al., 2008). The magnitude of the VN response is highest when homologous 

virus is used in the assay. VN tests are not standardized in laboratories and are 

typically used as a research test rather than a diagnostic test. Since the knowledge on 

PRRSV neutralizing antibody targets and their antigenic variability is incomplete, no 

clue exists to date to cluster virus isolates into serotypes with respect to antibody-

mediated neutralization.  

The available literature indicates different PRRSV envelope proteins as targets for 

neutralizing antibodies, including GP3 (Kim & Yoon, 2008), GP4 (Costers et al., 

2010a; Vanhee et al., 2010), GP5 (Gonin et al., 1999; Kim & Yoon, 2008; Kwang et 

al., 1999; Ostrowski et al., 2002; Pirzadeh & Dea, 1998; Weiland et al., 1999; Yang et 

al., 2000) and M (Kim & Yoon, 2008; Yang et al., 2000). Based on data of in vitro 

and in vivo studies, GP5 is generally seen as the major target for antibody-mediated 

neutralization of American type PRRSV (Gonin et al., 1999; Ostrowski et al., 2002; 

Pirzadeh & Dea, 1998). However, it remains to be investigated if this neutralizing 

epitope of GP5 is also a target for neutralization of European type PRRSV. 

Nonetheless, the examination of the genomic and predicted amino acid (aa) sequences 

corresponding to GP5 indicates that the main neutralization epitope is quite conserved 

among different strains of American type PRRSV. This seems to contradict with the 

lack of serological cross-reactivity observed between different strains in SN-tests. In 

EU type PRRSV variants, a region of the GP4 protein was identified as a target for 

neutralization (Costers et al., 2010; Meulenberg et al., 1997; Vanhee et al., 2010; 

Weiland et al., 1999). Therefore, precise mapping of neutralizing epitopes is needed 
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both using monoclonal antibodies and hyper-immune sera obtained from pigs 

immunized with different strains. In our laboratory, it was demonstrated by pepscan 

analysis of all envelope glycoproteins that porcine anti-PRRSV antisera (against EU 

type PRRSV) recognize 21 antigenic regions and that pig differences exist in the 

recognition pattern (Vanhee et al., 2010; Vanhee et al., 2011). After purifying 

peptide-specific porcine antibodies, functional analyses were performed. Porcine 

antibodies that recognize the peptide aa 57-68 of GP4 are strongly neutralizing 

PRRSV, which was interesting regarding vaccine development (Vanhee et al., 2010). 

However, presence of a neutralizing antibody-mediated selective pressure on this 

region of the GP4 protein allows rapid selection of neutralization-resistant variants, 

which explains the high variability in this region and consequently the lack of cross-

neutralization (Costers et al., 2010b; Vanhee et al., 2010). In addition, 2 neutralizing 

antigenic regions were found in GP2 and 2 others in GP3 (Vanhee et al., 2011). One 

neutralizing antigenic region in GP3 is highly conserved and neutralizing antibodies 

against this region were found in most infected pigs. This may be an interesting 

region for vaccine development. No neutralizing antigenic regions were found in M 

and GP5 for EU type PRRSV (Vanhee et al., 2011). Differences in cross-protection 

by polyclonal antibodies between PRRSV strains have recently been demonstrated by 

Martinez-Lobo and colleagues (2011). 

Some studies described that, under certain conditions, PRRSV-specific antibodies 

may enhance infection (Cancel-Tirado et al., 2004). This phenomenon is called 

antibody-dependent enhancement of infection (ADEI) and is sometimes observed 

when neutralizing antisera are diluted beyond the endpoint of neutralization (Yoon et 

al., 1996). In conclusion, VN antibodies can certainly contribute to resolution of and 

protection against PRRSV infection, but it appears that also other immune 

mechanisms (e.g. cell-mediated immunity) are required for an effective defense. 

1.2.2.2.2. PASSIVE HUMORAL IMMUNITY 

No specific study has evaluated the effect of maternal immunity on piglet 

susceptibility to PRRSV infection, but indirect inferences suggest that immune sows 

provide maternal protection to piglets. Houben et al. (1995) discovered a positive link 

between sow titers and the maternal antibody titers of their litters at 2 weeks of age 

and the latter were detectable until 4-10 weeks of age. PRRSV maternal antibodies 
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wane usually at the age of 4 to 5 weeks (Albina et al., 1994). The appearance of 

PRRSV in weaned pigs has been correlated with loss of maternal antibody and the 

duration of maternal protection was linked with VN antibody titers (Albina et al. 

1994; Chung et al. 1997; Houben et al. 1995). Yoon et al. (1996) demonstrated that 

infection of porcine alveolar macrophages (PAM) by PRRSV could be enhanced in 

vitro and in vivo in the presence of neutralizing antibodies, particularly at low 

concentrations. These observations suggest that ADEI may play a role in the 

pathogenesis of the disease. 

1.3. PRRSV DIAGNOSIS 

A presumptive diagnosis of PRRS is suggested in any herd with reproductive 

problems in breeding swine and respiratory disease in pigs of any age. Production 

records in herds with clinically active PRRS usually reveal evidence of increased 

abortions, early farrowing, stillbirths, pre-weaning mortality, and non-productive sow 

days. However, the lack of these signs does not indicate that a herd is free of PRRSV 

infections. Several laboratory methods have been established to detect PRRSV and 

PRRSV antibodies, including virus isolation (VI) (Mengeling et al., 1999), reverse 

transcription polymerase chain reaction (RT-PCR) (Sur et al., 1997; Suarez et al., 

1996), immunoperoxidase monolayer linked assay (IPMA) (Collins et al., 1992) and 

enzyme-linked immunosorbent assay (ELISA) (Nodelijk et al., 1996). Virus isolation 

is most successful using serum, lungs, lymph nodes, and tonsils. Generally, PRRSV is 

detected in higher amounts and for longer periods in younger, compared to older pigs.  

 
Figure 6.  Sample collection of stillborn piglets.  

In late-term abortion and early farrowing, similar tissue samples from live-born pigs 

are preferred, because mummies or stillborn fetuses rarely yield positive VI results 

due to tissue autolysis. In acute infections, serum and tissues recommended for VI are 

also the preferred diagnostic samples for PCR. PCR-based assays detect viral nucleic 
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acids in tissue homogenates, serum, semen, oropharyngeal scrapings, and pulmonary 

lavage fluids. These assays are highly sensitive and specific (Benson et al., 2002; 

Horter et al., 2002). However, because of the high degree of sequence variation, the 

accuracy of RT-PCR might be influenced, especially if mutations are located in the 

primer or probe binding regions of PCR (Indik et al., 2005). PCR products can be 

utilized for sequencing, thus expanding the diagnostic utility of this assay. Sequencing 

is used to show the relatedness of strains over time and within a herd. A phylogenetic 

tree depicts similarity among genomic sequences like a family lineage. This type of 

analysis may be used to 1) determine whether the reappearance of PRRS on a farm is 

due to the re-emergence of a previously existing or a new virus strain; 2) determine 

whether PRRS outbreaks on farms are due to a single variant or multiple variants of 

virus; 3) track introduction of (new) virus into a swine herd; 4) monitoring spread of 

PRRSV strains within and between herds; 5) differentiate vaccine and field viruses 

(Christopher-Hennings et al., 2002; Roberts, 2001). 

Serological diagnosis is still favored by many practitioners because serum is easily 

collected in quantities for multiple tests and easily stored for future reference. The 

commercial ELISA (HerdChek® X3 PRRS ELISA, IDEXX Laboratories Inc., 

Westbrook, Maine) is the “gold standard” for detection of antibodies to PRRSV. The 

assay is sensitive, specific, standardized, and rapid. The test putatively targets 

antibodies to the nucleocapsid antigens for both NA and EU type strains of PRRSV. 

The demonstration of a seroconversion (negative to positive) using acute and 

convalescent serum samples is the most definitive method to diagnose PRRSV 

infection serologically. Serology is not a valid approach for diagnosis of PRRSV in 

previously infected or vaccinated herds, because serological assays do not 

differentiate among antibodies resulting from the initial infection, reinfection, or 

vaccination. Detection of antibodies in nursery pigs may be due to the presence of 

maternal antibodies, which usually persist until pigs reach 3-5 weeks of age 

(Melnichouk et al., 2005). 

Surveillance and monitoring is rarely done in swine populations because of the 

technical, logistical and economic challenges of bleeding and testing a statistically 

sufficient number of piglets. A promising ‘new’ approach for increasing the efficiency 

and cost-effectiveness of virus surveillance in swine herds and other applications, 

such as elimination/eradication programs, is oral fluid sampling (Ramirez et al., 
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2012). This method is already used for boar stud monitoring due to lower labor time 

and higher worker safety. ELISA and PCR are typically used in the field to confirm 

suspicious positive results in herds expected to be negative for PRRSV (Dufresne et 

al., 2003).  

1.4. PRRSV VACCINES 

1.4.1. CURRENT COMMERCIAL VACCINES 

Two types of PRRSV vaccines are available and widely used in pigs for the control of 

PRRSV: attenuated or ‘modified live virus’ (MLV) vaccines, and inactivated or 

‘killed virus’ (KV) vaccines (Christopher-Hennings et al., 1997; Dewey et al., 1999; 

Kimman et al., 2009; Labarque et al., 2003b; Meng, 2000; Mengeling et al., 1999; 

Mengeling et al., 2003; Misinzo et al., 2006; Nielsen et al., 2002; Nilubol et al., 2004; 

van Woensel et al., 1998a; Zuckermann et al., 2007). The former type is generated by 

in vitro cell culture passage of virulent virus until an attenuated phenotype is 

achieved, while chemically or physically inactivated virulent virus generates the latter 

type. Inactivated vaccines are administered in combination with an adjuvant, while 

most attenuated vaccines do not use adjuvants. Both EU type and NA type-based 

attenuated and inactivated vaccines exist and are used on both continents, since today 

a strict geographical genotype barrier does no longer exist. 

1.4.1.1. ATTENUATED VACCINES 

Of both types, attenuated vaccines are clearly the most potent in inducing protection. 

They are able to significantly reduce viremia, disease occurrence and severity, as well 

as virus shedding upon challenge with closely related PRRSV strains (Labarque et al., 

2003b; Murtaugh et al., 2002; Zuckermann et al., 2007). They also have shown 

efficacy in reducing mortality and poor growth when vaccinated pigs are exposed to 

the parental strain from which the vaccine had been prepared (Cano et al., 2007a). 

The attenuated vaccines are generally effective against genetically related strains 

(Labarque et al., 2003b; Murtaugh et al., 2002), but are less effective or sometimes 

ineffective upon challenge with strains that differ genetically (Kimman et al., 2009; 

Labarque et al., 2004; Murtaugh et al., 2002). Repeated administration of attenuated 

vaccines within infected populations has also been shown to result in less virus 

circulation and a reduction of the number of persistently infected pigs (Cano et al., 
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2007b). Attenuated live PRRSV vaccines have been successfully employed against 

the recent emerging HP-PRRSV strains in China and surrounding countries (Leng et 

al., 2012; Wei et al., 2013). In the study of Li et al. (2013), emergency vaccination 
with an attenuated live vaccine successfully alleviated the clinical signs of HP-
PRRSV infection and reduced the mortality rate. In particular, attenuated vaccines are 

used to help in the control and elimination of field virus from infected breeding herds 

(Gillespie & Carroll, 2003). The efficacy of attenuated vaccines is largely subject to 

the genetic background of the challenge virus and strong to complete protection is 

only obtained in case the challenge virus is nearly identical to the vaccine virus. The 

immune response upon vaccination with an attenuated vaccine resembles the same 

weaknesses as the immunity induced by natural PRRSV infection. They induce non-

detectable or low levels of VN antibodies starting from 28 dpi (Lopez & Osorio, 

2004; Meier et al., 2003; Zuckermann et al., 2007), which is in line with the PRRSV-

intrinsic property of a slow development of low titers of VN antibodies. Remarkably, 

some studies reported on a strong anamnestic VN antibody response upon challenge, 

even with a heterologous strain (Osorio et al., 1998), while others reported that the 

VN antibodies remained unchanged (Zuckermann et al., 2007). VN antibodies 

induced by attenuated vaccines are often only detected in SN tests using the vaccine 

virus as antigen, which explains to a certain extent the isolate-specific protective 

efficacy of these vaccines (Charerntantanakul et al., 2006a; Meier et al., 2003; Okuda 

et al., 2008; Scortti et al., 2006b; Zuckermann et al., 2007). Similar as in infection-

immune animals, the absence of an anamnestic humoral immune response upon 

challenge or re-vaccination may result from a lack in sufficient replication of the 

vaccine or virulent virus in vaccination-immune animals (Charerntantanakul et al., 

2006a; Scortti et al., 2006b; Zuckermann et al., 2007). In addition to antibody-

mediated immunity, attenuated vaccines also induce a cell-mediated immunity, 

characterized by a gradual development of virus-specific IFN-γ-producing cells and a 

recall of these cells upon infection. To which extent cell-mediated immune 

mechanisms contribute to vaccine-induced protection, and which cell types are 

involved, is not known (Charerntantanakul et al., 2006a; Diaz et al., 2006; Meier et 

al., 2003; Zuckermann et al., 2007). Nevertheless, attenuated vaccines against PRRSV 

have several limitations. The current attenuated vaccines behave very similarly to 

field PRRSV strains in terms of transmission, persistence, transplacental transmission 

and congenital infection, shedding in semen, and, more importantly, they can revert to 
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virulence (Bøtner et al., 1997; Christopher-Hennings et al., 1997; Nielsen et al., 2001; 

Scortti et al., 2006a). Concerning the reversion of the attenuated vaccine strains, an 

epidemic of the NA genotype PRRSV vaccine occurred in the previously unaffected 

Danish pig population in 1996 (Bøtner et al., 1997; Nielsen et al., 2001; Nielsen et al., 

2002). The circulation of vaccine-derived viruses in Thai swine farms (Amonsin et 

al., 2009) and the capacity of attenuated vaccines to shape PRRSV evolution by 

homologous recombination with circulating virus in China (Li et al., 2009; Wenhui et 

al., 2012) have been reported. Further, vaccine-derived PRRSV strains were isolated 

from non-symptomatic persistently infected pigs (Key et al., 2001; Zimmerman et al., 

2006), and an attenuated vaccine-derived isolate was found to cause disease upon 

experimental inoculation (Opriessnig et al., 2002). Genetic and phenotypic 

characterization of isolated field strains suggests that reversion to virulence is not a 

rare event. Mengeling et al. (1999) used a restriction-site marker specifically present 

in vaccine virus strain VR2332 to demonstrate the presence of this marker in 24 of 25 

field strains isolated after the introduction of the vaccine. More importantly, these 

putative vaccine-derived strains produced more pronounced pathological changes than 

did the parental vaccine virus. Wesley et al. (1999) showed that the restriction 

fragment length polymorphism (RFLP) patterns change when the vaccine virus 

spreads in a swine population. The frequency of transmission and recombination of 

attenuated live vaccines should be studied more in depth, as they are worldwide 

extensively used for the control of the disease. In addition, the potential of 

spontaneous spreading of either NA or EU genotype attenuated vaccines should be 

considered in the planning of control or eradication programs using attenuated 

vaccines (Grosse Beilage et al., 2009). The efficacy of attenuated vaccines is highly 

dependent on the heterogeneity of the field strain and the safety of these vaccines is 

not guaranteed. No ready-made answers to any of these problems exist to date.  

1.4.1.2. INACTIVATED VACCINES 

The outcomes of the use of commercial inactivated vaccines in the field are variable 

and even less promising than attenuated vaccines. Inactivated PRRSV vaccines have 

been reported to improve farrowing rate, return to oestrus and piglets weaned per sow 

in endemically infected populations (Papatsiros et al., 2006), but they generally do not 

influence viremia, virus replication in tissues and shedding, even when the infectious 
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PRRSV isolate is nearly homologous to the vaccine strain (Nielsen et al., 1997; 

Nilubol et al., 2004; Plana-Duran et al., 1997; Scortti et al., 2007; Zuckermann et al., 

2007). Inactivated PRRSV vaccines are poorly immunogenic and do not or hardly 

induce virus-specific antibodies. In several studies, only a moderate anamnestic 

antibody response is observed upon challenge of vaccinated animals (Meier et al., 

2003; Nilubol et al., 2004; Vanhee et al., 2009). Despite the induction of post-

challenge PRRSV-neutralizing antibodies (Plana-Duran et al., 1997; Zuckermann et 

al., 2007) and despite the priming of CD8(high) cells (Piras et al., 2005), they fail to 

confer protection upon challenge. A non-specific IFN-γ response is induced upon 

vaccination with a particular inactivated vaccine, though this response is not 

protective, and is most likely caused by an adjuvant compound rather than by the 

inactivated virus itself (Piras et al., 2005; Zuckermann et al., 2007). In general, 

inactivated vaccines are considered less efficacious than attenuated vaccines in 

prevention of both infection and disease when used in naïve animals (Ostrowski et al., 

2002). However, when used in previously infected animals or when used in 

combination with attenuated vaccines, they may induce more neutralizing antibodies. 

Several countries only permit the use of inactivated PRRSV vaccines in breeding 

animals to avoid the use of attenuated PRRSV in gestating sows (the latter may cause 

reproductive disorders by inappropriate usage). Some inactivated vaccines have been 

specifically designed for use in sows and gilts to reduce reproductive disorders caused 

by PRRSV. Inactivated autogenous vaccines can be used in breeding herds in which 

currently available commercial PRRSV vaccines have failed, particularly to boost 

immunity from previous natural exposure (M. McCaw, personal communication).  

At the moment, several strategies, combining different attenuated and/or inactivated 

vaccines, for immunizing piglets or gilts and maintaining immunity in sows are 

applied in the field and have met with variable degrees of success (Martelli et al., 

2013; Olanratmanee et al., 2013). PRRSV keeps on circulating in the field, and even 

farms where strict vaccination procedures are applied may suffer from PRRS-

associated problems (Belgian veterinarians in the field, Personal Communications; 

Thanawongnuwech & Suradhat, 2010). These results may reflect differences in the 

virus strains circulating in the different farms/regions and/or they may relate to the 

issue of cross-protection. Taken together, none of the current commercially available 

vaccines is able to completely prevent respiratory infection, transplacental 
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transmission, pig-to-pig transmission of the virus, nor maintaining immune protection 

in sows (Murtaugh et al., 2002). Research to provide a safer and more efficacious 

product is needed to control the devastating effects of PRRSV. 

1.4.2. EXPERIMENTAL VACCINES 

As traditional vaccines fail to provide sustainable disease control, novel vaccine 

development driven by “out of the box” hypotheses, should be encouraged and 

explored. Several approaches have been used to develop a more effective PRRSV 

vaccine, including inactivated and attenuated vaccines, DNA vaccines and 

recombinant DNA vector vaccines (Hu & Zhang, 2013). Although most of these 

approaches did not result in overwhelming success, they may provide useful lessons.  

1.4.2.1. ADAPTABLE INACTIVATED VACCINES 

Lopez et al. (2007) demonstrated that neutralizing antibodies have the immunological 

power to protect pigs upon a homologous challenge. Furthermore, it is well known 

that maternal immunity is protecting piglets during their first weeks of life. Based on 

these results, inactivated vaccines that are inducing VN antibodies should be able to 

give a good protection. However, the commercially available inactivated vaccines do 

not induce VN antibodies upon vaccination of naïve animals and as a consequence do 

not protect in these animals. Misinzo et al. (2006) demonstrated the potential of 

priming the neutralizing antibody response by immunization with a high dose of 

inactivated PRRSV, leading to certain protection against viremia upon homologous 

challenge (Misinzo et al., 2006). Since for all viruses VN antibodies are mainly 

directed against the viral ligands that are involved in binding, internalization and 

disassembly, these molecules should be preserved during the inactivation process. 

Delrue et al. (2009) found a method for inactivation of PRRSV without affecting the 

antigenicity of the envelope proteins, which may lead to a better conservation of 

neutralizing epitopes (Delrue et al., 2009). Inactivated vaccines produced with this 

protocol induced VN antibodies in naïve animals and gave a significant protection 

upon challenge with homologous virus (Vanhee et al., 2009).  
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1.4.2.2. ADAPTABLE ATTENUATED VACCINES OR VECTOR VACCINES  

An improvement of vaccination strategies against PRRSV is required, as current 

vaccines have limited efficacy. Virus vectored vaccines can represent an advantage to 

stimulate immune responses against PRRSV. TGEV based vector vaccines expressing 

different PRRSV antigenic combinations represent a promising candidate to provide 

protection against PRRSV. Nevertheless, obtained data indicate that heterologous 

protein expression stability was limited. In swine, pseudorabies virus (PRV) has been 

used as a vaccine vector for expressing PRRSV immunogens (Qiu et al., 2005). 

Although a live attenuated vaccine-based PRV recombinant expressing the envelope 

protein GP5 of PRRSV failed to induce VN antibodies, it conferred partial protection 

against clinical disease, reduced pathological lesions and the duration of viremia upon 

PRRSV challenge. Jiang et al. (2008) used replication-defective adenovirus 

recombinants as vector vaccines to examine the immunogenicity of GP3, GP4, and 

GP5 in mice. Recently, Wu et al. (2013) used a baculovirus containing a hybrid 

cytomegalovirus promotor/alphavirus replicon as vector vaccine to examine the 

immunogenicity of GP5 and M in mice. These strains have, however, not been tested 

for protective efficacy in pigs. Another vector that has been used to induce immunity 

to PRRSV is Mycobacterium tuberculosis strain BCG. Following challenge with a 

PRRSV isolate, M and GP5 immunized pigs showed evidence of partial protection 

against the PRRSV infection (Bastos et al., 2004).  

The results reported to date using viral vectors are not fully satisfactory but cannot be 

ignored and new vectors must be explored. Deleting the genetic sequences encoding 

proteins/peptides that (i) are involved in negatively modulating the immune response 

and that are (ii) associated with virulence will further improve the attenuated PRRSV 

vaccine. Identification of proteins/peptides that are involved in the induction of a 

protective immunity (Vanhee et al., 2011; Vanhee et al., 2010) allows introducing 

their genetic sequences in a vector. At present, a EU project is ongoing, entitled 

“PoRRSCon, new tools and approaches to control Porcine Reproductive and 

Respiratory Syndrome in the EU and Asia” with the goal to develop new attenuated 

and vector vaccines to control PRRS. 
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1.4.2.3. DNA VACCINES 

Thus far, few experimental trials with DNA vaccination have evoked a response 

strong enough to protect against disease. Kwang et al. (1999) reported both 

seroconversion and PRRSV-specific lymphocyte proliferation in pigs immunized with 

PRRSV ORF4, ORF5, ORF6 or ORF7. Nevertheless, only ORF4- and ORF5-

immunized pigs developed VN antibodies. Barfoed et al. (2004) cloned all ORFs of a 

Danish isolate of PRRSV in DNA vaccination vectors. Anamnestic VN antibodies 

were detected in all pigs, with ORF5-vaccinated pigs showing the highest titers. 

Rompato et al. (2006) established that an ORF7 vectored vaccine was insufficient in 

providing protective immunity. Recently, Zhang et al. (2012) illustrated that co-

expression of M and IL-18 proteins could significantly improve the potency of DNA 

vaccination on the activation of vaccine-induced virus-specific cell-mediated immune 

responses in pigs. In addition, Du et al. (2012) showed that a DNA vaccine expressing 

GP3, GP5 and interferon α/γ could provide partially protective efficacy. On the other 

hand, Diaz et al. (2013) has observed that previous immunization with DNA vaccines 

against ORF5, ORF6, as well as ORF7 but to a lesser degree could result in an 

exacerbation of the clinical course in terms of fever upon challenge. 

1.4.2.4. MARKER VACCINES 

For PRRSV eradication, it is desirable to have the possibility to differentiate infected 

from vaccinated animals (DIVA principle). Marker vaccines together with 

differentiating ELISAs are interesting tools to start control programs. Of course, one 

should first identify the most suitable conserved and non-essential epitopes before 

making a decision on the vaccine. Recent approaches have focused on the non-

structural protein 7 (nsp7) of PRRSV that is relatively conserved within the same 

genotype (EU or NA). Preliminary results indicate that nsp7 can be a good target for 

setting up a DIVA assay for inactivated vaccines, but further analysis is still needed 

(M. Garcia Duran, personal communication). In an attempt to develop a marker 

vaccine, de Lima et al. (2008) developed an attenuated vaccine strain carrying a 

deletion of an immunodominant B-cell linear epitope in the nsp2 gene. As expected, 

vaccinated pigs did not develop antibodies to the selected epitope, but the vaccine was 

not examined for protective capacity. While providing proof of principle of the 

marker vaccine approach for PRRSV, the nsp2 epitope marker would likely be 
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suboptimal for detection of exposure of pigs to field strains due to the low degree of 

conservation and high variability of nsp2, also at the marker site. For that purpose, 

markers in the conserved M endodomain may be more optimal (de Lima et al., 2008). 

More recently, Leng et al. (2012) passaged a HP-PRRSV strain on MARC-145 cells 

with the purpose to use it for the development of an attenuated live vaccine. Sequence 

analysis of different passages of this HP-PRRSV strain showed that the attenuation 

resulted in a genetically stable deletion of a continuous 120 aa, in addition to the 

discontinuous 30-aa deletion in the nsp2 region.  This HP-PRRSV vaccine is a good 

candidate as a marker vaccine against HP-PRRSV.  

1.4.2.5. CELL LINES FOR MASS PRODUCTION OF VACCINE VIRUS 

Up till now, the immortalized monkey kidney cell line MA-104 and its derivates, 

MARC-145 and CL2621, are the only continuous cell types shown to support PRRSV 

infection and are currently employed for virus propagation in vitro (Bautista et al., 

1993; Kim et al., 1993). Particularly MARC-145 cells are used to grow vaccine virus. 

Infection of macrophages, the natural host cell of PRRSV, occurs via a few similar 

but also different receptors compared to infection of MARC-145 cells (Van Breedam 

et al., 2010). PRRSV first attaches to the macrophage via heparin sulphate (Delputte 

et al., 2002), then bind to sialoadhesin (Sn) and internalizes (Vanderheijden et al., 

2003). CD163 is also involved in infection of macrophages, probably at the stage of 

virus disassembly (Van Gorp et al., 2008). The entry process of the virus in MARC-

145 cells is different from that in macrophages. Most field isolates do not replicate 

efficiently in MARC-145 cells, or CL 2621 cells, and adaptation is needed to achieve 

efficient virus replication (Bautista et al., 1993). Sn, which is essential for PRRSV 

internalization in macrophages, is not detected on MARC-145 cells (Vanderheijden et 

al., 2003), and sialic acid on PRRSV is essential for infection of primary 

macrophages, but removal of sialic acid from PRRSV has no effect on infection of 

MARC-145 cells (Delputte & Nauwynck, 2004). Consequently, virus propagation on 

MARC-145 cells can lead to mutations of structural proteins that may have an impact 

on the induction of a protective immunity. In order to overcome several obstacles, a 

PK15 cell line that is stably transfected with genes encoding the in vivo host cell 

receptors CD163 and Sn has been developed. This cell line is producing large 

amounts of virus and does not allow significant mutations in the envelope proteins 
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(Delrue et al., 2010).  

In addition, new cell lines have been genetically modified to become permissive to 

PRRSV, e.g. as immortalized PAM cells expressing the CD163 protein (Lee et al., 

2010), immortalized porcine monomyeloid cells expressing the human telomerase 

reverse transcriptase (Sagong et al., 2012), porcine, feline and baby hamster kidney 

cells expressing the CD163 protein (Calvert et al., 2007). More recently, a non-

genetically modified cell line was tested for PRRSV permissivity (Provost et al., 

2012). St-Jude porcine lung cells (SJPL), phenotypically different from MARC-145 

cells, are permissive to PRRSV replication and may give us new insight in regards to 

the viral pathogenesis of PRRSV. In addition, SJPL cells could also serve as a new in 

vitro model to study viral-bacterial interactions during mixed infections (Provost et 

al., 2012). 

1.4.3. PREREQUISITES FOR FUTURE VACCINES 

More than two decades since its emergence, PRRS is still a “mystery swine disease” 

for most of the vaccinologists and swine veterinarians throughout the world. 

Numerous reports related to PRRSV vaccine development and field evaluation have 

yielded disappointing results. The quest for safe and effective PRRSV vaccines goes 

on, and it is generally agreed to date that the most suitable vaccine should comply 

with the following criteria (Kimman et al., 2009; Mateu & Diaz, 2008). The vaccine 

should be safe. As indicated above virulent PRRSV can establish persistent infection 

thanks to its capacity to evade the immune system by mechanisms that are still poorly 

understood. It is highly unlikely that this feature can be tolerated for any future live 

PRRSV vaccine. Although PRRSV is not considered as an immunosuppressive virus, 

any future PRRSV vaccine should not lead to enhanced disease caused by other 

infections. A better understanding of the interaction of PRRSV and other pathogens 

therefore is required. Another major goal of any PRRSV vaccination is to induce an 

immunity that gives a clinical and virological protection. A particular challenge to 

any PRRSV vaccine is to prevent a transplacental transmission of the virus to fetuses. 

The efficacy of vaccination against reproductive failure can be evaluated by 

vaccination-challenge studies in pregnant sows. The efficacy against respiratory 

disease is however more difficult to assess, since other pathogens are usually 

involved. A very important goal of vaccination is to diminish the pig-to-pig spread 
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of the virus. Further studies to define the role of vaccines in control-eradication 

programs are therefore needed (Cano et al., 2007a; Cano et al., 2007b). The 

combination of vaccines, herd closure, biosecurity protocols and air filtration systems 

are all important to eradicate this virus in certain regions. As previously mentioned, 

the observed genetic diversity among field isolates is a major obstacle for success of 

PRRSV vaccines. The effectiveness of a vaccine against heterologous strains will 

largely depend on the relatedness of the field virus strain to which the vaccinated 

animals were exposed. New vaccines should always aim to confer protection against 

field PRRSV strains that exhibit considerable genetic diversity (Meng et al., 

2000). Alternatively, the composition of the vaccine should be regularly adapted to 

actually circulating strains, as the immune response to PRRSV appears to be, at 

least partially, strain-dependent to ensure efficacy against the collection of strains 

circulating at a given moment in time, even between geographically limited areas. 

Additionally, the ideal vaccine should be differentiating infected and vaccinated 

animals. (DIVA vaccines) (de Lima et al., 2008; Fang et al., 2008).  
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PROBLEM STATEMENTS & AIMS 

PRRSV causes the economically most important viral syndrome in swine industry: 

porcine reproductive and respiratory syndrome. It is generally acknowledged that 

there is an urgent need for a new generation of PRRSV vaccines that are safe, protect 

against disease and viral spread, deal with the high variability of the virus, and allow 

differentiation between vaccinated and infected animals.  

In 2009, Vanhee et al. demonstrated that, by the use of a controlled inactivation 

procedure and a suitable adjuvant, an LV-based inactivated PRRSV vaccine could be 

developed that consistently induces an LV-specific VN antibody response upon 2 

vaccinations in naïve piglets. Following a homologous challenge with LV, vaccinated 

pigs developed an earlier and stronger VN antibody response compared to naïve pigs, 

and a significant reduction of viremia was observed.  

At the start of this thesis, it was unknown whether it was possible to achieve similar 

results for PRRSV variants that are currently circulating and causing reproductive and 

respiratory disorders in the field. 

The main goal of this thesis was to investigate if this novel method of vaccine 

preparation can be adapted to currently circulating PRRSV variants and if these 

vaccines can be improved by using a novel virus production system.  

The first study aimed to evaluate the capacity of experimental inactivated autogenous 

PRRSV vaccines to induce PRRSV-specific (VN) antibody response in naïve pigs and 

to protect these animals against homologous PRRSV challenge. The efficacy of these 

vaccines was compared with that of experimental heterologous inactivated vaccines 

and several commercial inactivated and attenuated vaccines (Chapter 3 part 1).  

The second study evaluated the PRRSV-specific humoral immune response in 

PRRSV-immune (non-) pregnant sows upon booster vaccination with inactivated 

farm-specific PRRSV vaccines (homologous) and commercial PRRSV vaccines 

(heterologous), as well a the effects of vaccination on maternal immunity (Chapter 3 

part 2).  

A third study investigated the influence of the viral production system on inactivated 

vaccine efficacy. Two recent PRRSV isolates were grown on MARC-145 cells, the 
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African green monkey kidney cell line routinely used for PRRSV virus production, as 

well as on PK15Sn-CD163 cells, a recently developed porcine kidney cell line expressing 

the macrophage-specific PRRSV receptors Sn and CD163 and virus stocks were used 

for vaccine preparation. The efficacy of these inactivated PRRSV vaccines was 

evaluated in homologous and heterologous challenge experiments (Chapter 4).  
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3.1 

 

COMPARISON OF THE EFFICACY OF AUTOGENOUS INACTIVATED 

PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS 

(PRRSV) VACCINES WITH THAT OF COMMERCIAL VACCINES 

AGAINST HOMOLOGOUS AND HETEROLOGOUS CHALLENGES 

 

Marc F Geldhof, Merijn Vanhee, Wander Van Breedam, Jan Van Doorsselaere, 

Uladzimir U Karniychuk, Hans J Nauwynck 

 BMC Veterinary Research (2012), 8:182 

The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly 

evolving pathogen of swine. At present, there is a high demand for safe and more 

effective vaccines that can be adapted regularly to emerging virus variants. A 

recent study showed that, by the use of a controlled inactivation procedure, an 

experimental BEI-inactivated PRRSV vaccine can be developed that offers 

partial protection against homologous challenge with the prototype strain LV. At 

present, it is however not known if this vaccine can be adapted to currently 

circulating virus variants. In this study, two recent PRRSV field isolates (07V063 

and 08V194) were used for BEI-inactivated vaccine production. The main 

objective of this study was to assess the efficacy of these experimental BEI-

inactivated vaccines against homologous and heterologous challenge and to 

compare it with an experimental LV-based BEI-inactivated vaccine and 

commercial inactivated and attenuated vaccines. In addition, the induction of 

challenge virus-specific (neutralizing) antibodies by the different vaccines was 

assessed. 

In a first experiment (challenge with 07V063), vaccination with the experimental 

homologous (07V063) inactivated vaccine shortened the viremic phase upon 

challenge with approximately 2 weeks compared to the mock-vaccinated control 

group. Vaccination with the commercial attenuated vaccines reduced the 

duration of viremia with approximately one week compared to the mock-

vaccinated control group. In contrast, the experimental heterologous (LV) 
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inactivated vaccine and the commercial inactivated vaccine did not influence 

viremia. Interestingly, both the homologous and the heterologous experimental 

inactivated vaccine induced 07V063-specific neutralizing antibodies upon 

vaccination, while the commercial inactivated and attenuated vaccines failed to 

do so. 

In the second experiment (challenge with 08V194), use of the experimental 

homologous (08V194) inactivated vaccine shortened viremia upon challenge with 

approximately 3 weeks compared to the mock-vaccinated control group. Similar 

results were obtained with the commercial attenuated vaccine. The experimental 

heterologous (07V063 and LV) inactivated vaccines did not significantly alter 

viremia. In this experiment, 08V194-specific neutralizing antibodies were 

induced by the experimental homologous and heterologous inactivated vaccines 

and a faster appearance post challenge was observed with the commercial 

attenuated vaccine.  

The experimental homologous inactivated vaccines significantly shortened 

viremia upon challenge. Despite the concerns regarding the efficacy of the 

commercial attenuated vaccines used on the farms where the field isolates were 

obtained, use of commercial attenuated vaccines clearly shortened the viremic 

phase upon challenge. In contrast, the experimental heterologous inactivated 

vaccines and the commercial inactivated vaccine had no or only a limited 

influence on viremia. The observation that homologous BEI-inactivated vaccines 

can provide a more or less standardized, predictable degree of protection against 

a specific virus variant suggests that such vaccines may prove useful in case virus 

variants emerge that escape the immunity induced by the attenuated vaccines. 
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INTRODUCTION 

Porcine reproductive and respiratory syndrome virus (PRRSV) infection is 

characterized by reproductive failure in sows, and is associated with respiratory 

problems in pigs of all ages (Christianson et al., 1992; Christianson et al., 1993; Lager 

& Mengeling, 1995; Mengeling et al., 1994; Rossow et al., 1994; Terpstra et al., 

1991; Van Gucht et al., 2004). With few exceptions, PRRSV is present in a majority 

of swine-producing countries around the world and gives rise to significant economic 

losses in the swine industry (Neumann et al., 2005). Based on genetic and antigenic 

analysis, two PRRSV genotypes are recognized: a European (EU) genotype 

(prototype: Lelystad virus, LV) (Wensvoort et al., 1991) and a North American (NA) 

genotype (prototype: VR2332), which share about 55-70% nucleotide homology 

(Allende et al., 1999). However, a high genetic variability has been demonstrated 

within both genotypes (Allende et al., 1999; Forsberg et al., 2002; Mateu et al., 2003; 

Nelsen et al., 1999) and the genetic differences between virus variants are mirrored in 

different virulence, pathogenicity, immunogenicity, … A recent study by Diaz et al. 

(2012) showed that infection with different PRRSV strains leads to different 

virological and immunological outcomes and results in different degrees of 

homologous and heterologous protection. Another study by Martinez-Lobo and 

coworkers (2011) reported that different PRRSV isolates differ in their susceptibility 

to antibody neutralization. Evidently, the high variability of the virus represents a 

major hurdle for effective PRRSV prevention and control (Meng, 2000).	
   Since 

PRRSV poses a serious burden on the swine industry worldwide, the need for 

efficient control measures is high. A variety of PRRS eradication strategies have been 

described, including total depopulation/repopulation, partial depopulation, segregated 

early weaning, test and removal and herd closure. Also planned exposure to a farm-

specific virus isolate is a common strategy in the United States and Canada 

(Opriessnig et al., 2007). This last approach is often performed without monitoring 

and is consequently unreliable in getting the targeted population homogeneously 

infected in a timely manner. While the above strategies can certainly be useful, it is 

also clear that efficient PRRSV vaccines are extremely valuable tools to minimize the 

clinical and economical impact of PRRSV infections. However, the commonly used 

vaccines, both attenuated and inactivated, are not without their problems. Although 

attenuated vaccines have the potential to protect animals against viremia, the degree 
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of protection depends on various factors, including the homology between the vaccine 

virus and the circulating virus (Labarque et al., 2004). In addition, there are some 

safety concerns, as the vaccine virus may spread and revert to virulence (Dewey et al., 

1999; Mengeling et al., 1999; Nielsen et al., 1997; Nielsen et al., 2001). The 

commercially available inactivated vaccines are generally safe to use, but do not 

provide sufficient protection (Nielsen et al., 1997; Nilubol et al., 2004; Zuckermann et 

al., 2007). In addition, the ability of PRRSV to subvert the host immune system 

further complicates these matters. At present, it is generally accepted that there is a 

need for new and safe vaccines that can protect against infection with those virus 

variants that escape immunity induced by the currently available commercial 

vaccines. In this context, the use of vaccine virus that is homologous to the PRRSV 

variants prevalent in the herd seems to be favourable (Labarque et al., 2004). Vanhee 

et al. (2009) demonstrated that, by use of a controlled inactivation procedure and a 

suitable adjuvant, an LV-based inactivated PRRSV vaccine can be developed that 

systematically induces an LV-specific virus-neutralizing (VN) antibody response 

upon 2 vaccinations in naïve piglets. Following homologous challenge of the 

vaccinated pigs with LV, animals developed an earlier and strongly elevated VN 

antibody response and a significant reduction of viremia was observed (Vanhee et al., 

2005). Currently however, it is unknown whether it is possible to achieve similar 

results for PRRSV isolates that are currently causing reproductive or respiratory 

disorders in the field. Two recent PRRSV isolates, from outbreaks in herds vaccinated 

with a registered vaccine, were used for autogenous inactivated vaccine development. 

The main objective of this study was to test the capacity of experimental inactivated 

autogenous PRRSV vaccines to protect naïve pigs against homologous PRRSV 

challenge and to compare the efficacy of these vaccines with that of experimental 

heterologous inactivated vaccines, the commercial vaccine used on the farms, and 

other commercial inactivated and attenuated vaccines.  

MATERIALS AND METHODS 

Cells and viruses 

Porcine alveolar macrophages (PAMs) were derived from 3-week-old (just weaned) 

piglets, purchased from a PRRSV- and Mycoplasma Hyopneumoniae-negative farm. 

After isolation, the morphology of PAMs was checked visually via light microscopy. 
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No specific tests were performed to detect PCV2. PAMs and MARC-145 cells were 

cultivated as described before (Delrue, 2010). 

The Belgian PRRSV isolates used in this study originated from two farms showing 

clinical signs compatible with PRRS in sows or growing pigs. The two isolates were 

randomly selected from 19 isolates obtained between 2007 and 2010.  At the moment 

of sampling, sows of both herds were vaccinated with a EU-genotype attenuated 

vaccine (Porcilis® PRRS). PRRSV isolate 07V063 was isolated from fetal tissue by 

inoculating tissue suspensions on PAM. This isolate has been used in recent studies 

by Karniychuk et al. (2011; 2012), describing viral, clinical and pathological data. 

Similarly, the 08V194 isolate was obtained by inoculating the serum of 14-week-old 

piglets on PAM. Both isolates were also adapted to MARC-145 cells by repeated 

passages. For challenge, macrophage-grown stocks were prepared of the isolates 

07V063 (2nd passage on PAM) and 08V194 (5th passage on PAM). 

For vaccine preparation, MARC-145 cell culture supernatants of 07V063 (2nd passage 

on PAM + 2 passages on MARC-145), 08V194 (2nd passage on PAM + 4 passages on 

MARC-145) and LV (2nd passage on PAM + 5 passages on MARC-145), were 

purified via ultracentrifugation as previously described by Vanhee et al. (2009). 

Genome sequencing and phylogenetic analysis 

To determine if adaptation to the MARC-145 cell line resulted in mutations in the 

structural ORFs, ORF2-7 of MARC-145-grown 07V063, 08V194 and LV were 

sequenced and compared with those of original macrophage-grown 07V063, 08V194 

and LV. Sequencing was performed as described before (Delrue et al., 2010). 

Nucleotide sequences were submitted to Genbank under accession numbers 

[GenBank: GU737264] (07V063) and [GenBank: GU737265] (08V194).  

Amino acid (aa) sequences were subsequently derived and analysed using CLC Free 

workbench 4. The aa sequences of all structural proteins of MARC-145-grown 

07V063, 08V194 and LV were 100% identical to those of the corresponding proteins 

of original macrophage-grown virus. The clear difference in aa sequence between 

both 07V063 and 08V194 and the Porcilis® PRRS strain allowed their classification 

as EU wild-type viruses that are not of vaccine origin. 
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Virus inactivation and quality control 

Purified virus (07V063, 08V194 and LV) was suspended in RPMI 1640 (Invitrogen) 

to a titer of 108 TCID50/mL. Subsequently, the virus was inactivated using BEI as 

described before (Vanhee et al., 2009), and inactivated virus was stored at -70 °C. To 

confirm that all virus was completely inactivated, a complete vaccine dose of 07V063, 

08V194 and LV was inoculated on MARC-145 cells and subsequently passaged 

twice. As a positive control, MARC-145 cells were inoculated with 1 mL of non-

inactivated 07V063, 08V194 or LV. The MARC-145 cells were routinely checked for 

cytopathic effect (CPE) and ultimately stained for the PRRSV nucleocapsid protein 

via an immunoperoxidase staining using monoclonal antibody 13E2 (Van Breedam et 

al., 2011). No CPE or positive nucleocapsid staining was detected in cells that were 

inoculated with inactivated virus, while clear CPE and nucleocapsid staining were 

observed in cell cultures that were inoculated with non-inactivated virus.  

Since conservation of entry of inactivated virus may serve as a quality control for the 

preservation of antigenic properties, the effect of BEI inactivation on virus attachment 

and internalization into macrophages was examined as described previously (Delrue 

et al., 2009; Vanhee et al., 2009). Non-inactivated virus suspensions were included as 

positive controls. The entry experiment showed that the binding and internalization 

kinetics of all BEI-inactivated virus stocks are similar to those observed for the non-

inactivated virus stocks. 

Pigs and experimental design 

Sixty-seven four-week-old piglets were purchased from a PRRSV-negative farm and 

their PRRSV-seronegative status was confirmed by IPMA upon arrival. The animals 

were housed in isolation units with HEPA-filtered air and kept during 7 days to allow 

adaptation to the new conditions. Two experiments were performed (Table 1). 

General health, appetite and rectal body temperature of the pigs were monitored 

daily. All animal experiments were approved by the local ethical committee of the 

Faculty of Veterinary Medicine, Ghent University. 
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Table	
  1:	
  Experimental design of vaccination-challenge experiments 

Group Vaccination Age in weeks Challenge strain (13 weeks) 

Experiment 1 (n)    

CON (6) Mock 5 and 9 07V063 

07V063i (6) BEI-inactivated 07V063 5 and 9 07V063 

LVi (6) BEI-inactivated LV 5 and 9 07V063 

PROi (6) Progressis®  5 and 9 07V063 

PORatt (6) Porcilis® PRRS  7 07V063 

INGatt (6) Ingelvac® PRRS  7 07V063 

Experiment 2 (n)    

CON2 (7) Mock 5 and 9 08V194 

08V194i (6) BEI-inactivated 08V194 5 and 9 08V194 

LVi2 (6) BEI-inactivated LV 5 and 9 08V194 

07V063i2 (6) BEI-inactivated 07V063 5 and 9 08V194 

PORatt2 (6) Porcilis® PRRS 7 08V194 

 

Vaccination experiment with PRRSV isolate 07V063 

Thirty-six pigs were randomly divided into six groups. An oil-in-water (o/w) diluent, 

normally used in the commercial pseudorabies virus vaccine Suvaxyn Aujeszky (Fort 

Dodge Animal Health), was used as an adjuvant and is further referred to as o/w 

Suvaxyn. A first group (group CON, n = 6 pigs) served as a mock-vaccinated control 

group and received 1 mL RPMI 1640 in 1 mL o/w Suvaxyn intramuscularly at 5 and 9 

weeks of age. Three other groups were vaccinated twice intramuscularly at 5 (primo 

vaccination) and 9 (booster vaccination) weeks of age. Group 07V063i (n = 6 pigs) 

was vaccinated with 1 mL BEI-inactivated MARC-145-grown 07V063 (108 TCID50) 

in 1 mL o/w Suvaxyn and group LVi (n = 6 pigs) was vaccinated with 1 mL BEI-

inactivated MARC-145-grown LV (108 TCID50) in 1 mL o/w Suvaxyn. Group PROi 

(n = 6 pigs) received 2 mL of a commercial European type inactivated PRRSV 

vaccine (Progressis®, Merial, strain P120: min 2,5 log IF Units). Groups PORatt (n = 

6 pigs) and INGatt (n = 6 pigs) were vaccinated once intramuscularly with the 

European type attenuated vaccine (Porcilis® PRRS, Intervet, 104 TCID50/2 mL) and 
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the American type attenuated vaccine (Ingelvac® PRRS MLV, Boehringer Ingelheim, 

104.9 TCID50/2 mL), respectively, at the age of 7 weeks. At 13 weeks of age, all pigs 

were challenged intranasally with PRRSV 07V063 (106 TCID50) in phosphate 

buffered saline (PBS) (2,5 ml per nostril). Blood samples were taken by jugular 

venipuncture weekly after (primo) vaccination and at 0, 1, 3, 5, 7, 10, 14, 21, 28, 35 

and 42 dpc. Serum was collected and stored at -70 °C. Serum samples for IPMA and 

VN antibody detection were incubated for 30 min at 56 °C prior to freezing. 

Vaccination experiment with PRRSV isolate 08V194 

In a second experiment, 31 piglets were randomly assigned to five treatment groups. 

Group CON2 (n = 7 pigs) served as a mock-vaccinated control group and received 1 

mL RPMI 1640 in 1 mL o/w Suvaxyn intramuscularly at 5 and 9 weeks of age. Three 

other groups were vaccinated twice intramuscularly at 5 (primo vaccination) and 9 

(booster vaccination) weeks of age. Group 08V194i (n = 6 pigs) was vaccinated with 

1 mL BEI-inactivated MARC-145-grown 08V194 (108 TCID50) in 1 mL o/w 

Suvaxyn, group LVi2 (n = 6 pigs) was vaccinated with 1 mL BEI-inactivated MARC-

145-grown LV (108 TCID50) in 1 mL o/w Suvaxyn and group 07V063i2 (n = 6 pigs) 

was vaccinated with 1 mL BEI-inactivated MARC-145-grown 07V063 (108 TCID50) 

in 1 mL o/w Suvaxyn. At 7 weeks of age, pigs of group PORatt2 (n = 6 pigs) were 

vaccinated intramuscularly with Porcilis® PRRS at a dose of 104 TCID50 per pig. 

PRRSV isolate 08V194 at a dose of 106 TCID50 was used to inoculate all pigs 

intranasally (2,5 ml per nostril) at the age of 13 weeks. The same experimental design 

was used as in the first experiment. 

Virus titration and serological examinations 

Virus titers in serum were determined by virus titration on PAM following a standard 

procedure (Labarque et al., 2000). 24-h cultivated PAM were inoculated with 10-fold 

dilution series of the serum samples. 72 hours post inoculation, cells were fixed and 

an immunoperoxidase staining with monoclonal antibody 13E2 against the PRRSV 

nucleocapsid protein was performed to visualize infection in the cells (Van Breedam 

et al., 2011). The titers were calculated as described by Reed and Muench (1938) and 

expressed as TCID50/mL. To check the sensitivity of the PAM, all cell batches were 

assayed in virus titrations using a PRRSV stock (LV) with a known virus titer.  
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Serum samples were examined for the presence of PRRSV-specific antibodies using 

an IPMA as described by Labarque et al. (2000). To detect antibodies against 07V063 

(1st experiment), an IPMA was performed on 07V063-infected MARC-145 cells. To 

detect antibodies against 08V194 (2nd experiment), an IPMA was performed on 

08V194-infected MARC-145 cells. VN antibodies were detected by 

seroneutralization assays on MARC-145 cells using the respective PRRSV challenge 

isolate. Each serum sample was tested in duplicate. Briefly, serum samples were 

twofold serially diluted and an equal volume of a PRRSV 07V063 (2nd passage on 

PAM + 2 passages on MARC-145) or 08V194 (2nd passage on PAM + 4 passages on 

MARC-145) suspension (titer 2 x 103 TCID50/ mL) was added to each dilution. After 

mixing, the plates were incubated at 37 °C for 1 h and 50 µl of the mixture was 

subsequently transferred to confluent monolayers of MARC-145 cells in 96-well 

plates. Cells were screened for 7 days after inoculation and the neutralization titer of 

the sera was recorded as the reciprocal of the highest dilution that inhibited CPE in 

50% of the inoculated wells. To check the sensitivity to PRRSV infection of different 

passages of MARC-145 cells, control titrations using PRRSV stocks (isolate 07V063 

and isolate 08V194) with a known virus titer were performed in parallel with each 

neutralization assay. 

Statistical analysis 

Antibody titers and virus titers were analyzed by Kruskall-Wallis test, followed by 

Dunn’s multiple comparisons test to determine significant differences with the control 

groups at different time points. Samples, that tested negative in IPMA, VN or virus 

isolation were consequently given a numerical value of 0.0. A two-tailed Fisher’s 

exact test was used to determine significant differences between the number of 

viremic animals in the vaccinated groups and the control groups at different time 

points. An overall p value of 0.05 was taken as the level of statistical significance. All 

statistical analyses were performed using GraphPad Prism version 5.0a (GraphPad 

Software, San Diego, California, USA). 
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RESULTS 

Vaccination experiment with PRRSV isolate 07V063 

Clinical examination 

All animals remained in good health after they were vaccinated. No local or systemic 

vaccine side effects were noted throughout the trial period. No pigs died during the 

entire experimental period. Body temperatures fluctuated in all groups and 

statistically significant differences were not detected. Challenge with PRRSV isolate 

07V063 induced moderate fever (higher than 39.5 °C, but not higher than 40.6°C) 

within 10 days post infection in 32 out of 36 inoculated pigs. The 4 remaining animals 

did not develop fever. By 11 days post challenge, fever had disappeared in all 

animals.   

Viremia 

Upon challenge, all animals became viremic. In the adjuvant control group (group 

CON), viremia was detected from day 1 after the challenge (3 pigs out of 6) and 

peaked around 10 days post challenge (dpc), with a mean virus titer of 3.6 log10 

TCID50/mL. Viremia had cleared in all animals by 5 weeks post challenge (Fig. 1, 

CON). In the binary ethyleneimine (BEI) inactivated 07V063 group (group 07V063i), 

all animals became viremic, but the peak viremia occurred earlier (day 5) and was 

lower (2.9 log10 TCID50/mL). From 10 dpc, virus was no longer detected in the serum 

of any of the animals, but one animal was again viremic at day 21 post challenge (Fig. 

1, 07V063i). The mean viral titer in the serum was significantly reduced compared to 

the control group at days 10 and 14 (p<0.05). In group 07V063i, a significantly lower 

number of viremic piglets was observed compared to group CON on days 10 and 14 

post challenge (p<0.05). In the BEI-inactivated LV vaccinated group (group LVi), all 

animals became viremic after challenge, with a peak viremia of 3.6 log10 TCID50/mL 

on day 7. Four weeks post challenge, virus was not found anymore in the serum of 

any of the 6 pigs (Fig. 1, LVi). The virus titers were not significantly lower than those 

of group CON. In the group vaccinated with Progressis® (group PROi), viremia was 

detected in all animals, with a peak of 3.6 log10 TCID50/mL around 10-14 dpc. The 

viremic phase showed a similar pattern as in group CON and virus titers were not 

significantly reduced. Viremia disappeared in all animals by 5 weeks after challenge 
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(Fig. 1, PROi). In the group vaccinated with a single shot of Porcilis® PRRS (group 

PORatt) and the group vaccinated with one dose of Ingelvac® PRRS (group INGatt), a 

partial reduction in viremia was seen. Viremia peaked at 5 dpc with average titers of 

3.3 log10 TCID50/mL (group PORatt) and 3.2 log10 TCID50/mL (group INGatt) (Fig. 1, 

PORatt and INGatt). No significant differences in mean virus titers were detected at 

any time-point between groups PORatt, INGatt and CON. Only at 5 weeks after 

challenge, all animals of these groups were consistently virus negative. Taking all 

data on viremia together, group 07V063i was the only group that showed a 

significantly shortened viremia and a significant decrease in the number of viremic 

piglets compared to the mock-vaccinated control group. 

07V063-specific antibodies 

In group CON, virus-specific antibodies were not detected before challenge (Fig. 2, 

CON). At 7 dpc, antibodies could be detected in all animals of this control group. In 2 

animals of group 07V063i, antibodies could already be detected at 3 weeks after the 

primo vaccination. The remaining animals within this group became seropositive after 

booster vaccination. From the first week after booster vaccination until 10 days after 

challenge, antibody titers in this group remained significantly higher than in group 

CON (p<0.05) (Fig. 2, 07V063i). In group LVi, virus-specific antibodies against 

07V063 were detected from 2 weeks after primo vaccination and all animals 

seroconverted after booster vaccination. Virus-specific antibody titers were 

significantly higher in group LVi compared to group CON from 7 days post booster 

vaccination until 21 dpc and at 42 dpc (p<0.05) (Fig. 2, LVi). In group PROi, one 

animal became seropositive at 1 week after booster vaccination, while the remaining 

animals did not show antibodies before challenge (Fig. 2, PROi). Post challenge, the 

course of the antibody response of this group was similar as in group CON. In group 

PORatt, virus-specific antibodies were detected in 3 out of 6 pigs at 2 weeks after 

vaccination (Fig. 2, PORatt). At 3 weeks post vaccination, all animals were 

seropositive. Virus-specific antibodies remained present during the entire experiment, 

and the antibody titers were significantly higher compared to group CON from 21 

days post vaccination until 21 dpc (p<0.05). In group INGatt, virus-specific 

antibodies were found in 3 out of 6 pigs at 2 weeks after vaccination (Fig. 2, INGatt). 

One week later, all pigs had seroconverted and remained seropositive until the end of 
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the experiment. Antibody titers were significantly higher compared to group CON 

from 21 days post vaccination till 5 dpc. Taken together, the courses of the IPMA 

antibody titers in all groups were similar to those described in other studies (Vanhee 

et al., 2009; Zuckermann et al., 2007).  

07V063-specific virus-neutralizing antibodies 

In group CON, VN antibodies were not detected until 5 weeks post challenge. Even at 

6 weeks post challenge, not all the animals from this group were positive for VN 

antibodies (Fig. 3, CON). In group 07V063i, 07V063-specific VN antibodies were 

already detected upon booster vaccination. The mean VN antibody titer decreased 

immediately post challenge, but increased again 10 days after infection. Some animals 

had no or undetectable VN antibodies in the period between 2 weeks before and 10 

dpc, but after this period, VN antibodies were detected in all animals. The mean VN 

antibody titer was significantly higher compared to group CON in the period between 

1 week after booster vaccination and 5 weeks post challenge, reaching mean values 

ranging from 1.1-4.2 log2 (p<0.05) (Fig. 3, 07V063i). A similar pattern was observed 

in group LVi: 07V063-neutralizing antibodies were already detected at 1 week after 

booster vaccination. VN antibody titers initially decreased post challenge and 

increased again from 10 dpc. Some animals turned negative for VN antibodies in the 

period between 1 week before and 10 days after the challenge, but after this period, 

VN antibodies were detected in all 6 animals. Remarkably, one animal in this group 

did not show neutralizing antibodies earlier than 4 weeks post challenge. The VN 

antibody titers were significantly higher compared to the control group at 1 and 2 

weeks after booster vaccination and at 10 and 14 dpc, reaching mean values of 3.5, 

3.1, 1.9 and 2.3 log2, respectively (p<0.05) (Fig. 3, LVi). Pigs that were vaccinated 

with Progressis® (two shots), Porcilis® PRRS (single shot) and Ingelvac® PRRS 

(single shot) showed a roughly similar VN antibody response as the animals in the 

control group. In the Porcilis® vaccinated group, a slight increase of VN antibodies 

was noticed at 5 weeks post challenge, but there were no significant differences with 

group CON (Fig. 3, PORatt). In summary, both BEI-inactivated vaccines induced a 

strong 07V063-specific VN antibody response after booster vaccination, while the 

commercial vaccines, both inactivated and attenuated (EU or NA genotype), did not 

induce a VN antibody response against 07V063.  
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Figure 1. Serum-virus titers after challenge for group CON (Mock-vaccinated control), 07V063i 
(BEI-inactivated 07V063), LVi (BEI-inactivated LV), PROi (Progressis®), PORatt (Porcilis® 
PRRS) and INGatt (Ingelvac® PRRS MLV). Virus titers in serum (log10 TCID50/mL) were 
determined by virus titration on PAM, followed by immunoperoxidase staining for the PRRSV 
nucleocapsid protein. é = challenge. Symbols represent individual animals and solid lines represent 
mean virus titers calculated on all animals present in each group. The dashed line indicates the mean 
titers for all animals in group CON. The dotted line marks the detection limit for virus titration. 
Mentioned in the table: # = the number of viremic animals in the different groups at different time 
points. M = mean virus titer of all viremic animals in the group at different time points.  
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Figure 2. PRRSV-specific IPMA antibody titers (log2) after vaccination and challenge for group 
CON (Mock-vaccinated control), 07V063i (BEI-inactivated 07V063), LVi (BEI-inactivated LV), 
PROi (Progressis®), PORatt (Porcilis® PRRS) and INGatt (Ingelvac® PRRS MLV). ⊗ = primo 
vaccination; ⊕ = booster vaccination; é = challenge. Symbols represent individual animals and solid 
lines represent mean IPMA titers calculated on all animals present in each group. The dashed line 
indicates the mean titers for all animals in group CON. The dotted line marks the detection limit for 
the IPMA test. 
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Figure 3. PRRSV-neutralizing antibody titers (log2) after vaccination and challenge for group 
CON (Mock-vaccinated control), 07V063i (BEI-inactivated 07V063), LVi (BEI-inactivated LV), 
PROi (Progressis®), PORatt (Porcilis® PRRS) and INGatt (Ingelvac® PRRS MLV). ⊗ = primo 
vaccination; ⊕ = booster vaccination; é = challenge. Symbols represent individual animals and solid 
lines represent mean SN titers calculated on all animals present in each group. The dashed line 
indicates the mean titers for all animals in group CON. The dotted line marks the detection limit for the 
SN test. 
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Vaccination experiment with PRRSV isolate 08V194 

Clinical examination 

All animals remained in good health after they were vaccinated. No local or systemic 

vaccine side effects were noted throughout the trial period. One pig of group PORatt2 

died at day 84 at the moment of blood collection. The daily rectal temperatures varied 

in all groups and no statistically significant differences were observed. Challenge with 

PRRSV isolate 08V194 induced moderate fever (higher than 39.5 °C, but not higher 

than 40.4°C) within 7 days post infection in 24 out of 31 inoculated pigs. The 7 

remaining animals did not develop fever. By 8 days post challenge, fever had 

disappeared in all animals.   

Viremia 

Upon challenge, all animals became viremic. In the control group (group CON2), a 

maximum mean virus titer of 3.8 log10 TCID50/mL was reached at 10 dpc. 

Subsequently, a decline in virus titer was observed and virus was no longer detectable 

in the serum at 4, 5 or 6 weeks after challenge, depending on the animal. Still, 1 piglet 

remained virus positive till 6 weeks post challenge (Fig. 4, CON2). In the BEI-

inactivated 08V194 vaccinated group (group 08V194i), the viremic peak at day 5 was 

not reduced compared to group CON2, but the mean virus titer at day 14 was 

significantly reduced (p<0.05) and from 21 dpc, virus could no longer be detected in 

any of the piglets (Fig. 4, 08V194i). The number of viremic piglets in group 08V194i 

was significantly lower compared to group CON2 on day 21 and 28 post challenge 

(p<0.05). Mean virus titers in the group vaccinated with BEI-inactivated LV virus 

(group LVi2) were comparable to those in group CON2, reaching 3.0 log10 

TCID50/mL at 10 dpc, and no significant differences could be detected at any time-

point between group LVi2 and group CON2. For 3 animals of this group, virus was 

cleared from the blood at 3 weeks, for 2 others at 4 weeks and in the remaining animal 

at 5 weeks post challenge (Fig. 4, LVi2). In the BEI-inactivated 07V063 vaccinated 

group (group 07V063i2), viremia was detected in all animals, with a peak around 5-

10 dpc. The viremic phase showed a similar pattern as for group LVi2 and viremia 

was also not significantly reduced compared to group CON2. Viremia disappeared in 

all animals by 5 weeks after challenge (Fig. 4, 07V063i2). The mean virus titer in the 
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group vaccinated with Porcilis® PRRS (group PORatt2) reached 2.7 log10 TCID50/mL 

at 3 days and 2.5 log10 TCID50/mL at 5 dpc, but virus titers were not significantly 

different from those in group CON2 at these time points. At later time points 

however, virus titers were significantly reduced compared to group CON2 (p<0.05). 

Moreover, viremia in group PORatt2 was already cleared at 10 dpc for 3 animals and 

at 28 dpc, all animals were negative (Fig. 4, PORatt2). From 14 till 28 dpc, the total 

number of viremic animals in group PORatt2 was significantly lower than in group 

CON2 (p<0.05). In summary, groups 08V194i and PORatt2 showed a significantly 

shortened viremia and a significant decrease in the number of viremic piglets 

compared to the mock-vaccinated control group, while no such effect was seen in 

groups LVi2 and 07V063i2. 

08V194-specific antibodies 

All CON2 animals had virus-specific serum antibodies starting from 7 dpc (Fig. 5, 

CON2). All 6 animals of group 08V194i seroconverted at 2 or 3 weeks after the first 

vaccination. Similarly, all animals of group LVi2 showed virus-specific antibodies 2 

weeks after the first vaccination. In group 07V063i2, 08V194-specific antibodies 

were detected from 2 weeks after primo vaccination and all animals seroconverted 

after booster vaccination. Antibody titers in all 3 vaccinated groups were significantly 

higher compared to group CON2 from 1 week after booster vaccination up till 21 dpc 

(p<0.05) (Fig. 5, 08V194i, LVi2 and 07V063i2). After 21 dpc, mean antibody titers in 

groups 08V194i, LVi2 and 07V063i2 remained higher compared to the control group, 

although differences were not significant. In group PORatt2, all pigs showed positive 

antibody titers at 2 weeks after vaccination; the antibody titers were significantly 

higher compared to group CON2 starting from 2 weeks after vaccination up till 3 

weeks post challenge (p<0.05) (Fig. 5, PORatt2). In summary, the course of the 

IPMA antibody titers in all groups were similar to those described in previous studies 

and the former experiment in this study (Vanhee et al., 2009; Zuckermann et al., 

2007).  

08V194-specific virus-neutralizing antibodies 

Starting from 21 dpc, 3 pigs of group CON2 showed a VN antibody titer and by 35 

dpc, VN antibodies had appeared in all mock-vaccinated pigs (Fig. 6, CON2). All six 
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pigs of group 08V194i showed high VN antibody titers at 1 week after the booster 

vaccination and this remained so until the end of the experiment (Fig. 6, 08V194i). 

VN antibody titers were significantly higher in group 08V194i compared to group 

CON2 from 1 week after booster vaccination until 5 weeks post challenge, with mean 

values ranging from 3.2-6.2 log2 (p<0.05). All animals of group LVi2 seroconverted 

for VN antibodies at least once within 3 weeks after booster vaccination, but VN 

antibody titers remained low and were only significantly higher than group CON2 at 

14 dpc, reaching a mean value of 2.6 log2 (p<0.05) (Fig. 6, LVi2). A similar pattern as 

in group 08V194i was observed in group 07V063i2, where 08V194-neutralizing 

antibodies could already be detected at 1 week after booster vaccination. Two animals 

turned negative for VN antibodies in the period between 2 weeks post booster 

vaccination and 10 dpc, but after this period, VN antibodies were consistently 

detected in all 6 animals. The mean VN antibody titer in group 07V063i2 was 

significantly higher compared to group CON2 in the period between 1 week after 

booster vaccination and 4 weeks post challenge (except for time-point 5 dpc), 

reaching mean values ranging from 2.1-4.7 log2 (p<0.05) (Fig. 6, 07V063i2). None of 

the animals in group PORatt2 showed 08V194-specific VN antibodies before 

challenge, but VN antibodies already appeared between 5 and 10 dpc. The mean VN 

antibody titer in group PORatt2 was slightly but not significantly higher compared to 

group CON2 between 7 and 14 dpc, reaching a maximum of 1.6 log2 at 14 dpc (Fig. 

6, PORatt2).	
   In summary, both BEI-inactivated 08V194 (homologous) and 07V063 

(heterologous) vaccines induced a strong 08V194-specific VN antibody response 

upon booster vaccination, while this was not the case for the heterologous BEI-

inactivated LV vaccine and the commercial attenuated vaccine.  
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Figure 4. Serum-virus titers after challenge for group CON2 (Mock-vaccinated control), 08V194i 
(BEI-inactivated 08V194), LVi2 (BEI-inactivated LV), 07V063i2 (BEI-inactivated 07V063) and 
PORatt2 (Porcilis® PRRS). Virus titers in serum (log10 TCID50/mL) were determined by virus titration 
on PAM, followed by immunoperoxidase staining for the PRRSV nucleocapsid protein. é = challenge. 
Symbols represent individual animals and solid lines represent mean virus titers calculated on all 
animals present in each group. The dashed line indicates the mean titers for all animals in group CON2. 
The dotted line marks the detection limit for virus titration. Mentioned in the table: # = the number of 
viremic animals in the different groups at different time points. M = mean virus titer of all viremic 
animals in the group at different time points.  
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Figure 5. PRRSV-specific IPMA antibody titers (log2) after vaccination and challenge for group 
CON2 (Mock-vaccinated control), 08V194i (BEI-inactivated 08V194), LVi2 (BEI-inactivated 
LV), 07V063i2 (BEI-inactivated 07V063) and PORatt2 (Porcilis® PRRS). ⊗ = primo vaccination; 
⊕ = booster vaccination; é = challenge. Symbols represent individual animals and solid lines represent 
mean IPMA titers calculated on all animals present in each group. The dashed line indicates the mean 
titers for all animals in group CON2. The dotted line marks the detection limit for the IPMA test. 
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Figure 6. PRRSV-neutralizing antibody titers (log2) after vaccination and challenge for group 
CON2 (Mock-vaccinated control), 08V194i (BEI-inactivated 08V194), LVi2 (BEI-inactivated 
LV), 07V063i2 (BEI-inactivated 07V063) and PORatt2 (Porcilis® PRRS). ⊗ = primo 
vaccination; ⊕ = booster vaccination; é = challenge. Symbols represent individual animals and solid 
lines represent mean SN titers calculated on all animals present in each group. The dashed line 
indicates the mean titers for all animals in group CON2. The dotted line marks the detection limit for 
the SN test. 
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DISCUSSION 

PRRSV causes severe reproductive disorders in sows and boars and is associated with 

the porcine respiratory disease complex. The virus is difficult to control and has 

become endemic in many major swine-producing countries, leading to tremendous 

economic losses worldwide (Neumann et al., 2005). To control the disease, several 

commercial attenuated and inactivated vaccines are currently available. However, 

when used in the field, these vaccines have met with variable degrees of success. 

Reported outbreaks of clinical PRRS in vaccinated pigs have led to doubts about the 

efficacy of currently available vaccines (Thanawongnuwech & Suradhat, 2010). New 

vaccination strategies are needed to achieve the goals of local and regional 

elimination of PRRSV and it is generally accepted that a continuous update of vaccine 

strains is necessary to reach an acceptable level of protection in the field, even within 

geographical areas of limited size. A recent study by Vanhee et al. (2009) showed that 

a PRRSV LV-based BEI-inactivated vaccine induces LV-specific VN antibodies in 

PRRSV-negative animals and offers partial protection upon homologous challenge. In 

that study, it was however not assessed if such a vaccine can be adapted to field 

variants of PRRSV that are genetically and antigenically divergent from the currently 

used vaccine strains. The main objective of the current study was to assess the 

efficacy of experimental BEI-inactivated vaccines, based on recent PRRSV field 

isolates (07V063 and 08V194), against homologous and heterologous challenge. A 

commercial inactivated (Progressis®) and two commercial attenuated (Porcilis® PRRS 

and Ingelvac® PRRS MLV) PRRSV vaccines were included in the study and served 

as a reference. Vaccine efficacy was assessed by evaluating the viremia upon 

challenge – a factor directly linked with viral pathogenesis and spread. 

The 07V063- and 08V194-based inactivated PRRSV vaccines were effective in 

partially protecting naïve pigs upon homologous challenge. They shortened viremia 

with 2 (07V063) and 3 (08V194) weeks compared to the viremic phase in the 

respective mock-vaccinated groups, which lasted roughly 1 month. BEI-inactivated 

LV vaccines were included to assess the impact of strain variability on vaccine 

efficacy. We found no reduction in 07V063 viremia after the use of an inactivated 

LV-based vaccine and only a non-significant reduction of viremia upon challenge 

with 08V194. Similarly, a 07V063-based BEI-inactivated PRRSV vaccine did not 

significantly reduce viremia upon challenge with the 08V194 isolate. The Progressis® 
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vaccine did not provide any virological protection, since viremia was observed for 4 

weeks upon challenge with the 07V063 isolate. This is in line with the results from 

previous studies, showing that the commercial inactivated vaccines appear not to 

influence viremia, even in nearly homologous conditions (Nielsen et al., 1997; Scortti 

et al., 2007; Zuckermann et al., 2007). Vaccination with the EU-genotype attenuated 

vaccine reduced the duration of viremia upon challenge with 07V063 with 

approximately one week. In animals challenged with 08V194, this vaccine shortened 

viremia from 5 to 2 weeks. The NA-genotype attenuated vaccine reduced viremia in 

07V063-challenged animals with approximately one week. Hence, despite the 

concerns regarding the efficacy of the attenuated vaccine used on both farms, the 

results of our study indicate that the use of this vaccine in PRRS-naïve pigs can 

clearly limit viremia. These results are in line with earlier studies published by Cano 

et al. (2007) and Scortti et al. (2006), showing that attenuated vaccines can be 

successful in controlling and reducing clinical disease upon homologous and 

heterologous challenge. 

 

In the field, PRRSV vaccination is mainly performed in sows. Therefore, we reasoned 

it would also be interesting to assess the antibody response induced by the vaccines, 

since maternal antibodies play a pivotal role in the passive (colostral) immunity that 

protects piglets during their first weeks of life (Nechvatalova et al., 2011). Although 

resolution of PRRSV infection is not always directly correlated with the neutralizing 

antibody response (Diaz et al., 2006), there is ample evidence that neutralizing 

antibodies can facilitate virus clearance and, when present in sufficient amounts, may 

even provide a sterilizing immunity (Diaz et al., 2006; Labarque et al., 2000; Lopez & 

Osorio, 2004; Lopez et al., 2007). IPMA and SN tests were performed to evaluate the 

capacity of the vaccines to induce or prime a challenge virus-specific (neutralizing) 

antibody response. 

Vaccination with BEI-inactivated 07V063 or 08V194 vaccines consistently induced 

sizable titers of homologous PRRSV-neutralizing antibodies after at least two 

immunizations given four weeks apart. Interestingly, vaccination with BEI-

inactivated LV also induced sizeable titers of 07V063-neutralizing antibodies. 

Similarly, both 07V063- and LV-based vaccines induced 08V194-neutralizing 
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antibodies, with the LV-induced titers being lower than the 07V063-induced titers. In 

all groups vaccinated with a BEI-inactivated vaccine, the VN titers dropped 

immediately after challenge, which may indicate that the antibodies were consumed 

during their interaction with virus early in infection. However, after this initial drop in 

VN antibody titers, VN antibodies quickly reappeared. The fast appearance of VN 

antibodies upon challenge is in agreement with the findings in the study of Vanhee et 

al. (2009) and demonstrates the potential of priming the neutralizing antibody 

response by immunization with a high dose of inactivated PRRSV. Although it has 

been reported that the PRRSV-specific neutralizing antibody response is to a large 

extent strain-specific and a lack in cross-neutralization may occur even between 

genetically closely related virus strains (Okuda et al., 2008; Kim & Yoon, 2008), our 

data show that cross-neutralization between genetically different isolates can occur. In 

the animals vaccinated with the commercial inactivated PRRSV vaccine Progressis® 

(first experiment), neither the IPMA nor the VN antibody response was influenced 

before or after challenge with 07V063. This is in line with the studies by Zuckermann 

et al. (2007) and Vanhee et al. (2009), where they used the same vaccine and the LV 

strain as challenge virus: no clear induction of challenge virus-specific (neutralizing) 

antibodies was observed upon vaccination with the commercial inactivated PRRSV 

vaccine and only a moderate anamnestic antibody response was observed upon 

challenge of the vaccinated animals. The apparent limited immunogenicity of this 

vaccine may relate to the inactivation procedure used, strain variability, antigenic 

dose, adjuvant, … Further research is necessary to elucidate this. In the animals 

vaccinated with the commercial attenuated vaccines, either based on EU- (Porcilis® 

PRRS) or NA- (Ingelvac® PRRS MLV) type virus, a low or non-detectable VN 

antibody response was observed, which is in agreement with the results of Lopez et 

al. (2004). None of the attenuated vaccines were able to induce a faster neutralizing 

antibody response upon challenge. The data obtained in this study have provided the 

basis for an ongoing field study on the effect of different vaccines at the farm level, 

more specifically on the effects of vaccination of sows on the passive immunity 

transferred to piglets. 

In the 07V063- and 08V194-challenged groups vaccinated with a BEI-inactivated 

vaccine homologous to the challenge virus, a correlation was seen between the 

induction of virus-specific neutralizing antibodies and reduction in viremia, indicating 
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that VN antibodies may contribute to protection against the virus. However, the 

induction of homologous VN antibodies was not sufficient to completely protect the 

animals, as it still permitted the development of a viremia post-challenge that lasted at 

least one week. Possibly, higher VN antibody titers are needed at the time of 

challenge to offer full protection against the high dose of virus used to infect the 

animals. Administration of a heterologous BEI-inactivated vaccine was not sufficient 

to significantly reduce viremia in the animals upon challenge. Since the BEI-

inactivated vaccines used in this study induced antibodies that could neutralize the 

homologous as well as the heterologous challenge virus in in vitro seroneutralization 

assays, it was somewhat surprising that these vaccines could only limit viremia under 

the homologous challenge conditions, and not when the heterologous challenge virus 

was used. The exact reason behind this remains currently unknown, but several 

possible explanations suggest themselves. For instance, it is possible that induction of 

virus-specific neutralizing antibodies is not sufficient and that BEI-inactivated 

PRRSV vaccines must promote other immune mechanisms (e.g. via cross-

presentation to T-cells) to provide a significant degree of protection upon challenge. 

On the other hand, it can be speculated that, although the vaccine-induced antibodies 

can bind and neutralize the homologous and heterologous challenge virus to a similar 

extent in in vitro SN assays, they recognize the homologous virus with a higher 

affinity. Affinity differences may explain a reduced binding and neutralization of 

heterologous virus in vivo, as the binding conditions for (VN) antibodies are likely 

more stringent in vivo than in the in vitro SN assays. Under homologous challenge 

conditions, the antibodies have undergone optimal challenge virus-specific affinity 

maturation, while this is not the case under heterologous challenge conditions. In 

theory, the presence of vaccine-induced antibodies that cross-react with a 

heterologous challenge virus may even prevent the selection of high-affinity (VN) 

antibodies against this challenge virus (original antigenic sin). Clearly, this matter 

requires further investigation in the future. Despite the absence of a clear challenge 

virus-specific VN antibody response, the commercial attenuated vaccines do provide 

a partial virological protection, roughly similar to the protection provided by the 

autogenous BEI-inactivated vaccines. This observation points towards a significant 

role of other attenuated vaccine-induced immune mechanisms (e.g. cell-mediated 

immunity) in the protection against PRRSV infection (Charerntantanakul et al., 2006; 

Diaz et al., 2007; Zuckermann et al., 2007). Vaccination with the commercial 
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inactivated vaccine Progressis® did not induce VN antibodies and neither did it 

provide any degree of protection upon challenge. 

 

Considering the similar efficacy of the attenuated vaccines against both challenge 

isolates used in this study, it can be questioned whether the use of autogenous 

inactivated vaccines is advantageous over the use of the current attenuated vaccines. 

However, while the efficacy of the attenuated vaccines against new virus variants can 

be unpredictable, our data demonstrate that an (adaptable) autogenous BEI-

inactivated vaccine can provide a more or less standardized, predictable degree of 

protection against a specific virus variant, which may prove useful in case virus 

variants emerge that escape the immunity induced by the attenuated vaccines. In the 

near future, additional research will be conducted to further substantiate this. Also, 

although the production of autogenous inactivated vaccines as described in this study 

may appear too elaborate and costly (virus isolation, adaptation to cell culture, high 

dose needed,…), further optimization of the production process should make future 

use of these vaccines more feasible. 

CONCLUSIONS 

The current study assessed the protective capacity of different experimental and 

commercial vaccines against challenge with two recent PRRSV field isolates. 

Experimental BEI-inactivated vaccines based on these field isolates significantly 

shortened viremia upon homologous challenge. Despite the concerns regarding the 

efficacy of the commercial attenuated vaccines used on the farms where the field 

isolates were obtained, use of commercial attenuated vaccines resulted in a similar 

reduction of the viremic phase. In contrast, the experimental BEI-inactivated vaccines 

did not significantly reduce viremia upon heterologous challenge and the commercial 

inactivated vaccine had no apparent effect. 

While the BEI-inactivated vaccines (both homologous and heterologous) induced 

challenge virus-specific neutralizing antibodies, this was not the case for the 

commercial inactivated and attenuated vaccines. The results illustrate that the capacity 

of a vaccine to induce challenge virus-specific neutralizing antibodies does not 

necessarily correlate with protection against the challenge virus and vice versa, 
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suggesting that not only vaccine-induced antibodies, but also other vaccine-induced 

immune mechanisms can contribute to PRRSV-specific protective immunity. 

The observation that homologous BEI-inactivated vaccines can provide a more or less 

standardized, predictable degree of protection against a specific virus variant suggests 

that such vaccines may prove useful in case virus variants emerge that escape the 

immunity induced by the attenuated vaccines. Future research will allow optimization 

and simplification of the production process of the adaptable BEI-inactivated vaccines 

and give further insights into the mechanisms of protection induced by these vaccines. 
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ANTIBODY RESPONSE AND MATERNAL IMMUNITY UPON BOOSTING 

PRRSV-IMMUNE SOWS WITH EXPERIMENTAL FARM-SPECIFIC AND 

COMMERCIAL PRRSV VACCINES 

  
Marc F. Geldhof, Wander Van Breedam, Ellen De Jong, Alfonso Lopez Rodriguez, 

Uladzimir U. Karniychuk, Merijn Vanhee, Jan Van Doorsselaere, Dominiek Maes & 

Hans J. Nauwynck 

Veterinary Microbiology (2013), Accepted 

The porcine reproductive and respiratory syndrome virus (PRRSV) causes 

reproductive failure in sows and respiratory disease in pigs of all ages. Despite 

the frequent use of vaccines to maintain PRRSV immunity in sows, little is 

known on how the currently used vaccines affect the immunity against currently 

circulating and genetically divergent PRRSV variants in PRRSV-immune sows, 

i.e. sows that have a pre-existing PRRSV-specific immunity due to previous 

infection with or vaccination against the virus. Therefore, this study aimed to 

assess the capacity of commercially available attenuated/inactivated PRRSV 

vaccines and autogenous inactivated PRRSV vaccines – prepared according to a 

previously optimized in-house protocol – to boost the antibody immunity against 

currently circulating PRRSV variants in PRRSV-immune sows. 

PRRSV isolates were obtained from 3 different swine herds experiencing 

PRRSV-related problems, despite regular vaccination of gilts and sows against 

the virus. In a first part of the study, the PRRSV-specific antibody response 

upon booster vaccination with commercial PRRSV vaccines and inactivated 

farm-specific PRRSV vaccines was evaluated in PRRSV-immune, non-pregnant 

replacement sows from the 3 herds. A boost in virus-neutralizing antibodies 

against the farm-specific isolate was observed in all sow groups vaccinated with 

the corresponding farm-specific inactivated vaccines. Use of the commercial 

attenuated EU type vaccine boosted neutralizing antibodies against the farm-

specific isolate in sows derived from 2 farms, while use of the commercial 
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attenuated NA type vaccine did not boost farm-specific virus-neutralizing 

antibodies in any of the sow groups. Interestingly, the commercial inactivated 

EU type vaccine boosted farm-specific virus-neutralizing antibodies in sows from 

1 farm. In the second part of the study, a field trial was performed at one of the 

farms to evaluate the booster effect of an inactivated farm-specific vaccine and a 

commercial attenuated EU-type vaccine in immune sows at 60 days of gestation. 

The impact of this vaccination on maternal immunity and on the PRRSV 

infection pattern in piglets during their first weeks of life was evaluated. Upon 

vaccination with the farm-specific inactivated vaccine, a significant increase in 

farm-specific virus-neutralizing antibodies was detected in all sows. Virus-

neutralizing antibodies were also transferred to the piglets via colostrum and 

were detectable in the serum of these animals until 5 weeks after parturition. In 

contrast, not all sows vaccinated with the commercial attenuated vaccine showed 

an increase in farm-specific virus-neutralizing antibodies and the piglets of this 

group generally had lower virus-neutralizing antibody titers. Interestingly, the 

number of viremic animals (i.e. animals that have infectious virus in their 

bloodstream) was significantly lower among piglets of both vaccinated groups 

than among piglets of mock-vaccinated sows and this at least until 9 weeks after 

parturition.  

The results of this study indicate that inactivated farm-specific PRRSV vaccines 

and commercial attenuated vaccines can be useful tools to boost PRRSV-specific 

(humoral) immunity in sows and reduce viremia in weaned piglets. 
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INTRODUCTION 

Control of porcine reproductive and respiratory syndrome (PRRS) is a major 

challenge to all people involved in the swine industry. The causative agent of PRRS, 

the PRRS virus (PRRSV), is a positive-sense single-stranded RNA virus that belongs 

to the family of the Arteriviridae, order Nidovirales (Meng, 2000). PRRSV infections 

are associated with respiratory distress in swine of all ages and reproductive failure in 

the breeding stock. Clinical signs reported in PRRSV-infected gilts and sows include 

late-term abortion (days 107 – 110 of gestation), early farrowing (days 110 – 112 of 

gestation) and high numbers of stillborn, mummified or weakborn piglets (Collins et 

al., 1992; Wensvoort et al., 1991). Losses in the breeding and farrowing, the nursery 

and the grower-finisher phase due to PRRSV impose a substantial economic burden 

on pork producers (Neumann et al., 2005). Historically, PRRSV isolates are divided 

into two genotypes: a European (EU, type I) and a North American (NA, type II) 

genotype. The genetic, antigenic and pathogenic variability (Bautista et al., 1993; 

Halbur et al., 1996; Meng et al., 1995; Nelson et al., 1993) within each genotype is 

high and is increasing in time. This genetic drift presents a real challenge for PRRSV 

control at herd and regional level (Meng, 2000).  

The most commonly used strategy to combat PRRSV is to force back the virus 

through vaccination. Commercial attenuated and inactivated vaccines, either based on 

EU or NA type PRRSV, are routinely used in gilts, sows and growing pigs in order to 

reduce the negative effects of PRRSV infection. Commercial attenuated PRRSV 

vaccines offer clear protection against (re-) infection with homologous virus variants 

(Labarque et al., 2004; Martelli et al., 2007; Nielsen et al., 1997; Plana-Duran et al., 

1997; Zuckermann et al., 2007) and the use of these vaccines in PRRSV-affected 

populations was reported to reduce the number of persistently infected and shedding 

pigs (Cano et al., 2007). Unfortunately, they seem to protect less completely and 

inconsistently against heterologous viruses (Geldhof et al., 2012; Kimman et al., 

2009; Labarque et al., 2004; Murtaugh et al., 2002). In addition, there have been some 

safety issues with the current generation of commercial attenuated vaccines. It has 

been described that the vaccine virus may spread transplacentally and/or cause 

reproductive failure in sows and gilts (Nielsen et al., 2001). Moreover, the vaccine 

virus may revert to virulence and cause pathology (Mengeling et al., 1999; Nielsen et 

al., 2001; Nielsen et al., 2002) and there is even evidence of recombination between 
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attenuated vaccine virus and circulating PRRSV variants in the field (Li et al., 2009). 

In contrast with the attenuated vaccines, the commercial inactivated vaccines are 

generally safe. A significant drawback however is that they appear to have limited 

efficacy. While some studies suggest a correlation between the use of these vaccines 

and an improved farrowing rate, reduction in return to oestrus and an increase in the 

number of piglets weaned per sow in endemically infected populations (Papatsiros et 

al., 2006), several other studies report that commercial inactivated vaccines do not 

protect gilts against an experimental PRRSV challenge (Scortti et al., 2007; 

Zuckermann et al., 2007). Interestingly however, it was recently demonstrated that an 

inactivated PRRSV vaccine can be developed that offers partial protection against 

experimental challenge after 2 vaccinations (Vanhee et al., 2009). Moreover, it was 

shown that this vaccine can be easily adapted to farm-specific PRRSV variants 

(Geldhof et al., 2012), which is interesting since virus heterogeneity can compromise 

vaccine efficacy and since the degree of protection induced by vaccination is linked to 

the homology between the vaccine virus and the field virus to which the pigs are 

exposed (Labarque et al., 2004).  

Different immune mechanisms seem to be involved in protection against PRRSV and 

there is ample evidence that the PRRSV-specific antibody response may play a 

significant role in this process. It has for instance been shown that virus-neutralizing 

antibodies can protect pregnant sows against PRRSV-associated reproductive failure 

and transplacental spread, as well as against virus replication in tissues and viremia 

upon challenge with infectious virus (Lopez and Osorio 2004; Osorio et al., 2002).	
  In 

addition, passive transfer of sufficient amounts of virus-specific neutralizing 

antibodies can prevent viremia in young weaned pigs (Lopez et al., 2007). 

Conceivably, virus-specific (neutralizing) antibodies are also of major importance for 

maternal immunity: it is well known that the colostrum is the primary source of 

protective antibodies and other (pathogen-specific) immune factors in newborn piglets 

(Nechvatalova et al., 2011). The current generation of commercial attenuated vaccines 

can induce antibodies that neutralize homologous virus variants (Charerntantanakul et 

al., 2006; Okuda et al., 2008; Scortti et al., 2006). Similarly, the recently developed 

experimental inactivated PRRSV vaccine has the capacity to induce neutralizing 

antibodies in naïve animals (Geldhof et al., 2012; Vanhee et al., 2009). This is in 

contrast with the commercially available inactivated vaccines, which are not able to 
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induce a robust (neutralizing) antibody response (Geldhof et al., 2012; Vanhee et al., 

2009; Zuckermann et al., 2007). Despite the knowledge on their antibody-inducing 

capacity and their frequent use to control the disease in breeding herds, little is known 

on how the commercial attenuated and inactivated vaccines may boost the 

(neutralizing) antibody response against currently circulating PRRSV variants in 

PRRSV-immune sows, i.e. sows that have a pre-existing PRRSV-specific immunity 

due to previous infection with or vaccination against the virus. It is also not known to 

what extent the recently developed farm-specific inactivated PRRSV vaccines may 

boost antibody immunity against newly emerging virus variants in PRRSV-immune 

animals. 

The present study aimed to evaluate the antibody immunity against currently 

circulating PRRSV variants in PRRSV-immune sows upon booster vaccination with 

farm-specific inactivated PRRSV vaccines and commercial PRRSV vaccines. A first 

experiment examined the effect of booster vaccination with these vaccines on the 

antibody response in non-pregnant, PRRSV-immune replacement sows under 

experimental conditions. Upon vaccination, virus-specific as well as virus-

neutralizing antibody concentrations in the blood were monitored and animals were 

checked for viremia. A second experiment focussed on the antibody response in 

pregnant, PRRSV-immune sows after booster vaccination under field conditions. This 

experiment was performed on a farm where PRRSV is endemic, despite regular 

vaccination against the virus. Virus-specific as well as virus-neutralizing antibody 

concentrations in the blood of the sows were monitored and animals were checked for 

viremia. After parturition and transfer of colostrum to the piglets, the same parameters 

were also monitored in their offspring. 

MATERIALS AND METHODS 

Virus isolates 

PRRSV isolates were obtained from 3 farms, showing clinical signs compatible with 

PRRS in sows and growing pigs despite vaccination against PRRSV. Isolate 07V063 

was isolated from fetal tissue, while PRRSV isolates 08V194 and 08V204 were 

isolated from the serum of a 14- and a 4-week-old piglet, respectively. All 3 isolates 

were isolated and cultured on porcine alveolar macrophages (PAM) and subsequently 
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adapted to growth on MARC-145 cells by repeated passages. Sequencing of ORF2-7 

of these isolates was performed as described before (Delrue et al., 2010; Geldhof et 

al., 2012). Nucleotide sequences were submitted to Genbank under accession 

numbers: [GU737264], 07V063; [GU737265], 08V194; and [GU737266], 08V204. 

Sequencing data allowed their classification as EU type viruses and pointed out they 

did not originate from attenuated vaccine viruses used in the farms (Farms 07V063 

and 08V204: Porcilis® PRRS, Intervet at 60 days of pregnancy and Ingelvac® PRRS 

MLV, Boehringer Ingelheim at 6 days of lactation; Farm 08V194: Ingelvac® PRRS 

MLV, Boehringer Ingelheim every 4 months). MARC-145 grown stocks of PRRSV 

07V063 (2 passages on PAM + 2 passages on MARC-145), 08V194 (2 passages on 

PAM + 4 passages on MARC-145) and 08V204 (2 passages on PAM + 3 passages on 

MARC-145) were prepared for experimental vaccine preparation. 

Vaccines 

Binary ethyleneimine (BEI) -inactivated vaccines, based on the farm-specific PRRSV 

isolates 07V063, 08V194 and 08V204, were prepared (07V063i, 08V194i and 

08V204i). Vaccine preparation and quality control were performed as described 

before (Geldhof et al., 2012; Vanhee et al., 2009). Each vaccine dose consisted of 1 

mL BEI-inactivated, MARC-145-grown virus (108 TCID50 on MARC-145 cells) 

mixed with 1 mL o/w Suvaxyn (an oil-in-water diluent, normally used in the 

commercial pseudorabies virus vaccine Suvaxyn Aujeszky, Fort Dodge Animal 

Health). BEI-inactivated vaccines were administered intramuscularly in the neck 

muscles behind the ear. 

The commercial PRRSV vaccines used in this study include an attenuated EU type 

vaccine (Porcilis® PRRS, Intervet, ≥ 104 TCID50/ 2 mL), an attenuated NA type 

vaccine (Ingelvac® PRRS MLV, Boehringer Ingelheim, ≥ 104,9 TCID50/ 2 mL) and an 

inactivated EU type vaccine (Progressis®, Merial, strain P120: ≥ 2,5 log IF Units).  
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Vaccination of non-pregnant PRRSV-immune replacement sows under 

experimental conditions 

Animals 

Twenty-three to twenty-five non-pregnant culled sows were selected from each of the 

3 PRRSV-positive farms and housed in A2 biosafety level animal facilities. At that 

time, all 3 farms applied a vaccination scheme using commercial vaccines (farm 

07V063 and farm 08V204: EU type attenuated vaccine at 60 days of pregnancy, NA 

type attenuated vaccine at 6 days of lactation; farm 08V194: NA type attenuated 

vaccine every 4 months) in sows. Weaners, growers and finishing pigs were not 

vaccinated. Upon arrival of the animals in the animal facilities, serum samples of all 

selected sows were tested and found negative in virus isolation assays on alveolar 

macrophages and MARC-145 cells. 

At the time of selection, each farm also submitted 50 serum samples: 10 of sows, 10 

of gilts, and 10 of 3-, 7-, and 10-week-old piglets. Serologic testing via 

immunoperoxidase monolayer assay (IPMA) revealed high titers of PRRSV-specific 

antibodies in animals of all age groups. Selected sera with high PRRSV-specific 

antibody titers were used for virus isolation on alveolar macrophages. The virus 

isolation assays revealed that PRRSV was circulating at the 3 farms. Sequencing of 

ORF7 of the virus isolates revealed that all viruses had the same background as the 

viruses that had been isolated earlier on the respective farm and that were used for 

vaccine preparation.  

Experimental design 

The sows from each herd were randomly assigned to five different groups (Table 1). 

Groups 07V063CON, 08V194CON and 08V204CON (n = 3 or 5) served as mock-

vaccinated control groups, receiving 1 mL RPMI-1640 in 1 mL o/w Suvaxyn. The 

sows of group 07V063i, 08V194i and 08V204i (n = 5) were vaccinated with a BEI-

inactivated autogenous PRRSV vaccine based on the herd-specific PRRSV isolate. 

Groups 07V063PROi, 08V194PROi and 08V204PROi (n = 5) received 2 mL of a 

commercial EU type inactivated PRRSV vaccine (Progressis®). Groups 

07V063PORatt, 08V194PORatt, 08V204PORatt (n = 5) and 07V063INGatt, 

08V194INGatt, 08V204INGatt (n = 5) were vaccinated with an EU- (Porcilis® 
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PRRS) and an NA- (Ingelvac® PRRS MLV) type attenuated vaccine, respectively. In 

all groups, vaccination was performed only once (single shot), one week upon arrival 

of the animals in the animal facilities. Following vaccination, general health, appetite 

and rectal body temperature of the sows were monitored on a daily basis. The 

injection site was examined for local inflammation. Animals were bled at 0, 1, 2 and 

3 weeks post vaccination and serum was collected for detection of virus-specific and 

virus-neutralizing antibodies via IPMA and seroneutralization (SN) tests, 

respectively. Serum samples were also examined for the presence of infectious virus 

using virus isolation assays on PAM and MARC-145 cells. All animal experiments 

were approved by the local ethical committee of the Faculty of Veterinary Medicine, 

Ghent University. 

Vaccination of pregnant PRRSV-immune sows under field conditions 

Animals / Farm 

The herd used in this experiment was a 340-sow farrow-to-finish farm, located in 

West-Flanders (Belgium). The farm suffered from endemic PRRSV infection since a 

severe PRRSV-outbreak in 2007. At the start of the experiment, circulation of the 

PRRSV isolate 07V063 in the herd was confirmed by virus isolation and sequencing 

of ORF7. The owners agreed to participate in a field trial to test the antibody response 

in 30 pregnant, PRRSV-immune sows after vaccination with a farm-specific BEI-

inactivated vaccine or an attenuated EU type PRRSV vaccine regularly used on the 

farm (Porcilis® PRRS, Intervet) and to evaluate the protection by colostral immunity 

in their offspring. 

Experimental design 

Thirty pregnant sows were randomly assigned to 3 different groups (Table 1). Ten 

sows were mock-vaccinated (1 mL RPMI-1640 in 1 mL o/w Suvaxyn) and served as 

a control group (group 07V063CON2). Ten sows were vaccinated with a BEI-

inactivated autogenous PRRSV vaccine, based on the PRRSV variant isolated on the 

farm (group 07V063i2). Ten sows were vaccinated with an attenuated EU type 

PRRSV vaccine (Porcilis® PRRS, Intervet) (group 07V063PORatt2). All vaccines 

were administered once at 60 days of gestation. Following vaccination, general 

health, appetite and rectal body temperature of the sows were monitored on a daily 
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basis. Blood was taken from all sows at the time of vaccination, 2 weeks later, and at 

the beginning and end of the lactation period. After parturition, 4 piglets were 

randomly selected from each sow and blood samples were taken from these animals 

at fixed time-points (3, 5, 7 and 9 weeks of age). Virus-specific and virus-

neutralizing antibody titers were determined via IPMA and SN tests, respectively. 

Serum samples were examined for the presence of infectious virus using virus 

isolation assays on PAM and MARC-145 cells. This animal experiment was 

approved by the local ethical committee of the Faculty of Veterinary Medicine, 

Ghent University. The FAGG and FAVV gave their permission (pharmaceutical 

preparation according to the cascade arrangement) for the field trial study. 

Table 1: Overview of all groups in both experiments 

Number of sows Vaccination (single shot; non-pregnant sows)
07V063 08V194 08V204

07V063CON 08V194CON 08V204CON 3 or 5 Mock vaccine
07V063i 08V194i 08V204i 5 BEI-inactivated PRRSV isolate
07V063PROi 08V194PROi 08V204PROi 5 Progressis®, Merial
07V063PORatt 08V194PORatt 08V204PORatt 5 Porcilis® PRRS, Intervet
07V063INGatt 08V194INGatt 08V204INGatt 5 Ingelvac® PRRS MLV, Boehringer Ingelheim

Group Number of sows Vaccination (single shot at 60 days of gestation)
07V063CON2 10 Mock vaccine
07V063i2 10 BEI-inactivated 07V063-isolate
07V063PORatt2 10 Porcilis® PRRS, Intervet

Experiment 1: Experimental conditions

Experiment 2: Field conditions

Group

 

 

Serological examination and virus isolation assays 

PRRSV-specific antibody titers in serum samples were determined using IPMA 

assays as described by Wensvoort et al. (1991). IPMA tests were performed on 

MARC-145 cells infected with the MARC-145-adapted PRRSV isolates 07V063, 

08V194 or 08V204. For each animal group, IPMAs were performed on cells infected 

with the virus variant isolated on the corresponding farm. Virus-neutralizing 

antibodies were detected by SN tests on MARC-145 cells as described before 

(Geldhof et al., 2012), using the MARC-145-adapted isolates 07V063, 08V194 or 

08V204. For each animal group, SN tests were performed with the virus variant 

isolated on the corresponding farm. 

To detect viremia (i.e. the presence of infectious virus in the bloodstream), presence 

of infectious PRRSV in serum samples was tested using virus isolation assays as 
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described before (Labarque et al., 2000). To check the sensitivity of the PAM and 

different passages of MARC-145 cells, all used cell batches/passages were assayed in 

virus titrations using PRRSV stocks with known virus titers.  

Statistical analysis 

The serology of the sow sera was analyzed using a Friedman test, followed by Dunn’s 

multiple comparisons test to determine significant differences compared to the day of 

vaccination at different time-points post vaccination in all groups.  

In the second experiment, a two-tailed Fisher’s exact test was used to detect 

significant differences in the number of piglets with maternal virus-neutralizing 

antibodies in the 3 piglet groups. The same test was used to determine significant 

differences in the number of viremic animals in the 3 piglet groups. A Kruskall-

Wallis test, followed by Dunn’s multiple comparisons test, was performed to detect 

significant differences in maternal virus-neutralizing antibody titers between the 3 

piglet groups. 

An overall p value of 0.05 was taken as the level of statistical significance. All 

statistical analyses were performed using GraphPad Prism version 5.0a (GraphPad 

Software, San Diego, California, USA).  

RESULTS 

Vaccination of non-pregnant PRRSV-immune replacement sows under 

experimental conditions 

Clinical signs and detection of infectious PRRSV in sow serum samples 

All sows remained in good health after they were vaccinated. No local or systemic 

vaccine side effects were noted throughout the trial period. At all time-points, the 

serum samples of all animals were PRRSV-negative as determined by virus isolation 

assays on PAM and MARC-145 cells.  
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Antibody response 

On the day of vaccination, all animals were positive for PRRSV-specific antibodies 

and many also for virus-neutralizing antibodies. Upon vaccination, no significant 

increase in virus-specific or virus-neutralizing antibodies was seen in the mock-

vaccinated groups 07V063CON, 08V194CON and 08V204CON. When compared to 

the day of vaccination, significantly higher virus-specific antibody titers were 

observed in group 07V063i at 2 and 3 weeks post vaccination (Figure 1). Upon 

vaccination, group 07V063i showed a significant increase in virus-neutralizing 

antibodies at 2 and 3 weeks post vaccination reaching mean values of 7.0 log2 and 7.2 

log2, respectively (Figure 2). In group 08V194i, the virus-neutralizing antibody titers 

were significantly higher at 2 and 3 weeks post vaccination, reaching mean values of 

5.2 log2 and 5.3 log2, respectively (Figure 2). Group 08V204i showed a significant 

increase in virus-neutralizing antibodies at 2 and 3 weeks post vaccination, reaching 

mean values of 5.7 log2 and 4.9 log2, respectively (Figure 2). For group 08V204PROi, 

virus-specific antibody titers were significantly increased at 2 and 3 weeks post 

vaccination (Figure 1). No differences in virus-neutralizing antibodies were observed 

at any time-point in groups 07V063PROi and 08V194PROi. Group 08V204PROi 

showed a significant increase in virus-neutralizing antibodies at 3 weeks post 

vaccination, reaching a mean value of 3.3 log2 (Figure 2). Upon vaccination, virus-

specific antibodies were significantly increased at 2 and 3 weeks post vaccination for 

group 08V204PORatt (Figure 1). A significant increase in virus-neutralizing 

antibodies was detected in group 08V194PORatt at 2 and 3 weeks post vaccination, 

reaching mean values of 2.7 log2 and 2.8 log2 respectively, and in group 

08V204PORatt at 2 weeks post vaccination, reaching a mean value of 4.8 log2. No 

increase in virus-neutralizing antibodies was detected in 07V063PORatt (Figure 2). 

Upon vaccination with Ingelvac® PRRS MLV, no differences in virus-specific or 

virus-neutralizing antibody titers were observed in the groups 07V063INGatt, 

08V194INGatt and 08V204INGatt, at any time-point tested (Figure 1-2). 
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Figure 1. PRRSV-specific (IPMA) antibody titers (log2) after vaccination in sow groups 
07V063CON, 08V194CON, 08V204CON (Mock-vaccinated control), 07V063i, 08V194i, 08V204i 
(BEI-inactivated PRRSV isolate), 07V063PROi, 08V194PROi, 08V204PROi (Progressis®), 
07V063PORatt, 08V194PORatt, 08V204PORatt (Porcilis® PRRS) and 07V063INGatt, 
08V194INGatt and 08V204INGatt (Ingelvac® PRRS MLV). é = Day of vaccination. Symbols 
represent individual animals and solid lines represent mean IPMA titers calculated on all animals in 
each group. The dotted line marks the detection limit for the IPMA test.  



Antibody response and maternal immunity upon boosting PRRSV-immune sows 97 
_____________________________________________________________________ 

 

 

Figure 2. PRRSV-neutralizing (SN) antibody titers (log2) after vaccination in sow groups 
07V063CON, 08V194CON, 08V204CON (Mock-vaccinated control), 07V063i, 08V194i, 08V204i 
(BEI-inactivated PRRSV isolate), 07V063PROi, 08V194PROi, 08V204PROi (Progressis®), 
07V063PORatt, 08V194PORatt, 08V204PORatt (Porcilis® PRRS) and 07V063INGatt, 
08V194INGatt and 08V204INGatt (Ingelvac® PRRS MLV). é = Day of vaccination. Symbols 
represent individual animals and solid lines represent mean SN titers calculated on all animals in each 
group. The dotted line marks the detection limit for the SN test.   
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Vaccination of pregnant PRRSV-immune sows under field conditions 

Clinical signs and detection of infectious PRRSV in sow serum samples 

Upon vaccination, the appetite of all sows remained normal and no local or general 

reactions were observed. One of the mock-vaccinated sows died during parturition. 

Eight piglets died during nursery and the finding of traumatic lesions in the head 

and/or body together with milk-filled stomachs indicated that 5 of these piglets were 

crushed to death by the dams. Routine diagnosis, including a virus isolation assay for 

PRRSV detection, was performed on tissue samples of the 3 remaining piglets, but 

samples were negative for all tested pathogens. No infectious PRRSV was isolated 

from any of the sow serum samples (either on PAM or MARC-145 cells).  

Antibody response 

Sows 

On the day of vaccination, all animals were positive for PRRSV-specific antibodies 

and the majority also for virus-neutralizing antibodies. The sows of group 

07V063CON2 showed no significant increase in virus-specific or virus-neutralizing 

antibodies at any time-point post vaccination (Figure 3-4). Upon vaccination, a 

significant increase in virus-specific antibody titers was observed at 2 weeks post 

vaccination and at the end of lactation in group 07V063i2 (Figure 3) and a significant 

increase in virus-neutralizing antibody titers was observed at 2 weeks post 

vaccination, reaching a mean titer of 5.6 log2 (Figure 4).  Upon vaccination with 

Porcilis® PRRS, no significant increase in virus-specific or virus-neutralizing 

antibody titers was observed at any time-point. 

Piglets 

Virus-specific antibodies were found in serum samples taken from piglets born to all 

sows. At 3 weeks of age, the virus-specific antibody titers of piglets from sow group 

07V063i2 were significantly higher than those of piglets of sow group 07V063CON2, 

but this was not the case for the 07V063PORatt2-derived piglets. While the virus-

specific antibody titers in the majority of piglets from sow groups 07V063i2 and 

07V063PORatt2 decreased or remained stable over time, the virus-specific antibody 

titers in most piglets derived from the 07V063CON2 sow group increased towards the 
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end of the trial (data not shown). Four piglets derived from 3 sows of group 

07V063CON2 had a low virus-neutralizing antibody titer at 3 weeks of age and only 

2 piglets from 1 sow of group 07V063CON2 had virus-neutralizing antibody titers at 

5 weeks of age. 

 

Figure 3. PRRSV-specific (IPMA) antibody titers (log2) after vaccination for group 
07V063CON2 (Mock-vaccinated control), 07V063i2 (BEI-inactivated 07V063) and 
07V063PORatt2 (Porcilis® PRRS) sows. Symbols represent mean IPMA titers (± standard deviation) 
calculated on all animals in each group. The dotted line marks the detection limit for the IPMA test. 

 

Figure 4. PRRSV-neutralizing (SN) antibody titers (log2) after vaccination for group 
07V063CON2 (Mock-vaccinated control), 07V063i2 (BEI-inactivated 07V063) and 
07V063PORatt2 (Porcilis® PRRS) sows. Symbols represent mean SN titers (± standard deviation) 
calculated on all animals in each group. The dotted line marks the detection limit for the SN test.  
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No virus-neutralizing antibodies against 07V063 were detected in any of these piglets 

at other time-points. At 3 weeks of age, 100% (37/37) and 66% (25/38) of piglets 

from sow groups 07V063i2 and 07V063PORatt2 had virus-neutralizing antibody 

titers, respectively. Virus-neutralizing antibody titers had disappeared in a majority of 

the piglets of sow group 07V063PORatt2 (29% positive, 11/38) by 5 weeks of age, 

while 81% (30/37) of piglets of sow group 07V063i2 were still positive at that time. 

At 7 and 9 weeks of age, 2 piglets of 1 sow of group 07V063i2 still had virus-

neutralizing antibodies against 07V063. At these time-points, no virus-neutralizing 

antibodies were detected in the serum of piglets derived from any other sow. When 

compared with group 07V063CON2 and 07V063PORatt2 piglets, a significantly 

higher number of animals with virus-neutralizing antibodies was observed in group 

07V063i2 piglets at 3 and 5 weeks of age. Also, the virus-neutralizing antibody titers 

in group 07V063i2 piglets were significantly higher at 3 and 5 weeks compared to 

group 07V063CON2 and 07V063PORatt2 piglets (Figure 5). 

 

Figure 5. PRRSV-neutralizing (SN) antibody titers (log2) for the piglets derived from group 
07V063CON2 (Mock-vaccinated control), 07V063i2 (BEI-inactivated 07V063) and 
07V063PORatt2 (Porcilis® PRRS) sows. Symbols represent mean SN titers (± standard deviation) 
calculated on all piglets in each sow group. The dotted line marks the detection limit for the SN test. 

 

Detection of infectious PRRSV in piglet serum samples 

The results of virus isolation on PAM cells from piglet serum samples are shown in 

Table 2. Infectious PRRSV was isolated from 2 serum samples of 3-week-old piglets 

of 1 sow of group 07V063CON2, resulting in a PRRSV-positive percentage of 6% in 
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this group. At that time, no infectious virus could be isolated from any of the piglets 

of group 07V063i2 and 07V063PORatt2 sows. In the 07V063i2 and 07V063PORatt2 

piglet groups, the first viremic animals were only observed at 7 weeks of age. At 9 

weeks, infectious PRRSV was isolated from 64%, 21% and 19% of piglets from 

group 07V063CON2, 07V063PORatt2 and 07V063i2 sows, respectively. When 

compared to group 07V063CON2 piglets, the number of viremic animals in group 

07V063i2 and group 07V063PORatt2 piglets was significantly lower at 7 and 9 

weeks of age. 

 

Table 2: Viremia in piglets per sow per group 

Group Sow Number of
number piglets 3 5 7 9

07V063CON2 1 4 0 0 3 3
2 2 0 0 0 0
3 **
4 4 0 0 3 3
5 4 0 0 0 1
6 3 0 0 1 2
7 4 2 0 2 3
8 4 0 0 2 3
9 4 0 1 2 3
10 4 0 0 0 3

Number of viremic piglets at … weeks of age

07V063i2 11 4 0 0 0 0
12 4 0 0 0 0
13 4 0 0 0 0
14 4 0 0 0 1
15 3 0 0 0 0
16 3 0 0 0 1
17 4 0 0 1 2
18 4 0 0 0 2
19 3 0 0 1 1
20 4 0 0 0 0

07V063PORatt2 21 3 0 0 0 1
22 4 0 0 0 0
23 4 0 0 0 0
24 3 0 0 0 1
25 4 0 0 0 1
26 4 0 0 0 0
27 4 0 0 0 0
28 4 0 0 0 0
29 4 0 0 0 2
30 4 0 0 1 3 	
  

** = Sow died during parturition. 
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DISCUSSION 

PRRSV is an economically important pathogen of pigs causing respiratory distress in 

piglets and reproductive failure in sows. PRRSV outbreaks on breeding farms 

manifest themselves in the form of late abortions, premature farrowing or birth of 

dead and/or weak piglets. Vaccination of sows is one of the strategies used to 

minimize the clinical and economic impact of PRRSV infections. However, the 

currently used vaccines appear to have variable degrees of success. In the last years, 

many pig farms routinely vaccinating their sows with the commercially available 

vaccines have suffered infections with new virus variants that escape the immunity 

induced by the current vaccine strains (Thanawongnuwech & Suradhat, 2010). The 

high genetic and antigenic variability of PRRSV clearly poses an important challenge 

for herd-level and regional control (Murtaugh et al., 1995; Kapur et al., 1996; Nelsen 

et al., 1999; Kimman et al., 2009;). Although all the immune factors that can 

contribute to an effective protection and virus clearance have not yet been identified, 

several studies point out an important role of virus-neutralizing antibodies. Passive 

transfer of PRRSV-specific virus-neutralizing antibodies can protect pregnant sows 

against reproductive failure and confer sterilizing immunity in sows and offspring 

(Osorio et al., 2002). Similarly, passive transfer of sufficient amounts of virus-specific 

neutralizing antibodies can prevent viremia in young weaned pigs (Lopez et al., 

2007). In addition, virus-specific neutralizing antibodies may significantly contribute 

to the colostral immunity that protects suckling piglets during their first weeks of life 

(Nechvatalova et al., 2011). Despite the frequent use of commercially available 

attenuated and inactivated vaccines for maintaining immunity in breeding herds, little 

is known on how these vaccines boost the antibody immunity against divergent (wild-

type) virus variants in PRRSV-immune animals. This study aimed to evaluate the 

antibody immunity against currently circulating PRRSV variants in PRRSV-immune 

sows upon booster vaccination with farm-specific inactivated PRRSV vaccines and 

commercial PRRSV vaccines. 

 

A first experiment was performed to evaluate the serological response of non-

pregnant replacement sows, originating from herds with active circulation of naturally 

occurring PRRSV-variants, upon vaccination with a farm-specific BEI-inactivated 
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vaccine or either of 3 commonly used commercial vaccines (inactivated or 

attenuated). Upon vaccination, sows that received a farm-specific inactivated vaccine 

showed a significant increase in serum virus-neutralizing antibodies specific for the 

prevalent PRRSV-variant in their herd. Previous studies in piglets have shown that 

this type of vaccine can induce virus-specific neutralizing antibodies in naïve animals 

(Vanhee et al., 2009; Geldhof et al., 2012). In contrast, vaccination with the 

commercial inactivated vaccine gave variable results: the vaccine boosted the 

08V204-specific, but not the 07V063- or 08V194-specific virus-neutralizing antibody 

response. Although it has been previously reported that these vaccines may boost 

virus-neutralizing antibody production in previously infected animals (Nilubol et al., 

2004 Zimmerman et al., 2006), several studies suggest that the commercial 

inactivated vaccines do not significantly stimulate the virus-neutralizing antibody 

response in naïve animals (Zuckermann et al., 2007; Vanhee et al., 2009; Geldhof et 

al., 2012). Although substantial experimental proof is currently lacking, the apparent 

limited immunogenicity of the commercial inactivated vaccines may be related to the 

inactivation procedure, strain variability, antigenic dose, adjuvant, … Also 

vaccination with the commercial attenuated vaccines gave variable results. 

Vaccination with the attenuated EU type vaccine (Porcilis® PRRS) increased 08V194- 

and 08V204-specific virus-neutralizing antibody titers in sows derived from the 

respective farms, but did not boost the 07V063-specific virus-neutralizing antibody 

titers in sows of farm 07V063. Vaccination with the attenuated NA type vaccine 

(Ingelvac® PRRS MLV) did not boost the virus-neutralizing antibody production 

against any of the farm-specific isolates. These results support the idea that current 

generation attenuated vaccines are not universally successful in stimulating the 

(heterologous) humoral immune response in PRRSV-immune animals. Although the 

absence of an anamnestic humoral immune response upon infection or re-vaccination 

may result from a lack in sufficient vaccine virus replication in PRRSV-immune 

animals, it is conceivable that antigenic differences between the vaccine and 

challenge virus contribute significantly to this phenomenon.  

 

A second experiment investigated the impact of a BEI-inactivated autogenous vaccine 

and a commercial attenuated vaccine administered at 60 days of gestation on maternal 

immunity and on the PRRSV infection pattern in piglets during their first weeks of 
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life.  

In sows vaccinated with the farm-specific BEI-inactivated vaccine, 07V063-specific 

virus-neutralizing antibodies in the serum were significantly increased at 2 weeks post 

vaccination. In contrast, vaccination with Porcilis® PRRS did not significantly 

increase 07V063-specific virus-neutralizing antibody titers in the sow sera at any 

time-point post vaccination. At 3 and 5 weeks postpartum, a significantly higher 

number of animals with 07V063-specific virus-neutralizing antibodies was observed 

in group 07V063i2 piglets compared to group 07V063CON2 and 07V063PORatt2 

piglets. Also, the 07V063-specific virus-neutralizing antibody titers in group 

07V063i2 piglets were significantly higher at 3 and 5 weeks compared to group 

07V063CON2 and 07V063PORatt2 piglets. 

The appearance of viremic animals in the 07V063i2- and 07V063PORatt2-derived 

piglet groups was delayed in time and the number of piglets that became viremic 

within the trial period was significantly reduced compared with the 07V063CON2-

derived piglet group. Conceivably, the passive transfer of 07V063-specific virus-

neutralizing antibodies in colostrum of 07V063i2-vaccinated sows to piglets 

contributed to the curtailment in the number of viremic piglets. In line with this, 

previous studies have shown that passive transfer of virus-neutralizing antibodies can 

protect young piglets against PRRSV viremia (Lopez et al., 2007). Despite a lower 

transfer of virus-neutralizing antibodies from sow to piglets in Porcilis® PRRS-

vaccinated sows, results from our study indicate that the use of such a vaccine in sows 

still has positive effects in the nursery. These data suggest that also other colostrum-

derived immune factors may play a role in the immunity of these piglets. As 

previously documented, not only antibodies, but also other immune 

factors/components (cytokines, immune cells, antibacterial proteins, lysozymes, …) 

can be transferred via colostrum (Nguyen et al., 2007; Bandrick et al., 2008; Salmon 

et al., 2008; Nechvatalova et al., 2011). Data obtained in the current study illustrate 

the potential of maternal vaccination to protect piglets from PRRSV-infection during 

their first weeks of life. Further research will yield a better understanding of 

protective PRRSV-specific maternal immunity.  
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CONCLUSION 

None of the currently available PRRSV vaccines is able to completely prevent 

respiratory infection, transplacental transmission and pig-to-pig transmission of wild-

type virus variants or maintain immune protection in sows (Murtaugh et al., 2002). In 

spite of this, producers should not rule out using PRRSV vaccines as an aid to control 

clinical PRRSV. Vaccines have been used successfully to reduce the negative effects 

of PRRSV infection (Murtaugh et al., 2002; Kimman et al., 2009). In line with this, 

the results of the current study indicate that attenuated and inactivated vaccines can be 

useful tools to boost PRRSV-specific (humoral) immunity in PRRSV-immune sows 

and reduce viremia in weaned piglets. Farm-specific inactivated vaccines may prove 

useful in vaccination programs to boost the immunity in pregnant sows. Future 

research will allow optimization and simplification of the production process of the 

adaptable BEI-inactivated vaccines and give further insights into the mechanisms of 

protection induced by these vaccines. 
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4.1 

 

COMPARISON OF THE EFFICACY OF MARC-145-GROWN 

INACTIVATED PRRSV VACCINE VIRUS AND PK15Sn-CD163-GROWN 

INACTIVATED PRRSV VACCINE VIRUS AGAINST HOMOLOGOUS AND 

HETEROLOGOUS PRRSV CHALLENGE 

 

Marc F. Geldhof, Ivan Trus, Iris Delrue, Jan Van Doorsselaere & Hans J. Nauwynck 

Manuscript in preparation 

In the field, commercial inactivated and attenuated vaccines are used to control 

porcine reproductive and respiratory syndrome virus (PRRSV). Nonetheless, 

clinical symptoms of PRRSV are regularly reported in vaccinating herds. It is 

generally accepted that there is an urgent need for safe and more effective 

vaccines that can be adapted regularly to currently circulating isolates. Recently, 

it was demonstrated that an experimental inactivated MARC-145 grown PRRSV 

vaccine can be developed that induces virus-neutralizing antibodies upon 2 

vaccinations and offers partial protection against homologous challenge. Because 

all the European and a proportion of the North American PRRSV isolates have 

to be adapted for growth on MARC-145 cells, which possess only CD163 (not 

sialoadhesin), unwanted mutations in genes encoding entry-related envelope 

glycoproteins may occur. Therefore, a PK15Sn-CD163 cell line expressing the two 

receptors porcine sialoadhesin and porcine CD163 was constructed for PRRSV 

production. In this study, 2 PRRSV isolates (08V194 and 07V063), were used for 

PK15Sn-CD163 grown or MARC-145 grown vaccine development and the efficacy 

of these inactivated PRRSV vaccines was evaluated in homologous and 

heterologous challenges.  

Vaccination of naïve pigs with BEI-inactivated, MARC-145 grown or PK15Sn-

CD163 grown PRRSV 08V194 or 07V063 induced a virus-specific antibody 

response. 08V194-specific neutralizing antibodies were directly induced after 

double vaccination with both BEI-inactivated, MARC-145 grown viruses 

(08V194MARCi and 07V063MARCi), while vaccination with BEI-inactivated, 
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PK15Sn-CD163 grown viruses (08V194PKi and 07V063PKi) only primed; with the 

latter vaccination approach a faster appearance of virus-neutralizing antibodies 

upon challenge was observed compared to the non-vaccinated animals. In the 

groups 08V194MARCi and 08V194PKi, the duration of viremia was significantly 

reduced with approximately 2 weeks upon homologous challenge (08V194). 

Similar results were obtained with 07V063PKi upon heterologous challenge 

(08V194). 07V063MARCi did not significantly influence the viremia upon 

heterologous challenge (08V194).  

Both vaccines, 08V194PKi and 08V194MARCi, provided a significant reduction 

of viremia upon homologous challenge with 08V194. A similar reduction of 

viremia was observed in animals vaccinated with 07V063PKi. In contrast, 

07V063MARCi had no or only a limited influence on viremia. In addition, 

groups 08V194MARCi, 08V194PKi and 07V063PKi showed a significant 

decrease in the number of viremic piglets compared to the mock-vaccinated 

control group, while no such effect was seen in group 07V063MARCi.  
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INTRODUCTION 

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive 

disorders in sows and boars and is associated with the porcine respiratory disease 

complex (PRDC), resulting in tremendous economic losses (Christianson et al., 1993; 

Lager and Mengeling, 1995; Mengeling et al., 1994; Neumann et al., 2005; Terpstra 

et al., 1991). PRRSV strains are classified into a European genotype (EU type) and a 

North American genotype (NA type), with the EU prototype Lelystad virus (LV) and 

the NA prototype VR-2332, which share about 55-70% nucleotide homology (Collins 

et al., 1992; Nelsen et al., 1999; Wensvoort et al., 1991). In the field, both inactivated 

and attenuated vaccines are used to control the disease. Attenuated vaccines have the 

potential to protect animals against viremia, but the protection is dependent on the 

homology between the vaccine strain and the circulating strain (Labarque et al., 

2004). There are also some concerns regarding the safety, as the vaccine strain may 

still spread and revert to virulence (Dewey et al., 1999; Mengeling et al., 1999; 

Nielsen et al., 2001; Nielsen et al., 1997). Inactivated vaccines are safe to use, but 

they are considered less efficacious. They do not provide sufficient protection 

(Nielsen et al., 1997; Nilubol et al., 2004; Zuckermann et al., 2007). The current 

incomplete protection of a commercial inactivated vaccine against PRRSV infection 

may be due to the inactivation procedure used, which can affect the important viral 

proteins or the antigenic mass (Delrue et al., 2012; Delrue et al., 2009). Viral entry-

associated domains are most likely important for virus-neutralizing (VN) antibody 

induction, since VN antibodies can block infection in macrophages at the stage of 

entry by inhibiting the interaction of PRRSV with cellular receptors (Delputte et al., 

2004). Evidence in favor of a protective role for VN antibodies is found in the 

correlation between the appearance of VN antibodies in serum and elimination of 

infectious virus in blood (Labarque et al., 2000). Furthermore, it was shown that 

passive transfer of VN antibodies gives protection in sows against reproductive failure 

(Osorio et al., 2002).  

PRRS vaccine virus is currently produced in the MARC-145 cell line, as use of these 

cells overcomes difficulties associated with the use of primary macrophages, the 

natural host cell of PRRSV. However, since virus entry in MARC-145 cells is 

different compared to that in primary macrophages, specific domains associated with 

virus entry could potentially alter during passages in MARC-145 cells (Collins et al., 
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1992; Delputte et al., 2004). It is described by others, that after passaging PRRSV 

strains in MARC-145 cells, mutations in non-structural proteins (nsp1β, nsp2 and 

nsp10) but also in structural proteins (GP3, GP5 and M) occur (Allende et al., 2000; 

Indik et al., 2000; Zhou et al., 2009). Mutations in structural viral proteins can cause 

modifications or loss of neutralizing epitopes resulting in an ineffective humoral 

immune response towards field strains upon vaccination. To avoid mutations after 

growth in a cell line and mimicking the entry pathway in macrophages a PK15Sn-CD163 

cell line expressing porcine sialoadhesin (Sn) and porcine CD163, two important 

receptors for entry and infection of macrophages, has been initiated for PRRSV 

production (Delrue et al., 2010). Sn is a receptor that mediates PRRSV attachment to 

and internalisation into macrophages (Delputte et al., 2005; Vanderheijden et al., 

2003), while CD163 is involved in virus uncoating in macrophages (Van Gorp et al., 

2008). Expression of both receptors is shown to be sufficient for PRRSV infection of 

non-permissive cells (Van Gorp et al., 2008). Once the PK15 cell line, expressing Sn 

and CD163, was optimized, inactivated vaccines based on recent PRRSV field 

isolates were developed.  

Recently, experimental inactivated MARC-145 grown PRRSV vaccines were 

developed, based on formerly optimized inactivation procedures (Delrue et al., 2009) 

and the efficacy of these vaccines was evaluated (Geldhof et al., 2012; Vanhee et al., 

2009). In homologous situations, the binary ethyleneimine (BEI) -inactivated PRRSV 

vaccines have the capacity to induce neutralizing antibodies in naïve animals after 2 

vaccinations, resulting in a reduction of viremia after infection (Geldhof et al., 2012; 

Vanhee et al., 2009). In contrast, the heterologous experimental BEI-inactivated 

vaccines induce neutralizing antibodies upon vaccination, while no or only a limited 

effect on the viremic phase upon challenge was observed. The exact reason behind 

this remains currently unknown and this matter requires further investigation in the 

future. 

Upon booster vaccination with homologous BEI-inactivated vaccines, VN antibodies 

increased significantly in PRRSV-immune sows. Geldhof et al. (2013) showed that 

upon vaccination of sows, VN antibodies were transferred to the piglets via colostrum 

and influenced viremia in piglets, which offers new perspectives for the development 

of effective and safe PRRSV vaccines.  
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In this study, 2 recent PRRSV isolates, from outbreaks in herds vaccinated with a 

registered vaccine, were used for inactivated vaccine development. The main 

objectives of this study were: (i) to test the capacity of an inactivated PRRSV vaccine, 

grown on PK15Sn-CD163 cells or grown on MARC-145 cells, to protect naïve pigs upon 

homologous or heterologous PRRSV challenge and (ii) if the experimental inactivated 

PRRSV vaccine can be improved if the vaccine virus is produced on PK15Sn-CD163 

cells instead of MARC-145 cells.  

MATERIALS AND METHODS 

Cells and viruses 

PRRSV isolates were obtained from 2 farms, showing clinical signs compatible with 

PRRS in sows or growing pigs despite vaccination against PRRSV. Isolate 07V063 

was isolated from fetal tissue, while PRRSV isolate 08V194 was isolated from the 

serum of a 14-week-old piglet. Both isolates have been used in recent studies by 

Karniychuk et al. (2011; 2012) and Geldhof et al. (2012), describing viral, clinical and 

pathological data. Both isolates were isolated and cultured on porcine alveolar 

macrophages (PAM) and subsequently adapted to MARC-145 cells or PK15Sn-CD163 

cells by repeated passages. PAMs were derived from 3-week-old (just weaned) 

piglets, purchased from a PRRSV- and Mycoplasma Hyopneumoniae-negative farm. 

After isolation, the morphology of PAMs was checked visually via light microscopy. 

PAMs, MARC-145 cells and PK15Sn-CD163 cells were cultivated as described before 

(Delrue, 2010). MARC-145 grown stocks of PRRSV 07V063 (2nd passage on PAM + 

2 passages on MARC-145) and 08V194 (2nd passage on PAM + 4 passages on 

MARC-145) and PK15Sn-CD163 cell culture supernatant of PRRSV 07V063 (2nd 

passage on PAM + 4 passages on PK15Sn-CD163) and 08V194 (2nd passage on PAM + 4 

passages on PK15Sn-CD163) were used for vaccine preparation. A 5th passage of 

08V194 on PAM, derived from gnotobiotic piglets, was used to challenge the 

animals. 
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Virus sequencing of macrophage grown, MARC-145 grown and PK15Sn-CD163 

grown 07V063 and 08V194 

To determine if adaptation to the MARC-145 cell line resulted in mutations in the 

structural ORFs, ORF2-7 of MARC-145 grown 07V063 and 08V194 were sequenced 

and compared with those of original macrophage grown or PK15Sn-CD163 grown 

07V063 and 08V194. Sequencing of ORF2-7 of these isolates was performed as 

described before (Delrue et al., 2010; Geldhof et al., 2012). In summary, RNA was 

extracted from PRRSV using a RNeasy Protect Mini Kit (QIAGEN) and reverse 

transcribed using random hexamers and MultiScribe Reverse Transcriptase (Applied 

Biosystems) according to the manufacturer’s guidelines. The primers ORF2a-FW (5’-

gtsacaccktatgattacg-3’) and ORF2a-REV (5’-tcatrccctattytgcacca-3’), ORF3-FW (5’-

agcctacagtacaacaccac-3’) and ORF3-REV (5’-agaaaaggcacgcagaaagca-3’), ORF4-FW 

(5’-cggccaittccatccigag-3’) and ORF4-REV (5’- cattcagctcgcataicgtcaag-3’), ORF5-

FW2 (5’-tgcticatttcitgacacc-3’) and ORF5-REV1 (5’-accttaagigcitatatc-3’), ORF6-

FW (5’-taccaactttcttctggac-3’) and ORF6-REV (5’-acccagcaactggcacag-3’), ORF7-

FW (5’-tggcccctgcccaicacg-3’) and ORF7-REV (5’-tcgccctaattgaataggtga-3’) were 

used to amplify the different ORFs with Taq Polymerase (Invitrogen, Merelbeke, 

Belgium). PCR products were treated with Exonuclease I and Antarctic Phosphatase 

(New England Biolads, Ipswich, USA) and used directly for cycle sequencing with a 

Big Dye Terminator Cycle sequencing kit V1.1 (Applied Biosystem, Foster City, 

USA) and PRRSV primers. Cycle sequencing reaction products were purified by 

ethanol precipitation and separated on an ABI Genetic 310 (Applied Biosystem, 

Foster City, USA). The amino acid (aa) sequences were analyzed and compiled by 

BlastN and BlastP (www.ncbi.nlm.nih.gov), and Sixframe, ClustalW, Align 

(workbench.sdsc.edu). Nucleotide sequences were submitted to Genbank under 

accession numbers [GenBank: GU737264] (07V063) and [GenBank: GU737265] 

(08V194).  

Virus purification, inactivation and quality control 

MARC-145 grown and PK15Sn-CD163 grown supernatant containing the virus were 

purified via ultracentrifugation as previously described by Vanhee et al. (2009). 

Purified virus (07V063 and 08V194) was suspended in RPMI 1640 (Invitrogen) to a 

titer of 109 TCID50/mL on macrophages (equal to a titer of 108 TCID50/mL on 
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MARC-145 cells). Subsequently, the virus was inactivated using BEI as described 

before (Vanhee et al., 2009) and inactivated virus was stored at -70 °C. To confirm 

that all viruses were completely inactivated, a complete vaccine dose of 08V194 

(MARC-145 grown and PK15Sn-CD163 grown) and 07V063 (MARC-145 grown and 

PK15Sn-CD163 grown) was inoculated on MARC-145 cells and subsequently passaged 

twice. As a positive control, MARC-145 cells were inoculated with 1 mL of non-

inactivated 07V063 and 08V194. The MARC-145 cells were routinely checked for 

cytopathic effect (CPE) and ultimately stained for the PRRSV nucleocapsid protein 

via an immunoperoxidase staining using monoclonal antibody 13E2 (Van Breedam et 

al., 2011). No CPE or positive nucleocapsid staining was detected in cells that were 

inoculated with inactivated virus, while clear CPE and nucleocapsid staining were 

observed in cell cultures that were inoculated with non-inactivated virus.  

Since conservation of entry of inactivated virus may serve as a quality control for the 

preservation of antigenic properties, the effect of BEI-inactivation on virus attachment 

and internalization into macrophages was examined as described previously (Delrue 

et al., 2010; Vanhee et al., 2009). Non-inactivated virus suspensions were included as 

positive controls. The entry experiment showed that the binding and internalization 

kinetics of all BEI-inactivated virus stocks are similar to those observed for the non-

inactivated virus stocks. Western blotting tested the viral antigen load for all vaccines.  

Experimental design 

Thirty-one four-week-old piglets were purchased from a PRRSV-negative farm and 

their PRRSV-seronegative status was confirmed by IPMA upon arrival. The animals 

were housed in isolation units with HEPA-filtered air and kept during 7 days to allow 

adaptation to the new conditions and were randomly divided into 6 groups (Table 1). 

An oil-in-water (o/w) diluent, normally used in the commercial pseudorabies virus 

vaccine Suvaxyn Aujeszky (Fort Dodge Animal Health), was used as an adjuvant and 

is further referred to as o/w Suvaxyn. A first group (group CON, n = 7 pigs) served as 

a mock-vaccinated control group and received 1 mL RPMI 1640 in 1 mL o/w 

Suvaxyn intramuscularly at 5 and 9 weeks of age. Four other groups were vaccinated 

twice intramuscularly at 5 (primo vaccination) and 9 (booster vaccination) weeks of 

age. Group 08V194MARCi (n = 6 pigs) was vaccinated with 1 mL BEI-inactivated 

MARC-145 grown 08V194 (109 TCID50 on macrophages) in 1 mL o/w Suvaxyn and 
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group 08V194PKi (n = 6) was vaccinated with BEI-inactivated PK15Sn-CD163 grown 

08V194 (109 TCID50 on macrophages) in 1 mL o/w Suvaxyn. Group 07V063MARCi 

(n = 6 pigs) was vaccinated with 1 mL BEI-inactivated MARC-145-grown 07V063 

(109 TCID50 on macrophages) in 1 mL o/w Suvaxyn and group 07V063PKi (n = 6 

pigs) received 1 mL BEI-inactivated PK15Sn-CD163 grown 07V063 (109 TCID50 on 

macrophages) in 1 mL o/w Suvaxyn. BEI-inactivated vaccines were administered 

intramuscularly in the neck muscles behind the ear. At 13 weeks of age, all pigs were 

challenged intranasally with PRRSV 08V194 (106 TCID50) in phosphate buffered 

saline (PBS) (2,5 ml per nostril). General health, appetite and rectal body temperature 

of the pigs were monitored daily. Blood samples were taken by jugular venipuncture 

weekly after (primo) vaccination and at 0, 1, 3, 5, 7, 10, 14, 21, 28, 35 and 42 days 

post challenge (dpc). Serum was collected and stored at -70 °C. Serum samples for 

IPMA and VN antibody detection were incubated for 30 min at 56 °C prior to 

freezing. 

The local ethical committee of the Faculty of Veterinary Medicine, Ghent University, 

approved the animal experiments. 

Table	
  1:	
  Experimental design of vaccination-challenge experiment 

Group Vaccination Cell line used for Age  Challenge strain  

    vaccine production in weeks (13 weeks) 

CON Mock - 5 and 9 08V194 

08V194MARCi BEI-inactivated 08V194 MARC-145 cells 5 and 9 08V194 

08V194PKi BEI-inactivated 08V194 PK15Sn-CD163 cells 5 and 9 08V194 

07V063MARCi BEI-inactivated 07V063 MARC-145 cells 5 and 9 08V194 

07V063PKi BEI-inactivated 07V063 PK15Sn-CD163 cells 5 and 9 08V194 

 

Serological examinations and virus titration 

Serum samples were examined for the presence of PRRSV-specific antibodies using 

an IPMA as described by Labarque et al. (2000). IPMA tests were performed on 

08V194-infected MARC-145 cells. VN antibodies were detected by a 

seroneutralization (SN) assay on MARC-145 cells as described before (Geldhof et al., 
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2012). SN tests were performed using the virus variant 08V194. Each serum sample 

was tested in duplicate. Briefly, serum samples were twofold serially diluted and an 

equal volume of a PRRSV 08V194 (2nd passage on PAM + 4 passages on MARC-

145) suspension (titer 2 x 103 TCID50/ mL) was added to each dilution. After mixing, 

the plates were incubated at 37 °C for 1 h and 50 µl of the mixture was subsequently 

transferred to confluent monolayers of MARC-145 cells in 96-well plates. Cells were 

screened for 7 days after inoculation and the neutralization titer of the sera was 

recorded as the reciprocal of the highest dilution that inhibited CPE in 50% of the 

inoculated wells. To check the sensitivity to PRRSV infection of different passages of 

MARC-145 cells, control titrations using PRRSV stocks (isolate 07V063 and isolate 

08V194) with a known virus titer were performed in parallel with each neutralization 

assay. Virus titers in serum were determined by virus titration on 24 h-cultivated 

PAM following a standard procedure (Labarque et al., 2000). 72 hours post 

inoculation, cells were fixed and an immunoperoxidase staining with monoclonal 

antibody 13E2 against the PRRSV nucleocapsid protein was performed to visualize 

infection in the cells (Van Breedam et al., 2011). The titers were calculated as 

described by Reed and Muench (1938) and expressed as TCID50/mL. To check the 

sensitivity of the PAM, all cell batches were assayed in virus titrations using a 

PRRSV stock (08V194) with a known virus titer.  

Statistical analyses 

Antibody titers and virus titers were analyzed by Kruskall-Wallis test, followed by 

Dunn’s multiple comparisons test to determine significant differences with the control 

group at different time points. Samples, that tested negative in IPMA, VN or virus 

isolation, were consequently given a numerical value of 0.0. A two-tailed Fisher’s 

exact test was used to determine significant differences between the number of 

viremic animals in the vaccinated groups and the control group at different time 

points. An overall p value of 0.05 was taken as the level of statistical significance. All 

statistical analyses were performed using GraphPad Prism version 5.0a (GraphPad 

Software, San Diego, California, USA). 
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RESULTS 

Virus sequencing 

The aa sequences of structural proteins ORF2-7 of MARC-145 grown and PK15Sn-

CD163 grown 07V063 or 08V194 were 100% identical to those of the corresponding 

proteins of original macrophage grown virus. The clear difference in aa sequence 

between both 07V063 and 08V194 and with the EU prototype LV and the NA 

prototype VR-2332 allowed their classification as EU wild-type viruses that are not of 

vaccine origin. The ORF5 homology of 08V194 and 07V063 with LV is 86% and 

90%, respectively. The ORF5 sequences of the 2 strains 08V194 and 07V063 show 

86% homology. 

Clinical examination 

None of the groups showed any relevant clinical sign at any time during the 

vaccination period or after challenge exposure. The daily rectal temperatures varied in 

all groups and no statistically significant differences were observed. Challenge with 

PRRSV isolate 08V194 induced moderate fever (higher than 39.5 °C, but not higher 

than 40.5°C) within 7 days post infection in 23 out of 31 inoculated pigs. The 8 

remaining animals did not develop fever. By 9 days post challenge, fever had 

disappeared in all animals.  

Viremia 

Upon challenge, all animals became viremic. In group CON, a maximum mean virus 

titer of 3.8 log10 TCID50/mL was reached at 10 dpc. Subsequently, a decline in virus 

titer was observed and virus was no longer detectable in the serum at 4, 5 or 6 weeks 

after challenge, depending on the animal. Still, 1 piglet remained virus positive till 6 

weeks post challenge (Fig. 1, CON). In group 08V194MARCi, the viremic peak at 

day 5 was not reduced, but the mean virus titer at day 14 was significantly reduced 

and from 21 dpc, virus could no longer be detected in any of the piglets (Fig. 1, 

08V194MARCi). The number of viremic piglets in group 08V194MARCi was 

significantly lower compared to group CON on day 21 and 28 post challenge. The 

mean virus titer in group 08V194PKi reached 3.1 log10 TCID50/mL at 5 dpc, but virus 

titers were not significantly different from those in group CON. At time points 21 and  
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Figure 1. Serum-virus titers after challenge for group CON (Mock-vaccinated control), 
08V194MARCi (BEI-inactivated, MARC-145 grown 08V194), 08V194PKi (BEI-inactivated, 
PK15Sn-CD163 grown 08V194), 07V063MARCi (BEI-inactivated, MARC-145 grown 07V063) and 
07V063PKi (BEI-inactivated, PK15Sn-CD163 grown 07V063). Virus titers in serum (log10 TCID50/mL) 
were determined by virus titration on PAM, followed by immunoperoxidase staining for the PRRSV 
nucleocapsid protein. é = challenge. Symbols represent individual animals and solid lines represent 
mean virus titers calculated on all animals present in each group. The dashed line indicates the mean 
titers for all animals in group CON. The dotted line marks the detection limit for virus titration. 
Mentioned in the table: # = the number of viremic animals in the different groups at different time 
points. M = mean virus titer of all viremic animals in the group at different time points.  
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28 dpc however, virus titers were significantly reduced compared to group CON. 

Moreover, viremia in group 08V194PKi was already cleared at 21 dpc for 5 animals 

and at 28 dpc, all animals were negative (Fig. 1, 08V194PKi). From 21 till 28 dpc, the 

total number of viremic animals in group 08V194PKi was significantly lower than in 

group CON. Mean virus titers in group 07V063MARCi were comparable to those in 

group 07V063PKi, reaching a peak around 5-10 dpc with a maximum mean titer of 

2.8 log10 TCID50/mL and 2.9 log10 TCID50/mL, respectively. No significant 

differences could be detected at any time point between group 07V063MARCi and 

group CON. For 3 animals of this group, virus was cleared from blood at 3 weeks, for 

1 other at 4 weeks and in the remaining animals at 5 weeks post challenge (Fig. 1, 

07V063MARCi). In group 07V063PKi, viremia was detected in all animals, with a 

peak around 5-7 dpc. The viremic phase showed a similar pattern as for group 

07V063MARCi, but in this group viremia was significantly reduced on day 21 and 28 

post challenge compared to group CON. Viremia disappeared in all animals by 5 

weeks after challenge (Fig. 1, 07V063PKi). The number of viremic piglets in group 

07V063PKi was significantly lower compared to group CON on day 21 and 28 post 

challenge. In summary, groups 08V194MARCi, 08V194PKi and 07V063PKi showed 

a significant reduced viremia in time and a significant decrease in the number of 

viremic piglets compared to the mock-vaccinated group CON, while no such effect 

was seen in group 07V063MARCi.  

08V194 virus-specific antibodies 

All mock-vaccinated animals (group CON) had virus-specific serum antibodies 

starting from 7 dpc (Fig. 2, CON). All 6 animals that were vaccinated with BEI-

inactivated, MARC-145 grown 08V194 virus (group 08V194MARCi) seroconverted 

at 2 or 3 weeks after the first vaccination. Similarly, 5 out of 6 animals that were 

vaccinated with BEI-inactivated, PK15Sn-CD163 grown 08V194 (group 08V194PKi) 

showed virus-specific antibodies at 2 or 3 weeks after the first vaccination. In the 

BEI-inactivated, MARC-145 grown 07V063 vaccinated group (group 

07V063MARCi), 08V194-specific antibodies were detected from 2 weeks after primo 

vaccination and all animals seroconverted after booster vaccination. In the group 

vaccinated with BEI-inactivated, PK15Sn-CD163 grown 07V063 (group 07V063PKi) 5 

out 6 pigs showed positive antibody titers at 2 or 3 weeks after the first vaccination 
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and all animals seroconverted after booster vaccination. Antibody titers in all 4 

vaccinated groups were significantly higher compared to group CON from 1 week 

after booster vaccination up till 21 dpc (except for time point 10 and 21 dpc in group 

08V194PKi and group 07V063PKi, respectively) (Fig. 2, 08V194MARCi, 

08V194PKi, 07V063MARCi and 07V063PKi). After 21 dpc, mean antibody titers in 

groups 08V194MARCi, 08V194PKi, 07V063MARCi and 07V063PKi remained 

higher compared to the control group, although differences were not significant. In 

summary, the course of the IPMA antibody titers in all groups was similar to those 

described in previous studies and the former experiments in this thesis (Diaz et al., 

2005; Meier et al., 2003; Yoon et al., 1995).  

08V194-specific virus-neutralizing antibodies 

Starting from 21 dpc, 3 pigs of group CON showed a VN antibody titer and by 35 

dpc, VN antibodies appeared in all mock-vaccinated pigs (Fig. 3, CON). All 6 pigs of 

group 08V194MARCi showed high VN antibody titers at 1 week after the booster 

vaccination and this remained so until the end of the experiment (Fig. 3, 

08V194MARCi). VN antibody titers were significantly higher in group 

08V194MARCi compared to group CON from 1 week after booster vaccination until 

5 weeks post challenge, with mean values ranging from 3.2-6.2 log2. Three animals of 

group 08V194PKi seroconverted for VN antibodies at least once within 3 weeks after 

booster vaccination, but mean VN antibody titers remained low and were only 

significantly higher than group CON at 7 till 21 dpc, reaching mean values ranging 

from 4.3-7.7 log2 (Fig. 3, 08V194PKi). A similar pattern as in group 08V194MARCi 

was observed in group 07V063MARCi, where 08V194-neutralizing antibodies could 

already be detected at 1 week after booster vaccination. Two animals turned negative 

for VN antibodies in the period between 2 weeks post booster vaccination and 10 dpc, 

but after this period, VN antibodies were consistently detected in all 6 animals. The 

mean VN antibody titer in group 07V063MARCi was significantly higher compared 

to group CON in the period between 1 week after booster vaccination and 4 weeks 

post challenge (except for time point 5 dpc), reaching mean values ranging from 2.1-

4.7 log2 (Fig. 3, 07V063MARCi). None of the animals in group 07V063PKi showed 

08V194-specific VN antibodies before challenge, but VN antibodies already appeared 

between 5 and 10 dpc. The mean VN antibody titer in group 07V063PKi was slightly 
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but not significantly higher compared to group CON between 7 and 21 dpc, reaching 

a maximum of 3.5 log2 at 14 dpc (Fig. 3, 07V063PKi).	
   In summary, both 

08V194MARCi and 07V063MARCi vaccine viruses induced a stronger 08V194-

specific VN antibody response upon booster vaccination, than both 08V194PKi and 

07V063PKi vaccine viruses. A faster appearance of VN antibodies post challenge was 

observed in both groups vaccinated with the PK15Sn-CD163-grown virus. 

DISCUSSION 

In this study, 2 circulating PRRSV strains were used for vaccine development. We 

investigated the capacity of an inactivated PRRSV vaccine, grown on PK15Sn-CD163 

cells or grown on MARC-145 cells, to protect naïve pigs upon homologous or 

heterologous PRRSV challenge.  We further examined if the experimental inactivated 

PRRSV vaccine can be improved if the vaccine virus is produced on PK15Sn-CD163 

cells instead of MARC-145 cells. Since the PK15Sn-CD163 cells express Sn and CD163, 

it is expected that no or less mutations in the structural viral proteins will occur, since 

natural entry is mimicked. For both PRRSV isolates used in the study, it is shown by 

sequencing that mutation of structural viral proteins did not occur after growth on 

PK15Sn-CD163 cells. It is important that no mutations occur in the ORFs encoding the 

structural viral proteins, since these are important for the induction of a VN antibody 

response and protection against infection. Mutations in ORFs encoding structural viral 

proteins after growth on PK15Sn-CD163 cells cannot always be avoided for all PRRSV 

strains (Delrue et al., 2010).  

The pigs of all 4 vaccinated groups showed a virus-specific antibody response upon 

booster vaccination, while the pigs in the control group had no detectable virus-

specific antibody titers before challenge. After challenge, all pigs in the vaccinated 

groups reached higher or similar virus-specific antibody titers than the pigs in the 

control group. These results are in line with those described in previous studies and 

the former experiments in this thesis (Diaz et al., 2005; Meier et al., 2003; Yoon et al., 

1995).  

Vaccination with 07V063MARCi or 08V194MARCi vaccines consistently induced 

sizable titers of PRRSV-neutralizing antibodies after at least 2 immunizations given 

four weeks apart.  
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Figure 2. PRRSV-specific IPMA antibody titers (log2) after vaccination and challenge for group 
CON (Mock-vaccinated control), 08V194MARCi (BEI-inactivated, MARC-145 grown 08V194), 
08V194PKi (BEI-inactivated, PK15Sn-CD163 grown 08V194), 07V063MARCi (BEI-inactivated, 
MARC-145 grown 07V063) and 07V063PKi (BEI-inactivated, PK15Sn-CD163 grown 07V063). ⊗ = 
primo vaccination; ⊕ = booster vaccination; é = challenge. Symbols represent individual animals and 
solid lines represent mean IPMA titers calculated on all animals present in each group. The dashed 
line indicates the mean titers for all animals in group CON. The dotted line marks the detection limit 
for the IPMA test. 
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Figure 3. PRRSV-neutralizing antibody titers (log2) after vaccination and challenge for group 
CON (Mock-vaccinated control), 08V194MARCi (BEI-inactivated, MARC-145 grown 08V194), 
08V194PKi (BEI-inactivated, PK15Sn-CD163 grown 08V194), 07V063MARCi (BEI-inactivated, 
MARC-145 grown 07V063) and 07V063PKi (BEI-inactivated, PK15Sn-CD163 grown 07V063). ⊗ = 
primo vaccination; ⊕ = booster vaccination; é = challenge. Symbols represent individual animals and 
solid lines represent mean SN titers calculated on all animals present in each group. The dashed line 
indicates the mean titers for all animals in group CON. The dotted line marks the detection limit for the 
SN test. 
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The 08V194PKi vaccine also induced 08V194-neutralizing antibodies upon double 

vaccination, with the induced titers being lower than the 08V194-induced titers in 

both 07V063MARCi and 08V194MARCi groups. In all 3 groups, the VN titers 

dropped immediately after challenge, which may indicate that they were consumed 

during their interaction with virus early in infection. However, after this initial drop in 

VN antibody titers, VN antibodies quickly reappeared in higher amounts. 

In the pigs in the group 07V063PKi the VN antibody response was only detectable 

upon challenge, but was strongly primed compared to the animals in group CON. The 

fast appearance of VN antibodies upon challenge for MARC-145 grown and for 

PK15Sn-CD163 grown vaccines is in agreement with the findings in previous studies 

(Delrue, 2010; Misinzo et al., 2006; Vanhee et al., 2009). Moreover, it demonstrates 

the potential of priming the neutralizing antibody response by immunization with a 

high dose of inactivated PRRSV. In addition, as described by other authors, 

(Labarque et al., 2003; Molitor et al., 1997; Vanhee et al., 2009) a correlation between 

the appearance of high VN antibody titers and the reduction of viremia was observed, 

indicating that VN antibodies may contribute to protection against the virus. At this 

point, no evidence was available showing that PK15Sn-CD163 grown vaccines were able 

to induce VN antibodies upon double vaccination, as determined by the SN test on 

MARC-145 cells. In a previous study (Delrue et al., 2010, unpublished data), VN 

antibodies before challenge in the groups vaccinated with the PK15Sn-CD163 grown 

virus were absent. This discrepancy can be due to the sensitivity of the classical SN 

test, in which MARC-145 cells and MARC-145 grown virus is used. It is possible that 

antibodies against virus grown on PK15Sn-CD163 cells cannot or less efficiently 

neutralize MARC-145 grown virus. Therefore an SN test on PK15Sn-CD163 cells or 

macrophages with PK15Sn-CD163 grown or macrophage grown virus would be more 

relevant. The SN test on PK15Sn-CD163 cells should be optimized and all serum 

samples of this study should be tested. It is also possible that antibodies with a low 

avidity are missed in the current SN test, since the serum-virus mixture is kept on the 

cells for 10 days. When serum and virus are mixed, VN antibodies will bind to the 

virus, but after 10 days, it may be that VN antibodies with a low avidity binding to the 

virus, detach from the virus after a short time. Washing the serum-virus mixture away 

from the cells after 1 hour can probably solve this problem. Third, the pool of VN 

antibodies induced by MARC-145 grown virus might be different from the pool 
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induced by PK15Sn-CD163 grown virus due to the divergent entry pathway in MARC-

145 cells and PK15Sn-CD163 cells. 

Despite the significant role that VN antibodies seem to play in protection, the 

induction of homologous VN antibodies was not sufficient to completely protect the 

animals, as it still permitted the development of a viremia post-challenge that lasted at 

least 2 weeks. A possible explanation is that a high dose of virus (106 TCID50) was 

used for challenge and that higher VN antibody titers may be needed at the time of 

challenge to offer full protection. Based on data by Benfield et al. (2000) the TCID50 

for field exposure via intranasal route is approximately 103-104 TCID50. Although it 

has been reported that the PRRSV-specific neutralizing antibody response is to a large 

extent strain specific and a lack in cross-neutralization may occur even between 

genetically closely related virus strains (Kim & Yoon, 2008; Okuda et al., 2008), our 

data indicates that between the 2 EU type viruses used in this study, cross-

neutralization exists. The 07V063MARCi and 07V063PKi vaccines used in this study 

induced antibodies that could neutralize the heterologous challenge virus in in vitro 

SN assays and consequently could limit viremia under heterologous challenge 

conditions. These results suggest that in PRRSV, under some circumstances 

heterologous VN antibodies can be equally efficient as the homologous VN 

antibodies. This was recently observed by Martinez-Lobo et al. (2011). Differences in 

cross-reactivity might be due to different reasons. A first factor is the antigenic 

variability of neutralizing epitopes (NE). Although different viral proteins, including 

GP2, GP3, GP4, GP5 and M protein, have been identified as inducers of VN 

antibodies by different approaches, the NEs of PRRSV have not been fully 

characterized (Ansari et al., 2006; Cancel-Tirado et al., 2004; Kim & Yoon, 2008; 

Kim et al., 2007; Vanhee et al., 2011). Changes in the aa sequence of these NEs might 

prevent recognition of those epitopes by VN antibodies. A second factor that can 

change the VN profile is glycosylation of envelope proteins that is used by enveloped 

viruses as a mechanism of immune evasion used to escape, block or minimize virus 

VN antibody response making epitopes poorly immunogenic (Ansari et al., 2006). 

Still, the nature of this phenomenon remains currently unknown. Clearly, this matter 

requires further investigation in the future.  

Both 08V194MARCi  and 08V194PKi vaccines were effective in partially protecting 
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naïve pigs upon homologous challenge. They reduced the duration of viremia with 

approximately 3 weeks upon homologous challenge, when compared to the viremic 

phase in the respective mock-vaccinated group, which lasted approximately 1 month. 

Vaccines 07V063MARCi and 07V063PKi were included to study the strain 

variability in relation to its impact on vaccine efficacy. We found a significant 

reduction of viremia upon vaccination with 07V063PKi and a non-significant 

reduction in 08V194 viremia after the use of 07V063MARCi. These results are in line 

with earlier studies published by Vanhee et al. (2009) and Geldhof et al. (2012), 

showing that BEI-inactivated vaccines can be successful in reducing viremia upon 

homologous challenge. This is also the first report of an inactivated, PK15Sn-CD163 

grown PRRSV vaccine that manages to induce partial protection upon homologous 

and heterologous challenge. Nevertheless, we have to take in account that when we 

look to the graphs and results no biologically relevant differences are visible. 

Considering the similar efficacy in homologous situations of MARC-145 grown or 

PK15Sn-CD163 grown vaccines virus, it can be questioned whether the use of PK15Sn-

CD163 grown vaccines is advantageous over the use of MARC-145 grown vaccines. 

Hurdles concerning the use of MARC-145 cells are the different entry pathway for 

PRRSV to grow on MARC-145 cells (Collins et al., 1992; Tan et al., 2001) and 

patents that restrict the commercial use of these cells. Another issue, most field 

isolates do not replicate in MARC-145 cells, with a report showing that only 2% of 

the tested field samples replicated in MARC-145 cells, contrasting to 70% in PAM 

(de Abin et al., 2009). Recent preliminary results in our laboratory showed that 

primary PRRSV field isolates are able to grow immediately without passage on 

PK15Sn-CD163 cells.  

Above-mentioned results suggest that both MARC-145 grown and PK15Sn-CD163 

grown, inactivated vaccines may provide a more or less standardized, predictable 

degree of protection upon homologous challenge. Still, the production process of 

inactivated vaccines may appear too elaborate and costly and further optimization to 

improve MARC-145 grown or PK15Sn-CD163 grown, inactivated PRRSV vaccines 

remains a challenge for the future. An important question is the dose that is needed 

for inducing a protective immunity. If it is possible to skip the 

purification/concentration step, this type of vaccine is commercially interesting, even 

for the production of autogenous vaccines. This aspect will be studied in the near 
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future. Further research is needed to explore the value of this promising PK15Sn-CD163 

cell line, thereby focusing on virus isolation and production.  
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5.1. INTRODUCTION 

Porcine reproductive and respiratory syndrome virus (PRRSV) can cause reproductive 

failure in sows on itself, while PRRS-associated respiratory disease results from co-

infections of PRRSV with other viral or bacterial pathogens (Brockmeier et al., 2002; 

Christianson et al., 1992; Terpstra et al., 1991).  

To date, PRRSV has spread worldwide with the characteristics of an endemic in the 

swine-producing countries, causing enormous economic losses each year (Brouwer et 

al., 1994; Dea et al., 2000; Neumann et al., 2005). The high genetic and antigenic 

variability of PRRSV, underlying different phenotypic properties amongst virus 

strains, poses an important challenge for herd-level and regional control (Kapur et al., 

1996; Kimman et al., 2009; Murtaugh et al., 1995; Nelsen et al., 1999). For example, 

PRRSV strains can largely differ in pathogenesis, virulence and interaction with the 

immune system (Darwich et al., 2011; Halbur & Bush, 1997; Tian et al., 2007).  

Up till now, the most studied aspect of PRRSV immunity has been the virus-specific 

antibody response. Several studies specifically aimed to characterize the VN antibody 

response and its role in protection against PRRSV infection (Labarque et al., 2000; 

Lopez & Osorio, 2004; Lopez et al., 2007; Ostrowski et al., 2002; Yoon et al., 1995). 

Although resolution of PRRSV infection is not always directly correlated with the VN 

antibody response (Diaz et al., 2006), there is clear evidence that neutralizing 

antibodies can facilitate virus clearance and, when present in sufficient amounts, may 

even provide a sterilizing immunity (Labarque et al., 2000; Lopez & Osorio, 2004; 

Lopez et al., 2007; Osorio et al., 2002). While VN antibodies are certainly considered 

as an important element of protective immunity, it has become clear that also other 

immune components/mechanisms are necessary to provide efficient protection. 

In addition to hygienic measures and management strategies, vaccination with 

inactivated (EU type) or attenuated (EU or NA type) vaccines is often applied in the 

field to prevent or control virus circulation. However, PRRSV keeps on circulating in 

the field, and even farms where strict vaccination procedures are applied may suffer 

from PRRS-associated problems (porcine veterinarians, personal communications; H. 

Nauwynck, personal communication; Thanawongnuwech & Suradhat, 2010). In a 

small study at pig farms in Flanders and The Netherlands, virus could be isolated 

from 16 out of 19 farms, independent of the vaccination protocols that were used on 
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the different farms (Geldhof, unpublished data). It is generally accepted that a 

continuous update of PRRSV vaccine strains is necessary to reach an acceptable level 

of protection in the field. However, the strains that are used in the commercial 

vaccines originate from the nineties. Our laboratory is doing a lot of efforts to design 

new vaccines based on new insights in the PRRSV infection pathogenesis and 

immune response (Nauwynck et al., 2012). Virus was inactivated by a quality-

controlled viral inactivation procedure that optimally conserves the functional 

properties of the viral envelope proteins (Delrue et al., 2009).  In addition, it was 

decided to vaccinate with high doses of inactivated virus and to administer the virus 

in combination with an oil-in-water adjuvant, normally used in the commercial 

pseudorabies virus vaccine Suvaxyn Aujeszky (Fort Dodge Animal Health, Kelmis, 

Belgium). Vaccination of naïve pigs with the experimental vaccine, based on Lelystad 

virus (LV), resulted in a strong LV-specific VN antibody response by vaccination on 

itself with a clear reduction of viremia upon homologous PRRSV challenge (Vanhee 

et al., 2009). Based on this background, a sufficient antigenic load and suitable 

adjuvant were used throughout this PhD work to induce an adequate immune 

response.  

5.2. VACCINATION OF PRRSV-NAIVE ANIMALS UNDER HOMOLOGOUS 
AND HETEROLOGOUS EXPERIMENTAL CONDITIONS  

Currently however, it is unknown whether it is possible to achieve similar results for 

PRRSV isolates that are currently causing reproductive or respiratory disorders in the 

field. In this thesis, recent PRRSV isolates, from outbreaks in herds vaccinated with a 

registered vaccine, were used for autogenous inactivated vaccine development. The 

capacity of inactivated PRRSV vaccines, grown on PK15Sn-CD163 cells or on MARC-

145 cells, to protect naïve pigs against homologous or heterologous PRRSV challenge 

was investigated. The induction of challenge virus-specific IPMA and VN antibody 

titers were examined, as well as the virological protection upon challenge - a factor 

directly linked with viral pathogenesis and spread. All farm-specific inactivated 

PRRSV vaccines were effective in partially protecting naïve pigs upon homologous 

challenge. They reduced the duration of viremia with 2 or more weeks upon 

homologous challenge, when compared to the viremic phase in the respective mock-

vaccinated groups, which lasted roughly 1 month. Vaccination with BEI-inactivated, 

homologous MARC-145 grown virus resulted in a significant reduction of viremia 
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and a significant decrease in the number of viremic piglets upon challenge, while the 

heterologous BEI-inactivated, MARC-145 grown virus did not. Both homologous and 

heterologous BEI-inactivated, PK15Sn-CD163 grown vaccines obtained a significant 

reduction of viremia and a significant decrease in the number of viremic piglets. 

These results are in line with an earlier study published by Vanhee et al. (2009), 

showing that BEI-inactivated vaccines can be successful in reducing viremia upon 

challenge. This is also the first report of an inactivated, PK15Sn-CD163 grown PRRSV 

vaccine that manages to induce partial protection upon homologous and heterologous 

challenge. A possible explanation for the partial protection is that a high dose of virus 

was used for challenge (106 TCID50) and that higher VN antibody titers may be 

needed at the time of challenge to offer full protection. Based on data by Benfield et 

al. (2000) the TCID50 for field exposure via intranasal route is approximately 103-104 

TCID50. 

Homologous and heterologous BEI-inactivated, MARC-145 grown as well as PK15Sn-

CD163 grown viruses induced a virus-specific antibody response. Vaccination with 

homologous and heterologous BEI-inactivated, MARC-145 grown virus consistently 

induced a VN antibody response upon booster vaccination. The homologous PK15Sn-

CD163 grown vaccine also induced VN antibodies upon double vaccination, with the 

induced titers being lower than the induced titers in MARC-145 grown, BEI-

inactivated groups. In the pigs in the group vaccinated with heterologous, BEI-

inactivated, PK15Sn-CD163 grown virus the VN antibody response was only detectable 

upon challenge, but was strongly primed compared to the animals in the control 

group.  The fast appearance of VN antibodies upon challenge for MARC-145 grown 

and for PK15Sn-CD163 grown vaccines is in agreement with the findings in previous 

studies (Delrue, 2010; Misinzo et al., 2006; Vanhee et al., 2009). It demonstrates the 

potential of priming the neutralizing antibody response by immunization with a high 

dose of inactivated PRRSV. In addition, as described by other authors, (Labarque et 

al., 2003; Molitor et al., 1997; Vanhee et al., 2009) a correlation between the 

appearance of high VN antibody titers and the reduction of viremia was observed, 

indicating that VN antibodies may contribute to protection against the virus. Although 

it has been reported that the PRRSV-specific neutralizing antibody response is to a 

large extent strain specific and a lack in cross-neutralization may occur even between 

genetically closely related virus strains (Kim & Yoon, 2008; Okuda et al., 2008), our 
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data indicate that between the EU type viruses used in this thesis, cross-neutralization 

exists.  

Although in the first study, (chapter 3) the used BEI-inactivated vaccines induced 

antibodies that could neutralize the homologous as well as the heterologous challenge 

virus in in vitro seroneutralization assays, it was somewhat surprising that these 

vaccines could only limit viremia under the homologous challenge conditions, and not 

when the heterologous challenge virus was used. The exact reason behind this 

remains currently unknown, but several possible explanations may be given. For 

instance, it is possible that induction of virus-specific neutralizing antibodies is not 

sufficient and that PRRSV vaccines must promote other immune mechanisms (e.g. 

via cross-presentation to T-cells) to provide a significant degree of protection upon 

challenge. On the other hand, it can be speculated that, although the vaccine-induced 

antibodies can bind and neutralize the homologous and heterologous challenge virus 

to a similar extent in in vitro SN assays, they recognize the homologous virus with a 

higher affinity. Affinity differences may explain a reduced binding and neutralization 

of heterologous virus in vivo, as the binding conditions for (VN) antibodies are likely 

more stringent in vivo than in the in vitro SN assays. Under homologous challenge 

conditions, the antibodies have undergone optimal challenge virus-specific affinity 

maturation, while this is not the case under heterologous challenge conditions. In 

theory, the presence of vaccine-induced antibodies that cross-react with a 

heterologous challenge virus may even prevent the selection of high-affinity (VN) 

antibodies against this challenge virus (original antigenic sin). Clearly, this matter 

requires further investigation in the future.  

In the last study (chapter 4) the heterologous, BEI-inactivated, MARC-145 grown or 

PK15Sn-CD163 grown vaccines induced antibodies that could neutralize the 

heterologous challenge virus in in vitro SN assays and consequently could limit 

viremia under heterologous challenge conditions. These results suggest that in 

PRRSV, under some circumstances heterologous VN antibodies can be equally 

efficient as the homologous VN antibodies. This was recently observed by Martinez-

Lobo et al. (2011). Differences in cross-reactivity might be due to different reasons. A 

first factor is the antigenic variability of neutralizing epitopes (NE). Although 

different viral proteins, including GP2, GP3, GP4, GP5 and M protein, have been 

identified as inducers of VN antibodies by different approaches, the NEs of PRRSV 
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have not been fully characterized (Ansari et al., 2006; Cancel-Tirado et al., 2004; Kim 

& Yoon, 2008; Kim et al., 2007; Vanhee et al., 2011). Changes in the aa sequence of 

these NEs might prevent recognition of those epitopes by VN antibodies. Some 

hotspots of high variability are observed in the different proteins, while some other 

regions are strongly conserved, even between EU- and NA type strains. The level of 

aa conservation in a certain region always results from functional sequence 

restrictions that are required for the virus viability, together with immunological 

pressure that tends to select for mutant variants that escape immunity. Therefore, 

exceptionally conserved regions are thought to be highly functionally restricted, while 

extremely variable regions are thought to be subject to large immunological pressure 

(Costers et al., 2010a; Costers et al., 2010b; Vanhee et al., 2011). For example, the 

highly variable region in GP4 is known to induce VN antibodies for LV and for field 

isolates. However, the large variability of this region makes that GP4-specific 

neutralizing antibodies are poorly cross-protective between different virus strains 

(Vanhee et al., 2010). 

A second factor that can change the VN profile is glycosylation of envelope proteins 

that is used by enveloped viruses as a mechanism of immune evasion used to escape, 

block or minimize virus VN antibody response making epitopes poorly immunogenic 

(Ansari et al., 2006). This strategy has been demonstrated for several viruses, 

including human immunodeficiency virus 1 (Binley et al., 2010), hepatitis B virus 

(Lee et al., 2003) and hepatitis C virus (Gal-Tanamy et al., 2008). Still, the nature of 

this phenomenon remains currently unknown. Nevertheless, in the study by Martínez-

Lobo et al. (2011) differences in cross-neutralization in sera raised against different 

EU type strains could not be related strictly to the sequence and number of 

glycosylations of the known GP3, GP4 or GP5 NE and those authors suggested that 

maybe the conformational characteristics of the epitopes could have a role on the 

cross-reactivity or, alternatively, that other NE unknown yet exist. 

In general, adaptive immunity induced by a certain virus strain is often not (fully) 

cross-protective against other strains (Kim & Yoon, 2008; Labarque et al., 2004; 

Mengeling et al., 2003). Still, the relative contribution of different immune 

determinants in protection is not fully elucidated, and no straightforward clue exists to 

date to accurately predict cross-reactivity. Clearly, this matter requires further 

investigation in the future.  
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5.3. CELL LINES: MARC-145 GROWN OR PK15Sn-CD163 GROWN 

A limited number of options for vaccine production are available to grow PRRSV in 

vitro. In vivo, PRRSV infects a subpopulation of differentiated macrophages (Duan et 

al., 1998). Besides these primary porcine cells (PAM), only the African green monkey 

kidney cells MA-104, and cells derived thereof, such as MARC-145, sustain in vitro 

virus replication (Kim et al., 1993). These MARC-145 cells however lack 

sialoadhesin (Sn) and as a consequence the virus is forced to enter MARC-145 cells 

exclusively in a Sn-independent way, which is notably different from entry in the 

PRRSV in vivo target cells, macrophages, where the main entry pathway is Sn-

dependent. This forced shift in entry-pathway may be one of the reasons that 

adaptation is needed for PRRSV to grow on MARC-145 cells (Collins et al., 1992; 

Tan et al., 2001). Due to adaptation, mutations in non-structural, but also structural 

viral proteins can occur (Allende et al., 2000; Indik et al., 2000; Zhou et al., 2009), 

which can lead to an inefficient immune response. Upon discovery of CD163 as a key 

component of PRRSV entry, non-permissive cells expressing CD163 were proposed 

as alternative to PAM and MARC-145, due to their potential to sustain productive 

PRRSV infection (Calvert et al., 2007). Since the main entry pathway of PRRSV in 

macrophages involves Sn-mediated internalization in addition to CD163, a non-

permissive cell line expressing both sialoadhesin and CD163 was developed in our 

laboratory. Preliminary results in our laboratory showed that primary PRRSV isolates 

are indeed able to grow immediately without passaging on these CD163+SN+ PK15 

cells, albeit not all of them, a phenomenon that is also observed for macrophages (de 

Abin et al., 2009). Additionally, virus yield was significantly higher on CD163+SN+ 

PK15 cells compared to cells solely expressing CD163 (Van Gorp Hanne, personal 

communication). Furthermore, the virus yield was equal or even higher than on PAM 

or MARC-145 cells (Delrue et al., 2010). The production of different PRRSV strains 

on those cell lines was optimized. In this thesis, the capacity of inactivated PRRSV 

vaccines, grown on PK15Sn-CD163 cells or on MARC-145 cells, to protect naïve pigs 

against homologous or heterologous PRRSV challenge was examined. For both 

PRRSV isolates used in the study, it was shown by sequencing that mutation of 

structural viral proteins did not occur after passaging in PK15Sn-CD163 cells. It is 

important that no mutations occur in the ORFs encoding the structural viral proteins, 

since these are important for the induction of a VN antibody response and protection 
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against infection. Though, mutations in ORFs encoding structural viral proteins after 

growth on PK15Sn-CD163 cells cannot always be avoided for all PRRSV strains (Delrue 

et al., 2010). Considering the similar efficacy in homologous situations of MARC-145 

grown or PK15Sn-CD163 grown vaccines virus, it can be questioned whether the use of 

PK15Sn-CD163 grown vaccines is advantageous over the use of MARC-145 grown 

vaccines. Hurdles concerning MARC-145 cells are the difficulties to adapt PRRSV to 

MARC-145 cells (Collins et al., 1992; Tan et al., 2001) and patents that restrict the 

commercial use of these cells. Most field isolates do not replicate in MARC-145 cells, 

with a report showing that only 2% of the tested field samples replicated in MARC-

145 cells, contrasting to 70% in PAM (de Abin et al., 2009). Recent preliminary 

results in our laboratory showed that primary PRRSV field isolates are able to grow 

immediately without passaging in PK15Sn-CD163 cells, albeit not all of them. Further 

research is needed to explore the value of this promising Sn-positive PK15 cell line 

stably expressing CD163, thereby focussing on virus isolation and production, and its 

potential as a tool for in vitro PRRSV studies. 

5.4. COMMERCIAL AVAILABLE VACCINES 

Separate from the experimental BEI-inactivated PRRSV vaccines, also 1 commercial 

inactivated (Progressis®) and 2 commercial attenuated (Porcilis® PRRS and Ingelvac® 

PRRS MLV) PRRSV vaccines were included in the first study and served as a 

reference. Vaccination with the commercial inactivated vaccine Progressis® did not 

induce VN antibodies, neither did it provide any degree of protection in naïve pigs 

upon challenge. This is in line with the results from previous studies, showing that the 

commercial inactivated vaccines do not influence viremia, even in nearly homologous 

conditions (Nielsen et al., 1997; Scortti et al., 2007; Zuckermann et al., 2007). 

Vaccination with the EU genotype attenuated vaccine reduced the duration of viremia 

upon challenge with 07V063 with approximately one week. In animals challenged 

with 08V194, this vaccine reduced viremia from 5 to 2 weeks. The NA genotype, 

attenuated vaccine reduced viremia in 07V063-challenged animals with 

approximately one week. Hence, despite the concerns regarding the efficacy of the 

attenuated vaccine used on both farms, the results from our study indicate that the use 

of this vaccine in PRRS-naïve pigs can clearly limit viremia. These results are in line 

with earlier studies published by Cano et al. (2007) and Scortti et al. (2006), showing 
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that attenuated vaccines can be successful in controlling and reducing clinical disease 

upon homologous and heterologous challenge. 

In the animals vaccinated with the commercial inactivated PRRSV vaccine 

Progressis®, neither the IPMA nor the VN antibody response was influenced before or 

after challenge with 07V063, which is in line with the results reported by Zuckermann 

et al. (2007) and Vanhee et al. (2009), where they used the same vaccine and the LV 

strain as challenge virus: no clear induction of challenge virus-specific (neutralizing) 

antibodies was observed upon vaccination with the commercial inactivated PRRSV 

vaccine and only a moderate anamnestic antibody response was observed upon 

challenge of the vaccinated animals. The apparent limited immunogenicity of this 

vaccine may relate to the inactivation procedure used, strain variability, antigenic 

dose, adjuvant, … Further research is necessary to elucidate this. In the animals 

vaccinated with the commercial attenuated vaccines, either based on EU- or NA type 

virus, a low or non-detectable VN antibody response was observed, which is in 

agreement with the results of Lopez & Osorio (2004). None of the attenuated vaccines 

were able to induce a faster neutralizing antibody response upon challenge. Despite 

the absence of a clear challenge virus-specific VN antibody response, the commercial 

attenuated vaccines do provide a partial virological protection, roughly similar to the 

protection provided by the autogenous BEI-inactivated vaccines. This observation 

points towards a significant role of other attenuated vaccine-induced immune 

mechanisms (e.g. cell-mediated immunity) in the protection against PRRSV infection 

(Charerntantanakul et al., 2006; Diaz et al., 2006; Zuckermann et al., 2007). 

5.5. VACCINATION OF PREGNANT PRRSV-NAIVE GILTS UNDER 
EXPERIMENTAL CONDITIONS 

Preventing the virus spread from mother to fetus is an important step towards control 

of PRRSV-related reproductive problems (Plana et al., 1992; Terpstra et al., 1991). 

The exact mechanism of the virus-induced reproductive failure remains unknown. 

Recent findings have shown that PRRSV efficiently replicates in the fetal 

implantation sites (endometrium/fetal placenta) during late gestation and causes 

apoptosis in infected and surrounding cells (Karniychuk et al., 2011). Therefore, the 

BEI-inactivated vaccine was tested in pregnant naïve gilts (Karniychuk et al., 2012). 

The experimental inactivated PRRSV vaccine primed the VN antibody response and 
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slightly reduced the duration of vriremia in gilts. Furthermore, vaccination reduced 

the virus replication in the fetal placenta and placental pathology and lowered the 

number of virus-positive fetuses. Vaccine-mediated factors are supposed to be the 

reason for reducing PRRSV transfer from the endometrium (the primary site for 

PRRSV replication prior to conceptus infection) to the fetal placenta. However, 

congenital infection could not fully be prevented. Previously, other inactivated 

vaccines were neither able to prevent congenital infection (Plana-Duran et al., 1997; 

Scortti et al., 2007). In the study of Karniychuk et al. (2012), a protocol for primary 

testing of PRRSV vaccines in pregnant animals was proposed that might be useful for 

testing vaccines against PRRSV in pregnant sows in a standardized way.  

5.6. VACCINATION OF NON-PREGNANT PRRSV-IMMUNE SOWS UNDER 
EXPERIMENTAL CONDITIONS AND PREGNANT PRRSV-IMMUNE 
SOWS UNDER FIELD CONDITIONS  

Despite the frequent use of commercially available vaccines for maintaining 

immunity in breeding herds, little is known on how the used vaccines boost the 

antibody response against divergent virus strains. The presence of sufficient amounts 

of VN antibodies can fully prevent the transplacental infection with PRRSV and 

completely extinguish the infection of PRRSV in pregnant females (Osorio et al., 

2002). These findings are in agreement with previous reports of commercial or 

experimental vaccines inducing VN antibodies, which seemed to be associated with 

protection (Osorio et al., 1998; Pirzadeh and Dea, 1998). These data support the 

interesting possibility that passive transfer of VN antibodies via colostrum could be 

used to provide instant protection of animals at high risk of infection with PRRSV.  

This thesis investigated the serological response of non-pregnant sows, which came 

from herds with active circulation of naturally occurring PRRSV-variants, upon 

vaccination with commonly used commercial vaccines (one inactivated and two 

attenuated vaccines) or a farm-specific BEI-inactivated vaccine.  

Vaccination with the commercial attenuated vaccines elicited a variable antibody 

response. In contrast, vaccination with the attenuated NA-type vaccine (Ingelvac® 

PRRS) did not elicit virus-specific or VN antibody production against the PRRSV-

variants. These results support the idea that the current generation of attenuated 

vaccines is not universally successful in stimulating the (heterologous) humoral 

immune response in infection-immune animals. This is in line with a study by 
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Murtaugh et al. (2002), who reported that attenuated vaccines have difficulties in 

maintaining immune protection in sows. The absence of an anamnestic humoral 

immune response upon re-vaccination may result from a lack in sufficient vaccine 

virus replication in vaccinated animals, although strain differences between the 

vaccine and challenge virus may also explain this phenomenon (Charerntantanakul et 

al., 2006; Scortti et al., 2006; Zuckermann et al., 2007). The inactivated EU-type 

vaccine (Progressis®) stimulated the virus-specific antibody response and also a 

moderate anamnestic VN antibody response against 2 different genetically different 

PRRSV strains. Although the commercial inactivated vaccines do not appear to 

stimulate the VN antibody response in naïve animals (Vanhee et al., 2009; 

Zuckermann et al., 2007), it has been reported that they may boost VN antibody 

production in previously infected animals (Meier et al., 2003; Nilubol et al., 2004; 

Plana-Duran et al., 1997; Scortti et al., 2007; Zimmerman et al., 2006). All sows 

vaccinated with the farm-specific inactivated vaccines, showed a significant rise in 

VN antibodies against the prevalent PRRSV-variant in their herd. In previous studies, 

a correlation was seen between the induction of VN antibodies by this kind of BEI-

inactivated adaptable PRRSV vaccine and partial protection upon homologous 

challenge in naïve animals (Geldhof et al., 2012; Vanhee et al., 2009). This boosting 

of sows with the BEI-inactivated farm-specific vaccines results in the rise of VN 

antibodies in the blood and may lead to protection against transplacental spread and 

birth of viremic piglets (Lopez et al., 2007; Osorio et al., 2002). The impact of a BEI-

inactivated autogenous vaccine on maternal immunity and on the PRRSV infection 

pattern in piglets during their first weeks on a farm was investigated in this thesis. 

High levels of VN antibodies were detected in serum of farm-specific immunized 

sows at 2 weeks upon vaccination. The serological response after vaccination with 

Porcilis® PRRS varied between sows. The concentration of antibodies in sow serum 

was shown to decline the first week post-partum and remained low, similar to pre-

partum levels until the end of lactation. A high amount of maternal VN antibodies in 

serum was found at 3 and 5 weeks after birth in 100% and 81% of the piglets that 

ingested colostrum from sows vaccinated with the farm-specific vaccine. In contrast, 

the VN antibody titers of piglets from the Porcilis® PRRS -vaccinated sows decreased 

faster (32% positive at 5 weeks) and only a few piglets of 3 mock-vaccinated sows 

had VN antibody titers against the circulating farm-specific isolate supporting that the 

sow population experienced a contact with the circulating PRRSV-variant during their 
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life. This also resulted in a faster appearance of viremic piglets and a statistical higher 

number of viremic piglets in the piglets of the non-vaccinated sows at 7 and 9 weeks 

of age. The appearance of viremic piglets of vaccinated (both farm-specific and 

Porcilis® PRRS) sows was delayed in time in comparison with piglets of control 

sows. The passive transfer of VN antibodies in colostrum to piglets has lead to a 

curtailment of viremic piglets. When colostral VN antibodies became undetectable, 

the number of viremic piglets increased. Lopez et al. (2007) has observed that 

passively transferred VN antibodies protect young piglets against PRRSV infection. 

Neutralizing antibodies can block viremia, as described before in reports by Yoon et 

al. (1996) and Labarque et al. (2003). Despite a lower transfer of VN antibody titers 

from sow to piglets in Porcilis® PRRS vaccinated sows, results from our study 

indicated that the use of this vaccine in sows still has positive effects in the nursery. 

As previously documented, not only antibody immunity, but also other immune 

factors could be transferred by colostrum (Bandrick et al., 2008). These colostrum-

derived immune factors may as well have played a role in the immunity of these 

piglets. Similar results as above-mentioned were observed on a second farm (data not 

shown). High titers of maternal VN antibodies in serum were found at 3, 5 and 7 

weeks after birth in 100%, 81% and 67% of the piglets that ingested colostrum from 

sows vaccinated with this farm-specific vaccine. Remarkably, at 3 weeks of age, 67% 

of the piglets of mock-vaccinated sows had VN antibody titers against the circulating 

farm-specific isolate. In total, one viremic piglet was detected at 9 weeks of age, 

suggesting that the piglets up to 8 weeks of age are well protected against PRRSV 

circulation. High VN antibody titers were present in all sows, at the time of the 

vaccination, suggesting that the sows of this farm had a strong population-immunity 

(due to vaccination or maybe a recent infection). Large-scale use of attenuated 

vaccines can stimulate the immunity in infectious-immune animals and thus reduce 

negative consequences of heterologous PRRSV strains.  

Data obtained in our study should help us to understand the importance of maternal 

vaccination in order to protect the offspring from PRRSV-infections. A more 

elaborated exploration on this topic should be done in the future.  
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5.7. OTHER IMMUNE MECHANISMS 

Although there is a correlation between the appearance of VN antibodies and the 

elimination of PRRSV from the circulation (Batista et al., 2004; Labarque et al., 

2000), it should not be forgotten that VN antibodies are not the sole players in 

PRRSV-specific protective immunity (Charerntantanakul et al., 2006; Diaz et al., 

2006; Zuckermann et al., 2007). Due to the absence of a strong VN antibody 

response, the efficacy of attenuated vaccines points towards a significant role of other 

effector mechanisms in the final protection against PRRSV (Charerntantanakul et al., 

2006; Diaz et al., 2006; Zuckermann et al., 2007). PRRSV-specific cell-mediated 

immunity also develops very gradually upon infection in naïve animals and it is 

currently not clear how and to which extent cellular (vaccine-induced) immune 

mechanisms contribute to protection and which cell types are involved 

(Charerntantanakul et al., 2006; Costers et al., 2009; Diaz et al., 2005; Meier et al., 

2003). Nevertheless, animals that have gone through a PRRSV infection are generally 

well protected against a second infection with the homologous virus strains, and both 

antibody-dependent as well as cell-mediated immune components are supposed to be 

involved in this protective immunity (Lager et al., 1999; Meier et al., 2003; 

Mengeling et al., 2003; Osorio et al., 2002). 
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SUMMARY 

Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA 

virus that is involved with reproductive failure (weak- and stillborn piglets, premature 

farrowing, late-term abortions) in sows and respiratory disease in pigs of all ages, 

resulting in huge economic losses to the swine industry. A high genetic variability has 

been demonstrated within PRRSV variants and the genetic differences between virus 

variants are mirrored in different virulence, pathogenicity, immunogenicity, … This 

high variability of the virus represents a major hurdle for effective PRRSV prevention 

and control. Broad application of current available PRRSV vaccines is the most 

commonly used strategy to combat the clinical and economical impact of PRRSV 

infections. It is generally accepted that there is a need for new and safe vaccines that 

can protect against infection with those virus variants that escape immunity induced 

by the currently available commercial vaccines. The general goal of this work was to 

evaluate autogenous inactivated PRRSV vaccines – prepared according to a 

previously optimized in-house protocol – with the capacity of commercially available 

attenuated/inactivated PRRSV vaccines in naïve and PRRSV-immune animals. 

Currently however, it is unknown whether added benefits with these new method 

farm-specific vaccines can be made.   

Chapter 1 shortly highlights the current literature on general aspects of the virus and 

the disease, PRRSV-specific immunity and PRRSV vaccines.  

In chapter 2 the general aim of this thesis is described and a number of aims are 

stated. The next 2 chapters consist of experimental data addressing these aims.  

The first study in this thesis (chapter 3 part 1) mainly focused on the efficacy of the 

experimental BEI-inactivated vaccines against homologous and heterologous 

challenge and to compare it with an experimental LV-based BEI-inactivated vaccine 

and commercial inactivated and attenuated vaccines. In addition, the induction of 

challenge virus-specific (neutralizing) antibodies by the different vaccines was 

assessed. Two recent PRRSV field isolates (07V063 and 08V194) were used for BEI-

inactivated vaccine production. In a first experiment (challenge with 07V063), 

vaccination with the experimental homologous (07V063) inactivated vaccine 

shortened the viremic phase upon challenge with approximately 2 weeks compared to 

the mock-vaccinated control group. Vaccination with the commercial attenuated 
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vaccines reduced the duration of viremia with approximately one week compared to 

the mock-vaccinated control group. In contrast, the experimental heterologous (LV) 

inactivated vaccine and the commercial inactivated vaccine did not influence viremia. 

Interestingly, both the homologous and the heterologous experimental inactivated 

vaccine induced 07V063-specific neutralizing antibodies upon vaccination, while the 

commercial inactivated and attenuated vaccines failed to do so. In the second 

experiment (challenge with 08V194), use of the experimental homologous (08V194) 

inactivated vaccine shortened viremia upon challenge with approximately 3 weeks 

compared to the mock-vaccinated control group. Similar results were obtained with 

the commercial attenuated vaccine. The experimental heterologous (07V063 and LV) 

inactivated vaccines did not significantly alter viremia. In this experiment, the 

experimental homologous and heterologous inactivated vaccines induced 08V194-

specific neutralizing antibodies and a faster appearance post challenge was observed 

with the commercial attenuated vaccine. The main conclusions obtained from this 

study are that the experimental homologous inactivated vaccines significantly 

shortened viremia upon challenge. Despite the concerns regarding the efficacy of the 

commercial attenuated vaccines used on the farms where the field isolates were 

obtained, use of commercial attenuated vaccines clearly shortened the viremic phase 

upon challenge. In contrast, the experimental heterologous inactivated vaccines and 

the commercial inactivated vaccine had no or only a limited influence on viremia.  

The study in chapter 3 part 2 aimed to assess the capacity of commercially available 

attenuated/inactivated PRRSV vaccines and autogenous BEI-inactivated PRRSV 

vaccines to boost the antibody immunity against currently circulating PRRSV variants 

in PRRSV-immune sows. PRRSV isolates (07V063, 08V194 and 08V204) were 

obtained from 3 different swine herds experiencing PRRSV-related problems, despite 

regular vaccination of gilts and sows against the virus. In a first part of the study, the 

PRRSV-specific antibody response upon booster vaccination with commercial 

PRRSV vaccines and inactivated farm-specific PRRSV vaccines was evaluated in 

PRRSV-immune, non-pregnant replacement sows from the 3 herds. A boost in virus-

neutralizing antibodies against the farm-specific isolate was observed in all sow 

groups vaccinated with the corresponding farm-specific inactivated vaccines. Use of 

the commercial attenuated EU type vaccine boosted virus-neutralizing antibodies 

against the farm-specific isolate in sows derived from 2 farms, while use of the 
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commercial attenuated NA type vaccine did not boost farm-specific virus-neutralizing 

antibodies in any of the sow groups. Interestingly, the commercial inactivated EU 

type vaccine boosted farm-specific virus-neutralizing antibodies in sows from 1 farm. 

In the second part of the study, a field trial was performed at one of the farms to 

evaluate the booster effect of a BEI-inactivated farm-specific vaccine and a 

commercial attenuated EU-type vaccine in immune sows at 60 days of gestation. The 

impact of this vaccination on maternal immunity and on the PRRSV infection pattern 

in piglets during their first weeks of life was evaluated. Upon vaccination with the 

farm-specific inactivated vaccine, a significant increase in farm-specific virus-

neutralizing antibodies was detected in all sows. Virus-neutralizing antibodies were 

also transferred to the piglets via colostrum and were detectable in the serum of these 

animals until 5 weeks after parturition. In contrast, not all sows vaccinated with the 

commercial attenuated vaccine showed an increase in farm-specific virus-neutralizing 

antibodies and the piglets of this group generally had lower virus-neutralizing 

antibody titers. Interestingly, the number of viremic animals (i.e. animals that have 

infectious virus in their bloodstream) was significantly lower among piglets of both 

vaccinated groups than among piglets of mock-vaccinated sows and this at least until 

9 weeks after parturition. The results of this study indicate that inactivated farm-

specific PRRSV vaccines and commercial attenuated vaccines can be useful tools to 

boost PRRSV-specific (humoral) immunity in sows and reduce viremia in weaned 

piglets.  

Chapter 4 describes the use of 2 PRRSV isolates (08V194 and 07V063) for PK15Sn-

CD163 grown or MARC-145 grown vaccine development and the efficacy of these 

BEI-inactivated vaccines was evaluated in homologous or heterologous challenge 

(challenge with 08V194). 08V194-specific neutralizing antibodies upon two 

vaccinations were induced with both BEI-inactivated, MARC-145 grown viruses, 

while vaccination with BEI-inactivated, PK15Sn-CD163 grown viruses mainly primed a 

virus-neutralizing antibody response. In the groups 08V194 PK15Sn-CD163 grown and 

08V194 MARC-145 grown, the duration of viremia was significantly reduced with 

approximately 2 weeks upon homologous challenge. Similar results were obtained 

with 07V063 PK15Sn-CD163 grown upon heterologous challenge. 07V063 MARC-145 

grown did not significantly influence the viremia upon heterologous challenge.  

In Chapter 5, the main findings of this thesis are recapitulated and discussed.  
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SAMENVATTING 

Het porcien reproductief en respiratoir syndroom virus (PRRSV) is een RNA virus 

dat betrokken is bij reproductiestoornissen (zwak- en doodgeboren biggen, 

vroeggeboorte en abortus tijdens late dracht) bij zeugen en respiratoire problematiek 

bij biggen van alle leeftijden, wat resulteert in een grote economische verliezen in de 

varkensindustrie. Een grote genetische variabiliteit is aangetoond onder de 

verschillende PRRSV isolaten en dit heeft zijn weerslag op hun virulentie, 

pathogeniciteit, immunogeniciteit,… Deze diversiteit is een groot probleem 

betreffende PRRSV preventie en controle. Het gebruik van de huidige commerciële 

vaccins in diverse vaccinatiestrategieën is de meest voorkomende methode om de 

klinische en economische impact van PRRSV te onderdrukken. Momenteel is er nood 

aan nieuwe en veilige vaccins die bescherming kunnen bieden tegen de PRRSV 

stammen die ontsnappen aan de immuniteit geïnduceerd door de huidige beschikbare 

commerciële vaccins. De doelstelling van deze thesis was het evalueren van de 

werkzaamheid van een geïnactiveerd bedrijfsspecifiek PRRSV vaccin - op basis van 

een eerder geoptimaliseerde virus- inactivatiemethode – en deze te vergelijken met 

die van commercieel beschikbare geattenueerde/geïnactiveerde PRRSV vaccins in 

naïeve en PRRSV-immune dieren. Tot op heden is het niet gekend welke voordelen er 

verbonden zijn aan het gebruik van deze bedrijfsspecifieke vaccins.  

Hoofdstuk 1 geeft een korte samenvatting van de huidige literatuur over algemene 

aspecten van het virus en de ziekte, de PRRSV-specifieke immuniteit en PRRSV 

vaccins.  

In hoofdstuk 2 wordt de algemene doelstelling van deze thesis beschreven en worden 

een aantal doelstellingen vooropgesteld. De volgende 2 hoofdstukken omvatten 

onderzoeksresultaten die aan deze doelstellingen tegemoetkomen.  

De eerste studie in deze thesis (hoofdstuk 3 deel 1) richtte zich voornamelijk op het 

vergelijken van de werkzaamheid van de homologe BEI-geïnactiveerde vaccins met 

heterologe BEI-geïnactiveerde vaccins en commerciële geïnactiveerde en 

geattenueerde vaccins na een homologe of heterologe challenge. De homologe BEI-

geïnactiveerde vaccins zorgden na infectie voor een significante reductie in viremie. 

Ondanks de twijfel betreffende de werkzaamheid van de commercieel geattenueerde 

vaccins - die ook worden gebruikt op de bedrijven waar de PRRSV-isolaten vandaan 
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komen – hadden de commerciële geattenueerde vaccins toch een invloed op de duur 

van de viremie na infectie. De heterologe BEI-geïnactiveerde en commercieel 

geïnactiveerde vaccins daarentegen hadden geen of beperkte invloed op de viremie.  

In een tweede luik (hoofdstuk 3 deel 2) werden de BEI-geïnactiveerde 

bedrijfsspecifieke vaccins vergeleken met commercieel beschikbare geattenueerde / 

geïnactiveerde vaccins in PRRSV-immune zeugen qua boosten van de humorale 

immuniteit tegen huidig circulerende PRRSV isolaten. In een eerste deel van deze 

studie werd de PRRSV-specifieke antistoffenrespons na booster vaccinatie met 

commerciële vaccins en BEI-geïnactiveerde bedrijfsspecifieke vaccins geëvalueerd in 

niet drachtige reforme zeugen van 3 bedrijven met PRRS-problemen ondanks 

vaccinatie van zeugen en gelten. Een boost in virus-neutraliserende antistoffen tegen 

de bedrijfsspecifieke PRRSV isolaten werd opgemerkt bij alle zeugen die werden 

gevaccineerd met het respectievelijke geïnactiveerde bedrijfsspecifieke vaccin. De 

commerciële geattenueerde en geïnactiveerde vaccins gaven gemengde resultaten qua 

boosten van virus-neutraliserende antistoffen tegen het bedrijfsspecifieke isolaat. In 

het tweede deel van de studie werd een veldproef uitgevoerd op 1 van bovenvermelde 

bedrijven om het booster effect van het BEI-geïnactiveerd bedrijfsspecifiek vaccin en 

het commercieel geattenueerd EU-type vaccin bij PRRSV-immune zeugen op 60 

dagen dracht te evalueren. De impact van deze vaccinatie op de maternale immuniteit 

en op het PRRSV infectiepatroon bij de biggen gedurende hun eerste levensweken 

werd geëvalueerd. Na vaccinatie met het bedrijfsspecifieke vaccin werd een sterke 

stijging in bedrijfsspecifieke virus-neutraliserende antistoffen opgemerkt bij alle 

zeugen. Tot 5 weken na de geboorte werden virus-neutraliserende antistoffen 

gevonden in het bloed van biggen afkomstig van deze zeugen. Niet alle zeugen 

gevaccineerd met het commercieel geattenueerd EU-type vaccin toonden een stijging 

in bedrijfsspecifieke virus-neutraliserende antistoffen en de biggen afkomstig van 

deze zeugen hadden in het algemeen minder virus-neutraliserende antistoffen. Het 

aantal viremische biggen was significant lager bij biggen van beide gevaccineerde 

zeugengroepen dan bij biggen afkomstig van de controle zeugen en dit bleef zo tot op 

9 weken na hun geboorte.  

In Hoofdstuk 4 werd de werkzaamheid van het BEI-geïnactiveerd vaccin virus 

geproduceerd op de nieuwe gevoelige cellijn PK15Sn-CD163 vergeleken met het BEI-

geïnactiveerd vaccin virus geproduceerd op MARC-145 cellen in een homologe en 
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heterologe situatie bij niet-immune biggen. In de homologe PK15Sn-CD163 gegroeide en 

MARC-145 gegroeide BEI-geïnactiveerde vaccins, was na infectie de duur van de 

viremie significant gereduceerd met gemiddeld een tweetal weken. Een gelijkaardige 

resultaat werd bekomen met het heteroloog PK15Sn-CD163 gegroeide vaccin. Geen 

significante reductie in viremie werd geobserveerd met het heteroloog MARC-145 

gegroeid vaccin na heterologe infectie.  

In hoofdstuk 5, worden de belangrijkste bevindingen samengevat en bediscussieerd.  
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At the end of the day faith is a funny thing. It turns up when you don’t really expect it. 
It’s like one day you realize that the fairy tale may be slightly different than you 

dreamed. The castle, well, it may not be a castle. 
 And it’s not so important happy ever after, just that it’s happy right now. 

See, once in a while, once in a blue moon, people will surprise you, 
and once in a while people may even take your breath away. 

M. Grey 

Eindelijk is het dan zover… Het enige wat me nu nog rest is het dankwoord… 

Toen ik afstudeerde, had ik nooit kunnen vermoeden dat ik ooit nog aan de faculteit 
zou werken, laat staan dat ik zou doctoreren. Zo zie je maar, het leven zit vol 
onverwachte wendingen (mits een beetje hulp van Annick J). 

Een doctoraat maken doe je niet alleen. Ik beschouw dit werk dan ook als het resultaat 
van “grosso modo” viertal fijne jaren teamwerk. Gedurende deze periode is het soms 
moeilijk de motivatie te vinden om verder te gaan en dan is het een steun te weten dat 
je een vangnet hebt van mensen die om je geven. Nu ik de faculteit ondertussen 2 jaar 
heb verlaten (besef ik hoe speciaal en bijzonder m’n tijd hier is geweest), zou ik de 
mensen die deze taak voor hun rekening hebben genomen graag willen bedanken. 

Eerst en vooral wil ik mijn promotor  Prof. Dr. Hans Nauwynck bedanken. 
Dank je wel voor uw enthousiaste ideeën en geanimeerde gesprekken. Ik apprecieer 
enorm de tijd die je in de laatste maanden voor mij hebt vrijgemaakt, en ik weet dat 
dit niet evident was met een kleine 20 (misschien zelfs meer) doctoraatsstudenten 
onder jouw hoede. Bedankt alsook voor het vertrouwen in een goede afloop. 

Ook dank ik de Federale Overheidsheidsdienst Volksgezondheid voor het financieren 
van dit project, waardoor het mij mogelijk werd gemaakt te doctoreren. 

Ik wil de mensen uit mijn begeleidingscomité danken voor het kritisch nalezen van dit 
doctoraat. Prof. E. Cox, Prof. D. Maes en Dr. W. Van Breedam, bedankt voor jullie 
kritische kijk en handige tips. I also would like to thank the other members of the 
exam committee: Prof. Dr. M. Ritzmann, Prof. Dr. K. Van reeth, Dr. B. Caij, Dr. T. 
Meyns and J. Hooyberghs for the proofreading of this thesis and their constructive 
criticism. Jullie opmerkingen droegen zeker bij tot de kwaliteit van deze thesis. Prof. 
K. Hermans, bedankt voor je inzet voor de ethische commissie. 

Jan “tis hier Roeselare” (aan de telefoon) Van Doorselaere zou ik graag bedanken 
voor de bijzonder aangename samenwerking op meer moleculair gebied. Dank je wel 
Jan, voor het sequeneren van alle PRRSV isolaten, voor het vele over-en-weer gemail 
en de aangename bezoekjes in Roeselare. Succes met de start van een nieuw 
hoofdstuk aan het Katho. 

Volgende mensen verdienen niet 1 bloemetje maar een gans bloementapijt, niet 1 
pralineke, maar ganse dozen vol pralinekes:  

Chantal, Carine, Lieve, Nele, Melanie, Dries, Tim, Ytse, Bart, Zeger, Gertje, Mieke, 
Ann, Marijke, Dirk, Magda en de oude (maar niet vergeten) garde Geert, Fernand en 
Chris: jullie zijn/waren de rots waarop de Virologie is gebouwd. Jullie inzet, werklust 
en enthousiasme voor de doctorandi is/was onovertroffen. “Bergen werk ” (den 
Himalaya of het oeralgebergte of gelijk welken berg verdwijnt in het niets hierbij, 
geloof me) is er door jullie verzet in het kader van mijn project. 
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Chantal: bedankt voor het opgroeien van alle PRRSV stammen (wat niet altijd verliep 
zoals gepland met enkele “niet-groei-minded” opstandige, PRRSV isolaten), het 
uitvoeren van vele SN-testen en onnoemelijk veel virustitraties.  
Carine: bedankt voor het uitvoeren van de talloze IPMA’s en voor de hulp met de 
talrijke diagnosen. In het laatste geval waren we af en toe ook Sherlock Holmes en 
Dr. Watson op onderzoek naar wat voor opgestuurd stukje orgaan we voor onze neus 
hielden…J. Beiden ook bedankt voor de fijne amusante babbels als we naast elkaar 
aan de flow zaten/of in de keuken ons boterhammekes aan het eten waren.  
Nele en Melanie, bedankt voor het verwerken van de veelvuldige bloedstalen uit de 
veldproeven. Het was altijd uitkijken naar wanneer de stalen in het labo werden 
binnen gegooid. Melanie, ook bedankt voor het verwerken van alle paperassen 
gerelateerd aan het diagnosewerk. Nele, het was niet alleen heel aangenaam vertoeven 
met jou in het labo, maar ook buiten het labo: ik denk vooral aan alle filmavondjes 
(inclusief pitta in de overpoort), de gezellige avondjes uit, gaan badmintonnen of 
Zumba’en in de Ucon, enz…..Het allerbeste gewenst met uw schatje Eric in jullie 
nieuwe stekje. 
Dries, bedankt voor de af en toe op het toneel verschijnende, noodzakelijke Western-
blotjes uit te voeren. En ook voor alle leute en plezier (boerderijke, BBQ’s, …) die we 
hebben beleefd buiten het labo.  
Dan zitten we nog maar halfweg het uitgevoerde werk. Chantal, Nele, Melanie en 
Dries ook bedankt voor de “en mass productie” van virus voor de aanmaak van 
vaccinstocks. Hoeveel 50 mL flessen zouden we er niet doorgejaagd hebben?  
Dries, Nele en Melanie bedankt voor het meehelpen met de opzuivering van het “en 
mass” geproduceerde virus. De Ultracentrifuge (is een machien) weet dankzij ons wat 
overuren “draaien” nu echt betekent.  
Lieve, bedankt voor het uitvoeren van alle niet-standaard diagnosen. Kgaan u vooral 
missen, ’s morgens met ons zjatte koffie in de keuken terwijl we commentaar gaven 
op de laatste pagina van de sport J. 
Chris, jou wil ik bedanken voor het uitvoeren van de eerste IPMA’s en de gezellige 
babbels. Je tijd op de virologie zat er al op, maar je kwam terug voor ons “niet lang in 
stand gehouden koortje” met het moment-supreme op de nieuwjaarsreceptie 2010”. Ik 
weet zeker dat je je hierna niet zal vervelen met je kleinkind (eren), je huidige koor-
activiteiten, reizen, ... Ik wens je het allerbeste. 
Tim, jij bent de laatste aanwinst in het labo en vanaf dag 1 stond ge al direct uw 
mannetje. Ge draaide al direct mee in de “wetenschappelijk niet-verantwoorde” 
discussies in de keuken. En als ge ooit nog eens een partijtje sjotten organiseert, 
moogt ge dezen ancien altijd nog oproepen. En mercikes voor het gebruik van uwen 
computer in het moleculair labo! 
Ytse, jij bent als stagiair gestart bij de PRRSV-groep (ocharme Merijn) en daarna 
overgeschakelt naar de FIP-groep (ocharmde de FIPpers). Ge zijt een straffe madam 
en uw zalig graptje van Bing met achternaam O op het kerstdiner van 2011 zal ik ni 
rap vergeten J. 
Geert(je), bedankt voor alle hulp bij het uitvoeren van de (niet al te kleine) 
dierproeven: bloednames met ons tweekes => eer de varkens het beseften waren ze al 
10 mL bloed kwijt J, we vlogen erdoor (zoals raketman in de Humo geweest), maar 
in het kuisen van de stallen, bleken we dan weer geen crack in te zijn J. Ge waart nen 
aangename kerel: in de stallen tussen de varkens zijn er vele topics de revue 
gepasseerd en je had altijd wel een leuke quote om in het gesprek te gooien. Ik hoop 
dat onze regelmatig geplande etentjes nog lang door blijven gaan.  
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Fernand, jij was destijds de Influenza-kerel en een nauwe samenwerking was dus niet 
voor ons weggelegd! Ik wens u een welverdiende rust en geniet van uw pensioen! 
Bart en Zeger, jullie zijn de opvolgers van het schitterende duo Geert en Fernand! De 
start in het labo was misschien niet wat het moest zijn, maar dit is uiteindelijk toch 
goedgekomen! Jullie waren goede “studenten” bij het aanleren van bloednames bij 
zowel biggen als zeugen (het was toen efkens geleden, dat ik nog zo’n jeugdig 
enthousiasme zag). Jullie hulp was van grote waarde bij mijn laatste dierproeven. We 
kunnen al enkele straffe verhalen vertellen over de zeugen a/d overkant (de “pony” en 
die ene keer met Hossein mee J)! Zeger en Aludee, het allerbeste gewenst!  
Magda, ook jou zou ik willen bedanken voor uw goedbedoelde bezorgdheid voor alle 
beestjes, het kuisen van de stallen en voor het regelen van het transport naar de patho 
voor de platgespoten varkentjes. 
Gert(jeuh), in alle dankwoorden wordt je bedankt voor de bestelde productjes en 
antistoffen; ik heb dus bijna nikske besteld dus kan ik dit “standaardzinnetje” niet 
gebruiken. Ik kon wel altijd rekenen op jouw zeer bereidwillige medewerking om de 
facturen van de biggen in orde te brengen en om me te tonen waar ik extra fluostiften 
kon vinden J. Maar naast je professionele prestaties werden uiteraard ook de babbels, 
de mopjes, de opmerkingen in de keuken, de educatieve muurversieringen, de 
Kinepolis@gertjeuh-avonden… zeer zwaar geapprecieerd (doe zo verder!). En nog 
heel veel mooie papa-momenten met Lucas gewenst! 
Mieke, jij draagt zorg voor de administratieve (in de breedst mogelijke betekenis van 
het woord, den Dikke vandaele kent nog niet al die betekenissen) zaken. Het in orde 
brengen van trein- of vliegtuigticketten, enz….was een kolfje naar je hand. Dank je 
wel, Mieke, voor de aangename samenwerking.  
Ann, bedankt om de financiële kantjes van het doctoraat (bij iedereen dus) in orde te 
brengen.  
Ook Marijke zou ik graag bedanken voor het proper houden van onze werkvloer en 
onzen bureau, maar vooral ook voor de leuke babbels over vanalles en nog wat, maar 
vooral die ene terugkerende topic: Cavia’s. Merci, om destijds 2 van die koterkes 
(geboren na een onbelvekte ontvangenis van 1 van mijn cavia’s) een schitterende 
thuis te geven en aan uw verhalen te horen zijn ze in het aardse paradijs beland! 
Dirk, jou zou ik willen bedanken voor de steun op computergebied gedurende de 4 
jaren van het doctoraat en voor het bestellen van de oornummers (bestemd voor de 
varkentjes in de veldproeven). Het laatste jaar stond ik toch heel frequent aan uwen 
bureau met "een voor mij onmogelijke, maar voor u poepsimpele” computervraag. Ik 
dacht dat jouw vinnige opmerking en commentaren gingen verdwijnen, nadat ik me 
had aangesloten bij het “I♥”-team, maar dat bleek ijdele hoop (‘t werd nog erger 
J).  

En dan komen de ex-bureaugenootjes aan de beurt… 
David en Debby, de eersten die een bureau (of wat toch zou moeten doorgaan als een 
bureau) met me deelden. David de “ancien” , Debby en ik de groentjes… Bedankt 
voor de soms ontspannende, soms serieuze, soms wetenschappelijke babbels en de 
steun tijdens de eerste 2 jaren. Allebei veel succes in jullie verdere carrière en 
privéleven (aan de regelmatige updates te horen is dit geen probleem J). En Debby, 
hopelijk nog heel veel eitjes van de “gewisselde kip” J.  

Na jullie vertrek werden de grote hervormingen (waarvan lang sprake geweest) in het 
labo uitgevoerd en werd ik verscheept naar een nieuwe locatie met nieuwe 
bureaugenoten en die nieuwe garde was niet van de poes zenne: Sarah C., Merijn en 
Wander. Wat betreft PRRSV in al zijn moleculaire/immunologische facetten zijn julie 
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in mijn ogen de crème de la crème. Naast de wetenschappelijke discussies werd er 
ook (gelukkig) veel onnozele praat en gezever verkocht (voorlopig behoort dit tot de 
categorie unpublished data) in den PRRSV-bureau. Ik denk dat we toch een aantal 
boeken met fantastische verhalen zouden kunnen schrijven (misschien iets voor na 
onze “wetenschappelijke” carrieres…..).  
Merijn, de allrounder van onzen bureau. Toen ik arriveerde op het labo ben ik onder 
uw vleugels terchtgekomen (niet letterlijk) en heb je me alles geleerd van het 
arrangeren van dierproeven tot het opzuiveren van virus. Ge waart de best mogelijke 
opvang die iemand zich kon wensen (zoals het OCMW in België is voor de 
vreemdelingen). Nen dikke merci voor alles en wat ik nu vooral mis zijn uw te pas en 
te onpas flauwe/droge mopjes J. En ons neushoorn/bibliothecaris moment zal ik ook 
niet rap vergeten J. Heel veel succes op het Katho, met de nieuwe woonst (hopelijk 
snel een nieuwe buurman), Sofie, Jens en Nina.  
Wander, de perfectionist en het “stress-konijn” van de bureau (nu al een stuk minder 
na een pracht van een doctoraat), ik bewonder uw alwetendheid, ge zijt echt nen 
wandelende Wikipedia. En mercikes om ook mijn co-promotor te willen zijn! Zonder 
U en Merijn zouden de artikels en PhD nog ergens stof liggen vergaren in een 
vergeten hoekje! Nog eens nen dikke merci X 106! Ik wens u vanaf nu een 
fantastische post-doc periode, waarin je een volledige vrijheid hebt qua uitvoering 
ervan. Geniet van de toekomst met Leslie in jullie knusse appartementje. 
Sarah C., jij werd direct gebombardeerd tot de alwetende moederkloek (en niet enkel 
door mij alleen, had ik den indruk). Met iedere vraag konden we bij u terecht. Je had 
den bureau en (gebroken) stoel van Peter dubbel en dik verdiend! Op het laatst kende 
ge zelfs het wereldje van de Gentse vastgoedmarkt gelijk uw broekzak (hoe je de 
verhuurders aanpakte ad telefoon, jadadde). Bedankt voor het introduceren van 
Loezendag in den bureau! En het record van “het hardst mogelijk toeslaan/toesmijten 
van een proffendeur” staat nog altijd op uw naam J. Veel succes in de toekomst met 
uw prachtig gezinneke, al uw poezen en de “nieuwe” job.  
Na de rouwperiode van Sarah’s vertrek werd Angela bij ons in de bureau 
binnengegooid. Angela, i don’t know where to start! I’m really happy  you shared the 
office with us. When Merijn and Wander had very scientific discussions on a higher 
level and we were involved, we could exchange a glance saying “i really don’t 
understand anything they say” and then we just nodded yes…J  And then the 
moments we were alone in the office and the telephone rang…. JJ. I wish you all 
the best and a shining fantastic future with Michael. 

De meeste collega’s die de Virologie bevolkten gedurende mijn PhD-tijd zijn reeds 
vertrokken. Hierbij volgt nu en lijstje van bijna allemaal Doctors die een fantastische 
blijvende indruk op mij hebben gemaakt en die ik zeker niet zal vergeten:  
Annick, zoals eerder aangehaald ben ik via u het labo binnengerold… (Ze hadden 
eigenlijk nen Roemeen nodig, maar blijkbaar voldeed ik toch min of meer aan de 
voorwaarden J). Ons verleden gaat terug tot aan 1ste kan Diergeneeskunde (kzie ons 
daar nog altijd zitten in de auditoria van de Ledeganck). Sindsdien zijn we heel goede 
vrienden gebleven met heel leuke anekdotes tot gevolg en die je altijd heel sappig 
kunt vertellen J. Bedankt om al die jaren al een goede steun te zijn! Veel succes met 
uw praktijk, uw DGZ-avontuur en ook met Jan-Bart, Aline en de nieuwe kleine spruit.  
Annelies, bedankt voor de leuke babbels, de slappe-lach momenten en ons uitstapje 
naar de jobbeurs in Brugge J. Daar hebben we toch wel geduld leren kweken…J. Ik 
wens u het allerbeste bij DGZ (tot ne volgende babbel aan de poort) en met uw 
ventjes Lieven en Bas. Ook succes met de verbouwingen in jullie huisje.  
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Filip, gij waart de oplossing voor mijn interferon-vraagjes! Hieruit zijn de aangename 
babbels (zowel wetenschappelijk als niet-wetenschappelijk) voortgevloeid! Ik heb 
echt genoten van uw gezelschap en ge kon mij toch soms met verstomming slagen 
door in een gesprek straffe uitspraken te doen; (van zo’n fatsoenlijk iemand had ik dat 
immers ni verwacht J) Ook jou wens ik veel succes toe met uw “nieuwe” job, met 
Elise en met uw dochterje Ilona. 
Sarah G (of Cherry, zoals Sabrina je noemt), jij bent echt een fantastische meid! Je 
staat altijd klaar voor anderen en je hebt een eindeloos geduld! Ik heb ontelbare keren 
jouw zelfbeheersing bewonderd! En nog meer bewondering als ik hoorde dat je toen 
bleef voor een post-doc positie, jadadde…. Bedankt voor de leuke, meestal 
avondlijke, babbels over vanalles-en-nog-wat. Ik wens u een fantastische toekomst 
met uw ventje Joost en een fantastische zwangerschap. 
Sabrina (Miss Italy), despite all the misery in different areas the last years, you 
approached everything from an optimistic point of view and giving up is not written 
in your dictionary! You are the most energetic woman, I’ve ever met in my whole 
life. I’m really happy that most things are cleared out now and i will always 
remember you with a big smile. I wish you a great time with your daughter Alicia! 
Sjouke (of Sjoe), één van de straffe madammen in het labo! Mercikes voor de vele 
deugddoende babbels en jouw bereidheid om te helpen waar je kon (lees: helpen 
bloedtrekken in het weekend, assisteren bij de diagnoses (wat door ‘sommigen’ niet in 
dank werd afgenomen J), de toffe tuinfeestjes, de hulp bij slachtpartijen onder de 
varkentjes en nog zoveel meer... Ik wens u een schitterende toekomst met Bart en een 
superstart op de nieuwe job! 
Zhongfang, you are a very special and exceptional Chinese guy! You really have a 
funny humor (remember our phonecall…J). You surprised me (and my 
mouth/throat/stomach) with your (spicy) cooking skills. I also wish you the best with 
your Chinese vases collection and all the things you plan to do in the future. 
En wie zou onze Brielse madam Veerle kunnen vergeten. Bedankt voor alle leute en 
nen hele dikke chapeau voor de beslissing qua carrierewending. Ik wens u het 
allerbeste in de toekomst en hopelijk ben je al wa gewend aan hetvolgende: Mevrouw 
Billiau, ik heb mijn huiswerk niet bij want de hond heeft het opgegeten… Ik hoop van 
ganser harte dat we met “ons bendeke” nog veel “komen eten avondjes” mogen 
meemaken!  
Miet, nog een straffe madam uit ons labo! Uw onderzoek is zeker niet over rozen 
gelopen en toch ben je blijven volhouden! Da getuigt van een sterk karakter! 
Daarnaast wil ik u bedanken voor de vele babbels, uw luisterend oor, de etentjes bij u 
thuis (da gedoe met de lift en de 6 brandweermannen zal ik nooit ni vergeten J), de 
last-minute etentjes om ons hartje eens te luchten, de leuke avondjes uit en zoveel 
meer… Ik hoop dak nog veel van u mag horen in de toekomst! 
Nina, je bent dezelfde dag als mij begonnen op de faculteit en ik zie ons daar nog 
zitten op onze eerste dag in de vergaderzaal J. Ondertussen ben je al Dr. Post-doc 
Nina met bijna nen Nature. Nen dikke Chapeau! Bedankt voor de leuke babbels aan 
de flow over fantasy-boeken (de wetten van de magie; Harry Potter), de toffe 
squashmomenten (I kicked your ass, baby) en de vele babbels tussendoor. Een 
fantastische toekomst gewenst met Guillaume en Pixie.  
Hanne (onze PRRSV-First-Lady), Dank je wel voor de aangename babbels, jouw 
moleculaire expertise en de leuke sfeer tijdens de Journal clubs! Hopelijk veel 
bijgeleerd in den Ameriek en hopelijk kwam de gsm ginder goe van pas! Veel succes 
met de “nieuwe” job op het VIB en jullie nieuw stekje J. 
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Evelien, ook jij was zeer belangrijk voor de opperbeste sfeer in het labo!  Ik zal nooit 
niet het moment vergeten dat ge plots een stemmetje hoorde toen je op het toilet 
zat…J. Ook bedankt voor een goe jaar mijn spinning-partner te zijn op 
maandagavond. Het allerbeste met Lieven, uw oogappel Juliette en uw job!  
Leslie (de muze van vele onderzoekers en 1 boekhouder), jij bent overgeschakeld naar 
de pathologie. Na uw vertrek voelden we ons precies Bambi in die scene waar hij zijn 
mama niet meer vindt…L. Je bent opengebloeid nu je schattige (dode) beestjes in 
stukken mag snijden/hakken/kappen. Doe dat nog goed in de pathozaal en alvast heel 
veel succes voor het residency-examen. Geniet van de toekomst met Wander in jullie 
knusse appartementje.  
Mieke V., ik bewonder uw besluit om het doctoraat stop te zetten. Zo’n beslissing 
maken loopt niet van een leien dakje! Succes gewenst met de volgende carrierestap in 
uw leven. En wie weet komen we elkaar nog eens tegen op de Kouter voor nen 
voetbalmatch op groot scherm (en lok dan weer geen gevecht tussen hooligans uit, 
zoals de vorige keer J!). 
Nick, bedankt voor de gezellige niet-wetenschappelijke babbels (al of niet over het 
konijn, of over het vissen, of over fitness), zowel in het labo als bij de talrijke 
buitenlabo’se activiteiten. Ik wens je veel succes toe met Ilse, jullie nieuw ‘klein’ 
konijntje en met uw job op het CODA.  
Kalina, it was really great to have you in the lab, and to hear you talking, laughing, 
and singing in the lab late in the evening! You were a fantastic friend to go to the gym 
with!  I can tell a whole bunch of stories of things that happened in the gym, which 
always ended in a big laughter J. Thanks also for a whole lot more (spending 
Christmas together, going to the movies, …). I wish you the best in everything you 
undertake on the other side of the big water! 
Matthias D., jou wil ik bedanken voor de leuke West-vloamse babbels.  En ook 
bedankt om me af en toe een oppepmail te sturen! Veel succes in het CODA! 
Annebel, bedankt om een fijne collega te zijn op het labo en ook op de vele 
activiteiten daarbuiten! Uw oneliners zijn ondertussen ook al legendarisch J! Ook 
bedankt om me “efkens” onderdak te verschaffen, wanneer ik een plaatske zocht! Ons 
slappe-lach moment op feestje van Sabrina (money-girl) zal ik ook nog lang 
onthouden. Het allerbeste en een fantastische schone toekomst gewenst!  
Dipo (Mister Bangladesh), I will never forget our trip to Vancouver, our trip to 
Barcelona, the (exciting) surgeries on the sows and all the fruit you can eat! Good 
luck with your Post-Doc in Finland. 
Uladzimir, you’re a guy who sticks to his own plan and i admire that! Keep 
organizing good barbecues with tasty ‘out of the blue’ meat J! Good luck in Canada 
and with your future research…. 
Ben, gij moest uw mannetje staan tussen al die vrouwen! Nen dikke chapeau (ik zou 
da ni kunnen zenne)! Ondertussen nog eens naar de Ghost and the Darkness gezien 
J! Succes met de nieuwe job en in alles dat je doet.  
Hannah (the former leading lady of FIP), jou wil ik bedanken voor de leuke babbels 
en voor het stukje chocolade die ik ooit eens kreeg van de stapels chocolade-tabletten 
die op uw bureau lagen. Jij bent in mijn ogen het toonbeeld van een kalm en rustig 
persoon (in alle situaties). Succes met de “nieuwe” job en nog veel genot van/met uw 
gezinnetje. 
Sabine (Miss Germany), you’re a girl with a lot of knowledge (in my eyes)! Thanks 
for the nice talks and again a sorry for all my ‘bad german jokes’. I will take care of 
better jokes in the future J. Good luck with finishing your residency, with Alejandro 
and you’re little star Paulina (and the dogs of course). 
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Joao, i am very glad i had you as my colleague. Thanks to you i learned some new 
pubs and restaurants in Ghent! I will never forget your face when we were locked up 
in the elevator after having dinner @ Miet’s place. I hope that in the near future we 
can have a 2nd dinner with goat on the menu! I wish you the very best with your spin-
off and the fatherhood. You will do it fantastic! 
Matthias C wil ik bedanken voor de leuke filosofische babbels en de avondjes uit in 
de overpoort! Ook een bedankje voor het adopteren van een overtollig dwergkonijn 
(en naar horen zeggen smaakte het erg lekker J). Ik wens je verder nog veel succes in 
alles wat je doet!  

En nu de collega’s die momenteel nog op de dienst virologie werken:  
Lennert, waar begin ik mee… Ge zijt nen fantastische maat/sportbuddy/collega. 
Bedankt voor de vele lachbuien, de vele babbels, onnozele praat verkopen op het labo 
of in de Ucon/Coupure na/gedurende het sporten. Ik zal de happy hours en ons party-
crash moment in den Aula (van de rechten) alleszins niet vergeten (diene blik van de 
rector… J)! De uitjes met Maria en Jasper zullen me ook altijd bijblijven en hopelijk 
volgen er nog… Ik wens u en Jasper een schitterende toekomst toe in den Antwerp 
(zo ver weg, jong)!  Tot nog eens op het squashveld, als mijnen enkel het toelaat J! 
Amy (Professor Mucus J), thx for all the unexpected funny remarks and for letting 
me taste all the typical Chinese food @ Chinese Newyear! I hope you’re having a 
great time here with your husband Ming and good luck with finishing your PhD! You 
will do great J!  
Hossein, you’re one the friendliest people I have ever met! Good luck with searching 
the dendritic cells… And don’t forget to bring your dancing moves, the next time we 
go out! 
Ilias (Mister Greece), you’re a great guy! I hope you have found your way in PRRSV 
research and good luck with your experiments! Thanks for the many talks and see you 
(maybe) at the gym! 
Isaura, ge zijt een straffe madam met het hart op de tong! Succes met uw onderzoek!  
Kathlyn, merci pour les gentil conversations et bonne chance avec votre recherche!  

Als we naar beneden afzakken (en kbedoel in het labo) komen we uit in het FIP / 
targeting bureau: 
Dominique, nog zo’n straffe madam! bedankt voor de vele leuke babbels, uw 
luisterend oor, de brunches en de sportmomenten in stadium Coupure. Succes met het 
finaliseren van uw onderzoek (ge zijt er bijna jippie!!!!! J). Tot ons volgende toerke 
lopen aan de watersportbaan om ons hartje eens te luchten J. Een super fantastische 
toekomst met Michael gewenst! 
Karen, ge zijt ook één van de straffe madammen in het labo! Bedankt voor de fijne 
babbels, uw luisterend oor en voor het opzij houden van de koekjes (voor uw 
verjaardag), het voorschieten bij den drukker J en al de support (de vele telefoontjes) 
de laatste weken! En ni vergeten: we moeten nog altijd eens een danske placeren hé 
J! Veel succes met de verbouwingen, met uw ventje en volgende week legt ge een 
megafantastisch doctoraat af. Kduim alvast J! 
Annelike, bedankt om een toffe leuke collega te zijn en veel succes met het finaliseren 
van de PhD, de zwangerschap en alles wat je van plan bent! 
Sebastiaan (de nieuwe Harry Potter), veel succes met het opzetten van uw darm-
explant modellen (vergeet de cola-versie niet) en hopelijk hou je geen ‘vliegende 
spetter’ over aan uw onderzoek J. Succes met het koersen en uw onderzoek! 
Lowiese (van Vichte), ge zijt een madam die niet op haar mondje is gevallen! Op het 
kerst-etentje zijn we te weten gekomen da ge graag bananen eet! Eet er toch niet 
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teveel en gunt uw vriend ook nog ietske hé J. Succes met uw verdere onderzoek! 

Dan komen de mensen van Boven (degene die overal/nergens bij horen) nog aan de 
beurt: 
Maria (Miss Portugal 2012), where do i have to start… Thx for all the animated 
discussions, for always telling the truth (sometimes in a rude way J), for taking me 
out on the worst dinner ever (place near the castle JJ), for having a lot of fun, for 
Starbucks on Saturdays, for sporting together, and many more things… I’ll never 
forget our going out moments with Lennert and Jasper. Good luck with finishing your 
PhD. And also a little word for your bunny Rupa (the most spoiled rabbit I know): 
make the life of your bossy as difficult as possible J.  
Jochen, ge staat min of meer aan de beginjaren van uw onderzoek. Blijven op de 
tanden bijten is de boodschap. Bedankt voor de vele babbels, de etentjes gepaard met 
een stapke-in-de-wereld-zetten, en nog zoveel meer. Da we de “traditie” van den 
Starbucks op zaterdag om wa bij te klappen nog lang mogen verderzetten J. 
Céline, gij zijt altijd goedgezind en altijd bereid om hier en daar een handje te helpen 
als er ietske wordt georganiseerd. Bedankt hiervoor! En btw, ge zijt waarschijnlijk de 
snelste vrouw op ne vélo, die ik ken.  
Cliff, gij moet den boel ginderboven een beetje rechthouden en ge doet da goe J! 
Thx om op mij te wachten om naar despicable me II te gaan zien! Kvond da chic! Tot 
de volgende meeting en het allerbeste met uw nieuw aanwinst (=leuk katje). 
Thary, bedankt voor al het lekkers die je heel frequent meebracht naar het labo 
(misschien ben ik hierdoor wel in de oranje zone gesukkeld…J). Een fantastisch 
huwelijk gewenst voor volgend jaar! 
Herman, je staat altijd voor iedereen klaar om wetenschappelijke vragen te 
beantwoorden of om mee na te denken over mogelijke experimenten. Jouw 
hulpvaardigheid, ervaring en kennis zijn van grote waarde voor het labo. En btw, ik 
was sterk onder de indruk van uw conditie, daar ik getuige mocht zijn van een squash-
wedstrijd (≈Federer versus Nadal waardig) tussen Lennert en u.  

Een woordje van dank gaat ook uit naar iemand die een korte tussenstop heeft 
gemaakt op de Viro: Professor Dr. (en nog nen titel of 5J) Gerlinde Vandewalle. 
Bedankt om altijd in mij te geloven en soms het positieve te laten zien waar ik het niet 
zag (onzen babbel op den trouw van Annelies en Lieven). Daarnaast bedankt voor de 
fijne babbels en voor uw fijn gezelschap op The Mission 2011.  

In de loop van de jaren, zijn er ook buitenlandse “tijdelijke passanten” de revue 
gepasseerd op het labo:  
Elisa, thx for all the fun/going out moments, for the football game (I liked when you 
said i was better than you expected J), for being our guide in Torino (Wedding 
Sabrina). I wish you a fantastic future and i hope to see you again. 
Irene, we really laughed a lot with stupid things and thx for the really nice time @ the 
congress in Barcelona!  
Eva B., thx for the nice talks and for being so colorfull. 

Hierbij wil ik ook nog alle overige (vroegere) (ex-) collega’s, zowel inheems (Karl, 
Inge (2x), Iris, An S., Ann D., Els, Korneel) als uitheems (Tù, Lang, Liping, 
Wenfeng, Yu, Charlie, Kevin, Constantinos, Gerald,…) bedanken voor de de 
gezellige sfeer op het labo! En al de mensen die ik vergeet: ook bedankt natuurlijk! 
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Nog eens allen bedankt voor alle toffe momenten (BBQ’s, The Mission, de Quick, 
Don Pepe, komen-eten, Mardi Gras @ Belgaqueen, labo-uitstappen, een pintje de 
vrijdagavond, filmavondjes, weekendje ardennen, frietjesmoment, vuurwerk 
Knokke,…) op en meestal buiten het 2de verdiep van de hoogbouw!  

 

Op de faculteit lopen/liepen er nog enkele mensen rond die ook een woordje van dank 
krijgen voor de hulp met het uitvoeren van de veldproeven: Alfonso, Ruben, Ellen, 
Ruben D., Ilse, Annelies, Emily, Josine, kortom de mensen van de overkant (Dienst 
Verloskunde). Allen een fantastische toekomst gewenst!  
Ellen, het allerbeste bij DGZ en tot de volgende meeting! 

In Memoriam: bedankt aan alle varkentjes (zowel biggetjes, vleesvarkens en zeugen) 
die (altijd ongewild) hebben meegewerkt aan dit onderzoek! Vooral Knorretje I en II 
verdienen postuum een extra bloemetje J. 

 

Ook buiten de faculteit zijn er heel wat vriend(inn)en die ik graag zou bedanken voor 
hun interesse en steun gedurende de jaren van het doctoraat: 
Gert, bedankt voor de vele telefoontjes/bezoekjes/etentjes… de afgelopen jaren. Het 
allerbeste met uw vrouwke Sarah, en jullie klein kadetten Joppe en Flor. Tot de 
volgende coffea-break, als ik nog eens in de streek vertoef. 
Annemarie, vanaf het laatste jaar diergeneeskunde zijn we veel met elkaar 
opgescheept geweest en sindsdien ben je een goede vriendin! Onze skitrip (samen met 
Gwen) en tripke naar Wenen zullen me altijd bijblijven J! Ik wens u het allerbeste 
met Sam en jullie meisjes Lieke en Sanne. Tot de volgende koffiepauze! 

Gert & Sarah, Annemarie & Sam, Wouter & Kara, Alexandra & Thomas, Eva & 
Dagmar, Gwendolyn & Mark, Nancy, Catherine, Sven & Koen, bedankt voor de 
regelmatige etentjes, BBQ’s en city-tripkes naar Wales (waar we iedere keer onze 
“stoten uit de studententijd/kliniek” terug kunnen oprakelen en de laatste nieuwtjes 
uitwisselen). Dat we nog eens met zijn allen in Wales verzeild geraken J!  

Els, waar is den tijd samen shotjes drinken op dinsdag en daarna naar de Cuba 
Libre… ge zijt een pracht van een vriendin en kwens u het allerbeste met Dominique 
en de praktijk (ook nog eens bedankt om en fantastische dierenarts te zijn voor onze 
hond Zohra). 

Emily, bedankt voor de lunch-dates en bijhorende fijne babbels! Ik hoop dat je uw 
draai wat vindt op het ILVO en veel groetjes aan Emma-Louise! 

Eva Dejonghe, ook nen dikke merci voor de leute tijdens de studententijd en het 
plezier op de congressen waar we reeds samen op beland zijn. Doe da nog goed bij 
Boehringer J. Het allerbeste met Pieter-Jan en uw dochtertjes Roos en Fien.  

Lars, bedankt voor de toffe babbels (waarin dak meestal een beetje moest zagen J) en 
om me te laten kennis maken met Ubound! Doe da nog goed bij het M-team en ik kijk 
al uit naar ons volgende frietjes-eten moment! 

Jurgen, bedankt voor de toffe sportmomenten en leuke babbels achteraf. 
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Caroline, ge waart de (on)gelukkige om mij als promotor te krijgen voor uw thesis. 
Gelukkig is dat goed afgelopen J (denk ik toch). We hebben ons toch vree 
geamuseerd als er bloed moest worden getrokken van zeugen J. Ik heb u toen 
“jammergenoeg” niet kunnen overtuigen om in het onderzoek te stappen J, maar 
ondertussen zijt ge een grote naam aan het worden in de varkenswereld (zie trip 
Madrid…J). Doe da goe en ik kijk al uit naar onze volgende culinaire ontmoeting! 

Julie, Sarah, Jantina, Eva N, Iris VD en Valerie. Bedankt voor het jaarlijkse 
nieuwjaarsfeestje aka Paasfeestje aka koffie-en-taart-moment en voor de leuke 
babbels, als we elkaar eens “toevallig” tegen kwamen op de faculteit. Tot onze 
volgende meeting! 

Emma en Jantina (de vroegere patho), allereerst bedankt om de lessen proefdierkunde 
op te fleuren. Verder ook bedankt voor het toenmalig wekelijkse broodje samen! Ons 
hartje werd iedere keer gelucht! En als da nog niet genoeg was, werd de rest 
afgesport! Emma bedankt voor de fijne sportmomenten en de toffe babbels achteraf! 
Allebei veel succes in alles wat je doet en nog van plan bent. 

Charlotte, Hans, Marieke, Filip en Annick, bedankt voor de aangename momenten en 
leuke middagpauzes in Torhout! Tot dak nog eens wa bloed/biggetjes binnenbreng J. 
Hans, ge zijt nen opperbeste kerel. Da we elkaar in de toekomst wa vaker mogen zien! 
Doe da nog goed bij DGZ en groetjes aan Mirjan en Fran.  

Tom, Kris, Julie, Dirk, Christien en Ilse: toevallig ben ik in jullie groepke 
binnengerold en ik heb het me nog geen moment beklaagd J! Bedankt voor alle 
leuke momenten (Zweden, New York, Praag, Comedy-avonden, film-avondjes, 
concerten, feestjes, BBQ’s, Game-of-Thrones marathons en weekendjes) die we reeds 
hebben gehad en nog zullen meemaken. Als ik aan ons ardennenweekendje denk, dan 
komt mijn glimlach spontaan terug J….. En als ik denk aan de GOT-marathon S3 
afl9: ben er nog niet goed van… Kijk al uit naar onze volgende meeting! 

Vanja, Inge, Els, Lotte, Jeroen en Piet: na onze Canada trip (we want it all!!) zijn we 
blijven afspreken, wat leidde tot toffe feestjes en lekkere etentjes. Bedankt daarvoor! 
Vanja en Inge, ook ne dikke merci voor de memorabele city-trips (Nice, Istanbul en 
Reims)! De reis naar de Filipijnen deze paasvakantie was weer een schot in de roos, ‘t 
was echt de max! ‘T was echt zalig hé J. Tot de volgende meeting in Boedapest J! 

Filipa, our other Portugese lady (Miss Portugal 2013), it’s a pleasure to know you. 
Thx for introducing eating sushi and all the funny going-out moments J! I wish you 
all the best with your research.  
Delphine, ge zijt een straffe madam! Nen dikke merci voor alle leuke momenten, voor 
alle steun en ik wens u een fantastische start in uw nieuw huis! 

 

Natuurlijk mag ik mijn huidige collega’s bij voeders Ostyn niet vergeten: 
Marnix, Véronique, Delphine, Lies en Kevin, ik ben superblij dat jullie in het team 
zitten J.  
Marnix, bedankt om me van alles te leren over de varkenswereld! 
Véronique, je bent echt een wandelende “Wiki-varkenspedia”, dus ook bedankt om 
me van alles te leren over de varkenswereld, voor het vertrouwen en de leuke babbels. 
Delphine, bedankt om me in het begin op sleeptouw te nemen en alle ditjes en datjes 
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aangaande de job aan te leren.  
Lies en Kevin, jullie verdienen echt de Osty-pluim 2013 J, daar ik dit jaar toch een 
tamelijk lange periode ben uitgevallen en jullie dit “zonder morren” (hoop ik J) 
hebben opgevangen! Nog eens nen hele hele dikke merci daarvoor! En dat we als 
collega’s nog veel leute mogen beleven!  
Inge, Lieslot, Frederik, Stijn, Krista (2x), Martine, Wouter, Filip, Caroline en al de 
rest (teveel om op te noemen) bij voeders Ostyn: mercikes voor de aangename 
samenwerking! 

 

Uiteraard heeft ook mijn familie een belangrijke rol gespeeld tijdens de beleving van 
mijn doctoraat!  
Nonkel Frans & tante Marleen, Charlotte & Dimitar, Frederick & Tine, Bedankt voor 
jullie interesse en steun! 
Dirk & Roos, bedankt voor de leuke babbels en jullie oprechte interesse! 
Paul & Chris, bedankt voor de leuke babbels en jullie oprechte interesse!  
Eva & kevin, we zien elkaar niet veel, maar als het gebeurt is het altijd plezant! Dat 
we in de toekomst elkaar wat frequenter mogen zien! En ben blij dat Bavo er een 
speelkameraadje bijkrijgt J!  

Patrieck, Johan en schoonzusjes Roselien en Charlotte: Nen mens kan zich geen 
betere broers of schoonzussen wensen. Super bedankt voor alles en om er altijd voor 
mij te zijn! Woorden zijn niet genoeg… 
En natuurlijk kan ik de 2 oogappels van de familie: mijn nichtje Lavinia en neefje 
Florian niet vergeten. Jullie stralende oogjes, schaterlachjes en deugnieterij hebben 
me al talloze keren alle kopzorgen doen vergeten J! 

Pa en Ma, het is onmogelijk in woorden te zeggen hoe belangrijk jullie zijn voor mij. 
Het was jaren geleden niet vanzelfsprekend dat ik zomaar aan de studies 
Diergeneeskunde zou beginnen. Jullie hebben me de kans gegeven om te studeren, en 
jullie hebben er ook telkens voor gezorgd dat ik niets tekort kwam bij het studeren 
(zes jaar lang zondagavond me komen droppen in Gent, ‘echt eten’ meegeven, fietsen 
helpen herstellen, zorgen voor anatomiemateriaal als er anatomie-examens zaten aan 
te komen, den auto meegeven in het laatste jaar, zakken kaarsjes werden er gebrand 
als er examens waren (Lourdes kan er niet aan tippen), teveel dingen om op te 
noemen eigenlijk…). Toen ik na 2 jaar werken als dierenarts aankondigde dat ik ging 
doctoreren (terug studeren hé pa), sloeg dit waarschijnlijk in als een donderslag bij 
heldere hemel. Jullie zijn mij echter altijd onvoorwaardelijk blijven steunen en jullie 
hebben de voorbije jaren zeer sterk meegeleefd met mij en het verloop van mijn 
onderzoek. Jullie zijn zelfs in het weekend komen helpen bloedtrekken van de 
varkens (toen er niemand van het labo kon). Kortom, Jullie zijn echte schatten van 
ouders J! 
Vandaag zien jullie het resultaat van jullie goede zorgen en niet-aflatende steun! Ik 
hoop dat ik jullie trots heb gemaakt. Dank u voor alles, Pa en Ma! 

Wie ik zeker niet mag vergeten is onze hond Zohra aka “Zotte Doos”. Hoeveel keren 
heb je mij de voorbije (studenten) jaren niet “geassisteerd” (=meestal liggen slapen ad 
voeten, naast de stoel, op de stoel naast mij, deels op mijn schoot…) tijdens het 
studeren-werken-schrijven. Uw “puppyblik” (en dat kan ze nog altijd na 10 jaar) kan 
wonderen verrichten en het klagen/zagen/panikeren in 1-2-3 doen verdwijnen. 
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En dan nog 1 ietske op het einde van dit boekske: 
Eind mei viel de grond “letterlijk” onder mijn voeten weg na het krijgen van slecht 
nieuws! Ik wil iedereen via deze manier nog eens bedanken voor alle steun en opbeur-
momenten onder gelijk welke vorm de laatste maanden (sms, telefoontjes, kaartjes, 
mailtjes, (ziekenhuis)bezoek, komen koken, ietske gaan drinken, …). Dat deed/doet 
echt deugd! Nog eens: nen DIKKE merci!! Ondertussen zijn we een 5-tal maanden 
verder en ziet de toekomst er gelukkig toch rooskleurig uit J! 

Tot de volgende! 

Marc 

All of a sudden, you find yourself somewhere you never expected to be  
and it’s nice or it takes some getting used to. 

Still, you know you’ll find yourself appreciated somewhere down the line… 
So, you go to sleep each night, thinking about tomorrow,  

going over your plans, preparing the lists 
and hoping that, whatever accidents coming your way, will be happy ones…J  

M. Grey 
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