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A.  Introduction and aim of the thesis 
A.1.  Clinical conditions related to this thesis: hypertension and chronic  

       renal failure 
A.1.1.  Hypertension 

Almost one fourth of the global population and more than one half of the population over 50 

years of age in industrialized countries develop hypertension1. Whereas normal blood pres-

sure is defined as a blood pressure below 120/80 mmHg, and pre-hypertension as 120-

139/80-89 mmHg, stage-1 hypertension refers to values between 140-159/90-99 mmHg and 

stage-2 hypertension is defined as values greater than 160/100 mmHg2,3. In ninety-five per-

cent of the cases the cause of hypertension is unknown4. Elevated blood pressure is a major 

risk factor for myocardial infarction, cerebrovascular accidents and end-stage renal failure 

and is one of the major factors causing death. In most cases, medical drug therapy of hyper-

tension sufficiently decreases blood pressure and, therefore, adequate treatment results in ac-

ceptable survival rate. However, in most cases, the cause of hypertension is unknown and 

remains untreated. 

 

A.1.1.1. Essential hypertension 

If no identifiable disorder can be held responsible, hypertension is classified as essential. Ex-

tensive studies have been carried out to elucidate the complex pathogenesis of this form of 

hypertension. Arterial hypertension occurs when changes develop that alter the relationship 

between blood volume and total peripheral resistance. Essential hypertension may result from 

an interaction of genetic and environmental factors that affect cardiac output, peripheral resis-

tance, or both5, 6. 

 

Genetic factors definitely play a role in the development of high blood pressure. Essential 

hypertension probably is a polygenetic and heterogeneous disorder in which the combined 

effect of mutations or polymorphisms at several gene loci influences blood pressure7. Single-

gene disorders are known to cause relatively rare forms of hypertension, e.g., gene defects in 

enzymes involved in aldosterone metabolism and mutations in proteins that affect sodium 

reabsorption8. Essential hypertension has been associated with heterogeneity of the genes 

encoding for the renin-angiotensin system: there is an association of hypertension with poly-

morphisms in both the angiotensinogen locus and the angiotensin-II type I receptor9. 
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Environmental factors are thought to contribute to expression of the genetic determinants of 

increased blood pressure. Stress, obesity, smoking, physical inactivity and heavy consump-

tion of salt have all been implicated as exogenous factors in hypertension6. One further hy-

pothesis implicates increased peripheral resistance as the primary cause of hypertension. In-

creased resistance is a causative factor due either to the induction of functional vasoconstric-

tion or to structural changes in the vessel wall (e.g., hypertrophic remodelling or hyperplasia 

of smooth muscle cells), leading to a thickened wall and narrowed lumen or both6.  

 

The regulation of systemic blood pressure is, in general, a complex process involving multi-

ple neural and endocrine mechanisms. Especially circulating vasoconstrictive factors are 

important for the genesis of essential hypertension. For example, Dahl et al.10 and Greenberg 

et al.11 suggested several circulating factors that induced hypertension in normotensive rats 

during parabiotic experiments. Similar results were provided from cross-circulation experi-

ments by Zidek et al.12. Furthermore, hypertension is induced in normotensive animals by 

chronic administration of serum or plasma from hypertensive animals13,14. After cross-

incubation of cells from normotensive donors with plasma from hypertensive donors, the 

cells from the normotensive donors showed physiological abnormalities, which were charac-

teristic for cells from hypertensive donors15,16. 

 

Abnormalities in the functions of one or more of the relaxing and constricting factors at the 

vessel wall may be involved in the development of hypertension. The maintenance of hyper-

tension clearly depends on the development of vascular hypertrophy that increases peripheral 

resistance. Folkow17 first demonstrated the role of vascular smooth muscle cell proliferation 

in the pathogenesis of hypertension and proposed a mechanism to explain its action in hyper-

tension (Figure 1). Hypertension is initiated by a minor over-activity of a specific pressor 

mechanism (Figure 1; arrow A) that raises blood pressure (BP) slightly: this initiates a feed-

back mechanism (Figure 1; arrows B and C) inducing vascular hypertrophy resulting in the 

maintenance of hypertension. Lever hypothesized that both genetic (Figure 1; arrow D) and 

trophic mechanisms contribute to that hypertrophy (Figure 1; arrow E)18. 

A BP trophic mechanisms

D
B
C

hypertrophy
E

 
 

Figure 1:  Hypothesis for the initiation and maintenance of hypertension18(A = overactivity 
of specific pressor mechanism; B = inducing vascular hypertrophy; C = feedback 
mechanism; D = hypertrophic by genetic mechanism; E = trophic mechanisms). 
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A.1.1.2. Secondary hypertension  

The remaining five percent of hypertensive adult patients have an identifiable or "secondary" 

disorder responsible for the hypertension4. The most common causes of secondary hyperten-

sion are renal parenchymal diseases19, endocrine disorders4, cardiovascular disorders and 

other identifiable causes, such as Cushing's syndrome, drugs, diet and excess erythropoietin20. 

 

A.1.2. Cells and organs involved in the regulation of vascular tone 

Since the pathogenesis of primary hypertension remains unresolved, there is continued inter-

est in the identification of novel endogenous compounds with strong vasoconstrictive proper-

ties. In the last decades, several organs and cells have been described which release sub-

stances with those properties. In the following paragraphs, these organs and cells will be 

summarized. 

 

A.1.2.1. Vascular endothelium 

The vascular endothelium is a complex and dynamic organ and one of the largest secretory 

tissues of the human organism21, 22. The vascular endothelium, once thought to be only a me-

chanical barrier between the blood and the vessel wall, is now recognized to be an endocrine 

organ showing an amazing variety of regulatory functions. The vascular endothelium is one 

of the most important humoral regulators of vasomotor tone22. 

 

Endothelium-derived mediators have essential functions in vascular regulation22. Endothe-

lium dysfunction involves an imbalance between vasoregulating substances together with a 

disturbance of hemostasis and vessel structure resulting in the development of cardiovascular 

diseases, such as hypertension, atherosclerosis, and heart failure21. The understanding of cel-

lular and molecular biology of the vascular endothelium is essential for the development of 

new approaches for both the prevention and therapy of cardiovascular diseases22. 

 

The first clue to the endocrine functions of the endothelium came from the seminal observa-

tions of Furchgott and Zawadzki23. Some years after they had demonstrated the release of an 

endothelium-derived relaxing factor by stimulated endothelium cells, this factor was identi-

fied as nitric oxide (NO)24-26. Moreover, the endothelium releases a further factor with strong 

vasodilative properties. This effect is initiated by hyperpolarization of vascular smooth mus-

cle. Therefore, this factor is named “endothelium-derived hyperpolarizing factor” (EDHF)27. 
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Vasoconstrictive substances mediate vascular tone, structure and function, influencing vascu-

lar smooth muscle cell (VSMC) proliferation, apoptosis28, platelet aggregation29, monocyte 

and leukocyte adhesion30 as well as thrombosis31. An increase in the proliferation rate of vas-

cular smooth muscle cells sets off medial hypertrophy, which results in an increase in periph-

eral resistance32. 

 

Whereas the discovery of NO as a central messenger in the cardiovascular system revolution-

ized our understanding of vascular regulation, subsequent work on endothelium-derived 

vasoconstricting factors (EDCFs) have had less impact on currently accepted concepts re-

garding vasoregulation. The only EDCF identified so far, the peptide endothelin33, may play a 

role in mediating target-organ damage in cardiovascular disease, but its direct contribution to 

vascular tone in hypertensive diseases is still under debate. In addition to endothelin release33, 

vascular endothelium may regulate vasomotor tone by releasing reactive oxygen species34, 

arachidonate derivatives such as thromboxane or prostacyclin35 and nucleosides such as 

ATP36. 

 

Given that EDCFs belonging to several classes of substances are still unidentified, one of the 

main topics of this thesis is the isolation, identification and characterization of a yet unknown 

EDCF. Since a first logical step to direct any further identification procedures is to classify 

potential novel EDCFs according to the receptors mediating their vasoconstricting actions, we 

sought confirmation of their identity by defining their receptors. 

 

A.1.2.2. Adrenal glands 

The adrenal glands are fundamentally involved in vasoregulation. The adrenal glands are two 

small organs situated on top of each kidney. Both in anatomy and in function they consist of 

two distinct regions: the inner medulla and the cortex. The medulla is the source of the cate-

cholamines, epinephrine and norepinephrine. The chromaffin cells are the principal cell type 

of the inner medulla. 

 

The medulla is innervated by preganglionic sympathetic fibers and is, in essence, an exten-

sion of the sympathetic nervous system. The cortex secretes several classes of steroid hor-

mones such as glucocorticoids37 and mineralocorticoids38, which have a direct effect on the 

vascular tone39. 
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Steroid hormones and catecholamines40,41 are well-known substances with strong vasocon-

strictive properties. In the last decade it has been shown, however, that the adrenal glands 

release at least two further potent vasoconstrictive mediators, the diadenosine polyphosphates 

diadenosine pentaphosphate (Ap5A)42 and diadenosine hexaphosphate (Ap6A)43. Because of 

these reports, we assumed that the adrenal gland might generate further mediators with 

vasoregulatory properties. Therefore, the adrenal glands were screened within the framework 

of this thesis for further mediators with direct effects on vascular physiology. 

 

A.1.2.3. Platelets  

Platelets are essential for blood coagulation44. Therefore, platelet activation is central to the 

pathogenesis of disturbed coagulatory hemostasis and arterial thrombosis45. Platelets interact 

with coagulation factors; conversely, the coagulation factor thrombin is a potent platelet-

activating agonist46. During thrombin-induced aggregation almost the entire content of blood 

platelets is released47,48 and these compounds contribute to local vascular control mecha-

nisms. Previously unidentified vasopressive agents have been found recently in platelets and 

were isolated and characterized as diadenosine polyphosphates29,49. Diadenosine polyphos-

phates have multiple biological and pharmacological activities. Besides their mainly potent 

vasoconstrictive or vasodilatory properties, depending on their structure, diadenosine poly-

phosphates may also play a role in platelet aggregation. It has already been described that the 

amount of diadenosine polyphosphate in platelets is increased in pathophysiologic distur-

bances such as chronic renal failure50, therefore, may contribute to the blood pressure increase 

of these patients. Within the framework of this thesis it was investigated whether different 

hemofiltration membranes have different effects on the diadenosine polyphosphate content in 

platelets and thereby indirectly affecting the blood pressure of these patients. Moreover, di-

nucleoside polyphosphates of platelets were used as a model system for establishing a chro-

matographic assay for isolation and quantification of dinucleoside polyphosphates from tis-

sues, cells and body fluids. 

 

A.1.2.4. Heart tissue 

The human heart is not only a muscle, but an endocrine organ51. For example, the identifica-

tion of renin-angiotensin system components and angiotensin-II receptors in cardiac tissue 

suggests the existence of autocrine and/or paracrine systems. This system is independent from 

angiotensin-II derived from the circulatory system52,53. Angiotensin-II, the effector peptide of 

the renin-angiotensin system, regulates vascular tone and cellular growth in response to de-
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velopmental, physiological, and pathological processes. To be functional, a local renin-

angiotensin system should produce sufficient amounts of autocrine and/or paracrine factors to 

elicit biological responses, contain the final effector (angiotensin-II receptor), and respond to 

humoral, neural, and/or mechanical stimuli54. A recent study demonstrates the presence of the 

diadenosine polyphosphates Ap2A and Ap3A in cardiac-specific granules and the effects of 

these substances on the myocardium and coronary vessels, indicating their role as endoge-

nous modulators of myocardial functions and coronary perfusion55. Ap2A and Ap3A influence 

cardiac output and hereby the blood pressure56. An increased cardiac output is the most typi-

cal hemodynamic change due to high stroke volume and increased heart rate57. In general, an 

increase in cardiac output of the left ventricle is frequently the consequence of an increased 

release of neurotransmitters, hormones, and vasoconstrictive substances that have direct ef-

fects on the growth of cardiomyocytes, cardiac interstitium and vasoconstriction58,59.  

 

In human platelets not only Ap2A60 and Ap3A61, but also Ap4A62, Ap5A63 and Ap6A63 are pre-

sent. Therefore, the hypothesis was raised that besides Ap2A and Ap3A, also Ap4A, Ap5A and 

Ap6A are mediators secreted by the human heart tissue. Consequently, another topic of this 

thesis is to test the hypothesis that besides Ap2A and Ap3A, also Ap4A, Ap5A and Ap6A are 

released by human heart tissue. 

 

A.1.2.5. Mononuclear leukocytes 

Leukocytes are essential for inflammatory regulation44. Leukocytes include granular leuko-

cytes (basophils, eosinophils, and neutrophils) as well as non-granular leukocytes (lympho-

cytes and monocytes)6. The peripheral blood leukocyte count is influenced by several factors, 

including the size of the myeloid (for granulocytes and monocytes) and lymphoid precursor 

and storage cell pools. Mature lymphocytes and monocytes are transported by the blood and 

lymph to the body's extravascular space. They are morphologically distinguishable from ma-

ture granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily 

stained cytoplasmic granules. Lymphocytes are classified into five broad categories, based on 

immunophenotype64: (1) precursor B-cells (immature B-cells); (2) peripheral B-cells (mature 

B-cells); (3) precursor T-cells (immature T-cells); (4) peripheral T-cells (mature T-cells); (5) 

peripheral natural killer (NK) cells (mature NK cells). 

 

Antigen receptor genes rearrange during B-cell and T-cell differentiation through a mecha-

nism that ensures that each mononuclear leukocyte generates a single, unique antigen recep-
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tor; it is known that primarily T-cell associated (CD1-CD8) as well as is B-cell associated 

(CD10, CD19-CD23) antigens exist65-67. Yet not all of the substances released from mononu-

clear leukocytes within the scope of inflammatory processes are known30. As recent evidence 

shows that there is a close relation between inflammation and atherosclerosis68, knowledge of 

the identity of the substances released from the leukocytes is important. Pilot experiments of 

this thesis showed that leukocytes released yet unknown substances with direct vasoconstric-

tive effects, and some of these vasoconstrictors were identified in the framework of this thesis. 

 

A.1.2.6. Parathyroid glands 

The parathyroid glands are four small glands located adjacent to the two thyroid gland lobes 

in the neck. The parathyroid gland has been causally associated with some forms of hyperten-

sion69. The activity of the parathyroid glands is controlled by the level of free calcium in the 

bloodstream; a decreasing level of free calcium70, low active vitamin D analogues and high 

phosphate concentration71 stimulate the synthesis and secretion of vasoconstrictive parathy-

roid hormone (PTH). A further hypertensive factor, isolated from plasma of spontaneously 

hypertensive rats, is the yet unidentified parathyroid hypertensive factor (PHF)72. Elevated 

PHF has been suggested to play a causal role in the pathogenesis of hypertension73. Extensive 

studies have not yet led to an identification of PHF.  

 

A.1.3. Vasoregulatory mediators 

The cells and organs mentioned in section A.1.2 release several factors with strong vasoregu-

latory properties, for example:  

• the peptide endothelin released from the endothelium (see paragraph A.1.3.1)33,  

• a yet unidentified vasoconstrictive factor (called parathyroid hypertensive factor (PHF)) 

released by the parathyroid glands (see chapter paragraph A.1.3.2)74,  

• the octapeptide angiotensin-II, (see paragraph A.1.3.3)75, 

• nitric oxide (NO) e.g. released from the endothelium (see paragraph A.1.3.4)76,  

• the mineralocorticoid aldosterone (see paragraph A.1.3.5)77, 

• the catecholamines (see paragraph A.1.3.6)78, and 

• dinucleoside polyphosphates with adenosine and/or guanosine as purinergic base e. g. 

isolated from platelets (see paragraph A.1.3.7)79,80. 
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A.1.3.1. Endothelin 

Endothelin is a 21-amino acid peptide with strong vasoconstrictive33 and growth stimulating 

properties81. Endothelin is secreted by vascular endothelium cells82,83 and is therefore one of 

the applicants to be named endothelium-derived contractile factor (EDCF). Cloning and se-

quencing of proendothelin shows that mature endothelin is generated through an unusual pro-

teolytic processing, and regional homologies to a group of neurotoxins suggest that endo-

thelin is an endogenous modulator of voltage-dependent ion channels. Expression of the en-

dothelin gene is regulated by several vasoregulatory agents, indicating the existence of a fur-

ther cardiovascular control system33. These results raise the possibility that the endothelium 

of microvessels regulate the local blood flow through the production of endothelin83. In gen-

eral, this peptide may participate through different mechanisms in the elevation of blood pres-

sure and/or in the maintenance of hypertension. 

 

A.1.3.2. Parathyroid hypertensive factor 

Some years ago, a hypertensive factor had been demonstrated in the plasma of spontaneously 

hypertensive rats (SHR), but not in that of normotensive rats84. This factor is derived from 

parathyroid glands and therefore called parathyroid hypertensive factor (PHF)74. It has been 

shown that it produces a delayed increase in blood pressure. This increase is coupled to an 

increase of calcium uptake in the rat-tail artery, which had a similar time-course74. The evi-

dence that calcium is involved in the mechanism of action is supported by the inhibitory ef-

fect of calcium antagonists on the vascular action of PHF84. Parathyroidectomy and parathy-

roid transplant experiments indicated that PHF originated in the parathyroid gland69. Cultured 

parathyroid glands from spontaneously hypertensive rats (SHR) but not from normotensive 

rats produced a factor in the medium with the same biological property and retention time on 

high performance liquid chromatography as plasma PHF. In both animal models and human 

studies, PHF seemed to be associated with low or normal levels of plasma renin and the salt-

sensitive type of hypertension84. 

 

A.1.3.3. Angiotensin-II 

Angiotensin-II is a well-known vasopressive as well as growth stimulating octapeptide that is 

the principal end product of the renin-angiotensin system (RAS-system)85. Angiotensin-II is 

converted from angiotensin-I by the angiotensin-converting enzyme (ACE) located in the 

luminal surface of the vascular endothelium. Angiotensin-I in turn is converted from liver-

derived angiotensinogen by renin86,87. The physiologic effects of angiotensin-II are mainly 
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mediated by the AT1-receptor. The stimulation of this receptor initiates different intracellular 

reactions, such as an increase of the intracellular Ca2+-concentration88,89. The RAS is a regula-

tory cascade that plays an essential role in the regulation of blood pressure, and of electrolyte 

and volume homeostasis90. The first and rate-limiting component of this endocrine cascade is 

renin, a protease synthesized and secreted predominantly by the juxtaglomerular apparatus in 

the nephron90. Patients with high levels of plasma renin activity have had a higher risk of de-

veloping stroke or myocardial infarction than those with low plasma renin activity91-93. Sub-

sequent to these studies, the development of pharmacological probes blocking the RAS has 

helped to define the contribution of this system to blood pressure control and to the patho-

genesis of diseases such as hypertension, congestive heart failure and chronic renal failure94. 

 

Besides its vasoconstrictive properties, angiotensin-II also has growth-stimulating effects on 

vascular smooth muscle cells (VSMC) in vitro. Adding angiotensin-II to quiescent cultures of 

rat aortic smooth muscle cells results in rapid stimulation of the proto-oncogene c-fos, which 

may be a key control step in the initiation of cell growth95. In quiescent rat aortic smooth 

muscle cell cultures, angiotensin-II induces a 20% increase in cellular protein content and a 

50% increase in the fraction of cells with cDNA content with the virtual absence of cells in 

the S-phase of the cell cycle, consistent with either arrest of cells in the G2 phase of the cell 

cycle or development of tetraploidy96. 

 

The classic concept that RAS is especially regulated by circulating hormones has undergone a 

number of changes since the last decade. Several lines of clinical and experimental evidence 

indicate that components of the RAS are synthesized in situ by several tissues and that angio-

tensin-II is regulated independent of the circulating renin-angiotensin system. Angiotensino-

gen, renin, ACE, and angiotensin-II receptors are present in the myocardium97. Most of the 

angiotensin-I found in cardiac tissue is synthesized in situ97,98; moreover, angiotensin-II is 

produced locally in many other tissues, such as endothelium99, blood vessels100, heart101 and 

brain102. This local angiotensin-II production depending on tissue RAS has recently attracted 

growing interest103-105, but has yet to be fully characterized. 

 

A.1.3.4. Nitric oxide 

Nitric oxide (NO) is implicated in neuronal transmission, immune response and vasoregula-

tion, besides acting as a platelet function modulator. A number of recent studies in the ex-

perimental model of renal mass-reduction in rats have proposed the hypothesis that abnor-
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malities of the NO synthetic pathway could play a key role in mediating the complex hemo-

dynamic and hemostatic disorders associated with the progression of hypertension and renal 

disease106. Nitric oxide is synthesized by NO-synthase (NOS). Three distinct isoenzymes of 

NOS are known. 

 

Two calcium/calmodulin–dependent constitutive NOS isoenzymes dominantly expressed in 

the brain and endothelium, and a calcium-independent NOS induced by cytokines, have been 

identified so far. NO inhibits vascular smooth muscle cell proliferation, cytokine-induced 

endothelium expression of adhesion molecules, and the production of proinflammatory cyto-

kines107-109. 

 

Sufficient production of NO in the vascular endothelium seems to be essential for the mainte-

nance of normal blood pressure110, and defects either in the production or action of NO are 

likely to be associated with essential hypertension111. In experimental models of vascular dis-

ease, increased superoxide production (and the subsequent inactivation of NO) seems to be 

critically involved in reduced NO bioactivity and endothelium dysfunction112.  

 

A.1.3.5. Aldosterone  

Aldosterone has often been neglected in the pathophysiologic consequences of the activated 

RAS in arterial hypertension and chronic heart failure113. The steroid hormone aldosterone is 

secreted by the glomerulosa cells of the adrenal cortex and controls the sodium and the potas-

sium balance of vertebrates. Under physiological conditions, the control of secretion is 

probably confined to the stimulatory factors corticotropin (ACTH), Ang II, and K+ and the 

inhibitory factor atrial natriuretic hormone (ANP). Adrenal glomerulosa cells are a cell type 

in which Ca2+ and cAMP are equally significant in stimulation secretion coupling. The effect 

of ACTH is mediated by cAMP, the effect of Ang II by Ca2+ and diacylglycerol (DAG), and 

that of K+ by Ca2+. ANP attenuates agonist-induced Ca2+-influx.. Under physiological condi-

tions, aldosterone secretion may be attributable to increased activity of the renin-angiotensin 

system and/or increased plasma levels of K+ 77. 
 

A.1.3.6. Catecholamines 

The catecholamines norepinephrine and epinephrine are released from the sympathetic nerves 

and the adrenal medulla, and play a central role in circulatory homeostasis via their cardiac 

and vascular effects. They influence renal function, and adrenergic innervation has been iden-
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tified in the renal vasculature and in the proximal tubule, loop of Henle, and distal tubule114-

116. Renal sympathetic activity tends to be increased in states of effective circulating volume 

depletion. In this setting, norepinephrine is a potent vasoconstrictor, acting to reduce renal 

blood flow and therefore to preserve perfusion to the critical coronary and cerebral circula-

tions114,115,117. 

 

Dopamine is another catecholamine, which is primarily synthesized in the basal ganglia and 

in the proximal tubule from circulating L-dihydroxyphenylalanine (L-dopa), via the enzyme 

L-amino acid decarboxylase118-120; dopaminergic nerves are also present in the kidney, but 

their physiologic significance is unclear121. Dopamine generally has opposite renal effects to 

norepinephrine and epinephrine. It is, at lower concentrations, a renal vasodilator that acts at 

the interlobular arteries and both the afferent and efferent arterioles121,122. The direct effects of 

dopamine may contribute to a decrease in vascular resistance123. 

 

A.1.3.7. Dinucleoside polyphosphates  

In recent years, dinucleoside polyphosphates have been described as a group of substances 

that are involved as extra-cellular and intracellular mediators in the direct regulation of vascu-

lar tone as well as growth of vascular smooth muscle124 and mesangial cells125. These mole-

cules comprise two nucleotides (ribosylated nucleic acids) linked by a polyphosphate chain 

through phosphoester bonds at the 5´-position of the two ribose moieties. Dinucleoside poly-

phosphates containing an adenine and/or guanine base have previously been identi-

fied29,48,49,126. The molecular structure of dinucleoside polyphosphates is given in Figure 2 for 

diadenosine polyphosphates (ApnA). Diadenosine polyphosphates, with a backbone of two to 

seven phosphates, are known to occur naturally79. 
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Figure 2:  Molecular structure of diadenosine polyphosphates (ApnA with n=2-7) 
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Diadenosine tetraphosphate (Ap4A) was the first member of this group to be found in mam-

malian tissues, in hepatocytes127, and subsequently both Ap4A and Ap3A were detected in 

human tissues and in platelets47,48. Also diadenosine pentaphosphate (Ap5A) and diadenosine 

hexaphosphate (Ap6A) were isolated from human platelets and characterized as potent vaso-

constrictors49. Several years later, diadenosine heptaphosphate (Ap7A) was isolated from hu-

man platelets as well29. The most recently discovered member of this homologous series is 

diadenosine pyrophosphate, Ap2A, which was found in human myocardial tissue55 as well as 

platelets49. The monophosphate compound, Ap1A, is not known to exist naturally, while the 

phosphate-free adenyladenosine has 5´- and 3´-linkages and, therefore, does not really belong 

to this group. To the best of our knowledge, there is no description in the literature showing a 

relationship between the ApnA amount and phosphate amount in different tissues and body 

fluids. A direct relationship is unlikely because ApnA are probably synthesized from the cor-

responding mononucleotides, and not by nucleosides and phosphates. 

 

Diadenosine polyphosphates have a direct effect on the vascular tone. For example, in the 

vasculature of isolated perfused rat kidney, Ap5A and Ap6A were active at a concentration of 

low nanomolar range. Intra-aortic injection in the rat caused a prolonged increase in blood 

pressure49. The vasoconstrictive effect of Ap7A on the vasculature of the isolated perfused rat 

kidney is slightly lower than that of Ap6A29. A comparison of the homologous series of ApnA 

compounds with phosphate chain lengths from two to six shows that Ap5A is the most potent 

inhibitor of ADP-induced platelet aggregation, and that Ap6A and Ap4A are more potent than 

Ap3A and Ap2A. 

 

Some dinucleoside polyphosphates have a vasodilatory effect, for example, Ap2A in the iso-

lated mesenteric arterial bed of rats128. When arteries with an intact endothelium are perfused 

with Ap3A and Ap4A, both induce vasodilatation, whereas Ap4A causes vasoconstriction in 

arteries from which the endothelium has been removed129. Arterial infusion of Ap4A pro-

duced a dose-dependent decrease of systemic blood pressure and coronary vascular resis-

tance130. 

 

Dinucleoside polyphosphates do not only directly influence the vascular physiology, but also 

increase the proliferation rate of vascular smooth muscle cells. Growth-stimulating effects of 

nucleoside polyphosphates have been demonstrated in numerous types of vascular beds131, 
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involving the subsequent activation of protein kinase C (PKC), Raf-1, and mitogen-activated 

protein kinase (MAPK)132,133. 

 

The physiologic effects of dinucleoside polyphosphates are mediated by the P2 purinoceptor 

system134. The purinoceptor system controlling vascular homeostasis displays a high degree 

of complexity. This is exemplified by the large number of agonists involved (adenosine, 

ADP, ATP, UDP, UTP, dinucleoside polyphosphates) and the diversity of purinoceptors (P2 

receptors). 

 

P2 receptors are divided into two main classes based on whether they are ligand-gated ion 

channels (P2X receptors) or are coupled to G proteins (P2Y receptors)135,136. The P2X/P2Y 

nomenclature was adopted from the one originally used in a subdivision of P2 receptors pro-

posed in 1985 by Burnstock and Kennedy, who described “P2X-” and “P2Y-purinoceptors” 

with distinct pharmacological profiles and tissue distributions: the “P2X purinoceptor” was 

shown to be most potently activated by the stable analogs of ATP, α,β-methylene-ATP (α,β-

meATP), and β,γ-meATP. At the “P2Y-purinoceptor” 2-methylthio-ATP (2MeSATP) was 

the most potent agonist and α, β-meATP and β,γ-meATP were weak or inactive. 

 

There is no evidence for a specific or selective dinucleoside polyphosphate receptor, and the 

effects of the dinucleoside polyphosphate are blocked by P2X receptor antagonists such as 

PPADS or suramin, or by desensitisation of P2X receptors with α,β-methylene-ATP sub-

type137-141 or blockade by Ip5I142.  

 

The calcium-permeable P2X1 receptor is considered the principal mediator of vasoconstric-

tion141, with P2X1 protein clusters on the adventitial surface of blood vessels immediately 

adjacent to sympathetic nerve varicosities142. However, P2X1 transcripts colocalise with 

mRNA for P2X2, P2X4, and P2X5 in muscle cells of a number of blood vessels, and this 

points to the added presence of heteromeric P2X receptors143-147. For example, heteromeric 

P2X1/5 receptors have been implicated in vasoconstriction of submucosal arterioles in the 

guinea pig148. UTP- and ATP-induced vasoconstriction in intrapulmonary artery is consistent 

with activation of the P2Y4 receptor subtype149, which is sensitive to Ap4A. It has been pro-

posed that dinucleoside polyphosphate vasoconstriction is also mediated by the adenosine A1 

receptor150-154. Distinct tissue distributions and functions reinforced this subdivision: P2X-
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purinoceptors were shown to be present in vas deferens, urinary bladder, and vascular smooth 

muscle, and to mediate contraction. 

 

P2Y receptor stimulation increases the expression of c-fos mRNA in cultured aortic smooth 

muscle cells155. In its effect to stimulate proliferation of vascular tissue, Ap4A is equipotent to 

ATP156. Ap3A, Ap4A, Ap5A126 as well as Ap2A, Ap2G and Gp2G49 induce cell proliferation in 

vascular smooth muscle cells and furthermore stimulate c-fos proto-oncogene expression. 

The proliferative effect of the diguanosine polyphosphates GpnG (with n=3-6) is significantly 

stronger than that of ATP in vascular tissues157. Ap3A, Ap4A, Ap5A, and Ap6A also stimulate 

growth in rat glomerular mesangial cells in micromolar concentrations125,158. Moreover, they 

potentiate the growth response to platelet-derived growth factor, but not to insulin-like 

growth factor-1125. 

 

The dinucleoside polyphosphates are also potent antagonists of ADP-induced platelet aggre-

gation29. The interaction with ADP occurs at the P2T receptor and appears to be a competitive 

inhibition, with Ap4A having a Ki of approximately 0.7 mmol L-1 138. A comparison of the 

homologous series of ApnA compounds with phosphate chain lengths from two to six shows 

that Ap5A is the most potent inhibitor of ADP-induced platelet aggregation, and that Ap6A 

and Ap4A are more potent than Ap3A and Ap2A. These dinucleoside polyphosphates inhibit 

the release of ADP from platelets, with a potency that decreases with decreasing chain length. 

Thus, dinucleoside polyphosphates in platelets may fulfil an anti-aggregatory role. Ap3A, 

Ap4A, Ap5A, and Ap6A all produce an increase in intracellular free calcium via a G-protein 

coupled receptor159. 

 

Dinucleoside polyphosphates are metabolised by ectohydrolases, which are present in a broad 

variety of cell types, including aortic endothelium cells160 and mesangial cells161. Human 

phosphohydrolase shows a clear preference for Ap5A and Ap6A as substrates162. The enzy-

matic breakdown of dinucleotides leads to the generation of mononucleotides that, in turn, are 

biologically active in vascular tissues. This enzymatic breakdown not only inactivates ago-

nists but also transforms these agonists into other, occasionally more potent compounds79. 

 

A.1.3.8. Endothelium-derived hyperpolarizing factor 

In addition to nitric oxide (chapter A.1.3.4.), the endothelium generates a second factor with 

vasodilatory properties. This factor leads to a hyperpolarization of vascular smooth muscle 
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cells, and therefore this factor is named “endothelium-derived hyperpolarizing factor” 

(EDHF)27. This factor modulates endothelium-dependent vascular relaxation, particularly in 

smaller coronary and peripheral vessels. The hyperpolarizing effect of the EDHF occurs via 

the opening of vascular smooth muscle potassium channels. When vascular smooth muscle is 

hyperpolarized, voltage-sensitive calcium channels are closed, leading to a reduction in intra-

cellular calcium and relaxation163. The EDHF has a major function in the control of blood 

pressure during the physiologic conditions164. This factor makes a significant contribution to 

vascular tone. In coronary circulation, the importance of the hyperpolarizing factor in modu-

lating endothelium-dependent vascular relaxation seems to increase as vessel size de-

creases165. The EDHF responses are diminished in hypertension and preeclampsia166.  

 

A.1.4. Calcium metabolism  

The relationships between the cytosolic free Ca2+ (Cai), protein kinase C (PKC), and the 

Na+/H+ antiport may hold the key to unravelling the causes and origin of essential hyperten-

sion167. Once Ca2+ was recognized as a carrier of signals, it became important to understand 

how its concentration within cells was regulated168. The control of Ca2+ concentration in the 

cytoplasm and organelles is the sole function of certain proteins that, as a rule, are intrinsic to 

the plasma membrane and to the membranes of organelles and transport Ca2+ across them. 

These proteins belong to various classes: Ca2+ channels in the plasma membrane are gated by 

voltage, by ligands, or by the emptying of internal Ca2+ stores. In the endosarcoplasmic re-

ticulum, they are activated by the second messengers, inositol triphosphate and cyclic ADP 

ribose. Cyclic ADP ribose is assumed to act on channels that are also called ryanodine recep-

tors and that are sensitive to the agonist caffeine. Accessory protein factors, among them 

calmodulin, may be required for the Ca2+-releasing effect of cyclic ADP ribose. ATPases are 

found in the plasma membrane, in the endosarcoplasmic reticulum Ca2+ pump (SERCA), in 

the Golgi apparatus, and in the nuclear envelope. These proteins have no direct role in the 

processing of the Ca2+ signal, but may be targets of Ca2+ regulation. The existence of different 

Ca2+ transporters is justified by their different properties, which satisfy all demands of cells in 

terms of Ca2+ homeostasis; e.g. some pumps have high Ca2+ affinity but limited transport ca-

pacity169. Eukaryotic plasma membranes contain three Ca2+-transporting systems: a Ca2+-

channel, an ATPase, and a Na+/Ca2+-exchanger170. The ATPase is a high-affinity, low-

capacity system, which continuously pumps Ca2+ out of cells. The Na+/Ca2+-exchanger is a 

low-affinity, high-capacity system, which is particularly active in excitable cells. The ex-

changer probably functions in both the Ca2+-efflux and influx directions171. The vasoconstric-
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tion and vasomotion of vascular smooth muscle is associated with Ca2+ variations172. Abnor-

mally high Ca2+ has been found in blood cells, cultured aortic and mesenteric arterial smooth 

muscle cells, and in intact aortas and renal arteries of hypertensive animals173-177. 

 

In essential hypertension178 and in patients with end-stage renal failure179, disturbances of 

Ca2+ metabolism are common180. The disturbed Ca2+ metabolism leads to an increase of the 

intracellular Ca2+ concentration, which is one reason for the secondary hypertension of 

chronic renal failure181,182. 

 

In this condition, the Ca2+ permeability of the membrane seems to be increased183,184, and 

simultaneously the Ca2+-ATPase activity decreases. Based on a decreased Ca2+-ATPase activ-

ity in renal failure, a study suggested a circulating Ca2+-ATPase inhibitor in the plasma185, 

which accumulates in chronic renal failure and may be an important factor for disturbed 

cellular Ca2+ metabolism. Ca2+-ATPase inhibitors may play a role in the pathophysiology of 

the uremic syndrome characterizing end-stage renal disease (stage 5) and, potentially, in 

inducing toxic effects on cellular Ca2+ metabolism in renal failure186. 

 

A.1.5. End-stage renal failure 

When renal function deteriorates, a gradual accumulation occurs in the body of a host of 

compounds, which under normal conditions are secreted into the urine by the healthy kid-

neys187. This process goes along with functional disturbances in almost all organ and cell sys-

tems, related to modification in biological and biochemical function, attributed to the reten-

tion mentioned above. The retention process is named uremia, referring to the most abundant 

but probably inert molecule: urea. As uremic retention solutes exert biological activity, they 

are named uremic toxins187. 

 

Cardiovascular disorders, as described above, are the leading causes of mortality in patients 

with end-stage renal disease188. The high risk for cardiovascular diseases results from the ad-

ditive effect of multiple factors, including hemodynamic overload and several metabolic and 

endocrine abnormalities more or less specific to uremia189. 

 

Chronic progressive renal disease is becoming increasingly prevalent as the population ages. 

With improved treatment and longer patient survivals, the number of patients requiring care 

for end-stage renal disease is increasing and shows no signs of reaching a plateau in the near 
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future. While renal transplantation is considered the treatment of choice for all suitable pa-

tients, the number of patients requiring dialysis increases progressively. Dialysis is a life-

saving therapy that can provide patients with an acceptable quality of life for prolonged peri-

ods of time. The interest in dialysis is due mainly to its potential advantages in reducing mor-

bidity and mortality, although mortality remains markedly higher and accelerated compared 

to matched populations without renal failure.  

 

There are two types of dialysis, each with its advantages and disadvantages: hemodialysis 

(HD) and peritoneal dialysis (PD). In hemodialysis, blood of the patient is guided over an 

extracorporeal semipermeable membrane190. In peritoneal dialysis, the peritoneal membrane 

of the patient is used as semipermeable membrane. In classical hemodialysis, the main con-

cept of transport is diffusion. This implies that the method is highly efficient for removal of 

small solutes, but that there is far less or even no clearance for larger solutes. To improve 

clearance of larger solutes more permeable (high flux) membranes can be used for hemofiltra-

tion191. In this setting the main concept of transport is convection, which enhances the clear-

ance of larger solutes but not of protein-bound toxins. In peritoneal dialysis, the main concept 

of transport is diffusion. The efficiency of this technique is rather low, which is however 

tackled by the continuous nature of the treatment. In addition, there is substantial clearance of 

larger and even protein-bound toxins through the larger pores of the peritoneal membrane192.  

In view of the different physicochemical transport principles of the different dialysis modali-

ties, characterization and understanding of the kinetic behaviour of the different uremic reten-

tion products is crucial193,194. 

 

Until now, removal of uremic toxins has been performed by dialysis in an empirical and re-

source-based way. Although the above-mentioned technological developments have been 

designed especially to improve the delivery of therapy, they have not yet satisfactorily de-

creased mortality and morbidity. 

 

An additional risk factor of dialysis is that not only toxic substances but also essential solutes, 

such as vitamins or trace elements, are eliminated, although until now such disadvantages of 

high-efficacy dialytic removal have not been convincingly demonstrated. The ideal removal 

technique should as much as possible reflect the capacities of the native kidney, though cur-

rent technical possibilities are too limited to reach this aim195. Whereas in the first part of this 
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thesis we will focus on the production of vasoactive compounds by normal cells, the second 

part will be devoted to vasoactive compounds retained in renal failure. 
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A.2.  Isolation of biomolecules by chromatographic methods  
For purification of biomolecules (such as proteins and peptides), traditionally a combination 

of different types of chromatographic methods have been used, such as reversed phase chro-

matography, ion-exchange chromatography, affinity chromatography, size-exclusion chroma-

tography and displacement chromatography1. Recently, a great deal of effort has been made 

to improve and optimise surface properties of particles used as chromatographic matrices. 

This led to the development of the different chromatographic modes of ion-exchange chroma-

tography, reversed-phase chromatography, and affinity chromatography based on non-porous 

media2. 

 

A.2.1. Reversed-phase chromatography 

Reversed-phase chromatography is a separation of molecules based on their hydrophobicity. 

Hydrophilic molecules elute first from a reversed-phase column, whereas strongly hydropho-

bic molecules elute last. The most common chromatographic mode used for reversed-phase 

separations of biomolecules is a gradient mode, using two different mobile phases. In this 

operational mode the sample, dissolved in a hydrophilic and typically aqueous eluent, will be 

injected onto a column, which is equilibrated with the same hydrophilic eluent. Gradient elu-

tion allows the separation of a complex mixture of components that exhibit a broad range of 

retention in a single run. A hydrophobic molecule will bind to the column, because the affin-

ity of the molecule to the hydrophobic stationary phase is larger than to the hydrophilic mo-

bile phase.  

 

After the sample is loaded onto the stationary phase, the concentration of a hydrophobic elu-

ent is continuously increased. This continuous increase of the eluent is named “gradient elu-

tion”. The molecule elutes when the affinity of the molecule to the liquid phase is stronger 

than that to the stationary phase. When ionic solutes are to be separated, the addition of a 

counter-ion (ion pair reagent) will improve the retention of the ionic species. All types of 

molecules with hydrophobic moieties can be chromatographed with a reversed-phase gel. 

 

Full knowledge of the processes underlying biomolecule separation is most desirable but in 

practice rarely attainable. Molecules are separated in reversed-phase chromatography by par-

titioning in the mobile phase and stationary phase. The partitioning is governed by equilib-

rium, specific for the solute interacting with the mobile phase and stationary phase. As the 

mobile phase moves the solute down the column, there is a constant movement of the solute 
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from the mobile phase to the stationary phase and vice versa. The more hydrophobic the sol-

ute, the higher its affinity to the stationary phase, the more time it spends in this stationary 

phase and the later it leaves the column. As a result, molecules with different equilibrium 

constants elute at different times and are separated.  

 

The reason for the almost exclusive use of gradient elution in the separation of biomolecules 

is that the retention mechanism of large biomolecules is different from that of small mole-

cules, due to the amphiphilic nature of the larger. In contrast to small molecules, bio-

molecules interact with the stationary phase via only a hydrophobic part of the molecular 

structure, whereas the more hydrophilic remainder of the molecule is in contact with the mo-

bile phase. These large biomolecules desorb from the stationary phase when the concentration 

of the organic eluent reaches a particular concentration. Before this particular concentration 

of the organic eluent component is reached, the large biomolecules are adsorbed nearly com-

pletely by the stationary phase. After this concentration, the equilibrium is modified towards 

a complete shift of the biomolecules with the mobile phase. 

 

Ionic hydrophobic substances exhibit an increase in retention time with an increase in the 

counter-ion hydrophobicity. The higher the number of positively charged groups present in a 

molecule, the longer will be the retention time3. Very hydrophilic substances may only be 

bound to the sorbent with ion-pair reagents, such as trifluoracid acid (TFA) or tetrabutylam-

monium salts. Furthermore, selectivity varies with different buffers or ion-pairing agents, and 

the resolution of critical sample components may be better with alternative buffers instead of 

the more commonly used TFA.  

 

Acidic ion-pair reagents are used at low concentrations because low levels help to prolong 

column life through decreased acidity in the mobile phase. With increasing concentrations of 

the ion-pairs, the retention time of molecules increases4. Triethylammonium acetate as ion-

pairing reagent is useful to increase the retention of anionic molecules5. In addition, triethyl-

ammonium acetate is volatile and therefore an alternative to TFA. 

 

A.2.2. Ion exchange chromatography 

Ion exchange matrices were originally designed for the separation of small, charged mole-

cules6. Nowadays, ion exchange gradient chromatography is probably the most widely used 

liquid chromatographic method for the separation of biomolecules7. Generally, adsorption 
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and desorption processes in ion exchange chromatography are determined by the properties of 

the three interacting entities: the stationary phase, the constituents of the mobile phase and the 

solute whereby the former two predominantly contribute to the great variability in the design 

of ion-exchange-chromatography experiments. On the one hand, numerous different station-

ary phases are available, and on the other hand, infinite variations in the composition of the 

mobile phase are possible. However, although constant in its composition, the biomolecule 

itself can also to a limited degree be considered as a variable parameter because the pH-value 

and additives of the mobile phase can alter the surface properties of a biomolecule, such as 

the charge density and the accessibility or relative location of charged residues.  

 

A.2.3. Affinity chromatography 

Affinity chromatography separates elements on the basis of a reversible interaction between a 

molecule and a specific ligand coupled to a chromatographic matrix. Biological interactions 

between ligand and target molecule can be the result of electrostatic or hydrophobic interac-

tions, van der Waals forces and/or hydrogen bonding. To elute the target molecule from the 

affinity medium the interaction can be reversed, either specifically using a competitive ligand, 

or non-specifically, by changing the pH, ionic strength or polarity. In a single step, affinity 

purification can offer immense time-saving over less selective multi-step procedures. For 

higher degrees of purification, or when there is no suitable ligand for affinity purification 

available, an efficient multi-step process has to be developed, however, using the purification 

strategy of capture, intermediate purification and polishing8. 

 

A.2.4. Size exclusion chromatography  

For size exclusion chromatography porous stationary phases with defined pore diameters are 

required. Separation depends on differences in size of the biomolecules in a sample. In size 

exclusion chromatography, biomolecules are separated according to their molecular size in 

solution. The main applications of size exclusion chromatography are: separation of bio-

molecules differing in size, determination of average molecular weights, determination of 

hydrodynamic diameters, and separation of biomolecules from small molecules, e.g. for de-

salting. Size exclusion chromatography is especially useful as a preliminary isolation proce-

dure to separate a vast amount of impurities from the components of interest and/or as a final 

step in the separation of homogeneous biomolecules from their aggregates. The larger the size 

of a biomolecule, the smaller the amount of accessible pore volume and the earlier the bio-

molecule is eluted. The separation is finished when the smallest molecule, usually the eluent 
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molecule, is eluted. Molecules that are larger than the largest pore diameter cannot penetrate 

into the pores and pass through the column first. They are eluted with the interstitial volume 

of the column, i.e. the dead or void volume in size exclusion chromatography, while the 

smallest molecule is eluted with the total volume of the mobile phase of the column9. 

 
A.2.5. Displacement chromatography 

Displacement chromatography can be used with every type of chromatographic medium that 

utilises adsorption processes for the separation. In displacement chromatography the separa-

tion is driven by the competition of the solutes for the binding sites of the sorbent. The sam-

ple components are forced to move down and at last elute from the column by the displacer, 

which ideally binds more strongly to the sorbent than any sample component.  

 

During the separation process, the sample components, driven by the displacer into adjacent 

homogeneous zones, move at the same velocity as the displacer front. The displacement 

chromatography is finished when the displacer has saturated the sorbent completely. The or-

der of elution corresponds to the affinity of each sample component to the column. In frontal 

chromatography the purification of a component, which has no or only a low affinity to a sor-

bent, is achieved by adsorbing the other sample components to the column. The component of 

interest elutes first, whereas all other components elute later. All molecules separable by any 

kind of adsorption chromatography can also be chromatographed by displacement chroma-

tography. Displacement chromatography of biomolecules has been performed with cation 

exchange, anion exchange, immobilized metal ion affinity chromatography and reversed-

phase chromatography10. 
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A.3.   Identification of biomolecules by mass-spectrometric methods 
During the two past decades, important achievements in bioorganic mass-spectrometry have 

been made by the development of new ionisation techniques for the analysis of biomolecules. 

Traditional mass-spectrometric methods, which proved useful for analysing compounds with 

low molecular mass, were of little use for measuring underivatised compounds with high mo-

lecular mass. The general problem to be solved was to convert polar, non-volatile bio-

molecules into intact, isolated ionised molecules in the gas-phase. The new, innovative mass-

spectrometric methods overcome these problems. 

 
 

A.3.1. Gas-chromatography / mass-spectrometry (GC/MS) 

The GC/MS instrument (schematic drawing shown in Figure 1) represents a device that sepa-

rates chemical mixtures and detects mass-signals by a mass-detector1-4. Once the sample solu-

tion is introduced into the inlet of the gas-chromatograph (GC), it is vaporized immediately 

because of the high temperature (250 °C) and swept onto the column by the carrier gas. The 

sample compounds are separated while flowing through the column and undergoing the sepa-

ration processes, which are specific for GC. 

 

As the sample components emerge from the column opening, they enter the ionisation cham-

ber of the mass-spectrometer (MS) through a capillary. In general, the ions are produced by 

electron impact (EI). For the EI ionisation a collimated beam of electrons impact the sample 

molecules causing the loss of an electron from the molecule. A molecule with one missing 

electron is represented by M+ and is called the molecular ion or parent ion. When the resulting 

mass signal from this ion is detected by the mass-spectrum, it gives the molecular weight of 

the compound.  

 

 

 

 

 
 

Figure 1: Schematic drawing of a gas-chromatography / mass-spectrometry 

 

Some of the molecular ions fragment into smaller daughter ions and neutral fragments. Both 

positive and negative ions are formed, but only positively charged species will be detected. 
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The fragmentation of the ions yields information about the detailed structure of a molecule. 

The next component is a mass analyser, which separates the positively charged particles ac-

cording to their mass. Several types of separating techniques exist; the most common are 

quadrupoles and ion traps. After the ions have been separated according to their masses, they 

enter a detector and then move onto an amplifier to boost the signal. The detector sends in-

formation to a computer. The latter records all the data produced, converts the electrical im-

pulses into visual and hard-copy displays, and also drives the mass-spectrometer. Identifica-

tion of a compound based on its mass spectrum relies on the fact that every compound has a 

unique fragmentation pattern. Even isomers can be differentiated if the operator is experi-

enced. Generally, more information is generated than could possibly be used. A library of 

known mass spectra, which may contain several thousands of compounds, is stored in the 

computer and may be searched using computer algorithms to assist the analyst in identifying 

the unknown compound.  

 

A.3.2. Matrix-assisted laser desorption/ionisation mass-spectrometry (MALDI) 

The matrix-assisted laser desorption/ionisation (MALDI)5 makes use of short, intense pulses 

of laser light to induce the formation of intact gaseous ions. The MALDI mass-spectrometer 

(schematic drawing shown in Figure 2) has been demonstrated to be capable of mass spec-

trometric analysis of biomolecules in the molecular mass range between 500 Da and a few 

hundred thousand daltons.  

 

 

 

 

 

 

 

 

 

Figure 2: Schematic drawing of a laser desorption/ionisation mass-spectrometer  

 

In MALDI mass-spectrometry ions are generated in the ion source by using a laser. For the 

required irradiances in the range of 106 to 107 W/cm2, the laser beams are focussed to values 

between 30 and 500 µm by suitable optical lenses. The substances to be analysed and the ma-
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trices are co-crystallized on a metal target. The matrix serves two major functions: (1) absorp-

tion of energy from the laser light and transfer into excitation energy of the solid system; 

thereby an instantaneous phase transition of a small volume of the sample to gaseous species 

is induced; in this way, the analyte molecules are desorbed together with matrix molecules; 

(2) ionisation of the analyte biomolecules by photoexcitation or photoionisation of matrix 

molecules, followed by proton transfer to the analyte molecule. The latter process has not 

been proven unequivocally to date, however.  

 

Conventional MALDI-spectrometers mainly use a time-of-flight-(TOF)- analyser. In the TOF 

analyser, the mass to charge ratio is determined by measuring their flight time. After ions are 

accelerated in the ion source to a fixed kinetic energy, they pass the field free drift tube with a 

velocity proportional to their molecular mass. Due to their mass-dependent velocity, ions are 

separated during their flight. The detector at the end of the flight tube (labelled as detector 1 

in Figure 2) produces a signal for each ion species. The molecular mass is calculated from the 

time-of-flight-signal. The differences in velocity of ions with identical molecular masses are 

minimized using a reflector unit. The molecular masses of the reflected ions are detected by 

detector-2 (Figure 2).  

 

Moreover, MS/MS data can be accumulated by the MALDI-TOF. To accumulate MS/MS 

data, first of all the ions of interest are separated in the ion source. These ions fragment during 

the flight in the TOF analyser. This process is called post-source decay (PSD). The reflector 

separates these fragment ions regarding their molecular masses and the detector at the end of 

the flight tube (labelled as detector 2 in Figure 2) produces a signal for each fragment ion. The 

molecular mass of the fragment ions is calculated from the time needed for the flight from the 

reflector to detector 2. 

 

A.3.3. TOF-TOF mass-spectrometry 

TOF-TOF mass-spectrometry is based on a new mass spectrometer design (schematic draw-

ing shown in Figure 3) that overcomes many of the limitations of post-source decay (PSD) 

MALDI-TOF mass-spectrometry6. The TOF-TOF instrument combines the advantages of 

high sensitivity for biomolecule analysis associated with MALDI and comprehensive frag-

mentation information provided by collision-induced dissociation. Unlike the post-source de-

cay technique that is widely used with MALDI-TOF instruments and typically combines 10-
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14 separate spectra of different mass regions for one MS/MS spectrum, the TOF-TOF instru-

ment allows complete fragment ion spectra to be obtained in a single acquisition. 

 

 

-  

 

 

Figure 3: Schematic drawing of a TOF-TOF mass-spectrometer 

 

The MALDI TOF-TOF is similar in geometry to a conventional high quality reflectron 

MALDI TOF7 when operating the instrument in both MS and MS/MS modes; however, there 

are some differences in the ion optics between the TOF-TOF and the MALDI TOF reflectron 

instrument. The substantial difference between the conventional reflectron MALDI TOF and 

the TOF-TOF is the use of a high-resolution reflector that permits better focusing across the 

broad energy range of fragments in the MS/MS mode without negative consequences in the 

MS mode. The MS/MS capabilities of the instrument are facilitated through the addition of 

the optical elements of the second source region of Figure 3: the lens, ion gate and collision 

cell. When the instrument is operated in MS/MS mode, the first source is operated as a linear 

TOF-MS. The ion gate is operated as a double-sided deflection gate, with the first gate acting 

as the low mass gate and the second gate as the high mass gate.  

 

When the laser fires, the low mass gate is “on,” and the high mass gate is “off;” all ions, 

which enter the region of the timed ion selectors, are deflected from the optical axis of the in-

strument. Using the precursor ion mass, the instrument geometry, and the operating voltages, 

the arrival time of the precursor ion to each of the gates is calculated. When the precursor en-

ters the plane of the low mass gate, the voltage applied to the deflecting electrodes is rapidly 

switched off and the precursor trajectory is unaffected. 
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After the precursor has passed through both electrodes, the high mass gate is switched on and 

the remaining ions are deflected from the axis of the spectrometer. The width of the precursor 

mass window typically functions to include the desired precursor mass and its isotope cluster. 

Collision energy in the TOF-TOF is defined by the potential difference between the source 

acceleration voltage and the floating collision cell. All fragments formed from the ion of in-

terest in this region move with essentially the same velocity as the precursor, and thus enter 

the second source at the same time as the precursor ion. When the collection of precursor and 

fragment ions has entered the second source, a high voltage pulse is applied to the source and 

the ions are accelerated towards the detector. The firing of the second source serves as the 

starting point (t= 0) for the recording of the fragment mass spectrum of the substance of inter-

est. The molecular masses of the fragment ions are calculated from the time of flight through 

the second TOF tube to the detector. 
 
 
A.3.4. Fourier-Transform Ion Cyclotron Resonance mass-spectrometry (FT-MS) 

Fourier-Transform Ion Cyclotron Resonance mass-spectrometry (FT-MS) 8 (schematic draw-

ing shown in Figure 4) has received attention for its ability to perform mass measurements 

with a very high resolution and accuracy. Interest in FT-MS for biomolecules arose since 

MALDI has been used for ionization9. The FT-ICR mass spectrometer consists of three main 

sections. The first section is the sample source, which can be any of the available techniques, 

although MALDI is the most common. The second section is the ion transfer region, where 

the molecules of interest are focused, extracted by a hexapole filter and guided by a quadru-

pole ion guide into the third part of the FT-ICR instrument. 

 

 
 

Figure 4: Schematic drawing of a Fourier-Transform Ion Cyclotron Resonance mass-
spectrometer 
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This third part is the main section of the FT-ICR mass-spectrometer and consists of three 

components: a vacuum system, a superconducting magnet and an ICR cell. After ionisation, 

the ions are trapped in the ion cyclotron resonance cell (ICR cell), which is situated in the 

homogeneous region of a superconducting magnet. The FT mass-spectrometry is based on the 

ion cyclotron resonance principle. In the magnetic field (B) the ions with a charge (e) and of a 

velocity (v) are constrained to move in circular orbits. They are submitted to the Lorentz force 

FL=ev × B. This force is directed towards the centre of the cyclotron orbit, which is counter-

balanced by an outward directed centrifugal force. The cyclotron frequency can be calculated 

from the angular velocity. The cyclotron frequency increases with increasing magnetic field 

strength but decreases with increasing mass. The ICR frequency is independent of the velocity 

of the ions, which is one of the fundamental reasons why FT-ICR mass spectrometers are able 

to achieve ultra-high resolution. Ions moving parallel to the magnetic field are not influenced 

by the field. The ions are trapped in an ICR cell. For excitation an oscillating electric field is 

applied, which is transmitted by a sine wave signal generator. If the frequency of the oscillat-

ing field equals the cyclotron frequency, all ions with a particular mass-to-charge ratio (m/z) 

are steadily and coherently accelerated to a larger orbit radius. After excitation, these ions 

move as a single ion packet on an orbit with a radius, which is independent of the original ve-

locity of the ions. In FT-MS usually all ions of different m/z are excited and detected simulta-

neously. A composite transit signal is obtained that represents a time-domain spectrum, i.e. 

the signal intensity is recorded versus time. In order to get the frequency components repre-

senting each mass-to-charge ratio (m/z) of the ion in the ICR cell from this spectrum, it is 

converted into a frequence-domain spectrum by Fourier-transformation (FT). 

 

A.3.5. Advantages and disadvantages of the mass-spectrometric methods 

Table.1 gives an overview of the advantages and disadvantages of the mass-spectrometric 

methods described above. In general, one single mass-spectrometric method is not sufficient 

for the identification of a biomolecule. Therefore, the combination of different mass-

spectrometric methods is recommended. 
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Table 1: Advantages and disadvantages of above-mentioned mass-spectrometric methods 

 
mass-spectrometric 

method 

 

advantages / disadvantages 

 
GC/MS 

 
Advantage: 

 robust method 
 Disadvantage: 
 only for gaseous or evaporated substances 
  

MALDI Advantages: 
 mass range: 300,000 Da 

 Sensitivity: low femtomoles 

 soft ionization: low fragmentation 
 tolerance of low salt concentration 
 analysis of inhomogenous samples possible 

 sample vaporisation not necessary 
 Disadvantages: 
 less resolution 
 matrix background 
 actinic degradation 
  

TOF-TOF Advantages: 
 high sensitivity: low femtomoles 
 soft ionisation: low fragmentation 

 analysis of inhomogeneous samples 
 Sensibility higher than MALDI 
 de novo sequencing possible 
 high mass accuracy 

 Disadvantages: 
 high investment costs 
 large size 
 not for continuous ionisation source 
  

FT-ICR Advantages: 
 highest recorded mass resolution of all mass spectrometers 

 accurate mass measurement 
 accumulation time unlimited 
 MS/MS analysis possible 
 Disadvantages: 
 high investment costs 
 large size 
 not a high throughput technique 
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A.4.   Aim of the thesis  
In summary, many factors and pathways influencing and regulating vascular tone and/or pro-

liferation may be involved in the pathogenesis of hypertension in general and essential hyper-

tension in a more specific way. Until now, none of the known factors seems to have a signifi-

cant or predominant role. Moreover, the physiologic and pathophysiologic pathways remain 

in part not clarified.  

 

One model where hypertension and vascular damage are preponderant in the large majority of 

effected patients is chronic renal failure. This thesis attempts to reveal novel mechanisms 

possibly at play in hypertension and vascular damage in general and in chronic renal failure. 

 

In recent years, new and highly effective chromatographic methods for separation of bio-

molecules were developed and innovative mass-spectrometric methods have become avail-

able to identify the molecular structure of yet unknown compounds. Taking into account this 

methodological background, the aim of this thesis is (a) the identification of unknown sub-

stances with strong vasoconstrictive properties and (b) the clarification of yet unexplored 

physiologic and pathophysiologic pathways in hypertension. 

 

A.5.   Overview of the thesis  
The isolation, identification and characterization of new biomolecules related to vascular 

regulation in general are described in Chapters B.1.-B.6., and those with specific relevance to 

uraemia are described in Chapters C.1.-C.4.. 

 

In Chapter B.1. a new chromatographic method for isolation and quantification of dinucleo-

side polyphosphates is described. This method was the basis for the isolation of diadenosine 

polyphosphates from human plasma (Chapter B.2.), uridine adenosine tetraphosphate 

(Up4A) from endothelial cells (Chapter B.3.) and dinucleoside polyphosphates from adrenal 

glands (ChapterB.4.). Chapter B.5. describes the isolation of dinucleoside polyphosphates 

from human heart, emphasizing the endocrine function of heart tissue. Chapter B.6. and C.1. 

depict the isolation of angiotensin-II and a new angiotensin-like peptide (two peptides with 

strong vasoconstrictive properties) from supernatants of stimulated mononuclear leukocytes. 

For these studies, new chromatographic methods and MALDI-TOF-TOF-mass spectrometric 

analysis were applied. In Chapter C.1. we also describe how the newly detected angiotensin-
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like peptide shows a relatively more pronounced elevation of concentration in renal failure 

than regular angiotensin. 

 

By using chromatographic methods as well as MALDI-reflectron-mass spectrometry and 

conventional gas-chromatography/mass-spectrometry it became possible to identify as well 

two other substances which accumulate in chronic renal failure; these compounds are insuffi-

ciently removed by current dialytic strategies. The biochemical and pathophysiologic charac-

teristics of these two substances are described in Chapter C.2. and C.3.. Chapter C.4. de-

picts the isolation of a potent inhibitor of iNOS using conventional gas-chromatography/ 

mass-spectrometry as well as new chromatographic methods. In Chapter D. we summarize 

the results of the thesis and evaluate their impact on future approaches for research in the 

fields of hypertension and chronic renal failure. 
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B.    Original publications relating to the regulation of the vascular 
tone 

 
B.1. Isolation and quantification of dinucleoside polyphosphates by using 

monolithic reversed-phase chromatography columns 
  
Vera Jankowski, Raymond Vanholder, Lars Henning, Sevil Karadogan, Walter Zidek, Hartmut Schlüter, 
Joachim Jankowski 
  

B.1.1. Abstract  

In former studies, dinucleoside polyphosphates were quantified using ion-pair reversed-phase 

perfusion chromatography columns, which allows a detection limit in the µmolar range. The 

aim of this study was both to describe a chromatographic assay with an increased efficiency 

of the dinucleoside separation, which enables the reduction of analytical run times, and to 

establish a chromatographic assay using conditions, which allow MALDI-mass spectrometric 

analysis of the resulting fractions. 

 

We compared the performance of conventional silica reversed-phase chromatography col-

umns, a perfusion chromatography column and a monolithic reversed-phase C18 chromatog-

raphy column. The effects of different ion-pair reagents, flow-rates and gradients on the sepa-

ration of synthetic diadenosine polyphosphates as well as of diadenosine polyphosphates iso-

lated from human platelets were analysed. 

 

Sensitivity and resolution of the monolithic reversed-phase chromatography column were 

both higher than that of the perfusion chromatography and the conventional reversed-phase 

chromatography columns. Using a monolithic reversed-phase C18 chromatography column, 

diadenosine polyphosphates were separable at baseline not only in the presence of tetrabu-

tylammonium hydrogensulfate (TBA) but also in the presence of triethylammonium acetate 

(TEAA) as ion-pair reagent. The later reagent is useful because, in contrast to TBA, it is com-

patible with MALDI mass-spectrometric methods. This makes TEAA particularly suitable for 

identification of unknown nucleoside polyphosphates. Furthermore, because of the lower 

backpressure of monolithic reversed-phase chromatography columns, we were able to signifi-

cantly increase the flow rate, decreasing the amount of time for the analysis close to 50%, 

especially using TBA as ion-pair reagent. 
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In summary, monolithic reversed-phase C18 columns markedly increase the sensitivity and 

resolution of dinucleoside polyphosphate analysis in a time-efficient manner compared to 

reversed-phase perfusion chromatography columns or conventional reversed-phase columns. 

Therefore, further dinucleoside polyphosphate analytic assays should be based on monolithic 

silica C18 columns instead of perfusion chromatography or conventional silica reversed-

phase chromatography columns. 

 

B.1.2. Introduction 

Diadenosine polyphosphates have previously been isolated from human tissues and cells such 

as platelets1-6, erythrocytes7, heart8-10, placenta11, and human plasma12. Diadenosine poly-

phosphates are involved as intra- and extracellular mediators in the regulation of numerous 

physiological functions, e.g. growth of vascular smooth muscle cells and control of vascular 

tone3,5,12-14. The book entitled “Ap4A and other dinucleoside polyphosphates” edited by 

McLennan gives an excellent overview on the biology and physiology of dinucleoside poly-

phosphates15. Reviews about the role of diadenosine polyphosphates in the cardiovascular 

system have been published recently16,17. Vascular effects of ApnA vary with the number of 

phosphate groups linking the adenosine molecules3,18,19. 

 

Perfusion chromatography is generally used for purification of biomacromolecules20,21. Nev-

ertheless, diadenosine polyphosphates are also quantified in speed-vac-dried eluates from 

reversed-phase chromatographies by ion-pair reversed-phase perfusion chromatography22. 

Reversed-phase gradient systems are used in order to ensure the simultaneous separation of 

molecules with a broad range of hydrophobicity. The chromatographic quantitation of the 

diadenosine polyphosphates is in general based on the method described by Brüggemann et 

al.23 with tetrabutylammonium sulfate as ion-pair reagent and perfusion reversed-phase chro-

matography columns21. In contrast to the method of Brüggemann et al.23, the flow-rate used 

for quantification was reduced from 1 ml min-1 to 300 µl min-1 in recent studies12,24. Although 

high flow rates are typical of perfusion chromatography, the reduction of the flow-rate in-

creases the intensity of the peaks and thus decreases the detection limit. This approach is ap-

propriate for the quantification of diadenosine polyphosphates if the concentration is suffi-

ciently high as described in several publications12,22,24,25, but fails, if the concentrations are 

low. 

Therefore we developed based on a monolithic silica HPLC reversed-phase column two 

strategies: one with an increased efficiency of the dinucleoside separation for dinucleoside 
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polyphosphate quantification, and one for dinucleoside polyphosphate identification using 

conditions which allow MALDI-mass spectrometric analysis of the resulting fractions. For a 

broad variation of the stationary phase characteristics, we used two conventional silica re-

versed-phase columns, a perfusion chromatography column, and a monolithic reversed-phase 

chromatography column. We investigated the effects of different ion-pair reagents, gradients 

and flow rates on the chromatographic resolution. In particular, our attention was turned to 

the compatibility of the chromatographic strategy with mass spectrometry methods like 

MALDI-MS. 

 

B.1.3. Materials and Methods 

HPLC water (gradient grade) and acetonitrile were purchased from Merck (Darmstadt, Ger-

many), and all other substances from Sigma-Aldrich (Taufkirchen, Germany). A porous re-

versed-phase column (“Poros R2/H” (50 x 4.6 mm I.D., Perseptive Biosystems, Freiburg, 

Germany)), a monolithic reversed-phase column (“ChromolithTM SpeedROD” (50 x 4.6 mm 

I.D., Merck, Darmstadt, Germany)), and two conventional reversed-phase columns ((a) 

LiChrospher 100 RP-18e (55 x 4 mm I.D., Merck, Darmstadt, Germany); (b) Superspher 100 

RP-18e (55 x 4 mm I.D., Merck, Darmstadt, Germany)) were compared.  

 

REVERSED-PHASE CHROMATOGRAPHY WITH TRIETHYLAMMONIUM ACETATE 

(TEAA) AS ION-PAIR REAGENT 

Diadenosine polyphosphates (ApnA with n=2-6; each 3µg) were separated by gradient elution 

on each of the four above mentioned reversed-phase columns in the presence of the ion-pair 

reagent triethylammonium acetate (TEAA; 40 mmol L-1 (final concentration)) as eluent A and 

water-acetonitrile (80:20, v-%/v-%) as eluent B. The column temperature was ambient (22 ± 

1 °C). The mobile phase was pumped at a flow-rate of 1 ml min-1 by a high-pressure gradient 

pump system (Merck, Darmstadt, Germany). The column eluate was monitored with a vari-

able wavelength UV detector (759 A, Absorbance Detector, Applied Biosystems, Darmstadt, 

Germany). The diadenosine polyphosphate mixture was dissolved in eluent A. The dia-

denosine polyphosphates were eluted with the following gradient: 0-2 min: 0 % eluent B, 2-

62 min: 0-60 % B, 62-63 min: 60-100 % eluent B. The concentration of eluent B of 60 % cor-

responds to an acetonitrile concentration of 12 % in the total eluate volume. UV absorption 

was measured at 254 nm. Data were recorded and processed with the Chromeleon Lab Sys-

tem 6.0 (Dionex, Idstein, Germany). 
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Low backpressure is one of the important characteristic features of perfusion and monolithic 

reversed-phase chromatography columns in comparison to conventional silica reversed-phase 

chromatography columns, allowing high flow rates. To investigate the effect of increasing 

flow rate on the resolution, the flow rate was increased in the range between 1 ml  min-1 up to 

6 ml min-1, in a separate set of experiments.  

 

REVERSED-PHASE CHROMATOGRAPHY WITH TETRABUTYLAMMONIUM 

HYDROGENSULFATE (TBA) AS ION-PAIR REAGENT 

To evaluate whether the ion-pair reagent would have an impact on the performance of the 

reversed-phase columns, the ion-pair reagent tetrabutylammonium hydrogensulfate (TBA) 

was used instead of TEAA. Diadenosine polyphosphates ApnA (with n=2-6; each 3 µg) were 

separated by gradient elution on each of the four above mentioned reversed-phase columns in 

the presence of ion-pair reagent 2 mmol L-1 tetrabutylammonium hydrogensulfate in a phos-

phate buffer (10 mmol L-1 K2HPO4, final concentration; pH 6.8) as eluent A and water-

acetonitrile (20:80, v-%/v-%) as eluent B. The phosphate buffer was necessary to adjust the 

pH of the ion-pair reagent tetrabutylammonium hydrogensulfate solution to a value of 6.8. 

The column temperature was ambient (22 ± 1 °C). The diadenosine polyphosphates were 

eluted with the following gradient: 0 min: 100 % eluent A, 0-30 min: 0- 45 % B; 30-33 min: 

45-100 % eluent B; 33-36 min: 100 % B. The concentration of eluent B of 45 % corresponds 

to an acetonitrile concentration of 36 %. All other experimental conditions were identical as 

described above. To investigate again the effect of the flow rate on the resolution, the flow 

rate was increased in the range between 1 ml min-1 up to 6 ml min-1. 

 

ISOLATION OF DINUCLEOSIDE POLYPHOSPHATES FROM HUMAN PLATELETS 

Dinucleoside polyphosphates were isolated from human platelets as described elsewhere2,5. 

Briefly, human platelets were washed with an isotonic solution of NaCl and centrifuged 

(4,000 rpm, 4°C, 10 min) twice. The supernatant was aspirated and the pellets frozen to 

-30°C. The platelet pellets were rethawed in double distilled water (10 ml). The resulting sus-

pension as well as the washing solution was deproteinized with 0.6 mol L-1 (final concentra-

tion) perchloric acid and centrifuged (4,000 rpm, 4°C, 5 min). After adjusting pH to 7.0 with 

5 mol L-1 KOH the precipitated proteins and KClO4 were removed by centrifugation (4,000 

rpm, 4°C, 5 min). 1 mol L-1 triethylammonium acetate (TEAA) was added to the supernatant 

up to a final concentration of 40 mmol L-1. Supernatant was concentrated on a preparative 

reversed-phase column (LiChroprep RP-18 B, Merck, Darmstadt, Germany) in the presence of 
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the ion-pair reagent triethylammonium acetate (TEAA; 40 mmol L-1 (final concentration)) as 

eluent A and water-acetonitrile (80:20, V/V) as eluent B. The column temperature was ambi-

ent (22 ± 1 °C). The mobile phase was pumped at a flow-rate of 5 ml min-1 by a high-pressure 

gradient pump system (Merck, Darmstadt, Germany). The diadenosine polyphosphates were 

eluted with a stepwise gradient. The lyophilized eluate of the reversed-phase chromatography 

dissolved in 1 mol L-1 ammonium acetate (pH 9.5) was loaded to a phenyl boronic acid resin. 

The resin was prepared according to Barnes et al.26. The adsorbed substances were eluted 

with 1 mmol L-1 HCl (flow rate: 1 ml min-1). The eluate from the phenyl boronic acid resin to 

which 1 mol L-1 TEAA was added to a final concentration of 40 mmol L-1 was desalted by a 

reversed-phase chromatography (LiChroprep RP-18 B, Merck, Darmstadt, Germany; equili-

bration and sample buffer: 40 mmol L-1 TEAA in water; flow rate: 5 ml min-1). The lyophi-

lized eluate was used for reversed-phase chromatography using the four different reversed-

phase columns.  

 

 

MATRIX ASSISTED LASER DESORPTION/IONISATION MASS SPECTROMETRY 

(MALDI-MS) and POST-SOURCE DECAY (PSD)-MALDI-MS 

The identity of the diadenosine polyphosphates was confirmed by matrix-assisted laser de-

sorption/ionisation mass spectrometry (MALDI-MS)27 and post-source decay (PSD)-MALDI-

MS28. A reflectron-type time-of-flight (RETOF) mass spectrometer (Reflex III, Bruker-

Daltronic, Bremen Germany) was used according to Hillenkamp et al.27. The sample was 

mounted on x, y, z movable stage allowing for irradiation of selected sample areas. In this 

study, a nitrogen laser (Laser Science Inc., Franklin, MA, USA) with an emission wavelength 

of 337 nm and 3 ns pulse duration was used. Typically, the laser beam was focused to a di-

ameter of 50 µm at an angle of 45° to the surface of the target. Microscopic sample observa-

tion was possible via a diachronic mirror in the beam path. 10-20 single spectra were accumu-

lated for a better signal-to-noise ratio. In MALDI-MS large fractions of the desorbed analyte 

ions undergo post-source decay (PSD) during flight in the field free drift path28. Using a 

RETOF set-up, sequence information from PSD fragment ions of precursors produced by 

MALDI were obtained. Sample preparations for MALDI- and PSD-MALDI experiments 

were identical. The concentrations of the analysed dinucleoside polyphosphates were 1-

10 µmol L-1 in bidistilled water. 1 µl of the analyte solution was mixed with 1 µl of the matrix 

solution (50 mg ml-1 3-hydroxy-picolinic acid in water). The mixture was gently dried on an 

inert metal surface before introduction into the mass spectrometer. For calibration of the mass 
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spectra, synthetic diadenosine hexaphosphate (Ap6A) was used as external standard. The mass 

accuracy was in the range of 0.05 %. 

 

B.1.4. Results and Discussion 

Besides the broad variation of the experimental chromatographic conditions like flow rate, 

ion-pair reagent, this study focused on the broad variation of the stationary phase characteris-

tics. The chromatographic conditions used for testing the different chromatography columns 

were identical –within the limits of the column backpressure. 

 

We compared the performance of conventional silica reversed-phase columns with the per-

formance of a perfusion chromatography column and a monolithic reversed-phase chromatog-

raphy column. As examples for conventional reversed-phase chromatography columns, we 

used a Lichrospher and Superspher of Merck (Darmstadt, Germany). These reversed-phase 

chromatography columns are characterized by the composition of spherical particles of silica 

with endcapped octadecyl derivative. The particle size of Lichrospher vs. Superspher amounts 

to 5 µm vs. 4 µm, resulting in a different number of theoretical plates (55,000 vs < 100,000 

N/m).  

 

In recent studies, the low molecular weight and highly charged dinucleoside polyphosphates, 

which also contain hydrophobic fragments, were fractionated by perfusion chromatography 

(e.g. 24,29,30), although the latter technique is generally only used for purification of high mo-

lecular weight biomacromolecules20,21. The main advantage of perfusion chromatography is 

that the resolution does virtually not depend on flow rate, whereas conventional materials 

exhibit a marked reduction in resolution with increased flow rates. In general, synthetic poly-

mers such as polystyrenedivenylbenzene are used as matrix building blocks due to their excel-

lent physical stability (allowing pressures up to 200 bar) and chemical stability compared to 

most other substances used21. This makes column cleaning easy because even aggressive 

chemicals such as acids and bases can be used. This in turn enables longer lifetimes of the 

chromatography columns. In addition, the amount of time needed for column cleaning is 

minimal. A high resolution and unchanged binding capacity are characteristic for perfusion 

reversed-phase columns. In addition, costs are generally lower for perfusion chromatography, 

compared to conventional reversed-phase chromatography, either due to intrinsic financial 

advantages, or to a gain time. 
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The previous reports mentioned above indicate that diadenosine polyphosphates are quantifi-

able by perfusion chromatography with tetrabutylammonium hydrogensulfate (TBA) as ion-

pair reagent (e.g. 1,24). An exemplary reversed-phase chromatographic separation of synthetic 

diadenosine polyphosphates ApnA (with n=2-6) is shown in Figure 1 using TBA as ion-pair 

reagent and a monolithic silica reversed-phase column (Figure 1A), a perfusion reversed-

phase column (Figure 1B), and two conventional silica reversed-phase columns, a LiChro-

spher (Figure 1C) and a Superspher (Figure 1D). The peaks labelled in the figure represent 

the UV absorption of synthetic diadenosine polyphosphates ApnA (with n=2-6). Using TBA 

and the monolithic silica reversed-phase column, the differences in retention time of the dinu-

cleoside polyphosphates can markedly be increased in comparison to perfusion reversed-

phase as well as conventional silica reversed-phase columns. Moreover, the peak widths of 

the dinucleoside polyphosphates decrease using TBA as an ion-pair reagent. As a conse-

quence, less concentrated dinucleoside polyphosphates are quantifiable by using monolithic 

silica reversed-phase columns with TBA as ion-pair reagent. The monolithic silica reversed-

phase columns are based on the “sol-gel" technology, which employs highly porous mono-

lithic rods of silica with a bimodal pore structure. The column consists of both a macroporous 

and mesoporous structure. The macropores are on average 2 µm in diameter and together 

form a dense network of pores through which the eluent can rapidly flow to reduce the 

separation time. 
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Figure 1:  Reversed-phase chromatography of synthetic diadenosine polyphosphates (ApnA; 
with n=2-6) on  

(A)  an analytical monolithic reversed-phase high performance liquid chromatographic 
column (ChromolithTM SpeedROD (50 x 4.6 mm I.D., Merck, Darmstadt, Ger-
many)); eluent A: 2 mmol L-1 tetrabutylammonium hydrogensulfate and 10 mmol 
L-1 K2HPO4 in water (pH 6.8); eluent B: water-acetonitrile (20:80 %, v/v); gradient: 
0 min: 0 % eluent B, 0-30 min: 0-45 % B, 30-33 min: 45- 100 % eluent B; 33-36 min: 
100 % B; flow rate: 1.0 ml min-1). 

(B)  an analytical reversed-phase high performance liquid chromatographic column 
(Poros R2/H (50 x 4.6 mm I.D., Perseptive Biosystems, Freiburg, Germany)). The 
conditions were identical to the conditions in Figure 1A. 

(B)  an analytical reversed-phase high performance liquid chromatographic column 
(LiChrospher 100 RP-18e (55 x 4 mm; Merck, Darmstadt, Germany)). The condi-
tions were identical to the conditions in Figure 1A. 

(D)  an analytical reversed-phase high performance liquid chromatographic column 
(Superspher 100 RP-18e (55 x 4 mm; Merck, Darmstadt, Germany)). The condi-
tions were identical to the conditions in Figure 1A. The figure shows characteris-
tic chromatograms of three, independent chromatographies using identical condi-
tions (N=3). 

 

This approach, however, fails in combination with mass-spectrometric analysis and in the 

case of low concentrations of dinucleoside polyphosphates. For identification, dinucleoside 

polyphosphates are generally analysed by MALDI-mass spectrometry (e.g. 30-33). Due to the 

strong ionic bonding of TBA with the phosphates of the dinucleoside polyphosphates and 

because of the low steam pressure of TBA, this ion-pair reagent is not removable by lyophili-

sation in the presence of dinucleoside polyphosphates. For that reason, the use of TBA as ion-

pair reagent precludes the identification of the diadenosine polyphosphates by MALDI-mass 

spectrometry. But for the separation of ionic solutes such as dinucleoside polyphosphates, the 



Chapter B.1. Isolation of dinucleotide polyphosphates by monolith RP chromatography columns 

J Chromatogr B 819 (1):131-139, 2005 

52

addition of an ion-pair reagent as a counterion is essential to ensure the retention of the ionic 

species. This indicates that an alternative to the ion-pair reagent TBA is necessary. 

 

Therefore, the identities of the diadenosine polyphosphates as showed in Figure 1 were con-

firmed by comparing the respective retention times with those of single synthetic dinucleoside 

polyphosphates. Because of the use of TBA as ion-pair reagent and perfusion reversed-phase 

columns, in former studies, two strategies were necessary, one for the identification and one 

for the quantification of dinucleoside polyphosphates. TBA was used as ion-pair reagent for 

the chromatographic quantification of the dinucleoside polyphosphates; for the chroma-

tographic isolation and identification, triethylammonium acetate (TEAA) was used as an al-

ternative cationic ion-pair reagent. In contrast to TBA, TEAA is completely removable from 

dinucleoside polyphosphates by lyophilisation and therefore subsequent MALDI mass analy-

sis of dinucleoside polyphosphates is possible. 

 

Again, in contrast to monolithic reversed-phase chromatography, reversed-phase perfusion 

chromatography and chromatography with conventional silica reversed-phase columns with 

TEAA as the ion-pair reagent do not lead to sufficient separation of dinucleoside polyphos-

phates. Figure 2 presents characteristic reversed-phase chromatograms showing the separation 

of synthetic diadenosine polyphosphates ApnA (with n=2-6) in the presence of triethylammo-

nium acetate (TEAA) as ion-pair reagent using the four columns under study (Figure 2A-D). 

The resolution of perfusion chromatography as well as of conventional reversed-phase chro-

matography is lower than that of the monolith reversed-phase chromatography. Dinucleoside 

polyphosphates are obviously only separable in the presence of the cationic ion-pair reagent 

TEAA if monolithic silica reversed-phase columns are used for the chromatography. 
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Figure 2:  Reversed-phase chromatography of synthetic diadenosine polyphosphates (ApnA; 

with n=2-6) with triethylammonium acetate (TEAA) as ion-pair reagent on:  
(A)  an analytical monolithic reversed-phase high performance liquid chromatographic 

column (ChromolithTM SpeedROD (50 x 4.6 mm I.D., Merck, Darmstadt, Ger-
many)); eluent A: 40 mmol L-1 TEAA in water; eluent B: water-acetonitrile (80:20 
%, v/v); gradient: 0-2 min: 0 % eluent B, 2-62 min: 0-60, respectively % B, 62-63 
min: 60-100 % eluent B. The concentration of eluent B of 60 % corresponds to an 
acetonitrile concentration of 12 %. 

(B)  an analytical reversed-phase high performance liquid chromatographic column 
(Poros R2/H (50 x 4.6 mm I.D., Perseptive Biosystems, Freiburg, Germany)). The 
conditions were identical to the conditions in Figure 2A. 

(C)  an analytical reversed-phase high performance liquid chromatographic column 
(LiChrospher 100 RP-18e (55 x 4 mm; Merck, Darmstadt, Germany)). The condi-
tions were identical to the conditions in Figure 2A. 

(D)  an analytical reversed-phase high performance liquid chromatographic column 
(Superspher 100 RP-18e (55 x 4 mm; Merck, Darmstadt, Germany)). The condi-
tions were identical to the conditions in Figure 2A. The figure shows characteristic 
chromatograms of three, independent chromatographies using identical conditions 
(N=3). 

 

In contrast to reversed-phase chromatography with the ion-pair reagent TEAA, in the case of 

reversed-phase chromatography with TBA as ion-pair reagent a buffer system is essential to 

adjust the pH at 6.8 (Figure 3A). Diadenosine polyphosphates are insufficiently retained and 

fractionated by the ion-pair reversed-phase chromatography with TBA in the absence of a 

buffer system (Figure 3B). In addition, chromatography of diadenosine polyphosphates at 

acid pH values bears the risk of hydrolysis of diadenosine polyphosphates.  
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Figure 3: Reversed-phase chromatography of synthetic diadenosine polyphosphates (ApnA; 
with n=2-6) on an analytical monolithic reversed-phase high performance liquid 
chromatographic column (ChromolithTM SpeedROD (50 x 4.6 mm I.D., Merck, 
Darmstadt, Germany) using the ion-pair reagent tetrabutylammonium hydrogen-
sulfate in the presence (A) and in the absence the buffer system K2HPO4 (B). The 
figure shows characteristic chromatograms of three, independent chroma-
tographies using identical conditions (N=3). Conditions: 

(A)  eluent A: 2 mmol L-1 tetrabutylammonium hydrogensulfate and 10 mmol L-1 
K2HPO4 in water (pH 6.8); eluent B: water-acetonitrile (20:80 %, v/v); gradient: 0 
min: 0 % eluent B, 0-30 min: 0-45 % B, 30-33 min: 45- 100 % eluent B; 33-36 
min: 100 % B; flow rate: 1.0 ml min-1). 

(B)  eluent A: 2 mmol L-1 tetrabutylammonium hydrogensulfate without K2HPO4 in 
water (pH 6.8); eluent B: water-acetonitrile (20:80 %, v/v). The gradient and the 
flow rate were identical to the conditions in Figure 3A.  

  
The chemical stability of conventional silica reversed-phase columns is generally limited. 

Silica-based reversed-phase sorbents operate within the pH limits of 2 < pH < 8, because at 

pH > 8 silica slowly dissolves34 and at pH < 2 the covalently bound silane ligands are hydro-

lyzed35. Due to this limited chemical stability only restricted purification procedures can be 

performed with limited operating life times as a result. This is another reason to prefer mono-

lith reversed-phase chromatography columns for separation of dinucleoside polyphosphates.  

 

Figure 4 shows characteristic reversed-phase chromatograms of a homogenate of human 

platelets using TEAA as ion-pair reagent and with the four columns under study (Figures 4A-

D). In contrast to the other tested reversed-phase chromatography columns, the resulting 

chromatogram of the monolithic silica reversed-phase column shows no interference with 

individual dinucleoside polyphosphates.  
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Figure 4:  Reversed-phase chromatography of a homogenate of human platelets after re-
versed-phase and affinity-chromatography on: 

(A)  an analytical monolithic reversed-phase high performance liquid chromatographic 
column (ChromolithTM SpeedROD (50 x 4.6 mm I.D., Merck, Darmstadt, Ger-
many)); eluent A: 40 mmol L-1 triethylammonium acetate (TEAA) in water; elu-
ent B: water-acetonitrile (80:20, v/v); gradient: 0-2 min: 0 % eluent B, 2-62 min: 0-
25 % B, 62-63 min: 25- 100 % eluent B; flow rate: 1.0 ml min-1). 

(B)  an analytical reversed-phase high performance liquid chromatographic column 
(Poros R2/H (50 x 4.6 1 mm I.D., Perseptive Biosystems, Freiburg, Germany)). The 
conditions were identical to the conditions in Figure 4A. 

(C)  an analytical reversed-phase high performance liquid chromatographic column 
(LiChrospher 100 RP-18e (55 x 4 mm; Merck, Darmstadt, Germany)). The condi-
tions were identical to the conditions in Figure 4A. 

(D)  an analytical reversed-phase high performance liquid chromatographic column 
(Superspher 100 RP-18e (55 x 4 mm; Merck, Darmstadt, Germany)). The condi-
tions were identical to the conditions in Figure 4A. The figure shows characteris-
tic chromatograms of three, independentd chromatographies using identical condi-
tions (N=3). 

 

The chromatographies of the wash solutions using the identical chromatographic conditions 

showed no significant UV absorption at 254 nm, indicating the absence of dinucleoside poly-

phosphates in these solutions (data not shown). 

 

While TEAA is superior as an ion-pair reagent if subsequent mass spectrometry is needed for 

identification of individual compounds, for all other chromatographic conditions, TBA seems 

to be superior regarding the analysis time. Figure 5 depicts analogous separations with TBA 

as the ion-pair reagent. The resolution of the separation is further increased compared to the 

corresponding resolution of the chromatography with TEAA as the cationic ion-pair reagent. 

The distinct elution of the dinucleoside polyphosphates using the latter chromatographic con-
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ditions, allows quantification of very low concentrated derivatives. Using TBA instead of 

TEAA as ion-pair reagent, the analysis time can obviously be decreased without a decrease of 

the resolution of the chromatography.  
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Figure 5:  Reversed-phase chromatography of a homogenate of human platelets after re-
versed-phase and affinity-chromatography on: 

(A)  an analytical monolithic reversed-phase high performance liquid chromatographic 
column (ChromolithTM SpeedROD (50 x 4.6 mm I.D., Merck, Darmstadt, Ger-
many)); eluent A: 2 mmol L-1 tetrabutylammonium hydrogensulfate and 10 mmol 
L-1 K2HPO4 in water (pH 6.8); eluent B: water-acetonitrile (20:80 %, v/v); gradi-
ent: 0 min: 0 % eluent B, 0-30 min: 0-45 % B, 30-33 min: 45- 100 % eluent B; 
33-36 min: 100 % B; flow rate: 1.0 ml min-1). 

(B)  an analytical reversed-phase high performance liquid chromatographic column 
(Poros R2/H (50 x 4.6 mm I.D., Perseptive Biosystems, Freiburg, Germany)). The 
conditions were identical to the conditions in Figure 5A.  

(C)  an analytical reversed-phase high performance liquid chromatographic column 
(LiChrospher 100 RP-18e” (55 x 4 mm; Merck, Darmstadt, Germany)). The con-
ditions were identical to the conditions in Figure 5A. 

(D)  an analytical reversed-phase high performance liquid chromatographic column 
(Superspher 100 RP-18e (55 x 4 mm; Merck, Darmstadt, Germany)). The condi-
tions were identical to the conditions in Figure 5A. The figure shows characteris-
tic chromatograms of three, independent chromatographies using identical condi-
tions (N=3). 
 

The combination of TBA as the cationic ion-pair reagent with monolithic silica reversed-

phase columns yields a chromatogram with baseline separated and sharp UV-absorption 

peaks. Using this combination of chromatographic conditions, not only the abundant and 

known dinucleoside polyphosphates like Ap2A, Ap3A, Ap4A, Ap5A and Ap6A, are baseline 

separated, but also less concentrated, yet unknown nucleoside polyphosphates may be in all 

probability separated with high resolution and small peak width. 
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Next, the effect of increasing the flow rate on the resolution of the monolithic reversed-phase 

column was analyzed. Due to the greater back-pressure of the reversed-phase columns com-

pared to the monolith reversed-phase and the perfusion reversed-phase chromatography col-

umns, the flow rates used in chromatography with conventional silica reversed-phase chroma-

tography columns are in general lower than those used in chromatography with monolithic or 

perfusion chromatography columns. Higher flow rates result in a decrease in the analysis 

time. Figure 6 shows characteristic reversed-phase chromatograms of synthetic diadenosine 

polyphosphates using the monolithic reversed-phase column in the presence of the ion-pair-

reagent TBA (Figure 6A-D) and in the presence of the ion-pair-reagent TEAA (Figure 6F-I) 

using a flow rate of 1 - 6 ml min-1. Analysis time can be reduced by close to one magnitude 

without a significant decrease in the resolution. The separation of a platelet extract in the 

presence of TBA and TEAA using a flow rate of 6 ml min-1 is shown Figure 6E and 6J, re-

spectively. In the presence of TBA, the differences of retention times of diadenosine poly-

phosphates increase.  
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Figure 6: Reversed-phase chromatography of synthetic diadenosine polyphosphates (ApnA; 

with n=2-6) on an analytical monolithic reversed-phase high performance liquid 
chromatographic column (ChromolithTM SpeedROD (50 x 4.6 mm I.D., Merck, 
Darmstadt, Germany) using TBA (Figure 6A-D) respectively TEAA (Figure 6F-I) 
as ion-pair reagent and flow rate in the range of 1 ml min-1 up to 6 ml min-1. Fig-
ure 6E and 6J show the chromatography of a platelet extract using TBA and 
TEAA as ion-pair reagent. The figure shows characteristic chromatograms of 
three, independent chromatographies using identical conditions (N=3). 
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(A)  eluent A: 2 mmol L-1 TBA and 10 mmol L-1 K2HPO4 in water (pH 6.8); eluent B: 
water-acetonitrile (20:80 %, v/v); gradient: 0 min: 0 % eluent B, 0-30 min: 0-45 
% B, 30-33 min: 45- 100 % eluent B; 33-36 min: 100 % B; flow rate: 1 ml min-1. 

(B)  eluent A: 2 mmol L-1 TBA and 10 mmol L-1 K2HPO4 in water (pH 6.8); eluent B: 
water-acetonitrile (20:80 %, v/v); gradient: 0 min: % B, 0-15 min: 0-40 % B, 15-
16 min: 40-100 % eluent B; 16-17 min: 100 % B; flow rate: 2 ml min-1. 

(C)  eluent A: 2 mmol L-1 TBA and 10 mmol L-1 K2HPO4 in water (pH 6.8); eluent B: 
water-acetonitrile (20:80 %, v/v); gradient: 0 min: % B, 0-7.5 min: 0-40 % B, 7.5-
8.2 min: 40-100 % eluent B; 8.2-9.2min: 100 % B; flow rate: 4 ml min-1. 

(D)  eluent A: 2 mmol L-1 TBA and 10 mmol L-1 K2HPO4 in water (pH 6.8); eluent B: 
water-acetonitrile (20:80 %, v/v); gradient: 0 min: 0 % B, 0-5 min: 0-40 % B, 5-
5.5 min: 40-100 % eluent B; 5.5-6.5 min: 100 % B; flow rate: 6 ml min-1. 

(E)  reversed-phase chromatography of a platelet extract using the conditions as de-
scribed in (D). 

(F)  eluent A: 40 mmol L-1 TEAA in water; eluent B: water-acetonitrile (80:20 %, 
v/v); gradient: 0-2 min: 0 % B, 2-62 min: 0-60 % B, 62-63 min: 60-100 % eluent 
B; The concentration of eluent B of 60 % corresponds to an acetonitrile 
concentration of 12 %; flow rate: 1 ml min-1. 

(G)  eluent A: 40 mmol L-1 TEAA in water; eluent B: water-acetonitrile (80:20 %, 
v/v); gradient: 0 min: 0 % B, 0-32 min: 0-35 % B, 32-33 min: 35-100 % B; 33-34 
min: 100 % B; flow rate: 2 ml min-1. 

(H)  eluent A: 40 mmol L-1 TEAA in water; eluent B: water-acetonitrile (80:20 %, 
v/v); gradient: 0-1 min: 0 % B, 1-16 min: 0-35 % B, 16-17 min: 35-100 % eluent 
B. flow rate: 4 ml min-1. 

(I)  eluent A: 40 mmol L-1 TEAA in water; eluent B: water-acetonitrile (80:20 %, 
v/v); gradient: 0-1 min: 0 % B, 1-11 min: 0-35 % B, 11-12 min: 35-100 % eluent 
B. flow rate: 6 ml min-1. 

(J)  reversed-phase chromatography of a platelet extract using the conditions as de-
scribed in Figure 6I. 

 

 

Characteristic MALDI mass-spectra of diadenosine polyphosphates fractionated using the 

conditions as described in Figure 6H are shown in Figure 7. As mentioned above, the use of 

TBA as ion reagent prevents the analysis by MALDI mass-spectrometry (data not shown).  
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Figure 7: MALDI mass spectra of the substances underlying the UV absorption-peaks (la-
belled as Ap2A, Ap3A, Ap4A, Ap5A and Ap6A in Figure 6H). The figure shows 
characteristic MALDI mass spectra of three, independent MALDI mass spectra 
using identical conditions (N=3). 

 

In summary, isolation and quantification of dinucleoside polyphosphates by using monolithic 

silica C18 columns has obviously essential advantages compared to chromatography with 
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perfusion reversed-phase media or conventional silica reversed-phase media. In the future, the 

usage of monolithic silica reversed-phase columns will lead to isolation and quantification of 

yet unknown dinucleoside polyphosphates. 
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B.2.  Identification and quantification of diadenosine polyphosphate con-

centrations in human plasma 
 
Joachim Jankowski, Vera Jankowski, Udo Laufer, Markus van der Giet, Lars Henning, Martin Tepel, Walter 
Zidek, Hartmut Schlüter 
  

B.2.1. Abstract 

Diadenosine polyphosphates have been demonstrated to be involved in the control of vascular 

tone as well as the growth of vascular smooth muscle cells and hence, possibly, in athero-

genesis. In this study we investigated the question, whether diadenosine polyphosphates are 

present in human plasma and whether a potential source can be identified, which may release 

diadenosine polyphosphates into the circulation.  

 

Plasma diadenosine polyphosphates (ApnA with n=3-6) were purified to homogeneity by af-

finity-, anion exchange- and reversed-phase-chromatography from deproteinized human 

plasma. Analysis of the homogeneous fractions with matrix-assisted laser desorp-

tion/ionization mass spectrometry (MALDI-MS) revealed molecular masses ([M+H]+) of 757, 

837, 917 and 997 Da. Comparison of the post-source-decay (PSD)-MALDI mass spectra of 

these fractions with those of synthetic diadenosine polyphosphates revealed that these isolated 

substances were identical to Ap3A, Ap4A, Ap5A and Ap6A. Enzymatic analysis showed an 

interconnection of the phosphate groups with the adenosines in the 5´-positions of the ribose 

moieties. 

 

The mean total plasma diadenosine polyphosphate concentrations (µmol L-1; mean ± SEM) in 

cubital veins of normotensive subjects amounted to 0.89 ± 0.59 for Ap3A, 0.72 ± 0.72 for 

Ap4A, 0.33 ± 0.24 for Ap5A and 0.18 ± 0.18 for Ap6A. Cubital venous plasma diadenosine 

polyphosphate concentrations from normotensives did not differ significantly from those in 

the hypertensive patients studied. There was no significant difference between arterial and 

venous diadenosine polyphosphate plasma concentrations in five hemodialysis patients, mak-

ing a significant degradation by capillary endothelial cells unlikely. Free plasma diadenosine 

polyphosphate concentrations are considerably lower than total plasma concentrations, as 

about 95 % of the plasma diadenosine polyphosphates were found to be protein-bound. There 

were no differences in the diadenosine polyphosphate plasma concentrations depending on 
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the method of blood sampling and anticoagulation, suggesting that platelet aggregation does 

not artificially contribute to plasma diadenosine polyphosphate levels in significant amounts.  

 

The ApnA (with n=3-6) total plasma concentrations in adrenal veins were significantly higher 

than the plasma concentrations in both infrarenal and suprarenal vena cava: adrenal veins: 

Ap3A: 4.05 ± 1.63; Ap4A: 6.18 ± 2.08; Ap5A: 0.53 ± 0.28; Ap6A: 0.59 ± 0.31; infrarenal vena 

cava: Ap3A: 1.25 ± 0.66; Ap4A: 0.91 ± 0.54; Ap5A: 0.25 ± 0.12; Ap6A: 0.11 ± 0.06; suprare-

nal vena cava: Ap3A: 1.40 ± 0.91; Ap4A: 1.84 ± 1.20; Ap5A: 0.33 ± 0.13; Ap6A: 0.11 ± 0.07 

(µmol L1; mean ± SEM; each p<0.05 (concentration of adrenal veins vs. infrarenal or supra-

renal veins respectively)).  

 

The presence of diadenosine polyphosphates in physiologically relevant concentrations in 

human plasma was demonstrated. Because in adrenal venous plasma significantly higher dia-

denosine polyphosphate concentrations were measured than in plasma from the infrarenal and 

suprarenal vena cava, it can be assumed that, beside platelets, the adrenal medulla may be a 

source of plasma diadenosine polyphosphates in humans. 

 

B.2.2. Introduction  

In the circulation diadenosine polyphosphates have been shown to be important extracellular 

mediators affecting vascular tone, growth of vascular cells (for review see ref. 1) and platelet 

aggregation2,3. Diadenosine tri- and tetraphosphate (Ap3A, Ap4A) were the first diadenosine 

polyphosphates to be identified in human platelets4,5, followed by diadenosine penta- and 

hexaphosphate (Ap5A, Ap6A)6 and diadenosine heptaphosphate (Ap7A)7. In 1999, dia-

denosine diphosphate (Ap2A) and Ap3A were shown to be present in human myocardial tis-

sue8. Dinucleoside diphosphates, Ap2A, Ap2G and Gp2G are described as a new class of 

growth promoting extracellular mediators, which are released from granules after activation 

of platelets9. 

 

Dinucleoside polyphosphates can be released into the circulation from activated platelets4-7,10, 

from chromaffin cells of the adrenal glands11-15 or from synaptic vesicles16. After their release 

local concentrations in the range of 10-5 mol L-1 or even higher can be assumed17. Like ATP, 

the dinucleoside polyphosphates may be coreleased with catecholamines on sympathetic 

nerve stimulation and may thus significantly modify the cardiovascular actions of the sym-

pathoadrenergic system11.  
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Diadenosine polyphosphates can act as vasoconstrictors or vasodilators in rat mesenteric ar-

teries18 and in the vasculature of the rat kidney19. Ap5A is the most potent vasoconstricting 

diadenosine polyphosphate, followed by Ap6A and Ap4A. The ionotropic P2X1 receptor is 

considered the principal mediator of vasoconstriction20. The P2X1 receptors cluster on the 

adventitial surface of vascular smooth muscle cells immediately adjacent to sympathetic 

nerve varicosities21. The P2X1 receptor is coexpressed with P2X2, P2X4, and P2X5 receptors 

in muscle cells of a number of blood vessels, suggesting that also heteromeric P2X receptors 

occur22-24. Not only P2X-receptors but also metabotropic P2Y receptors have been reported to 

mediate vasoconstriction25-28.  

 

Besides these purinergic receptors, a specific dinucleotide receptor was described in rat mid-

brain synaptosomes29. The dinucleotide receptor is preferentially stimulated by diadenosine 

polyphosphates and is insensitive to ATP, UTP, adenosine, and their respective analogues29.  

Beside the vasoactive actions growth-stimulating effects of nucleoside polyphosphates have 

been shown in numerous blood vessels, involving the subsequent activation of protein kinase 

C (PKC), Raf-1, and mitogen-activated protein kinase (MAPK)30,31. Activation of the P2Y2 

receptor increases the expression of c-fos mRNA in cultured aortic smooth muscle cells32. 

Dinucleoside polyphosphates also stimulate proliferation in vascular tissue where Ap4A was 

shown to be equipotent as ATP33. 

 

In the present study an assay for isolation, identification and quantification of plasma dia-

denosine polyphosphates (ApnA with n=3-6) was established. Moreover, the present study 

was aimed to gain data on the secretion of diadenosine polyphosphates into plasma in order to 

define the sources of plasma diadenosine polyphosphates in humans. Therefore, plasma levels 

in adrenal veins were compared with those in vena cava in order to examine whether human 

adrenal glands release diadenosine polyphosphates. 

 

B.2.3. Material and methods 

CHEMICALS 

High-performance liquid chromatography water (gradient grade) and acetonitrile were pur-

chased from Merck (Germany), all other substances from Sigma-Aldrich (Germany). 
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ISOLATION AND IDENTIFICATION OF DIADENOSINE POLYPHOSPHATES IN 

HUMAN PLASMA 

The study for the isolation and identification of diadenosine polyphosphates in human plasma 

was approved by the local ethical committee. Peripheral blood (4 ml) was obtained by cathe-

terization of the cubital vein and was collected in tubes containing K2-EDTA (7.2 mg). More-

over, adrenal venous blood (4 ml) was obtained by catheterization of adrenal veins, which 

was performed to further evaluate primary hyperaldosteronism in six hypertensive patients 

with clinical and biochemical evidence of that disease, and were collected in tubes containing 

K2-EDTA (7.2 mg). Samples were also obtained from inferior vena cava and from cubital 

veins. All patients had an adrenal vein catheterization because of primary hyperaldosteronism 

with unremarkable adrenal CT scan. The clinical and biochemical characteristics of the pa-

tients are given in Table 1. In none of the patients the diagnosis of an adrenal adenoma was 

made, in all six patients bilateral hyperplasia was assumed. For comparison, six plasma sam-

ples of cubital veins from normotensive age-and sex-matched patients (blood pressure 119 ± 

4/81 ± 2 mm Hg) being treated for acute minor illness such as back pain or dyspepsia were 

collected. In order to test whether intravascular degration of diadenosine polyphosphates by 

capillary endothelial cells affected diadenosine polyphosphate concentrations, the arterioven-

ous gradient of diadenosine polyphosphates was determined in five patients on regular hemo-

dialysis treatment. Arterial blood was taken from the Cimino-Brescia fistulas and venous 

blood from the cubital vein. 
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Table 1:  Clinical and biochemical characteristics of the patients (values are mean ± 
SEM) and control subjects 

 
 hyperaldostero-

nism patients 
(N = 6) 

 

hemodialysis 
patients 
(N=5) 

control subjects 
 

(N = 6) 

age  
(years) 
 

59.6 ± 10.4 60.4 ± 12.9 54.5 ± 11.2 

sex 
(m / f) 
 

 
3/3 

 
3/2 

 
3/3 

blood pressure  
(mm Hg) 
 

163 ± 7 / 98 ± 4 
 

145 ± 6 / 79 ± 4 119 ± 4 / 81 ± 2 

red blood cells 
(106/µl) 
 

4.9 ± 0.4 3.3 ± 0.5 5.2 ± 0.3 

white blood cells  
(103/µl) 
 

7.7 ± 2.5 8.4 ± 2.7 6.8 ± 2.6 

platelets  
(103/µl) 

253 ± 75 204 ± 72 234 ± 68 

    
 

The blood samples were centrifuged at 2,100 g for 10 min at 4°C for isolation of plasma 

(step 1). All blood samples were centrifuged after a standardized interval of 15 min after sam-

pling. The plasma was deproteinized with 0.6 mol L-1 (final concentration) perchloric acid 

and centrifuged (2,100 g, 4°C; 5 min) (step 2). After adjusting pH to 7.0 with 5 mol L-1 KOH 

the precipitated proteins and KClO4 were removed by centrifugation (2,100 g, 4°C, 5 min). 

 

To test whether the method of blood sampling and anticoagulation may artificially affect 

plasma diadenosine polyphosphate concentrations due to platelet aggregation, the above 

method of blood sampling for limiting platelet activation34,35. To this purpose, blood (4 ml) of 

6 healthy control subjects was collected from the cubital vein using a 19G winged infusion set 

(Myco-Medical, US) and tubes containing citrate 0.11 mol L-1 at a pH of 8.1. Citrated blood 

was centrifuged at 120 g for 15 min to obtain platelet-rich plasma, which was centrifuged at 

300 g for 20 min at room temperature. The supernatant was used for diadenosine polyphos-

phate determinations. 
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DETERMINATION OF THE AMOUNT OF PROTEIN-BOUND DIADENOSINE 

POLYPHOSPHATES IN HUMAN PLASMA 

To test the percentage of protein-bound diadenosine polyphosphates, plasma was isolated as 

described above and divided into two parts. One part was ultrafiltrated with a centrifuge filter 

(size exclusion limit: 10 kDa; 3,400 g; 10 min; 25°C), the other was left untreated. Then, in 

both portions the diadenosine polyphosphate concentrations were determined as described 

below.  

 

EXTRACTION OF HUMAN PLASMA FOR QUANTIFICATION OF DIADENOSINE 

POLYPHOSPHATES  

After deproteinization diadenosine octaphosphate (5 µg) was added to the sample as internal 

standard. Triethylammonium acetate (TEAA) in water was added to the deproteinated plasma 

to a final concentration of 40 mmol L-1. The mixture was loaded to a preparative reversed-

phase column (step 3, LiChroprep RP-18, 240 x 10 mm, Merck, Germany; equilibration and 

sample buffer: 40 mmol L-1 TEAA in water; flow rate: 2.5 ml min-1). Diadenosine polyphos-

phates were eluted by 30 % acetonitrile in water and lyophilized.  

 

Next, the eluate was dissolved in 1 mol L-1 ammonium acetate at pH 9.5 and concentrated on 

a phenyl boronic acid resin, prepared according to Barnes et al.36 (step 4). The substances 

were eluted from the phenyl boronic acid resin by 1 mmol L-1 HCl in water (flow rate: 0.2 ml 

min-1). The eluate from the phenyl boronic acid resin with 1 mol L-1 TEAA to a final concen-

tration of 40 mmol L-1 added was desalted by a reversed-phase HPLC chromatography (step 

5) (Superspher RP-18 endcapped, 250 x 4 mm, Merck, Germany; eluent A: 40 mmol L-1 

TEAA in water; eluent B: acetonitrile; flow rate: 0.5 ml min-1). The desalted and lyophilized 

eluate of the phenyl boronic acid resin was chromatographed by anion-exchange chromatog-

raphy (UnoQ-1, 7 x 35 mm, BioRad, USA; eluent A: 20 mmol L-1 K2HPO4, pH 8; eluent B: 

20 mmol L-1 K2HPO4, pH 8 with 1 mol L-1 NaCl; gradient: 0-2 min 0 % B, 2-100 min 0-40 % 

B, 100-105 min 40-100 % B, 105-116 min 100 % B; flow rate: 0.5 ml min-1). Fractions were 

collected according to UV absorbance at 254 nm (peak fractionation).  

 

To the eluate of the anion-exchange chromatography 1 mol L-1 TEAA was added (final con-

centration of 40 mmol L-1) and was loaded to an analytic reversed-phase column (Superspher 

100 RP-18 endcapped, 250×4 mm, Merck, Germany). Nucleoside polyphosphates were eluted 

by 20 % acetonitrile in water. The isolated diadenosine polyphosphates were identified by 
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MALDI-MS, PSD-MALDI as well as enzymatic cleavage experiments. Moreover, to validate 

the identification of the diadenosine polyphosphates by their retention time synthetic Ap3A, 

Ap4A, Ap5A and Ap6A (each 1 µg) were added to aliquots of the samples. For quantification 

of diadenosine polyphosphate peak areas were determined by an integrator. The concentra-

tions of diadenosine polyphosphates were calculated by using calibration curves obtained 

with synthetic diadenosine polyphosphates.  

 

ENZYMATIC CLEAVAGE EXPERIMENTS  

Aliquots of the desalted fractions of anion-exchange chromatography were incubated with 

enzymes as follows. The samples were dissolved 1) in 20 µl 200 mmol L-1 Tris buffer (pH 

8.9) and incubated with 5'-nucleotide hydrolase (3 mU, EC 3.1.15.1; from Crotalus durissus, 

from Boehringer Mannheim, Germany), purified according to Sulkowski and Laskowski37 

9 min at 37 °C); 2) in 20 µl 200 mmol L-1 Tris and 20 mmol L-1 EDTA buffer (pH 7.4) and 

incubated with 3'-nucleotide hydrolase (1 mU; EC 3.1.16.1,from Calf spleen, from Boe-

hringer Mannheim, Germany) 1 hour at 37 °C and 3) in 20 µl 10 mmol L-1 Tris, 1 mmol L- 1 

ZnCl2 and 1 mmol L-1 MgCl2 buffer (pH 8) and incubated with alkaline phosphatase (1 mU; 

EC 3.1.3.1, from Calf intestinal mucosa, from Boehringer Mannheim, Germany) 1 h at 37 °C. 

The reaction was terminated by an ultrafiltration with a centrifuge filter (exclusion limit 10 

kDa). After filtration of the enzymatic cleavage products the filtrate, dissolved in 80 µl eluent 

A, was subjected to reversed-phase chromatography (Chromolith SpeedRODTM, 4.6 x 50 mm, 

Merck, Germany; eluent A: 2 mmol L-1 tetrabutylammonium hydrogensulfate in 10 mmol L-1 

K2HPO4, pH 6.8; eluent B: 80 % ACN in water; gradient: 0-30 min: 0-40 % B; 30-33 min: 

40-100 % B; 33-36 min: 100 % B; flow: 1 ml min-1). 

 

MATRIX ASSISTED LASER DESORPTION/ IONIZATION MASS SPECTROMETRY 

(MALDI-MS) 

Aliquots of the desalted fractions of anion-exchange chromatography were examined by 

MALDI-MS and post-source decay (PSD)-MALDI-MS. A reflectron type time-of-flight 

(RETOF) mass spectrometer (Reflex III, Bruker, Germany) was used according to Hillenk-

amp and Karas38. The sample was mounted on an x, y, z movable stage allowing irradiation of 

selected sample areas. In this study, a nitrogen laser (VSL-337 ND, Laser Science) with an 

emission wavelength of 337 nm and 3 ns pulse duration was used. The laser beam was fo-

cused to a diameter of 50 µm at an angle of 45° to the surface of a target. Microscopic sample 

observation was possible. 10-20 single spectra were accumulated for a better signal-to-noise 
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ratio. In MALDI-MS large fractions of the desorbed analyte ions undergo post-source decay 

(PSD) during flight in the field free drift path. Using a RETOF set-up, sequence information 

from PSD fragment ions of precursors produced by MALDI was obtained39. Sample prepara-

tions for MALDI- and PSD-MALDI experiments were identical.  

 

Lyophilized aliquots of the desalted fractions of the anion-exchange chromatography were 

dissolved in bidistilled water, up to a concentration of 1-10 µmol L-1. The amount of the un-

derlying substances was estimated by the UV absorption of the anion-exchange chromatogra-

phy fraction. 1 µl of the analyte solution was mixed with 1 µl of matrix solution (50 mg ml-1 

3-hydroxy-picolinic acid in water). To this mixture cation exchange beads (AG 50 W-X12, 

200-400 mesh, Bio-Rad, USA) equilibrated with NH4
+ as counterion were added to remove 

Na+ and K+ ions. The mixture was gently dried on an inert metal surface before introduction 

into the mass spectrometer. The mass accuracy was in the range of approximately 0.01 %. 

 

SYNTHESIS AND CHROMATOGRAPHY OF DIADENOSINE OCTAPHOSPHATE AS 

INTERNAL STANDARD 

Diadenosine octaphosphate was synthesized and chromatographed as described elsewhere40. 

Briefly, Ap8A was synthesized by mixing adenosine tetraphosphate (50 mmol L-1) with 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide (2.5 mol L-1), N-[2-hydroxy-ethyl]-piperazine-

N´-[2-ethanesulfonic acid] (HEPES; 2 mol L-1) and magnesium chloride (125 mmol L-1). The 

substances were dissolved in water, thoroughly mixed with a vortex mixer and incubated at 

37°C at pH 6.5 for 48 h. The reaction mixture was concentrated on a preparative C18 re-

versed-phase column (LiChroprep, 310 x 65 mm, 65-40 µm, Merck, Germany) using 

40 mmol L-1 aqueous triethylammonium acetate (TEAA) in water (eluent A; flow rate: 2 ml 

min-1). After removing substances not binding to the gel with aqueous 40 mmol L-1 TEAA 

(flow rate: 2 ml min-1) nucleoside containing fractions were eluted with 30 % acetonitrile in 

water (eluent B; flow rate: 2 ml min-1). By this procedure, the recovery of Ap8A was about 

10 % of the diadenosine octaphosphate used. The concentrate was displaced on two reversed-

phase columns (columns: Superspher RP-18 endcapped, 300 x 8 mm, Merck, Germany; car-

rier: 40 mmol L-1 TEAA in water; displacer: 160 mmol L-1 n-butanol; flow 100 µl min-1). As a 

result of displacement chromatography anion-exchange chromatography yielded baseline 

separated diadenosine polyphosphate. The identity of the diadenosine polyphosphate was as-

certained using MALDI-MS (matrix assisted laser desorption/ionization mass spectrometry) 

as described above. 
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VALIDITY OF THE ASSAY 

Stock solutions of diadenosine polyphosphates (100 µmol L-1) were prepared in water. Stock 

solutions were stored at -30°C. Solutions with various diadenosine polyphosphate concentra-

tions were obtained by dilution of the stock solutions with water. For validation of the assay, 

standard diadenosine polyphosphate solutions of different concentrations were added to 

plasma directly prior to thawing. The precision of the assay for diadenosine polyphosphates 

was determined using a plasma sample and synthetic diadenosine polyphosphate solutions. 

The intra- (n=4) and inter-assay (n=4) variabilities were assessed and expressed as coeffi-

cients of variation (C.V.).  

 

STATISTICS  

Results are presented as means ± SEM. Two-sided p values <0.05 were considered signifi-

cant. All values reported are mean ± SEM 

 

B.2.4. Results 

Figure 1 shows a characteristic anion-exchange chromatogram of an extract from human 

plasma after precipitation of proteins and affinity chromatography. The peaks labelled in Fig-

ure 1 represent the diadenosine polyphosphates Ap3A, Ap4A, Ap5A and Ap6A. 
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Figure 1: Typical anion-exchange chromatogram of a plasma extract of adrenal veins. 
 

 
The identity of the diadenosine polyphosphates was confirmed by matrix assisted laser de-

sorption/ionization mass spectrometry (MALDI-MS) as well as post-source decay (PSD) ma-

trix assisted laser desorption/ionization mass spectrometry. A characteristic post-source decay 

(PSD)-MALDI- mass spectrum of Ap5A is given in Figure 2, and the interpretation of the 

PSD-MALDI data is given in Table 2. 
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Figure 2: Positive-ion PSD-MALDI mass spectrum of the fraction labelled as Ap5A in Fig-

ure 1 (abbreviations: A´ = adenine; A = adenosine; M = protonated parent ion; p = 
phosphate group e.g. Ap4 adenosine tetraphosphate) (abscissa: relative 
mass/charge, m/z, z=1; ordinate: relative intensity, arbitrary units). 

 
 
Table 2:  Molecular masses of characteristic fragments from the PSD-MALDI-MS spectra 

of the desalted fractions of the anion-exchange chromatography (Figure 1) la-
belled Ap3A, Ap4A, Ap5A and Ap6A. M = protonated parent ion,-: minus, A' = 
adenine, A = adenosine, p = phosphate group, e.g. Ap3 = ATP. 

 
Interpretation of 
the fragment ions 
measured by PSD-
MALDI-MS 

Ap3A Ap4A  Ap5A Ap6A 

 
A´ 

 
136 

 
136 

 
136 

 
136 

A-2 H2O 232 232 232 232 
A-H2O 250 250 250 250 
Ap1 348 348 348 348 
Ap2-H2O 409 410  410 
Ap2 428 427 427 428 
Ap3-H2O  490 490 490 
Ap3 508 508 508 508 
M – Ap2 329  489 569 
M-Ap1 409 489 569 649 
M – A  571   
M – A + H2O    668  
M-A´-H2O 605 685 765 845 
M-A´ 622 701 781 861 
M 757 

 
837 917 997 

 

To exclude that the diadenosine polyphosphates found are isomers with other than 5´-5´ 

bonds between the ribose and the phosphate moieties, the isolated substances were incubated 

with 3´- and 5´-nucleotide hydrolase as well as with alkaline phosphatase. Figure 3 shows 
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representative chromatograms of the enzymatic cleavage experiments with diadenosine pen-

taphosphate before (Figure 3.A) and after incubation with 5´-nucleotide hydrolase (Figure 

3.B), 3´-nucleotide hydrolase (Figure 3.C) and alkaline phosphatase (Figure 3.D).When the 

fractions containing the diadenosine polyphosphate (Figure 3.A) were treated with 5´-

nucleotide hydrolase (Crotalus durissus), the UV-peak of the intact diadenosine pentaphos-

phate and UV-peaks of the hydrolysis products AMP, and adenosine tetraphosphate (Ap4) 

appeared (Figure 3.B). Incubation of the fractions containing diadenosine polyphosphates 

with 3´-nucleotide hydrolase (Figure 3.C) or alkaline phosphatase (Figure 3.D) yielded no 

cleavage products. The results of the enzymatic cleavage experiments show that the poly-

phosphate chain interconnects the two adenosines via phosphoester bonds to the 5´-positions 

of the riboses.  
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Figure 3: Chromatograms of the desalted fraction of the anion-exchange chromatography 

labelled as Ap5A in Figure 1 (after anion-exchange- and reversed-phase chroma-
tography) before (A) and after (B) incubation with 5’-nucleotidase, with 3’-
nucleotidase (C) and with alkaline phosphatase (D). 

 

The mean diadenosine polyphosphate concentrations (µmol L-1; mean ± SEM) of cubital 

veins of normotensive patients amounted to 0.89 ± 0.59 for Ap3A, 0.72 ± 0.72 for Ap4A, 0.33 

± 0.24 for Ap5A and 0.18 ± 0.18 for Ap6A. There was no significant difference between cubi-

tal venous diadenosine polyphosphate concentrations in the patients with primary hyperaldos-

teronism and in normotensive subjects (Table 3). Table 3 furthermore shows that there were 

no significant differences between central and peripheral venous diadenosine polyphosphate 

plasma concentrations. In order to test whether the capillary endothelium significantly con-
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tributes to intravascular degradation of diadenosine polyphosphates, arterial and venous 

plasma diadenosine polyphosphate concentrations were compared in five hemodialysis pa-

tients. The measurements revealed no significant arteriovenous difference in any of the dia-

denosine polyphosphate concentrations (Table 3). 

 

Table 3:  Plasma diadenosine polyphosphate concentrations (mean ± SEM) in µmol L-1 
obtained from patients with primary hyperaldosteronism subjected to infrarenal 
vena cava, adrenal vein, suprarenal vena cava and cubital vein catheterization, 
normotensive patients and hemodialysis patients (arterial and venous plasma).  

 

 

In a further series of experiments, in six healthy probands the influence of blood sampling on 

plasma diadenosine polyphosphate concentrations was examined, comparing the above sam-

pling method with best practice conditions. There were no significant differences in the dia-

denosine polyphosphate plasma concentrations with either sampling method (0.51 ± 0.09 vs. 

0.59 ± 0.26 Ap3A, 0.38 ± 0.23 vs. 0.32 ± 0.12 for Ap4A, 0.35 ± 0.27 vs. 0.42 ± 0.09 for Ap5A, 

0.29 ± 0.23 vs. 0.25 ± 0.09 for Ap6A (µmol L-1); p>0.05; n=6, each EDTA vs. citrate). The 

concentrations of Ap3A, Ap4A, Ap5A and Ap6A in the plasma of infrarenal vena cava, adrenal 

veins and the suprarenal vena cava are given in Table 3. All patients had an adrenal vein 

catheter because of primary hyperaldosteronism with unremarkable adrenal CT scan.  

 

 
infrarenal 
vena cava 
primary 

hyperaldo-
steronism 

 
adrenal 
veins 

primary 
hyperaldo-
steronism 

 
suprarenal 
vena cava 
primary 

hyperaldo-
steronism 

 
cubital vein 

primary 
hyperaldo-
steronism 

 
 

cubital vein 
normotensive 

patients 

 
 

arterial plas-
ma  

hemodialysis 
patients 

 
 

venous plas-
ma  

hemodialysis 
patients 

significance 
/ 

adrenal 
veins vs 

infrarenal 
and suprare-

nal vena 
cava 

 
Ap3A  

 
1.2  
± 

0.7  

 
4.1  
± 

1.6  

 
1.4  
± 

0.9  

 
0.8 
± 

0.3 

 
0.9 
± 

0.6 

 
0.9 
± 

0.3 

 
0.7 
± 

0.3 

 
 

 p < 0.05 

 
Ap4A  

 
0.9  
± 

0.5  

 
6.2 
± 

2.1 

 
1.8 
± 

1.2 

 
0.6 
± 

0.2 

 
0.7 
± 

0.7 

 
0.5 
± 

0.3 

 
0.7 
± 

0.2 

 
 

 p < 0.05 

 
Ap5A  

 
0.2 
± 

0.1 

 
0.5 
± 

0.3 

 
0.3 
± 

0.13 

 
0.5 
± 

0.2 

 
0.3 
± 

0.2 

 
0.2 
± 

0.1 

 
0.3 
± 

0.2 

 
 

 p < 0.05 

 
Ap6A  

 
0.1 
± 

0.1 

 
0.6 
± 

0.3 

 
0.1 
± 

0.1 

 
0.3 
± 

0.2 

 
0.2 
± 

0.2 

 
0.1 
± 

0.1 

 
0.1 
± 

0.1 

 
 

 p < 0.05 
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Diagnosis of an adrenal adenoma was made in none of the patients, and in all six patients bi-

lateral hyperplasia was assumed. Furthermore, there was no significant difference between 

cubital venous diadenosine polyphosphate concentrations in the patients with primary hyper-

aldosteronism and in normotensive subjects (Table 3). Filtration experiments of human 

plasma using a 10 kDa cut-off filtration membrane revealed that 5.7 ± 4.5 % of the dia-

denosine polyphosphates isolated from human plasma were not-protein-bound, with no sig-

nificant differences depending on the number of phosphate groups. The plasma concentra-

tions of Ap3A, Ap4A, Ap5A and Ap6A in infrarenal vena cava, adrenal veins and suprarenal 

vena cava are given in Table 3.  

 

The absolute recovery of diadenosine-5´-5´-octaphosphate, 5 µg of which were added as in-

ternal standard to the plasma sample, was found to be 43.3 ± 18.6 %. The calibration graphs 

showed good linearity for concentrations of the diadenosine polyphosphates (Ap3A, Ap4A, 

Ap5A, Ap6A) ranging from 0.05 to 15 µmol L-1 (r=0.999). The peak area ratios of the dia-

denosine polyphosphates were linear in the concentration ranges investigated. Based on a 

signal-to-noise ratio of three, the detection limit for the diadenosine polyphosphates was 16 

nmol L-1. The precision of the assay for diadenosine polyphosphates was determined using a 

plasma sample and synthetic diadenosine polyphosphates. To evaluate the quantification of 

diadenosine polyphosphates in human plasma, the intra- (n=4) and inter-assay (n=4) variabili-

ties were assessed. The intra-assay variability for a human plasma sample and standard solu-

tions, assessed on four consecutive days was 8.2 %. The inter-assay coefficient of variation 

(C. V.) for a plasma sample and a standard solution, assessed on four consecutive days was 

11.1 %. 

 

B.2.5. Discussion 

Quantification of diadenosine polyphosphates from human plasma requires several sample 

preparation steps. First, the large amount of proteins and peptides has to be removed. These 

substances were denatured by perchloric acid and removed by centrifugation. Second, the 

large number of small hydrophobic and hydrophilic substances has to be separated. Third, 

carbohydrates have to be removed from the sample before affinity-chromatography because 

of the characteristic of carbohydrates to bind to the affinity-gel. These aims were achieved by 

reversed-phase chromatography. 
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Next, a highly selective concentration step with a boronate derivative of a cation exchange gel 

was used which selectively retains nucleoside polyphosphates containing two or more sets of 

1,2 cis-diol groups. Whereas mononucleoside polyphosphates like ATP with less than two 

cis-diol groups do not bind to the boronate in ammonium acetate at buffer concentrations of 

1 mol L-1 due to charge repulsions between the negative phosphate groups and the carboxyl 

groups of the cation-exchange gel, the boryl ester formation of the two cis-diol groups of dia-

denosine polyphosphates is sufficient to overcome charge repulsion36. The eluate from the 

boronate gel contained salts, which prevent diadenosine polyphosphates to bind to the anion-

exchanger. Therefore the eluate was desalted by concentration on a reversed-phase gel. For 

quantification of the diadenosine polyphosphates the plasma extract from the reversed-phase 

chromatography was subjected to anion-exchange chromatography.  

 

The diadenosine polyphosphate concentrations in human plasma were found to be in the 

µmolar range. From the concentration-response curves published it appears that diadenosine 

polyphosphate plasma concentrations quantified in the present study are sufficient to affect 

vascular tone. In concentrations > 10-8 mol L-1 diadenosine polyphosphates have a growth 

stimulating effect on vascular smooth muscle cells9,41,42. Given the EC50 value for Ap5A in the 

10-8 molar range, the plasma levels reported here seem surprisingly high. As it is highly 

unlikely that the plasma diadenosine phosphate concentrations exceed the EC50 by two orders 

of magnitude, the question arises, whether or not a fraction of the circulating diadenosine 

polyphosphates exists in a bound form. Indeed, the results show that a considerable portion of 

plasma diadenosine polyphosphates is protein-bound, as they are retained by a 10 kDa filter. 

Therefore, it may be assumed that only a small portion of total plasma diadenosine polyphos-

phates directly affect vascular tone.  

 

Further studies have to show whether there is a gender difference in the diadenosine poly-

phosphate concentration. Different diadenosine polyphosphate concentration may be a reason 

for the higher blood pressure of men. Because of the limited number of patients and healthy 

subjects of this study, this point cannot be clarified with data of the present study. 

 

The findings show that diadenosine polyphosphate concentrations vary within the venous 

system . The adrenal venous diadenosine polyphosphate concentrations higher than those in 

other veins leave two alternative explanations: either diadenosine polyphosphates are pro-

duced by the adrenal medulla, or adrenal vascular endothelium is less effective than other 
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endothelial cells in degrading diadenosine polyphosphates by its ectonucleases. Between both 

hypotheses a decision can be made on the basis of arterial diadenosine polyphosphate concen-

trations. The measurements revealed that there is no significant gradient between non-adrenal 

venous and arterial diadenosine polyphosphate concentrations.  

 

In general, uremia leads to endothelial dysfunction. This endothelial dysfunction may be a 

limiting effect to investigate the endothelial metabolism of dinucleoside polyphosphates by 

determination of an arteriovenous gradient of diadenosine polyphosphates in chronic renal 

failure patients. Since there was no significant difference in the dinucleoside polyphosphate 

concentration in venous plasma of CRF patients and in venous plasma of healthy control sub-

jects, an effect of the endothelial dysfunction on the dinucleoside polyphosphate metabolism 

is unlikely, but has to be considered.  

 

This finding implies that the ectonucleases located on vascular endothelial cells do not de-

grade sufficient amounts of diadenosine polyphosphates to lower circulating venous dia-

denosine polyphosphate concentrations significantly. Therefore the increased adrenal venous 

plasma diadenosine polyphosphate concentrations compared with nonadrenal venous plasma 

cannot be due to a decreased endothelial degradation restricted to adrenal vascular endothe-

lium. These findings were obtained by comparison of diadenosine polyphosphate concentra-

tions of arterial and venous plasma of chronic renal failure patients. The diadenosine poly-

phosphate concentrations in the arterial and venous plasma of these patients, and the concen-

trations in cubital veins of normotensive patients, are not significantly different. The endothe-

lial dysfunction of chronic renal failure patients has no strong effect on the diadenosine poly-

phosphate concentrations and can be neglected. 

 

The concentrations of the various diadenosine polyphosphates differ from each other. Obvi-

ously, those diadenosine polyphosphates with a higher number of phosphate groups show 

lower concentrations than those with a lower number of phosphates. This pattern may either 

be due to an increased degradation of diadenosine polyphosphates by circulating enzymes or 

by a decreased rate of synthesis with increasing number of phosphate groups. Although this 

question cannot be solved on the basis of the present data, findings reported in the literature 

may give an answer: concerning platelets, several studies revealed that the diadenosine poly-

phosphate contents decreased with an increasing number of phosphate groups41,43. Since the 

intraplatelet diadenosine polyphosphates are not accessible by the extracellular degrading 
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enzymes, it appears more likely that the synthetic pathway is less effective with increasing 

number of phosphate moieties to be incorporated.  

 

In earlier studies, platelet diadenosine polyphosphates had been quantified referring the plate-

let content to the pertinent whole blood volume. In the platelets contained in 1 L whole blood 

the following amounts of diadenosine polyphosphates were found42: Ap3A: 192.5 ± 14.7 

nmol; Ap4A: 223.8 ± 16.8 nmol; Ap5A: 100.2 ± 7.9 nmol; Ap6A: 32.0 ± 1.9 nmol (mean ± 

SEM). Conceivably, even if 100 % of the platelet diadenosine polyphosphates are assumed to 

be released and hence to be distributed within the pertinent volume, the resulting plasma con-

centrations would be far less than those reported here. Therefore, a significant artefactual con-

tribution to plasma diadenosine polyphosphates by platelet aggregation appears to be 

unlikely. This conclusion is further supported by the fact that the method of blood sampling 

and anticoagulation does not significantly affect plasma diadenosine polyphosphate concen-

trations, when best practice conditions are compared with those initially applied.  

 

Therefore human plasma diadenosine polyphosphates cannot solely stem from platelets. Thus 

we tested the hypothesis that diadenosine polyphosphates in human plasma are, at least par-

tially, derived from the adrenal glands. Adrenal venous plasma diadenosine polyphosphate 

concentrations are significantly higher than those in the vena cava, both infrarenal and supra-

renal (Table 3). This result suggests that human adrenal glands release Ap3A, Ap4A, Ap5A 

and Ap6A.  

 

These results are in accordance with results from animal experiments, which showed that the 

adrenal medulla contains diadenosine polyphosphates14,15. They are released from perfused 

bovine adrenal glands and also from isolated chromaffin cells activated with carbachol. The 

ratio of the released diadenosine polyphosphates to released ATP and catecholamines is in the 

same order as that found in isolated chromaffin granules13. With regard to these results, it can 

be inferred that diadenosine polyphosphates are also released by the chromaffin granules of 

human adrenal glands. 

 

To what extent may these findings be relevant for human physiology and pathophysiology? If 

the adrenal medulla secretes not only adrenaline and noradrenaline into the circulation, but 

also diadenosine polyphosphates, this seems to be of minor clinical significance, since substi-

tution of adrenal steroids is generally sufficient to restore well-being and normal hemodynam-
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ics after bilateral adrenalectomy. Moreover, the clinical picture of Addison’s disease due to 

autoimmune adrenalitis, leaving the adrenal medulla unaffected, and the one due to adrenal 

tuberculosis, destroying both medulla and cortex, do not show significant differences. On the 

other hand, the role of adrenal medulla in vascular and metabolic regulation has not been ul-

timately defined, and a potential role of either catecholamines or other secretory products 

such as diadenosine polyphosphates has not yet been examined in detail. Furthermore, over 

the last decades it has been repeatedly documented that plasma catecholamines are elevated in 

essential hypertensive patients44,45. From this finding, the sympathetic nervous system can be 

excluded as the sole source of increased plasma catecholamines, since chromaffin tissue, but 

not the sympathetic nervous system is capable of synthesizing adrenaline. Since diadenosine 

polyphosphates and catecholamines are generally co-released by adrenal or sympathetic nerv-

ous tissue, diadenosine polyphosphates may also be secreted in increased amounts in essential 

hypertension. Indeed, there is one report showing increased platelet diadenosine polyphos-

phate contents in essential hypertension46. Therefore the present findings suggest that an in-

creased diadenosine polyphosphate secretion by the adrenal medulla may be one potential 

mechanism underlying increased platelet diadenosine polyphosphates in essential hyperten-

sion46. Plasma diadenosine polyphosphate levels in essential hypertension have not been de-

termined in this study, since the patients studied had all exhibited a primary hyperaldostero-

nism. In these patients, peripheral venous plasma diadenosine polyphosphate concentrations 

were similar to those seen in normotensive controls. Therefore, it is unlikely that adrenal dia-

denosine polyphosphate release is specifically related to hyperaldosteronism. 

 

In summary, plasma concentrations of diadenosine polyphosphates in the range of 10-6 mol L-

1 are compatible with systemic effects of these agents. By this finding, our view on dia-

denosine polyphosphates as hormones may be modified and extended. 
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B.3.  Uridine adenosine tetraphosphate: a novel endothelium derived vaso-
constrictive factor  

 
Vera Jankowski, Markus Tölle, Raymond Vanholder, Gilbert Schönfelder, Markus van der Giet, Lars Henning, 
Hartmut Schlüter, Martin Paul, Walter Zidek, Joachim Jankowski 
  

B.3.1. Abstract and Introduction 

Beyond serving as a mechanical barrier, the endothelium shows important regulatory func-

tions. The discovery of nitric oxide (NO)1 revolutionized our understanding of vasoregula-

tion. In contrast, the identity of endothelium-derived vasoconstrictive factors (EDCFs) re-

mains unclear. The supernatant obtained from mechanically stimulated human endothelial 

cells obtained from dermal vessels elicited a vasoconstrictive response in an isolated perfused 

rat kidney. A purinoceptor blocker had a greater effect than an endothelin receptor blocker in 

decreasing endothelium derived vasoconstriction in the isolated perfused rat kidney. The nu-

cleotide uridine adenosine tetraphosphate (Up4A) was isolated from the supernatant of stimu-

lated human endothelium and identified by mass spectrometry. Up4A most likely exerts vaso-

constriction predominantly via P2X1 receptors, and probably also through P2Y2 and P2Y4 

receptors. Plasma concentrations of Up4A that cause vasoconstriction are found in healthy 

subjects. Stimulation with adenosine 5´-triphosphate (ATP), uridine 5´-triphosphate (UTP), 

acetylcholine, endothelin, A23187 and mechanical stress releases Up4A from endothelium, 

suggesting that Up4A contributes to vascular autoregulation. To our knowledge, Up4A is the 

first dinucleotide isolated from living organism that contains both purine and pyrimidine 

moieties. We conclude that Up4A is a novel potent non-peptidic EDCF. Its vasoactive effects, 

plasma concentrations and its release upon endothelial stimulation strongly suggest that Up4A 

has a functional vasoregulatory role. 

 

B.3.2. Results and Discussion 

The supernatant obtained from human endothelial cells stimulated by mechanical stress elic-

ited a vasoconstrictive response when injected into an isolated perfused rat kidney (Figure 

1.A curve 1). To determine the contribution of endothelin to endothelium derived vasocon-

striction we first applied the endothelin receptor antagonist BQ123 (Figure 1.A; curve 2). The 

contribution of endothelin was 9.3 ± 9.1% of the total vasoconstrictive response (Figure 1.B, 

n = 12). To determine the contribution of vasoactive mononucleotides, we added alkaline 

phosphatase to the supernatant to degrade these mononucleotides, thereby further diminishing 

the vasoconstrictive response to the endothelial cell supernatant by 42.5 ± 8.6% (Figure 1.A, 
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curve 3; Figure 1.B, n = 12). Matrix assisted laser desorption/ionisation mass spectrometry 

(MALDI) mass spectra before and after addition of alkaline phosphatase shows the effective 

degradation of ATP and UTP by alkaline phosphatase (Figure 1.C). To verify whether the 

remaining vasoconstrictive response was attributable to nucleotides, we applied the unselec-

tive purinergic antagonists pyridoxal-phosphate-6-azophenyl-2,4-disulphonic acid (PPADS) 

and suramin. In the presence of PPADS, the vasoconstrictive response elicited by super-

natants from endothelial cells after incubation with alkaline phosphatase and BQ123 was di-

minished (Figure 1.A; curve 4, n = 7), suggesting that vasoconstrictive nucleotides resistant to 

alkaline phosphatase may contribute 28.8 ± 6.5% of total EDCF actions under these condi-

tions. Suramin similarly reduced the vasoconstrictive response by 32.4 ± 8.6% of total EDCF 

effects (Figure 1.A, curve 5; Figure 1.B, n = 5). The data showed that endothelin contributes 

to EDCF effects in our experimental setting considerably less than other EDCFs, especially 

nucleotides. These experiments helped us to choose the further purification steps applied to 

endothelial cell supernatants (Figure 1.D). First, we deproteinized supernatants of stimulated 

endothelial cells to select the fractions that were likely to contain endothelium derived 

nucleotides. After deproteination, we desalted the supernatants by a preparative reversed-

phase chromatography. Then we subjected the 20% acetonitrile (ACN) eluates of the reversed 

phase chromatography to a purification step designed to separate dinucleoside polyphosphates 

from mononucleoside polyphosphates using a phenylboronate affinity column. Using this 

column, we separated mononucleotides (Figure 1.E, arrow 1) from nucleotides containing at 

least two pairs of neighbouring cis-diol groups which are present in ribose moieties (Figure 

1.E; arrow 2). 
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Figure 1:  Vasoconstrictive effects of supernatants from stimulated endothelial cells and 
isolation of uridine adenosine tetraphosphate. 

(A)  Effect of aliquots of supernatants from endothelial cells stimulated by mechanical 
stress on the perfusion pressure in the isolated rat kidney: Curve 1: control; curve 
2: in the presence of the endothelin inhibitor BQ123; curve 3: after incubation 
with immobilised alkaline phosphatase and in the presence of the endothelin in-
hibitor BQ123; curve 4: after incubation with immobilised alkaline phosphatase 
and in the presence of the endothelin inhibitor BQ123 and the purinergic antago-
nist PPADS; curve 5: after incubation with immobilised alkaline phosphatase and 
in the presence of the endothelin inhibitor BQ123 and the purinergic antagonist 
suramin. 

(B)  Effect of aliquots of supernatants from endothelial cells stimulated by mechanical 
stress on the perfusion pressure in the isolated rat kidney; experiments as shown 
in Figure 1.A. The columns represent the inhibitory effects attributable to the sin-
gle inhibitors, which have been added sequentially to the medium (■ = BQ123, □ 
= alkaline phosphatase (AP), ■ = PPADS, ■ = suramin). 

(C)  MALDI mass spectrum of the aliquot of supernatants from endothelial cells 
stimulated by mechanical stress before (upper spectrum) and after (lower spec-
trum) incubation with immobilised alkaline phosphatase. 

(D)  Scheme for isolation of Up4A from supernatants of stimulated endothelial cells.  
(E)  Affinity chromatography of supernatant of stimulated endothelial cells. The frac-

tion containing mononucleotides and the one containing nucleotides with at least 
two pairs of neighbouring cis-diol groups are labelled in the Figure (arrow 1 and 
2). 

 
Next, we further fractionated the remaining nucleotides by analytical reversed-phase chroma-

tography (Figure 2.A). We selected those fractions showing vasoconstrictive properties by 

testing their vasoactivity in the isolated perfused rat kidney. The fraction showing the strong-
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est vasoconstriction (arrow in Figure 2.A) underwent further analysis. The Fourier Transform 

Ion Cyclotron Resonance (FT-ICR) mass spectrum of this fraction showed a molecular mass 

of 814 Da. Figure 2.B shows the FT-ICR-fragmentation mass-spectrum of the underlying sub-

stance. Each signal was attributable to a fragment of Up4A (Table 1), suggesting that Up4A 

was the substance under investigation. 

 

Table 1: Molecular masses of Up4A fragments obtained by MS/MS-FT-ICR mass spectrome-
try. The mass spectrum was obtained from the peak labelled in Figure 2.A. The left 
column: fragment masses measured by MS/MS-FT-ICR mass spectrometry; right 
column: fragment masses expected theoretically from their respective structures. M+ 
= protonated parent ion; U´= uracil; A = adenosine; U = uridine; p = phosphate 
group, e.g. Ap3 = ATP; w/o=without 

 
 

 

Interpretation of the FT-
ICR mass signals 

 

 

FT-ICR mass signal 
[m/z] 

measured 
 

 

FT-ICR mass signal 
[m/z] 

calculated 
 

Up4A w/o U´ 
 

255.33 
 

254.18 

Ap1 w/o 2 H2O 316.24 315.21 

Ap2 w/o 2 H2O 395.35 392.20 

Up3 w/o 2 H2O 450.02 448.13 

Up3 w/o H2O 466.13 466.20 

Ap3 w/o H2O 490.00 490.00 

M w/o Up1 490.00 490.23 

M w/o U and w/o 2 H2O 533.96 533.84 

M w/o U + H2O 585.03 587.84 

Up4 + 3 H2O 617.95 618.11 

Not interpreted  629.02  

M w/o U´ and w/o H2O 682.95 682.93 

Not interpreted 722.94  

M+ 814.03 814.10 

 

Next, we assessed the type of ester bonds between the phosphate and ribose moieties within 

the isolated substance. To differentiate between a 3' and a 5' bond, we used enzymes selec-

tively splitting one of these bonds (i.e., 5' nucleotide hydrolase and 3' nucleotide hydrolase, 

respectively). We used alkaline phosphatase to cleave free phosphate groups. The intact nu-
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cleotide was split by 5´ phosphodiesterase (Figure 2.C), whereas 3´ phosphodiesterase and 

alkaline phosphatase had no effect (data not shown), suggesting that the phosphate moieties 

are bound to the ribose by a 5´ bond.  

 

To further substantiate the hypothesized structure, we compared the fragment mass spectrum 

to that obtained from synthetic Up4A. Therefore we synthesized Up4A using a modification of 

a technique described earlier2. The comparison of the mass spectra obtained from authentic 

Up4A and from the fraction under investigation showed their identity. 
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Figure 2: Final purification step and identification of uridine adenosine tetraphosphate from 
supernatants of stimulated endothelial cells. 

(A)  Analytical reversed phase high performance liquid chromatography of the fraction 
of supernatant of stimulated endothelial cells containing the remaining nucleo-
tides after exclusion of mononucleotides. Arrow: the fraction with the strongest 
vasoconstrictive properties. 

(B)  FT-ICR-fragmentation mass-spectrum of the fraction labelled in Figure 2.A by an 
arrow.  

(C)  Enzymatic cleavage analysis of the vasoconstrictive fraction of reversed-phase 
chromatography in Figure 2.A. Figure 2.C shows typical MALDI mass spectra 
before (upper spectrum) and after incubation with 5’-nucleotidase (lower spec-
trum) out of 5 similar experiments.  

 

To exclude the idea that Up4A may form spontaneously from mononucleotides at a pH that is 

not in the physiologic range, due to the addition of perchloric acid, we monitored the reaction 

products generated after addition of perchloric acid during the purification procedure. 

MALDI mass spectrometry did not show the spontaneous formation of Up4A under these 

conditions (data not shown). Next, we tested vasoconstrictive properties of synthesized Up4A 



Chapter B.3. A new endothelium derived vasoconstrictive factor  

Nature Medicine 11(2):223-237, 2005 

90

using the isolated perfused rat kidney. In this model, Up4A was a potent vasoconstrictor (Fig-

ure 3.A). 

Which purinoceptors mediate the effects of Up4A? The selective P2X1 and P2X3 desensi-

tizer, α,β-methylene ATP2 markedly inhibited Up4A-induced vasoconstriction (Figure 3.A). 

In vascular smooth muscle cells, P2X1 is the dominant P2X subtype3-5, although P2X2, 

P2X3, P2X4 and P2X5 have also been found6-8. The strong effects of α,β-methylene ATP 

render major contributions from other P2X receptors than P2X1 or P2X3 unlikely. Although 

currently no ideal inhibitor discriminating between P2X1 and P2X3 receptors is known9, we 

applied 8,8´-[carbonylbis(imino-3,1-phenylene-carbonyl-imino)]bis(1, 3, 5-naphthalenetri-

sulfonic acid) (NF023) and diinosine pentaphosphate (Ip5I) , which show a P2X1:P2X3 recep-

tor affinity ratio of about 20 and 1,000, respectively9,10. Furthermore, 2´,3´-O-(2,4,6-

trinitrophenyl) adenosine triphosphate (TNP-ATP) also inhibits P2X1 and P2X3 recep-

tors11,12. NF023, TNP-ATP and Ip5I, the latter being applied in a concentration inhibitory for 

P2X1, but far below the IC50 reported for the P2X3 receptor, markedly inhibited the Up4A 

response, supporting the view that P2X1 receptors contribute the largest part to the vasocon-

strictive Up4A response (Figure 3.B, each n = 3). This conclusion is in accordance with find-

ings obtained in P2X1 receptor knockout mice showing that vasoconstrictive responses to 

ATP are abolished in arteries lacking this P2X subtype13. 

 

Part of the Up4A response was resistant to α,β-methylene ATP. Because uridine-containing 

nucleotides affect vascular tone through P2Y2 and P2Y4 receptors14, this finding allows us to 

consider the possibility that Up4A might also activate on these P2Y receptor subtypes. Thus, 

Up4A may turn out to be not only a modulator of acute vascular processes like vasoconstric-

tion, but also of other long-term effects on vascular wall structure, because P2Y2 and P2Y4 

receptors mediate numerous other effects including cell proliferation and differentiation14. 

 

By blocking nitric oxide synthase, the vasoconstrictive effect of Up4A was increased (Figure 

3.A, c, P < 0.05, n = 3). The effects of ATP and UTP also tended to be increased after inhibi-

tion of nitric oxide synthase, but these differences did not reach statistical significance (each n 

= 3). To rule out the idea that the vasoconstrictive response of Up4A is caused by its degrada-

tion products, we compared the concentration-response curves of ATP and UTP to that of 

Up4A (Figure 3.C). ATP and UTP affected vascular tone much less than Up4A, indicating that 

these degradation products can only account for a small part, if any, of the Up4A effects. But 

because endothelial cells are known to release ATP upon stimulation with several sub-
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stances15, Up4A may also be a stimulator of endothelial ATP release, and this indirect effect 

may be a further component of vascular Up4A actions, in addition to its direct actions.  
 

Last, we confirmed that pharmacological inhibition of Up4A, ATP and UTP actions did not 

modify the endothelin response and that, inversely, the endothelin inhibitor did not affect the 

response to nucleotides (Figure 3.D). Furthermore, the question arose whether Up4A is also 

present in human plasma. With the purification procedure indicated in Figure 1.D, we ob-

tained a chromatogram from plasma of healthy individuals (n=6), which showed Up4A as an 

isolated peak (Figure 3.E), as evidenced by FT-ICR mass spectrometry. The quantification of 

these ultraviolet absorption peaks showed an Up4A plasma concentration of 55.5 ± 15.2 nmol 

L–1 in these six healthy persons. The recovery rate for Up4A was 13.1 ± 3.7% in human 

plasma and 12.0 ± 1.8% in culture medium (each n = 5). As we used a P(1),P(2):P(2),P(3)-

bis-methylene diadenosine triphosphate as an internal standard, we excluded losses during 

purification as a source of error. The recovery rate of ATP and UTP in either plasma or cul-

ture medium was below the detection limit of 10 pmol L–1 with the purification procedure 

described for Up4A, indicating that the separation of mononucleotides from dinucleotides was 

effective. The concentration-response curve of Up4A (Figure 3.A) shows that these Up4A 

plasma concentrations are sufficient to elicit relevant vasoconstrictive effects. Nevertheless, 

the in vivo effects of this Up4A concentration may not correspond to those shown by in vitro 

experiments, because a multitude of additional factors including the activation of counter-

regulatory systems determine systemic actions. Up4A also affected vascular tone in the intact 

animal. Moreover, its vasoactive potency was comparable to that of noradrenaline. Both 

Up4A and noradrenaline increased mean arterial blood pressure when injected intra-aortically 

in the anaesthetized rat (Figure 3.F). Whereas noradrenaline elicited a sharp, short-lasting 

increase in blood pressure, the same amount of Up4A showed a more prolonged effect on 

blood pressure. 
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Figure 3: Vascular effects and quantification of uridine adenosine tetraphosphate release 

after stimulation of endothelial cells and in human plasma: 
(A)  Change in perfusion pressure in the isolated perfused rat kidney induced by Up4A 

alone ( ), with α,β-methylene ATP (×), and with L-NAME ( ). 
(B)  Change in perfusion pressure in the isolated perfused rat kidney induced by Up4A 

alone ( ), and with NF023 (×), Ip5I ( ), and TNP-ATP (∇). 
(C)  Change in perfusion pressure in the isolated perfused rat kidney induced by ATP 

in the absence ( ) and presence of L-NAME ( ) or by UTP in the absence (×) 
and presence of L-NAME (∇). 

(D)  Influence of immobilised alkaline phosphatase (AP), BQ123 and PPADS on the 
increase in perfusion pressure in the isolated perfused rat kidney induced by 
Up4A, endothelin, ATP and UTP.  

(E)  Typical reversed phase chromatogram of a plasma extract from a healthy subject 
isolated by the purification procedure indicated in Figure 1.D. 

(F)  Mean arterial pressure (MAP) in an anaesthetized rat (typical tracing out of 5 
similar experiments) after intraaortic injection (arrows) of norepinephrine (NE) 
and Up4A.  

(G)  Increased Up4A concentrations in supernatants after stimulating endothelial cells 
with UTP, ATP, A23187, acetylcholine (ACH), endothelin (ET) or mechanical 
stress (MS). 
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Given that other purinergic agonists are also present in human plasma, what vasoconstrictive 

potency does plasma Up4A contribute compared to these mononucleotides? Plasma ATP con-

centrations are in the range of 80 nmol L–1 (e.g. 16), which are similar to the Up4A concentra-

tion found in this study. There is no valid assay for plasma UTP determinations17, but gener-

ally an ATP:UTP ratio of 10:1 is assumed18, suggesting that any vascular effects of plasma 

UTP may be lower than those of ATP. With regard to these findings in literature, vascular 

effects of plasma Up4A may exceed those of plasma mononucleotides, because in this concen-

tration range Up4A shows stronger vasoconstrictive actions than either ATP or UTP (Figure 

3.A, C).To assess the relative contribution of the mononucleotides, ATP and UTP versus the 

dinucleotide Up4A to endothelium derived vasoconstriction, we determined ATP and UTP 

concentrations in endothelial cell supernatants before and after mechanical stimulation. Be-

fore stimulation both mononucleotides were undetectable; after stimulation we found 34.8 ± 

20.3 and 22.0 ± 10.2 nmol L–1 ATP and UTP, respectively (each n = 3), suggesting a substan-

tial contribution of these nucleotides to endothelium derived vasoconstriction (Figure 3.C). 

 

Next, we studied endothelial Up4A release (Figure 3.G). Acetylcholine, endothelin, A23187, 

mechanical stress, and ATP and UTP stimulated the release of Up4A from endothelial cells. 

These results show that several physiologic stimuli can release Up4A from human endothelial 

cells. Because endothelin is a stimulator of Up4A release, Up4A release may affect part of the 

endothelin-mediated vasoconstriction. Taken together, the experiments showed (i) that human 

endothelial cells secrete Up4A, (ii) that Up4A is a potent vasoconstrictor, (iii) that in human 

plasma Up4A occurs in concentrations effecting vasoconstriction, and (iv) that several physi-

ologic stimuli and an increase in cytosolic free Ca2+ concentration stimulate the release of 

Up4A. 

 

In conclusion, these findings are of interest for several reasons: first, Up4A appears to be a 

new, potent nonpeptidic endothelium derived vasoconstrictor. Second, to our knowledge, 

Up4A is the first dinucleotide found in living organisms that contains both a pyrimidine and a 

purine moiety. Dinucleotides containing two purine moieties are known, and their role in 

vasomotor regulation is increasingly recognized. Our data show that the activity of Up4A dif-

fers from those of dinucleotides exclusively containing purines19. The uridine moiety may 

confer an affinity towards P2Y receptor subtypes, as is known from uridine-containing mono-

nucleotides. Because Up4A is secreted by human endothelial cells and is present in effective 
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concentrations in human plasma, a role of Up4A in the regulation of vascular tone and in car-

diovascular disease seems to be likely. 

 

B.3.3. Methods 

The local ethical committee approved the experiments involving rats and humans. Informed 

consent was obtained from all human subjects. 

 

CULTURE OF ENDOTHELIAL CELLS 

We cultured human endothelial cells from dermal microvessels (HMEC-1) in MCDB131 me-

dium supplemented with 100 U ml–1 penicillin/streptomycin, 1% (v/v) L-glutamine and 7.5% 

(v/v) fetal bovine serum (see Supplementary Methods). 

 

STIMULATION OF CULTURED ENDOTHELIAL CELLS 

We washed cell-culture flasks of endothelial cells (n = 30) three times with a physiological 

salt solution. Then we exposed six cell-culture flasks of endothelial cells to mechanical stress 

for 10 min by using a horizontal shaking machine after addition of 15 ml physiologic salt so-

lution. To stimulate endothelial cells we added ATP, UTP, Ca-ionophore A23187, acetylcho-

line or endothelin (final concentration 1 µmol L–1) to eight cell-culture flasks each. After 10 

min we collected and pooled the supernatant and incubated aliquots of the resulting super-

natants with immobilized alkaline phosphatase (see Supplementary Methods).  

 

CHROMATOGRAPHIC ANALYSIS OF THE SUPERNATANTS OF ENDOTHELIAL 

CELLS 

We added triethylammonium acetate (final concentration 40 mmol L–1) to the supernatants 

and titrated pH to 6.5. Next, we used a C18 reversed-phase column (LiChroprep, 310 × 

65 mm, 65–40 µm, Merck) to concentrate the supernatant of stimulated and unstimulated en-

dothelial cells. We removed nonbinding substances with triethylammonium acetate. Then we 

eluted binding substances stepwise with 20% ACN, in water at a flow rate of 1.0 ml min–1. 

We monitored the elution by measuring the ultraviolet absorption at 254 nm. Last we froze 

the eluate at –80 °C and lyophilized it.  

 

Then we further purified the eluate of the preparative reversed-phase chromatography column 

with affinity chromatography. We synthesized the affinity chromatography gel by coupling 

phenyl boronic acid to a cation exchange resin (Biorex 70, Bio-Rad), according to previous 
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studies20. We packed the affinity resin into a glass column and equilibrated it with 1 mol L–1 

ammonium acetate (pH 9.5). We adjusted the pH of the eluate from the preparative reversed-

phase chromatography to pH 9.5 and loaded it to the affinity column. We washed the column 

with an ammonium acetate solution with a flow rate of 1.0 ml min–1and eluted binding sub-

stances with 1 mmol L–1 HCl solution. We monitored the elution by measuring the UV ab-

sorption at 254 nm. Then we froze eluate at –80 °C and lyophilized it. We added 1 mol L–1 

triethylammonium acetate to the eluate of the affinity chromatography (final concentration, 

40 mmol L–1). We injected the eluate of the affinity chromatography into a reversed phase 

high performance liquid column (Chromolith RP-18e 100–4.6, Merck) for desalting (see Sup-

plementary Methods). Then we dissolved the lyophilized eluate in 40 mmol L–1 triethylam-

monium acetate (eluent A) and injected the eluate in two reversed phase columns (Chromolith 

RP-18e 100–4.6, Merck) connected in series. We used 80% ACN (eluent B) and the follow-

ing gradient for the elution: 0–10% B for 40 min, 10–100% B for 1 min, 100% B for 2 min. 

We collected 18 1 ml-fractions at a flow rate of 1.0 ml min–1, monitoring UV absorption at 

254 nm. To quantify the concentration of ATP and UTP, we fractionated medium (30 ml) as 

described above. In this case, we used α,β-methylene ATP (10 µg) as internal standard and 

fractionated the non-binding substances rather than the substances binding to the affinity col-

umn. The analysis of the isolated substances by FT-ICR and MALDI mass spectrometry, as 

well as enzymatic cleavage experiments are presented as supplementary information (see 

Supplementary Methods).  

 

MEASUREMENTS OF PERFUSION PRESSURE IN THE ISOLATED PERFUSED RAT 

KIDNEY 

We evaluated the effects of aliquots of supernatants of stimulated endothelial cells, of super-

natants of stimulated endothelial cells after incubation with alkaline phosphatase, of fractions 

of the reversed phase chromatography and of ATP and UTP (each 10 pmol L–1 to 0.1 µmol 

L-1) on vascular tone in an isolated perfused rat kidney with a constant flow of 8 ml min–1 (see 

Supplementary Methods).  

 

In some experiments, we added the P2-purinoceptor antagonists PPADS (10 µmol L–1) and 

suramin (50 µmol L–1), TNP-ATP (100 µmol L–1)11, Ip5I (100 nmol L–1), NF023 (10 µmol 

L-1), or the specific ETA receptor antagonist cyclo-D-P-V-L-W (BQ123; Sigma-Aldrich) 

(1 µmol L–1) to the perfusate 30 min before challenge with potential vasoconstrictors. Fur-
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thermore, in some experiments, we specifically desensitized P2X1 and P2X3 receptors by 

continuous perfusion of the kidney with 10 µmol L–1 α,β-methylene ATP (n = 3).  

 

MEASUREMENT OF MEAN ARTERIAL BLOOD PRESSURE AFTER 

INTRAARTERIAL ADMINISTRATION OF UP4A 

We measured intra-arterial blood pressure as previously published21 (see Supplementary 

Methods).  
 

ISOLATION AND IDENTIFICATION OF UP4A IN HUMAN PLASMA 

We obtained peripheral blood (50 ml) by catheterisation of the cubital vein in six healthy in-

dividuals, collecting the blood in tubes containing K2-EDTA (7.2 mg). The mean age of the 

subjects (4 males, 2 females) was 32.7 ± 2.3 years, systolic blood pressure 114.2 ± 3.3 

mmHg, diastolic blood pressure 77.2 ± 2.1 mmHg (each mean ± S.E.M.) (see Supplementary 

Methods). The isolation steps and identification steps of uridine adenosine tetraphosphate 

from human plasma were the same as described above for the identification of uridine adeno-

sine tetraphosphate from the supernatants of stimulated endothelial cells and as demonstrated 

in Figure 1.D. 
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B.3.5. Supplementary Methods 
 
Since not all methods were described in the publication, in this section a more extensive de-

scription of the methods is given. 

  
CHEMICALS 
 
HPLC water (gradient grade) and acetonitrile (ACN) were from Merck, all other substances 

from Sigma Aldrich. 

 
CULTURE OF ENDOTHELIAL CELLS 

Human endothelial cells from dermal microvessels (HMEC-1) is the first immortalized hu-

man microvascular endothelial cell line that retains the morphologic, phenotypic, and func-

tional characteristics of normal human microvascular endothelial cells1. Experiments compar-

ing the phenotypic characteristics of HMEC-1 with human dermal microvascular endothelial 

cells or human umbilical vein endothelial cells revealed that HMEC-1 have features of both 

small- and large-vessel endothelial cells1. On day 0 we placed the cells into 175 cm2 cell-

culture flasks (Nunc Inc.) and stimulated the cells on day 2 at approximately 70% confluency. 

Confluent cultures of HMEC-1 showed typical cobblestone appearance and showed the char-

acteristic expression of von Willebrand factor, endothelial nitric oxide synthase, VEGF recep-

tor 1 (FLT-1) and absence of smooth muscle α-actin staining. The authors are grateful for the 

HMEC-1 cells provided by Prof. G. Schoenfelder (Charité-, Institute for Clinical Pharmacol-

ogy and Toxicology, Berlin, Germany) 

 

 

STIMULATION OF CULTURED ENDOTHELIAL CELLS  

The pooled supernatant underwent deproteinization with perchloric acid (final concentration 

0.6 mol L–1), centrifugation at 3,500 U min–1 for 5 min at 4 oC and neutralization with KOH 

to pH 9.5. We removed the precipitated proteins and the insoluble reaction product KClO4 by 

centrifugation (3,500 U min–1; 4 °C; 5 min). For control reactions, we washed 30 cell-culture 

flasks of endothelial cells three times with 15 ml of a physiological salt solution. To avoid 

mechanical stress, we added salt solution extremely slowly. After the washing step, we added 

15 ml physiological salt solution to the endothelial cells. 10 min later, we collected and 

pooled the supernatant. 
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CHROMAOTGRAPHIC ANALYSIS OF THE SUPERNATANTS OF ENDOTHELIAL 

CELLS  

 

AFFINITY CHROMATOGRAPHY 

 We synthesized the affinity chromatography gel, by coupling phenyl boronic acid to a cation 

exchange resin (Biorex 70, Bio-Rad), according to Barnes et al.2. We packed the affinity resin 

into a glass column and equilibrated it with 1 mol L–1 ammonium acetate (pH 9.5). We ad-

justed the pH of the eluate from the preparative reversed-phase chromatography to pH 9.5 and 

loaded it to the affinity column. We washed the column with an ammonium acetate solution 

with a flow rate of 1.0 ml min–1and eluted binding substances with 1 mmol L–1 HCl solution. 

We monitored the elution by measuring the UV absorption at 254 nm. Then we froze eluate at 

–80 °C and lyophilized it.  
 

REVERSED-PHASE CHROMATOGRAPHY 

After removing substances not binding to the column with aqueous 40 mmol L–1 triethylam-

monium acetate, we eluted the absorbed substances with 20% ACN in water at a flow rate of 

1.0 ml min–1. We monitored the elution by measuring UV absorption at 254 nm. We froze 

each eluate at –80 °C and lyophilized it.  
 

DETERMINATION OF RECOVERY RATES 

To calculate the recovery rate for ATP, UTP and Up4A, in a control experiment, we spiked 

either culture medium or plasma (40 ml) with ATP (5 µg), UTP (5 µg) and Up4A (5 µg). We 

fractionated these samples as described above. 
 

FOURIER TRANSFORM ION CYCLOTRON RESONANCE (FT-ICR) MASS SPECTRO-

METRY 

We examined the lyophilized fractions from the reversed-phase chromatography by FT-ICR 

mass spectrometry. We performed all experiments using an Apex III FT-ICR mass 

spectrometer (Bruker Daltronic) with a 7 Tesla superconducting magnet. We produced 

positive ions in an external Apollo electrospray ion source (Bruker Daltronic) with a flow rate 

of 2 µl min–1 for direct infusion experiments and 200 nl min–1 for liquid chromatography (LC) 

experiments. We performed the reversed-phase LC experiments using the LC Packings 

Ultimate nano-LC system with FAMOS autosampler (LC Packings). We used external 

accumulation of the electrospray ions on a hexapole ion trap prior to injection into the ICR 

trap in order to increase the sensitivity and duty cycle of the mass spectrometer. In direct 
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increase the sensitivity and duty cycle of the mass spectrometer. In direct injection experi-

ments we used an accumulation time of 1 s. During liquid separation experiments we reduced 

the external accumulation time to 0.1 s by avoiding hexapole-quenching events. We captured 

ions in the ICR trap using the sidekick technique3, whereby we applied a voltage to ions en-

tering the ICR trap that shifts them radially from the axis. Preliminary results showed the op-

timum value for the sidekick potential to be –6V. We used this value throughout all experi-

ments. 

 

MATRIX ASSISTED LASER DESORPTION/ IONISATION MASS SPECTROMETRY 

(MALDI-MS) 

We equally examined the lyophilized fractions from the reversed-phase chromatography by 

MALDI-MS and post-source decay (PSD)-MALDI-MS. We used a reflectron type time-of-

flight (RETOF) mass spectrometer (Reflex III, Bruker-Daltronic). The concentrations of the 

analysed substances were 1-10 µmol L–1 in double distilled water. We mixed 1 µl of the ana-

lyte solution with 1 µl of matrix solution (50 mg ml–1 3-hydroxy-picolinic acid in water). To 

this mixture, we added cation exchange beads (AG 50 W-X12, 200–400 mesh, Bio-Rad) 

equilibrated with NH4
+ as a counterion to remove Na+ and K+ ions. We dried the mixture gen-

tly on an inert metal surface before introduction into the mass spectrometer. The mass accu-

racy was in the range of 0.01%. 

 

ENZYMATIC CLEAVAGE EXPERIMENTS 

We performed enzymatic cleavage experiments as described elsewhere4. Briefly, we mixed 

5´-nucleotide hydrolase (3 mU) from Crotalus durissus, EC 3.1.15.1 (Roche), 3`-nucleotide 

hydrolase (1 mU) from calf spleen, EC 3.1.16.1 (Roche) and alkaline phosphatase (1 mU) 

from calf intestinal mucosa, EC 3.1.3.1 (Roche), respectively with 50 µl NaHCO3 and acti-

vated CNBr-Sepharose 6 MB beads (Amersham-Pharmacia Biotech). We incubated the mix-

ture for 2 h at room temperature. After incubation we washed the beads 3 times with double 

distilled water. We incubated aliquots of the fractions from the reversed-phase chromatogra-

phy with these enzyme-beads for 3 h at room temperature and examined these aliquots by 

MALDI-MS. We accumulated 40–50 single spectra to improve the signal-to-noise ratio. We 

determined the identity of the reaction products by post-source decay (PSD)-MALDI-MS5, 6. 

For sample preparation and measurements we used the same conditions as for the original 

samples.  
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SYNTHESIS OF URIDINE (5')-ADENOSINE (5') TETRAPHOSPHATE 

We synthesized uridine adenosine tetraphosphate according to Ng and Orgel7. We dissolved 

ATP  (0.25 mmol L–1), uridine 5´-monophosphate (0.25 mmol L–1), (N-[2-hydroxyethyl]-

piperazine-N´-[2-ethanesulfonic acid]) (2 mol L–1, 1-ethyl-3-(3-dimethylamino-

propyl)carbodiimide (2.5 mol L–1) and magnesium chloride (MgCl2; 125 mmol L–1) in water. 

Then we thoroughly mixed the solution with a vortex mixer and incubated it at 37 °C at pH 

6.5 for 24 h. We purified  the chemically synthesized dinucleoside (5´,5´) polyphosphates as 

described elsewhere8. Briefly, we concentrated the synthesized dinucleoside polyphosphates 

on a C18 reversed-phase column (LiChroprep, 310 ×25 mm, 65–40 µm, Merck) using 40 

mmol L–1 aqueous in water (eluent A; flow rate: 2 ml min–1). After removing non-binding 

substances with eluent A (flow rate: 2 ml min–1), we eluted nucleotides with 20% ACN in 

water (eluent B; flow rate: 2 ml min–1). We monitored the elution by UV absorption at 

254 nm, then lyophilized and stored the eluate at –80 °C. We dissolved the lyophilized eluate 

of the preparative reversed-phase chromatography in aqueous 40 mmol L–1 triethylammonium 

acetate solution and injected it on two C18 reversed-phase columns connected in series (Su-

persphere, 300 ×8 mm, 4 µm, Merck) which we had equilibrated with aqueous 40 mmol L–1 

triethylammonium acetate (carrier). We pumped the carrier through the system with a flow 

rate of 100 µl min–1 during injection of the sample. After the injection, we used n-butanol 

(100 mmol L–1) in 40 mmol L–1 triethylammonium acetate as displacer (flow rate: 100 µl min–

1). We monitored the displacement chromatography by UV absorption at 254 nm. The frac-

tion size was 1 ml. We lyophilized each fraction of the displacement-chromatography possi-

bly containing dinucleoside polyphosphates , dissolved it in 1 ml 20 mmol L–1 K2HPO4 in 

water, pH 8, (eluent A) and chromatographed it by using an anion-exchanger (column: UNO 

Q-12, BioRad)(eluent B: 20 mmol L–1 K2HPO4 and 1 mol L–1 NaCl (pH 8) in water; gradient: 

0–10 min: 0–5% B; 10–115 min: 5–40% B; 115–120 min: 40–100% B; flow rate: 1.0 ml min–

1; UV absorption wavelength: 254 nm). Then we desalted the fractions of the anion-exchange 

chromatography by HPLC reversed-phase C18 chromatography. We equilibrated the re-

versed-phase column (ChromolithTM Performance RP-18e 100–4.6, Merck) with eluent 40 

mmol L–1 triethylammonium acetate. We pumped each sample dissolved in 40 mmol L–1 

triethylammonium acetate with a flow rate of 1.0 ml min–1 onto the column. After washing 

the column with 15 ml eluent A, we eluted the substances with 35% ACN in water (eluent B). 

We lyophilized the resulting fractions and stored them at – 80 °C. Then we examined the ly-

ophilized fractions from the HPLC reversed-phase C18 chromatography by MALDI-MS.  
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MEASUREMENTS OF PERFUSION PRESSURE IN THE ISOLATED PERFUSED RAT 

KIDNEY 

We continuously monitored perfusion pressure by a transducer (Statham P23 GB, Siemens) 

connected to a bridge amplifier (Hugo Sachs). We excised and immediately mounted the kid-

ney into the perfusion system. The perfusion procedure generally followed the description 

given by van der Giet et. al.9. Briefly, we perfused the isolated rat kidney by a peristaltic 

pump in a single-pass system with a solution containing 115 mmol L–1 NaCl, 4.6 mmol L–1 

KCl, 1 mmol L–1 CaCl2, 1.2 mmol L–1 MgSO4, 1.2 mmol L–1 NaH2PO4, 22 mmol L–1 Na-

HCO3, 49 mmol L–1 glucose and 35 g of gelatine L–1 (Haemaccel; Behringwerke), and equili-

brated with 95% O2 / 5% CO2.  

 

We assessed vasoconstrictive responses of the isolated perfused rat kidney at basal tone after 

an equilibration period of 30 min. To construct concentration-response curves, we allowed 5 

min to elapse between consecutive doses.  
 

MEASUREMENT OF MEAN ARTERIAL BLOOD PRESSURE AFTER 

INTRAARTERIAL ADMINISTRATION OF Up4A 

In 5 anaesthetized rats (1.5 g kg–1 b.w. urethane) we recorded intra-arterial blood pressure 

through a polyethylene catheter inserted into the femoral artery and connected to a pressure 

transducer (Statham P23 GB, Siemens). We injected noradrenaline and Up4A (100 nmol each) 

intra-aortically via a polyethylene catheter inserted into the right carotid artery. 

 

ISOLATION AND IDENTIFICATION OF Up4A IN HUMAN PLASMA 

We centrifuged the blood samples at 2,100 g for 10 min at 4 °C for isolation of plasma, after a 

standardized interval of 15 min after sampling. We added 10 µg of P(1),P(2):P(2),P(3)-Bis-

methylene diadenosine triphosphate as internal standard. We deproteinized the plasma with 

0.6 mol L–1 (final concentration) perchloric acid and centrifuged (2,100 g, 4 °C, 5 min). After 

adjusting pH to 7.0 with 5 mol L–1 KOH, we removed the precipitated proteins and KClO4 by 

centrifugation (2,100 g, 4 °C, 5 min).  
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B.4.  Identification of dinucleoside polyphosphates in adrenal glands 
 
Joachim Jankowski, Vera Jankowski, Bertram Seibt, Lars Henning, Walter Zidek, Hartmut Schlüter 
 

B.4.1. Abstract 

Dinucleoside polyphosphates have been characterized as extracellular mediators controlling 

numerous physiological functions like vascular tone or cell proliferation. Here we describe 

the isolation and identification of dinucleoside polyphosphates ApnA (with n=2-3), ApnG 

(with n=2-6) as well as GpnG (with n=2-6) from adrenal glands. These dinucleoside poly-

phosphates are localized in granules of the adrenal glands. The dinucleoside polyphosphates 

diadenosine diphosphate (Ap2A), diadenosine triphosphate (Ap3A), the adenosine guanosine 

polyphosphates (ApnG) and diguanosine polyphosphates (GpnG), both with phosphate group 

(p) numbers (n) ranging from 2 to 6, were identified by fractionating them to homogeneity 

with preparative size-exclusion- and affinity-chromatography as well as analytical anion-

exchange and reversed-phase-chromatography from deproteinized adrenal glands and by 

analysis of the homogenous dinucleoside polyphosphates containing fractions with post-

source-decay (PSD) matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-

MS). The identity of the dinucleoside polyphosphates was confirmed by retention time com-

parison with synthetic dinucleoside polyphosphates. Enzymatic analysis demonstrated an in-

terconnection of the phosphate groups with the adenosines in the 5´-positions of the riboses in 

all dinucleoside polyphosphates purified from adrenal glands. In conclusion, the identification 

of these dinucleoside polyphosphates in adrenal gland granules emphasizes that these dinu-

cleoside polyphosphates can be released from the adrenal glands into the circulation.  

 

B.4.2. Introduction  

Since the first description of diadenosine triphosphate (Ap3A) in human platelets1, a growing 

number of analogues have been described in mammalians and humans. First, it appeared that 

human platelets contain also diadenosine polyphosphates with 4, 5 and 6 phosphate groups1,2, 

and subsequently Ap2A and Ap7A were identified in human cells3,4. A further principal step in 

the discovery of dinucleoside polyphosphates in human tissue was the identification of ApnGs 

and GpnGs with n ranging from 2 to 6 in human platelets3,5. 

 

Whereas the ApnAs and ApnGs exert both vasoconstrictive and growth stimulating effects on 

vascular smooth muscle cells, the GpnGs are only active as growth stimulating factors. The 
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effects of dinucleoside polyphosphates on vascular tone critically depend on their number of 

phosphate groups and the existence of at least one adenine group within the molecule6,7. 

ApnGs and GpnGs, (with n = 2 - 6), were shown to be released upon stimulation from plate-

lets3,5. Yet, no further source for the storage and release of dinucleoside polyphosphates is 

known. Since Castillo, Castro and Pintor demonstrated that diadenosine polyphosphates, 

ApnA (with n=4-6), are stored in granules of adrenal glands8-11, this tissue may be a candidate 

for the storage of ApnGs and GpnGs, (with n = 2 - 6), too. Therefore in the present study the 

presence of ApnGs and GpnGs in the adrenal glands and their granules was investigated.  

 

B.4.3. Material and methods 

CHEMICALS 

HPLC water (gradient grade) and acetonitrile were purchased from Merck (Germany), all 

other substances from Sigma-Aldrich (Germany). 

 

PURIFICATION PROCEDURES 

Bovine adrenal glands were obtained on ice from a local slaughterhouse, cleaned of lipid mat-

ter, and cut into small pieces of 1 cm3. Tissue was frozen by liquid nitrogen, and stored at 

-80°C for 12 h, lyophilized and powdered. 20 g tissue (dry weight) was suspended in 20 ml 

perchloric acid (final concentration 0.6 mol L-1). The extract was centrifuged at 100,000 g for 

30 min at 4oC and the supernatant was neutralized with KOH to pH 9.5. After a second cen-

trifugation at 6,000 g for 10 min at 4oC triethylammonium acetate (TEAA, 40 mmol L-1 final 

concentration) was added to the supernatant, and the pH was titrated to 6.5 with HCl. The 

supernatant was pumped through a preparative reversed-phase column (Lichro-prep, 310 x 65 

mm, 40-65 µm, Merck, Germany). After removing substances not binding to the column with 

aqueous 40 mmol L-1 TEAA the adsorbed molecules were eluted with 30 % acetonitrile 

(ACN) in water at a flow rate of 1.0 mL min-1. The elution was detected by measuring the UV 

absorption at 254 nm. The eluate was frozen at –80°C and lyophilised. Size-exclusion-

chromatography was performed using a size-exclusion gel Sephacryl S-100 High Resolution 

(1000 x 16 mm, S100 HR, Pharmacia BioTech, Sweden), which was equilibrated with water. 

The lyophilized samples from the preparative reversed-phase column were resolved in 5 mL 

water and ethylenediaminetetraacetic acid (EDTA; 5 mmol L-1) and adenosine 5'-triphosphate 

(ATP; 5 mmol L-1) was added. The sample was loaded onto the column. The eluent (water) 

was pumped with a flow rate of 1 mL min-1 onto the column. The eluate was monitored with a 

UV-detector at 254 nm. 
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The eluate of the size-exclusion chromatography was purified further with affinity chroma-

tography. The affinity chromatography gel, phenyl boronic acid coupled to a cation exchange 

resin (BioRex 70, Bio-Rad, USA), was synthesized according to Barnes et al.13. The affinity 

resin was packed into a glass column and equilibrated with 1 mol L-1 ammonium acetate 

(pH 9.5). The eluate from the size-exclusion chromatography was adjusted to pH 9.5 and 

loaded onto the affinity column. The column was washed with 1 mol L-1 ammonium acetate 

(pH 9.5) with a flow rate of 1 mL min-1. Binding substances were eluted with 1 mmol L-1 

HCl. The eluate was frozen and lyophilised. Fractions were monitored with a UV detector at 

254 nm. 

 

Fractions from affinity chromatography were desalted by reversed-phase high-performance 

liquid chromatography (Superspher 100 C18 endcapped, 100 x 2,1 mm, 4 µm, 10 nm, Merck, 

Germany). The fractions dissolved in 40 mmol L-1 TEAA were injected on the reversed-phase 

column. After a washing period of 10 min with eluent 40 mmol L-1 TEAA, the nucleotide-

containing fraction was eluted with 30 % acetonitrile in water. The UVλ254 nm absorbing frac-

tion was collected. The eluate was frozen and lyophilised. 
 

The desalted and lyophilised eluate of the affinity-chromatography was dissolved in aqueous 

40 mmol L-1 TEAA solution and injected on two C18 reversed-phase columns connected in 

series (Superspher, 300 x 8 mm, 4 µm, Merck, Germany) used in the displacement modus14. 

The columns were equilibrated with aqueous 40 mmol L-1 TEAA before. The carrier was 

pumped through the system with a flow rate of 100 µL min-1 during injection of the sample. 

After the injection was finished n-butanol (100 mmol L-1 in 40 mmol L-1 TEAA) was used as 

displacer (flow rate: 100 µL min-1). The displacement chromatography was monitored by UV-

absorption at 254 nm. The fraction size was 1 mL.  

 

Each lyophilised fraction from displacement-chromatography was fractionated by anion-

exchange chromatography. The anion exchange column (50 x 5 mmol L-1, Mono-Q HR 5/5; 

Pharmacia Biotech, Sweden) was equilibrated with eluent 10 mmol L-1 K2HPO4 (eluent A). 

The sample dissolved in 10 mmol L-1 K2HPO4 was injected on the column at a flow rate of 

the mobile phase of 0.5 mL min-1. Binding substances were eluted using a linear gradient with 

increasing concentration of 50 mmol L-1 K2HPO4 and 1 mol L-1 NaCl (eluent B). The time 

program of the gradient was 0-10 min 0-5 % B, 10-100 min 5-35 % B, 100-105 min 35-40 % 
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B, 105-110 min 40-100 % B. The wavelength of the UV detector was fixed to 254 nm. Frac-

tions were collected every 1 min. The fractions from anion exchange-chromatography were 

further separated by reversed-phase chromatography (Superspher 100 RP C18 end-capped, 

250 x 4 mmol L-1, Merck, Germany). The fractions dissolved in 40 mmol L-1 TEAA (eluent 

A) were injected on the column. Acetonitrile (eluent B) and the following gradient were used 

for the elution: 0-4 min 0-2 % B, 4-79 min 2-7 % B, 79-85 min 7-60 % B, 86-90 min 60-80 % 

B. The flow rate was 0.5 mL min-1. The wavelength of the UV detector was 254 nm. 1 mL 

fractions were collected. Fractions with a significant UVλ254nm-absorption were rechroma-

tographed using the conditions as described.  
 

MATRIX ASSISTED LASER DESORPTION/ IONISATION (MALDI-) AND POST 

SOURCE DECAY (PSD-) - MASS SPECTROMETRY 

The lyophilised fractions from the reversed-phase chromatography were examined by 

MALDI-MS and post-source decay (PSD)-MALDI-MS. A reflectron type time-of-flight 

(RETOF) mass spectrometer (Reflex III, Bruker, Germany) was used according to Hillenk-

amp and Karas15. The sample was mounted on an x, y, z movable stage allowing irradiation of 

selected sample areas. In this study, a nitrogen laser (VSL-337 ND, Laser Science) with an 

emission wavelength of 337 nm and 3 ns pulse duration was used. The laser beam was fo-

cused to a diameter of typical 50 µm at an angle of 45° to the surface of a target. Microscopic 

sample observation was possible. 10-20 single spectra were accumulated to improve the sig-

nal-to-noise ratio. In MALDI-MS large fractions of the desorbed analyte ions undergo post-

source decay (PSD) during flight in the field free drift path. Using a RETOF set-up, sequence 

information from PSD fragment ions of precursors produced by MALDI was obtained16. 

Sample preparation for MALDI-MS and MALDI-PSD-MS experiments was identical. The 

concentrations of the analysed substances were 1-10 µmol L-1 in double distilled water. 1 µL 

of the analyte solution was mixed with 1 µL of matrix solution (50 mg mL-1 3-hydroxy-

picolinic acid in water). To this mixture cation exchange beads (AG 50 W-X12, 200-400 

mesh, Bio-Rad, USA) equilibrated with NH4
+ as counterion were added to remove Na+ and 

K+ ions. The mixture was gently dried on an inert metal surface before introduction into the 

mass spectrometer. The mass accuracy was in the range of 0.01 %.  
 

RETENTION TIME COMPARISON 

The individual components were further identified on the basis of their retention times com-

pared with the synthetic molecules. The lyophilised fractions from reversed-phase chromatog-
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raphy with TEAA as ion-pair reagent were therefore separated by reversed-phase chromatog-

raphy using tetrabutylammonium hydrogensulfate (TBA) as ion-pair reagent. The fractions 

dissolved in 2 mmol L-1 TBA in 10 mmol L-1 K2HPO4 (pH 6.8) were injected on the column 

(RP-18e Chromolith SpeedRODTM; 50-4.6 mm; macropore size 2 µm; Merck, Germany). 

Acetonitrile (80 % (v/v) in water; eluent B) and the following gradient was used for the elu-

tion: 0-30 min: 0-40 % B; 30-33 min: 40-100 % B; 33-36 min: 100 % B; flow: 1 mL min-1. 

UV-absorption was detected at 254 nm. 
 

ENZYMATIC CLEAVAGE EXPERIMENTS 

Aliquots of the fraction from the reversed-phase column were incubated with enzymes as fol-

lows. The samples were dissolved in 1) 20 µL 200 mmol L-1 Tris buffer (pH 8.9) incubated 

with 5-nucleotide hydrolase 3 mU from Crotalus durissus, EC 3.1.15.1 (Roche, Germany), 

and purified according to Sulkowski and Laskowski17 for 9 min at 37°C; 2) 20 µL 200 mmol 

L-1 Tris and 20 mmol L-1 EDTA buffer (pH 7.4) and incubated with 3`-nucleotide hydrolase 

(1 mU) from calf spleen, EC 3.1.16.1 (Roche, Germany) for 1 h at 37°C; and 3) 20 µL 10 

mmol L-1 Tris, 1 mmol L-1 ZnCl2 and 1 mmol L-1 MgCl2 buffer (pH 8) and incubated with 

alkaline phosphatase (1 mU) from calf intestinal mucosa, EC 3.1.3.1, (Roche, Germany) 1 h 

at 37 °C. The reaction was terminated by ultrafiltration with a centrifuge filter (exclusion 

limit 10 kDa, Millipore, USA). After filtration of the enzymatic cleavage products, the fil-

trate, dissolved in 80 µL eluent A (10 mmol L-1 K2HPO4, pH 7), was subjected to anion-

exchange chromatography (MiniQ PC 3.2/3, Pharmacia, Sweden). The gradient corresponded 

to: 0-3 min: 0 % B (50 mmol L-1 K2HPO4, pH 7 with 1 mol L-1 NaCl); 3-20 min: 0-50 % B; 

20-21 min: 50-100 % B. The flow rate was 100 µL min-1. 
 

ISOLATION OF GRANULES FROM ADRENAL GLANDS AND EXTRACTION OF 

DINUCLEOSIDE POLYPHOSPHATES 

Fresh bovine adrenal glands were obtained on ice from a local slaughterhouse, cleaned of 

lipid matter and the adrenal glands were dissected. The granules were obtained from the adre-

nal glands according to established techniques18,19. Briefly, 50 ml 0.32 mol L-1 sucrose were 

added to the adrenal glands. The suspension was homogenised with an ultra-turrax at 4°C 

(750 rpm) and the homogenate was centrifuged at 800 g at 4°C for 10 min. The supernatant 

was centrifuged again at 10,000 g at 4°C for 20 min. To the supernatant 50 ml 1.6 mol L-1 

sucrose was added and the suspension was centrifuged at 100,000 g at 4 °C for 45 min. The 

pellet was resuspended in 10 mL water and divided into three aliquots. For extraction of dinu-
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cleoside polyphosphates from the granules into the aliquots 2 mL acetonitrile, n-butanol and 

1-propanol were added respectively. The suspension was thoroughly mixed with a vortex 

mixer. The dinucleoside polyphosphates were chromatographed to homogeneity by prepara-

tive reversed-phase-, analytical anion-exchange- and analytical reversed-phase chromatogra-

phy using the conditions as described above. The identification steps were identical as de-

scribed above.  

 

SYNTHESIS AND CHROMATOGRAPHY OF DINUCLEOSIDE POLYPHOSPHATES  

In contrast to diadenosine polyphosphates and diguanosine polyphosphates, adenosine 

guanosine polyphosphates are not commercially available. Therefore synthesis of adenosine 

guanosine polyphosphates was necessary in order to control the authenticity of the isolated 

substances. Adenosine guanosine polyphosphates were synthesised according to Ng and Or-

gel20 and chromatographed to homogeneity according to Jankowski et al.21. Briefly, adenosine 

5´-polyphosphates, guanosine 5´-polyhosphates, N-[2-hydroxyethyl]-piperazine-N´-2-ethane-

sulfonic acid, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and magnesium chloride were 

dissolved in water, thoroughly mixed with a vortex mixer and incubated at 37°C at pH 6.5 for 

48 h. Dinucleoside polyphosphates were concentrated on a C18 reversed-phase column using 

40 mmol L-1 aqueous TEAA and were eluted with 30 % acetonitrile in water. The lyophilized 

concentrate of the reversed-phase column was injected on two C18 reversed-phase columns 

connected in series (Supersphere, 300 x 8 mm, 4 µm, Merck, Germany) and was chroma-

tographed in the displacement mode by use of n-butanol (100 mmol L-1). The fractions of the 

displacement-chromatography were lyophilised and each fraction chromatographed with an 

anion-exchange column (column: Mono Q, 100 x 10 mm, 10 µm, eluent A: 20 mmol L-1 

K2HPO4; eluent B: 20 mmol L-1 K2HPO4 and 1 mol L-1 NaCl; gradient: 0-10 min: 0-5 % B; 

10-115 min: 5-40 % B; 115-120 min: 40-100 % B; flow rate: 1.0 mL min-1; UV absorption 

wavelength: 254 nm). The fractions of the anion-exchange chromatography were desalted by 

HPLC reversed-phase C18 chromatography. 
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B.4.4. Results 

In Figure 1, purification of the dinucleotide polyphosphates from adrenal glands is exempli-

fied for Gp6G. Each chromatography fraction with a significant UV-absorption at 254 nm was 

fractionated to homogeneity and the underlying substances were identified. The fractions 

leading to the isolation of Gp6G are indicated by arrows. These arrows were added to the 

chromatograms after the fractionation to homogeneity and after identification by analytic 

methods. Comparable chromatograms are available for the remaining nucleotides. 

 

Figure 1.A shows a characteristic size-exclusion-chromatogram of a deproteinized extract 

from adrenal glands. Retention time comparison with synthetic dinucleoside polyphosphates 

showed that dinucleoside polyphosphates elute in the retention time interval between 180-280 

min. Therefore, each fraction of this retention time range was further fractionated by the 

chromatographic methods as described in the following. 

 

The subsequent affinity-chromatography of these size-exclusion chromatography fractions by 

phenyl boronic acid resin allows the separation of mononucleoside and dinucleoside poly-

phosphates13. Next, the desalted and lyophilised eluate of the affinity-chromatography was 

fractionated by reversed-phase chromatography in the displacement mode. Each resulting 

fraction of the displacement-chromatography with a significant UV absorption at 254 nm was 

fractionated by anion-exchange-chromatography. A characteristic anion-exchange chroma-

togram of one fraction of the displacement-chromatography is given in Figure 1.B. The UV 

absorption caused by Gp6G is labelled by an arrow in Figure 1.B. 

 

Next, the eluates of the anion-exchange-chromatographies with a significant UV absorption at 

254 nm were fractionated by reversed-phase chromatography. Figure 1.C shows a characteris-

tic reversed-phase chromatogram of the peak labelled by an arrow in Figure 1.B. Each result-

ing fraction of the reversed-phase chromatography with a significant UV absorption at 

254 nm was rechromatographed by reversed-phase chromatography using the same conditions 

as before. The reversed-phase rechromatogram of the fraction labelled by an arrow in Figure 

1.C is given in Figure 1.D. 
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Figure 1:  Isolation of dinucleoside polyphosphates from adrenal glands, exemplified for the 

isolation of diguanosine hexaphosphate. The arrows in the figures indicates the 
fractions which lead to the identification of Gp6G.  

(A)  Size-exclusion chromatography of an extract of adrenal glands (gel: Sephacryl S-
100 high-resolution, Pharmacia BioTech, Sweden; column dimension: 1000 x 16 
mm; eluent: water; flow rate: 100 µL min-1,fraction size: 1.0 mL min-1; abscissa: 
retention time (min); ordinate: UV-absorption at 254 nm (arbitrary units)). 

(B)  Anion-exchange chromatography of a fraction of the displacement chromatogra-
phy (column: TSK DEAE 5 PW, 150 x 20 mm, 10 µm, Tosohaas, Japan; eluent 
A: 20 mmol L-1 K2HPO4 in water; pH 8.0; eluent B: 20 mmol L-1 K2HPO4 and 
1 mol L-1 NaCl (pH 8) in water; gradient: 0-10 min: 0-5 % B; 10-105 min: 5-
35 % B; 105-110 min: 35-100 % B flow rate: 2.0 mL min-1; fraction size: 2 mL; 
abscissa: retention time (min); ordinate: UV-absorption at 254 nm (arbitrary 
units)).  

(C)  Reversed-phase chromatography of the fraction labelled in Figure 1.B by an ar-
row (column: Supersphere 100 C 18 end., Merck, Germany, 250 x 4 mm, particle 
size 4 µm; flow rate: 0.5 mL min-1; eluent A: 40 mM triethylammonium acetate in 
water; eluent B: 100 % acetonitrile; gradient: 0-4 min: 0-2 % B; 4-55 min: 2-7 
% B; 55-60 min: 100 % B; abscissa: retention time (min); ordinate: UV-
absorption at 254 nm (arbitrary units)).  

(D)  Rechromatography of the fraction labelled in C. by an arrow (conditions as de-
cribed in legend of C.) 

 
Figure 2.A shows the spectrum of the matrix assisted laser desorption/ionisation mass spec-

trometry of the fraction labelled in Figure 1.D. The molecular mass of the isolated substance 

was determined as 1029 Da (1030 Da = [M+H]+). In Figure 2.B the PSD-MALDI-MS spec-

trum of the substance labelled by an arrow in Figure 1.D is shown. The fragmentation pattern 

was identical with that of synthetic Gp6G. In Table 1 the fragmentation pattern of the isolated 
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substance is deduced from the structure of the dinucleoside polyphosphate Gp6G. The connec-

tion of phosphate groups to the adenosines was investigated by enzymatic analysis using 3´- 

and 5´nucleotide hydrolase and alkaline phosphatase. Cleavage of the isolated substance 

(Figure 2.C) with 5´-nucleotide hydrolase (from Crotalus durissus) yielded GMP, as evi-

denced by retention time comparison with synthetic substances (Figure 2.D). The cleavage 

pattern was identical with that of synthetic Gp6G. Incubation of the substance with 3´-

nucleotide hydrolase (calf spleen) and alkaline phosphatase yielded no cleavage products 

(data not shown). The enzymatic cleavage experiments demonstrate that the polyphosphate 

chain interconnects the adenosines via phosphoester bonds with the 5´-oxygens of the riboses. 

The retention time of the isolated substance on the reversed-phase chromatography column 

using TBA as ion-pair reagent (19.6 min) was comparable with the retention time of synthetic 

Gp6G (19.0 min). In summary, by the mass-spectrometry, the enzymatic analysis as well as 

the retention time comparison the isolated substance was identified as diguanosine hexaphos-

phate (Gp6G). 

 

In an analogous manner, diadenosine diphosphate (Ap2A), diadenosine triphosphate (Ap3A), 

adenosine guanosine diphosphate (Ap2G), adenosine guanosine triphosphate (Ap3G), adeno-

sine guanosine tetraphosphate (Ap4G), adenosine guanosine pentaphosphate (Ap5G), adeno-

sine guanosine hexaphosphate (Ap6G), diguanosine diphosphate (Gp2G), diguanosine 

triphosphate (Gp3G), diguanosine tetraphosphate (Gp4G), diguanosine pentaphosphate 

(Gp5G) and diguanosine hexaphosphate (Gp6G) were purified from adrenal glands and identi-

fied by enzymatic analysis, the signal pattern of the PSD-MALDI-MS fragmentations and 

retention time comparison. 
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Figure 2:(A)  MALDI mass spectrum of the fraction labelled in Figure 1.D by an arrow (ab-

scissa, relative mass/charge, m/z, z = 1; ordinate, relative intensity: arbitrary 
units). 

(B)  Positive-ion post source decay (PSD-) MALDI mass spectrum of the fraction 
labelled by an arrow in Figure 1.D (abscissa: relative mass/charge, m/z, z=1; 
ordinate: relative intensity: arbitrary units).  

(C)  Anion exchange chromatography of the fraction labelled by an arrow in Figure 
1.D by an arrow before incubation with 5’-nucleotide hydrolase (column: 
UnoQ-1.7 x 35 mm, BioRad, USA; eluent A: 20 mmol L-1 K2HPO4, pH 8; elu-
ent B: 20 mmol L-1 K2HPO4 (pH 8) with 1 mol L-1 NaCl; gradient: 0-2 min 0 % 
B, 2-100 min 0-40 % B, 100-105 min 40-100 % B, 105-116 min 100 % B; flow 
rate: 0.5 mL min-1). 

(D)  Anion-exchange chromatography of the fraction labelled in Figure 1.D by an 
arrow after incubation with 5’-nucleotide hydrolase. 3’-nucleotide hydrolase 
and alkaline phosphatase had no effect on the molecule (conditions as de-
scribed in legend of Figure 2.C) 
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Table 1:     Masses of the fragment ions (in Da) obtained by PSD-MALDI mass-
spectrometry of each dinucleoside polyphosphate isolated from adrenal glands. 
(abbreviations: M, protonated parent ion, A´=adenine, G´=guanine, 
A=adenosine, G=guanosine, p=phosphate group, e. g., Ap3 =adenosine triphos-
phate). 

 
 

Fragment ions 
 

 

Ap2A 
(Da) 

 

Ap2G 
(Da) 

 

Gp2G
(Da) 

 

 

Ap3A
(Da)

Ap3G
(Da) 

 

Gp3G
(Da) 

 

Ap4G
(Da) 

 

Gp4G
(Da) 

 

Ap5G 
(Da) 

 

Gp5G 
(Da) 

 

Ap6G 
(Da) 

 

Gp6G
(Da) 

 

A´ 136 136  136 136  136  136  136  
G´  152 152  152 153 153 153 152 152 154 152

A – 2 H2O 232 233  232 235 232 233  233  233  
G - 2 H2O  248   252 251 250 249 249 248 249 249

Ap1 346 349 349 346  349 348  348  350  
Gp1   364  357   365 364 364 360 365

Ap2 - H2O    410 409  409      
Ap2    429 428  428  428  429  
Gp2   445  447 445 444 444 444 444 448 445

Ap3 - H2O       488  490  490  
Ap3    509   509  508  509  
Gp3       523 523 523 523 523 525

M - Gp2     330  410  490 506   
M - Ap2         505    
M - Gp1     410  490 508 572 586 645 668
M - Ap1    410   509  585  670  

M- A       587  666  747  
M- G + H2O     609 524 682 605  684 843 764
M - A´- H2O  524  605   699  778  861  

M - G´- H2O      617  701  780  859

M - G´     622 638 699   797 861 880

M- A´ 634    635  717      

M 678 694 709 757 773 789 853 870 934 949 1016 1030

 

B.4.5. Discussion 

In this study we investigated the question if the dinucleoside polyphosphates ApnA (with n=2-

3), ApnG (with n=2-6) and GpnG (with n=2-6) not only appear in granules of human platelets, 

as previous published3-5,22, but also in adrenal glands emphasizing the physiological impor-

tance of these growth stimulating mediators. Because of the nature of the dinucleoside poly-

phosphates it is not possible to raise antibodies against these molecules. Therefore, in order to 

identify dinucleoside polyphosphates in cells or tissues, these molecules have to be purified to 

homogeneity before they can be identified by physico-chemical methods. The first sample 

preparation step included the removal of proteins from a bovine adrenal gland extract by per-
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chloric acid precipitation. Second, the large numbers of small hydrophobic and hydrophilic 

substances, such as carbohydrates, were separated from the dinucleotides by reversed-phase 

chromatography. Next, a highly selective concentration step with a boronate derivative of a 

cation exchange gel was used, which retains nucleotides containing two or more 1,2-cis-diol 

groups. Whereas nucleotides like ATP with less than two cis-diol groups do not bind to the 

boronate gel in the presence of 1 mol L-1 ammonium acetate due to charge repulsions between 

the negative phosphate groups and the carboxyl groups of the cation-exchange gel, the boryl 

ester formation of the two cis-diol groups of dinucleoside polyphosphates is sufficient to 

overcome charge repulsion13. The eluate of the boronate gel contained salts, which prevent 

dinucleoside polyphosphates from binding to the anion-exchanger. Therefore, the eluate was 

desalted by a reversed-phase chromatography gel.  

 

Each fraction with a significant UV-absorption at 254 nm of the reversed-phase chromatogra-

phy gel was analyzed by matrix assisted laser desorption/ionisation mass-spectrometry 

(MALDI-MS), post-source decay (PSD-) MALDI-MS, retention time comparison as well as 

enzymatic analysis. By this procedure we were able to isolate and to identify diadenosine 

polyphosphates (ApnA) (with n=2-3) as well as adenosine guanosine polyphosphates (ApnG) 

and diguanosine polyphosphates (GpnG) (with n=2-6) in the tissue of the bovine adrenal 

glands. Furthermore the results demonstrate that these dinucleoside polyphosphates are stored 

in the granules of bovine adrenal glands, also. Because of the storage of these dinucleoside 

polyphosphates in granules, it can be assumed that these molecules are released into the circu-

lation. What will happen to the dinucleoside polyphosphates after they are secreted into the 

blood?  

 

Dinucleoside polyphosphates are metabolised by enzymes in the extracellular space surround-

ing vascular endothelial and smooth muscle cells. Several soluble- as well as ecto-enzymes 

have been described in the past, which are able to hydrolyze dinucleoside polyphosphates 

symmetrically or asymmetrically. Ecto-hydrolases are present in a broad variety of cell types, 

like bovine aortic endothelial cells23 and rat mesangial cells24. The substrate specificity of 

these enzymes mainly depends on the number of phosphates of the dinucleoside polyphos-

phates. For example, a human diphosphorylated inositol phosphate phosphohydrolase shows a 

clear preference for Ap5A and Ap6A as substrates25. Phosphodiesterases, another group of 

dinucleoside polyphosphate-hydrolysing enzymes, have a broad substrate specifity26. In blood 

dinucleoside polyphosphates are primarily metabolized by plasma enzymes27,28. The enzy-
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matic breakdown of dinucleoside polyphosphates will lead to the generation of mononucleo-

tides and nucleosides that, in turn, are biologically active in vascular tissues. 

 

While there is compelling evidence for specific membrane receptors for adenine dinucleoside 

polyphosphates it is undeniable that many of the actions of extracellular dinucleoside poly-

phosphates can be accommodated simply by activation of known members of the P2 receptor 

family. The mononucleotide P2 receptor family can be divided into two subfamilies: 1.) the 

ionotropic P2X receptors (which are ligand-gated ion channels) and 2.) the metabotropic P2Y 

receptors (which are G-protein coupled receptors)29. Various members of each subfamily 

have been shown to respond potently to diadenosine polyphosphates (e.g.30-33). 

 

The P2X ligand-gated ion channels are activated principally by ATP and by very few other 

naturally occurring substances34. Therefore, it is of note that diadenosine polyphosphates are 

as potent as ATP at many of the P2X receptor subtypes. In addition, there have been five P2Y 

receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) isolated from either human or mammalian 

cDNA libraries35. These mononucleotide receptors show a great disparity in their pharmacol-

ogical profile, being activated by either purine (adenine, guanine, inosine) or pyrimidine 

(uridine) nucleotides, or both classes of mononucleotides34. Also, some P2Y receptors show a 

marked preference for nucleoside diphosphates (P2Y1 and P2Y6), and others for nucleoside 

triphosphates (P2Y2, P2Y4, and P2Y11)36. Given the variability in agonist selectivity, it is 

remarkable that adenine dinucleoside polyphosphates are pharmacologically active at these 

metabotropic receptors. 

 

A number of inconsistencies and cellular responses invoked by dinucleoside polyphosphates 

from mononucleotides have led to the hypothesis that classes of dinucleoside polyphosphates- 

stimulated receptors, which may (P2D) or may not (P4) be stimulated by mononucleoside 

polyphosphates, do exist9,37,38. The prototypical P2D receptor classification arose from radio-

ligand binding studies where dinucleotides and P2 agonists exhibited a pharmacological pro-

file different from any known P2 subtype10,39. As of yet there are no cloned receptors fitting 

the P2D pharmacological profile and only minimal functional studies have defined their sig-

nalling pathways. Based upon studies in chromaffin cells demonstrating mobilisation of 

[Ca2+-]i internal stores9 and activation of protein kinase C37, P2D receptors are believed to 

belong to the family of metabotropic Gq-linked G-proteins38. Both chromaffin cells and brain 
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synaptosomes express a very high affinity receptor with equipotent or greater affinity for 

Ap4A and adenosine 5´-O-thiodiphosphate10,39. 

 

The findings reveal that dinucleoside polyphosphates ApnG and GpnG n=2-6 and ApnA n=2-3 

described recently3,5, are also stored in adrenal glands. In earlier studies, besides their struc-

ture only their effects on contraction and growth of vascular smooth muscle cells had been 

elucidated3,5,6. The latter compounds had been isolated from human platelets, but due to the 

restricted capacity of platelets to synthesise enzymes, it is open whether ApnG and GpnG are 

produced in human platelets. The adrenal gland apparently is not only capable of generating 

diadenosine polyphosphates, but also their guanine-containing analogues. The presence of 

these compounds in secretory granules of the adrenal medulla suggests that the dinucleoside 

polyphosphates have not only local, but also systemic actions.  

 

In conclusion, the identification of these dinucleoside polyphosphates in granules of adrenal 

glands emphasizes that these dinucleoside polyphosphates can not only be released from hu-

man platelets but also from the adrenal glands. 
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B.5. Endogenous diadenosine tetraphosphate, diadenosine pentaphos-

phate and diadenosine hexaphosphate in human myocardial tissue 
  
Jiankai Luo, Vera Jankowski, Nihayrt Güngär, Joachim Neumann, Wilhelm Schmitz, Walter Zidek, Hartmut 
Schlüter, Joachim Jankowski 
 

B.5.1. Abstract 

Diadenosine polyphosphates have been characterized as extracellular mediators controlling 

numerous physiological effects. In this study diadenosine tetraphosphate, diadenosine penta-

phosphate and diadenosine hexaphosphate were isolated and identified in human myocardial 

tissue. Human myocardial tissue was homogenized and fractionated by affinity-, displace-

ment-, anion-exchange-, and reversed-phase-chromatographies. In fractions purified to homo-

geneity, diadenosine tetraphosphate, diadenosine pentaphosphate and diadenosine hexaphos-

phate were revealed by matrix-assisted laser desorption/ionization mass-spectrometry and 

UV-spectroscopy. These diadenosine polyphosphates were further identified by enzymatic 

analysis, which demonstrated an interconnection of the phosphate groups with the adenosines 

in the 5´-positions of the riboses. Furthermore, diadenosine tetraphosphate, diadenosine pen-

taphosphate and diadenosine hexaphosphate were found in human cardiac specific granules 

and the amount of diadenosine tetraphosphate, diadenosine pentaphosphate and diadenosine 

hexaphosphate was estimated in the range of about 500 µmol L-1. 
 

In conclusion, the experiments show that not only the diadenosine polyphosphates with 2 and 

3 phosphate groups occur in human myocardial tissue, but also diadenosine polyphosphates 

with 4-6 phosphate groups. After being released by cholinergic stimulation, which is known 

to induce diadenosine polyphosphate release from secretory granules, diadenosine tetraphos-

phate, diadenosine pentaphosphate and diadenosine hexaphosphate activate P2X purinocep-

tors in vascular smooth muscle cells and hence can act as vasoconstrictors. From this, it may 

be inferred that the differential action of both predominantly vasodilator and vasoconstrictor 

diadenosine polyphosphates allows a fine tuning of myocardial blood flow by locally released 

diadenosine polyphosphates. 
 

B.5.2. Introduction  

Diadenosine polyphosphates (ApnA) have attracted growing interest in the past decade with 

respect to their roles in cardiovascular physiology and pathology (e.g.: 1-5). The actions of the 

ApnA within the cardiovascular system are mediated by the various purinoceptor subtypes. So 
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far 14 mammalian purinoceptor subtypes have been cloned6,7, and six ApnA containing 2-7 

phosphate groups have been identified in humans8-11. The affinities of a given ApnA to the 

various purinoceptor subtypes depends on the number of phosphate groups linking both 

adenosine moieties9,12,13. Moreover, the purinoceptor subtypes are very differently distributed 

within the cardiovascular system. Depending on the purinoceptor subtypes activated in a 

given tissue, the ApnA are both vasoconstrictors and vasodilators14,15, both inhibitors and 

stimulators of platelet aggregation8,9,11, and modulators of cell proliferation9,11,16. Given this 

diversity of ApnA actions it is not surprising that the ApnA actions reported in literature 

widely differ among various species. Currently, it is difficult to decide to what extent species-

dependent differences in ApnA actions are due to different purinoceptor distribution and to 

species-specificity of some of the known purinoceptor subtypes. 
 

Obviously, local concentrations of ApnA are further important determinants of ApnA-

mediated effects8,9. Hence, the local production of ApnA in the cardiovascular system has 

been studied recently. In earlier experiments both Ap2A and Ap3A have been identified in 

human myocardial tissue17. Both Ap2A and Ap3A have been characterized as vasodilators14, 

whereas Ap4A, Ap5A and Ap6A have vasoconstricting properties10,14, which increase with 

increasing number of phosphate groups15. Therefore it is of interest whether also ApnA with 

more than three phosphate groups occur in human myocardium. Given powerful local effects 

of these ApnA due to high local concentrations, the presence of vasoconstrictive ApnA in hu-

man myocardium might have important consequences with respect to pathologic conditions 

such as myocardial infarction or excess sympathetic nerve stimulation, which is known to 

stimulate ApnA release from chromaffin granules. Therefore, we examined in the present 

study whether in human myocardium also those ApnA are present, which activate P2X puri-

noceptors in low concentrations and hence are powerful vasoconstrictors, i.e. ApnA contain-

ing 4-6 phosphate groups. From earlier findings in literature this hypothesis appeared likely, 

since in chromaffin granules isolated from various tissues mostly several or all known types 

of ApnA occur18-21. Our experiments revealed indeed that ApnA acting predominantly as vaso-

constrictors are also detectable in human myocardium. 
 
The group of ApnA polyphosphates have obviously a key position in the regulation cardiovas-

cular system. They are involved in the regulation of most of the organs, cells and body fluids 

of the cardiovascular system and some ApnA acts as agonist or antagonist22. Moreover, the 

ratios of the concentrations of the ApnA are different in the organs and body fluids, e.g. the 
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most abundant dinucleoside polyphosphate in platelets is Ap3A21, the most abundant ApnA in 

plasma is Ap4A20, and the ApnA concentrations dramatically increase in cardiovascular dis-

ease, e. g the ApnA amount in platelets in chronic renal failure patients16. 

 

B.5.3. Material and methods 

CHEMICALS 

HPLC water (gradient grade) and acetonitrile were purchased from Merck (Germany), all 

other substances from Sigma-Aldrich (Germany). 

 

Diadenosine polyphosphates were extracted from human myocardial tissue as described pre-

viously17. The extract was concentrated by preparative reversed-phase chromatography 

(Lichroprep RP-18, 310×25 mm, Merck, Germany). The eluate of the preparative reversed-

phase chromatography was fractionated by size-exclusion gel-, preparative anion-exchange-, 

preparative affinity- and reversed-phase chromatography. The chromatographic conditions 

were identical to the methods described previously17; these conditions are also available 

online (www.hyper.ahajournals.org). 
 
Next, the desalted and lyophilized eluate of the affinity-chromatography was dissolved in 

40 mM TEAA solution and was chromatographed by two connected reversed-phase columns 

(Superspher 100 RP-18 endcapped, 300×8 mm, Merck, Germany) in the displacement 

mode23. These reversed-phase columns were equilibrated with 40 mM TEAA. The carrier (40 

mM TEAA) was pumped through the system at a flow rate of 100 µl min-1 during injection of 

the sample. After the injection, n-butanol (100 mM in 40 mM TEAA) was used as displacer 

(flow rate 100 µl min-1). Each fraction (1 ml) was lyophilized and was further fractionated by 

anion-exchange-chromatography. The eluate of the displacement-chromatography was frac-

tionated by analytical anion-exchange- (TSK DEAE-5PW, 75×7.5 mm; TosoHaas, Germany) 

and desalted by analytical reversed-phase chromatography (Supersphere 100 RP-18 end-

capped, 100 × 2.1 mm, 4 µm, Merck, Germany)(conditions as described in:17). 

 
PURIFICATION PROCEDURES 

The lyophilized eluate of analytical reversed-phase chromatography was analysed by Matrix 

assisted laser desorption/ionization (MALDI) mass-spectrometry and post-source decay 

MALDI mass-spectrometry using the conditions as described in Jankowski et. al.24, UV-

spectroscopy (conditions:17) as well as enzymatic cleavage experiments (conditions:20). 
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IDENTIFICATION OF ApnA FROM HUMAN CARDIAC SPECIFIC GRANULES 

Diadenosine polyphosphates were isolated from specific granules of human left ventricular 

tissue according to the method of Luo et al.17.  

 

B.5.4. Results 

The extracts of human myocardial tissues were fractionated by size exclusion-, anion-

exchange-, affinity-, displacement-chromatography, and analytic anion-exchange-

chromatography. Each fraction showing a significant UV-absorption at 254 nm in the analytic 

anion-exchange chromatography was further fractionated by reversed-phase chromatography. 

Each fraction with a significant absorbance in the 254 nm range of the reversed-phase HPLC 

was further analyzed by mass spectrometric methods, UV-spectroscopy as well as enzymatic 

analysis. Figure 1 shows a typical chromatogram of reversed-phase HPLC. The purified sub-

stances underlying the fractions labeled by arrows in the figure were analyzed. By MALDI 

mass-spectrometry, the molecular masses of these fractions (Figure 1) were revealed as 837.2 

Da, 917.8 Da and 997.4 Da [M+H]+, which correspond to Ap4A, Ap5A and Ap6A. The UV 

spectra of these substances were characteristic of adenosine with a maximum at 259 nm and 

minimum at 230 nm (data not shown). Moreover the fragmentation patterns of the isolated 

substances were analyzed by PSD-MALDI mass-spectrometry24,25. 
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Figure 1:  Characteristic chromatograms of reversed-phase HPLC from an extract of human 

heart tissue after several chromatographies. The reversed-phase HPLC (column: 
Superspher 100 RP-18 endcapped, 250×4 mm, Merck, Germany) was performed 
with 40 mM TEAA (eluent A) and 100% ACN (eluent B) and a gradient with 
eluent B (0-4 min 0-2% B, 4-50 min 2-7% B, 50-56 min 7-60% B, 56-60 min 60-
80%) at a flow rate of 0.5 ml min-1. The peaks labeled by arrows lead to the iden-
tification of Ap4A (A), Ap5A (B) and Ap6A (C). 

 
The results show that the analyzed substances contained phosphate groups, adenosine, AMP, 

ADP, ATP, Ap4, or Ap5 (Table 1). The fragment patterns of the analyzed fractions were 

identical to those of synthetic Ap4A, Ap5A and Ap6A (Table 1).  
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Table 1: Mass signals of the fragment ions (in m/z) obtained by PSD MALDI mass-
spectrometry of each diadenosine polyphosphate isolated from human myocardial 
tissue. 

 
 

 
Assignment of 

the mass 

 
isolated sub-

stance  
(Figure 1.A) 

 
synthetic 

Ap4A 

 
isolated sub-

stance 
(Figure 1.B) 

 
synthetic 

Ap5A 

 
isolated sub-

stance  
(Figure 1.C) 

 

 
synthetic 

Ap6A 

phosphate 97.2 97.3 97.2 97.4 97.0 97.4 

adenosine 136.1 135.9 136.1 136.5 136.2 136.3 

adenosine-2 

H2O 

232.3 232.2 232.4 232.1 232.6 234.0 

adenosine-H2O 250.2 250.6 248.0 -- 250.8 249.3 

AMP 348.2 349.1 348.0 348.2 348.5 349.2 

ADP-H2O 410.3 410.2 410.1 -- -- 410.2 

ADP 428.2 428.6 428.1 428.3 428.8 429.4 

ATP-H2O 491.2 492.1 489.9 490.1 490.4 490.3 

ATP 509.2 509.0 508.6 508.2 508.3 508.1 

AP4 588.1 589.1 586.4 587.8 588.9 588.4 

AP5   666.5 667.1 668.0 668.3 

AP6     746.9 748.2 

parent ion 837.1 837.2 917.0 916.7 997.8 997.4 

 
 

Furthermore, the interconnection of phosphate groups to the adenosines was analysed by en-

zymatic analysis using alkaline phosphatase, 3´- and 5´-nucleotide hydrolase. Alkaline phos-

phatase and 3’-nucleotidase had no effect on these molecules (data not shown). 5’-

nucleotidase yielded AMP and ATP (Figure 2.A) after incubation of the fraction labeled in 

Figure 1.A, AMP and Ap4 (Figure 2.B) after incubation of the fraction labeled in Figure 1.B, 

and AMP and Ap5 (Figure 2.C) after incubation of the fraction labeled in Figure 1.C.  
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Figure 2: Analytic anion-exchange chromatograms of the isolated diadenosine polyphosphates 

(labeled by arrows in Figure 1.A-C) after incubation with a 5’-nucleotidase. The 
analytic anion-exchange chromatography (column: UnoQ-1, 7×3.5 mm, BioRad, 
USA) was performed at a flow rate of 0.5 ml min-1 with 20 mM K2HPO4 (eluent A, 
pH 8.0) and 20 mM K2HPO4 in1 M NaCl (eluent B, pH 8.0) by a gradient of 0-2 
min 0% B, 2-100 min 0-40% B, and 100-105 min 40-100% B, 105-116 min 100%. 

 
The retention times and the cleavage patterns are in agreement with those of synthetic Ap4A, 

Ap5A and Ap6A. These results demonstrate that all adenosines in the purified molecules are 

interconnected via 5’-phosphodiester bonds of the riboses with the phosphates. In summary, 

by MALDI mass-spectrometry, UV-absorption analysis, PSD MALDI mass-spectrometry as 

well as by enzymatic analysis, the substances underlying the UV absorption peaks in the re-

versed-phase HPLC shown in Figure 1 were identified as Ap4A, Ap5A and Ap6A.  

 

To examine if Ap4A, Ap5A and Ap6A are stored in granules, human ventricular specific gran-

ules were isolated from myocardial tissue and the nucleotides purified to homogeneity. Frac-

tions from the reversed-phase HPLC were analyzed by MALDI mass-spectrometry. Fractions 
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with molecular masses of 837.8 Da, 917.3 Da and 996.9 Da were analyzed by PSD MALDI 

mass-spectrometry. The fragmentation patterns were identical to synthetic Ap4A, Ap5A and 

Ap6A. Based on the UV absorption at 254 nm and using Ap8A as internal standard as well as 

calibration curves of Ap4A, Ap5A and Ap6A, the amount of Ap4A, Ap5A and Ap6A in human 

myocardial specific granules were estimated at about 500 µmol L-1. 

 

B.5.5. Discussion 

Whereas in earlier studies only Ap2A and Ap3A had been isolated from human myocar-

dium17, the present study shows that also ApnA containing 4–6 phosphate moieties are found 

in human myocardial tissue.  

 

We exclusively examined tissue from hearts suffering from severe ischemia, although we 

used only macroscopically intact tissue. Considering the role of diadenosine polyphosphates 

as "alarmones" in other tissues or cells, an increased synthesis of these substances under 

pathologic conditions such as hypoxia cannot be excluded26. Despite these limitations due to 

the material we studied, the presence of dinucleoside polyphosphates in intact tissue may be 

less representative for the overall population. 

 

Moreover, Ap4A, Ap5A and Ap6A were identified in myocardial specific granules, which are 

known to release their contents into the extracellular space after stimulation e.g. by choliner-

gic agonists (e.g. 18,27). The concentrations of Ap4A, Ap5A and Ap6A (see Result paragraph) 

in specific granules are not very different from those of Ap2A and Ap3A found earlier17. Why 

have Ap4A, Ap5A and Ap6A not been identified in our previous study17? Most likely, meth-

odological reasons may be responsible. The purification procedure in this study has been 

considerably improved with respect to the recovery of ApnA compared to the previous study. 

In this study, but not in the previous one, we used displacement-chromatography before the 

analytic anion-exchange-chromatography and reversed-phase HPLC. This procedure may be 

more effective to separate ApnA from myocardial tissue, since displacement-chromatography 

has been shown to be a powerful method for separation of dinucleoside polyphosphates28. 

 

From the presence of at least 5 different ApnA in human myocardial tissue it can be inferred 

that ApnA may have specific functions in human heart. What is the significance of these find-

ings for cardiac physiology and pathology? To answer this question, the cardiovascular ef-

fects of ApnA have to be considered. Although presently our knowledge on the role of these 
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molecules is still quite incomplete, animal experiments have given some hints as to potential 

physiological functions of these molecules. In the coronary vasculature of isolated hearts, 

Ap4A, Ap5A and Ap6A induce species- and dose-dependent vasodilation, which is mediated 

by release of either nitric oxide (NO) or prostacyclin (PGI2). This vasodilation is partially 

prevented or converted to a vasoconstriction after inhibition of NO or PGI2 production22,30. 

As to electrophysiological effects on isolated hearts, Ap4A, Ap5A and Ap6A increase action 

potential duration and refractory period, both effects being mediated by release of NO and 

PGI2
30. In guinea-pig left atria Ap4A, Ap5A and Ap6A inhibited the positive inotropic re-

sponse elicited by electrical stimulation31,32. After beta-adrenergic stimulation Ap4A and 

Ap6A exert negative chronotropic and inotropic effects in animals and human ventricular 

preparations. In contrast, Ap4A alone can exert positive inotropic effects32,33. In physiologi-

cally relevant concentrations Ap4A, Ap5A and Ap6A may serve as endogenous modulators of 

ryanodine receptor-gated-Ca2+-release channels, as has been demonstrated in membranes 

prepared from rat cardiac muscle34. Furthermore Ap4A, Ap5A and Ap6A are potent inhibitors 

of myocardial KATP channels35-38. 

 

The concentration of Ap4A in coronary venous blood is increased during ischemia and reper-

fusion of the heart, whereas it cannot be detected with normal oxygen supply36. This increase 

of Ap4A during ischemia is probably due to the release of Ap4A stored in myocardial specific 

granules and activated platelets in blood39. Ap4A reduces cardiac infarct size and reperfusion 

injury in the ischemic canine heart. Furthermore, Ap4A mimics the cardioprotective effect of 

ischemic preconditioning in the rat heart and significantly improves the postischemic recov-

ery of cardiac function, reducing the leakage of serum creatine kinase40. Ap4A has cardiopro-

tective effects on hypothermic heart storage and cardioplegia41,42. 

 

Some of these effects of Ap4A appear to be mediated by activating protein kinase C and mi-

tochondrial KATP channels via P2Y mimicking in part the effects of ischemic precondition-

ing43. Moreover, Ap4A is an intracellular regulator ligand of the sarcolemmal KATP chan-

nel43,44. Therefore, the intracellular Ap4A may directly interact with the mitochondrial KATP 

channel or is released into the extracellular space to interact with adjacent cells. 

 

Ap5A was shown to bind to the nucleotide-binding domain of the myocardial KATP channel44 

thus decreasing channel opening probability. The ischemia-induced decreased Ap5A levels 

may thus contribute to open the KATP channel under ischemic conditions. The KATP channel is 
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known to be a sensor of metabolic stress, especially of cellular hypoxia: with decreasing ATP 

concentrations, the opening probability of this channel increases. This may be an important 

mechanism for cells undergoing hypoxia to maintain membrane potential despite decreased 

function of transmembrane ion pumps such as the energy-dependent Na+-K+-ATPase. 
 

The regulation of KATP channels appears to be only a small segment of the potential regula-

tory functions of myocardial ApnA. It may be assumed that not only Ap5A may have further 

effects on myocardial ion channels and purinoceptors, but also the other ApnA show regula-

tory effects differing according to the number of phosphate moieties. Taken together with the 

present findings it may be inferred that the ApnA represent a new class of messengers in hu-

man myocardial cells, exhibiting cellular protective functions in metabolic or ischemic stress 

and beyond that, other still unknown effects dependent on their binding to purinoceptors and 

ion channels.  
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B.5.7. Supplementary Methods 
 
Since not all methods were described in the publication, in this section a more extensive descrip-

tion of the methods is given. 
  
GENERAL INFORMATION 

After successful heart transplantation, the recipient's own human myocardial tissue was used for 

isolation of ApnA. Only macroscopically intact tissue from the left ventricle was used for isola-

tion of ApnA. The study was approved by the local ethical committee. 
 

 

PURIFICATION PROCEDURES 

Human myocardial tissue was immediately placed in ice-cold physiological saline and cut in 

small pieces. Tissue was frozen by liquid nitrogen, lyophilized and powdered. The tissue (10 g 

dry weight) was homogenized with 100 ml perchloric acid (final concentration 0.6 M). The ex-

tract was centrifuged at 30,000 g for 30 min at 4oC and the supernatant was neutralized with 

KOH to pH 8.5. Then it was centrifuged at 6,000 g for 10 min at 4oC, pH of the supernatant was 

titrated to 6.5 with HCl, and triethylammonium acetate (TEAA, 40 mM final concentration in 

water) was added. The nucleotides were concentrated from the supernatant by a preparative re-

versed-phase column (Lichroprep RP-18, 310×25 mm, Merck, Germany). The binding substances 

were eluted with 40% acetonitrile (ACN) in water at a flow rate of 1.0 ml/min. The 40% acetoni-

trile-eluate was collected, frozen at -80oC and lyophilized.  

 

Next, size-exclusion chromatography was performed according to Schlüter and Zidek1. The high 

resolution size exclusion gel Sephacryl S-100 (S-100 HR, 1000 x16 mm; Pharmacia BioTech, 

Sweden) was equilibrated with water. The dried sample from the preparative reversed-phase col-

umn resolved in 5 ml water was loaded onto the column. The eluent was pumped with a flow rate 

of 1 ml/min. The UV absorption of the eluate was detected at 254 nm. All of the following chro-

matographic steps were also monitored at 254 nm. 
 

The nucleotide-containing eluate of the size-exclusion chromatography was lyophilized, dissolved 

in 200 ml of 10 mM ammonium acetate (NH4Ac) and pumped through an anion-exchange column 

(Fractogel EMD DEAE-650, 300×25 mm, Merck, Germany), equilibrated with 10 mM NH4Ac 

(pH 7.4). The sample was eluted with 1.0 M NH4Ac (pH 7.4) at a flow rate of 3.0 ml/min. 

 

NH4Ac (final concentration 1.0 M; pH 9.5) was added to the eluate of the anion-exchange col-
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umn, and was passed through an affinity-column (150×20 mm). The affinity gel was prepared 

according to Barnes et al.2 by derivatizing a cation exchange resin (BioRex 70, Bio-Rad, Ger-

many) with phenylboronic acid. The gel was equilibrated with 1 M NH4Ac (pH 9.5). Binding 

substances were eluted with 1 mM HCl at a flow rate of 1 ml/min. The fractions were frozen 

(-80oC) and lyophilized. 

 

The nucleotide-containing fraction from the affinity chromatography was desalted by reversed-

phase high-performance-liquid-chromatography (Supersphere 100 RP-18 endcapped, 250×4 mm, 

Merck, Germany). The lyophilisate, dissolved in 5 ml 40 mM TEAA, was injected to the re-

versed-phase column. After a washing period of 10 min with 40 mM TEAA, the nucleotide-

containing fraction was eluted with 30% ACN in water at a flow rate of 0.5 ml min-1.  

 

The desalted and lyophilized eluate of the affinity chromatography was dissolved in 40 mM 

TEAA solution and was chromatographed by two connected reversed-phase columns (Super-

sphere 100 RP-18 endcapped, 300×8 mm, Merck, Germany) in the displacement mode3. These 

reversed-phase columns were equilibrated with 40 mM TEAA. The carrier (40 mM TEAA) was 

pumped through the system at a flow rate of 100 µl min-1 during injection of the sample. After the 

injection, n-butanol (100 mM in 40 mM TEAA) was used as displacer (flow rate 100 µl min-1). 

Each fraction (1 ml) was lyophilized and was further fractionated by anion-exchange chromatog-

raphy. 

 

The samples from the displacement chromatography dissolved in 10 mM K2HPO4, pH 8.0 (eluent 

A) were injected on an analytical anion-exchange column (TSK DEAE-5PW, 75×7.5 mm; Toso-

Haas, Germany), equilibrated with eluent A. Binding substances were eluted by 20 mM K2HPO4 

and 1.0 M NaCl in water (pH 8.0; eluent B), using the following gradient: 1-10 min 0-5% B, 10-

100 min 5-35% B, 100-105 min 35-40% B, and 105-110 min 40-100% B; flow rate: 0.5 ml/min; 

fraction size: 1 ml. 

 

Fractions of the anion-exchange chromatography were desalted by reversed-phase chromatogra-

phy (see above). The fractions, dissolved in 40 mM TEAA in water (eluent A), were injected on 

the reversed-phase column (Supersphere 100 RP-18 endcapped, 100 × 2,1 mm, 4 µm, Merck, 

Germany). After washing for 10 min by eluent A, the nucleotide-containing fraction was eluted by 

ACN (eluent B) with the following gradient: 100% ACN, 0-4 min 0-2% B, 4-50 min 2-7% B, 50-

56 min 7-60% B, 56-60 min 60-80% B, at a flow rate of 0.5 ml min-1. The eluate was frozen and 
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lyophilized. 

 

MATRIX ASSISTED LASER DESORPTION/IONIZATION (MALDI) MASS-SPECTRO-

METRY AND POST-SOURCE DECAY MALDI MASS-SPECTROMETRY 

 

A reflectron type time-of-flight (RETOF) mass spectrometer (ReflexTM III, Bruker, Germany) 

equipped with nitrogen laser (337 nm, pulse length 1 ns) was used for ion generation and mass 

analysis4. Using a RETOF set-up, structure information from post-source-decay (PSD) fragment 

ions of precursors produced by MALDI was obtained5. For MALDI mass-spectrometry and PSD 

MALDI mass-spectrometry, centrifuge-vacuum-dried samples from the reversed-phase HPLC 

were dissolved in 10 µl water. One µl of the 3-hydroxy-picolinic acid matrix solution (50 g L-1) in 

water was mixed with 0.5 µl of the sample on a flat metallic support. Desorption of ions to be 

analyzed was performed by laser shots of irradiances in the range of 106-107 W/cm2. The ions 

generated were accelerated with an energy of 20 keV for detection. 

 

UV-SPECTROSCOPY 

The substances underlying the fractions of reversed-phase HPLC were analyzed by UV-

spectroscopy with a micro-cuvette (UV/Vis-Spectrometer, Jasco V-530, Jasco, Germany). The 

UV-absorption was scanned from 190 nm to 400 nm with a scan speed of 400 nm min-1.  
 

ENZYMATIC CLEAVAGE EXPERIMENTS 

Centrifuge-vacuum dried substances underlying the fractions of the reversed-phase HPLC were 

dissolved in 10 µl water. One µl of this sample was mixed with 3 mU 5’-nucleotidase (EC 

3.1.15.1, from Crotalus durissus, Roche, Germany) and incubated for 10 min at 37oC; one µl of the 

sample was mixed with 1 mU 3’-nucleotidase (EC 3.1.16.1, from calf spleen, Roche, Germany) 

and incubated for 60 min at 37oC; another 1 µl of the sample was mixed with 1 mU alkaline phos-

phatase (EC 3.1.3.1 from calf intestinal mucosa, Roche, Germany) and incubated for 60 min at 

37oC. After removing the enzyme with a centrifuge filter (5 kDa cut-off), the samples were sepa-

rated with anion-exchange chromatography and analyzed by MALDI mass-spectrometry. For an-

ion-exchange chromatography, the enzymatic cleavage products were dissolved in 20 mM 

K2HPO4, pH 8.0 (eluent A) and were injected to an anion-exchange column (UnoQ-1, 7×3.5 mm, 

BioRad, USA) at a flow rate of 0.5 ml min-1. Binding substances were eluted by eluent B (20 mM 

K2HPO4 in 1 M NaCl, pH 8.0) with a gradient of 0-2 min 0% B, 2-100 min 0-40% B, and 100-105 

min 40-100% B, 105-116 min 100%.  
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IDENTIFICATION OF APNA FROM HUMAN CARDIAC SPECIFIC GRANULES 

Specific granules were isolated from human left ventricular tissue according to the method  of Luo 

et al.6. The specific granule pellet was suspended in 20 ml 50% ethanol with 10 mM K2HPO4, and 

29 µg Ap8A as internal standard was added. This mixture was sonicated three times for 20 sec-

onds. TEAA (final concentration: 40 mM) was added to the mixture, and the mixture was concen-

trated on a reversed-phase column (Supersphere100 RP-18 endcapped, 250 × 8 mm, Merck, Ger-

many). The retended substances were eluented from the reversed phase gel with 30% ACN.  

 

The eluent of reversed-phase chromatography was lyophilized and dissolved in 50 ml 1 M NH4Ac 

(pH 9.5). Then affinity chromatography was performed using the conditions as described above. 

The substances binding to an affinity column were eluted with 1 mM HCl and the resulting frac-

tions were frozen (-80oC) and desalted by reversed-phase chromatography (conditions as described 

above). The desalted and lyophilized eluate of the affinity chromatography was further purified by 

an analytic anion-exchange chromatography (column: TSK DEAE-5PW, 75×7.5 mm; TosoHaas, 

Germany) at a flow rate of 0.5 ml min-1 with 10 mM K2HPO4 (eluent A, pH 8.0) and 20 mM 

K2HPO4 and 1.0 M NaCl in water (eluent B, pH 8.0) using the following gradient: 1-10 min 0-5% 

B, 10-100 min 5-35% B, 100-105 min 35-40% B, and 105-110 min 40-100% B. 40 mM TEAA 

(final concentration) was added to the fractions of the anion-exchanger. 

 

The eluents of the anion-exchange chromatography were purified by reversed-phase chromatogra-

phy (Supersphere 100 RP-18 endcapped, 100 × 2,1 mm, 4 µm, Merck, Germany).  

 

The nucleotide-containing fractions were eluted by ACN (eluent B) at a flow rate of 0.5 ml min-1 

using the following gradient B: 0-4 min 0-2% B, 4-50 min 2-7% B, 50-56 min 7-60% B, 56-60 

min 60-80% (see above). The fractions were identified by MALDI mass-spectrometry and PSD-

MALDI mass-spectrometry. The amount of Ap4A, Ap5A and Ap6A was estimated by using the 

UV absorption at 254 nm and corresponding calibration curves of Ap4A, Ap5A and Ap6A. 
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B.6.  Detection of angiotensin II in supernatants of stimulated mononu-

clear leukocytes by MALDI-TOF-TOF-mass spectrometric analysis 
 
Vera Jankowski, Raymond Vanholder, Markus van der Giet, Anja Krakow, Lars Henning, Markus Tölle, Gün-
ther Giebing, Sevil Karadogan, Hartmut Schlüter, Niklas Gustavsson, Johan Gobom, Hans Lehrach, Walter 
Zidek, Joachim Jankowski  
  
B.6.1. Abstract 

Angiotensin II (Ang II), acting on the AT1 and AT2 receptors, is the major vasoactive com-

ponent of the renin-angiotensin system (RAS). Several components of the RAS have been 

demonstrated in different tissues. Whereas the roles of tissue and renal RAS have been stud-

ied in detail, much less is known on whether the corpuscular elements of circulating blood 

contribute to Ang II production. In the present study, we examined whether besides vascula-

ture also blood cells contribute to the circulating Ang II levels. 

 

Mononuclear leukocytes were obtained from healthy subjects and were incubated for 60 min 

at room temperature. The resulting supernatant was chromatographed using cation-exchange 

and reversed-phase chromatographic methods. The vasoconstrictive effects of aliquots of the 

resulting fractions were tested by using an isolated perfused rat kidney. Each fraction with a 

vasoconstrictive effect was analysed by MALDI-TOF/TOF mass-spectrometry using the 

LIFT-technique. 

 

In one fraction with a strong vasoconstrictive effect, Ang II was identified. Mononuclear lym-

phocytes produced Ang II in amounts sufficient to stimulate AT1 receptors. Moreover, in 

mononuclear CD8+ (T-lymphocytes) and CD19+ (B-lymphocytes) leukocytes, renin as well 

as angiotensin converting enzyme (ACE) mRNA expression was detectable by RT-PCR. 

 

These findings demonstrate that human circulating CD8+ cells (T-lymphocytes) and CD19+ 

cells (B-lymphocytes) are a source of Ang II. Ang II secretion by these cells may play a 

physiologically relevant role in humoral vascular regulation.  

 

In conclusion, the isolation of Ang II in supernatants of mononuclear leukocytes adds a fur-

ther physiologic source of Ang II to the current view of angiotensin metabolism. The quanti-

tative role of lymphocyte-derived Ang II secretion compared to the other sources of Ang II 

should be defined further, but the release found under the present conditions is at least suffi-
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cient to elicit vasoconstrictive effects. 

 

B.6.2. Introduction 

Whereas Ang II was first regarded merely as a potent vasoconstrictor, at present its functions 

as a growth factor and as a cytokine are more and more recognized. The classical or renal 

RAS is known since long to mediate systemic Ang II production1,2, but Ang II is also pro-

duced locally in many tissues3-5. This local Ang II production depending on tissue RAS has 

recently attracted growing interest6-8. 

 

In the classical RAS, circulating renal-derived renin produces angiotensin I (Ang I) by cleav-

ing angiotensinogen. In the lungs, Ang I is converted to Ang II by the angiotensin converting 

enzyme (ACE)9-11. ACE is found in plasma as well as in most organs, including heart, brain, 

blood vessels, adrenals, kidney and liver. Tissue ACE may play a role in the regulation of 

tissue perfusion12. Angiotensinogen and ACE, but not renin, have been found to be produced 

in all layers of the vessel wall13-15. 

 

Therefore, local generation of Ang II is probably dependent on circulating renin. Of potential 

relevance to the pathophysiological role of RAS is the recent observation indicating that adi-

pose tissue is a significant source of circulating angiotensinogen and hence possibly contrib-

utes to the regulation of blood pressure and sodium homeostasis16. 

 

Whereas the roles of tissue and renal RAS have been studied in detail, much less is known on 

whether the corpuscular elements of circulating blood contribute to Ang II production. There-

fore, in the present study we examined whether besides vasculature also cellular components 

of the circulating blood contribute to the circulating Ang II levels. The experiments showed 

that indeed a fraction of circulating mononuclear leukocytes is a source of Ang II in humans, 

especially if they are activated. These findings are the more relevant since leukocyte activa-

tion and adhesion has been linked to vascular damage17. 

 

B.6.3. Materials and methods  

A: CHEMICALS 

HPLC water (gradient grade) and acetonitrile were purchased from Merck (Darmstadt, Ger-

many); all other substances were from Aldrich-Sigma (Taufkirchen, Germany). 

B: MONONUCLEAR LEUKOCYTE ISOLATION 
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PREPARATION OF MONONUCLEAR LEUKOCYTES 

Mononuclear leukocytes were obtained from nine healthy subjects who took no medication. 

The study was approved by the local ethical committee and informed consent was obtained 

from the blood donors. Their mean age was 25 ± 2 years and mean blood pressure was 119 ± 

4 mm Hg systolic and 81 ± 2 mm Hg diastolic. Mononuclear leukocytes were isolated from 

blood according to established techniques18. Briefly, 400 mL heparinized blood was drawn by 

venipuncture from the antecubital vein and centrifuged at 240 g for 15 min. After removing 

the supernatant, mononuclear leukocytes were isolated by layering 5 mL diluted blood (1:1 % 

vol/vol with isotonic NaCl) on 3 mL Histopaque (Sigma-Aldrich, Germany; 5 / 6 % wt / vol 

Ficoll; density 1.077 g mL-1) and centrifuged at 240 g for 20 min. The interphase of mononu-

clear leukocytes was carefully aspirated and washed three times in isotonic NaCl by centrifu-

gation at 400 g for 5 min. The isotonic NaCl solution obtained after the third washing of 

mononuclear leukocytes was kept for analysing the efficiency of the washing procedure. The 

pellet was resuspended in 1 mL Hanks’ balanced salt solution containing (in mmol L-1): NaCl, 

136; KCl, 5.4; KH2PO4, 0.44; Na2HPO4, 0.34; CaCl2, 1; D-glucose, 5.6; N-2-

hydroxyethylpiperazine-N’-2-ethanesulfonic acid, 10; pH of the solution was 7.4.  

 

MEASUREMENT OF CELL VIABILITY OF THE ISOLATED MONONUCLEAR 

LEUKOCYTES 

The cell viability of the isolated mononuclear leukocytes was measured by trypan blue exclu-

sion test19, by mixing 200 µL of cell suspension with an equal amount of 0.3% Trypan blue 

solution (Aldrich-Sigma; Germany) in phosphate buffered saline buffer (PBS). After 5 min 

incubation at room temperature, the number of cells excluding Trypan blue (unstained) was 

counted using a Burker Turk hemocytometer (Emergo, The Netherlands). 

 

INCUBATION OF MONONUCLEAR LEUKOCYTES  

Mononuclear leukocytes were then incubated without or with 10 mg L-1 lipopolysaccharide 

(LPS Serotype 0111:B4 from E. coli; Sigma-Aldrich, Germany) or 200 nmol L-1 formyl-Met-

Leu-phenylalanine (fMLP)20. After incubation for 60 minutes, mononuclear leukocytes were 

centrifuged and the supernatant analysed. 
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ISOLATION OF CD8+ (T-LYMPHOCYTES) AND CD19+ (B-LYMPHOCYTES) 

For identification of renin, ACE and angiotensinogen and for monitoring of Ang II production 

in CD8+ and CD19+ lymphocytes, these cells were isolated using a cell isolation kit provided 

by Miltenyi Biotec (Bergisch-Gladbach, Germany) according to the manufacturers’ protocol. 
 

The isolated lymphocytes were divided into two parts: one part was magnetically labelled 

with CD8 MicroBeadsTM (Miltenyi Biotec, Bergisch-Gladbach, Germany), the other part was 

magnetically labelled with CD19 MicroBeadsTM (Miltenyi Biotec, Bergisch-Gladbach, Ger-

many). For this, 107 total cells were added to 20 µL MircoBeads suspension according to the 

manufacturers protocol. 
 

Next, the magnetically labelled CD8 or CD19 cell suspensions were concentrated using a 

large-scale MACSTM separation column (LS+ column; Miltenyi Biotec, Bergisch-Gladbach, 

Germany), which was placed in the magnetic field of a magnetic cell separator (Midi-

MACSTM, Miltenyi Biotec, Bergisch-Gladbach, Germany). 
 

After removing cells not-binding to the column with an aqueous buffer (PBS with 2 mmol L-1 

EDTA and 0.5 % bovine serum albumin), the column was removed from the separator. After 

applying 5 mL of buffer (PBS with 2 mmol L-1 EDTA and 0.5 % bovine serum albumin) to 

the reservoir of the column, firmly positive cells flush out using the plunger supplied with the 

column. 
 

Specificity of the positive cell separations was tested by direct immunofluorescence staining 

of the isolated cells using fluorochrome-conjugated monoclonal antibodies against CD8 and 

CD19 (Miltenyi Biotec, Bergisch-Gladbach, Germany) on a FACScan flow cytometer (Bec-

ton Dickinson, NJ, USA).  
 
The results are expressed as fluorescence histograms plotted on a log scale. Compensation 

and photomultiplier tube (PMT) voltages were standardized before each run using Cali-

briteTM beads (Becton Dickinson, NJ, USA). In the final solutions 91 % of the cells were 

CD8 or CD19 positive. 

 
C: ANALYTICAL TECHNIQUES 

The supernatants of mononuclear leukocytes were fractionated by chromatographic methods 

and the vasoconstrictive substances were analysed by mass-spectrometry. The description of 

the chromatographic and the mass-spectrometric procedures is available online on 
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www.hyper.ahajournals.org. 

 

D: MEASUREMENT OF PERFUSION PRESSURE IN THE ISOLATED PERFUSED RAT 

KIDNEY 

The effects of aliquots (1/10) of supernatant of mononuclear leukocytes, of aliquots (1/10) of 

lyophilised fractions of the reversed-phase chromatography and of synthetic Ang II on vascu-

lar tone were evaluated in an isolated rat kidney perfused with a constant flow of 8 mL min-1 

while perfusion pressure was continuously monitored. Details of the preparation are given 

elsewhere21 as well as online on www.hyper.ahajournals.org.  

 

Vasoconstrictor responses of the isolated perfused rat kidney were assessed at basal tone after 

an equilibration period of 30 min. The samples were dissolved in 200 µL of the perfusion 

solution described above. To characterize the receptor mediating the vasoconstrictive effect, 

aliquots were also tested after the Ang II receptor antagonist saralasin (50 µmol L-1) was 

added to the perfusate, 30 min before challenge with the fractions to be tested. 

 

E: MOLECULAR METHODOLOGY  

PREPARATION OF RNA AND RT-PCR 

The preparation of RNA and the RT-PCR conditions are available online on 

www.hyper.ahajournals.org. 

 

DETECTION OF RENIN AND ACE ACTIVITY OF MONONUCLEAR LEUKOCYTES 

BY MATRIX ASSISTED LASER DESORPTION/ IONISATION MASS SPECTROMETRY 

To detect the renin and ACE activity of mononuclear leukocytes, a previously described 

method was used22. The description of the method is available online on 

www.hyper.ahajournals.org.  Briefly, the proteins potentially present in the lysate of mono-

nuclear leukocytes were immobilised to bromine-cyan-(CNBr) activated Sepharose 6 MB 

beads (Amersham-Pharmacia Biotech, Freiburg, Germany). 25 µL beads containing the im-

mobilized proteins of the mononuclear leukocyte cell suspension filtrate were transferred into 

a 400 µL reaction vial. 10 µL of a suspension containing either Ang I 8 x 10-5 mol L-1 or 

renin-substrate (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser) 5 x 10-4 mol L-

1 was added. Moreover, to detect whether angiotensinogen was present in the cytosol of 

mononuclear leukocytes, 25 µL beads containing the immobilized proteins of the mononu-

clear leukocyte cell suspension filtrate were incubated with the lysates of mononuclear leuko-
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cytes, prepared as described in the online supplement. 

 

Each incubation experiment was performed in the absence and in the presence of an ACE-

inhibitor (Bachem Angiotensin-I Converting Enzyme, Cyanoac-Phe-Phe-OH; 10-3 mol L-1) 

and a specific renin inhibitor (D-His-Pro-Phe-His-Leu-Psi-[CH2NH]-Leu-Val-Tyr), which 

was used at a concentration achieving maximum renin inhibition (10-5 mol L-1)23. This inhibi-

tor was chosen because it shows a high specificity for renin23. From the reaction mixture 0.5 

µL aliquots were removed after 5 min, 2, 4, 12 and 48 hours for analysis of the reaction prod-

ucts. The products of the enzymatic activity were analysed by matrix-assisted laser desorp-

tion/ionisation mass-analysis using the conditions described above.  

 

VERIFICATION OF RENIN, ACE, ANGIOTENSINOGEN, ANG I AND ANG II 

CONTENT OF THE ISOTONIC NaCl SOLUTION USED AS WASHING STEP FOR 

ISOLATION OF MONONUCLEAR LEUKOCYTES 

To verify the efficiency of the washing procedure of the mononuclear leukocytes in removing 

plasma renin, ACE and angiotensin, the proteins potentially present in the isotonic NaCl solu-

tion of the third washing step were immobilised to activated CNBr-Sepharose 6 MB beads 

(Amersham-Pharmacia Biotech, Freiburg, Germany) using the method as described in the 

supplementary methods (available online on www.hyper.ahajournals.org). Next, these CNBr-

Sepharose 6 MB beads were incubated with renin substrate (Asp-Arg-Val-Tyr-Ile-His-Pro-

Phe-His-Leu-Leu-Val-Tyr-Ser) or Ang I in the absence or presence of ACE-inhibitor and a 

renin inhibitor (D-His-Pro-Phe-His-Leu-Psi-[CH2NH]-Leu-Val-Tyr) as described above. 

Moreover the amount of Ang I and Ang II in the remaining isotonic NaCl solution of the third 

washing step was quantified by the chromatographic assays described above. 

 

STATISTICS 

All data are presented as mean ± S.E.M.. Where error bars do not appear on figures, errors are 

within the symbol size. Statistical analyses were performed with the Mann-Whitney test or 

with the Kruskal-Wallis test for multiple comparisons. 

 

 

 

B.6.4. Results  

After isolation of human mononuclear leukocytes from human blood by centrifugation, the 
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cell viability measured by trypan blue exclusion test was 98.1 ± 0.4 % (N=4), after separation 

by the MACSTM separation column the cell viability was 96.2 ± 0.2 % for CD8 cells and 97.4 

± 0.3 % for CD19 cells (each N=3). After incubation at 25°C for 60 min with or without 

stimuli, the supernatant was concentrated and fractionated by cation-exchange chromatogra-

phy. A characteristic cation-exchange chromatogram is illustrated in Figure 1.A. Each frac-

tion of each gradient step of the cation-exchange chromatography was then further chroma-

tographed by reversed-phase chromatography. The reversed-phase chromatography on the 

one hand allows to desalt the eluate of the cation exchanger and on the other hand to further 

fractionate the eluate.  Each fraction obtained from each reversed-phase chromatography were 

tested for vasoactivity in the isolated perfused rat kidney. The arrow in Figure 1.A indicates 

the cation-exchange fraction showing a strong vasoconstrictive effect after desalting and frac-

tionation by reversed-phase chromatography.  The corresponding reversed-phase chroma-

togram of this fraction is shown in Figure 1.B. The vasoconstrictive fraction as detected using 

the isolated perfused kidney is indicated by the arrows. 
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Figure 1: (A) Cation-exchange chromatography of the supernatant of mononuclear leuko-

cytes after 60 min incubation. The vasoactive fraction is indicated by the ar-
row, the dotted line showing the extent of the fraction.  

(B)  Reversed-phase chromatography of the selected fraction of the cation-
exchange chromatography. The fraction with a vasoconstrictive effect is indi-
cated by the arrow, the dotted line showing the extent of the fraction. 

 
A vasoconstrictive substance contained in the vasoactive fraction labelled in Figure 1.B was 

identified by MALDI-TOF-TOF mass spectrometry. In this fraction, several peptides with 

respective molecular weights of m/z of 668.4, 1001.3,1046.5 and 1329.4 were detected (Fig-

ure 2). The mass-signal of the peptide with a molecular weight of m/z 1046.5 was the most 
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prominent one and therefore this peptide was further analysed. This peptide was fragmented 

to obtain sequence information that could be used for its identification by searching in the 

Swissprot database. Human Angiotensin II was the highest-ranking match for the peptide at 

m/z 1046.5, with complete amino acid sequence coverage. This result was confirmed by com-

parison to a fragment ion spectrum of purified human Ang II (Bachem, Weil am Rhein, Ger-

many).  
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Figure 2: (A)  Identification of the substance with the vasoconstrictive effect labelled in Fig-
ure 1.B by the arrow. MALDI-TOF mass spectra were obtained from the vaso-
constrictive fraction of the RP-HPLC separation.  

(B)  Fragment ion mass spectrum of the peptide at m/z 1046.5. In the upper part of 
the panel, the amino acid sequences for the matched a, b, and y-ion series are 
indicated. In the low mass region of the spectrum, the immonium ions for 
proline (P), histidine (H), isoleucine (I) and tyrosine (Y) are indicated. Human 
Ang II was the highest-ranking match for this spectrum. 

 

Figure 3.A shows that indeed both Ang II and the vasoactive fraction obtained from lympho-

cytes show very similar profiles of vascular effects. In five experiments, the effect of the 

vasoconstrictive fraction amounted to 74.1 ± 8.4 mmHg (Figure 3.B). In the presence of 

saralasin the vasoconstrictive effect decreased by 59.8 ± 1.4 %. A comparison to the concen-

tration-response curve of Ang II (Figure 3.C) shows that if the observed hemodynamic 

changes are attributable of Ang II, indeed physiologically relevant amounts of Ang II can be 

assumed to be present in this fraction. 
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Figure 3:  Effect of the supernatant of mononuclear leukocytes stimulated by 10 mg L-1 LPS 
on the perfusion pressure of the isolated perfused rat kidney.  

(A)  Original curve of the increase of the perfusion pressure of the isolated perfused rat 
kidney caused by synthetic Ang II (10-6 mol L-1) and an aliquot (100 µL) of the 
supernatant of mononuclear leukocytes.  

(B)  Effect on the perfusion pressure (N=5).  
(C)  Dose-response curve of synthetic Ang II on the perfusion pressure of the isolated 

perfused rat kidney. 
 

From these findings the question arose, which fraction of the mononuclear cells would be 

responsible for the production of Ang II. Therefore, the different fractions of mononuclear 

leukocytes were separated and were tested for expression of angiotensinogen, renin and ACE. 

As shown in Figure 4, CD8+ (Figure 4.A) and CD19+ (Figure 4.B) expressed angiotensino-

gen-cDNA but also renin- and ACE-cDNA, thus being capable of producing Ang II without 

the need of being supplied with any of its precursors. Furthermore, in CD8+ and CD19+ lym-

phocytes Ang II production was monitored separately. In both lymphocyte subsets Ang II 

production was detectable by mass spectrometry (Figure 4.C, D). The identity of Ang II was 

confirmed by MS/MS TOF-TOF analysis. 
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Figure 4:  Representative gel electrophoresis out of four experiments of products from RT-

PCR using primer against ACE, renin, angiotensinogen and ß-actin cDNA. Lane 
1: 1000 and 500 bp-marker. Lane 2: renin; Lane 3: ACE, Lane 4: Angiotensino-
gen; Lane 5: ß-actin from CD8+ cells (A) and CD19+ cells (B). TOF-TOF mass 
spectra of the supernatants of CD8+ cells (C) and CD19+ cells (D). The molecular 
mass labelled in the spectra is conform to that of Ang II. The identity of Ang II 
was confirmed by MS/MS TOF-TOF analysis. 

 
In order to confirm the detection of lymphocytic angiotensinogen, renin and ACE expression 

also on a functional level, mass spectrometric Ang I and Ang II measurements were done un-

der conditions chosen to prove the existence of these proteins. Immobilized lymphocytic pro-

teins were incubated with lymphocytic cell lysate for 8 h. Under these conditions Ang II pro-

duction was observed, but was completely abolished by adding the renin inhibitor (data not 

shown). Ang I and Ang II production was also demonstrable when instead of lymphocytic cell 

lysate the synthetic renin substrate, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-

Ser was added (Figure 5.A). Ang II production was abolished in the presence of a renin in-

hibitor (Figure 5.A). Moreover, Ang II production was detectable after incubation with Ang I 

(Figure 5.B). From these findings (1) the presence of renin in mononuclear leukocytes and (2) 

the presence of the substrate of renin, angiotensinogen, can be concluded. After adding an 

ACE inhibitor to the mixture (Figure 5.B), Ang II production was blocked completely, addi-

tionally indicating the presence of ACE in the immobilized lymphocyte extract. Moreover, to 

exclude that Ang I might have been produced from the renin substrate by some other enzyme 

than renin, since the synthetic renin substrate may be cleaved unspecifically by several pepti-

dases, purified angiotensinogen was added instead of the renin substrate. The experiments 

revealed that also after addition of angiotensinogen both Ang I and Ang II were produced 

(Figure 5.C). Again, the Ang II production was abolished by the renin inhibitor (Figure 5.C). 

After addition of renin substrate, Ang II concentrations in the supernatants exceeded those of 
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Ang I, whereas after addition of angiotensinogen Ang I was generated in higher concentra-

tions than Ang II. These different patterns may be explained assuming that angiotensinogen 

has a higher affinity to renin than to renin substrate, so that Ang I is generated faster from 

renin in the presence of angiotensinogen than in the presence of renin substrate. 
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Figure 5: Detection of renin and ACE activity in a protein extract of mononuclear leuko-

cytes by MALDI-MS.  
(A)  Incubation-time-dependent generation by the protein extract of mononuclear leu-

kocytes in the presence of renin substrate of the reaction products Ang I (∇) in the 
absence of a renin inhibitor, and of Ang II, either in the absence ( ) or in the 
presence ( ) of a renin inhibitor.  

(B)  Incubation-time-dependent generation of the reaction product Ang II after the in-
cubation of the protein extract of mononuclear leukocytes with Ang I in the ab-
sence ( ) and in the presence ( ) of an ACE inhibitor.  

(C)  Incubation-time-dependent generation of the reaction products Ang I (∇)in the 
absence of a renin inhibitor, and Ang II after the incubation of the protein extract 
of mononuclear leukocytes in the absence ( ) and in the presence ( ) of a renin 
inhibitor with purified angiotensinogen. Abscissa: Incubation time. Ordinate: ra-
tios of the relative MALDI spectra signal intensities of the reaction product 
Ang II (N=5; * indicates significance (calculated by Mann-Whitney-test) of rela-
tive peptide intensity in the absence or presence of the inhibitor used: p < 0.05). 

Next, it had to be excluded that the detected renin and ACE activity was caused by contami-

nations from plasma renin and ACE. Therefore, the proteins of the isotonic NaCl solution of 
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the third washing step of the isolation of mononuclear leukocytes were immobilised and incu-

bated with renin substrate and/or Ang I. After an incubation time of 8 h with renin substrate 

no Ang II production was detected by the MALDI mass spectrometry assay (data not shown). 

Next, the question arose whether mononuclear leukocytes do not only produce Ang II, but 

also secrete it into the circulation. The amount of Ang II in the supernatant was quantified 

(relative to internal standard). After a 120 min-incubation of mononuclear cells without 

stimulation, Ang II concentration in the supernatant was 0.17 ± 0.051 (rel. Ang II intensity 

(arbitrary units)). The addition of both fMLP and LPS lead to a significant increase of Ang II 

concentration in the supernatant (fMLP vs. LPS: 0.37 ± 0.06 vs. 0.36 ± 0.07 (rel. Ang II in-

tensity (arbitrary units)). 

 

This Ang-II amount was produced by a cell suspension which contained 5.08 ± 0.98 x 109 

mononuclear lymphocytes L-1. From the quantitative relationship between Ang II concentra-

tions and the corresponding MS signals as well as the number of cells releasing this Ang II 

amounts, it was estimated that after stimulation 9.9 ± 6.6 fmol Ang II/106 lymphocytes was 

secreted per minute. For unstimulated cells the same algorithm leads to an Ang II production 

rate of 4.7 ± 1.7 fmol Ang II/106 lymphocytes/min. Therefore, also unstimulated lymphocytes 

should contribute amounts of Ang II in the same order of magnitude as stimulated cells. In 

order to obtain a valid comparison between lymphocytic Ang II secretion rates and human 

Ang II plasma levels, the latter were also determined by mass spectrometry. In six healthy 

subjects plasma Ang II concentrations of 180,000 ± 80,000 fmol L-1 were found. Therefore, 

mononuclear lymphocytes (about 7 x 109 L-1) contribute to the generation of a physiologically 

relevant amount of Ang-II in human plasma. 

 

B.6.5. Discussion 

The present findings demonstrate that human circulating CD8+ (T lymphocytes) and CD19+ 

(B lymphocytes) mononuclear leukocytes are a source of Ang II, and that this secretion is 

sufficient to stimulate AT receptors. The mechanism, whereby LPS stimulates Ang II release 

has been studied in tissues like liver, fat, adrenal glands and aorta24,25. These studies demon-

strated that LPS stimulates angiotensinogen mRNA expression and enhances angiotensinogen 

plasma concentrations. According to the present estimates, the amount of lymphocytes con-

tained in 1 mL blood (about 5 x 106 / ml) can produce about 50 fmol Ang II per min after 

stimulation and 20 fmol Ang II per min without stimulation, thus increasing the concentration 

by 50 pmol L-1 per min after stimulation or 20 pmol L-1 per min without stimulation. In con-
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sideration of this secretion rate and given an EC 50 in the nanomolar range26,27, lymphocytic 

Ang II production during approximately 30 min would be sufficient to reach EC50.  
 

Obviously, from the rate of synthesis estimated in this study a steady state plasma concentra-

tion, which is the net effect of synthesis and degradation, cannot be calculated without reli-

able data on degradation kinetics. Moreover, the degree of stimulation may be different be-

tween in vivo and in vitro conditions. Therefore the conclusions which can be drawn from 

lymphocytic Ang II synthesis in vitro should be restricted to the point that the order of magni-

tude of lymphocytic Ang II production is sufficient to contribute to plasma Ang II. 

 

Moreover, by a functional mass spectrometric assay it was demonstrated that angiotensino-

gen, renin and ACE are not only expressed in human lymphocytes, but are also functionally 

relevant for lymphocytic Ang II production. Since after blocking each of these components 

lymphocytic Ang II production was totally neutralized, other pathways of Ang II synthesis are 

not necessarily involved in these mononuclear leukocytes. From the present findings it ap-

pears unlikely that mononuclear leukocytes merely take up Ang II by receptor internalization. 

The latter mechanism would lead to a continuous decrease of extracellular Ang II concentra-

tion with time, whereas in our experiments extracellular Ang II continuously increased. From 

these findings it is apparent that mononuclear lymphocytes produce and secrete Ang II, but it 

is not clear whether these cells may also store Ang II. In this study, a specific site of Ang II 

storage in these cells was not detected.  The mass-spectra of this study indicate that the chro-

matographic fractions from the supernatants of the mononuclear leukocytes not only contain 

Ang II but also further, yet unknown peptides. 

 

There are several reports pointing out the possibility that in experimental animals and humans 

Ang II might be produced by immune cells, since the expression of several components of the 

renin-angiotensin system, such as ACE28 and angiotensinogen29 has been demonstrated. A 

direct proof of secretion of the end-product, Ang II, had up till now not been given, how-

ever30. 

 

Currently, several tissues have been shown to produce Ang II, including vascular endothelial 

cells31, macrophages32 and adipocytes33. Moreover, angiotensin peptides are released by rat 

alveolar macrophages34. Local Ang II secretion by these cells and tissues was recognized as 

an important part of humoral vascular regulation. There have been also reports localizing Ang 
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II in the cytoplasm of several types of leukocytes by immunocytochemistry. Furthermore, it 

has been shown that after adding angiotensinogen or Ang I to immune cells Ang II production 

is increased35, indicating that all enzymes required for Ang II production are present in these 

cells. However, until now it was not clear whether Ang II production in these cells was 

mainly mediated by renin and ACE, like in the classical pathway, or by other renin- or ACE-

independent enzymes. Our findings underscore for the first time effective secretion of Ang II 

by lymphocytes. 

 

What may be the specific role of lymphocyte-derived Ang II? It is tempting to speculate that 

lymphocyte-derived Ang II has not only a direct vasoconstrictive effect but that it might play 

also a role in modulating immunologic processes in several ways. Using Agtr1a (-/-) mice, 

which lack AT1A receptors for Ang II, it was shown that Ang II triggers the proliferation of 

splenic lymphocytes36. These actions of the RAS to promote lymphocyte activation may con-

tribute to inflammatory processes. Moreover, experimental mesangial proliferative glomeru-

lonephritis developing in FcR-deficient mice surviving from lethal initial damage was pre-

vented by an Ang II AT1 blocker37. It was shown that glomerular injury in FcR-deficient 

mice was associated with AT1 receptor-dependent CD4+ T cell infiltration mediated by Ang 

II-activated renal mesangial cells showing chemotactic activity for T cells38. Furthermore, a 

role of the RAS has been demonstrated in IL-12 secretion by macrophages39, in hematopoietic 

processes in multiple cellular lineages including hematopoietic progenitor cells40,41 and in the 

regulation of TGFb1 secretion by CD4+ cells42. It is well known that Ang II is active as a 

cytokine stimulating interleukin secretion. In this context, the Ang II production by lympho-

cytes may be regarded as part of an autocrine loop regulating lymphocytic immune response.  

 

A yet unsolved issue regards the appropriate stimulus of lymphocytic Ang II secretion. 

Whereas the stimuli of renin secretion, which is the rate-limiting step of Ang II production 

from circulating angiotensinogen, are well known, the regulation of lymphocytic Ang II pro-

duction has not been examined yet. Lymphocytes are known to express β2 adrenergic recep-

tors, which in the iuxtaglomerular apparatus are stimulators of renin secretion. It is difficult to 

find further analogies between lymphocytic and renal renin secretion, however. Further stud-

ies are clearly needed to elucidate the physiologic regulation of lymphocytic Ang II secretion. 

In summary, circulating human CD8+ (T) and CD19+ (B) lymphocytes were shown to pro-

duce and to secrete Ang II. The findings thus add a further physiologic source of Ang II to the 

current view of angiotensin metabolism. The physiologic role of lymphocyte-derived Ang II 
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secretion remains open. Nevertheless, the amounts of Ang II secreted by lymphocytes appear 

to be sufficient to stimulate AT receptors and to affect vascular tone. 
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B.6.7. Supplementary Methods 

  

Since not all methods were described in the publication, in this section a more extensive de-

scription of the methods is given. 

 

ANALYTICAL TECHNIQUES 

CATION EXCHANGE CHROMATOGRAPHY OF THE SUPERNATANT 

Immediately after incubation the supernatant was chromatographed using a cation exchanger 

(HiTrapTM SP 1mL; Amersham, Sweden); eluent A: 20 mmol L-1 KH2PO4, pH 3.5; eluent B: 

20 mmol L-1 KH2PO4 and 2 mol L-1 NaCl; pH 3.5; stepwise gradient: 0-5 min: 0 % B; 5-

10 min: 5 % B; 10-15 min: 12 % B; 15-20 min: 25 % B; 20-25 min: 37 % B; 25-30 min: 50 % 

B; 30-35 min: 75 % B. Fractions were collected according to UV absorbance at 280 nm (peak 

fractionation). 

 

ANALYTICAL REVERSED PHASE CHROMATOGRAPHY 

To the vasoactive fraction of the cation exchange chromatography 1 mol L-1 triethylammo-

nium acetate (TEAA) was added to a final concentration of 40 mmol L-1. The mixture was 

loaded on an analytical reversed phase chromatography column (Poros R2/H; 100 x 2.1 mm 

I.D., Applied Biosystems, USA; equilibration buffer: 40 mmol L-1 TEAA in water; flow rate: 

500 µL min-1). The retained substances were eluted using 80 Vol-% acetonitrile in water and 

the following stepwise gradient: 0-10 min: 0 % B; 10-15 min: 25 % B; 15-20 min: 50 % B; 

20-25 min: 75 % B; 25-35 min: 100 % B; flow: 500 µL min-1. Fractions were collected ac-

cording to UV absorbance at 280 nm (peak fractionation), lyophilised and stored at –80°C. 

 

MATRIX-ASSISTED LASER DESORPTION/IONISATION MASS-ANALYSIS 

The lyophilised fractions of the reversed-phase chromatography were analyzed by matrix-

assisted laser desorption/ionisation mass spectrometry (MALDI-MS) and MALDI post-

source decay (PSD) fragment ion analysis. The lyophilised fractions were resuspended in 10 

µL 0.1% TFA. 1 µL of each fraction was prepared on a prestructured MALDI sample support 

(MTP AnchorChipTM 400/384, Bruker Daltonics, Germany) using the α-4-hydroxycinnamic 

acid affinity sample preparation method1. All mass spectrometric measurements were per-

formed on a Bruker Ultraflex TOF/TOF instrument (Bruker-Daltonics, Germany). The in-

strument was equipped with a nitrogen laser (Laser Science, USA), emitting at 337 nm. On 
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average, the presented spectra are the sums of 200 single-shot spectra for MS mode, and 600 

for MS/MS mode. Mass spectra of positively charged ions were analysed in the reflector 

mode using delayed ion extraction. Fragment ion spectra were recorded using the LIFT op-

tion of the instrument. The calibration constants were determined using standard peptides 

prepared on positions adjacent to the sample, resulting in an error of <100 ppm for the re-

corded mass spectra. Protein identification using the obtained fragment ion mass data was 

performed using the software package Mascot (Matrix Science, UK). The adrenocorticotropic 

hormone (ACTH) fragment 18-39 (Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Gly-Ala-Glu-Asp-

Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe) or saralasin (Sar-Arg-Val-Tyr-Val-His-Pro-Ala) 

(10 µg/sample) was added to the sample as internal standard in the case of kinetic measure-

ments by using MALDI mass spectrometry. Hereby local differences in the peptide concen-

tration on the MALDI spot were neutralized. 

 

MEASUREMENT OF PERFUSION PRESSURE IN THE ISOLATED PERFUSED RAT 

KIDNEY 

The kidney was excised, immediately mounted into the perfusion system and perfused by a 

peristaltic pump in a single-pass system with a solution containing 115 mmol L-1 NaCl, 4.6 

mmol L-1 KCl, 1 mmol L-1 CaCl2, 1.2 mmol L-1 MgSO4, 1.2 mmol L-1 NaH2PO4, 22 mmol L-

1 NaHCO3, 49 mmol L-1 glucose and 35 g of gelatine L-1 (Haemaccel; Behring-Werke, Ger-

many), and equilibrated with 95 % O2 / 5 % CO2 at 37 °C. The perfusion medium and the 

kidney were kept constant at 37° C. Perfusion pressure was continuously monitored by a 

transducer (Gould P23) connected to a bridge amplifier (Hugo Sachs, March-Hugstetten, 

Germany). 

 

MOLECULAR METHODOLOGY  

PREPARATION OF RNA AND RT-PCR 

Primers and probes for human Angiotensin-Converting-Enzyme (ACE), renin and angiotensi-

nogen and for the housekeeping gene β-actin were designed using the computer program 

Primer Express 2.0 (Applied Biosystems, USA) (Table 1). Except for β-actin, primers were 

located in two different exons. 

 

Total RNA from CD8+ or CD19+ cells was extracted using Qiagen RNeasy-Mini-Kit accord-

ing to the manufacturer’s protocol (Qiagen, Hilden, Germany). Target RNA (1 - 2 µg) was 

reversely transcribed using 100 U SuperscriptII Reverse Transcriptase (RT) (Invitrogen, 
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Karlsruhe, Germany) at 42°C for 80 min in the presence of 50 mmol L-1 Tris-HCl (pH 8.3), 

5.7 mmol L-1 KCl, 3 mmol L-1 MgCl2, 5 mmol L-1 DTT, 0.5 mmol dNTPs, 8 U RNasin 

(Promega Corp., Mannheim, Germany) and 5 µmol L-1 Olgio(dT)16 (Applied Biosystems, 

Forster City, Ca, USA). For every reaction set, one RNA sample was performed without Su-

perscriptII RT (RT- reaction) to provide a negative control in subsequent PCR reaction. 

 

Control PCR assays were performed to check cDNA amount, as well as RT efficiency and 

cDNA quality, using specific primers to human ß-actin 2. Reactions were carried out in a total 

volume of 50 µL, containing 5 µL of each RT-sample, 5 µL RT buffer (Life Technologies, 

Germany), 2 mmol L-1 MgCl2, 0.4 mmol L-1 dNTPs, 0.1µmol L-1 of each primer, DNase and 

RNAse free water and 2.5 U Taq polymerase (Life Technologies, Germany). The PCR tem-

perature profile consisted of 26 cycles at 94°C for 30 s, 57°C for 1 min and 72°C for 30 s fol-

lowed by an additional 6 min extension period at 72°C. PCR was carried out in a total volume 

of 50 µL containing 5 µL of RT in 50 µL PCR buffer (Life Technologies, Germany), 1.5 

mmol L-1 MgCl2, 0.4 mmol L-1 dNTPs, 0.1µmol L-1 of each specific primer, DNase and 

RNAse free water and 2.5 U Taq polymerase (Life Technologies, Germany). The PCR tem-

perature profile for ACE-, renin- and angiotensinogen- cDNA consisted of 30 cycles at 94°C 

for 30 s, 57°C for 1 min and 72°C for 30 s followed by an additional 6 min extension period 

at 72°C, using the primers described in table 1. Control reactions for RT and PCR were per-

formed by using water instead of mRNA or cDNA in reaction mixtures. The presence and 

size of the obtained PCR products were analyzed on ethidium bromide-stained agarose gels 

(2 %). Furthermore, the specificity of the obtained cDNA product was checked by digesting 

the amplificate with specific restriction enzymes. 

 

DETECTION OF RENIN AND ACE ACTIVITY OF MONONUCLEAR LEUKOCYTES 

BY MATRIX ASSISTED LASER DESORPTION/ IONISATION MASS SPECTRO-

METRY 

Mononuclear leukocytes were isolated from 200 mL blood as described in the regular paper. 

The mononuclear leukocytes were stored at –20°C for 10 h. After thawing, 4 mL distilled 

water was added to the mononuclear leukocytes. The cell suspension was filtered with a cen-

trifuge filter (100 kDa cut-off). The proteins of the filtrate (750 µL) were immobilised by 

mixing with 750 µl NaHCO3 and activated CNBr-Sepharose 6 MB beads (Amersham-

Pharmacia Biotech, Germany) as described elsewhere3. The mixture was incubated for 2 
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hours at room-temperature. After incubation the beads were washed three times with double 

distilled water. 

 

Table 1:  Primers and human ACE, renin, angiotensinogen and for ß-actin; all cDNA se-
quences were obtained from the genbank database  

 
 Name Sequence (5’-3’) Amplicon 

length (bp) 

ACE ACEhumfor 

ACEhumrev 

ATG GCA CTG GAA AAA ATT GC 

CAG CCC AGG ACC TCG CCG TT 

500 

renin Renhumfor 

Renhumrev 

GTG GGT GGA ATC ACG GTG 

TGT TGT AGT AGA AAG AGA AGA CGT CC 

195 

angiotensinogen Aoghumfor 

Aoghumrev 

CTG GTG CTA GTC GCT GCA AA 

AAC CTG TCA ATC TTC TCA GC 

500 

human β-actin ßachumfor 

ßachumrev 

CCT CGC CTT TGC CGA TCC 

GGA TCT TCA TGA GGT AGT CAG TC 

630 
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C.    Original publications relating to uraemia 
  
C.1. A novel lymphocyte-derived vasoactive angiotensin peptide  
 
Vera Jankowski, Raymond Vanholder, Markus van der Giet, Lars Henning, Sevil Karadogan, Günter Giebing, 
Markus Tölle, Jens Furkert, Alexander Oksche, Hartmut Schlüter,Michael Bienert, Ute Bahr, Walter Zidek, 
Joachim Jankowski 

 
C.1.1. Abstract 

The angiotensin peptides play a central role in cardiovascular physiology and pathology. 

Among these peptides, angiotensin II (Ang II) has been investigated most intensively. The 

other angiotensin peptides nevertheless may importantly contribute to vascular regulation as 

well, showing different affinities to the angiotensin receptors and hence different vascular 

effects. 

 

The present experiments revealed that after incubation of human mononuclear leukocytes a 

vasocontrictive fraction appeared time dependently. After chromatographic purification struc-

tural analysis by matrix-assisted laser desorption/ionisation and electrospray ionization mass 

spectrometry revealed an angiotensin-octapeptide with the sequence Ala-Arg-Val-Tyr-Ile-

His-Pro-Phe, which differs from Ang II in Ala1 in stead of Asp1. 

 

In the presence of lymphocytes Ang II is converted to des[Asp1]-[Ala1]-Ang II by decarboxy-

lation of the Asp1 group of Ang II. Des[Asp1]-[Ala1]-Ang II had a same affinity to the AT1 

receptor as Ang II, but was a weaker vasoconstrictor, suggesting only partial AT1 receptor 

agonism. In addition, this compound showed a higher AT2 receptor affinity than genuine Ang 

II. These two characteristics point to a specific action profile compared to Ang II. Therefore 

the generation of des[Asp1]-[Ala1]-Ang II from Ang II may modulate the Ang II effects on 

vasculature. In chronic renal failure, the relative ratio des[Asp1]-[Ala1] / Ang II is signifi-

cantly increased compared to healthy subjects (1.42 ± 0.29 vs 0.38 ± 0.08; N=5; p< 0.01). 

 

In summary des[Asp1]-[Ala1]-Ang II is a newly identified human active angiotensin peptide 

which is transformed from angiotensin II by lymphocyte-derived aspartate-decarboxylase. For 

the first time, the generation by a non-proteolytic enzyme of a peptide hormone exhibiting 

specific actions is demonstrated. 
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C.1.2. Introduction 

The octapeptide, angiotensin II (Ang II) is since long accepted to play a central role in the 

physiology and pathology of vascular regulation. The peculiar therapeutic success of ACE 

inhibitors and AT1 blockers in cardiovascular protection recently stressed that the role of Ang 

II in the physiopathology of atherosclerosis and hypertension might be even more important 

than previously accepted.  

 

In general, less attention has been paid to further members of the angiotensin family, includ-

ing angiotensin III and IV and angiotensin (1-7). These alternative angiotensin peptides nev-

ertheless deserve interest, since at least some of them have vascular effects different from 

those of Ang II. Angiotensin (1-7) has been shown to be a vasodilator1. Similarly, angiotensin 

IV is an agonist to the AT4 receptor mediating vasodilation2. These actions of the various an-

giotensin peptides may gain importance especially under the conditions of ACE inhibition, 

when Ang II levels decrease while in most cases increased or at least stable amounts of the 

other angiotensin peptides are formed via ACE-independent pathways3. 

 

The differential effects of the various angiotensin peptides are closely linked to their different 

affinities to the angiotensin II receptor subtypes. When the first two subtypes, the AT1 recep-

tor and the AT2 receptor had been distinguished on a pharmacological basis and then had been 

identified by expression cloning, it soon appeared that both displayed striking differences 

with respect to their actions.  

 

Most importantly, the AT2 receptor appeared to mediate a number of beneficial vascular Ang 

II effects like vasodilation and inhibition of smooth muscle cell growth, whereas the AT1 re-

ceptor appeared to be the mediator of unfavourable effects such as vasoconstriction and vas-

cular smooth muscle proliferation4. 

 

Among the members of the currently known angiotensin peptide family none appears to show 

a higher affinity to the AT2 receptor than Ang II. On the background of the delicate interplay 

between the AT1 and AT2 receptor in the pathogenesis of cardiovascular disease, the novel 

member of the angiotensin family described below may be relevant to human cardiovascular 

physiopathology. 

 

A recent study documents that also human mononuclear leukocytes are a further source of 
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Ang II. Ang II secretion by these cells may play a physiologically relevant role in humoral 

vascular regulation. The isolation of Ang II in supernatants of mononuclear leukocytes adds a 

further physiologic source of Ang II to the view of angiotensin metabolism5.  

 

In this recent study5, supernatant of stimulated human mononuclear leukocytes were screened 

for vasoconstrictive compounds. Ang II was identified in one fraction with a strong vasocon-

strictive effect by mass-spectrometric methods. Moreover, mass-signals of yet unknown pep-

tide were detected in the corresponding mass-spectra (see Chapter B.6; Figure 2.A). One of 

these peptides, a new vasoactive angiotensin peptide, was isolated, identified and character-

ized in the present study. Since the ratio of the new peptide and Ang II is significantly in-

creased in plasma of chronic renal failure patients compared to healthy control subjects, a 

pathophysiologic relevance of this peptide is likely in this setting. 

 

C.1.3. Methods  

CHEMICALS 

HPLC water (gradient grade) and acetonitrile were purchased from Merck (Germany), all 

other substances from Sigma (Germany). 

 

PREPARATION OF MONONUCLEAR LEUKOCYTES 

Mononuclear leukocytes were obtained from healthy subjects according to established tech-

niques6. Briefly, 400 ml heparinized blood was drawn by venipuncture from the antecubital 

vein and centrifuged at 240 g for 15 min. After removing the supernatant, mononuclear leu-

kocytes were isolated by layering 5 mL diluted blood (1:1 vol with isotonic NaCl) on 3 mL 

Histopaque (Sigma-Aldrich, Germany; 5 / 6% wt / vol Ficoll; density 1.077 g mL-1) and cen-

trifugation at 240 g for 20 min. The mononuclear leukocyte interphase was carefully aspi-

rated, washed three times in isotonic NaCl by centrifugation at 400 g for 5 min, and resus-

pended in Hanks’ balanced salt solution containing (in 10-3 mol L-1): NaCl, 136; KCl, 5.4; 

KH2PO4, 0.44; Na2HPO4, 0.34; CaCl2, 1; D-glucose, 5.6; N-2-hydroxyethylpiperazine-N’-2-

ethanesulfonic acid, 10; pH 7.4. Mononuclear leukocytes were resuspended in 2 ml physiol-

ogic salt solution (0.9 % NaCl). After incubation for 2 h at room temperature, mononuclear 

leukocytes were centrifuged (1,500 g; 5 min).  

 

CATION-EXCHANGE CHROMATOGRAPHY OF THE SUPERNATANT 

Immediately after incubation, the supernatant was chromatographed using a cation-exchanger 
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(HiTrapTM SP 1 mL; Amersham Pharmacia, Sweden; eluent A: KH2PO4; pH 3.5; eluent B: 

KH2PO4 and 2 mol L-1 NaCl; pH 3.5; stepwise gradient: 0-5 min: 100% A; 5-10 min: 5% B; 

10-15 min: 12% B; 15-20 min: 25% B; 20-25 min: 37% B; 25-30 min: 50% B; 30-35 min: 

75% B). Fractions were collected according to their UV absorbance at 280 nm (peak frac-

tionation) as well as their conductivity. 
 

ANALYTICAL REVERSED-PHASE CHROMATOGRAPHY  

To the fractions of the cation exchange chromatography 1 mol L-1 TEAA was added to a final 

concentration of 40 mmol L-1. The mixture was loaded to an analytical reversed-phase chro-

matography column (Poros R2/H; 100 x 2.1 mm I.D., Perseptive Biosystems, Germany; 

equilibration buffer: 40 mmol L-1 TEAA in water; flow rate: 500 µL min-1). The retained sub-

stances were eluted using 80 vol-% acetonitrile in water and the following stepwise gradient: 

0-10 min: 100% A; 10-15 min: 25% B; 15-20 min: 50% B; 20-25 min: 75% B; 25-35 min: 

100% B; flow: 500 µL min-1. 
 

MEASUREMENTS OF PERFUSION PRESSURE IN THE ISOLATED PERFUSED RAT 

KIDNEY 

The effects of aliquots of the desalted and lyophilised fractions of the cation-exchange chro-

matography on vascular tone were evaluated in an isolated rat kidney perfused with a con-

stant flow of 8 mL min-1 while perfusion pressure was continuously monitored. Details of the 

preparation are given elsewhere7. Briefly, the kidney was excised and immediately mounted 

into the perfusion system. The isolated rat kidney was perfused by a peristaltic pump in a sin-

gle-pass system with a solution containing 115 mmol L-1 NaCl, 4.6 mmol L-1 KCl, 1 mmol L-

1 CaCl2, 1.2 mmol L-1 MgSO4, 1.2 mmol L-1 NaH2PO4, 22 mmol L-1 NaHCO3, 49 mmol L-1 

glucose and 35 g of gelatine / L-1 (Haemaccel; Behringwerke, Germany), and equilibrated 

with 95% O2 / 5% CO2. The perfusion medium and the kidney were kept constantly at 37° C. 

Perfusion pressure was continuously monitored by a transducer (Gould P23, USA) connected 

to a bridge amplifier (Hugo Sachs, Germany). 
 

Vasoconstrictor responses of the isolated perfused rat kidney to fractions to be tested were 

assessed at basal tone after an equilibration period of 30 min. Fractions with vasoconstrictive 

effects were next tested in the presence of the angiotensin-receptor antagonist (AT1) EXP 

3174. The AT1 antagonist EXP 3174 (1 µmol L-1) was added to the perfusate 30 min before 

challenge with fractions to be tested. 
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MATRIX-ASSISTED LASER DESORPTION/IONISATION MASS-ANALYSIS 

The lyophilised fractions of the reversed-phase chromatography were examined by matrix-

assisted laser desorption/ionisation mass spectrometry (MALDI-MS) and post-source decay 

(PSD)-MALDI-MS. A reflectron type time-of-flight (RETOF) mass spectrometer (Reflex III, 

Bruker, Germany) was used according to Hillenkamp and Karas8. The sample was mounted 

on an x, y, z movable stage allowing irradiation of selected sample areas. In this study, a ni-

trogen laser (VSL-337 ND, Laser Science, USA) with an emission wavelength of 337 nm and 

3 ns pulse duration was used. The laser beam was focused to a diameter of 50 µm at an angle 

of 45° to the surface of the target. The laser focussing was assisted by microscopic sample 

observation using a video device. 10-20 single spectra were accumulated to obtain a better 

signal-to-noise ratio.  

 

Sample preparation for MALDI- and PSD-MALDI experiments was identical. 5 µL bidest. 

water was added to the lyophilised sample. 1.5 µL of the analyte solution was mixed with 

1.5 µL of matrix solution (α-cyano-4-hydroxy-cinnamic acid in water/acetonitrile 50/50 vol-

%). Before introduction into the mass spectrometer the mixture was gently dried on a target 

using the AnchorChipTM Technology (Bruker-Daltronic, Germany). AnchorChipTM targets are 

equipped with hydrophilic patches in hydrophobic surroundings. The mass accuracy was in 

the range of approximately 0.01%.  

 

ELECTROSPRAY IONIZATION MASS-ANALYSIS 

Liquid chromatography / mass spectrometric measurements were performed on an orthogo-

nal-acceleration time-of-flight instrument (qTOF MS Mariner, PE/ PerSeptive Biosystems, 

Framingham, USA). For chromatography a column (0.3 mm x 100 m) packed with nonporous 

silica-based C-18 stationary phase was used. 0.1% formic acid in water was used as eluent A 

and 0.1% formic acid in acetonitrile as eluent B. The capillary of the electrospray source was 

heated at 190°C. Nitrogen was used both as drying gas and nebulizing gas at flow rates of 35 

and 10 l/h, respectively. The total-ion current chromatogram was obtained in the positive-ion 

mode. 

 

 

INCUBATION OF MONONUCLEAR LEUKOCYTES WITH ANGIOTENSIN II 

To test whether des[Asp1]-[Ala1]-Ang II is synthetized in the presence of mononuclear leuko-
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cytes 10-6 mol L-1 AT-II were added to the supernatant. After 0, 0.2, 0.5, 1 and 3 hours ali-

quots of the supernatant were analysed by MALDI mass spectrometry. Adrenocorticotropic 

hormone (ACTH, 10-5 mol L-1) was added to the MALDI matrix (α-cyano-4-hydroxy-

cinnamic acid saturated in acetonitrile and water 50/50 (vol-%) with 0.01% trifluoroacetic 

acid) for internal calibration of the MALDI mass signal intensity. The MALDI experimental 

conditions were the same as described above. This approach was repeated with mononuclear 

leukocytes thermically denaturated by heating at 100 °C for 10 min in a reaction vial. 

 

SYNTHESIS OF THE IDENTIFIED PEPTIDE  

The identified peptide was synthesized automatically by the solid-phase method using stan-

dard Fmoc chemistry in continuous flow mode (TentaGel S Random-Access Memory (RAM) 

resin 0.21 mmol/g for peptide amides, TentaGel S p-hydroxybenzoic acid (PHB) resin (Rapp 

Polymere Tuebingen, Germany) for the free acid of urocortin, o-benzotriazole-N,N,N’,N’-

tetramethyl-uronium-hexafluoro-phosphate (HBTU), 2 equiv of n,n-diisopropylethylamine 

(DIEA), coupling 20 min, deblocking with 20% piperidine in N,N-dimethyl formamide 

(DMF) for 15 min, final cleavage with 95% TFA/5% water for 3 h). Purification of crude 

peptide was carried out by preparative HPLC on PolyEncap A300 (10 µm particle size, 250 

mm x 20 mm i.d., Bischoff Analysentechnik GmbH, Leonberg, Germany) in water with in-

creasing concentrations of ACN as mobile phase. An eluent gradient of 5-70% (v / v) 

ACN/water (0.1% TFA) over 70 min with a flow rate of 10 mL/min was used. The purified 

peptide was lyophilized. The peptide was characterized by MALDI mass spectroscopy on a 

Voyager-DE STR BioSpectrometry Workstation MALDI-TOF mass spectrometer (Perseptive 

Biosystems, Inc., Framingham, MA) using R-cyano-4-hydroxycinnamic acid and sinapinic 

acid as matrix and gave the expected [M + H]+ mass peaks9. 

 

BINDING STUDIES 

All binding studies were performed as displacement studies. For binding studies of des[Asp1]-

[Ala1]-Ang II with angiotensin type 1 (AT1) and angiotensin type 2 receptors (AT2), Human 

Embryonic Kidney (HEK) 293 cells were transiently transfected with human AT1- and AT2-

receptors. cDNA encoding the human AT1 (pcDNA3.AT1)- and AT2 (pcDNA3.AT2)-receptor 

was kindly provided by Tadashi Inagami (Department of Biochemistry, Vanderbilt University 

School of Medicine, Nashville, Tennesse, USA). 

 

CELL CULTURE AND TRANSFECTION METHODS  
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HEK 293 cells were cultured at 5% CO2 in Dulbecco’s modified Eagle’s medium containing 

10% heat-inactivated fetal bovine serum, penicillin (100 U mL-1), and streptomycin (100 µg 

mL-1). Cells were grown on poly-L-lysine-coated plastic material to improve adherence. Cells 

were transfected with Lipofectamin according to the supplier’s recommendations. For a 15-

mm-diameter well of a 24-well plate, 5 X 104 HEK 293 cells were transfected with 250 ng of 

plasmid DNA and 2 mL of Lipofectamin. After removal of the transfection reagent, cells were 

incubated for 48 h.  

 

MEMBRANE PREPARATION FOR RECEPTOR BINDING 

HEK 293 cell expressing either the AT1- or AT2-receptor protein were grown on 100-mm 

Petri dishes, washed twice with 5 ml of PBS (137 mmol L-1, NaCl, 2.7 mmol L-1 KCl, 1.5 

mmol L-1 KH2PO4, 8.0 mmol L-1 Na2HPO4, pH 7.4), harvested with a rubber policeman and 

centrifuged at 400 g for 10 min. The pellet was resuspended in Tris-BAME buffer (50 mmol 

L-1 Tris, 0.15 mmol L-1 bacitracin, 0.0015% aprotinin, 10 mmol L-1 MgCl2, 2 mmol L-1 

EGTA, pH 7.3), and the suspension was homogenized with a glass/Teflon homogenizer (10 

strokes), and centifuged at 26,000 g for 30 min. The pellet was rehomogenized in Tris-BAME 

and aliquots of the resulting suspension were stored at -70°C until use. 
 

125I-SAR1,ILE8-ANG II DISPLACEMENT BINDING ANALYSIS 

HEK 293 cell membranes (5 µg) were incubated in a final volume of 200 µl of Tris/BAME 

buffer containing 1 µM 125I-Sar1,Ile8-Ang II alone or in the presence of increasing concentra-

tions of des[Asp1]-[Ala1]-Ang II and Ang II (1 x 10-12 to 1 x 10-6 mol L-1) for 2 h at 25°C at 

300 rpm in a shaking water bath. The samples were then transferred onto GF/C filters 

(Whatman International Ltd., UK), pretreated with 0.1% (w/v) polyethylenimine and washed 

rapidly twice with PBS using a Brandel cell harvester. Filters were finally transferred into 5-

ml vials and radioactivity was determined in a liquid scintillation counter. Data were analyzed 

with RadLig software 4.0 (Cambridge, UK), and graphs were generated with Prism Software 

2.02 (GraphPad, USA). Saturation analysis yielded KD values of 1 µmol L-1 and 100 nmol L-1 

for the AT1- and AT2-receptor. The values were used for calculations of the Ki values of unla-

beled ligands. 

CALCULATION OF DISPLACEMENT CURVES 

For AT-receptor displacement studies, non-specific binding was accounted for the determina-

tion of the number of counts measured in the presence of 1 µmol L-1 Sar1,Ile8 Ang II. The 

values obtained were deduced from the total counts measured to obtain specific binding. 
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Basal values (dpm, mean ± S.E.M., n=12 – 15) of 100% binding were 2670 ± 157 (AT1-

receptor) and 6015 ± 213 (AT2-receptor). Specific binding in the sole presence of radioli-

gands was normalized to 100%, and the remaining data were normalized to this figure. IC50-

values were calculated using a non-linear curve fitting function (PrismTM, Graph Pad, USA).  

 

ISOLATION, IDENTIFICATION AND QUANTIFICATION OF des[ASP1]-[ALA1]-ANG II 

FROM HUMAN BLOOD 

Peripheral blood (30 ml) was obtained by catheterization of the cubital vein of 5 end-stage 

renal failure patients (stage 5) and 5 healthy control subjects. The blood of the donors was 

collected in tubes containing K2-EDTA (7.2 mg). The clinical and biochemical characteristics 

of the patients and the controls are given in Table 1. The blood samples were centrifuged at 

800 g for 10 min at 25°C for isolation of plasma. 

 

Healthy control subjects did not use any drugs. The cause of end-stage renal failure was hy-

pertensive nephropathy in 1, diabetic nephropathy in 2 and unknown in 2 patients. One pa-

tient was treated with a beta-blocker and one patient with a calcium channel blocker. Smokers 

were not included into the study. The c-reactive protein concentration of the patient group 

was slightly increased (90.1 ± 33.4 mg/mL). One patient suffered from coronary heart disease 

and one from peripheral arterial occlusive disease. All received hemodialysis three times a 

week using a F 17 (Fresenius, Germany) hemodialysis membrane. 

 
The plasma (15 ml) was fractionated by size-exclusion chromatography. The size-exclusion 

gel “Sephacryl S-100 High Resolution” (1,000 x 16 mm, S100 HR, Pharmacia BioTech, 

Sweden) was equilibrated with 0.9 w-% NaCl in water. The sample was loaded onto the 

equilibrated column. The eluent (0.9 w-% NaCl water) was pumped with a flow rate of 1 

ml/min. The elution was monitored with a UV-detector at 280 nm.  

 

Each fraction from size exclusion chromatography was further separated by reversed-phase 

HPLC (“Chromolith® SpeedROD” (50 x 4.6 mm I.D., Merck, Darmstadt, Germany)). The 

fractions dissolved in eluent A (40 mM TEAA) were injected to the HPLC and were pumped 

onto the column using a flow rate of 1.0 mL/min. The substances was eluted from the column 

using 80 vol-% acetonitrile in water as eluent B and the following gradient: 0-10 min 0 % B, 

10-60 min 0-40 % B, 60-65 min 40-100 % B, 65-70 min 100 % B (flow rate: 1.0 mL/min). 

The wavelength of the UV-detector was 280 nm. 1.5 ml fractions were collected and lyophi-
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lised. Each fraction was analysed by MALDI-mass spectrometry using the condition as de-

scribed. 

 

Table 1:  Clinical and biochemical characteristics of the patients (values are mean ± SEM) 
and control subjects 

 

 end-stage renal 
patients 
(N=5) 

control subjects 
 

(N = 5) 

p value 
 
 

age (years) 
 

65 ± 2 57 ± 7 n.s. 

sex (m / f) 
 

3/2 3/2 n.s. 

blood pressure  
(mm Hg) 

129 ± 8 / 71 ± 6 119 ± 6 / 66 ± 2 n.s. 

    
red blood cells 
(106µl-1) 
 

3.6 ± 0.3 3.9 ± 0.4 n.s. 

white blood cells  
(103µl-1) 
 

10.5 ± 2.0 6.5 ± 0.1 n.s. 

platelets (103µl-1) 231 ± 48 271 ± 67 n.s. 
    
serum creatinin  
(µmol L-1) 

475.1 ± 86.9 82.0 ± 5.6 <0.01 
 

    
blood urea nitrogen 
(BUN; mmol L-1) 

19.6 ± 1.7 4.8 ± 0.8 <0.01 
 

    
 

 

STATISTICS 

All data are given as means ± S.E.M. of the individual values. For the binding experiments, 

Friedman’s test was used to compare 100% corrected means of controls with the binding ob-

served in the presence of displacing substances. 
 

 

C.1.4. Results 

HUMAN LYMPHOCYTES RELEASE ONE OR MORE VASOCONSTRICTIVE 

SUBSTANCES 

After isolation of human mononuclear leukocytes by centrifugation, washing with an isotonic 
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salt solution and incubation at 25°C for 2 h, the supernatant was concentrated and fractionated 

by cation-exchange chromatography. A characteristic cation-exchange chromatogram is given 

in Figure 1.A.  

 

Because of the unphysiologic salt concentration of the cation-exchange chromatography frac-

tions, a direct screening of the vasoconstrictive properties of these fractions was not possible. 

Therefore, each fraction of the cation-exchange chromatography was desalted by reversed 

phase chromatography before the screening experiments. The reversed-phase chromatography 

allows to desalt the eluate of the cation exchanger and to further fractionate the eluate. 

 

One of the fractions from the reversed phase chromatography with a strong vasoconstrictive 

effect is labelled in Figure 1.B by an arrow. The corresponding cation-exchange-fraction is 

labelled in Figure 1.A also by an arrow. The underlying substances were identified by the 

procedure as described. The different UV absorption intensities of this fraction in the cation-

exchange and the reversed-phase chromatography may be caused by different flow rates and 

the resulting dilution of the fraction. 
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Figure 1: (A)  Cation-exchange chromatography of the supernatant of mononuclear leuko-

cytes after 2 h incubation (conditions: cation exchange column: HiTrapTM SP 
1 mL; Amersham Pharmacia (Sweden), eluent A: KH2PO4; pH 3.5; eluent B: 
KH2PO4 and 2 mol L-1 NaCl; pH 3.5; stepwise gradient: 0-5min: 100% A; 5-10 
min: 5% B; 10-15 min: 12% B; 15-20 min: 25% B; 20-25 min: 37% B; 25-30 
min: 50% B; 30-35 min: 75% B; flow: 1 mL min-1). The arrow indicates the 
fraction further submitted to reversed-phase chromatography shown in Figure 
1.B. 

(B)  Reversed-phase chromatography of the eluate of the cation-exchange chroma-
tography labelled by an arrow (conditions: reversed-phase: Poros R2/H, 100 x 
2.1 mm I.D., Perseptive Biosystems, Germany; eluent A: 40 mmol L-1 TEAA 
in water; eluent B: 80 % acetonitrile in water; stepwise gradient: 0-10 min: 
100% A; 10-15 min: 25% B; 15-20 min: 50% ACN; 20-25 min: 75% B; 25-
35 min: 100% B; flow: 500 µL min-1). The vasoconstrictive fraction is indi-
cated by the arrow. 

 

The reversed-phase chromatography obtained with this fraction is shown in Figure 1.B. The 

fractions obtained from each reversed-phase chromatography elution step were again tested 

for vasoactivity in the isolated perfused rat kidney. The vasoconstrictive fraction is again in-

dicated by the arrow in the figure. 

 

IDENTIFICATION OF AN ANGIOTENSIN PEPTIDE CONTAINING ALA1 INSTEAD OF 

ASP1 

The reversed-phase fraction with a strong vasoconstrictive effect (Figure 1.B) was analysed 

by MALDI mass spectrometry as well as electrospray ionisation (ESI) ion-trap mass spec-

trometry. In these spectra, a mass-signal at 1001.3 Da was detected (Figure 2.A); the ESI 

MS/MS mass spectrum of this peptide is given in Figure 2.B. 
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Figure 2:  MALDI- (A) and ESI-MS/MS- (B) mass spectra of the fraction from the reversed-
phase chromatography (Figure 1.B) labelled by the arrow. 

 
 
Interpretation of the ESI MS/MS data by de-novo sequencing techniques, identified the un-

derlying substance as a peptide with the sequence Ala- Arg - Val - Tyr - Ile - His - Pro - Phe. 

Obviously, the vasoactive peptide isolated differs from Ang II by the replacement of Asp1 

with Ala1. The amino acid sequences of Ang II as well as of the newly detected vasoactive 

peptide identified are given in Figure 3. 

  
 

 Ang II:  Asp - Arg - Val - Tyr - Ile - His - Pro – Phe 
 
 des[Asp1]-[Ala1]-Ang II:   Ala - Arg - Val - Tyr - Ile - His - Pro - Phe 

 

Figure 3:  Amino acid sequence of angiotensin II (Ang II) and des[Asp1]-[Ala1]-Ang II. 

 

Des[Asp1]-[Ala1]-Ang II could be synthesised from Ang II by decarboxylation of Asp1. After 

identification of the peptide, we tested the hypothesis that des[Asp1]-[Ala1]-Ang II is enzy-

matically synthesised from Ang II in lymphocytes. In Figure 4 MALDI mass spectra of the 

supernatant of mononuclear leukocytes before (Figure 4.A) and after an incubation period of 

2 h (Figure 4.B) with Ang II (added to the supernatant) are given. During the incubation of 

lymphocytes in the presence of Ang II in the supernatant, the amount of des[Asp1]-[Ala1]-Ang 
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II in the supernatant increased significantly compared to the amount before the incubation 

period (Figure 4.A and Figure 4.B). The generation of des[Asp1]-[Ala1]-Ang II over time in 

the supernatant is quantified in Figure 4.C. There was no increase in the des[Asp1]-[Ala1]-

Ang II signal detectable using denatured mononuclear leukocytes (data not shown).  

 

Using the experimental conditions as described, the available endogenous Ang II contributes 

only to a lesser extent to the synthesis of the des[Asp1]-[Ala1]-Ang II based due to high exo-

genously added concentrations of Ang-II.  
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Figure 4:  MALDI mass spectra of the supernatant of mononuclear leukocytes before (A) 

and after an incubation period of 2 h (B) with Ang II (added to the supernatant). 
In (C) the generation of des[Asp1]-[Ala1]-Ang II in the supernatant over time is 
quantified (relative to internal standard ACTH). (D): Mass spectrum showing the 
whole mass range including the internal standard, ACTH. 

 

Des[Asp1]-[Ala1]-Ang II is a partial AT1 receptor agonist showing the same affinity as Ang II 

and has a higher AT2 receptor affinity than Ang II. At basal tone, des[Asp1]-[Ala1]-Ang II 

caused a dose-dependent vasoconstriction (Figure 5). In the presence of the angiotensin-

receptor antagonist AT(1) EXP 3174 the vasoconstrictive effect of des[Asp1]-[Ala1]-Ang II 

was abolished. The vasoconstrictor EC50 value (mol L-1) of des[Asp1]-[Ala1]-Ang II ((4.43 ± 

1.95) x 10-7) exceeded that of Ang II ((5.20 ± 2.52) x 10-8, Figure 5). The minimal effective 

concentration of des[Asp1]-[Ala1]-Ang II was in the range of 10-8 mol L-1. Thus, des[Asp1]-

[Ala1]-Ang II appeared to be a less active vasoconstrictor than Ang II.  
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Figure 5:  Change of perfusion pressure in the isolated perfused rat kidney induced by 

des[Asp1]-[Ala1]-Ang II ( ) and Ang II ( ) and des[Asp1]-[Ala1]-Ang II in the 
absence or presence of angiotensin-receptor antagonist AT(1) EXP 3174 ( ) (ab-
scissa: concentration of agonist (log mol L-1); ordinate: change in perfusion pres-
sure (mm Hg)). Each point is the mean of at least 6 determinations (n = 6) and 
vertical lines show the ± S.E.M.; **, p< 0.01 des[Asp1]-[Ala1]-Ang II vs Ang II. 

 
The binding of des[Asp1]-[Ala1]-Ang II and Ang II to the AT1- and AT2-receptor was charac-

terized by displacement of the radioligand [125I]-Sar1, Ile8 angiotensin II by unmarked Sar1, 

Ile8 angiotensin II (Figure 6). IC50-values in HEK 293 cells transiently transfected with the 

human AT1-or AT2-receptor for des[Asp1]-[Ala1]-Ang II were [-log IC50] 9.54 ± 0.04 or 

9.92 ± 0.04, respectively, and for Ang II [-log IC50] 9.49 ± 0.06 or 9.59 ± 0.04, respectively. 

The IC50 for des[Asp1]-[Ala1]-Ang II was significantly lower in AT2-transfected cells com-

pared to Ang II (p<0.05), whereas no significant difference for des[Asp1]-[Ala1]-Ang II and 

Ang II IC50 was observed in AT1-transfected cells. 

 

Finally we quantified the des[Asp1]-[Ala1]-Ang II and Ang II ratio in human plasma by 

MALDI mass spectrometry. The des[Asp1]-[Ala1]-Ang II / Ang II ratio in chronic renal fail-

ure patients is significantly increased compared to healthy control subjects (1.42 ± 0.29 vs 

0.38 ± 0.08; each N=5; p< 0.01). 
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Figure 6:  Displacement of [I125] Sar1, Ile8 angiotensin II by des[Asp1]-[Ala1]-Ang II ( ) 

and Ang II ( ) in HEK 293 transiently transfected with AT1- (A) and AT2-
receptors (B). Means ± S.E.M., n = 5 in duplicate. *, p < 0.05; **, p < 0.01 
des[Asp1]-[Ala1]-Ang II vs Ang II. 

 
 
C.1.5. Discussion  

The present findings show that des[Asp1]-[Ala1]-Ang II is a novel angiotensin peptide occur-

ring in increasing amounts with increasing incubation times in the supernatant of human lym-

phocytes, suggesting that Ang II or des[Asp1]-[Ala1]-Ang II is secreted into plasma. After the 

addition of Ang II to the suspension of leukocytes, Ang II is converted to des[Asp1]-[Ala1]-

Ang II. Therefore, it can be speculated, that in vivo Ang II is released from leukocytes and 

thereafter converted to des[Asp1]-[Ala1]-Ang II in the supernatant. The hypothesis, that 

des[Asp1]-[Ala1]-Ang II is a product of Ang II, is also supported by the fact, that no DNA 

sequence coding des[Asp1]-[Ala1]-Ang II was found in a data-base covering the human ge-

nome9. 

 

The findings furthermore indicate that des[Asp1]-[Ala1]-Ang II is presumably synthesized by 

an enzyme decarboxylating Asp to Ala. A non-enzymatic decarboxylation was excluded by 

the finding that after heat-denaturation of intact mononuclear leukocytes des[Asp1]-[Ala1]-

Ang II synthesis is abolished. At present, the nature of this decarboxylase is not known, in-

cluding its substrate specificity and tissue distribution. Potentially, also in other tissues be-

sides lymphocytes des[Asp1]-[Ala1]-Ang II can be produced. Des[Asp1]-[Ala1]-Ang II plasma 

concentration in healthy subjects is about 30-40 % of the Ang II plasma concentration. 
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The affinity of des[Asp1]-[Ala1]-Ang II to the AT1 receptor is nearly equal to that of Ang II, 

but the vasoconstrictive effect is significantly lower, indicating partial agonism. Des[Asp1]-

[Ala1]-Ang II shows a higher affinity to the AT2 receptor than Ang II. 

 

The results suggest that des[Asp1]-[Ala1]-Ang II may play a role in human vascular physiol-

ogy and pathology. Both the binding of des[Asp1]-[Ala1]-Ang II to the AT1 receptor and the 

AT2 receptor are modulating, most likely mitigating the Ang II effects. Des[Asp1]-[Ala1]-Ang 

II plasma concentrations in healthy controls are lower than those of Ang II, but Ang II is con-

tinuously metabolised to des[Asp1]-[Ala1]-Ang II in the presence of human lymphocytes. 

Therefore, des[Asp1]-[Ala1]-Ang II concentrations may locally reach levels similar to those of 

Ang II. Hence des[Asp1]-[Ala1]-Ang II may modulate the Ang II effects on human vascula-

ture by at least two mechanisms. 

 

A factor is very likely present in chronic renal failure patients, which stimulates the activity of 

the decarboxylase generating des[Asp1]-[Ala1]-Ang II. This stimulation leads to an increased 

des[Asp1]-[Ala1]-Ang II / Ang II ratio in plasma of these patients. This increase des[Asp1]-

[Ala1]-Ang II / Ang II ratio leads to enhanced activation of the AT2 receptor of these patients. 

Hereby, some beneficial vascular effects like vasodilation and inhibition of smooth muscle 

cell growth may be entailed. 

 

In general, the interactions of des[Asp1]-[Ala1]-Ang II with the AT2 receptor have not been 

assessed in depth in the present study. The mechanisms by which the AT2 receptor is a media-

tor of vasodilation are still under debate. Several authors favor an indirect mechanism, such as 

stimulation of the B2 bradykinin receptor, possibly via intracellular acidification and resulting 

in an increased NO and cGMP production11,12. Furthermore, there are reports suggesting that 

phosphotyrosine activity is increased following AT2 receptor stimulation13-15. Further elucida-

tion of AT2 receptor signalling potentially will help to study the downstream effects of 

des[Asp1]-[Ala1]-Ang II binding to AT2 receptor. 

 

The above findings show that human lymphocytes produce and secrete a novel Ang II pep-

tide, des[Asp1]-[Ala1]-Ang II. Des[Asp1]-[Ala1]-Ang II shows the same affinity to AT1 recep-

tor as Ang II, being a partial agonist, and a higher affinity to the AT2 receptor, potentially 

antagonising AT1 receptor stimulation. Des[Asp1]-[Ala1]-Ang II is produced by decarboxyla-
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tion of Ang II, thereby possibly modulating Ang II effects in a negative feedback loop. 

Des[Asp1]-[Ala1]-Ang II may therefore play a role in the regulation of vascular tone and 

growth in normal and atherosclerotic or hypertrophied vessels. 
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C.2. Characterization of p-hydroxy-hippuric acid as an inhibitor of Ca2+-
ATPase in end-stage renal failure 

 
Joachim Jankowski, Martin Tepel, Nina Stephan, Markus van der Giet, Vera Breden, Walter Zidek and Hartmut 
Schlüter 
  
C.2.1. Abstract  

In patients with end-stage renal failure, disturbances of Ca2+ metabolism are common. Be-

sides hormonal changes, inhibition of cellular Ca2+-ATPase was postulated to contribute to 

uremic toxicity. We purified a potent inhibitor of Ca2+-ATPase from the hemofiltrate of pa-

tients with end-stage renal failure by multiple steps of high-performance liquid chromatogra-

phy to homogeneity and identified the isolated inhibitor by mass spectrometric methods as p-

hydroxy-hippuric acid. The enzyme used for the Ca2+-ATPase assay system was isolated from 

red blood cells by cross-flow filtration. The activity of the Ca2+-ATPase was measured spec-

trophotometrically as the difference in hydrolysis of ATP in the presence and absence of Ca2+ 

with different concentrations of ATP and p-hydroxy-hippuric acid. Ca2+-ATPase was found to 

be inhibited by p-hydroxy-hippuric acid at a concentration above 11.7 µmol L-1. P-hydroxy-

hippuric acid inhibited erythrocyte Ca2+-ATPase by reducing vmax and increasing the KM-

value. The EC50 (log mol L-1; mean ± SEM) for p-hydroxy-hippuric acid was calculated as 

4.82 ± 0.14. In conclusion, p-hydroxy-hippuric acid may play an important role in disturbed 

Ca2+ metabolism in end-stage renal failure. 

 

C.2.2. Introduction 

Ca2+ metabolism is disturbed in most patients with end-stage renal failure. Hormonal mecha-

nisms are long known to contribute to these disturbances: secondary hyperparathyroidism1, 

impaired biosynthesis of calcitriol2, acidosis and hyperphosphatemia are generally accepted to 

play an important role in the pathogenesis of uremic bone disease and of altered Ca2+ homeo-

stasis. However, there may be further mechanisms contributing to disturbed Ca2+ metabolism 

in uremia. One important finding in uraemia is a decreased transmembrane Ca2+ transport. 

This finding prompted the hypothesis that one or several circulating inhibitors of the plas-

malemmal Ca2+-ATPase accumulated in uremia. Consequently, several authors have shown 

that plasma from patients with end-stage renal failure can inhibit the activity of the Ca2+-

ATPase3,4. Nevertheless, to our knowledge the identification of these circulating inhibitors 

has proven difficult. Recently, Lindner et al5 presented evidence of a lipophilic inhibitor but 

did not identify the structure of this substance. Here we describe the identification and charac-
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terization of a low molecular weight hydrophilic Ca2+-ATPase inhibitor, p-hydroxy-hippuric 

acid.  

 

C.2.3. Material and methods 

CHEMICALS 

HPLC water (gradient grade) and acetonitrile were purchased from Merck (Germany), all 

other substances from Sigma-Aldrich (Germany). 

 

CLINICAL AND BIOCHEMICAL CHARACTERISTICS OF PATIENTS WITH END-

STAGE RENAL FAILURE AND CONTROL SUBJECTS 

After giving informed consent, 13 healthy control subjects (m/f 7/6) with normal renal func-

tion (serum creatinine (mean ± SEM): 1.0 ± 0.2 mg/dl) and 9 patients (m/f 5/4) with end-stage 

renal failure (serum creatinine (mean ± SEM): 9.3 ± 1.1 mg/dl), who had been undergoing 

maintenance hemodialysis for 35.7 ± 13.4 months (mean ± SEM), were enrolled in this study. 

The cause of end-stage renal failure was chronic interstitial nephritis in 3 patients, chronic 

glomerulonephritis in 3, diabetic nephropathy in 2, polycystic kidney disease in 1. The blood 

urea nitrogen concentration (mean ± SEM) was significantly higher compared to healthy con-

trol subjects (21.31 ± 2.99 vs 3.16 ± 1.17 mmol/l), the hemoglobin concentration (mean ± 

SEM) was significantly lower compared to healthy control subjects (9.5 ± 0.6 vs 14.5 ± 1.1 

g/dl). All patients received hemodialysis three times a week. As confirmed by the clinical 

examination and routine laboratory examination, all patients were stable and free from inter-

current illness. 

 

FRACTIONATION OF THE HEMOFILTRATE 

The hemofiltrate was collected during a hemofiltration using a high-flux membrane. Hemofil-

trate (500 ml) from the above mentioned patients was concentrated to dryness in a vacuum 

concentrator (Freeze Dryer, Snijders, The Netherlands) (step 1). The dried hemofiltrate was 

dissolved in 5 ml of 40 mmol L-1 triethylammonium acetate (TEAA) in water (eluent A) and 

chromatographed (flow 0.1 ml min-1) on a C18 reversed-phase column (Nucleosil RP C18 

250 x 4.6 mm, Merck, Germany) in the displacement mode (displacer: 160 mmol L-1 n-

butanol in eluent A) (step 2). After each chromatographic step, the influence of the fractions 

on the activity of the Ca2+-ATPase was assessed. In step 3, the fractions inhibiting Ca2+-

ATPase were fractionated (flow, 0.5 ml min-1) on a C18 reversed-phase HPLC column 

(Lichrosorb RP C18, 250 x 4.6 mm, Merck, Germany) with 0.1 % TFA in H2O as eluent A 
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and 0.1 % TFA in CH3CN as eluent B under following gradient conditions: 0 to 5 min: 0 to 

20 % B; 5 to 10 min: 20 % B; 10 to 30 min: 20 to 40 % B; 30 to 40 min: 40 to 60 % B; 40 to 

45 min: 60 to 100 % B; 45 to 50 min: 100 % B; 50 to 55 min: 100 to 0 % B. Thereafter, the 

fractions showing Ca2+-ATPase inhibition were chromatographed (flow, 0.5 ml min-1) on an 

other reversed-phase column (Supersphere RP C18 endcapped, 250 x 4.6 mm, Merck, Ger-

many) with the following gradient: 0 to 10 min: 100 % A (20 mmol L-1 TEAA in water); 10 

to 20 min: 0 to 20 % B (20 mmol L-1 TEAA in CH3CN ); 20 to 40 min: 20 to 40 % B; 40 to 

50 min: 40 to 60 % B; 50 to 55 min: 60 to 100 % B; 55 to 60 min: 100 % B; 60 to 62 min: 

100 to 0 % B) (step 4). 

 

ANALYTICAL PROCEDURE 

The hemofiltrate fractions purified to homogenity were analysed by gas-chromatography / 

mass spectrometry. For that propose, speed-vac-dried samples were dissolved in N-methyl-N-

trimethylsilylfluoroacetic acid amide and incubated for one hour at 70ºC. The fractions were 

separated by gas-chromatography (0 to 35 min: 80 to 280 ºC; column: 150 RCN; carrier gas: 

helium; flow: 2 ml min-1) and identified by electron impact (EI) mass spectrometry (Finnigan 

MAT 8200, USA). 

 

PREPARATION OF THE ERYTHROCYTE MEMBRANE 

The membrane was purified from human red blood cells from the normotensive subjects. The 

red blood cells were isolated from 500 mL blood and the cells were separated from plasma by 

centrifugation at 4,000 g and 4 °C for five minutes. After centrifugation the buffy coat was 

removed6. The red blood cells were washed twice with an isotonic NaCl solution and once 

with isotonic sodium hydrogen carbonate buffer. By then using a hypotonic sodium hydrogen 

carbonate buffer the washed red blood cells were hemolyzed after which they were washed in 

a cross-flow filtration device (constant-volume mode) with a 300 kDa cut-off membrane with 

24 litres of a solution containing tris(hydroxymethyl)amino methane hydrochloride (25 mmol 

L-1), sodium chloride (75 mmol L-1), potassium chloride (25 mmol L-1), magnesium chloride 

(1 mmol L-1), ethylene glycol-bis(-aminoethylether)-N,N,N',N'-tetraacetic acid (1 mmol L-1), 

phenylmethyl-sulfonylfluoride (0.1 mmol L-1), benzamide (1 mmol L-1), sodium azide 

(100 µmol L-1). After washing the membranes, ethylene-glycol-bis(-aminoethylether)-

N,N,N',N'-tetraacetic acid was removed by a buffer containing phenylmethylsulfonylfluoride 

(1 mmol L-1), benzamide (1 mmol L-1) and tris-HCl (28 mmol L-1). The membranes were 
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concentrated by ultra-centrifugation at 100,000 g at 4 °C for 30 min and frozen in liquid ni-

trogen. Protein concentration was determined according to the method of Bradford7. 

 

Ca2+-ATPASE ASSAY 

Ca2+-ATPase activity was spectrophotometrically measured as the difference in hydrolysis of 

ATP in absence and presence of Ca2+ (0.25 mmol L-1). The assay system included magnesium 

chloride hexahydrate (2 mmol L-1), tris(hydroxymethyl) amino methane (12.5 mmol L-1), 

ouabain octahydrate (100 µmol L-1), tris-HCl (12.5 mmol L-1), EGTA (100 µmol L-1), NaCl 

(75 mmol L-1), KCl (25 mmol L-1), and 570 µg membrane protein. Water free calcium was 

prepared by affinity chromatography (chelex 100, BioRad, USA). To determine the maximum 

activity of the Ca2+ / Mg2+ ATPase, this activity was measured in the presence of calmodulin 

(10 µmol L-1)8. To obtain the dose-response relationship, the p-hydroxy-hippuric acid concen-

tration was varied in small intervals (1–316 µmol L-1), whereas the concentration of adeno-

sine-5'-triphosphate was kept constant at 80 µmol L-1. Then, the activity of Ca2+-ATPase was 

measured at different concentrations of adenosine-5'-triphosphate (0.004-1.0 mmol L-1), while 

the concentrations of p-hydroxy-hippuric acid were kept constant at 0, 10 and 100 µmol L-1. 

After initiating the reaction with adenosine-5'-triphosphate, the assay medium was incubated 

for 90 minutes at 37 °C. Reactions were terminated by icing the samples and adding 2 ml of a 

mixture consisting of malachite green (2.1 mmol L-1), hydrochloric acid (6 mol L-1), polyvinyl 

alcohol (300 µmol L-1) and ammonium molybdate (46.2 mmol L-1). Five minutes after addi-

tion of the malachite green-solution phosphate was measured by UV extinction at 578 nm. 

Ca2+-ATPase activity was expressed as PO4
3- production in µmol L-1 gprotein

-1
 h-1.  

 

NMR SPECTROSCOPY 

The proton NMR (1H-NMR) measurements were carried out using a Bruker AMX 500 FT 

spectrometer (Bruker Analytische Messtechnik, Germany) operating at a field strength of 

11.7 T. A signal turn surface coil with 5 mm inner diameter was used. All spectra were re-

corded at a controlled probe temperature of 25 °C. The signal from deuterium oxide was used 

to optimise the homogeneity of the magnetic field, and the fine adjustment was done by in-

spection of the free induction decay obtained without water suppression. A field-frequency 

was provided by detecting the deuterium signal of deuterium oxide. The 1H-NMR spectra 

were obtained by using a flip angle of 90 degrees (6.2 µs). Pulse conditions were 128 accumu-

lations collected into 32 K computer points using 90 degree pulses and a relaxation delay of 

6 s. The spectral width comprised 5 kHz. Using these conditions, spectra were fully T1-
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relaxed and, for sharp resonances, T2-relaxation during the period 3t was not observed9. The 

water resonance (4.8 ppm) was suppressed by presaturation during relaxation- and mixing-

time with a 90° sequence (d1-90°-d0-90°-d9-90°-free induction decay), following a modified 

procedure of Bodenhausen et al.10. The spinning rate was 18 rotations per second. The accu-

mulation time was 10.4 min. Chemical shifts were referenced to 3-trimethylsilyl-[2,2,3,3,-
2H4]-propionate at 0 ppm. Calibration curves with identified substances revealed a linear rela-

tionship between concentration and peak height. Therefore, the peak height of the respective 

substance was used for quantitation11. 

 

C.2.4. Results 

In Figure 1.A a reversed-phase displacement chromatogram of lyophilized hemofiltrate is 

shown. The fraction labelled in Figure 1.A had an inhibitory effect on Ca2+-ATPase activity. 

This fraction was purified to homogeneity by further chromatographic methods. Figure 1.B 

shows a typical chromatogram of the reversed-phase chromatography of the peak labelled in 

Figure 1.A by an arrow. The fraction labelled in the figure by an arrow again inhibited Ca2+-

ATPase activity. Therefore this fraction was chromatographed by further reversed-phase 

chromatography using different reversed-phase gels and different eluents. In the last chroma-

tographic step, a single UV peak was obtained (Figure 1.C). The isolated substance was again 

shown to inhibit Ca2+-ATPase 

 



Chapter C.2. An inhibitor of Ca2+-ATPase 

Kidney Int 59 (Suppl 78): 84-8, 2001 

182

0 20 40 60 80
0.0

0.2

0.4

0.6

B

0 10 20 30
0.0

0.4

0.8

A

ab
so

rp
tio

n 
(2

54
 n

m
)

0 20 40 60
0.0

0.1

0.2

0.3

retention time (min)

C

retention time (h)

retention time (min)

 
Figure 1: Isolation of p-hydroxy-hippuric acid from hemofiltrate of patients with end-stage 

renal failure.  
(A) Chromatography of lyophilised hemofiltrate of plasma of patients with end-stage 

renal failure with a C18 reversed-phase column.  
(B)  Reversed-phase chromatography of the fraction labelled in Figure 1.A on an ana-

lytical reversed-phase high performance liquid chromatographic column.  
(C)  Reversed-phase chromatography of the fraction labelled in Figure 1.B on an ana-

lytical reversed-phase high performance liquid chromatographic column. The ar-
rows indicate the fractions with the strongest inhibitory effect on the Ca2+-ATPase 
activity, which leads to the identification of p-hydroxy-hippuric acid. 

 

The molecular mass as well as the fragmentation pattern of this Ca2+-ATPase inhibitor were 

determined by gas-chromatography / mass-spectrometry. The mass spectrum is shown in Fig-

ure 2. The analysis of this mass spectrum and comparison of this spectrum with mass spectra 

of a database led to the identification of p-hydroxy-hippuric acid. 
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Figure 2: Mass spectrum of the fraction labelled in Figure 1.C by an arrow (abscissa: rela-
tive mass/charge, m/z, z=1; ordinate: relative intensity, arbitrary units). By data 
bank analysis the underlying substance was identified as p-hydroxy-hippuric acid. 

 
 
Commercially available p-hydroxy-hippuric acid (Sigma-Aldrich, Germany) caused a dose-

dependent inhibition of the Ca2+-ATPase (Figure 3). Maximum inhibition of Ca2+-ATPase 

was achieved with p-hydroxy-hippuric acid concentrations above 100 µmol L-1. Using that 

concentration p-hydroxy-hippuric acid decreased the Ca2+-ATPase by 64.6 % compared to the 

basal Ca2+-ATPase. The calculated EC50 (log mol L-1; mean ± SEM) for p-hydroxy-hippuric 

acid was –4.82 ± 0.14. Therefore, the EC50 value of p-hydroxy-hippuric acid is comparable to 

the EC50 values of dimethylguanosine, phenylethylamine and phenylacetic acid12.  
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Figure 3:  Effect of different concentrations of p-hydroxy-hippuric acid on the activity of 
Ca2+-ATPase at constant concentration of ATP (log cp-hydroxy hippuric acid = 0 - 2,5 log 
µmol L-1; cATP = 80 µmol L-1). The data are the means ± SEM of three experi-
ments.  
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The minimal inhibitory concentration of p-hydroxy-hippuric acid on the activity of Ca2+-

ATPase was 11.7 µmol L-1. The effect of various concentrations of ATP in the presence of p-

hydroxy-hippuric acid on the activity of the Ca2+-ATPase is shown in Figure 4. 
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Figure 4: Effect of p-hydroxy-hippuric acid on the activity of the Ca2+-ATPase at varying 
concentrations of ATP (cp-hydroxy-hippuric acid  ( )= 0 µg L-1, (∆)= 16 µg L-1, (�) = 160 
µg L-1; cATP = 0.004–1.0 mmol L-1). The data are means ± SEM for four similar 
experiments. 

 

The inhibitory effect of p-hydroxy-hippuric acid was not abolished by increased concentra-

tions of ATP. Therefore a non-competitive inhibition of the activity of Ca2+-ATPase by p-

hydroxy-hippuric acid is supposed. 

 

Are the concentrations used in the present in vitro studies physiologically relevant for end-

stage renal failure patients? The concentration of p-hydroxy-hippuric acid in sera of patients 

with end-stage renal failure before hemodialysis as estimated by 1H-NMR spectra was 94 ± 

12 µmol L-1 although some resonances of p-hydroxy-hippuric acid and of hippuric acid over-

lap in 1H-NMR spectra. This concentration is in the range of the calculated EC50 for p-

hydroxy-hippuric acid. At the end of dialysis, the serum concentration of p-hydroxy-hippuric 

acid of patients with end-stage renal failure was decreased by 53 %. In sera of healthy con-

trols p-hydroxy-hippuric acid was not detectable by NMR spectroscopy. 

 

C.2.5. Discussion 

Circulating Ca2+-ATPase inhibitors are important factors for disturbed cellular Ca2+ metabo-

lism in patients with end-stage renal failure. In the present study, p-hydroxy-hippuric acid was 
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identified as an inhibitor of Ca2+-ATPase in hemofiltrate of patients with end-stage renal fail-

ure. 

 

The results of our study document that p-hydroxy-hippuric acid accumulates in sera of pa-

tients with end-stage renal failure and that this substance is a further potent inhibitor of the 

erythrocytic Ca2+-ATPase. In the present study, a Ca2+-ATPase isolated from human erythro-

cytes was used to test the effects of the chromatographic fractions from hemofiltrates as well 

as authentic p-hydroxy-hippuric acid. Therefore, the observed effects of p-hydroxy-hippuric 

acid appear to be direct effects the Ca2+-ATPase, and an indirect action by mediators is 

unlikely. The inhibition of Ca2+-ATPase by p-hydroxy-hippuric acid is apparently elicited by 

an allosteric inhibition of the enzyme, i.e. the interaction with ATP is non-competitive. 

 

It is well-known that the concentration of p-hydroxy-hippuric acid correlates negatively with 

motor nerve conduction velocity13. P-hydroxy-hippuric acid was associated with neurophysi-

ological variables while urea, creatinine, urate and phosphate were not.  

 

The p-hydroxy-hippuric acid concentration decrease by only 53 % during hemodialysis is 

explainable on the one hand by the protein-binding of this compound and on the other hand 

by the rapid refilling of the vascular compartment from extravascular sources. In healthy con-

trol subjects p-hydroxy-hippuric acid is not detectable by NMR spectroscopy. Therefore, the 

concentration of p-hydroxy-hippuric acid was apparently lower than 5 µmol L-1, the limit of 

detection of a 500 MHz- NMR spectrometer. Hence, it can be assumed that decreased renal 

function causes an accumulation of p-hydroxy-hippuric acid comparable to that of other low 

molecular weight compounds like creatinine or urea. 

 

Only a part of p-hydroxy-hippuric acid may penetrate the plasma membrane into the intracel-

lular space to inhibit the intracellular Ca2+-ATPase because of the protein-binding of p-

hydroxy-hippuric acid14. This may explain why patients with end-stage renal failure show 

functioning transmembrane Ca2+ transport activities although the plasma concentration of p-

hydroxy-hippuric acid may be in the range of maximal Ca2+-ATPase inhibition. 

 

In summary p-hydroxy-hippuric acid was identified as an inhibitor of the plasma membrane 

Ca2+-ATPase. This effect may contribute to the inhibition of plasma membrane Ca2+-ATPase 

activity in end-stage renal disease.  



Chapter C.2. An inhibitor of Ca2+-ATPase 

Kidney Int 59 (Suppl 78): 84-8, 2001 

186

C.2.6. References  

1. Tsuchihashi K, Takizawa H, Torii T, Ikeda R, Nakahara N, Yuda S, Kobayashi N, 
Nakata T, Ura N, Shimamoto K: Hypoparathyroidism potentiates cardiovascular com-
plications through disturbed calcium metabolism: possible risk of vitamin D(3) analog 
administration in dialysis patients with end-stage renal disease. Nephron 84:13-20, 
2000 

2. Daisley-Kydd RE, Mason NA: Calcitriol in the management of secondary hyperpara-
thyroidism of renal failure. Pharmacotherapy 16:619-630, 1996 

3. Gafter U, Malachi T, Barak H, Djaldetti M, Levi J: Red blood cell calcium homeosta-
sis in patients with end-stage renal disease. J Lab Clin Med 114:222-231, 1989 

4. Nieman LK, Davis FB, Davis PJ, Cunningham EE, Gutman S, Blas SD, Schoenl M: 
Effect of end-stage renal disease on responsiveness to calmodulin and thyroid hor-
mone of calcium-ATPase in human red blood cells. Kidney Int Suppl 16:S167-170, 
1983 

5. Lindner A, Hinds TR, Joly A, Schreiner GF: Neutral lipid from proteinuric rat urine is 
a novel inhibitor of the red blood cell calcium pump. J Am Soc Nephrol 10:1170-1178, 
1999 

6. Penniston JT, Filoteo AG, McDonough CS, Carafoli E: Purification, reconstitution, 
and regulation of plasma membrane Ca2+- pumps. Methods Enzymol 157:340-351, 
1988 

7. Bradford MM: A rapid and sensitive method for the quantitation of microgram quanti-
ties of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-
254, 1976 

8. Gafter U, Malachi T, Barak H, Levi J: Red blood cell calcium level in chronic renal 
failure: effect of continuous ambulatory peritoneal dialysis. J Lab Clin Med 116:386-
392, 1990 

9. Bell JD, Brown JCC, Sadler PJ: High resolution proton magnetic resonance studies of 
human cerebrospinal fluid. Clin Sci 72:563-570, 1987 

10. Bodenhausen G, Kogler H, Ernst RR: Selection of coherence-transfer pathway in 
NMR pulse experiments. J Magn Res 58:370-378, 1984 

11. Bell JD, Lee JA, Lee HJ, Sadler PJ, Wilkie DR, Woodham RH: Nuclear magnetic 
resonance studies of blood plasma and urine from subjects with chronic renal failure. 
Biochim Biophys Acta 1096:101-107, 1991 

12. Jankowski J, Luftmann H, Tepel M, Leibfritz D, Zidek W, Schlüter H: Characteriza-
tion of dimethylguanosine, phenylethylamine, and phenylacetic acid as inhibitors of 
Ca2+ ATPase in end-stage renal failure. J Am Soc Nephrol 9:1249-1257, 1998 

13. Schoots AC, De Vries PM, Thiemann R, Hazejager WA, Visser SL, Oe PL: Bio-
chemical and neurophysiological parameters in hemodialyzed patients with chronic 
renal failure. Clin Chim Acta 185:91-107, 1989 

14. De Smet R, Vogeleere P, Van Kaer J, Lameire N, Vanholder R: Study by means of 
high-performance liquid chromatography of solutes that decrease theophylline/protein 
binding in the serum of uremic patients. J Chromatogr A 847:141-153, 1999 



Chapter C.3. AN69 hemodialysis membrane and diadenosine pentaphosphate 

Kidney and Blood Pressure Research 26:50-54, 2003 

187

C.3.  The AN69 hemodialysis membrane has a decreasing effect on the in-
traplatelet diadenosine pentaphosphate concentration 

 
Joachim Jankowski, Hartmut Schlüter, Lars Henning, Markus van der Giet, Vera Jankowski, Walter Zidek, 
Martin Tepel 
  
C.3.1. Abstract  

The type of hemodialysis membrane may have an impact on the outcome of end-stage renal 

failure patients. In the present study, the effects of hemodialysis on the intracellular amount of 

diadenosine pentaphosphate (Ap5A), a hydrophilic, anionic substance with a low molecular 

weight, was investigated. The intracellular Ap5A concentrations were measured before and 

after hemodialysis, using either polyacrylonitrile (AN69; n = 10) or polysulfone (n = 23) 

membranes. Ap5A was isolated from platelets using affinity chromatography and reversed-

phase chromatography methods. The Ap5A concentrations were quantified by ultraviolet ab-

sorption at 254 nm. The Ap5A concentrations were significantly higher in platelets from the 

patients with end-stage renal failure as compared with 21 healthy control subjects (136 ± 50 

vs. 9 ± 6 fg/platelet; mean ± SEM, p <0.01). Before hemodialysis, the intracellular Ap5A con-

centrations in platelets from 10 patients with end-stage renal failure using an AN69 mem-

brane were not significantly different from those in platelets from 23 patients using a polysul-

fone membrane (93 ± 39 vs. 155 ± 70 fg/platelet). However, after the hemodialysis session, 

the intracellular Ap5A concentrations in platelets from patients with end-stage renal failure 

using an AN69 membrane were significantly lower as compared with those in platelets before 

hemodialysis (51 ± 18 vs. 93 ± 39 fg/platelet, p < 0.05) as well as compared with those in 

platelets from patients using a polysulfone membrane (51 ± 18 vs. 250 ± 59 fg/platelet, p 

<0.05). It was found that hemodialysis by using an AN69 membrane has a direct effect on the 

intraplatelet amount of Ap5A and that changes of intraplatelet hydrophilic substances are de-

pendent on the hemodialysis membrane used. 

 

C.3.2. Introduction 

Ap5A is an intra- and extracellular mediator controlling numerous physiological functions1. 

Reviews about the role of Ap5A in the cardiovascular system have been published re-

cently2,3,4. After release, local Ap5A concentrations in the range of 10-5 mol/l have been dem-

onstrated5. An increased Ap5A concentration has been shown in platelets from hemodialysis 

patients6. This may enhance growth of vascular smooth muscle cells and may be a further 

important atherogenic factor6. In order to evaluate the effects of hemodialysis on intracellular 

Ap5A concentrations, diadenosine polyphosphates were determined in platelets from patients 
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with end-stage renal failure before and after hemodialysis using reversed phase chromatogra-

phy. We used Ap5A as the target substance. We observed that polyacrylonitrile (AN69) and 

polysulfone membranes have different effects on the intracellular amount of diadenosine pen-

taphosphates. 

 

C.3.3. Material and Methods 

CHEMICALS 

All substances were purchased from Merck (Darmstadt, Germany) and Sigma-Aldrich (Deis-

enhofen, Germany) if not indicated otherwise. Diadenosine octaphosphate (Ap8A) was syn-

thesised according to Ng and Orgel7 and purified by a method described by Jankowski et al.8.  

 

CLINICAL AND BIOCHEMICAL CHARACTERISTICS OF HEMODIALYSIS 

PATIENTS AND HEALTHY CONTROLS 

After giving informed consent, 33 patients with end-stage renal failure who had been under-

going maintenance hemodialysis for 45 ± (SEM) 12 months were enrolled in this study. Ten 

patients used an AN69 membrane, and 23 patients used a polysulfone membrane (F16, Fre-

senius, Germany). The dialysates used were bicarbonate based. The clinical and biochemical 

characteristics of the patients with end-stage renal failure before and after the dialysis sessions 

are given in Table 1. The causes of end-stage renal failure were diabetic nephropathy in 10 

patients, nephrosclerosis in 11 patients, chronic glomerulonephritis in 7 patients, interstitial 

nephritis in 1patient, and unknown in 4 patients. All patients underwent hemodialysis sessions 

three times a week. As confirmed by clinical and routine laboratory examinations, the patients 

were in good clinical condition. All patients were stable and free from intercurrent illness. 

Blood samples were collected immediately before and after the hemodialysis sessions from 

the arterial line of the hemodialysis equipment. Twenty-one healthy age-matched subjects 

without major medical illness and intake of medications served as controls. 
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Table 1:  Clinical and biochemical characteristics of patients with end-stage renal failure 
before and after a regular hemodialysis session using AN69 or polysulfone mem-
branes and of healthy controls 

 
 patients with end-stage 

renal failure (ESRD) 
(N=33) 

 healthy control subjects 
(N=21) 

 

 

 before 
hemodialysis 
 

after 
hemodialysis

p value 
before vs. 

after 
hemo-
dialysis 

 

 
 

p value  
healthy control 

subjects vs. 
ESRD before 
hemodialysis 

age (years) 
 

60.3 ± 2.8  n.s.          41.5 ± 12.9 n.s. 

male/female ratio 
 

22 / 11  --          10 / 11 n.s. 

heart rate 
(beats/min) 
 

74.5 ± 1.5 
 

78.8 ± 1.5 <0.05.          74.1 ± 5.8 n.s. 

blood pressure 

(mm Hg) 
systolic 
diastolic 

 

 
 

146.7 ± 4.0 
76.5 ± 1.5 

 
 

131.5 ± 3.1 
70.9 ± 1.8 

 
 

<0.05. 
<0.05. 

 
 

         125.6 ± 6.8 
         79.0 ± 3.1 

 

 
 

<0.05 
n.s. 

 
serum creatinine 
(mg/dl) 
 

9.1 ± 0.5 3.8 ± 0.3 <0.05          0.9 ± 0.1 <0.05 

platelet count  

(x 103/mm3) 
 

255.0 ± 15.6 
 

243.0 ± 25.1 n.s.         192.6  ± 43.3 n.s. 

 

ISOLATION, IDENTIFICATION AND QUANTIFICATION OF DIADENOSINE PENTA-

PHOSPHATE AP5A FROM HUMAN PLATELETS  

The methods for isolation, identification and quantification of Ap5A has been extensively de-

scribed6. Briefly, for the quantification of the amount of Ap5A in intact human platelets, a 

4 ml blood sample per donor was collected. The biochemical characteristics of the subjects 

are given in Table 1. Platelets were isolated from the plasma by centrifugation, washed with 

physiological NaCl solution, and were frozen at –30 ° C for 1 day. After thawing, 1 µg Ap8A 

as internal standard was added to the samples. The samples were deproteinized by using per-

chloric acid neutralized with potassium hydroxide. The platelets were counted in a solution of 

resuspended platelets directly after the sample was drawn. Ammonium acetate was added to 

the sample (final concentration 1 mol/l) and pH was adjusted to 9.5. Thereafter, the sample 

was passed through a boronate gel (derivative of a cation exchange gel, BioRex 70, BioRad, 

Germany; column: 10 mm x 100 mm), which was prepared according to Barnes et al.9. The 
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column was washed with 1 mol/l NH4Ac (pH 9.5) with a flow rate of 2 ml/min. Ap5A was 

eluted with 10 mmol/l HCl in water (flow rate: 2 ml/min). The eluate of the affinity chroma-

tography was concentrated by reversed-phase C18 HPLC. A reversed-phase column (Super-

sphere, 250 x 4 mm, Merck, Germany) was equilibrated with 40 mmol/l triethylammonium 

acetate. The sample was pumped with a flow rate of 0.5 ml/min into the column. After wash-

ing the column with 15 ml 40 mmol/l triethylammonium acetate in water, Ap5A was eluted 

with 35 % acetonitrile in water.  

 

To quantify the amount of Ap5A, the eluate of the reversed phase chromatography was chro-

matographed by a reversed-phase column (Poros R 2/H, 100 x 2.1 mm, Perseptive Biosys-

tems, USA). Eluent A = 2 mmol/l tetrabutylammonium hydrogensulfate in a phosphate buffer 

(10 mmol/l K2HPO4, pH 6.8); eluent B = water:acetonitrile (20 : 80, v/v); gradient 0-1 min: 

100 % eluent A, gradient 1-30.5 min: 0-30 % eluent B, gradient 30.5-31.5 min = 30-50 % 

eluent B; flow rate = 300 µl/min ). Ultraviolet absorption was measured at 254 nm. 

 

For identification of the individual Ap5A peak fractionated lyophilized eluates of the reversed 

phase chromatography were dissolved in 100 µl 20 mmol/l K2HPO4 (pH 8) and subjected to 

an anion exchange column (MiniQ PC 1.6/5, Pharmacia, Uppsala Sweden; equilibration and 

sample buffer = 20 mmol/l K2HPO4 (pH 8); flow rate: 100 µl/min). Retained substances were 

eluted by 1 mol/l NaCl in 20 mmol/l K2HPO4 in water; 1 mol/l triethylammonium acetate in 

water was added to the eluate of the anion-exchange chromatography to a final concentration 

of 40 mmol/l. The mixture was loaded to a reversed phase column (Supersphere RP-C18, 2.1 

x 100 mm, Merck, Germany; equilibration and sample buffer = 40 mmol/l triethylammonium 

acetate in water; flow rate: 100 µl/min). Ap5A was eluted by 20 % acetonitrile in water. The 

lyophilised fractions from the reversed phase chromatography were examined by matrix as-

sisted laser desorption/ ionisation mass spectrometry (MALDI-MS) as well as post-source 

decay (PSD)-MALDI-MS. A reflectron type time-of-flight mass spectrometer (Reflex III, 

Bruker, Germany) was used employing the method of Hillenkamp and Karas10. Ten to 20 

single spectra were accumulated for a better signal-to noise ratio. The sample preparation for 

MALDI-MS and PSD-MALDI-MS experiments11 was identical. The concentrations of the 

analysed substances were 1-10 µmol/l in double distilled water. One microliter of the analyte 

solution was mixed with 1 µl of matrix solution (50 mg/ml 3-hydroxy-picolinic acid in water). 

To this mixture cation exchange beads (AG 50 W-X12, 200-400 mesh, Bio-Rad, USA) 

equilibrated with NH4
+ as counterion were added to remove Na+ and K+ ions. The mixture 
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was gently dried on an inert metal surface before introduction into the mass spectrometer. The 

mass accuracy was in the range of approximately 0.01 %.  

 

C.3.4. Results 

Figure 1 shows a representative reversed-phase chromatogram of a platelet extract before 

hemodialysis. The peak of diadenosine pentaphosphate is indicated by an arrow. The identity 

of the underlying Ap5A was confirmed by MALDI-MS, ultraviolet spectroscopy, enzymatic 

cleavage experiments as well as retention time comparisons as described elsewhere12. 
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Figure 1: Reversed phase chromatography of a platelet extract from a patient with end-
stage renal failure obtained before hemodialysis 

 

The intracellular Ap5A concentrations were significantly higher in platelets from the 33 pa-

tients with end-stage renal failure as compared with the 21 healthy control subjects (136 ± 50 

vs 9 ± 6 fg/platelet, mean ± SEM, p<0.01). 

 

We analysed the effects of a conventional hemodialysis in 10 patients using AN69 mem-

branes and in 23 patients using low flux polysulfone membranes. The clinical and biochemi-

cal characteristics are given in Table 2. 

 

Figure 2 shows the effect of hemodialysis using AN69 (Figure 2.A) and polysulfone mem-

branes (Figure 2.B) on the amounts of Ap5A in platelets. After a hemodialysis session the 

Ap5A concentrations in platelets from patients with end-stage renal failure using an AN69 

membranes were significantly decreased (51 ± 18 vs 93 ± 39 fg/platelet, p<0.05) (Figure 2.A). 

There were no significant differences in the Ap5A concentrations after hemodialysis using 

low flux polysulfone membranes (Figure 2.B). 
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Table 2:  Clinical and biochemical characteristics of patients with end-stage renal failure 

hemodialyzed using AN69 and low flux polysulfone membranes 

 

 AN69 
(n = 10) 

Polysulfone 
(n = 23) 

p value  
 

 
age, years 
 

 
56.9 ± 6.5 

 
61.7 ± 2.8. 

 
n.s. 

male/female ratio 
 

7 / 3 15 / 8 n.s. 

body mass index (kg / m2) 
 

23.2 ± 1.0 
 

24.8 ± 0.7 
 

n.s. 

heart rate (beats/min) 
 

77.5 ± 2.9 
 

73.2 ± 1.7 n.s. 

blood pressure (mm Hg) 
systolic  
diastolic  

 

 
130.6 ± 8.6 
79.4 ± 2.4 

 
153.7 ± 3.6 
75.2 ± 1.8 

 
<0.05 
n.s. 

serum creatinine (mg/dl) 
 

10.2 ± 0.7 8.7 ± 0.6  n.s. 

platelet count (x 103/mm3) 
 

250.8 ± 19.0 
 

256.9 ± 23.1 n.s. 

 



Chapter C.3. AN69 hemodialysis membrane and diadenosine pentaphosphate 

Kidney and Blood Pressure Research 26:50-54, 2003 

193

 

 

0

200

400

 **

0

200

400

n. s.

A

B

c A
p5

A
 / 

[fg
A

p5
A

/p
la

te
le

t]

 before after
hemodialysis

 before after
hemodialysis

 
 Figure 2: Concentration of Ap5A in platelets before and after regular hemodialysis using an 

AN69 membrane (A) and a low flux polysulfone membrane (B). (Data are means ± 
SEM; **: p<0.05 (before vs. after hemodialysis)). 

 
C.3.5. Discussion 

The present study confirms that Ap5A concentrations are significantly higher in platelets from 

patients with end-stage renal failure as compared with healthy control subjects12. How can the 

increased amount of ApnA in platelets from hemodialysis patients be explained? Principally, 

either an increased production or a decreased breakdown has to be considered. Which mecha-

nism definitely leads to the increased ApnA concentration in platelets of chronic renal failure 

patients cannot be clarified yet. An increase of the synthesis rate is more likely because there 

is only a difference in the ApnA concentration in platelets and not in plasma. ApnA are not 

synthesised but degraded by plasma, but they are synthesised and degraded by platelets. Be-

cause the ApnA concentration is increased in CRF platelets, but not in CRF plasma, a modifi-

cation of the synthesis rate is more likely because an effect on the degradation rate would  

result in a similar effect on the ApnA concentration in plasma and platelets.  

 
There is a significant effect of hemodialysis on the difference of the Ap5A concentration be-

fore and after a single hemodialysis session. The elevated Ap5A amounts in platelets of pa-

tients with end-stage renal failure are affected by different membranes in a different way. 
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Since Ap5A is related to vasoconstriction13 and to growth of vascular smooth muscle cells12 

the increased intracellular Ap5A concentration in platelets from patients with end-stage renal 

failure may contribute to the increased arteriosclerotic risk in these patients. Several ap-

proaches have been proposed to reduce the increased arteriosclerotic risk in patients with end-

stage renal failure. One approach has been the use of biocompatible membranes with large 

pores, such as AN69. The present study indicates that the AN69 membrane has obviously a 

significant effect on the amount of Ap5A. In contrast, hemodialysis by using a low flux poly-

sulfone membrane did not significantly affect the intraplatelet amount of Ap5A. 

 

On the one hand, these different effects may be explained by different charges of the mem-

brane surfaces. In contrast to the AN69 membrane, the low flux polysulfone membrane is not 

electrostatically charged. These different charge conditions of the hemodialysis membranes 

may result in different Ap5A removal rates. First, the hemodialysis membranes may stimulate 

platelets in a different way, resulting in subsequent differences in generation of Ap5A. Next, 

the released Ap5A may be hemodialysed by the membranes, resulting in a different Ap5A 

plasma concentration and different Ap5A amounts in platelets. Therefore, in future studies not 

only the Ap5A amount of platelets of CRF patients but also the Ap5A plasma concentration 

should be determined.  

 

On the other hand, the different effects may be explained by different removal rates of yet 

unknown uremic toxins by the AN69 membrane. These unknown uremic toxins may decrease 

the activity of Ap5A degrading enzymes, or may increase the activity of Ap5A synthesizing 

enzymes. Both effects would result in an increasing Ap5A plasma concentration or an increas-

ing Ap5A amount of platelets, and a decrease upon removal of these toxins by AN69.  

 

In conclusion, the increased atherogenic potential of Ap5A in chronic renal failure patients 

can be affected by hemodialysis using different hemodialysis membranes. 
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C.4.  Increased plasma phenylacetic acid in patients with end-stage renal 

failure inhibits iNOS expression 
 
Jankowski J, van der Giet M, Jankowski V, Schmidt S, Hemeier M, Mahn B, Giebing G, Tölle M, Luftmann H, 
Schlüter H, Zidek W, Tepel M 
  

C.4.1. Abstract 

Nitric oxide (NO) prevents atherogenesis and inflammation in vessel walls by inhibition of 

cell proliferation and cytokine-induced endothelial expression of adhesion molecules and pro-

inflammatory cytokines. Reduced NO production due to inhibition of either endothelial nitric 

oxide synthase (eNOS) or inducible nitric oxide synthase (iNOS) may therefore reinforce 

atherosclerosis. Patients with end-stage renal failure show markedly increased mortality due 

to atherosclerosis. In the present study we tested the hypothesis that uremic toxins are respon-

sible for reduced iNOS expression. Lipopolysaccharide-induced iNOS expression in mononu-

clear leukocytes was studied using real-time-PCR. iNOS expression in mononuclear leuko-

cytes was blocked by addition of plasma from patients with end-stage renal failure, whereas 

plasma from healthy controls had no effect. Hemofiltrate obtained from patients with end-

stage renal failure was concentrated, fractionated by preparative reversed-phase chromatogra-

phy, analytical reversed-phase chromatography in the displacement- and gradient-mode with 

trifluoroacetic acid as well as triethylammonium acetate as ion-pair reagent. The chroma-

tographic procedures revealed a homogenous fraction with a strong inhibitory effect on the 

iNOS expression in mononuclear leukocytes. Using gas-chromatography/mass-spectrometry 

and comparison of the data of the mass-spectrometry with pertinent databases the inhibitor of 

lipopolysaccharide-induced iNOS expression was identified to be phenylacetic acid. Authen-

tic phenylacetic acid inhibited iNOS expression in a dose-dependent manner. Plasma concen-

trations of phenylacetic acid were determined by magnetic nuclear resonance. In healthy con-

trol subjects plasma concentrations were below the detection level, whereas patients with end-

stage renal failure had a phenylacetic acid concentration of 3.49 ± 0.33 mmol L-l (n=41). It is 

concluded that accumulation of phenylacetic acid, a metabolite of phenylalanine, in patients 

with end-stage renal failure inhibits iNOS expression. That mechanism may contribute to in-

creased atherosclerosis and cardiovascular morbidity in patients with end-stage renal failure. 
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C.4.2. Introduction  

Nitric oxide (NO) is an important signalling molecule that mediates a variety of essential 

physiological processes including neurotransmission, vasodilation, and host cell defence1. NO 

is synthesized from L-arginine by nitric oxide synthase (NOS). Three distinct isoenzymes of 

NOS are known. Two calcium/calmodulin-dependent constitutive NOS isoenzymes domi-

nantly expressed in the brain and endothelium and a calcium-independent, cytokine-inducible 

NOS isoenzyme (iNOS) have been identified so far. NO inhibits cell proliferation, cytokine-

induced endothelial expression of adhesion molecules and proinflammatory cytokines2-4. 

 

NO generally is protective against atherogenic stimuli in the vessel wall5. Vascular NO can 

principally be produced by two cell types, namely endothelial cells and vascular smooth mus-

cle cells (VSMC)6,7. In normal vessels endothelial NO production is sufficient to meet the 

requirements of vascular regulation. NO production by VSMC is not activated6. On the other 

hand, under the conditions of endothelial dysfunction, NO production by endothelial cells 

may not be sufficient to defend the vascular wall against oxidative damage. In this setting, 

VSMC increase their NO synthesis as a compensatory mechanism8,9. Therefore, VSMC-

derived NO can be assumed to play a critical role under pathological conditions characterized 

by endothelial dysfunction. VSMC-derived NO is solely produced by inducible NO synthase 

(iNOS), which is also expressed in leukocytes, but not in endothelial cells. Excess NO pro-

duction by iNOS is implicated in the pathogenesis of vascular remodelling and atherosclero-

sis10, as it causes inhibition of cell proliferation and apoptosis of VSMC3,11, mesangial cell 

proliferation and extracellular matrix synthesis12. Obviously, studies on iNOS expression in 

human VSMC are limited by the difficulty to obtain samples of vascular tissue. Since iNOS is 

expressed in both VSMC and leukocytes, the latter may be a suitable model to study iNOS 

expression in human pathology. Therefore in the present study mononuclear leukocytes are 

used as a model for examining the effects of uremic toxins on iNOS expression. 

 

Atherosclerosis is a major cause of morbidity and mortality in chronic renal failure (CRF)13,14. 

Increased cardiovascular mortality in patients with CRF is in part due to the prevalence of 

established risk factors for atherosclerosis such as hypertension or an increased serum level of 

low-density lipoproteins, or lipoprotein (a)14,15. Abnormalities of NO synthetic pathway have 

a key role in the pathogenesis of atherosclerosis in patients with CRF14,16. In CRF patients NO 

bioavailability is reduced17. A marked reduction of NO, in the face of continuous local gen-

eration of vasoconstrictor and mitogenic substances, contributes to intraglomerular hyperten-
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sion18, cell proliferation and atherosclerosis. In glomeruli soon after surgical ablation of renal 

mass inflammatory mediators, such as platelet-derived growth factor (PDGF)19 and trans-

forming growth factor β (TGF-β)20, are formed in excessive amounts. PDGF and TGF-β are 

both potent inhibitors of NO synthesis and dose-dependently block IL-1β-induced iNOS 

mRNA in rat mesangial cells21. Reduced NO production may be ameliorated by pharmacol-

ogical tools like L-arginine22. 

 

To identify factors decreasing the iNOS expression in CRF we investigated the effects of 

plasma and hemofiltrate obtained from patients with end-stage renal failure on iNOS expres-

sion. Hemofiltrate was fractionated by chromatographic methods, and the effect of the result-

ing fractions on the iNOS expression was examined. The chromatographic procedures re-

vealed a homogenous fraction, that reduces iNOS expression in mononuclear leukocytes. Us-

ing gas-chromatography/mass-spectrometry and comparison of the data of the mass-

spectrometry with pertinent databases the inhibitor of lipopolysaccharide-induced iNOS ex-

pression was identified to be phenylacetic acid (PAA). Using nuclear magnetic resonance 

increased plasma concentrations of PAA could be measured in patients with end-stage renal 

failure. 

 

C.4.3. Methods 

PATIENTS 

The study was approved by the local ethical committee and informed consent was obtained 

from the patients. 41 patients with end-stage renal failure who had been undergoing mainte-

nance hemodialysis for 40 ± 5 months (mean ± SEM) were enrolled in this study. Moreover, 

39 subjects with normal renal function were used as a control group. The cause of end-stage 

renal failure was diabetic nephropathy in 16 cases, nephrosclerosis in 9 cases, chronic glome-

rulonephritis in 4 cases, and unknown in 12 cases. Patients were stable, and free from inter-

current illness. All of the patients were routinely dialyzed for four to five hours thrice weekly 

using biocompatible polysulfone hemodialysis membranes (F60, Fresenius Medical Care, Bad 

Homburg, Germany) with no dialyzer reuse. Water and dialysate used in hemodialysis were 

in accordance with the recommendations of the American Association of Medical Instrumen-

tation. Bacterial growth was less than 50 c.f.u. ml-1 in water and less than 200 c.f.u. ml-1 in 

dialysate as described in23. We obtained 500 ml hemofiltrate from 5 patients with end-stage 

renal failure undergoing regular treatment with hemofiltration. Dialysis adequacy was esti-

mated using Kt/V values (the amount of plasma cleared of urea divided by the urea distribu-
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tion volume), which were determined using the formula Kt/V= -ln (R-0.03) + (4-3.5 x R) x 

UF / W; with R=post/pre plasma urea nitrogen ratio; UF=ultrafiltrate volume (liters) re-

moved; W= postdialysis weight (kg)24,25. Kt/V-values were 1.2 ± 0.1 (mean ± SEM). The 

clinical and biochemical characteristics of patients and control subjects are given in Table 

1.A. From a subset of patients and controls (Table 1.B) plasmas were used for measurements 

of iNOS mRNA expression by real-time PCR. 

 

Plasma from patients with end-stage CRF was obtained before the regular hemodialysis ses-

sion. Blood was taken from the arterial side of the hemodialysis fistula immediately before 

starting the dialysis session by use of an EDTA vacutainer (K2-EDTA, 1.8 mg ml-1) and im-

mediately centrifuged at 4,000 g and 20 °C for 5 min. Thereafter plasma was stored at –20 °C.  

 

Table 1.A:  Clinical and biochemical characteristics of patients with end stage renal failure 
and healthy control subjects (Data are mean ± SEM). 

 

 patients with end 
stage renal failure 

(n = 41) 

healthy control 
subjects 
(n = 39) 

p value 
 

    
age (years) 
 

45 ± 2 61 ± 3 n.s. 

sex (male/female) 
 

25 / 16 17 / 22 n.s. 

body weight (kg) 
 

74 ± 2 66 ± 3 <0.01 

duration of dialysis (months) 
 

40 ± 5 0 <0.01 

systolic blood pressure 
(mmHg) 
diastolic blood pressure 
(mmHg) 
 

149 ± 4 
81 ± 2 

125 ± 2 
70 ± 2 

<0.01 
<0.01 

hemoglobin (g dl-1) 
 

11.3 ± 0.3 12.9 ± 0.3 <0.01 

serum creatinine (mg dl-1) 
 

7.2 ± 0.4 1.0 ± 0.1 <0.01 

blood urea nitrogen (mg dl-1) 
 

27 ± 2 17 ± 1 <0.01 

total protein (g L-l) 73 ± 2 71 ± 1 n.s. 
    
 

CHROMATOGRAPHY OF THE HEMOFILTRATE 

The sequence of chromatographic separation steps described below was chosen for the fol-

lowing reasons: in the first step, displacement chromatography allows to get rid of a bulk of 

interfering substances without overloading the column. As further steps different reversed-
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phase procedures were chosen, dealing with considerably less material than the first rough 

separation steps. To obtain optimum effects of a sequence of reversed-phase chroma-

tographies, different ion-pair reagents were applied. 
 

Hemofiltrate (500 ml) was concentrated to dryness in a vacuum concentrator (Freeze Dryer, 

Snijders, Tilburg, The Netherlands). The dried hemofiltrate was dissolved in 5 ml of 40 mmol 

L-1 triethylammonium acetate (TEAA) in water (eluent A) and chromatographed (flow: 1.0 ml 

min-1) on a C18 reversed-phase column (Lichroprep, Typ B, Merck, Darmstadt, Germany) in 

the displacement mode (displacer: 160 mmol L-1 n-butanol in eluent A). After each chroma-

tographic step, the influence of the fractions on the iNOS-expression was assayed. 

 

Next, the fractions decreasing the iNOS-expression were fractionated (flow: 0.5 ml min-1) on 

a C18 reversed-phase HPLC column (Lichrosorb RP C18, 250 x 4.6 mm, Merck, Darmstadt, 

Germany) with 0.1% trifluoroacetic acid (TFA) in H2O as eluent A and 0.1% TFA in CH3CN 

as eluent B under following gradient condition: 0 to 5 min: 0 to 20% B; 5 to 10 min: 20% B; 

10 to 30 min: 20 to 40% B; 30 to 40 min: 40 to 60% B; 40 to 45 min: 60 to 100% B; 45 to 

50 min: 100% B. 

 

Subsequently, the fractions decreasing the iNOS-expression were chromatographed (flow: 

0.5 ml min-1) on a further reversed-phase column (Supersphere RP C18 endcapped, 

250 x 4.6 mm, Merck, Darmstadt, Germany) with the following gradient: 0 to 10 min: 100% 

A (20 mmol L-l TEAA in water); 10 to 20 min: 0 to 20% B (20 mmol L-1 TEAA in CH3CN); 

20 to 40 min: 20 to 40% B; 40 to 50 min: 40 to 60% B; 50 to 55 min: 60 to 100% B; 55 to 

60 min: 100% B). 

 

The final purification step was a chromatography (flow: 0.5 ml min-1) on a reversed-phase 

HPLC column (Supersphere RP C18 endcapped, 250 x 4.6 mm, Merck, Darmstadt, Ger-

many). The column was run in the gradient mode with 0.1% TFA in 40% CH3CN / H2O (elu-

ent A) and 0.1% TFA in 99.9% CH3CN (eluent B) (gradient: 0 to 10 min: 0 to 20% B; 10 to 

20 min: 20 to 30% B; 20 to 40 min: 30 to 100% B; 40 to 45 min: 100% B). 

 

MASS-ANALYSIS 

The purified fraction was examined with gas-chromatography / mass spectrometry. Therefore 

the speed-vac-dried sample was dissolved in N-methyl-N-trimethylsilylfluoroacetic acid am-
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ide and incubated for one hour at 70ºC. The fractions were separated by gas-chromatography 

(0 to 35 min: 80 to 280ºC; column: 150 RCN; carrier gas: helium; flow: 2 ml min-1) and iden-

tified by mass spectrometry (Finnigan MAT 8200, San Jose, USA). 

 

PREPARATION AND STIMULATION OF MONONUCLEAR LEUKOCYTES  

Mononuclear leukocytes were obtained from healthy subjects according to established tech-

niques26. Briefly, 20 ml heparinized blood was drawn by venipuncture from the antecubital 

vein and centrifuged at 240 g for 15 min. After removing the supernatant, mononuclear leu-

kocytes were isolated by layering 5 ml diluted blood (1:1 vol with isotonic NaCl) on 3 ml 

Histopaque (Sigma-Aldrich, Germany; 5 / 6% wt-%/vol-% Ficoll; density 1.077 g ml-1) and 

centrifugation at 240 g for 20 min. The mononuclear leukocyte interphase was carefully aspi-

rated, washed three times in isotonic NaCl by centrifugation at 400 g for 5 min, and resus-

pended in Hanks’ balanced salt solution containing (in mmol L-1): NaCl, 136; KCl, 5.4; 

KH2PO4, 0.44; Na2HPO4, 0.34; CaCl2, 1; D-glucose, 5.6; N-2-hydroxyethylpiperazine-N’-2-

ethanesulfonic acid, 10; pH 7.4. Cells were counted using a cell counter (CASY 1 Model TT, 

Schaerfe System, Reutlingen, Germany). Cells were centrifuged at 400 g for 5 min, and re-

suspended in RPMI 1640 (Sigma-Aldrich, Deisenhofen, Germany) with 10% FCS (Invitro-

gen, Karlsruhe, Germany) and 25 mmol L-1 HEPES. Cells were deposited in 60 mm2 tissue 

flasks with a total of 1.8 x 107 cells. Cells were incubated for 2 h in a humidified incubator at 

37 °C and 5% CO2. Cells were then stimulated for 6 h in a humidified incubator at 37 °C and 

5% CO2 with 100 U ml-1 γ-interferon (γ-IFN) (Sigma-Aldrich, Deisenhofen, Germany) and 

1 µg ml-1 lipopolysaccharide (LPS Serotype 0111:B4 from E. coli, Sigma-Aldrich, Deisen-

hofen, Germany). Incubation of cells was done in the absence or presence of PAA in various 

concentrations (0.1 - 2 mmol L-1), in the presence of plasma from patients with end-stage re-

nal failure (n=6) on regular hemodialysis and healthy control subjects (n=6), or in the pres-

ence of phenylalanine (1 mmol L-1), homogentisic acid (1 mmol L-1), and phenylethylamine 

(1 mmol L-1). After incubation cells were harvested and centrifuged (400 g for 5 min). The 

pellet was immediately frozen in liquid nitrogen and stored at -80 °C for further analysis. 
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PREPARATION AND STIMULATION OF RAW 264.7 CELLS 

The murine macrophage cell line of RAW 264.7 was obtained from European Collection of 

Animal Cell Cultures (Salisbury, UK). Cells were cultured in Dulbecco’s modified eagle me-

dium/F12 (DMEM/F-12) supplemented with 2.44 g L-1 NaHCO3, 2 mmol L-1 L-glutamine, 

1 mmol L-1 sodium pyruvate, 10% FCS, and penicillin (100 U ml-1) / streptomycin (100 mg 

ml-1). Cultures were maintained in a humidified incubator in 5% CO2 at 37 °C. Cells were 

plated at a concentration of 1 x 105 ml-1 and used for the experiment when they reached 80% 

confluency. Cells were then stimulated for 6 h or 12 h in an humidified incubator at 37 °C and 

5% CO2 with 1 µg ml-1 lipopolysaccharide (LPS Serotype 0111:B4 from E. coli, Sigma-

Aldrich, Deisenhofen, Germany). Incubation and further processing of the cells were done as 

described above for mononuclear leukocytes. In the experiments, cells were serum-starved by 

incubation in a serum-reduced medium Dulbecco’s modified eagle medium/F12 (DMEM/F-

12) supplemented with 2.44 g L-1 NaHCO3, 2 mmol L-1 L-glutamine, 1 mmol L-1 sodium py-

ruvate, 1.0% FCS, penicillin (100 U ml-1), streptomycin (100 mg ml-1) for 24 h before use. 

 

PREPARATION AND STIMULATION OF ENDOTHELIAL CELLS 

To test the influence of PAA on eNOS, human umbilical vein endothelial cells (ECV304) 

were used. ECV304 is a spontaneously transformed, immortal endothelial cell line established 

from the vein of an apparently normal human umbilical cord. Cells were provided by the 

European Collection of Animal Cell Cultures (Salisbury, UK). Cells were grown in medium 

M199 supplemented with 10% FCS, 100 U ml-1 penicillin, and 100 µg ml-1 streptomycin. 

Cells were maintained in a standard culture incubator with humidified air containing 5% CO2 

at 37 °C. In the experiments, cells were serum-starved by incubation in a serum-free medium 

M199 containing antibiotics for 48 h before use. 

 

PREPARATION OF RNA AND REALTIME PCR 

Primers and probes for murine and human iNOS and for the housekeeping gene β-actin were 

designed using the computer program Primer Express 2.0 (Perkin Elmer / Applied Biosys-

tems, Foster City, CA, USA) (Table 2). Except for β-actin, primers were located in two dif-

ferent exons. 
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Table 2:  Primer and probe sequences for murine and human iNOS and for ß-actin (146 bp) 
(TP: fluorogenic probe, FAM-labelled at the 5’end and TAMRA-labelled at the 
3’end; RP: reverse primer; FP: forward primer; all cDNA sequences were ob-
tained from the genbank database; iNOS, inducible nitric oxide synthase).  

 
 Name Sequence (5’-3’) Ampli-

con 
length 
(bp) 

murine 
iNOS 
 

miNOS-TP 
miNOS-RP 
miNOS-FP 

CGG GCA GCC TGT GAG ACC TTT GA 
CAT TGG AAG TGA AGC GTT TCG 
CAG CTG GGC TGT ACA AAC CTT 

95 

murine  
β-actin 

Mβact-TP 
Mβact-RP 
Mβact-FP 

CAC TGC CGC ATC CTC TTC CTC CC 
CAA TAG TGA TGA CCT GGC CGT 
AGA GGG AAA TCG TGC GTG AC 

148 

human 
iNOS 

hiNOS-TP 
hiNOS-RP 
hiNOS-FP 

TCC GAC ATC CAG CCG TGC CA 
CAG GAG AGT TCC ACC AGG ATG 
TCA AAT CTC GGC AGA ATC TAC AAA 

66 

human  
β-actin 

Hβact-TP 
Hβact-RP 
Hβact-FP 

TCA AGT ATC ATT GCT CCT CCT GAG CGC 
GCC GAT CCA CAC GGA GTA CT 
CTG GCA CCC AGC ACA ATG 

65 

 

Total RNA from murine macrophage cell line (RAW 264.7) or mononuclear leukocytes was 

extracted using Qiagen RNeasy-Mini-Kit according to the manufacturer’s protocol (Qiagen, 

Hilden, Germany). Target RNA (1 - 2 µg) was reverse transcribed using 100 U SuperscriptII 

RT (Invitrogen, Karlsruhe, Germany) at 42 °C for 80 min in the presence of 50 mmol L-1 Tris-

HCl (pH 8.3), 5.7 mmol L-1 KCl, 3 mmol L-1 MgCl2, 5 mmol L-1 DTT, 0.5 mmol dNTPs, 8 U 

RNasin (Promega Corp., Madison, WI, USA) and 5 µmol L-1 Olgio(dT)16 (Perkin-

Elmer/Applied Biosystems, Foster City, CA, USA). For every reaction set, one RNA sample 

was performed without SuperscriptII RT (RT- reaction) to provide a negative control in sub-

sequent PCR reaction. 

 

Real-time PCR was done by using the ABI prism 7700 sequence detector (TaqMan; Perkin 

Elmer/ Applied Biosystems, Foster City, CA, USA). The method and the quantification pro-

cedure is extensively described elsewhere27. Commercial reagents (TaqMan PCR Reagent 

Kit, Perkin Elmer, Foster City, CA, USA) and conditions according to the manufacturer’s 

protocol were applied (2.5 µl of cDNA and oligonucleotides at a final concentration of 

200 nmol L-1). Each reaction also contained 100 nmol L-1 of the corresponding detection 

probe (Table 2).  

Each PCR amplification was performed in triplicate wells, using the following conditions: 
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2 min at 50 °C and 10 min at 94 °C, followed by a total of 40 or 45 two-temperature cycles 

(15 s at 94 °C and 1 min at 60 °C).  

 

PREPARATION OF PROTEINS FROM RAW 264.7 CELLS, POLYACRYLAMIDE GEL  

ELECTROPHORESIS AND WESTERN BLOTTING 

Harvested RAW 264.7 cells after stimulation were lysed in lysis buffer containing 50 mmol 

L-1 Tris-Cl (pH 7.4), 150 mmol L-1 NaCl, 100 µg ml-1 phenylmethylsulfonyl fluoride (PMSF), 

1% Nonident P-40 and 4% protease inhibitor cocktails. Protein concentrations in the cell lys-

ates were stored at -70 °C until further measurements. 

 

Aliquots were subjected to SDS-PAGE on 7.5% polyacrylamide slabe gels and blotted onto 

polyvinylidene difluoride membranes. Polyvinylidene difluoride blots were blocked for 1 h in 

Tris-buffered saline (TBS, 150 mmol L-1, NaCl, 20 mmol L-1, Tris, pH 7.5) containing 5% 

non-fat milk, and incubated overnight at 4 °C with antibody against iNOS (1:10 000 dilution, 

Santa Cruz biotechnology, Heidelberg, Germany) in TBS containing 5% non-fat milk. Mem-

branes were washed in TBS and incubated with goat anti-rabbit alkaline phosphatase-

conjugated antibody (1:3 000 dilution) for 1.5 h. After further washing with TBS, blots were 

detected by the enhanced chemiluminescene method using an immunoblot assay kit (BioRad, 

München, Germany). 

 

MEASUREMENT OF NO PRODUCTION 

NO production was assayed by measuring the accumulation of nitrite in the culture medium 

by the Griess reaction using sodium nitrite as a standard. Aliquots of culture medium were 

mixed with an equal volume of Griess reagent (1% sulphanilamide / 0.1% N-(1-napthyl) 

ethylenediamine dihydrochloride in 5% phosphoric acid), the mixture incubated at room tem-

perature for 10 min and the absorbance at 540 nm was measured using a photometer (iEMS 

Reader, Labsystems, Helsinki, Finland). Standard curves were constructed using known con-

centrations of sodium nitrite. Net NO production after stimulation with LPS was calculated by 

subtracting basal NO production from total production, and expressed as the percentage re-

lease of nitric oxide relative to control. NO production in ECV304 cells was measured after 

stimulation with acetylcholine (1 µmol L-1). 

 

CELL VIABILITY 

The cell viability was assessed using Trypan blue dye. Trypan blue dye solution (0.4%) was 
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added to the cell suspension at a ratio of 1:2. After mixing, the cells were observed under the 

microscope. Cells not stained with the dye were regarded as living, and cell viability was ex-

pressed as the percentage of living to total cells. 

 

NMR SPECTROSCOPY 

In order to quantitate PAA concentrations, proton-NMR (1H-NMR) measurements were car-

ried out using a Bruker AMX 400 FT spectrometer (Bruker Analytische Messtechnik, Bre-

men, Germany) operating at a field strength of 400 MHz. To samples (500 µl) 50 µl D2O and 

50 µl of a solution of 0.75% 3-trimethylsilyl-[2,2,3,3,-2H4]-propionate in D2O was added and 

mixed thoroughly by vortex for 3 min at room temperature. The sample was poured into a 

glass NMR test tube with an inner diameter of 5 mm. All spectra were recorded at a con-

trolled probe temperature of 25 °C. The signal from deuterium oxide was used to optimise the 

homogeneity of the magnetic field, and the fine adjustment was done by inspection of the free 

induction decay obtained without water suppression. A field-frequency was provided by de-

tecting the deuterium signal of deuterium oxide. The proton spectra were obtained by using a 

flip angle of 90 degrees (6.2 µs). Pulse conditions were 128 accumulations collected into 32 

K computer points using 90 degree pulses and a relaxation delay of 6 s. The spectral width 

comprised 5 kHz. Using these conditions spectra were fully T1-relaxed and, for sharp reso-

nances, T2 relaxation during the period 3t was not observed28. The water resonance (4.8 ppm) 

was suppressed by presaturation during relaxation- and mixing-time with a 90° sequence (d1-

90°-d0-90°-d9-90°-free induction decay)29. The spinning rate was 20 rotations per second. The 

accumulation time was 10.4 min. Shifts were referenced to 3-trimethylsilyl-[2,2,3,3,-2H4]-

propionate (TSP) at 0 ppm. The relative intensities of the resonances of phenylacetic acid 

were determined by comparison with the intensity of the resonance of TSP. Resonance inten-

sity can be used to determine concentration provided that the linewidths are comparable30. 

Using the internal reference, concentrations were calculated from the resonance intensity of 

identified substance. Calibration curves with identified substances revealed a linear relation-

ship between concentration and resonance intensity. Therefore, the resonance intensity of the 

respective substances was used for quantification30. To quantify protein binding of PAA, na-

tive plasma samples were divided into two portions, one of which underwent NMR specto-

scopy immediately, and the other that was deproteinized with 0.6 mol L-1 perchloric acid and 

centrifuged at 4,000 rpm and 4 °C for 5 min. The supernatant was neutralized by KOH. After 

deproteination this sample was analysed by NMR spectroscopy, too. 
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STATISTICS 

All data are presented as mean ± SEM. Statistical analyses were done with GraphPad Prism 

version 3.0 (San Diego, USA). Comparisons between the groups were made using the non-

parametric Wilcoxon rank sum test and non parametric Wilcoxon matched pairs test, as ap-

propriate. A two-tailed p < 0.05 was considered significant. 

 

C.4.4. Results  

As shown in Figure 1.A, the stimulation of mononuclear leukocytes from healthy subjects 

with 1 µg ml-1 LPS and 100 U ml-1 γ-interferon for 6 h caused a significant increase in iNOS 

expression. In the presence of plasma from patients with end-stage renal failure on regular 

hemodialysis the LPS- and γ-IFN-induced iNOS mRNA expression was dose-dependently 

blocked, whereas plasma from healthy persons did not reduce LPS- and γ-IFN-induced iNOS-

expression. 
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Figure 1:  Effects of plasma from patients with end-stage renal failure and healthy control 

subjects, of phenylacetic acid and some of its derivatives on iNOS mRNA expres-
sion measured by real-time PCR without (basal, set to 100%) and after stimulation 
by LPS (1 µg ml-1) and γ-IFN (100 U ml-1) (control) in mononuclear leukocytes. 

(A)  iNOS-expression in the presence of various amounts of plasma diluted in PBS 
(1/10, 1/2, or 1/1) of patients with CRF on regular hemodialysis (end-stage renal 
failure) or in the presence of plasma from healthy persons (healthy). Basal, un-
stimulated iNOS expression was set to 100%; each n=6.  

(B)  iNOS expression in the presence of various concentrations of phenylacetic acid 
(PAA; 0.05 mmol L-1, 0.1 mmol L-1, 0.5 mmol L-1, 1.0 mmol L-1, 2.0 mmol L-1). 
Control value as in A. Basal, unstimulated iNOS expression was set to 100%.  

(C)  iNOS expression in the presence of homogentisic acid (HGA 1.0 mmol L-1), 
phenylethyl amine (PEA 1.0 mmol L-1), or phenylalanine (PhA 1.0 mmol L-1); 
n=6; *p<0.05 significant difference from control. 
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For the fractionation of the hemofiltrate from patients with end-stage renal failure a prepara-

tive reversed-phase column was used. Because of the great amount of substances in the 

hemofiltrate, the chromatography was performed in the displacement modus. Moreover for 

this separation step an anionic ion pair reagent was used. By this procedure the large amount 

of hemofiltrate was separable by one chromatographic step. One fraction of the displacement-

chromatography eluting at 630.3 min had a strong decreasing effect on the LPS-induced ex-

pression of iNOS mRNA in mononuclear leukocytes. 

 

This fraction was next separated by reversed-phase chromatography with 0.1% TFA in water 

as an anionic ion pair reagent. For this separation step an analytical reversed-phase column 

was used in the gradient modus. The analytical reversed-phase column in the gradient modus 

allows to effectively separate the hemofiltrate substances while being applicable at this stage 

of separation without overloading the column, since the bulk of interfering substances has 

been removed in the preceding steps. 

 

One fraction with a strong decreasing effect on the iNOS-expression was determined at a re-

tention time of 55.9 min. Next, reversed-phase chromatography of this fraction was per-

formed with 40 mmol L-l triethylammonium acetate (TEAA) in water as a cationic ion pair 

reagent. For this fraction step another analytic reversed-phase column with alternative re-

versed-phase gel was used in the gradient modus. For further variation of the separation con-

ditions instead of TFA as ion pair reagent again TEAA was used as ion-pair reagent. 

 

One fraction with a strong decreasing effect on the iNOS expression was next separated by 

the identical reversed-phase gel but in presence of TFA as anionic ion-pair reagent. The sepa-

ration of the fraction eluting at 33.1 min by reversed-phase chromatography with 0.1% TFA 

in water and ACN as eluent revealed one obviously homogeneous fraction decreasing iNOS 

expression and eluting at 44.6 min.  

 

The underlying substance of this chromatographic fraction had a blocking effect on the LPS 

plus γ-IFN-induced expression of iNOS mRNA in mononuclear leukocytes. This substance 

was analyzed by mass-spectrometry. The MS data are given in Table 3. By interpretation of 

the mass-spectrum and also by comparison with a pertinent database (NIST Mass Spectral 

Library/Standard Reference Database, National Institute of Standards and Technology, 

Gaithersburg, MD, USA) the underlying substance was identified as PAA. The mass spec-
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trum of PAA was clearly distinct from that of other derivatives of phenylalanine, such as ho-

mogentisic acid, phenylethylamine, and phenylalanine. After PAA had been isolated and 

identified as an endogenous iNOS inhibitor, the effects of authentic PAA were assessed in 

detail. First, the effects of PAA on iNOS mRNA expression were examined. Authentic PAA 

inhibited LPS-induced plus γ-IFN-iNOS expression in a dose-dependent manner (Figure 1.B). 

 

Table 3:  Data of the mass spectrum of the GC-MS-analysis of the substance showing an 
inhibitory effect on the iNOS expression, identified as phenylacetic acid by inter-
pretation of the mass-spectrum. The fragment masses are identical with those found 
in a pertinent database (NIST Mass Spectral Library/Standard Reference Database, 
National Institute of Standards and Technology, Gaithersburg, MD, USA). 

 

 
fragment mass 

(Da) 
 

 
relative intensity 
(arbitrary units) 

 
45 8.2  
47 6.0 
65 10.0 
73 100.0 
74 12.0 
75 46.8 
76 3.4 
77 4.6 
89 5.0 
90 6.2 
91 15.0 

117 2.6 
118 1.2 
121 1.0 
137 6.0 
164 18.0 
165 8.0 
193 16.0 
194 3.0 
195 2.0 

 



Chapter C.4. An inhibitor of iNOS 

J Clin Invest 112 (2): 256-264, 2003 

210

To test whether this PAA effect was specific for PAA and did not reflect unspecific toxicity, 

several phenylalanine derivatives were tested for their effects on iNOS expression. In the 

presence of phenylalanine (1 mmol L-l), homogentisic acid (1 mmol L-l), and phenylethyl-

amine (1 mmol L-l) the LPS- and γ-IFN-induced iNOS-expression was not significantly af-

fected (Figure 1.C). Moreover, viability of RAW 264.7 cells was not affected by PAA (Figure 

2). 
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Figure 2:  Cell viability of RAW 264.7 cells in the presence of phenylacetic acid (PAA). 

Cell viability was assessed using Trypan blue dye. RAW 264.7 cells were stimu-
lated (stimulated) or not (unstimulated) for 12 h with LPS (1 µg ml-1). Viability of 
cells was measured after stimulation with LPS and in the presence of various con-
centrations of PAA (0.1 mmol L-1, 0.5 mmol L-1, 1.0 mmol L-1, and 5.0 mmol L-1). 
Data are mean ± SEM, n=6, *p<0.05 compared with stimulted. 

 

From the above findings the question arose, whether PAA itself was the effective agent or 

metabolites of PAA affected iNOS mRNA expression. The NMR spectra obtained from PAA 

after incubation for 0 and 60 min with mononuclear leukocytes were essentially unchanged. 

The PAA signal at 60 min was 98 ± 6% of the 0 min signal, indicating that PAA was not me-

tabolized during this time period in significant amounts. Furthermore, the PAA effects on 

iNOS mRNA expression were also tested in RAW 264.7 cells. Real-time PCR revealed a sig-

nificant expression of iNOS mRNA in these cells after 6 h stimulation with 1 µg ml-1 LPS. 

Furthermore, in these cells PAA showed a similar concentration-dependent effect on iNOS 

mRNA expression as in mononuclear leukocytes (Figure 3.A). 
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Figure 3:  iNOS-expression measured by real-time PCR, protein-blotting of iNOS or nitrite 
formation in RAW 264.7 cells. 

(A)  iNOS-expression measured by real-time PCR after stimulation by LPS (1 µg ml-1) 
(control) and in the presence of various concentrations of phenylacetic acid (PAA; 
0.1 mmol L-l, 0.5 mmol L-l, 1.0 mmol L-l, and 5.0 mmol L-l). Basal, unstimulated 
iNOS expression was set to 100%; n=6; * p<0.05 significant difference from con-
trol.  

(B)  Representative protein-blotting of iNOS and ß-actin after 12 h stimulation (+) or 
without stimulation (-) of RAW 264.7 cells with LPS (1 µg/ml) and in the pres-
ence of PAA (0.1 mmol L-l, 0.5 mmol L-l, 1.0 mmol L-l, and 5.0 mmol L-l). iNOS 
protein was detected as a band with a molecular mass of ~125 kDa.  

(C)  Signals of iNOS were quantified and normalized to those of ß-actin using a bioi-
maging analyzer. Data represent means of triplicate determinations from each of 
three protein preparations. n=3; *p<0.05 significant difference from control.  

(D)  Effect of various concentrations of PAA (0.1 mmol L-l, 0.5 mmol L-l, 1.0 mmol L-

l, and 5.0 mmol L-l) on LPS-induced nitrite production in RAW 264.7 cells. Data 
are means ± S.E.M (n=6). *p<0.05 compared with control (+). 

 

To confirm the functional relevance of PAA effects on iNOS mRNA expression, iNOS pro-

tein as well as LPS-induced nitrite production were determined in RAW 264.7 cells. In the 

presence of PAA in concentrations > 1 mmol L-l the amount of iNOS protein was signifi-

cantly (p<0.05) reduced (Figure 3.B, C). Likewise, nitrite production by iNOS induced by 1 

µg ml-1 LPS was significantly reduced by PAA (Figure 3.D). On the other hand, the acetyl-
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choline-induced nitrite production by eNOS of endothelial ECV304 cells was not signifi-

cantly affected by the administration of PAA (Figure 4). 
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Figure 4:  Nitrite formation in ECV304 cells. Nitrite accumulation was measured 30 min 
with (stim) or without (unstim) stimulation of ECV304 with acetylcholine 
(1 µmol L-l). ECV304 were stimulated with acetylcholine in the absence (stim) or 
presence of phenylacetic acid (PAA, 0.1 mmol L-l, 0.5 mmol L-l, 1.0 mmol L-l, 
and 5.0 mmol L-l) and L-NAME (10 µmol L-l). Data are mean ± SEM, n=6, 
*p<0.05 compared with stimulation. 

 

In plasma of healthy subjects (n=39) PAA was not detectable. Experiments with authentic 

PAA revealed a detection limit by NMR analysis in the range of 5-10 µmol L-l. On the other 

hand, in patients with end-stage renal failure, plasma concentrations of PAA were 3.49 ± 0.33 

mmol L-l (n=41, p<0.01 vs. control). These concentrations were obtained in plasma from pa-

tients with end-stage renal failure before a regular hemodialysis session. The plasma PAA 

concentrations of the patients with end-stage renal failure used for the experiments of Figure 

1.A were 2.5 ± 0.5 mmol L-l (n=6). Next we quantified the portion of protein-bound PAA in 

blood plasma from end-stage renal failure patients. After deproteinization, 69.8 ± 22.5% of 

PAA detected in untreated samples was found (n=8). Accordingly, in unprocessed ultrafiltrate 

from end-stage renal failure patients 52.7 ± 12.6% of the plasma PAA concentration was 

measured by NMR (n=10).  
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C.4.5. Discussion  

Several reports indicate that in CRF NO production is reduced 31,32. Given the important func-

tion of NO in maintaining vascular function and integrity, the deficient NO production in re-

nal failure may be one key step leading to the functional and structural vascular changes in 

renal failure. The present study focused on the PAA effects on iNOS expression, since it is 

known that increased iNOS expression is a compensatory mechanism when endothelial NO 

production is inadequate33. 

 

The present study may offer one explanation of the decreased NO bioavailability in renal fail-

ure patients. Plasma from patients with CRF inhibited the expression of iNOS whereas 

plasma from healthy subjects had no effect. eNOS activity was unaffected by PAA. Using 

hemofiltrate we isolated and characterized the iNOS inhibitor in patients with end-stage renal 

failure to be phenylacetic acid. PAA is a degradation product of the amino acid, phenyla-

lanine. Phenylalanine is primarily metabolized by phenylalanine hydroxylase to tyrosine. In 

addition, phenylalanine is decarboxylated to phenylethylamine, 90% of which is oxidized to 

phenylacetic acid, and the remainder to mandelic acid34. Using nuclear magnetic resonance 

we measured plasma concentrations of phenylacetic acid in patients with end-stage renal fail-

ure and healthy control subjects. As suggested by the findings obtained with hemofiltrate, 

plasma phenylacetic acid concentrations in renal failure patients far exceeded those in healthy 

in controls. 

 

The principal finding of the present study, that PAA accumulates in patients with end-stage 

renal failure and inhibits iNOS expression and, consequently, NO production, may help to 

understand the vascular and hemodynamic changes in end-stage renal failure for several rea-

sons: 

 

Firstly, reduced iNOS expression may contribute to accelerated atherosclerosis13,35 and hence 

to increased cardiovascular morbidity in these patients. Nitric oxide (NO) metabolism has 

been implicated in the pathogenesis of arteriosclerosis36. NO helps to maintain the integrity of 

the vascular endothelium by inhibiting the expression of adhesion molecules. NO inhibits 

ADP-induced human platelet aggregation, mediated by a cGMP-dependent mechanism37. 

Moreover, NO attenuates leukocyte adhesion and chemotaxis, important steps in atherogene-

sis. An enhanced leukocyte adhesion to endothelium has been observed during infusion of 

NOS inhibitors in cats. This effect was reversed by infusion of L-arginine and an antibody to 
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the adhesion complex CD11b/CD18 on the leukocyte38. Monocyte chemotaxis is inhibited by 

NO via a cGMP-dependent pathway39. These observations, along with others, strongly sug-

gest that NO blocks inflammatory cell adhesion and migration into the subintimal space, 

thereby limiting the deleterious effects of the inflammatory cascade and the subsequent de-

velopment of arteriosclerosis. 

 

Secondly, there is increasing evidence that decreased renal NO production plays a key role in 

causing and/or mediating the complex changes of renal hemodynamics associated with the 

progression of CRF16,40. It has been proposed that NO production by iNOS in medullary thick 

ascending limbs serves to maintain and regulate medullary blood flow and oxygenation41. 

There is also evidence that NO induces natriuresis by antagonizing the effect of angiotensin II 

on sodium reabsorption in proximal tubuli41 and by directly inhibiting renal tubular Na+/K+ 

ATPase42. 

 

On the other hand, the role of iNOS in modulating the development of atherosclerosis is less 

clear than should be expected from those beneficial effects of NO on vasculature. NO has 

both antioxidant and oxidant effects. The latter mainly depend on further reactions of NO 

with reactive oxygen species, producing a variety of reactive nitrogen species, which are 

powerful oxidants: NO and O2
- form peroxynitrite (ONOO-), and myeloperoxidase can pro-

duce NOx from NO2-, which is a reaction product of NO, and H2O2 
43. Both NOx and ONOO- 

are known to induce protein nitration, an important mechanism of oxidative injury44,45. Possi-

bly as a consequence of reduced iNOS-induced oxidative stress, in apoE/iNOS double-

knockout mice, a combined genetic model of iNOS deficiency and atherosclerosis, iNOS de-

ficiency was protective against atherosclerosis46. 

 

Increased NO production may thus divergently affect the progression of atherosclerosis. 

Moreover, the present findings may have implications on iNOS expression in at least two cell 

types: (1) iNOS is expressed in both VSMC and mononuclear leukocytes. The effects of PAA 

on iNOS expression in mononuclear leukocytes may therefore be extrapolated to iNOS ex-

pression in VSMC. Indeed, in several experimental models iNOS expresion in mononuclear 

cells and VSMC was found to be inducible by the same experimental procedures47-52. (2) 

Macrophages and mononuclear leukocytes are known to play an important role in the devel-

opment of atherosclerosis53. Decreased iNOS expression in these cells has consistently been 

observed and, as detailed above, may be of pathogenetic relevance54-56. Therefore, beyond the 
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extrapolation of the leukocyte findings to VSMC, the present data may also be relevant to 

iNOS expression in mononuclear cells infiltrating the vessel wall. 

 

The experiments demonstrating an inhibitory effect of PAA on iNOS expression may be rele-

vant to the clinical setting of end-stage renal failure: plasma PAA levels in end-stage renal 

failure patients as determined by NMR are similar to those completely inhibiting iNOS ex-

pression in isolated mononuclear leukocytes. This remains also true, when the percentage of 

protein-bound PAA is considered. Both in ultrafiltrate and in supernatant obtained after de-

proteinization, about 60% of total PAA were recovered, with the percentage of free PAA 

found in perchloric acid-treated samples being slightly higher, probably resulting from addi-

tonal PAA release from precipitated proteins. The mechanism whereby PAA inhibits iNOS 

expression is still open. Apparently, PAA is taken up by mononuclear leukocytes in sufficient 

amounts to be effective intracellularly. 

 

In conclusion, we demonstrated that PAA is a potent inhibitor of iNOS-expression accumulat-

ing in patients with end-stage renal failure. This mechanism may contribute to increased 

atherosclerosis and cardiovascular morbidity in CRF patients. 
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D. General conclusion and future perspectives 
 

Hypertension affects approximately one billion individuals worldwide. As the population 

ages, the prevalence of hypertension will increase even further unless broad and effective pre-

ventive measures are implemented. An increased blood pressure increases the risk for heart 

attack, heart failure, stroke and kidney disease1. 

 

The cause of essential hypertension is still unknown and the pathogenesis of essential hyper-

tension is far from being understood completely, although some vasoconstrictive factors have 

been identified. However, hemodynamic disturbances are obviously primordial. These lead to 

the modification of humoral and mechanical signalling pathways and result in vascular wall 

thickening and increased vascular tone, whereby a vicious circle is created2. Several hypothe-

ses of the pathophysiology of essential hypertension have been postulated3-5, but none of these 

hypotheses leads to a clear explanation of the pathophysiology of this disease (Chapter 

A.1.1. and A.1.2.). 

 

For clarification of essential hypertension, the knowledge of vasoconstrictive factors and 

vasoregulatory systems is essential. Thus, the factors causing an acute increase of blood pres-

sure are of great interest, as well as the mechanisms leading to a chronic increase of blood 

pressure in essential hypertension, e.g. premature arteriosclerosis and disturbances of Ca2+ 

metabolism. This thesis proposes a number of arguments in favour of the hypothesis that in 

addition to the known vasoregulatory systems and vasoconstrictive factors, still several other 

previously unknown elements, such as vasoconstrictive dinucleoside polyphosphates or in-

hibitors of the Ca2+-APTase, may contribute to essential hypertension as well (Chapter A.1.3. 

and A.1.4.). 

 

Hypertension is part of the clinical picture of chronic renal disease (Chapter A.1.5.). Its fre-

quency depends on the type of nephropathy and the stage of chronic renal disease. Whatever 

the primary renal disease, more than eighty percent of patients beginning dialysis suffer from 

hypertension, and hypertension also contributes substantially to the co-morbidities of patients 

with renal failure not yet on dialysis. Nevertheless, few of the pathophysiologic aspects of hy-

pertension in chronic renal failure patients are known, such as the hyperactivity of the renin-

angiotensin system and a decrease of the capacity to excrete sodium accompanying the de-

crease in glomerular filtration rate6. Therefore, it is of great interest to identify yet unknown 
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uremic compounds with potential pathophysiologic impact on hypertension and new strate-

gies to remove these compounds from plasma of chronic renal failure patients. Such factors 

might be active in the non-uremic population as well. But because of the continuous removal 

of the factors by the kidneys in these patients, the plasma concentration is significantly lower 

than in uremic patients, and therefore the factors cause less effects than in the uremic popula-

tion.   

 

In recent years, chromatographic and mass-spectrometric methods have improved substan-

tially (Chapter A.2. and A.3.). These changes now offer the possibility to isolate and to iden-

tify unknown biomolecules and to clarify unknown pathogenetic mechanisms. Applying these 

new possibilities to study mechanisms of hypertension has provided us new insights not only 

relating to hypertension but also to vascular regulation in general.  

 

Consequently, the first part of this thesis focuses on the identification of unknown vasocon-

strictive factors and their physiologic pathways with a potential role in vascular regulation 

(Chapter B.1.-B.6. and C.1.). The second part of the thesis deals with both the isolation and 

identification of unknown uremic solutes, the description of their relevance for hypertension 

in uremia, and the possibilities to influence their concentration (Chapter C.1.-C.4.). 

 

The thesis initially focuses on the development of a chromatographic assay system for the 

baseline separation of diadenosine polyphosphates using new chromatographic methods 

(Chapter B.1.)7.  

 

Diadenosine polyphosphates are known to affect vascular tone via purinoceptors and may be 

involved in the regulation of blood pressure. Modulating actions of diadenosine phosphates 

are demonstrated in numerous vascular models influencing most of the physiologically impor-

tant elements of blood pressure regulation8. Mostly, the vasoactive action depends on the 

number of phosphates in the diadenosine phosphates9. Vasodilation can be observed in intact 

vessels after application of Ap2A, Ap3A and Ap4A whereas Ap5A and Ap6A elicit contraction. 

Vasoconstriction induced by the diadenosine phosphates in vascular smooth muscle cells is 

mediated by an increase in intracellular free Ca2+ 10. In vivo, intravenous injection of Ap4A 

lowered blood pressure whereas injections of Ap5A and Ap6A caused a prolonged increase in 

blood pressure. In blood, in contrast to ATP, diadenosine phosphates are relatively long-lived 

molecules, suggesting that the action is characterized by a longer time span11. In a similar 
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manner to the vasoconstrictor angiotensin II, diadenosine phosphates also act as mitogens12. It 

can be assumed that diadenosine phosphates may be involved in circulatory pathophysiologi-

cal events including hypertension and atherosclerosis8. It is therefore conceivable that a reli-

able determination method is needed which allows a clear separation of ApnA in an accept-

able time span. We sought to develop new determination methods showing such characteris-

tics. 

 

By screening a combination of different chromatographic media and chromatographic condi-

tions, we were able to develop a determination method for analysis of dinucleoside polyphos-

phate based on a monolithic reversed-phase chromatography column (Chapter B.1.). This 

assay is characterized by (a) high sensitivity and high resolution of the chromatography and 

(b) compatibility with mass-spectrometric methods. Therefore, further dinucleoside poly-

phosphate analytic assays should be based on monolithic silica C18 columns. Altogether, this 

method offers the possibility of isolation and quantification of yet unknown dinucleoside 

polyphosphates.  

 

We used this innovative assay system to show that diadenosine polyphosphates are present in 

human plasma in µmolar concentrations (Chapter B.2.)13. These findings are of relevance in 

view of the fact that these biomolecules are involved in manifold ways in the regulation of 

cardiovascular functions, and possibly other processes are modulated by purinergic signal 

transduction in humans. 

 

On the one hand, the role of extracellular diadenosine polyphosphates in physiology has been 

evaluated in a number of recent studies14-16, and our study (Chapter B.2.)13 demonstrates that 

diadenosine polyphosphates occur in human plasma. But on the other hand, an endocrine or-

gan in humans releasing diadenosine polyphosphates had not yet been identified. Findings in 

animal experiments suggested that adrenal glands might be a source of diadenosine polyphos-

phates17-20. Therefore, we quantified the diadenosine polyphosphate concentration in adrenal 

veins, vena cava inferior, vena cava superior and vena suprarenalis. Since in blood from adre-

nal veins significantly higher diadenosine polyphosphate concentrations were measured than 

in blood from the vena cava, it can be assumed that in humans, beside platelets, the adrenal 

medulla is a source of diadenosine polyphosphates. Plasma concentrations of diadenosine 

polyphosphates quantified in this thesis are obviously sufficient to cause systemic as well as 

local vasoactive effects (Chapter B.2.)13. 
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These data are in good accordance with earlier data describing the release of Ap4A and Ap5A 

from bovine adrenal glands18. However, after the identification of the guanosine containing 

dinucleoside polyphosphates ApnG (n=3-6) and GpnG (n=3-6) in human platelets21, the ques-

tion arose, whether these substances were also released by adrenal glands. The results of a fur-

ther study show that the adrenal glands not only release the diadenosine polyphosphates Ap4A 

and Ap5A18, but also Ap2A, Ap3A and Ap6A, as well as ApnG (n=3-6) and GpnG (n=3-6) 

(Chapter B.4.)23. The identification of these dinucleoside polyphosphates emphasizes the im-

portance of dinucleoside polyphosphates because the presence of these compounds in secre-

tory granules of the adrenal medulla suggests that dinucleoside polyphosphates have not only 

local but also systemic actions. 

 

Because of the identification of the guanosine containing dinucleoside polyphosphates ApnG 

(n=3-6) and GpnG (n=3-6) in adrenal glands (Chapter B.4.)23 and the physiologic effects of 

these substances, the question arises whether these substances are also components of human 

plasma. This question cannot be completely answered yet. We assume that the adrenal glands 

release ApnG (n=3-6) and GpnG (n=3-6) into the plasma to influence physiologic and patho-

physiologic processes such as the proliferation of vascular smooth muscle cells. To clarify 

this assumption we will search in the future for these substances in plasma of healthy subjects. 

In yet unpublished pilot experiments we were already able to isolate diguanosine pentaphos-

phate (Gp5G) from human plasma. Plasma levels of Gp5G from 11 healthy young male nor-

motensive subjects were in the range of 9.5 nmol L-1. Future experiments have to clarify 

whether besides Gp5G also ApnG (with n=3-6) and GpnG (with n=3-4; 6) are components of 

the plasma.  

 

Altogether, dinucleoside polyphosphates fulfil the requirements of endocrine hormones: they 

are released by an organ (adrenal glands18,23) and the blood moves them from these organs to 

their target organs (e. g. heart or kidney24), or their target cells (e. g. vascular smooth muscle 

cells25). The physiologic and pathophysiologic functions of the target organs or target cells are 

affected by the dinucleoside polyphosphates, e.g. increasing the proliferation rate of mesan-

gial cells24 or vascular smooth muscle cells25. Next, the hypothesis that diadenosine poly-

phosphates act not only as endocrine hormones but also as paracrine hormones was consid-

ered. We evaluated whether diadenosine polyphosphates are components of the human myo-

cardial tissue (Chapter B.5.)26. The physiologic and pathophysiologic effects of diadenosine 
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polyphosphates in the cardiac tissue have been long known, e. g. the vasoconstrictive effect 

on the coronary resistance8 and on positive heart inotropy27, and the activation of P1- and P2-

purinoceptors of the left atrium28. However, only the less potent diadenosine polyphosphates 

Ap2A and Ap3A had so far been isolated from human myocardial tissue29. In the framework 

of this thesis, we were able to isolate the potent diadenosine polyphosphates Ap4A, Ap5A and 

Ap6A from human myocardial tissue. These physiologic data and the isolation and identifica-

tion of these diadenosine polyphosphates in heart tissue substantiate now the function of dia-

denosine polyphosphates as paracrine hormones influencing myocardial function and coro-

nary perfusion. 

 

During the last two decades evidence has been raised that disturbances of the endothelium 

may be one of the causes of hypertension30,31. At the site of endothelial lesions, leukocyte ad-

hesion and subsequently platelet aggregation occur, which consequently results in the release 

of vasoconstrictive substances. Also, the endothelium per se is a source of vasoregulating fac-

tors32-34. Therefore, the next concern of the thesis was to check whether endothelial cells re-

lease not only NO and endothelin but also further vasoregulatory messengers. We cultivated 

endothelial cells, stimulated these cells with different stimuli, and tested the vasoconstrictive 

properties of the resulting supernatants. During this procedure, the yet unknown dinucleoside 

polyphosphate Up4A was identified as a potent vasoconstrictive factor released by endothelial 

cells (Chapter B.3.)35. For the first time, a dinucleoside polyphosphate containing both purine 

and pyrimidine moieties was isolated from human cells. Up4A is a novel potent non-peptidic 

endothelium-derived vasoconstricting factor (EDCF). In contrast to the known peptidic 

EDCF, endothelin, only some of the physiologic effects of Up4A have yet been investigated. 

The vasoregulatory effects, plasma concentrations and the release upon endothelial stimula-

tion however strongly suggest that Up4A is a potent vasoregulator. 

 

Future studies should clarify the pathophysiologic implications of Up4A and structurally re-

lated compounds concerning the genesis of essential hypertension. Subsequent studies also 

have to show whether Up4A not only has a direct effect on the vascular tone but also affects 

the growth of vascular smooth muscle cells. An effect on vascular smooth muscle cells is 

likely because the proliferation of vascular smooth muscle cells is mediated by P2Y recep-

tors14 and Up4A stimulated P2Y receptors35. Moreover, further studies also have to clarify 

whether Up4A affects the proliferation rate of endothelial cells. In this case, Up4A has to be 

considered as an autocrine hormone. The most interesting point will be the quantification of 
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Up4A in essential hypertensive patients, in chronic renal failure patients and in healthy control 

subjects. Because of the very time-consuming quantification assay, some efforts are necessary 

to automate this assay before starting extensive clinical studies.  

 

If these studies indicate significant differences, two different ways of intervention will be pos-

sible. On the one hand, a purinoceptor antagonist for Up4A has to be developed. Presently 

some purinoceptor antagonists such as PPADS are available, but the yet available substances 

are toxic and therefore not suitable for use in humans. On the other hand, we were able to 

show in subsequent, yet unpublished pilot experiments, that an enzymatic synthesis of Up4A 

is likely. After the identification of this yet unknown enzyme, a potent, non-toxic inhibitor for 

this enzyme should be generated. This inhibitor will lead to a decrease of the Up4A plasma 

concentration. A comparable approach has already been successful: the inhibition of the an-

giotensin-II synthesis by angiotensin-converting-enzyme (ACE) inhibitors leads to a signifi-

cant blood pressure decrease in hypertensive patients. 

 

From the foregoing, it is obvious that apart from the peptides and nucleotides, which are 

known vasoregulatory messengers, there are several other as yet unknown moieties, which are 

also intimately involved in the generation of hypertension. These messengers may be secreted 

by organs or organ systems such as the adrenal glands, the myocardial tissue, or endothelial 

cells. However, these messengers may also be released by circulating blood cells such as the 

mononuclear leukocytes. Therefore, to gain more insight into the pathogenesis of hyperten-

sion, deciphering the mononuclear leukocyte secretome may be especially helpful. A link has 

been demonstrated between inflammation and hypertension36 and vascular damage4. To con-

tribute to the identification of the mononuclear leukocyte secretome, we isolated mononuclear 

leukocytes from human blood and stimulated them with different stimuli. We were able to 

identify Ang-II in the mononuclear leukocyte secretome (Chapter B.6.). Ang II is obviously 

not solely produced by the classical renin-angiotensin-pathway37,38 and locally in tissues39-41, 

but is obviously also produced by corpuscular elements of streaming blood. The Ang-II re-

lease determined in this study is sufficient to stimulate angiotensin receptors, to contribute to 

plasma Ang II concentration and to elicit vasoconstrictive effects, and may therefore contrib-

ute to the pathogenesis of hypertension. 

 

While the first part of this thesis focuses on isolation, identification and characterisation of 

vasoregulatory hormonal messengers (Chapter B.1.-B.6.), the second part of the thesis deals 
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with potentially hypertensive agents in chronic renal failure patients (Chapter C.1.–C.4.). 

This effort is relevant in view of the frequent presence of hypertension in renal failure, which 

is the origin of accelerated cardio-vascular damage and further deterioration of kidney func-

tion. Further identification of agents provoking hypertension might be useful in developing 

specific preventive therapeutic means. 

 

There were some hints in the mass-spectra of the reversed-phase chromatography fractions 

from the supernatants of stimulated mononuclear leukocytes (Figure 2. A of Chapter B.6) 

indicating that these fractions not only contain Ang-II but also further vasoactive peptides. 

We extended our attempts to identify these unknown peptides, and subsequently we were able 

to identify a novel lymphocyte-derived vasoactive angiotensin peptide des[Asp1]-[Ala1]-Ang 

II, which differs from Ang II in Ala1 instead of Asp1 (Chapter C.1.).  

 

Des[Asp1]-[Ala1]-Ang II had a same affinity to the AT1 receptor as Ang II, but was a weaker 

vasoconstrictor, suggesting only partial AT1 receptor agonism. In addition, this compound 

showed a higher AT2 receptor affinity than genuine Ang II. In chronic renal failure patients 

the des[Asp1]-[Ala1]-Ang II / Ang II ratio dramatically increased in comparison to healthy 

control subjects. Further investigations now have to clarify the importance of this peptide in 

chronic renal failure patients. Moreover, it has to be investigated whether des[Asp1]-[Ala1]-

Ang II is also produced by cell systems involved in the classical renin-angiotensin-pathway or 

locally in tissues. 

 

A disturbance of Ca2+-signaling is one of the important causes for a blood pressure increase. 

In patients with chronic renal failure the intracellular calcium amount is significantly in-

creased42. In principle, the intracellular calcium concentration increase may be caused by two 

different mechanisms: (1) an increased calcium influx into the intracellular space via calcium 

channels or (2) a decrease of calcium efflux from the intracellular space into the extracellular 

space via Ca2+-ATPase. Therefore, the identification of substances causing a decrease of Ca2+-

ATPase activity is of great importance and interest for chronic renal failure patients. We were 

able to identify and quantify one of these Ca2+-ATPase inhibitors as p-hydroxy-hippuric acid 

(Chapter C.2.)43. Conventional hemodialysis decreases the p-hydroxy-hippuric acid plasma 

concentration of chronic renal failure patients by only 53 %. Because p-hydroxy-hippuric acid 

plasma concentration in healthy control subjects is below the detection limit, the plasma of 

chronic renal failure patients obviously contains significantly increased p-hydroxy-hippuric 
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acid plasma concentrations, even after hemodialysis. Elevated p-hydroxy-hippuric acid 

plasma concentration very likely leads to a chronic Ca2+-ATPase inhibition in these patients. 

Therefore, the permanently increased p-hydroxy-hippuric acid plasma concentration may con-

tribute to hypertension of chronic renal failure patients. Further studies should focus on modi-

fications of renal replacement strategies in such a way that p-hydroxy-hippuric acid is re-

moved more adequately. Possibly, removal is hampered by the protein binding of this mole-

cule. This might be a clue in developing removal techniques based on e.g. adsorption effects. 

 

A further reason for hypertension and arteriosclerosis in chronic renal failure may be de-

creased nitric oxide (NO) production in cells and plasma. In general, NO prevents atherogene-

sis and inflammation in vessel walls by inhibition of cell proliferation and cytokine-induced 

endothelial expression of adhesion molecules and proinflammatory cytokines. A large NO 

amount is produced by the iNOS enzyme. We were able to show that phenylacetic acid is a 

potent inhibitor of the iNOS activity and that this substance accumulates in plasma of chronic 

renal failure patients (Chapter C.4.)44. By conventional hemodialysis only 47.3 % of the 

plasma phenylacetic acid is removed. The phenylacetic acid concentration in renal failure also 

after hemodialysis is sufficient to noticeably decrease the iNOS activity and to decrease the 

NO amount in these patients, hence also inhibiting the protective effect of NO on the endothe-

lium. 

 

Because of the insufficient removal by dialysis of the uremic toxins p-hydroxy-hippuric acid 

and phenylacetic acid, future investigations have to focus on the modification of hemodialysis 

procedures to increase the removal rate of these uremic toxins and on the development of al-

ternative procedures. The use of specific adsorption materials for the uremic toxin removal 

may be an alternative to the present dialysis approaches. Pilot experiments with adsorption 

materials are already performed in the network of the European Uremic Toxin Working 

Group (EUTox), of which our research group is also a member. Thereby, the protein binding 

of these molecules might offer a clue for the nanotechnologic development of adsorptive sys-

tems. 

 

Alternatively, these protein bound uremic toxins should be removed by modification of the 

current standard dialysis timeframes. This can be achieved by prolonged hemodialysis. There 

is a constant ratio of protein-bound and protein-unbound uremic toxins according to the mass-

action expression. If uremic toxins are continuously removed from the blood into the dialysate 
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and the hemodialysis period is increased, the uremic toxin plasma concentration is subse-

quently decreased. 

 

In the future, studies have to be extended to evaluate the benefit of these approaches in detail. 

In one study, we have already documented that the modification of hemodialysis conditions 

may have a distinctive effect on the concentration of the solutes, which are the subject of this 

thesis (Chapter C.3.)45. The use of different hemodialysis membranes obviously has a sig-

nificant effect on the intrathrombocytic ApnA concentration. 

 

In the framework of this thesis, some unknown substances with strong effects on the 

vasoregulatory system were isolated, identified and characterised. These identifications 

document that the human vasoregulatory system is not yet completely known. It is obvious 

that beside the well-known mechanisms, further vasoregulatory systems are essential. The iso-

lation of the substances involved in these systems provides the basis for further investigations. 

Some of the identified substances, such as the des[Asp1]-[Ala1]-Ang II, are obviously enzy-

matically synthesised, but the underlying mechanisms regulating these systems are presently 

unknown. Furthermore, the synthesis pathway of other identified substances is still unknown. 

Development of innovative therapies cannot be realised without this knowledge. Therefore, 

future investigations should be focused on detailing the underlying vasoregulatory systems of 

the identified substances. Subsequently, the investigations should focus on the development of 

innovative drugs and therapies to influence these systems. 

 

In summary, the data of this thesis indicate that (a) many yet unknown factors such as endo-

thelium derived Up4A and mononuclear leukocyte derived des[Asp1]-[Ala1]-Ang II are in-

volved in vasoregulation, (b) organs and cells such as heart cells, endothelium, adrenal glands 

and mononuclear leukocytes release as yet unknown vasoregulatory factors, and (c) that ure-

mic toxins such as phenylacetic acid and p-hydroxy-hippuric influence the vasoregulation. 

Some of these factors, tissues, cells, and metabolites were isolated and identified and their 

physiologic and pathophysiologic effects were characterized in the framework of this thesis. 

 

This thesis substantiates the hypothesis that hypertension is a disease caused by many differ-

ent factors and a fraction of these factors have been identified in the framework of this thesis. 

It is very likely that there are still many other unknown factors which have to be identified 
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before the genesis of hypertension will be sufficiently known. Each of these identifications 

offers the possibility to develop new and more appropriate therapeutic approaches. 
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