
Formaatonafhankelijke aanpassing en aflevering van multimediale data

Format-Independent Media Resource Adaptation and Delivery

Davy Van Deursen

Promotoren: prof. dr. ir. R. Van de Walle, dr. lic. W. De Neve
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2008 - 2009

ISBN 978-90-8578-287-2
NUR 980, 983
Wettelijk depot: D/2009/10.500/45

Dankwoord

“Dit stuk moet beter gemotiveerd worden.”, “Mooie locatie!”, “Vier troeven,
altijd gewonnen.”, “Wij zijn perfect complementair.”, “Ben je bereid om hier-
aan mee te werken?”, “Ik ben blij dat je terug bent.”. Het zijn slechts enkele
fragmenten die ik te horen kreeg in de voorbije drie en een half jaar, een perio-
de die toeliet om mij zowel op wetenschappelijk als op persoonlijk vlak verder
te kunnen ontwikkelen en die uiteindelijk geleid heeft tot het neerleggen van
dit proefschrift. Bij deze wil ik dan ook een aantal mensen bedanken die een
bijdrage hebben geleverd aan dit proefschrift.

In de eerste plaats wil ik mijn twee promotoren, prof. dr. ir. Rik Van de
Walle en dr. lic. Wesley De Neve, bedanken. Ik bedank Rik voor de mogelijk-
heid die hij me gegeven heeft om in 2005 als onderzoeker van Multimedia Lab
te starten en voor onze vele leerrijke gesprekken. Verder wil ik hem ook bedan-
ken omdat hij mij de kans gegeven heeft om mee te werken aan verschillende
nationale en internationale onderzoeksprojecten, om mijn onderzoek voor te
stellen op internationale conferenties en om mee te werken aan Siruna. Wesley
wil ik bedanken voor de inhoudelijke bijdrage die hij, als thesisbegeleider en
als collega, tot dit proefschrift heeft geleverd. Hij heeft mij geı̈ntroduceerd in
de wetenschappelijke wereld en heeft mij de kunst van het publiceren geleerd.

Ik wens ook mijn vroegere en huidige collega’s van Multimedia Lab te
bedanken voor het creëren van een aangename werksfeer. Zij zorgden ervoor
dat ik steeds met plezier en veel motivatie kwam werken. Ik bedank in het
bijzonder degene die mijn artikels of delen van dit proefschrift hebben nage-
lezen. Hun steeds opbouwende kritiek hebben de kwaliteit van dit werk in
grote mate verhoogd. Ik bedank ook Rita Breems en Ellen Lammens voor hun
administratieve ondersteuning.

Een bijzonder woord van dank gaat uit naar Wim Van Lancker, voor zijn
bijdrage aan MuMiVA en NinSuna. Zonder hem was dit proefschrift één
hoofdstuk korter geweest. Verder wil ik ook Davy De Schrijver bedanken voor
de vele boeiende discussies over BSDL. Ik wil ook Erik Mannens bedanken
voor zijn ondersteuning en begeleiding in het kader van onderzoeksprojecten

ii

en om mij te introduceren in de wereld van W3C.
Ik bedank ook mijn familie en in het bijzonder mijn ouders voor de kansen

die zij mij gaven, alsook voor hun wijze raad en steun in mindere tijden. Ook
mijn vrienden bedank ik voor de ontspannende momenten die zij mij bezorg-
den.

Tot slot, en zeker niet het minst, wil ik Elke bedanken. Ondanks het feit
dat ze het zelf niet altijd gemakkelijk had, heeft zij mij steeds gesteund en kon
ik altijd op haar rekenen. Tijdens de vele leerrijke buitenlandse reizen die ik
mocht maken in het kader van dit proefschrift (en waar zij mij altijd moest
missen) is zij nooit uit mijn gedachten geweest. Ik kijk dan ook reikhalzend
uit naar het vervolg van onze reis door het leven.

Davy Van Deursen
5 maart 2009

Summary

The multimedia landscape is characterized by a growing amount of multime-
dia content. This is due to ongoing digitization processes by public and private
broadcasters, as well as to the growing popularity of user-generated content.
There is also a large diversity in end-user devices that are able to consume
multimedia. For instance, these devices differ in terms of device characteris-
tics such as screen size, processing power, and battery life, and in terms of net-
work characteristics, such as bandwidth, jitter, and error robustness. Further-
more, end-users with specific preferences often want to consume personalized
versions of multimedia content (e.g., an end-user only requesting scenes sat-
isfying his/her interests). Finally, the number of multimedia coding standards
(e.g., MPEG-1 Audio, H.264/AVC, and JPEG2000) and multimedia delivery
formats (e.g., MP4, Ogg, and RTP) has grown significantly over the last few
years. Hence, the efficient delivery of multimedia content in today’s world of
ubiquitous multimedia consumption is an important technological challenge.

In order to obtain Universal Multimedia Access and thus providing (per-
sonalized) multimedia content anywhere, at anytime, and on any device, a
transparent multimedia content adaptation and delivery approach is needed. In
this context, metadata, which are generally defined as ‘data about data’, play
a crucial role. Multimedia metadata enable the effective organization, access,
and interpretation of multimedia content. Therefore, metadata have an increas-
ingly important role in bringing order to the growing amount of available mul-
timedia content. In this dissertation, we tackle the aforementioned problems by
using format-independent content adaptation and delivery techniques. Further-
more, these techniques provide a seamless integration with today’s manifold
available multimedia metadata schemes.

In this dissertation, we first give an overview of existing format-
independent content adaptation techniques. These techniques rely on XML-
based Bitstream Syntax Descriptions (BSDs), which contain information about
the high-level structure of a media bitstream. They typically apply a three-step-
based adaptation chain to obtain format-independent adaptation, i.e., BSD gen-

iv

eration, BSD transformation, and adapted bitstream generation. Rather than
directly operating on the binary bitstream, the actual adaptation is performed
on the BSD level, enabling the use of already existing XML transformation
technologies such as XSLT or STX. Note that a BSD is not meant to replace
the original binary data; it rather acts as an additional layer, similar to metadata.
Further, we discuss how a BSD-based content adaptation chain can be imple-
mented by means of generic, coding-format independent software modules.
Examples of existing format-independent adaptation techniques following the
three-step-based approach are MPEG-B BSDL, MPEG-21 gBS Schema, XFla-
vor, and BFlavor.

One important restriction of BSD-driven content adaptation techniques is
that they can only perform high-level adaptation operations. Removing par-
ticular data blocks or modifying the value of certain syntax elements are con-
sidered as high-level adaptation operations. We identify two main target ap-
plications for BSD-driven content adaptation techniques, i.e., structural and
semantic adaptations. Structural adaptations are typically performed to adapt
media bitstreams by exploiting their scalability properties in order to meet the
terminal and network characteristics of the end-user. Hence, structural adapta-
tions are possible on condition that the media bitstreams consist of a number
of scalability layers. Semantic adaptations are high-level adaptations based
on semantic information about the multimedia content (e.g., selection of spe-
cific temporal segments that are of interest to the user). In this dissertation,
we focus on semantic adaptations along the temporal axis. Hence, semantic
adaptations are possible on condition that media bitstreams are provided with
random access points that are occurring in a regular way.

Although format-independent content adaptation techniques seem to be
very promising in the context of multimedia delivery in UMA environments,
we have identified a number of remaining challenges:

• efficient and format-independent generation of generic Bitstream Syntax
Descriptions (gBSDs);

• format-independent definition and implementation of high-level adapta-
tion operations;

• integration with metadata standards;

• design and implementation of a fully integrated adaptation platform,
based on format-independent content adaptation;

• format-independent packaging of adapted multimedia content;

• reduction of the structural metadata overhead.

v

The first challenge we tackle is specific for MPEG-21 gBS Schema, i.e.,
efficient and format-independent generation of generic Bitstream Syntax De-
scriptions (gBSDs). Within the MPEG-21 DIA specification, only the gBS
Schema is described, together with the behaviour of a gBSDtoBin parser. This
implies that a gBSD may be generated in any proprietary way. Therefore,
we propose gBFlavor, which is an efficient tool for the generation of gBSDs
in a format-independent manner. An existing format-independent solution is a
two-step approach as currently proposed in the scientific literature, i.e., format-
specific BSD generation, followed by a transformation in a gBSD. However,
the latter solution requires knowledge of two different technologies (i.e., BSD
generation and BSD-to-gBSD transformation). Furthermore, often more de-
tail is needed in the BSD than in the resulting gBSD, implying a decrease
in execution speed of the format-specific BSD generation process. These de-
tailed BSDs are necessary for the BSD-to-gBSD transformation to produce an
application-specific gBSD.

gBFlavor makes it possible to automatically generate a format-specific
parser that is able to produce an application-specific gBSD for a given bit-
stream. Such a parser is generated by the gbflavorc translator, which takes
as input a gBFlavor code. We propose the specification for this code, which
describes the high-level structure of a particular coding format. The gBFla-
vor specification, which is an extension of the BFlavor specification, provides
support for the addition of semantically meaningful information to gBSDs (by
means of markers). Hence, gBSDs targeting specific applications can be ob-
tained.

We compare gBFlavor with the existing two-step approach. This com-
parison allows getting an estimate of the expressive power and performance
of a gBFlavor-enabled adaptation framework. The creation of gBSDs using
gBFlavor avoids the two-step approach, since only one technology is needed
to obtain gBSDs targeting a specific application. The exploitation of the scal-
able properties of two coding formats, i.e., SVC and JPEG2000, is used as
the target application in our gBFlavor-enabled adaptation framework. Perfor-
mance results show that gBFlavor outperforms the two-step approach in terms
of execution speed.

In order to solve a number of problems with XML-driven content adap-
tation (i.e., lack of support for defining high-level adaptation operations in a
format-independent way and an ad-hoc integration with content metadata), we
present a new format-independent adaptation technique, called model-driven
content adaptation. It relies on a model for media bitstreams that takes into
account the structural metadata, content metadata, and scalability information.
The model is implemented using the Web Ontology Language (OWL). Ex-

vi

isting coding formats are mapped to the structural part of the model, while
existing metadata standards can be linked to the content metadata model. Our
new adaptation technique is based on executing SPARQL Protocol And RDF
Query Language (SPARQL) queries over instances of the model for media
bitstreams.

A comparison is made between model-driven content adaptation and ex-
isting format-independent and format-specific content adaptation techniques
using different criteria. Compared to XML-driven content adaptation, advan-
tages of model-driven content adaptation are the low amount of knowledge
needed to define adaptation operations and the seamless integration with con-
tent metadata. Furthermore, both techniques have a comparable performance
in terms of execution speed.

Next, we introduce two multimedia delivery platforms relying on format-
independent software modules: MuMiVA and NinSuna. MuMiVA tackles the
diversity in the current multimedia landscape by streaming multimedia con-
tent that is adapted according to the constraints of a certain usage environment.
The multimedia content is customized using XML-driven content adaptation
engines which, in their turn, use MPEG-B BSDL and MPEG-21 gBS Schema.
We discuss MuMiVA’s architecture and functioning, and elaborate on its ex-
tensibility features. The platform is evaluated using two different adaptation
operations (i.e., exploitation of temporal scalability and shot selection) applied
to two different coding formats (i.e., MPEG-4 Visual and H.264/AVC). We can
conclude that the performance of MuMiVA in terms of CPU usage is not only
dependent on the adaptation operation and coding format, but also on the level
of detail of the (g)BSDs used.

NinSuna is a format-independent multimedia content adaptation and de-
livery platform that provides solutions for the shortcomings of MuMiVA, i.e.,
interoperability problems of XML-driven content adaptation and the lack of
a generic multimedia delivery solution. NinSuna is based on our model for
media bitstreams. It provides support for a seamless integration of adaptation
operations and content metadata, and supports format-independent packaging
of multimedia content. Multimedia adaptation is performed by selecting and
adapting portions of the structural metadata using SPARQL. Multimedia pack-
aging is obtained by encapsulating the selected and adapted structural metadata
within a specific delivery format. This packaging process is implemented us-
ing XML transformation filters and MPEG-B BSDL. We evaluate the NinSuna
platform by enabling the user to select news fragments matching his/her spe-
cific interests and usage environment characteristics. The multimedia content,
encoded with H.264/AVC and AAC, can be delivered through RTP or MP4 ac-
cording to the choice of the user. Both the generation of the structural metadata

vii

and the adaptation and delivery of news fragments can occur in real time. The
performance of the media adaptation and delivery steps in terms of memory
usage and latency depends on the delivery format.

To conclude, we have shown that format-independent media resource
adaptation and delivery is feasible in practice. Multimedia content can be
adapted and delivered in real-time using a feasible amount of memory. The
generation of the structural metadata, which is less time-critical than the actual
adaptation and delivery, is also characterized by reasonable execution times
and memory consumption. Furthermore, in order to prove the practicability
of format-independent content adaptation and delivery techniques in real-life
scenarios, two fully integrated format-independent multimedia content adap-
tation and delivery platforms are developed. We hope that this dissertation
convinced the reader that within the wide range of multimedia adaptation tech-
niques, there is room for format-independent content adaptation. Furthermore,
we also hope that this dissertation provides the necessary knowledge needed
to deploy format-independent adaptation techniques in real-world multimedia
applications.

viii

Samenvatting

Het multimedialandschap wordt gekenmerkt door een toenemende hoeveel-
heid van multimediale data. Dit komt door het digitaliseren van multimedia
door openbare en private omroepen, alsook door op de groeiende populari-
teit van user-generated content. Er is ook een grote diversiteit in de appara-
ten die in staat zijn om multimedia af te spelen. Deze apparaten verschillen
bijvoorbeeld in technische specificaties zoals schermgrootte, processorkracht
en de levensduur van de batterij, maar ook in netwerkkarakteristieken zoals
bandbreedte, jitter en foutrobuustheid. Bovendien hebben eindgebruikers vaak
specifieke voorkeuren en vragen ze bijgevolg gepersonaliseerde versies op van
de beschikbare multimediale data. Ten slotte is het aantal codeerformaten (bv.
MPEG-1 Audio, H.264/AVC en JPEG2000) en het aantal afleveringsformaten
(bv. MP4, Ogg en RTP) aanzienlijk toegenomen in de afgelopen jaren. Van-
daar dat de efficiënte aflevering van multimediale data in de huidige wereld
van alomtegenwoordige multimedia consumptie een belangrijke technologi-
sche uitdaging is.

Om universele multimedia toegang te bekomen, en dus (gepersonaliseer-
de) multimediale data overal, op elk moment en op elk apparaat voorzien, is
er een transparante aanpak nodig voor de aanpassing en aflevering van multi-
media. In deze context speelt metadata, welke in het algemeen gedefinieerd
wordt als ‘gegevens over gegevens’, een cruciale rol. Metadata zorgt voor de
effectieve organizatie, de toegankelijkheid en de interpretatie van multimedi-
ale data. Daarom krijgt metadata een steeds belangrijkere rol in het ordenen
en organizeren van de groeiende hoeveelheid beschikbare multimediale data.
In dit proefschrift pakken we de eerder genoemde problemen aan met behulp
van formaatonafhankelijke technieken voor de aanpassing en aflevering van
multimediale data. Bovendien zijn deze technieken vlot geı̈ntegreerd met de
veelvuldig voorkomende metadataschema’s.

In deze dissertatie geven we eerst een overzicht van bestaande formaat-
onafhankelijke aanpassingstechnieken. Deze gebruiken XML-gebaseerde bit-
stroomsyntaxbeschrijvingen (Eng. Bitstream Syntax Descriptions; BSDs),

x

welke informatie bevatten over de hoogniveaustructuur van een binaire me-
diabron. Dergelijke technieken bestaan typisch uit drie stappen om formaaton-
afhankelijke aanpassing te bekomen: BSD-generatie, BSD-transformatie en de
generatie van de aangepaste binaire mediabron. In plaats van rechtstreeks op
de binaire mediastroom te werken, wordt de werkelijke aanpassing uitgevoerd
op het niveau van de BSD zodat bestaande XML-transformatietechnologieën
zoals XSLT of STX gebruikt kunnen worden. Merk op dat een BSD niet be-
doeld is ter vervanging van de oorspronkelijke binaire mediabron, maar veeleer
als een extra laag, vergelijkbaar met metadata. Verder bespreken we hoe een
BSD-gebaseerde aanpassing van mediabronnen kan geı̈mplementeerd worden
door middel van generieke, codeerformaatonafhankelijke software modules.
Voorbeelden van bestaande formaatonafhankelijke aanpassingstechnieken die
de driestappenaanpak gebruiken zijn MPEG-B BSDL, MPEG-21 gBS Sche-
ma, XFlavor en BFlavor.

Eén belangrijke beperking van de BSD-gebaseerde aanpassingstechnieken
is dat ze enkel hoogniveau-aanpassingsoperaties kunnen uitvoeren. Het ver-
wijderen van bepaalde datablokken of het wijzigen van de waarde van bepaal-
de syntaxelementen worden beschouwd als hoogniveau-aanpassingsoperaties.
Wij hebben twee belangrijke toepassingen geı̈dentificeerd voor BSD-
gebaseerde aanpassingstechnieken: structurele en semantische aanpassingen.
Structurele aanpassingen worden doorgaans uitgevoerd om mediabronnen aan
te passen zodat ze voldoen aan de beperkingen van een gebruikersomgeving.
Structurele aanpassingen zijn echter maar mogelijk op voorwaarde dat de me-
diabronnen uit een aantal schaalbaarheidslagen bestaan. Semantische aanpas-
singen zijn hoogniveau-aanpassingen op basis van semantische informatie over
de mediabron (bv. de selectie van specifieke temporele segmenten waar de
eindgebruiker interesse voor heeft). In dit proefschrift hebben we ons gericht
op semantische aanpassingen langs de temporele as. Vandaar dat semantische
aanpassingen enkel mogelijk zijn op voorwaarde dat de mediabronnen voor-
zien zijn van regelmatig voorkomende toegangspunten.

Ondanks het feit dat formaatonafhankelijke aanpassingstechnieken veelbe-
lovend lijken in de context van universele multimedia toegang hebben we toch
een aantal resterende uitdagingen geı̈dentificeerd:

• efficiënte en formaatonafhankelijke generatie van generieke bitstroom-
syntaxbeschrijvingen (Eng. generic Bitstream Syntax Descriptions;
gBSDs);

• formaatonafhankelijke definitie en implementatie van hoogniveau-
aanpassingsoperaties;

• integratie met metadatastandaarden;

xi

• ontwerp en implementatie van een volledig geı̈ntegreerd aanpassings-
platform, gebaseerd op formaatonafhankelijke aanpassingstechnieken;

• formaatonafhankelijke verpakking van aangepaste multimediale data;

• beperking van de structurele metadata kost.

De eerste uitdaging die we aanpakken is specifiek gericht op MPEG-21
gBS-schema: efficiënte en formaatonafhankelijke generatie van generieke bit-
stroomsyntaxbeschrijvingen. In de MPEG-21 DIA specificatie wordt alleen
het gBS Schema beschreven, samen met het gedrag van een gBSDtoBin parser.
Dit impliceert dat het generatieprocess van een gBSD niet vastgelegd is. Daar-
om stellen we gBFlavor voor, een efficiënte tool voor de generatie van gBSDs
op een formaatonafhankelijke manier. Een bestaande formaatonafhankelijke
oplossing is een tweestappenaanpak, zoals voorgesteld in de wetenschappelij-
ke literatuur: formaatspecifieke BSD-generatie, gevolgd door een transforma-
tie in een gBSD. Echter, de laatste oplossing vereist kennis van twee verschil-
lende technologieën (BSD-generatie en BSD-naar-gBSD-transformatie). Bo-
vendien zijn vaak meer details nodig in de BSD dan in de resulterende gBSD,
wat resulteert in een daling van de uitvoeringssnelheid van het formaatspecifie-
ke BSD-generatieproces. Deze gedetailleerde BSD’s zijn nodig voor de BSD-
naar-gBSD-transformatie om een applicatiespecifieke gBSD te bekomen.

gBFlavor maakt het mogelijk om automatisch een formaatspecifieke par-
ser te genereren die in staat is om een applicatiespecifieke gBSD te produ-
ceren voor een bepaalde mediabron. Deze parser wordt gegenereerd door de
gbflavorc-vertaler, op basis van een gBFlavor code. Deze code beschrijft de
hoogniveaustructuur van een bepaald codeerformaat. In dit proefschrift stellen
we de specificatie op voor deze code. De gBFlavor-specificatie is een uitbrei-
ding van de BFlavor-specificatie en biedt ondersteuning voor het toevoegen
van semantische informatie aan gBSDs (door middel van markers). Op die
manier kunnen gBSDs bekomen worden die gericht zijn op specifieke toepas-
singen.

We vergelijken gBFlavor met de bestaande tweestappenaanpak. Deze ver-
gelijking staat ons toe om een schatting te maken van de expressieve kracht en
performantie van een aanpassingsraamwerk gebaseerd op gBFlavor. De crea-
tie van gBSDs gebruikmakend van gBFlavor vermijdt de tweestappenaanpak
omdat er maar één enkele technologie nodig is om applicatiespecifieke gBSDs
te creëren. Het uitbuiten van de schaalbare eigenschappen van twee codeerfor-
maten (SVC en JPEG2000) wordt gebruikt als toepassing voor het testen van
gBFlavor. Resultaten tonen aan dat gBFlavor beter presteert dan de tweestap-
penaanpak in termen van uitvoeringssnelheid.

xii

Om een aantal problemen met XML-gedreven aanpassing van multime-
diale data (meer bepaald het gebrek aan ondersteuning voor de definitie van
hoogniveau-aanpassingsoperaties op een formaatonafhankelijke manier en een
ad-hoc integratie met inhoudelijke metadata), stellen we een nieuwe formaat-
onafhankelijke aanpassingstechniek voor: model-gedreven aanpassing. De-
ze techniek is gebaseerd op een model voor mediabronnen, waarin structu-
rele metadata, inhoudelijke metadata en schaalbaarheidsinformatie beschre-
ven worden. Het model is geı̈mplementeerd met behulp van de Web Ontolo-
gy Language (OWL). Bestaande codeerformaten kunnen gelinkt worden aan
het structurele gedeelte van het model, terwijl de bestaande metadataformaten
kunnen gekoppeld worden aan het inhoudelijke metadata model. Onze nieuwe
aanpassingstechniek is gebaseerd op de uitvoering van SPARQL protocol en
RDF Query Language (SPARQL) zoekopdrachten, toegepast op instanties van
het model voor mediabronnen.

We maken een vergelijking tussen model-gedreven aanpassing en bestaan-
de formaatonafhankelijke en formaatspecifieke aanpassingstechnieken op ba-
sis van verschillende criteria. De voordelen van model-gedreven aanpassing
ten opzichte van XML-gedreven aanpassing zijn de weinige kennis die nodig
is voor de definitie van aanpassingsoperaties en de vlotte integratie met inhou-
delijke metadata. Bovendien hebben beide technieken vergelijkbare prestaties
in termen van uitvoeringssnelheid.

Vervolgens introduceren we twee platforms voor de aflevering van multi-
mediale data op basis van formaatonafhankelijke software modules: MuMiVA
en NinSuna. MuMiVA pakt de diversiteit in het huidige multimedialandschap
aan door multimediale data te stromen die aangepast is aan de beperkingen van
een gebruikersomgeving. De multimediale data wordt aangepast met behulp
van XML-gedreven aanpassingsmodules die op hun beurt gebruikmaken van
MPEG-B BSDL en MPEG-21 gBS Schema. We bespreken de architectuur en
de werking van MuMiVA, alsook de uitbreidingsmogelijkheden. Het platform
wordt geëvalueerd aan de hand van twee verschillende aanpassingsoperaties
(het uitbuiten van temporele schaalbaarheid en shotselectie) toegepast op twee
verschillende codeerformaten (MPEG-4 Visual and H.264/AVC). We kunnen
tot de conclusie komen dat de prestaties van MuMiVA in termen van CPU-
gebruik niet alleen afhankelijk zijn van de aanpassingsoperatie en het codeer-
formaat, maar ook van de mate van detail van de gebruikte (g)BSD’s.

NinSuna is een platform voor de formaatonafhankelijke aanpassing en af-
levering van multimediale data. Het platform biedt oplossingen voor de te-
kortkomingen van MuMiVA: interoperabiliteitsproblemen van XML-gedreven
aanpassing en het ontbreken van een generieke oplossing voor het afleveren
van multimediale data. NinSuna is gebaseerd op ons model voor mediabron-

xiii

nen en biedt ondersteuning voor een vlotte integratie tussen aanpassingsope-
raties en inhoudelijke metadata. Verder ondersteunt NinSuna ook formaaton-
afhankelijke verpakking van multimediale data. Aanpassing van multimediale
data wordt bekomen door het selecteren en aanpassen van delen van de struc-
turele metadata met behulp van SPARQL. Aflevering van multimediale data
wordt bekomen door het verpakken van de geselecteerde en aangepaste struc-
turele metadata in een specifiek afleveringsformaat. Deze verpakking wordt
uitgevoerd met behulp van XML-transformatiefilters en MPEG-B BSDL. We
evalueren het NinSuna platform door de eindgebruiker nieuwsfragmenten te
laten selecteren die voldoen aan zijn/haar interesses en gebruikersomgeving.
De multimediale data, gecodeerd met H.264/AVC en AAC, kan worden afge-
leverd via RTP of MP4 volgens de keuze van de gebruiker. Zowel de generatie
van de structurele metadata en de aanpassing en aflevering van nieuwsfrag-
menten kan gebeuren in ware tijd. De prestaties van de aanpassings- en afle-
veringsstappen in termen van geheugengebruik en latentie hangen af van het
afleveringsformaat.

We hopen met dit proefschrift te hebben aangetoond dat formaatonafhan-
kelijke aanpassing en aflevering van multimediale data haalbaar is in de prak-
tijk. Multimediale data kan worden aangepast en afgeleverd in ware tijd, met
een aanvaardbaar geheugengebruik. De generatie van structurele metadata,
die minder tijdskritisch is dan de werkelijke aanpassing en aflevering, wordt
ook gekenmerkt door redelijke uitvoeringstijden en geheugenverbruik. Om
de uitvoerbaarheid te bewijzen van formaatonafhankelijke aanpassing en af-
levering van multimediale data in werkelijke scenario’s werden twee volledig
geı̈ntegreerde formaatonafhankelijke platforms ontwikkeld voor de aanpassing
en aflevering van multimediale data. Wij hopen dan ook met dit proefschrift de
lezer ervan overtuigd te hebben dat, binnen het brede scala van aanpassings-
technieken voor multimediale data, er ruimte is voor formaatonafhankelijke
technieken. Verder hopen we ook dat dit proefschrift de nodige kennis aanle-
vert die nodig is voor het implementeren van formaatonafhankelijke aanpas-
singstechnieken in hedendaagse multimediatoepassingen.

xiv

List of abbreviations

AAC Advanced Audio Coding
AAC SSR AAC Scalable Sample Rate
ADTE Adaptation-Decision Taking Engine
APE Adaptation and Packaging Engine
AVC Advanced Video Coding
BBL Bitstream Binding Language
BiM Binary MPEG format for XML
BFlavor BSDL + XFlavor
BS Schema Bitstream Syntax Schema
BSD Bitstream Syntax Description
BSDL Bitstream Syntax Description Language
CMML Continuous Media Markup Language
CMS Content Management System
COMM Core Ontology for MultiMedia
CPU Central Processing Unit
DANAE Dynamic and distributed Adaptation of scalable multimedia

coNtent in a context-Aware Environment
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering
RDF DAWG RDF Data Access Working Group
DIA Digital Item Adaptation
DIS Digital Item Streaming
DOM Document Object Model
DSS Darwin Streaming Server
EBNF Extended Backus-Naur Form
FGS Fine-Grained quality Scalability
FMO Flexible Marcroblock Ordening
FOAF Friend Of A Friend
FLAVOR Formal Language for Audio-Visual Object Representation
gBFlavor gBS Schema + BFlavor
gBS Schema generic Bitstream Syntax Schema
gBSD generic Bitstream Syntax Description
GOP Group Of Pictures
GRDDL Gleaning Resource Descriptions from Dialects of Languages
HD High Definition

xvi

HTTP HyperText Transport Protocol
IDR Instantaneous Decoding Refresh
IIS Internet Information Server
I/O Input/Output
ISIS Intelligent Scalability for Interoperable Services
Java EE Java Enterprise Edition
JPEG Joint Photographic Experts Group
LALR Look-Ahead Left to right, Rightmost derivation
MFWG Media Fragments Working Group
MMSem Multimedia Semantics Incubator Group
MP3 MPEG-1 Audio Layer 3
MPEG Moving Picture Experts Group
MPML MPEG Video Markup Language
MuMiVA Mutare, Mittere, Videre, Audire
MXF Material eXchange Format
N3 Notation 3
NAL Network Abstraction Layer
NALU NAL Unit
NinSuna NinSuna INtelligent Search framework for

UNiversal multimedia Access
OWL Web Ontology Language
P2P Peer-to-Peer
PC Personal Computer
PDA Personal Digital Assistant
POC Picture Order Count
PPS Picture Parameter Set
RAP Random Access Point
RAU Random Access Unit
RDBMS Relational Data Base Management System
RDF Resource Description Framework
RIF Rule Interchange Format
ROI Region Of Interest
RTP Real-time Transport Protocol
RTSP Real-Time Streaming Protocol
SAX Simple API for XML
SDL Syntax Description Language
SDP Session Description Protocol
SEI Supplemental Enhancement Information
SMG Structural Metadata Generator
SNR Signal-to-Noise Ratio
SPARQL SPARQL Protocol And RDF Query Language
SPARUL SPARQL Protocol And RDF Update Language
SPS Sequence Parameter Set
STX Streaming Transformations for XML
SVC Scalable Video Coding

xvii

UMA Universal Multimedia Access
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
URL Uniform Resource Locator
VC-1 Video Codec 1
VLC Variable Length Code
VLC VideoLan Client
VOS Video Object Sequence
W3C World Wide Web Consortium
WMA Windows Media Audio
DSL Digital Subscriber Lines
XFlavor Flavor, extended with XML features
XML Extensible Markup Language
XML-WRT Word Replacing Transform for XML
XPath XML Path Language
XSLT Extensible Stylesheet Language Transformations
XWRT XML-WRT
Yacc Yet another compiler compiler

xviii

Contents

1 Introduction 1
1.1 Context . 1

1.1.1 Multimedia Content Customization 2
1.1.2 Multimedia Metadata 5

1.2 Goals and Outline . 9
1.3 Overview of Publications . 10

1.3.1 A1 Publications . 11
1.3.2 Other Publications 12

2 Format-independent content adaptation 17
2.1 Introduction . 17
2.2 Overall Approach . 18

2.2.1 Adaptation Chain . 18
2.2.2 Generic Software Modules 20
2.2.3 Advantages . 22

2.3 Target Adaptation Operations 22
2.3.1 Structural Adaptations 23
2.3.2 Semantic Adaptations 26

2.4 Existing Technologies . 27
2.4.1 MPEG-B BSDL . 29
2.4.2 MPEG-21 gBS Schema 30
2.4.3 XFlavor . 31
2.4.4 BFlavor: Optimizing MPEG-B BSDL 33

2.5 Challenges . 36
2.5.1 gBSD Generation Process 36
2.5.2 Defining Adaptation Operations 36
2.5.3 Integration with Metadata Standards 37
2.5.4 Fully Integrated Description-driven Adaptation Plat-

forms . 38

xx CONTENTS

2.5.5 Combining Adaptation and Packaging in Coding-
format Independent Environments 39

2.5.6 Structural Metadata Overhead 39
2.6 Conclusions and Original Contributions 40

3 gBFlavor 43
3.1 Introduction . 43
3.2 gBS Schema . 44

3.2.1 Functioning . 44
3.2.2 gBS Schema in Practice 47
3.2.3 Generation of gBSDs 47

3.2.3.1 Using Dedicated Software 48
3.2.3.2 Using a Format-agnostic Approach 49

3.3 gBFlavor . 50
3.3.1 Motivation . 51
3.3.2 Overall Functioning of gBFlavor 52
3.3.3 gBFlavor versus BFlavor 53
3.3.4 gBFlavor Specification 54

3.3.4.1 High-level Syntax Code 55
3.3.4.2 Application-specific Code 61

3.3.5 Mapping between gBFlavor and MPEG-21 gBS Schema 63
3.3.5.1 Mapping of High-level Syntax Code to gBS

Schema Constructs 64
3.3.5.2 Hierarchical Changes in an Application-

specific gBSD 65
3.4 Performance Results . 67

3.4.1 gBSD Generation . 70
3.4.1.1 General Observations 70
3.4.1.2 Impact Parameters for the gBSD Generation

Process . 74
3.4.2 Transformation and Adapted Bitstream Generation . . 78

3.5 Conclusions and Original Contributions 79

4 Model-driven content adaptation 81
4.1 Introduction . 81
4.2 Problem Description . 82
4.3 Modeling Media Bitstreams 85

4.3.1 Model for Media Bitstreams 87
4.3.1.1 Structural Metadata 87
4.3.1.2 Scalability Information 89

CONTENTS xxi

4.3.1.3 Data Blocks 90
4.3.1.4 Content Metadata 91

4.3.2 The Multimedia Model in Practice 92
4.3.2.1 Mapping H.264/AVC to the Multimedia

Model . 92
4.3.2.2 Linking the Content Metadata Model to Ex-

isting Ontologies 93
4.3.2.3 The Model for Media Bitstreams versus

COMM 95
4.4 Model-driven Content Adaptation 97

4.4.1 Metadata Generation 97
4.4.2 General Workflow 99

4.4.2.1 Data Block Selection 99
4.4.2.2 Data Block Transformation 102
4.4.2.3 Data Block Binarization 105

4.5 Model-driven Content Adaptation vs. Other Techniques 105
4.6 Performance Measurements 110

4.6.1 Application Scenario 110
4.6.2 Experimental Results 111

4.6.2.1 Bitstream Characteristics 111
4.6.2.2 Implementation Details 111
4.6.2.3 Results . 115

4.7 Conclusions and Original Contributions 117

5 Fully integrated multimedia delivery platforms 121
5.1 Introduction . 121
5.2 MuMiVA . 122

5.2.1 MuMiVA Architecture 122
5.2.1.1 Distributed Architecture: a Global View on

MuMiVA 123
5.2.1.2 Functioning of MuMiVA 124
5.2.1.3 XML-driven Adaptation Engine 126
5.2.1.4 Strengths of the MuMiVA Platform 128

5.2.2 MuMiVA Applications 129
5.2.2.1 Shot Selection 130
5.2.2.2 Video Frame Rate Reduction 131
5.2.2.3 Combining Shot Selection and Frame Rate

Reduction 132
5.2.3 Implementation . 133
5.2.4 Performance Results 133

xxii CONTENTS

5.2.5 Shortcomings of MuMiVA 136
5.3 NinSuna . 136

5.3.1 Format-independent Multimedia Content Packaging . 137
5.3.1.1 Extension of the Model for Media Bitstreams 138
5.3.1.2 Coupling Model-driven Content Adaptation

with Multimedia Packaging 139
5.3.2 The NinSuna Platform 142

5.3.2.1 Architecture 142
5.3.2.2 Implementation 147
5.3.2.3 Performance Measurements 147

5.3.3 Limitations and Future Work 152
5.4 Synchronization . 153

5.4.1 Synchronization during XML Transformation 154
5.4.2 Synchronization during Structural Metadata Generation 157
5.4.3 Synchronization during Packaging 158

5.5 Related Work . 160
5.6 Conclusions and Original Contributions 162

6 Conclusions 165

A Syntax and BSD fragments 175
A.1 Introduction . 175
A.2 MPEG-B BSDL . 175
A.3 MPEG-21 gBS Schema . 177
A.4 XFlavor . 178
A.5 Stylesheets . 179

B Automatic generation of gBSDs using BSDL and gBFlavor 183
B.1 BSD-to-gBSD Conversion for SVC Bitstreams 183
B.2 gBFlavor Code for SVC . 185

C Multimedia model and RDF instances 191
C.1 Model for Media Bitstreams 191
C.2 RDF Instances Compliant to the Multimedia Model 196

D W3C Media Fragments Working Group 203
D.1 Introduction . 203
D.2 Media Resource Adaptation Use Case 204
D.3 Using Model-driven Content Adaptation 205

Chapter 1

Introduction

It is not the strongest of the species that survives, nor the most
intelligent, but rather the one most responsive to change.

Charles Darwin (1809 - 1882)

1.1 Context

The growth in multimedia content including collections of photos, music, and
videos has been significant in recent years. There are two major reasons for
this growth. First, many public and private broadcasters are in the process of
digitizing their complete radio and television broadcasting production process.
Thanks to this digitization process, media assets can be preserved for the fu-
ture. Furthermore, the media assets become more easily available, with many
manual or labor-intensive steps in a production process eliminated. Second,
end-users nowadays not only consume multimedia content, they have also be-
come content producers [90]. With the introduction of digital photo and video
cameras, end-users can easily produce multimedia content. Web sites such as
YouTube1 and Flickr2 offer the possibility to upload, annotate, manage, and
share this user-generated content.

Content providers want to make sure that their multimedia content can be
accessed by a broad range of devices, ranging from mobile phones over Per-
sonal Computers (PCs) to High Definition (HD) televisions. The multimedia
content is delivered using various network technologies such as Universal Mo-
bile Telecommunications System (UMTS, [140]) or broadband Digital Sub-

1http://www.youtube.com/
2http://www.flickr.com/

http://www.youtube.com/
http://www.flickr.com/

2 Introduction

Multimedia
customization

Media
bitstream
selection

Media
bitstream

adaptation

High-level
(no recoding)

Low-level
(partial or full

recoding)

Version
selection

Fragment
selection Transcoding Transmoding

Scope of this dissertation

Figure 1.1: Multimedia content customization approaches.

scriber Lines (xDSL, [52]). The tremendous diversity in end-user devices and
network technologies introduces difficulties for multimedia delivery systems.
For instance, end-user devices differ in terms of screen size, processing power,
and battery life. Network technologies may differ in terms of bandwidth, jitter,
and error robustness. Further, end-users with specific preferences often want
to obtain a personalized version of multimedia content (e.g., an end-user only
requesting scenes satisfying his/her interests). Hence, the efficient delivery of
multimedia content in today’s world of ubiquitous multimedia consumption is
an important technological challenge. It is clear that a transparent approach is
needed in order to provide multimedia content anywhere, at anytime, and on
any device. This vision is generally known as Universal Multimedia Access
(UMA, [136]).

1.1.1 Multimedia Content Customization

Multimedia content customization is an emerging field due to the above de-
scribed UMA paradigm. A multimedia content customization system tries to
meet the user needs by customizing the content based on the properties of
the usage environment and user preferences. There exists a wide variety of
multimedia customization approaches in the compressed domain, as described
by Magalhães et al. in [77]. These approaches are also visualized in Fig-
ure 1.1. Two major categories can be distinguished: media bitstream selection
and adaptation.

1.1. Context 3

Media Bitstream Selection

One possibility to meet the usage environment constraints is to choose between
several media bitstreams representing the same content. Media bitstream se-
lection, also known as simulstore or simulcast, corresponds to the identifica-
tion of the most adequate media bitstream from those available to be sent to the
end-user. The selected bitstream may already be adequate enough or may need
further adaptation using techniques discussed below. Content versions may in-
clude different media types (e.g., video or a thumbnail image), coding formats
(e.g., H.264/AVC or MPEG-2 Video), or bitstream characteristics (e.g., res-
olution or bit rate). Examples of media bitstream selection technologies are
RealNetworks’ SureStream [104], Multiple Bit Rate (MBR) profile used in the
Windows Media Series [144], Microsoft’s Smooth Streaming [86], and the al-
ternative track selection mechanism used in Quicktime [100]. Further, the Syn-
chronized Multimedia Integration Language (SMIL, [16]) provides support for
content selection based on the usage environment (e.g., language, device char-
acteristics, or available bandwidth).

Media Bitstream Adaptation

Media bitstream adaptation [18] can be divided into two categories:

• Low-level adaptation operations completely or partially recode the com-
pressed media bitstream to customize it according to the constraints of
the usage environment. Transcoding is one low-level adaptation tech-
nique, which typically uses signal-processing operations [1, 137, 146].
Examples of such operations are bit rate reduction, spatial scaling, and
coding format conversions. Transmoding is another low-level adapta-
tion technique and is used when the usage environment conditions do
not allow to consume the compressed media bitstream with its original
media type. In this case, a modality transformation can be used from
one media type to another. Examples are the conversion of text to audio,
video to key frame images, and large images to video [9].

• High-level adaptation operations typically perform the removal of high-
level bitstream structures or the modification of high-level syntax ele-
ments. Hence, compressed media bitstreams can be customized without
the need of a complete or partial recode process. Two categories of
high-level adaptation operations exist: version and fragment selection.
Applying version selection results in a tailored version of the media bit-
stream based on the constraints of the terminal and network constraints
of the end-user. Hence, the resulting media bitstream will contain the

4 Introduction

same content, but the visual quality of this content will be different (e.g.,
lower resolution or lower frame rate). On the other hand, fragment se-
lection maintains the visual quality of the content of media bitstreams,
but the resulting tailored media bitstream will contain only a subset of
the original content (e.g., a specific scene or a specific region). Hence,
with fragment selection, the media bitstream is customized based on the
semantics of the multimedia content and the users’ preferences. Note
that both high-level adaptation approaches can also be combined. For
example, scene selection can be applied together with frame rate reduc-
tion.

Scalable coding is an interesting coding technique in the context of ver-
sion selection. A scalable media resource consists of different layers provid-
ing different quality. Hence, multiple (lower quality) versions of the same
media resource can be extracted by performing simple editing operations [91].
The bitstream extraction process typically involves the removal of particular
data blocks and the modification of the values of certain syntax elements. In
contrast to transcoding, scalable coding intrinsically assumes that the content
shall be distributed through heterogeneous usage environments. This implies
that the coding format already provides several layers, decoupling coding and
adaptation processes. Examples of scalable coding formats are Scalable Video
Coding (SVC, [107]) and JPEG2000 [19]. Both standards offer several possi-
bilities to exploit scalability such as spatial, Signal-to-Noise Ratio (SNR), and
Region Of Interest (ROI) scalability.

The number of multimedia coding standards has grown significantly over
the last few years, especially with the introduction of new coding formats such
as H.264/AVC [68], SVC, AAC [62], and JPEG XR [115]. At the same time,
older standards such as H.262/MPEG-2 Video [58], MPEG-1 Audio [56], and
JPEG2000 are still present. Next to coding formats, there also exists a wide
variety of delivery formats, i.e., formats encapsulating encoded media bit-
streams (e.g., the MP4 file format [59] or the Real-time Transport Protocol
(RTP, [105])). In order to deal with current and future multimedia coding
and delivery formats, format-independent adaptation and delivery systems are
gaining importance. A format-independent adaptation technique was first in-
troduced by Amielh et al. in [3]. It is based on automatically generated XML
descriptions of the high-level structure of media bitstreams, called Bitstream
Syntax Descriptions (BSDs) or structural metadata.

As depicted in Figure 1.1, the scope of this dissertation is situated within
the category of high-level adaptation operations. Moreover, we use format-
independent adaptation techniques to implement these high-level adaptation
operations.

1.1. Context 5

1.1.2 Multimedia Metadata

Multimedia metadata enables the effective organization, access, and interpre-
tation of multimedia content. Searching, indexing, linking, sharing, and pre-
sentation of multimedia content are example applications of multimedia meta-
data. Another important application of multimedia metadata is adaptation of
multimedia content. Indeed, adaptation engines can use multimedia metadata
as input to produce adapted multimedia content. In this dissertation, we use
multimedia metadata mainly for adaptation purposes. Due to the growth of
available multimedia content in recent years, metadata has an increasingly im-
portant role in bringing order to the emerging chaos [110]. Metadata, which is
generally defined as ‘data about data’, can come in many forms:

• metadata represented as binary or textual data;

• structured or loose metadata;

• metadata which are tightly or loosely coupled with the corresponding
media resource.

The World Wide Web Consortium (W3C3) has developed a number of rec-
ommendations for the representation of metadata. Multiple standards for the
description of multimedia content developed in recent years are based on the
Extensible Markup Language (XML, [14]). XML is a simple, very flexible
text format which plays already an important role in the exchange of a wide
variety of data on the Web and elsewhere. It is designed for markup in docu-
ments of arbitrary structure. A well-formed XML document creates a balanced
tree of nested sets of open and close tags, each of which can include several
attribute-value pairs. There is no fixed tag vocabulary or set of allowable com-
binations, so these can be defined for each application. XML is used to serve a
range of purposes such as the serialization syntax for other markup languages,
semantic markup of Web pages, and uniform data exchange [41]. Further, the
XML Schema language [13, 118] provides a means for defining the structure
and content of XML, i.e., defining a grammar for XML documents. W3C has
also developed an XML transformation language, i.e., Extensible Stylesheet
Language Transformations (XSLT, [21]), which is a language for transforming
XML documents into other XML documents. Examples of XML-based meta-
data standards for the representation of multimedia content are MPEG-7 [80],
Dublin Core [43], and MPEG-21 [17].

With the introduction of the Semantic Web, enhanced interoperability
among different metadata standards is obtained thanks to a more natural repre-

3http://www.w3.org/

http://www.w3.org/

6 Introduction

URI Unicode

XML

Data interchange: RDF

RDFS

Rules:
RIF

ontology:
OWLQuery:

SPARQL

Unifying logic

Proof

Trust

Si
gn

at
ur

e
Namespaces

En
cr

yp
tio

n

Figure 1.2: The Semantic Web stack as introduced by Tim Berners-Leea.

ahttp://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

sentation of objects and relationships. The Semantic Web is an extension of the
World Wide Web that provides a common framework allowing people to share
content beyond the boundaries of applications and Web sites. It derives from
W3C director Sir Tim Berners-Lee’s vision of the Web as a universal medium
for data, information, and knowledge exchange [12]. The Semantic Web is
about two things. It is about common formats for integration and combination
of data drawn from diverse sources, while the original Web is mainly concen-
trated on the interchange of (XML-based) documents. It is also about a lan-
guage for recording how the data relates to real world objects. This language
provides formal and explicit specifications of domain models, which define
the terms used and their relationships. Such formal domain models are called
ontologies. Ontologies define data models in terms of classes, subclasses, and
properties.

At its core, the Semantic Web comprises a set of design principles and a
variety of enabling technologies. Some elements of the Semantic Web are ex-
pressed as prospective future possibilities that are yet to be implemented or
realized. Other elements of the Semantic Web are expressed in formal speci-
fications. An overview of existing Semantic Web technologies is given below.

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

1.1. Context 7

URI Unicode

XML

Data interchange: RDF

RDFS

Rules:
RIF

ontology:
OWLQuery:

SPARQL

Unifying logic

Proof

Trust

Si
gn

at
ur

e

Namespaces

En
cr

yp
tio

n

Figure 1.3: An RDF triple represented by a directed-arc diagram.

Note that these technologies can also be visualized as different layers of the
Semantic Web stack, as shown in Figure 1.2.

• One of the building blocks of the Semantic Web is the Resource De-
scription Framework (RDF, [72]). RDF introduces a graph data model.
The underlying structure of any expression in RDF is a collection of
triples, each consisting of a subject, a predicate, and an object. A set
of such triples is called an RDF graph. As shown in Figure 1.3, this
can be illustrated by a node and directed-arc diagram, in which each
triple is represented as a node-arc-node link. A node may be a Uni-
form Resource Identifier (URI) with optional fragment identifier, a lit-
eral, or a blank node. A blank node is a node that is not a URI reference
or a literal; it is just a unique node that can be used in one or more
RDF statements, but which has no intrinsic name. An arc or property
is represented by a URI reference. An example of an RDF triple is
<http://foo.com#pat> <http://foo.com#age> 24. (in
Notation 3 or N3 [119]), which states that Pat’s age is 24.

• RDF’s vocabulary description language, RDF Schema [15], is a seman-
tic extension of RDF. It provides mechanisms for describing groups of
related resources and the relationships between these resources. RDF
Schema provides the framework to describe application-specific classes
and properties. Classes in RDF Schema are much like classes in object
oriented programming languages. This allows resources to be defined as
instances of classes, and subclasses of classes.

• The Web Ontology Language (OWL, [83]) is a semantic markup lan-
guage for publishing and sharing ontologies on the World Wide Web.
OWL is developed as a vocabulary extension of RDF and is derived from
the DAML+OIL Web ontology language [70]. OWL is designed for use
by applications that need to process the content of information instead
of just presenting information to humans. OWL facilitates greater ma-
chine interpretability of Web content than that supported by XML, RDF,
and RDF Schema by providing additional vocabulary along with formal

8 Introduction

semantics. OWL has three increasingly-expressive sublanguages: OWL
Lite, OWL DL, and OWL Full.

• The SPARQL Protocol And RDF Query Language (SPARQL, [99]) is
used to express queries across diverse data sources, whether the data is
stored natively as RDF or viewed as RDF via middleware. SPARQL
contains capabilities for querying required and optional graph patterns
along with their conjunctions and disjunctions. SPARQL also sup-
ports extensible value testing and constraining queries. The results of
SPARQL queries can be results sets or RDF graphs. Furthermore, the
SPARQL protocol describes a means for conveying SPARQL queries to
a SPARQL query processing service and returning the query results to
the entity that requested them.

• The Gleaning Resource Descriptions from Dialects of Languages
(GRDDL, [24]) specification introduces markup based on existing stan-
dards for declaring that an XML document includes RDF-compatible
data and for linking to algorithms for extracting this data from the doc-
ument. Such algorithms are usually implemented by using Extensible
Stylesheet Language Transformations (XSLT, [71]).

• The Rule Interchange Format (RIF) is currently being developed by the
RIF Working Group4. The goal of this Working Group is to specify a
format for rules, so that they can be used across diverse systems. This
format (or language) will function as an interlingua into which estab-
lished and new rule languages can be mapped, allowing rules written for
one application to be published, shared, and re-used in other applications
and other rule engines.

XML and RDF each have their merits as a foundation for the Semantic
Web, but RDF provides more suitable mechanisms for applying ontology rep-
resentation languages like OWL to the task of interoperability. XML’s major
limitation is that it just describes grammars. There is no way to recognize a
semantic unit from a particular domain because XML aims at document struc-
ture and imposes no common interpretation of the data contained in the docu-
ment [41]. Note that XML is useful for data interchange between applications
that both know what the data is. However, for situations where new com-
munication partners using different domain models are frequently added (e.g.,
on the Web), using XML requires much more effort than necessary. Indeed,

4The Working Group Charter is available on http://www.w3.org/2005/rules/
wg/charter.html

http://www.w3.org/2005/rules/wg/charter.html
http://www.w3.org/2005/rules/wg/charter.html

1.2. Goals and Outline 9

original domain models must be reengineerd from the XML grammars and
the mappings between the concepts and relationships must be defined. Subse-
quently, these domain mappings must be translated using mapping procedures
such as XSLT.

When it comes to semantic interoperability, RDF has significant advan-
tages over XML: the triple structure provides natural semantic units because
all objects are independent entities. Furthermore, with RDF Schema and OWL,
which are built on top of RDF, domain models can be represented naturally, so
translation steps are not necessary (in contrast to XML). Also, techniques from
research in knowledge representation are directly applicable for defining map-
pings between two RDF descriptions. Examples of OWL-based multimedia
metadata specifications are the Core Ontology for Multimedia (COMM, [6])
and the DIG35 vocabulary5. XML, XML Schema, XSLT, RDF, RDF Schema,
OWL, and SPARQL are key technologies and are extensively used in this dis-
sertation to define new algorithms for format-independent multimedia adapta-
tion and delivery.

1.2 Goals and Outline

As described in Section 1.1, format-independent content adaptation and de-
livery is an interesting approach since it tackles the UMA paradigm, while
also taking into account the huge diversity in coding and delivery formats.
The main goal of this dissertation is to investigate the feasibility of format-
independent content adaptation and delivery in a multimedia landscape that
is characterized by heterogeneity in terms of end-user devices, network tech-
nologies, user preferences, coding formats, and delivery formats. Therefore,
we address the following topics in this dissertation:

• Efficient generation of structural metadata: format-independent content
adaptation systems rely on structural metadata (i.e., BSDs), as men-
tioned in Section 1.1. Therefore, given compressed media bitstreams,
it is important to be able to efficiently generate their structural metadata.

• Adaptation and metadata: with the increasingly important role of multi-
media metadata, it is important to know how adaptation systems (and
more specifically format-independent adaptation systems) can inter-
act with multimedia metadata. Therefore, we investigate how format-
independent content adaptation and delivery systems can bridge the gap

5Available on http://http://www.w3.org/2005/Incubator/mmsem/
XGR-vocabularies/#formal

http://http://www.w3.org/2005/Incubator/mmsem/XGR-vocabularies/#formal
http://http://www.w3.org/2005/Incubator/mmsem/XGR-vocabularies/#formal

10 Introduction

between multimedia metadata and adaptation of compressed media bit-
streams.

• Fully integrated adaptation and delivery platforms: defining algorithms
for the adaptation of media bitstreams is one thing, but it is also impor-
tant to address the design and implementation of a fully integrated mul-
timedia adaptation and delivery platform, which is based on these adap-
tation algorithms. More specifically, we want to create a fully integrated
adaptation and delivery platform that relies on format-independent con-
tent adaptation engines.

The outline of this dissertation is as follows. Chapter 2 gives the reader
an overview of format-independent content adaptation techniques. The gen-
eral principles of a format-independent content adaptation system are dis-
cussed, together with the main target applications and existing technologies.
An overview of the existing challenges of format-independent content adapta-
tion techniques is given as well. Chapter 3 introduces gBFlavor, a novel tool
to optimize format-independent content adaptation systems based on generic
Bitstream Syntax Schema (gBS Schema). An overview of the gBFlavor spec-
ification is provided, as well as an outline of the general functioning of a
gBFlavor-enabled adaptation framework. A new format-independent adapta-
tion technique, which is called model-driven content adaptation, is presented
in Chapter 4. It relies on a model for media bitstreams that takes into account
the structural metadata, content metadata, and scalability information. Further,
we elaborate on the adaptation chain of model-driven content adaptation and
evaluate our new adaptation technique against other adaptation techniques. In
Chapter 5, we address the design and functioning of two fully integrated plat-
forms for multimedia adaptation and delivery. The first platform, which is
called MuMiVA, relies on two standardized, XML-driven content adaptation
tools (i.e., MPEG-B BSDL and MPEG-21 gBS Schema) and is able to deliver
the multimedia content using the RTP/RTSP protocol. Our second platform,
which is called NinSuna, solves a number of problems of the MuMiVA plat-
form and relies on model-driven content adaptation, our new adaptation tech-
nique introduced in Chapter 4. Furthermore, NinSuna also provides support
for the packaging of adapted multimedia content in a format-independent way.
Finally, conclusions are drawn in Chapter 6.

1.3 Overview of Publications

The research activities that led to this dissertation resulted in a number of A1
publications (7 accepted, 2 submitted): three papers are published in Signal

1.3. Overview of Publications 11

Processing: Image Communication, one paper is published in Multimedia
Tools and Applications, and three papers are published in Lecture Notes in
Computer Science. Further, one paper is submitted to Multimedia Systems and
one paper is submitted to Multimedia Tools and Applications. Next to this, the
work described in this dissertation contributed to 20 papers that were presented
at international conferences.

1.3.1 A1 Publications

1. W. De Neve, D. Van Deursen, D. De Schrijver, K. De Wolf, and R. Van
de Walle. Using Bitstream Structure Descriptions for the Exploitation of
Multi-layered Temporal Scalability in H.264/AVC’s Base Specification.
Lecture Notes in Computer Science – Advances in Mulitmedia Informa-
tion Processing - PCM 2005, volume 3768, pages 641–652, November
2005

2. W. De Neve, D. Van Deursen, D. De Schrijver, S. Lerouge, K. De Wolf,
and R. Van de Walle. BFlavor: a Harmonized Approach to Media Re-
source Adaptation Inspired by MPEG-21 BSDL and XFlavor. Signal
Processing: Image Communication, 21(10):862–889, November 2006

3. D. Van Deursen, F. De Keukelaere, L. Nachtegaele, J. Feyaerts, and R.
Van de Walle. A Scalable Presentation Format for Multichannel Pub-
lishing Based on MPEG-21 Digital Items. Lecture Notes in Computer
Science – Multimedia Content Representation, Classification and Secu-
rity, volume 4105, pages 650–657, September 2006

4. P. Lambert, D. De Schrijver, D. Van Deursen, W. De Neve, Y. Dhondt,
and R. Van de Walle. A Real-Time Content Adaptation Framework for
Exploiting ROI Scalability in H.264/AVC. Lecture Notes in Computer
Science – Advanced Concepts for Intelligent Vision Systems, volume
4179, pages 442–453, September 2006

5. S. De Bruyne, D. Van Deursen, J. De Cock, W. De Neve, P. Lambert, and
R. Van de Walle. A Compressed-domain Approach for Shot Boundary
Detection on H.264/AVC Bit Streams. Signal Processing: Image Com-
munication – Special Issue on Semantic Analysis for Interactive Multi-
media Services, 23(7):473–498, August 2008

6. D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle.
gBFlavor: a New Tool for Fast and Automatic Generation of generic
Bitstream Syntax Descriptions. Multimedia Tools and Applications,
40(3):453–494, December 2008

12 Introduction

7. W. De Neve, D. Van Deursen, W. Van Lancker, Y. M. Ro, and R. Van de
Walle. Improved BSDL-based Content Adaptation for JPEG 2000 and
HD Photo (JPEG XR). Signal Processing: Image Communication – Spe-
cial Issue on Scalable Coded Media beyond Compression, 24(6):452–
467, July 2009

8. D. Van Deursen, W. Van Lancker, S. De Bruyne, W. De Neve, E. Man-
nens, and R. Van de Walle. Format-independent and Metadata-driven
Media Resource Adaptation using Semantic Web Technologies. Sub-
mitted to Multimedia Systems Journal

9. D. Van Deursen, W. Van Lancker, T. Paridaens, W. De Neve, E. Man-
nens, and R. Van de Walle. NinSuna: a Fully Integrated Platform
for Format-independent Multimedia Content Adaptation and Delivery
based on Semantic Web Technologies. Submitted to Multimedia Tools
and applications – Special Issue on Data Semantics for Multimedia Sys-
tems

1.3.2 Other Publications

1. W. De Neve, D. De Schrijver, D. Van Deursen, and R. Van de
Walle. XML-Driven Bitstream Extraction Along the Temporal Axis
of SMPTE‘s Video Codec 1. In Proceedings of the 7th International
Workshop on Image Analysis for Multimedia Interactive Services, pages
233–236, April 2006, Seoul, South Korea

2. D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle.
BFlavor: an Optimized XML-based Framework for Multimedia Content
Customization. In Proceedings of the 25th Picture Coding Symposium,
6 pages on CD-ROM, April 2006, Beijing, China

3. D. De Schrijver, W. De Neve, D. Van Deursen, J. De Cock, and R. Van
de Walle. On an Evaluation of Transformation Languages in a Fully
XML-driven Framework for Video Content Adaptation. In Proceedings
of the first International Conference on Innovative Computing, Informa-
tion and Cntrol (ICICIC06), volume 3, pages 213–216, September 2006,
Beijing, China

4. F. De Keukelaere, D. Van Deursen, and R. Van de Walle. Multichan-
nel Distribution for Universal Multimedia Access in Home Media Gate-
ways. Lecture Notes in Computer Science – Entertainment Computing -
ICEC 2006, volume 4161, pages 147–152, September 2006

1.3. Overview of Publications 13

5. W. De Neve, D. De Schrijver, D. Van Deursen, P. Lambert, and R. Van de
Walle. Real-Time BSD-Driven Adaptation Along the Temporal Axis of
H.264/AVC Bitstreams. Lecture Notes in Computer Science – Advances
in Multimedia Information Processing - PCM 2006, volume 4261, pages
131–140, November 2006

6. D. Van Deursen, D. De Schrijver, W. De Neve, and R. Van de Walle. A
Real-Time XML-Based Adaptation System for Scalable Video Formats.
Lecture Notes in Computer Science – Advances in Multimedia Informa-
tion Processing - PCM 2006, volume 4261, pages 339–348, November
2006

7. D. De Schrijver, W. De Neve, D. Van Deursen, S. De Bruyne, and R.
Van de Walle. Exploitation of Interactive Region of Interest Scalability
in Scalable Video Coding by Using an XML-driven Adaptation Frame-
work. In Proceedings of the 2nd International Conference on Auto-
mated Production of Cross Media Content for Multi-channel Distribu-
tion, pages 223–231, December 2006, Leeds, United Kingdom

8. S. De Bruyne, D. De Schrijver, W. De Neve, D. Van Deursen, and R.
Van de Walle. Enhanced Shot-Based Video Adaptation using MPEG-
21 generic Bitstream Syntax Schema. In Proceedings of the 2007 IEEE
Symposium Series on Computational Intelligence, 6 pages on CD-ROM,
April 2007, Honolulu, Hawaii

9. D. De Schrijver, W. De Neve, K. De Wolf, P. Lambert, D. Van Deursen,
and R. Van de Walle. XML-driven Exploitation of Combined Scalability
in Scalable H.264/AVC Bitstreams. In Proceedings of the 2007 IEEE
International Symposium on Circuits and Systems, pages 1521–1524,
May 2007, New Orleans, United States

10. D. De Schrijver, W. De Neve, D. Van Deursen, Y. Dhondt, and R. Van
de Walle. XML-based Exploitation of Region of Interest Scalability in
Scalable Video Coding. In Proceedings of the 8th International Work-
shop on Image Analysis for Multimedia Interactive Services, 4 pages on
CD-ROM, June 2007, Santorini, Greece

11. D. Van Deursen, D. De Schrijver, S. De Bruyne, and R. Van de Walle.
Fully Format Agnostic Media Resource Adaptation Using an Abstract
Model for Scalable Bitstreams. In Proceedings of the 2007 IEEE In-
ternational Conference on Multimedia and Expo, pages 240–243, July
2007, Beijing, China

14 Introduction

12. D. De Schrijver, W. De Neve, K. De Wolf, D. Van Deursen, and R. Van
de Walle. Exploitation of Combined Scalability in Scalable H.264/AVC
Bitstreams by Using an MPEG-21 XML-Driven Framework. Lecture
Notes in Computer Science – Advanced Concepts for Intelligent Vision
Systems, volume 4678, pages 699-710, August 2007

13. D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle. Au-
tomatic Generation of generic Bitstream Syntax Descriptions Applied to
H.264/AVC SVC Encoded Video Streams. In Proceedings of the 14th
International Conference on Image Analysis and Processing, pages 382–
387, September 2007, Modena, Italy

14. D. Van Deursen, S. De Bruyne, W. Van Lancker, W. De Neve, D. De
Schrijver, H. Hellwagner, and R. Van de Walle. MuMiVA: a Multimedia
Delivery Platform using Format-agnostic, XML-driven Content Adapta-
tion. In Proceedings of the 9th International Symposium on Multimedia,
pages 131–138, December 2007, Taichung, Taiwan

15. W. De Neve, S. Yang, D. Van Deursen, C. Kim, Y.M. Ro, and R. Van de
Walle. Analysis of BSDL-Based Content Adaptation for JPEG 2000 and
HD Photo (JPEG XR). In Proceedings of the 5th International Confer-
ence on Visual Information Engineering: Workshop on Scalable Coded
Media Beyond Compression, pages 717–722, July 2008, Xi‘an, China

16. D. Van Deursen, C. Poppe, G. Martens, E. Mannens, and R. Van de
Walle. XML to RDF Conversion: a Generic Approach. In Proceedings
of the 4th International Conference on Automated Production of Cross
Media Content for Multi-channel Distribution, pages 138–143, Novem-
ber 2008, Florence, Italy

17. D. Van Deursen, W. Van Lancker, T. Paridaens, W. De Neve, E. Man-
nens, and R. Van de Walle. NinSuna: a Format-independent Multimedia
Content Adaptation Platform based on Semantic Web Technologies. In
Proceedings of the 10th International Symposium on Multimedia, pages
491–492, December 2008, Berkeley, United States

18. E. Mannens, R. Troncy, K. Braeckman, D. Van Deursen, W. Van
Lancker, R. De Sutter, and R. Van de Walle. Automatic Information
Enrichment in News Production. In Proceedings of the 10th Interna-
tional Workshop on Image Analysis for Multimedia Interactive Services,
pages 61–64, May 2009, London, United Kingdom

1.3. Overview of Publications 15

19. D. Van Deursen, W. Van Lancker, W. De Neve, T. Paridaens, E. Man-
nens, and R. Van de Walle. Semantic Adaptation of Synchronized Multi-
media Streams in a Format-independent Way. In Proceedings of the 27th
Picture Coding Symposium, 4 pages on CD-ROM, May 2009, Chicago,
United States

20. S. Coppens, E. Mannens, D. Van Deursen, and R. Van de Walle. Se-
mantic Bricks for Performing Arts Archiving and Dissemination. Ac-
cepted for publication in the Insurance Accounting & Systems Associa-
tion (IASA) 2009 Annual Educational Conference and Business Show

16 Format-independent content adaptation

Chapter 2

Format-independent content
adaptation

All truths are easy to understand once they are discovered; the
point is to discover them.

Galileo Galilei (1564 - 1642)

2.1 Introduction

Nowadays, we face a growing diversity in devices that are able to consume
multimedia content. These devices have varying characteristics such as screen
size, processing power, and battery life. Furthermore, network technologies,
used to transport the multimedia content to the end-user, may differ in terms
of bandwidth, jitter, and error robustness. Therefore, the delivery of multime-
dia content needs to occur in a transparent way in order to obtain Universal
Multimedia Access (UMA).

Multimedia content customization is a well-established field due to the
UMA paradigm. A multimedia content customization system tries to meet the
user needs by customizing the content based on the usage environment and user
preferences. To take into account the restrictions of the usage environment, a
wide variety of multimedia customization approaches exist in the compressed
domain (as discussed in Chapter 1), such as content selection, transcoding,
scalable coding, and transmoding [18, 77]. Furthermore, user preferences can
be fulfilled by applying semantic adaptations such as dropping violent scenes
or scene-of-interest selection in video streams.

Over the last few years, the number of multimedia coding standards has

18 Format-independent content adaptation

grown significantly, particularly with the introduction of new formats such as
H.264/Advanced Video Coding (H.264/AVC, [68]), Advanced Audio Coding
(AAC, [62]), and JPEG XR [115]. At the same time, multimedia delivery
systems must still deal with a few of the older standards such as H.262/MPEG-
2 Video [58], JPEG2000 [19], and MPEG-1 Audio [56]. In order to deal with
current and future multimedia coding formats, format-independent adaptation
systems are gaining importance.

This chapter gives an overview of existing format-independent adapta-
tion techniques. Section 2.2 elaborates on the general principles of a format-
independent adaptation system. We discuss the main target adaptation opera-
tions in Section 2.3 and apply them to a number of existing coding formats.
Next, existing technologies are discussed in Section 2.4. A list of the remain-
ing challenges regarding format-independent content adaptation techniques is
identified in Section 2.5. Finally, conclusions are drawn in Section 2.6.

2.2 Overall Approach

Current coding-format independent content adaptation techniques rely on au-
tomatically generated BSDs. In the remainder of this dissertation, these tech-
niques will be further referred to as description-driven adaptation.

2.2.1 Adaptation Chain

A description-driven adaptation framework typically consists of three main
processes, which are illustrated in Figure 2.1.

(1) BSD generation: given a media bitstream, a BSD is generated containing
information about the high-level structure of the bitstream. In particular,
a BSD describes how the bitstream is organized in layers or packets
of data. Note that a BSD is not meant to replace the original binary
data; it rather acts as an additional layer, similar to metadata. Therefore,
information occurring in a BSD is called structural metadata. Also, a
BSD is typically expressed by making use of XML.

(2) BSD transformation: the actual adaptation process takes place in the
XML domain during the BSD transformation. The BSD is transformed
(e.g., by dropping descriptions of layers or packets) according to the
constraints of a given usage environment (e.g., available bandwidth and
screen resolution).

(3) Bitstream generation: the process for the generation of the adapted bit-
stream takes as input the transformed BSD and the original bitstream.

2.2. Overall Approach 19

generic logic

non-generic logic

Automatic code
generator

non-generic logic
description

non-generic logic
description

BSD
generation

<picture>
 <BL start="0" length="10"/>
 <EL start="10" length="20"/>
</picture>
<picture>
 <BL start="30" length="10"/>
 <EL start="40" length="20"/>
</picture>
<picture>
 <BL start="60" length="10"/>
 <EL start="70" length="20"/>
</picture>

<picture>
 <BL start="0" length="10"/>
</picture>
<picture>
 <BL start="30" length="10"/>
</picture>
<picture>
 <BL start="60" length="10"/>
</picture>

Bitstream
generation

BSD
transformation

Usage
environment
description

Transformed BSD

BSD
Original scalable bitstream

Adapted scalable bitstream

(1)

(2)

(3)

generic logic

non-generic logic
interpreter

Figure 2.1: Exploiting spatial scalability using a description-driven adaptation frame-
work. BL and EL denote Base Layer and Enhancement Layer respectively.

The transformed BSD is used to steer the generation of an adapted bit-
stream, which is then suited for playback in a given usage environment.
This is mainly done by copying byte ranges described in the transformed
BSD from the original bitstream to the adapted bitstream.

Thanks to the use of XML-based BSDs, already existing tools for ma-
nipulating XML documents can be used. Two different approaches exist for
transforming XML documents.

• The Document Object Model (DOM, [75]) is a standard object model
for representing XML formats in a platform- and language-independent
way. It provides an interface allowing to dynamically access and update
the content, structure, and style of XML documents. Furthermore, it
allows a straightforward mapping to the XPath model [142]. However,
this straightforward mapping implies that the full XML document needs
to be available in order to correctly evaluate the XPath expressions.

• The Simple API for XML (SAX) is a serial access parser API for XML.
SAX provides a mechanism for reading data from an XML document.

20 Format-independent content adaptation

An XML parser based on SAX acts as a stream parser, based on events
(i.e., SAX events). For each SAX event, a number of callback meth-
ods can be called when the event occurs. In contrast to DOM, SAX
parsing is unidirectional; i.e., previously parsed data cannot be re-read
without starting the parsing operation again. A workaround for this issue
is buffering SAX events that are needed further in the parsing process.
Note that, unlike DOM, there is no formal specification for SAX (the
Java implementation1 of SAX is considered to be normative). Also note
that it is not straightforward to map SAX to the XPath model because
of the streaming behaviour of SAX; only some experimental approaches
(i.e., so-called ‘streaming XPath engines’) exist [10, 95].

XML filters can be implemented by making use of a procedural program-
ming language in order to create an XML parser with additional transformation
logic. An alternative is to use a format-agnostic transformation engine that is
able to interpret different transformation stylesheets. These stylesheets use
a standardized (XML-based) language to describe the transformation logic.
Examples of such XML-based languages are Extensible Stylesheet Language
Transformations (XSLT, [71]), which relies on DOM, and Streaming Trans-
formations for XML (STX, [20]), which relies on SAX. Note that examples of
XSLT and STX stylesheets are available in Annex A.

As discussed in [39] and [42], SAX-based transformation of BSDs is
a feasible solution because of its high execution speed, low memory us-
age, and streaming capabilities. STX can be used when format-independent,
SAX-based transformation engines are desired. Hence, XML transformations
needed for performance evaluations in this dissertation are implemented by
making use of STX.

2.2.2 Generic Software Modules

As illustrated in Figure 2.2, two possibilities exist to obtain software modules
that are independent of a particular input format. The first possibility (Fig-
ure 2.2(a)) is to create a generic software module that is able to interpret a doc-
ument describing the non-generic (i.e., input-format specific) information. The
second possibility (Figure 2.2(b)) is to automatically generate a (non-generic)
software module for a particular input format. Although the obtained software
module is not generic, it is generated in a generic way. The automatic code
generator takes as input a document describing the non-generic information
and generates the desired software module.

1http://www.saxproject.org/

http://www.saxproject.org/

2.2. Overall Approach 21

generic code

non-generic code

Automatic code
generator

non-generic
information

non-generic
information

BSD
generation

<picture>
 <BL start="0" length="10"/>
 <EL start="10" length="20"/>
</picture>
<picture>
 <BL start="30" length="10"/>
 <EL start="40" length="20"/>
</picture>
<picture>
 <BL start="60" length="10"/>
 <EL start="70" length="20"/>
</picture>

<picture>
 <BL start="0" length="10"/>
</picture>
<picture>
 <BL start="30" length="10"/>
</picture>
<picture>
 <BL start="60" length="10"/>
</picture>

Bitstream
generation

BSD
transformation

Usage
environment
description

Transformed BSD

BSD
Original scalable bitstream

Adapted scalable bitstream

(1)

(2)

(3)

generic code

non-generic
information interpreter

(a) Interpreting non-generic in-
formation.

generic code

non-generic code

Automatic code
generator

non-generic
information

non-generic
information

BSD
generation

<picture>
 <BL start="0" length="10"/>
 <EL start="10" length="20"/>
</picture>
<picture>
 <BL start="30" length="10"/>
 <EL start="40" length="20"/>
</picture>
<picture>
 <BL start="60" length="10"/>
 <EL start="70" length="20"/>
</picture>

<picture>
 <BL start="0" length="10"/>
</picture>
<picture>
 <BL start="30" length="10"/>
</picture>
<picture>
 <BL start="60" length="10"/>
</picture>

Bitstream
generation

BSD
transformation

Usage
environment
description

Transformed BSD

BSD
Original scalable bitstream

Adapted scalable bitstream

(1)

(2)

(3)

generic code

non-generic
information interpreter

(b) Automatic non-generic code
generation.

Figure 2.2: Obtaining generic software modules.

Using BSDs for adapting media bitstreams enables the creation of a
coding-format independent multimedia content adaptation engine, since the
three main processes in a description-driven adaptation chain (discussed in
Section 2.2.1) can be represented by generic software modules.

• During the BSD generation process, the input media bitstream needs to
be parsed. Because this parsing process is dependent on the input cod-
ing format, descriptions containing the high-level structure of particular
coding formats are needed to steer the BSD generation process. It is
important to note that the BSD generation process can also occur dur-
ing the encoding process of media bitstreams, when all the information
necessary for the creation of a BSD is available. In this case, no generic
software module is needed for the BSD generation process.

• The BSD transformation engine is independent of the underlying coding
format because it operates on the BSD level (i.e., XML level). Further-
more, generic software modules for the transformation of XML docu-
ments are provided by XML transformation stylesheet languages such
as XSLT or STX.

22 Format-independent content adaptation

• The bitstream generation process needs to generate a media bitstream
encoded in a particular coding format based on the original bitstream and
the transformed BSD. Similar to the BSD generation process, the bit-
stream generation process needs descriptions containing the high-level
structure of particular coding formats to correctly interpret the trans-
formed BSD and to write adapted media bitstreams compliant with the
coding format of the original bitstream.

2.2.3 Advantages

Using description-driven multimedia content adaptation results in the follow-
ing advantages.

• The bitstream parsing process is abstracted. As BSDs are typically gen-
erated in an automatic way, it is no longer required to implement cum-
bersome bitstream parsing operations in a particular programming lan-
guage in order to discover the bitstream structure.

• The adaptation process occurs in the XML domain. The complexity of
the adaptation process is shifted from the compressed domain to the
XML domain. This enables the use of many already existing XML tools
for manipulating BSDs, such as XSLT or STX.

• A coding-format independent multimedia content adaptation engine can
be implemented. As discussed in Section 2.2.2, using high-level XML
descriptions for adapting multimedia content enables the use of coding-
format independent software modules within an adaptation framework.
Hence, the software supports future coding formats without having to be
rewritten, is suited for hardware implementations, and can be used for
the adaptation of still images, audio, and video bitstreams.

2.3 Target Adaptation Operations

Since description-driven adaptation enables the creation of a generic, format-
agnostic adaptation engine and tries to abstract the adaptation process, some
restrictions regarding the adaptation possibilities need to be taken into account.
Obtaining format-independent content adaptation implies that only high-level
bitstream structures can be removed and that only high-level syntax elements
can be modified. In other words, the compressed media bitstreams need to be
encoded in such a way that it is possible to perform the adaptations without the
need of a complete or partial recode process. For example, techniques such as

2.3. Target Adaptation Operations 23

Figure 2.3: Different forms of scalability in video bitstreams.

requantization transcoding in video bitstreams [27] are too low-level and too
coding-format specific for generic adaptation systems.

In this dissertation, we focus on two kinds of adaptation operations: struc-
tural and semantic. However, these adaptations are only possible if some con-
ditions are met with respect to the structure of the media bitstream, as will be
discussed in the next subsections.

2.3.1 Structural Adaptations

The main target adaptation operation for description-driven adaptation is the
exploitation of scalability in media bitstreams (i.e., performing structural adap-
tations). Structural adaptations are typically performed to adapt media bit-
streams in order to meet the terminal and network characteristics of the end-
user. Hence, scalable coding is an important tool to realize a UMA environ-
ment. It enables the extraction of multiple (lower quality) versions of the same
media resource without the need of a complete recoding process. The bitstream
extraction process typically involves the removal of particular data blocks and
the modification of the value of certain syntax elements [91]. As discussed
above, such operations can easily be executed using description-driven adap-
tation. However, it is obvious that performing structural adaptations using
description-driven content adaptation can only be realized when the media bit-
streams already contain scalability layers.

Examples of resulting video bitstreams after the exploitation of scalability
along a particular scalability axis are shown in Figure 2.3. Spatial scalability
adjusts the resolution of the video bitstream; temporal scalability lowers the

24 Format-independent content adaptation

video frame rate; colour scalability drops colour components; Signal-to-Noise
Ratio (SNR) scalability decreases the visual quality of the video bitstream;
Region Of Interest (ROI) scalability only decodes a specific region of the video
bitstream. Examples of scalable coding formats are Scalable Video Coding
(SVC, [107]), JPEG2000 [19], and Advanced Audio Coding Scalable Sample
Rate (AAC SSR, [62]). Note that in the context of video bitstreams, temporal
scalability is by default available and can be realized by dropping frames which
are not used by other frames for prediction.

Colleagues within Multimedia Lab (i.e., Wesley De Neve, Davy De Schrij-
ver, and Peter Lambert) have used a number of coding formats as test cases
for format-independent content adaptation techniques. An overview of these
coding formats and their adaptivity provisions is given below.

H.264/AVC

In the first version of the H.264/AVC specification, exploitation of multi-
layered temporal scalability and a form of Region Of Interest (ROI) scalability
are available. Because pictures can consist of a mixture of different types of
slices (i.e., I, P, and B slices) and B slices can be used as a reference slice,
it is recommend to rely on sub-sequences for achieving temporal scalability
in H.264/AVC [30]. A sub-sequence represents a number of inter-dependent
pictures that can be disposed without affecting the decoding of any other sub-
sequence in the same sub-sequence layer or any sub-sequence in any lower
sub-sequence layer. Note that sub-sequences are typically created by relying
on a hierarchical coding pattern.

An enhanced way of exploiting temporal scalability in H.264/AVC is to
insert placeholder slices instead of dropping slices [28]. A placeholder or
skipped slice is defined as a slice that is identical to a certain reference slice,
or that is reconstructed by relying on a well-defined interpolation process be-
tween different reference slices. Note that this approach allows to maintain
synchronization with other media streams in a particular container format, es-
pecially when varying Group Of Pictures (GOP) structures are in use.

ROI coding can be realized in H.264/AVC using the Flexible Macroblock
Ordering (FMO) tool. By using H.264/AVC FMO type 2, rectangular regions
can be coded independently from each other (i.e., each region corresponds to
a slice group). Extracting a particular ROI corresponds to the detection of
coded P and B slices located in non-ROI slice groups and the substitution of
these slices with placeholder slices [74]. One drawback of this substitution
approach is the introduction of drift in the decoded sequence because of a
mismatch between the reference frames in the encoder and in the decoder.

2.3. Target Adaptation Operations 25

SVC

SVC supports adaptation operations along three scalability axes: the tempo-
ral, spatial, and Signal-to-Noise Ratio (SNR) axis. Extraction of lower-quality
versions of SVC bitstreams along these three axes relies on Supplemental En-
chancement Information (SEI) messages and syntax elements located in the
NALU header as elaborated on in [35] and [37].

Similar to H.264/AVC, ROIs in SVC can be defined by using the FMO
coding tool. However, since SVC allows to define multiple quality layers, the
ROI extraction is performed by removing one or several quality layers from the
slices belonging to slice groups that are not corresponding to the ROI. Hence,
in contrast to the substitution approach performed for H.264/AVC (see above),
ROI extraction in SVC does not introduce drift effects [40]. It is important
to notice that, due to the introduction of profiles, the use of FMO in SVC is
restricted. More specifically, FMO is prohibited in an SVC base layer and only
FMO type 2 is supported in the higher layers by the Scalable Baseline Profile
(other FMO types are not supported).

Finally, SVC supports interactive ROI extraction. Interactive ROI extrac-
tion can be used in applications in which the ROI cannot be defined during the
encoding phase of the video sequence. In order to support interactive (rectan-
gular) ROI scalability, a video frame has to be divided into different tiles that
can be selected on an individual basis. Each tile has to be coded as an individ-
ual slice such that the tiles can be decoded independently of other tiles. This
way, the tiles belonging to a certain ROI can be selected on-the-fly during the
extraction process. FMO type 0 (also called interleaved slice groups) can be
used to obtain a tiled slice partition [38].

Video Codec-1

Similar to H.264/AVC, Video Codec-1 (VC-1, [112]) is a single-layered codec.
Hence, only the exploitation of temporal scalability is possible. Note that the
adaptation process is less complex than in H.264/AVC because B pictures can-
not be used as reference frames. Hence, temporal scalability is obtained by
eliminating B and Skipped pictures [29].

JPEG2000 and JPEG XR

In the context of description-driven adaptation systems, JPEG XR provides
support for spatial scalability, lossless-to-lossy degradation, and tile-aligned
ROI extraction. Adaptation provisions of JPEG2000 are spatial scalability,
SNR scalability, color component scalability, lossless-to-lossy degradation,

26 Format-independent content adaptation

Frame

Data Block

Data Block

Data Block

Frame

Data Block

Data Block

Data Block

Frame

Data Block

Data Block

Data Block

Frame

Data Block

Data Block

Data Block

Frame

Data Block

Data Block

Data Block

...
Temporal

layer 1

Temporal
layer 0

Frame Frame Frame Frame Frame

Random
Access
Point

= dependent on

<Annotation>
 <!-- ... -->
 <Fragment>
 <Start>T00:00:02:21F25</Start>
 <Duration>PT24S4N25F</Duration>
 <Keyword>sport</Keyword>
 </Fragment>
 <!-- ... -->
</Annotation>

Frame rate = 25fps

Display
number 67

F = aantal
fracties / sec

69 68 70 72

...Frame

71

Semantic metadata

Figure 2.4: Mapping content metadata to display numbers of media bitstreams.

and tile-aligned ROI extraction. A discussion of these adaptation operations
in the XML domain can be found in [32] and [33].

2.3.2 Semantic Adaptations

Next to the exploitation of scalability, high-level adaptations based on seman-
tic information about the multimedia content can be realized. Examples of
semantic adaptations are the selection of a Region Of Interest (ROI) or the se-
lection of specific temporal segments that are of interest to the user. In this
dissertation, we focus on semantic adaptations along the temporal axis (i.e.,
scene or shot selection/removal), based on content metadata. A content meta-
data excerpt is shown in Figure 2.4. Timing information in content metadata
is usually expressed in terms of timestamps that may be formatted in different
ways (in our example, the MPEG-7 datatypes for time and duration are used).
However, compressed media bitstreams are addressed in terms of byte ranges
corresponding to parse units (i.e., frames), which are in their turn related to
display numbers (i.e., numbers indicating the order of display). Hence, in or-
der to use content metadata for performing the selection of a certain scene in a
media bitstream, a match between byte ranges and timing information in terms
of timestamps needs to be obtained.

Next to finding a mapping between timing information and byte ranges,
taking into account the dependencies between different frames within com-

2.4. Existing Technologies 27

1997
Flavor

1995
SDL

2005
MPML

2007
gBFlavor

2002
BSDL

2009
JPXML

2008
Preon

2003
gBS Schema

2006
BFlavor

1993
mkvlc

2002
XFlavor

2008
BSG

Figure 2.5: Timeline overview of existing bitstream syntax description tools.

pressed media bitstreams is another important issue. For instance, intra-coded
frames are independent of other frames, while inter-coded frames are depen-
dent on previous and/or future frames. To garantuee that the adapted media
bitstream can be correctly decoded, cuts in the media bitstream should only
be performed at random access points (as illustrated in Figure 2.4). Random
access refers to the ability of a decoder to start decoding at a point in a video
sequence other than at the beginning and to recover an exact or approximate
representation of the decoded pictures [49].

2.4 Existing Technologies

In recent years, a number of bitstream syntax description tools have been de-
veloped. In Figure 2.5, an overview of existing bitstream syntax description
tools is visualized on a timeline. The Syntax Description Language (SDL, [7])
provides a formal way to describe the entire structure of a bitstream. Its an-
cestor was a Perl script called mkvlc, which automatically generated C code
for variable-length coding table declaration. SDL was needed in the MPEG-4
standardization activity, which was moving in a direction of flexible, even pro-
grammable, audio-visual decoding systems. The Formal Language for Audio-
Visual Object Representation (Flavor, [44]), built on top of SDL, is an object-
oriented media representation language designed for simplifying the develop-
ment of applications that involve a significant media processing component
(coding, editing, manipulation, etc.). It provides a formal way for describing
any coded audio-visual or general media bitstream, and it comes with a transla-
tor that can automatically generate C++/Java code from the Flavor description.
The generated code can readily be used as a bitstream parser, generator, or
tracing tool. Finally, Flavor was extended with XML features (XFlavor, [51]),
implying that the generated C++/Java code can also include a method for pro-
ducing XML documents that correspond to the bitstreams described by Flavor.
More information regarding XFlavor is provided in Section 2.4.3.

28 Format-independent content adaptation

Two technologies were created and standardized within the MPEG-21
Multimedia Framework [17], which aims at realizing the ‘big picture’ in the
multimedia production, delivery, and consumption chain. One important part
of the framework, Digital Item Adaptation (DIA, [61]), provides several tools
that can be used for creating an interoperable and description-driven adaptation
framework: the Bitstream Syntax Description Language (BSDL, [4]) and the
generic Bitstream Syntax Schema (gBS Schema, [121]), which are discussed
in Section 2.4.1 and Section 2.4.2 respectively.

BFlavor (BSDL + XFlavor, [31, 126]) was developed to combine the
strengths of BSDL and XFlavor and to eliminate their weaknesses. Sec-
tion 2.4.4 discusses BFlavor in more detail. Further, gBFlavor, which is built
on top of BFlavor, provides an efficient method for the generation of generic
Bitstream Syntax Descriptions (gBSDs), i.e., BSDs compliant to gBS Schema.
Chapter 3 contains an in-depth discussion of gBFlavor.

The MPEG Video Markup Language (MPML, [116]) is an XML appli-
cation specifically designed for describing the syntax of bitstreams compliant
with MPEG-4 Visual [60]. JPEG 2000 Part 14: XML structural representation
& reference, also known as JPXML [66], standardises an XML representation
for a JPEG 2000 file. The latter is expected to be finalized in Spring 2009.
Both MPML and JPXML will not be discussed in further detail due to their
rather format-specific nature.

Preon is an open source project2 that allows to declaratively bind a Java
based object model to its compressed binary encoded representation. The map-
ping declaration between the Java based representation and the encoded repre-
sentation results in a decoder, an encoder, and hyperlinked documentation of
the encoding format. Because Preon does not provide support for the genera-
tion of text-based descriptions of binary bitstreams, it will not be discussed in
further detail.

Finally, Bitstream Segment Graphs (BSG, [50]) are designed as a com-
plete, generally applicable and machine-processable model for coding format
instances. Similar to Flavor and Preon, BSG’s main motivation is to automati-
cally generate parser software for coding formats. It is focussed on modelling
low-level structures of coding formats and does not provide support for the
generation of text-based descriptions of binary bitstreams. Hence, BSG will
not be discussed in further detail.

2http://preon.sourceforge.net/

http://preon.sourceforge.net/

2.4. Existing Technologies 29

BS Schema

BSD

Transformation
based on usage

environment

Transformed
BSD

BSDtoBin
parser

Original scalable bitstream

Adapted scalable bitstream

BintoBSD
parser

BSD

Transformation
based on usage

environment

Transformed
BSDbitgen

XFlavor
code

flavorc
translator

Java source
classes

Format-specific
BSD generator

Original scalable bitstream

Adapted scalable bitstream

gBS Schema

gBSD

Transformation
based on usage

environment

Transformed
gBSD

gBSDtoBin
parser

Original scalable bitstream

Adapted scalable bitstream

gBSD
generator

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

BSDL-1

BSDL-2

BSDL-1

Figure 2.6: Multimedia content adaptation chain using BSDL.

2.4.1 MPEG-B BSDL

The primary motivation behind the development of BSDL is to assist in the
adaptation of scalable bitstreams, such that the resulting bitstreams meet the
constraints imposed by a particular usage environment. The generic character
of BSDL, and hence its merit, lies in the coding-format independent nature of
the logic that is responsible for the creation of BSDs and for the generation
of the adapted bitstreams. This is possible due to the fact that all informa-
tion, necessary for discovering the structure of a bitstream, is available in a
document called a Bitstream Syntax Schema (BS Schema) [4]. The language
constructs occurring in a BS Schema are built on top of the W3C XML Schema
Language.

BSDL comes with two standardized, format-agnostic parsers: a BintoBSD
parser that is responsible for producing BSDs and a BSDtoBin parser that is
used for generating adapted bitstreams. Figure 2.6 shows the adaptation chain
for BSDL. Explanatory notes are given below.

(1) A BS Schema is created for a particular coding format (i.e., the coding
format of the media bitstream that needs to be adapted). Such a BS
Schema contains a description of (a part of) the syntax of that particular
coding format in the BSDL schema language. It consists of, among other
things, information about the syntax element names, their datatypes, and
their position in the syntactical structures of the coding format.

(2) The BS Schema is used by the BintoBSD parser to automatically gener-
ate a BSD for a given (scalable) bitstream.

(3) The BSD is transformed to meet the constraints of a certain usage envi-

30 Format-independent content adaptation

ronment. Note that the way the BSD is transformed is not standardized
by DIA. As discussed in Section 2.2.1, already existing tools for trans-
forming XML documents can be used for the transformation of a BSD.

(4) An adapted bitstream is created by using the BSDtoBin parser, which
takes as input the BS Schema, the customized BSD, and the original
bitstream.

The language specification of BSDL introduces two normative successive
sets of extensions and restrictions over the W3C XML Schema language. The
extensions are expressed by means of two XML Schemas, while the restric-
tions are fixed in the standards document itself. The schema for BSDL-1 ex-
tensions defines a number of attributes and datatypes that can be used in a BS
Schema. Both the BintoBSD and BSDtoBin parsers need these extensions for
the correct generation of BSDs and the creation of adapted bitstreams. An
example of such a datatype is the byteRange datatype, which can be used to
point to a data range in the original bitstream when it is too verbose to be in-
cluded in the BSD. The schema for BSDL-2 extensions defines a number of
additional extensions to XML Schema that are needed by the BintoBSD parser
to resolve ambiguities during the bitstream parsing process (i.e., control flow).
Examples of such extensions are attributes expressing conditions indicating
whether particular syntax elements need to be parsed or not (i.e., the if and
ifNext attributes). Excerpts of examples of BSDL can be found in Annex A.

BSDL was originally developed as part of MPEG-21 DIA, but is now a
standalone standard known as part 5 of MPEG-B [67]. The main goal of
MPEG-B (MPEG systems technologies) is to specify technologies which can
universally be used in the context of multimedia systems (e.g., methods for
efficiently transmitting and compressing XML documents).

2.4.2 MPEG-21 gBS Schema

In contrast to BSDL and XFlavor, gBS Schema enables the creation of format-
independent XML descriptions, which are called generic Bitstream Syntax De-
scriptions (gBSDs). More specifically, the syntax elements occurring in a
gBSD are independent of the coding format and are specified in the generic
BS Schema3. The functioning of a gBS Schema-based adaptation framework
is shown in Figure 2.7. Explanatory notes are given below.

(1) The first step is the generation of a gBSD. This process is not described
in the DIA specification since only the gBS Schema is described in the

3In contrast to BSDL, only one BS Schema is necessary, i.e., the generic BS Schema.

2.4. Existing Technologies 31

BS Schema

BSD

Transformation
based on usage

environment

Transformed
BSD

BSDtoBin
parser

Original scalable bitstream

Adapted scalable bitstream

BintoBSD
parser

BSD

Transformation
based on usage

environment

Transformed
BSDbitgen

XFlavor
code

flavorc
translator

Java source
classes

Format-specific
BSD generator

Original scalable bitstream

Adapted scalable bitstream

gBS Schema

gBSD

Transformation
based on usage

environment

Transformed
gBSD

gBSDtoBin
parser

Original scalable bitstream

Adapted scalable bitstream

gBSD
generator

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

BSDL-1

BSDL-2

BSDL-1

Figure 2.7: Multimedia content adaptation chain using gBS Schema.

specification, together with the behaviour of a gBSDtoBin parser. This
implies that a gBSD may be generated in any proprietary way.

(2) According to the given usage environment constraints, the gBSD is
transformed using existing XML transformation techniques.

(3) Finally, an adapted bitstream is obtained using the standardized gBSD-
toBin parser, which takes as input the original bitstream and the trans-
formed gBSD. The gBSDtoBin parser relies on the gBS Schema to steer
the generation of the adapted bitstream. The latter includes the schema
for BSDL-1 extensions (as discussed in Section 2.4.1), providing the
necessary datatypes to correctly generate an adapted bitstream.

Excerpts of examples of gBS Schema can be found in Annex A. Note that
gBS Schema will be discussed in more detail in Chapter 3, where a new gBSD
generation method is proposed.

2.4.3 XFlavor

Flavor provides a formal way to specify how data are laid out in a serialized
bitstream [44]. It is designed as a declarative language with a Java-like syntax
to describe the bitstream syntax on a bit-per-bit basis. Its aim is to simplify and
speed up the development of software that processes audio-visual bitstreams
by automatically generating the required C++ or Java code to parse the data.
Hence the developer can focus on the processing part of the software and does
not need to deal with the parsing process. This is possible thanks to the fact

32 Format-independent content adaptation

BS Schema

BSD

Transformation
based on usage

environment

Transformed
BSD

BSDtoBin
parser

Original scalable bitstream

Adapted scalable bitstream

BintoBSD
parser

BSD

Transformation
based on usage

environment

Transformed
BSDbitgen

XFlavor
code

flavorc
translator

Java source
classes

Format-specific
BSD generator

Original scalable bitstream

Adapted scalable bitstream

gBS Schema

gBSD

Transformation
based on usage

environment

Transformed
gBSD

gBSDtoBin
parser

Original scalable bitstream

Adapted scalable bitstream

gBSD
generator

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

BSDL-1

BSDL-2

BSDL-1

Figure 2.8: Multimedia content adaptation chain using XFlavor.

that the design of Flavor is based on the principle of separation between bit-
stream parsing operations and other encoding/decoding operations. Note that
a Flavor-based parser does not generate a persistent description of the parsed
data, but only an in-memory representation in the form of a collection of C++
or Java class objects.

XFlavor is an extension of Flavor, containing tools for generating an XML
description of the entire bitstream syntax and for regenerating an (adapted) bit-
stream. The specification and software of XFlavor are open source and avail-
able on http://flavor.sourceforge.net/. An adaptation chain us-
ing XFlavor is provided in Figure 2.8. Explanatory notes are provided below.

(1) The first step is the creation of an XFlavor code, which contains a Java-
like description of the syntax of a particular coding format. Note that the
information included in an XFlavor code is comparable to the informa-
tion occurring in a BS Schema. They both describe the high-level syntax
structures and datatypes of a particular coding format.

(2) The flavorc translator is able to automatically translate an XFlavor code
to Java or C++ source classes. For instance, code responsible for I/O
operations during the parsing process of the media bitstream is auto-
matically generated and integrated in the resulting Java or C++ source
classes. These source classes can then be compiled using a Java or C++
compiler, resulting in a BSD generator that is specific for media bit-
streams compliant with the coding format descibed by the initial XFla-
vor code.

(3) The coding-format specific BSD generator automatically generates a

http://flavor.sourceforge.net/

2.4. Existing Technologies 33

BSD for a given input media bitstream.

(4) According to the given usage environment constraints, the BSD is trans-
formed using existing XML transformation techniques.

(5) Finally, XFlavor’s bitgen tool is used for translating the customized BSD
into an adapted bitstream.

A remarkable difference between XFlavor and the MPEG-21 solutions
(i.e., BSDL and gBS Schema) is the fact that a BSD in XFlavor cannot refer to
the original bitstream. More specifically, in XFlavor, the complete bitstream
data are actually embedded in the BSD, resulting in potentially verbose de-
scriptions, while BSDL and gBS Schema use specific datatypes (specified in
the schema for BSDL-1 extensions) to point to a data range in the original bit-
stream when it is too verbose to be included in the BSD. Excerpts of examples
of XFlavor can be found in Annex A.

2.4.4 BFlavor: Optimizing MPEG-B BSDL

Although BSDL and XFlavor can be used as stand-alone tools [30], a harmo-
nized approach can combine the strengths of the two technologies. In XFlavor,
the bitstream generator (i.e., bitgen) only uses information from the BSD and
thus is independent of the XFlavor code. Hence, the complete bitstream data
are actually embedded in the BSD, resulting in potentially huge descriptions.
On the contrary, BSDL makes use of a specific datatype to point to a data
range in the original bitstream when it is too verbose to be included in the de-
scription (i.e., by making use of the language construct bs1:byteRange).
This results in BSDs containing only the high-level structure of the bitstream.
The strengths of XFlavor are the fast execution speed and the low and constant
memory consumption of the coding format-specific parser, while BSDL’s Bin-
toBSD Parser struggles with an unacceptable execution speed and increasing
memory consumption caused by an inefficient XPath evaluation process [31].
This is due to the fact that the entire description of the bitstream structure is
kept in system memory in order to allow the evaluation of arbitrary XPath 1.0
expressions.

BFlavor bridges the gap between BSDL and XFlavor [126]. It is developed
to combine the strengths of BSDL and XFlavor, i.e., to generate a compact
high-level BSD at a fast execution speed and with a constant memory con-
sumption. It is built on top of XFlavor by defining a number of restrictions and
extensions (similar to the way BSDL is build on top of W3C XML Schema).
By using the automatically generated parser of BFlavor, it is possible to gen-
erate BSDs that can be further processed by the BSDtoBin Parser of BSDL.

34 Format-independent content adaptation

BSD

Transformation
based on usage

environment

Transformed
BSD

BSDtoBin
parser

BFlavor
code

bflavorc
translator

Java source
classes

Format-specific
BSD generator

Original scalable bitstream

Adapted scalable bitstream

(1)

(2)

(3)

(4)

(6)

BS Schema(5)
BSDL-1

Figure 2.9: Multimedia content adaptation chain using BFlavor.

Figure 2.9 provides an overview of BFlavor’s adaptation chain; explanatory
notes are given below.

(1) A BFlavor code contains a Java-like description of the syntax of a par-
ticular coding format, similar to a corresponding XFlavor code. More
information about the BFlavor specification is provided in Chapter 3.

(2) The bflavorc translator uses this code to generate Java source classes that
can be compiled to a coding-format specific BSD generator.

(3) So far, the XFlavor approach has been followed. From this point, a
switch is made to the BSDL approach. More specifically, the coding-
format specific BSD generator produces a BSD which can be further
processed by BSDL’s BSDtoBin Parser.

(4) According to the given usage environment constraints, the BSD is trans-
formed using existing XML transformation techniques.

(5) The BSDtoBin parser needs a BS Schema in order to correctly gener-
ate an adapted bitstream. The information necessary to create such a
BS Schema is available in the BFlavor code. Hence, a mapping can be
created between BFlavor and BSDL. This way, the bflavorc translator is
also able to automatically generate a BS Schema based on the BFlavor
code. This BS Schema can then be used by the BSDtoBin parser. Note
that the resulting BS Schema makes only use of the schema for BSDL-1
extensions, since this is sufficient for the BSDtoBin parser.

2.4. Existing Technologies 35

(6) Finally, an adapted media bitstream is generated by the BSDtoBin
parser, taking as input the transformed BSD, the generated BS Schema,
and the original media bitstream.

As a result of this approach, it is possible to generate BSDs compliant
with BSDL with the fast execution speed and the low memory consumption of
the coding-format specific BSD generator of XFlavor. At the same time, the
generated BSDs are compliant with BSDL and thus compact because they only
contain a description of the high-level structure of the (scalable) bitstream.

BFlavor was developed and evaluated in the context of the author’s mas-
ter’s thesis [124]. A number of refinements and optimizations were developed
in the context of this dissertation. Furthermore, BFlavor served as a basis for
the development of gBFlavor, which is a novel method for the generation of
generic Bitstream Syntax Descriptions (gBSDs). Chapter 3 contains a detailed
discussion of gBFlavor and the refinements made on top of BFlavor. Note that
a Web page4 has been set up, providing the full specification, a user manual,
and a number of examples for BFlavor.

Since BFlavor is a proprietary approach, one solution for the performance
issues of the BintoBSD process, which can be considered fundamental in the
context of media bitstreams, is to enhance the BSDL standard. These enhance-
ments have been adopted in the second amendment of the MPEG-21 DIA spec-
ification [65].

• Context Management: the in-memory representation of a BSD, which
is commonly referred to as the context, is needed by the BintoBSD pro-
cess for the correct evaluation of an arbitrary set of XPath 1.0 expres-
sions. These XPath expressions are for example used to provide sup-
port for conditional parsing. Five new attributes are introduced in the
schema for BSDL-2 extensions to support context management in a BS
Schema [36]. Using these attributes, it is possible for the BintoBSD
parser to achieve a minimal memory consumption and a constant BSD
generation speed on the one hand, while still allowing the use of the
entire XPath 1.0 specification on the other hand [34].

• User-defined XPath variables: they allow to cache frequently used node
sets (e.g., the parameter sets in H.264/AVC) as object arrays. Besides
the simplification of the notation of XPath expressions, the evaluation of
XPath expressions can be sped up by reducing the number of predicates
and the length of the location steps.

4Available at http://multimedialab.elis.ugent.be/BFlavor/.

http://multimedialab.elis.ugent.be/BFlavor/

36 Format-independent content adaptation

2.5 Challenges

Although description-driven adaptation of media bitstreams seems to be a very
promising technique in the context of multimedia delivery in UMA environ-
ments, there are still some remaining challenges. In the next three chapters of
this dissertation, solutions are proposed for these challenges.

2.5.1 gBSD Generation Process

The first challenge is specific for the MPEG-21 gBS Schema description tool.
As discussed in Section 2.4.2, the gBSD generation process is not described
in the DIA specification. Only the gBS Schema is described in the standard in
question, together with the behaviour of a gBSDtoBin parser. Hence, a gBSD
may be generated in any proprietary way. However, as stated in [94] and [117],
there exists no format-agnostic parser to produce gBSDs, despite the fact that
gBS Schema is format-agnostic. Since a format-independent adaptation frame-
work with generic software modules is desired, the gBSD generation process
must be implemented in the form of a generic software module.

One possibility to generate gBSDs in a format-agnostic way is to transform
format-specific BSDs (e.g., created with BSDL) into gBSDs [94]. The trans-
formation can be done using common XML transformation technologies. Al-
though this approach is format-agnostic, it has a number of disadvantages. On
the one hand, two different technologies (i.e., the BSD generation and trans-
formation technique) have to be used. On the other hand, the format-specific
BSDs contain a lot more detail than is needed for the resulting gBSD, implying
a decrease in execution speed of the format-specific BSD generation process.
This amount of detail is needed for setting proper markers in the resulting
gBSD. Note that a more detailed explanation of this format-agnostic solution
and its problems will be discussed in Chapter 3. Further, in Chapter 3, we
present a new gBSD generation method, called gBFlavor, enabling the auto-
matic generation of gBSDs in a coding-format independent way. gBFlavor is
a technology that enables the automatic generation of a format-specific parser.
This parser is subsequently able to produce a gBSD for a given bitstream.
gBFlavor is built on top of BFlavor, which is an efficient alternative for the
generation of BSDs compliant with BSDL in terms of execution time (as dis-
cussed in Section 2.4.4).

2.5.2 Defining Adaptation Operations

Adaptation operations within a description-driven adaptation framework are
currently expressed by means of XML transformations (e.g., XSLT or STX

2.5. Challenges 37

stylesheets). Examples of such an adaptation operation implemented in XSLT
and STX can be found in Listing A.6 and Listing A.7 respectively. This adap-
tation operation corresponds to the removal of non-referenced B slices (i.e., a
trivial form of temporal scalability). It is important to mention that, although
the underlying adaptation engines in a description-driven adaptation system
are independent of the coding format, the XML descriptions themselves (i.e.,
the BSDs) are coding-format specific. Note that this is also the case for generic
BSDs (i.e., BSDs compliant to gBS Schema), since the hierarchical structure
of the BSD and the labels of the (generic) XML elements are coding-format
specific. Hence, because of the coding-format specific character of BSDs,
defining a (description-driven) adaptation operation requires knowledge of the
underlying coding format. For example, two different XML transformations
are needed for the adaptation operation ‘frame rate scaling’ (i.e., exploitation
of temporal scalability) applied to H.264/AVC and MPEG-2 Video. This is
necessary because the BSDs of H.264/AVC and MPEG-2 Video streams differ
in terms of structure and syntax elements.

Because the coding-format dependency is shifted from the binary to the
XML domain, creators of XML filters cannot think in terms of high-level
adaptation operations but have to be aware of the underlying coding formats.
Hence, with the current description-driven approach, format-independency is
obtained in an ad-hoc manner. Therefore, a solution is proposed in Chapter 4,
which enables the definition of adaptation operations on a higher level, i.e.,
independent of the coding format. This solution consists of the creation of a
model for media bitstreams, which is needed to abstract the XML transforma-
tion process. The model provides support for exploitation of scalability along
different axes and random access points, enabling the definition of structural
and semantic adaptation operations in a coding-format independent way.

2.5.3 Integration with Metadata Standards

Description-driven adaptation introduces an extra layer, i.e., the structural
metadata, which is directly related to the bits of a compressed media bitstream.
Existing metadata standards regarding the visual content and characteristics of
media bitstreams are usually independent of the coding format (e.g., MPEG-7,
Dublin Core, or NewsML). More specifically, they do not refer to byte ranges
of the described media bitstreams. For example, a scene description contains
a start and length in terms of timestamps. In order to define semantic adapta-
tion operations based on content metadata (e.g., scene selection), the mapping
between the structural metadata (i.e., bytes) and content metadata (i.e., times-
tamps) needs to be calculated (see Section 2.3.2). This mapping is dependent

38 Format-independent content adaptation

on the underlying coding format which implies that for different coding for-
mats, different XML filters need to be written for the same semantic adaptation
operation.

Another problem regarding the integration of metadata standards with
description-driven adaptation is the lack of interoperability between those
metadata standards. An XML-based metadata standard typically consists of
an XML Schema accompanied with plain text which usually describes the se-
mantics of the XML Schema. This is necessary because XML Schema is only
capable of describing grammars and imposes no common interpretation of the
data contained in the document. For example, the same tags in different meta-
data standards can have different meanings. Due to this interoperability prob-
lem, expressing the same adaptation operation (e.g., select the sport fragments)
in the context of two different content metadata standards (e.g., MPEG-7 and
NewsML) requires the development of two XML filters. Note that the same
holds true for the structural metadata standards (e.g., BSDL and gBS Schema).

In order to obtain a seamless integration between description-driven adap-
tation and metadata standards, a solution based on Semantic Web technologies
is proposed in Chapter 4. The model for media bitstreams (shortly discussed in
Section 2.5.2) provides support for linking the structural metadata to the con-
tent metadata (i.e., for linking the bytes to the timestamps). This way, temporal
semantic adaptations can be defined based on content metadata and indepen-
dent of the underlying coding format. Furthermore, the model is implemented
by making use of OWL, implying a seamless integration with other content
metadata standards based on Semantic Web technologies.

2.5.4 Fully Integrated Description-driven Adaptation Platforms

In order to investigate the feasibility of using description-driven adapta-
tion techniques in practice, a fully integrated adaptation platform based on
description-driven adaptation needs to be designed and implemented. The
platform must be able to support both structural and semantic adaptation op-
erations. Furthermore, we want to deploy this platform in streaming environ-
ments, requiring real-time processing of the media bitstream using description-
driven adaptation. Therefore, in Chapter 5, we address the design, implemen-
tation, and performance evaluation of two multimedia adaptation platforms
that rely on description-driven adaptation engines.

2.5. Challenges 39

2.5.5 Combining Adaptation and Packaging in Coding-format In-
dependent Environments

After adapting a media bitstream, it is usually packed in a container format.
Examples of container formats are the MP4 file format [59] and the Real-time
Transport Protocol (RTP, [105]). Currently, the packaging process of a me-
dia bitstream is coding-format dependent. More specifically, media bitstreams
need to be parsed in order to correctly fragment the bitstream and to correctly
assign timestamps to these fragments. Since we are working towards a coding-
format independent multimedia delivery system, the packaging process of me-
dia bitstreams needs to occur in a format-independent way.

In Chapter 5, a solution is presented which combines the adaptation and
packaging processes in a format-independent way. It relies on an extension of
the model for media bitstreams (see Section 2.5.2) to package media bitstreams
independent of the underlying coding format. Furthermore, BSDL is used to
serialize the resulting packaged media bitstream.

2.5.6 Structural Metadata Overhead

In contrast to dedicated software solutions for the adaptation of media bit-
streams, description-driven content adaptation introduces structural metadata,
which results in file size overhead. The structural metadata are expressed by
means of XML and are therefore verbose.

An obvious solution for this problem is to compress the BSDs by using
generic algorithms such as WinZip [145] or by using XML compression tech-
niques such as Word Replacing Transform for XML (XWRT, [149]). However,
these compressed BSDs need to be uncompressed before the BSD transfor-
mation process and possibly, the transformed BSD needs to be compressed
again. This introduces additionally overhead in terms of execution time for
the description-driven adaptation chain. An ideal solution would consist of
a compression format which can be deployed in streaming environments and
which supports XML transformations in the compressed domain. In [120],
Timmerer et al. propose an approach to transform XML documents, encoded
with BiM [63], in the binary domain. BiM is an XML Schema aware encod-
ing scheme for XML documents. One of the main features of BiM is that it
provides streaming capabilities for XML-based data. In [120], an event-based
binary XML parser interface is proposed (i.e., BiM API for XML (BAX)), to-
gether with a number of processing instructions. The latter can be bound to
existing XML transformation technologies such as XSLT or STX.

Besides compression, the BSD can be made more compact by removing
information in the BSD that is not necessary for the BSD transformation or

40 Format-independent content adaptation

bitstream generation process. In Chapters 3 and 4, methods for creating com-
pact BSDs are proposed.

2.6 Conclusions and Original Contributions

Due to the growth of multimedia coding standards, format-independent adap-
tation systems are gaining importance. These adaptation systems can deal
with current and future multimedia coding formats. In this chapter, we gave
an overview of existing format-independent content adaptation techniques and
elaborated on its main target adaptation operations. Furthermore, existing tech-
nologies were discussed and an overview was given of a number of remaining
challenges in the context of format-independent content adaptation.

Current format-independent content adaptation techniques rely on auto-
matically generated textual (XML-based) descriptions, called BSDs. They
typically contain information about the high-level structure of a media bit-
stream. The actual adaptation takes place in the XML domain during the trans-
formation of the XML description (e.g., by dropping descriptions of layers or
packets). This transformation process takes into account the constraints of a
given usage environment (e.g., available bandwidth and screen resolution). In
this chapter, we elaborated on the three-step-based adaptation chain needed
to obtain format-independent adaptation, i.e., BSD generation, BSD transfor-
mation, and adapted bitstream generation. We discussed how this adaptation
chain could be implemented by means of generic, coding-format independent
software modules. Furthermore, we gave an overview of existing format-
independent adaptation techniques including MPEG-B BSDL, MPEG-21 gBS
Schema, and XFlavor. Within the author’s master’s thesis, BFlavor was devel-
oped and evaluated. BFlavor bridges the gap between BSDL and XFlavor and
is developed to combine the strengths of BSDL and XFlavor, i.e., to generate a
compact high-level BSD at a fast execution speed and with a constant memory
consumption.

One important precondition to use format-independent content adaptation
techniques is that the adaptations can be realized by performing simple editing
operations such as the removal of high-level syntax structures or the modifica-
tion of high-level syntax elements. In this chapter, we identified two major cat-
egories of target adaptation operations for format-independent content adapta-
tion systems, i.e., structural and semantic adaptations. Structural adaptations
are used to customize a media bitstream depending on the end-user’s termi-
nal and network characteristics, which is possible on condition that the me-
dia bitstream consists of a number of scalability layers. Semantic adaptations
are driven by semantic information about the multimedia content. Adaptation

2.6. Conclusions and Original Contributions 41

operations such as video summarization and scene selection are examples of
semantic adaptations. These are possible on condition that media bitstreams
are provided with regularly occurring random access points.

Finally, we listed a number of remaining challenges for format-
independent content adaptation systems. In the remainder of this dissertation,
we propose solutions for these challenges.

Our research in this domain resulted in contributions that are incorporated
in the publications listed below.

1. W. De Neve, D. De Schrijver, D. Van Deursen, and R. Van de
Walle. XML-Driven Bitstream Extraction Along the Temporal Axis
of SMPTE‘s Video Codec 1. In Proceedings of the 7th International
Workshop on Image Analysis for Multimedia Interactive Services, pages
233–236, April 2006, Seoul, South Korea

2. P. Lambert, D. De Schrijver, D. Van Deursen, W. De Neve, Y. Dhondt,
and R. Van de Walle. A Real-Time Content Adaptation Framework for
Exploiting ROI Scalability in H.264/AVC. Lecture Notes in Computer
Science – Advanced Concepts for Intelligent Vision Systems, volume
4179, pages 442–453, September 2006

3. D. De Schrijver, W. De Neve, D. Van Deursen, J. De Cock, and R. Van
de Walle. On an Evaluation of Transformation Languages in a Fully
XML-driven Framework for Video Content Adaptation. In Proceedings
of the first International Conference on Innovative Computing, Infor-
mation and Control (ICICIC06), volume 3, pages 213–216, September
2006, Beijing, China

4. W. De Neve, D. De Schrijver, D. Van Deursen, P. Lambert, and R. Van de
Walle. Real-Time BSD-Driven Adaptation Along the Temporal Axis of
H.264/AVC Bitstreams. Lecture Notes in Computer Science – Advances
in Multimedia Information Processing - PCM 2006, volume 4261, pages
131–140, November 2006

5. D. De Schrijver, W. De Neve, D. Van Deursen, S. De Bruyne, and R.
Van de Walle. Exploitation of Interactive Region of Interest Scalability
in Scalable Video Coding by Using an XML-driven Adaptation Frame-
work. In Proceedings of the 2nd International Conference on Auto-
mated Production of Cross Media Content for Multi-channel Distribu-
tion, pages 223–231, December 2006, Leeds, U.K.

6. D. De Schrijver, W. De Neve, K. De Wolf, P. Lambert, D. Van Deursen,
and R. Van de Walle. XML-driven Exploitation of Combined Scalability

42 Format-independent content adaptation

in Scalable H.264/AVC Bitstreams. In Proceedings of the 2007 IEEE
International Symposium on Circuits and Systems, pages 1521–1524,
May 2007, New Orleans, United States

7. D. De Schrijver, W. De Neve, D. Van Deursen, Y. Dhondt, and R. Van
de Walle. XML-based Exploitation of Region of Interest Scalability in
Scalable Video Coding. In Proceedings of the 8th International Work-
shop on Image Analysis for Multimedia Interactive Services, 4 pages on
CD-ROM, June 2007, Santorini, Greece

8. D. De Schrijver, W. De Neve, K. De Wolf, D. Van Deursen, and R. Van
de Walle. Exploitation of Combined Scalability in Scalable H.264/AVC
Bitstreams by Using an MPEG-21 XML-Driven Framework. Lecture
Notes in Computer Science – Advanced Concepts for Intelligent Vision
Systems, volume 4678, pages 699-710, August 2007

9. W. De Neve, S. Yang, D. Van Deursen, C. Kim, Y.M. Ro, and R. Van de
Walle. Analysis of BSDL-Based Content Adaptation for JPEG 2000 and
HD Photo (JPEG XR). In Proceedings of the 5th International Confer-
ence on Visual Information Engineering: Workshop on Scalable Coded
Media Beyond Compression, pages 717–722, July 2008, Xi‘an, China

10. W. De Neve, D. Van Deursen, W. Van Lancker, Y. M. Ro, and R. Van de
Walle. Improved BSDL-based Content Adaptation for JPEG 2000 and
HD Photo (JPEG XR). Signal Processing: Image Communication – Spe-
cial Issue on Scalable Coded Media beyond Compression, 24(6):452–
467, July 2009

Chapter 3

gBFlavor

And so you touch this limit, something happens and you suddenly
can go a little bit further. With your mind power, your determi-
nation, your instinct, and the experience as well, you can fly very
high.

Ayrton Senna (1960 - 1994)

3.1 Introduction

As discussed in the previous chapter, description-driven adaptation techniques
are gaining importance due to the growing diversity in terms of coding for-
mats, end-user devices, and network technologies. In this chapter, we focus on
one particular description-driven adaptation technique standardized within the
MPEG-21 Multimedia Framework: generic Bitstream Syntax Schema (gBS
Schema). It enables the use of a generic Bitstream Syntax Description (gBSD)
to steer the format-independent adaptation of a binary media resource. In con-
trast to BSDL (i.e., the other MPEG description-driven adaptation technique),
the BSD generation process is not defined for gBS Schema. Since one of the
major advantages of description-driven adaptation is its format-agnostic char-
acter, a gBSD generation method independent of the underlying coding format
is desired.

In this chapter, we propose a novel solution for the automatic and format-
independent generation of gBSDs. It is called gBFlavor and offers the pos-
sibility to automatically generate a coding-format specific parser that is able
to produce a gBSD, given as input a particular media resource. gBFlavor is
built on top of BFlavor, which is an efficient alternative for the generation
of BSDs compliant with BSDL in terms of execution time (as discussed in

44 gBFlavor

gBSD
generation

<gBSDUnit syntacticalLabel="picture" start="0">
 <gBSDUnit syntacticalLabel=”BL” start="0" length="10"/>
 <gBSDUnit syntacticalLabel=”EL” start="10" length="20"/>
</gBSDUnit>
<gBSDUnit syntacticalLabel="picture" start="30">
 <gBSDUnit syntacticalLabel=”BL” start="30" length="10"/>
 <gBSDUnit syntacticalLabel=”EL” start="40" length="20"/>
</gBSDUnit>
<gBSDUnit syntacticalLabel="picture" start="60">
 <gBSDUnit syntacticalLabel=”BL” start="60" length="10"/>
 <gBSDUnit syntacticalLabel=”EL” start="70" length="20"/>
</gBSDUnit>

gBSDtoBin
parser

gBSD
transformation

Usage
environment
description

<gBSDUnit syntacticalLabel="picture" start="0">
 <gBSDUnit syntacticalLabel=”BL” start="0" length="10"/>
</gBSDUnit>
<gBSDUnit syntacticalLabel="picture" start="30">
 <gBSDUnit syntacticalLabel=”BL” start="30" length="10"/>
</gBSDUnit>
<gBSDUnit syntacticalLabel="picture" start="60">
 <gBSDUnit syntacticalLabel=”BL” start="60" length="10"/>
</gBSDUnit>

gBSD

Transformed gBSD

Original scalable bitstream

Adapted scalable bitstream

gBS Schema

Figure 3.1: Functioning of a gBS Schema-based adaptation framework.

Section 2.4.4). This chapter gives an overview of the gBFlavor specification,
which enables describing the high-level structure of a coding format and al-
lows the insertion of semantically meaningful information into the resulting
gBSD. The general functioning of a gBFlavor-enabled adaptation framework
is discussed as well. JPEG2000 [19] and H.264/AVC Scalable Video Coding
(SVC, [107]) are used as use cases for gBFlavor.

The outline of this chapter is as follows. Section 3.2 gives an overview of
the specification and functioning of MPEG-21 gBS Schema. Next, Section 3.3
introduces gBFlavor, our new method for gBSD generation. Section 3.4 pro-
vides performance results regarding the different description generation meth-
ods. Finally, conclusions are drawn in Section 3.5.

3.2 gBS Schema

3.2.1 Functioning

The functioning of a gBS Schema-based adaptation framework is shown in
Figure 3.1. The first step is the generation of a gBSD. This process is not

3.2. gBS Schema 45

described in the DIA specification1, which implies that a gBSD may be gen-
erated in any proprietary way. Note that this observation is key to a good
understanding of the novel contribution of research proposed in this chapter.
More details about the gBSD generation process are provided in Section 3.2.3.
Subsequently, the gBSD is transformed by using common XML transforma-
tion technologies such as XSLT or STX. After the transformation of the gBSD,
an adapted bitstream is obtained using the gBSDtoBin parser, which takes as
input the original bitstream and the transformed gBSD. The gBSDtoBin parser
relies on the gBS Schema to steer the generation of the adapted bitstream. The
gBS Schema acts as a W3C XML Schema for the gBSDs and has the following
properties [94].

• It is independent of the underlying coding format. Since gBS Schema
acts as a W3C Schema for the gBSDs, only XML elements, regarding
the structure of the bitstream, specified in the gBS Schema, can occur in
the description. Hence, no format-specific XML elements are present in
the gBSD, which implies that gBSDs are format-agnostic from a syntac-
tical point of view. Furthermore, there exists only one gBS Schema
which implies that there is no need to send the gBS Schema to the
adaptation engine. This is in contrast with BSDL where several BS
Schemas can be built according to corresponding coding formats. These
BS Schemas need to be sent to the adaptation engine because the BSD-
toBin parser needs these BS Schemas.

• It enables the semantically meaningful marking of syntactical elements.
More specifically, semantic information can be added to the gBSDs by
means of the XML attribute marker. This allows to include application-
or domain-specific information in the gBSD, e.g., marking violent
scenes within a gBSD describing an action movie.

• It provides support for hierarchical adaptations by describing hierarchies
of syntactical units. Hence, gBS Schema supports the grouping of bit-
stream elements, allowing to vary the granularity of the gBSD.

• It contains an extensive addressing scheme to support efficient bitstream
access. Supported units are bit and byte, while the addressing mode can
be absolute, offset, or consecutive.

Since all the necessary information to generate the adapted bitstream
(given the original bitstream) is included in the gBSD and the semantics of

1Only the gBS Schema is described in the DIA specification, together with the behaviour of
a gBSDtoBin parser.

46 gBFlavor

Listing 3.1: Example of a gBSD.

1 <gBSDUnit syntacticalLabel="bitStream" start="0">
<gBSDUnit syntacticalLabel="header" start="0">
<Parameter name="profile_idc" start="0" length="8">
<Value xsi:type="b8">100</Value>

5 </Parameter>
</gBSDUnit>
<!-- ... -->
<gBSDUnit syntacticalLabel="NalUnit" start="776" length="

488" marker="TEMPORAL_LEVEL=1"/>
<gBSDUnit syntacticalLabel="NalUnit" start="264" length="

064" marker="TEMPORAL_LEVEL=2"/>
10 <!-- ... -->

</gBSDUnit>

the gBS Schema elements, the gBSDtoBin process does not have to be aware
of the underlying coding format. The two most important gBS Schema el-
ements are gBSDUnit and Parameter. In Listing 3.1, an example of a gBSD
corresponding to an SVC [143] bitstream is given, illustrating the use of gBSD-
Units and Parameters.

• gBSDUnit represents a section of the bitstream. It can be used to point
to a group of syntax elements or a block of data. It includes zero or
more Parameters and gBSDUnits. Hence, a hierarchy of gBSDUnits can
be created. For instance, in Listing 3.1 (line 8), a gBSDUnit is used to
represent a Network Abstraction Layer Unit (NALU), which is a syntax
structure that is part of the SVC specification.

• Parameter is used to describe syntax elements of the bitstream that may
change when adapting the bitstream. Unlike the gBSDUnit, the Parame-
ter provides the actual value and datatype of the bitstream element. This
enables the adjustment of the numerical values of bitstream syntax el-
ements. On line 3 in Listing 3.1, a Parameter is used to represent the
syntax element profile idc, which has a length of 8 bits and a value
of 100.

Markers can occur as attributes within both the gBSDUnit and the Param-
eter language constructs. These markers typically contain semantically mean-
ingful information that can be used by the transformation process. In List-
ing 3.1 (lines 8 and 9), markers containing information regarding the temporal

3.2. gBS Schema 47

Process
gBSDUnit

Extract
temporal level
from marker

yes

temporal
level > 1 ? noyes

syntacticalLabel
equal to NalUnit?

no

Drop the
gBSDUnit

Keep the
gBSDUnit

Figure 3.2: Workflow of a transformation filter which drops gBSDUnits correspond-
ing to a temporal level higher than 1.

level of a NALU are present in the gBSD. Figure 3.2 shows the workflow of a
transformation filter that removes gBSDUnits based on their markers. Such a
transformation filter could be implemented by means of a STX stylesheet. In
this example, applying the filter to the gBSD results in a transformed gBSD
that corresponds to an SVC bitstream containing two temporal layers (i.e., the
base and first layer).

3.2.2 gBS Schema in Practice

gBS Schema has already been used for a couple of use cases. For instance,
European projects such as ISIS (Intelligent Scalability for Interoperable Ser-
vices, [47]) and DANAE (Dynamic and distributed Adaptation of scalable mul-
timedia coNtent in a context-Aware Environment, [101]) aimed at the design,
implemention, and validation of a multimedia framework that allows to adapt
audio-visual content to a wide range of service scenarios. Both projects used
gBS Schema as adaptation technology. In [81], CAIN is introduced, which is
a content adaptation manager targeted at the integration of different metadata-
driven content adaptation approaches. gBS Schema is one of these approaches.
Other examples of the use of gBS Schema are the adaptation and perceptual
encryption of H.264/AVC Video [55], an event-driven video adaptation sys-
tem [148], and the generic streaming of multimedia content [103].

3.2.3 Generation of gBSDs

As already mentioned in Section 3.2.1, the generation of gBSDs is not spec-
ified in the MPEG-21 DIA standard. Therefore, several approaches can be
used to obtain a gBSD. In this section, we investigate the different methods to
generate gBSDs. These are also summarized by Figure 3.3.

48 gBFlavor

Raw media
resource Encoder

Encoded media
resource

Format-specific
gBSD generator

BSD
generation

BSD to
gBSDBSD

gBSD

Encoded media
resource

BintoBSD
parser BSD gBSD

BS Schema

(1)

(2)

(3)

STX
engine

STX
stylesheet

Figure 3.3: Techniques for generating gBSDs.

Raw media
resource encoder

Encoded media
resource

Dedicated
software

BintoBSD
parser

BSD to
gBSDBSD

gBSD

Encoded media
resource

BintoBSD
parser BSD gBSD

BS Schema

(1)

(2)

(3)

STX
engine

STX
stylesheet

Figure 3.4: The two-step approach using BSDL’s BintoBSD parser and STX.

3.2.3.1 Using Dedicated Software

Dedicated software can be developed that is able to automatically generate gB-
SDs. For instance, a specific encoder can be extended such that it is possible to
generate a gBSD during the encoding process (option (1) in Figure 3.3). All the
necessary information is available during the encoding of the media resource
in order to produce a gBSD. However, the creation of a gBSD is application-
specific. This implies that for different applications2, different extensions have
to be built on top of an encoder. Also, the logic is format-specific, requiring the
development of new software when a new coding format has to be supported.
Finally, this method is not applicable to already encoded media resources.

A second category within the dedicated software solutions consists of
format-specific parsers that are able to create a gBSD, given an encoded media
resource compliant with a specific coding format (option (2) in Figure 3.3).
Note that this approach is also application- and format-specific, similar to the
use of an encoder extended with gBSD generation functionality. As such, a
new parser has to be developed in order to support a new coding format.

2Applications differ for example in terms of adaptation operations such as the exploitation
of temporal scalability and the removal of violent scenes.

3.2. gBS Schema 49

Listing 3.2: Excerpt of a resulting gBSD for an SVC encoded bitstream.

1 <gBSDUnit syntacticalLabel="Bit_stream" start="0">
<!-- ... -->
<gBSDUnit syntacticalLabel="byte_stream_nal_unit" start="

53" length="1188"/>
<!-- ... -->

5 </gBSDUnit>
E:\cvs_repositories\berg\dvd_mtap\R1_major_revision\Fi...\BSSVC.xsd 01/25/08 10:59:17

©1998-2005 Altova GmbH http://www.altova.com Page 1Registered to dvdeurse (EMBRACE)

Bit_stream

attributes

bs1:bitstreamURI

∞1..

byte_stream_nal_unit

zero_byte

startcode

svc:nal_unit

Figure 3.5: Simplified diagram of a BS Schema for SVC. An excerpt of the XML
representation of this BS Schema can be found in Annex B, Listing B.1.

3.2.3.2 Using a Format-agnostic Approach

Next to the creation of dedicated software, it is also possible to generate gBSDs
in a format-agnostic way. However, the production of gBSDs is application-
specific due to the hierarchical structure of the description and the marking of
gBSDUnits and Parameters for various adaptations. Therefore, a two-step ap-
proach (option (3) in Figure 3.3) was introduced by Panis et al. in [94]. First,
a format-specific BSD is generated for a media resource. This can for exam-
ple be achieved using BSDL’s BintoBSD parser. The second step consists of
transforming the format-specific BSD into a gBSD. XSLT or STX can be used
as transformation technology, since both enable the use of a format-agnostic
transformation engine. Figure 3.4 shows an example of the format-agnostic
approach using BSDL’s BintoBSD parser for the generation of BSDs and STX
for the transformation of the BSDs into gBSDs.

To provide the reader with an idea regarding the implementation effort
required by the approach proposed in Figure 3.4, the generation of gBSDs for
SVC encoded bitstreams is discussed in more detail. An example of such a
resulting gBSD is shown in Listing 3.2.

50 gBFlavor

Listing 3.3: Excerpt of a BSD for an SVC encoded bitstream.

1 <Bit_stream bs1:bitstreamURI="example.264">
<!-- ... -->
<byte_stream_nal_unit>
<zero_byte>0</zero_byte>

5 <startcode>000001</startcode>
<nal_unit>
<!-- and so on -->

</nal_unit>
</byte_stream_nal_unit>

10 <!-- ... -->
</Bit_stream>

The first step is to manually develop a BS Schema (a simplified diagram
of such a BS Schema is shown in Figure 3.5). A more detailed explanation of
the construction of a BS Schema for SVC can be found in [34]. Next, a BSD
can be automatically generated using BSDL’s standardized BintoBSD parser,
taking as input the BS Schema for SVC. An example of such a resulting BSD
is provided in Listing 3.3.

Next to a BS Schema, an XML transformation filter needs to be manually
written in order to transform the BSD into a gBSD. The workflow of such an
XML transformation filter is shown in Figure 3.6. The length of each syntax
element needs to be determined in order to know the total length of a higher
level structure (e.g., a NALU). The length is needed to create a corresponding
gBSDUnit element which has a start and length attribute (line 3 in Listing 3.2).

Note that the author of the XML transformation filter determines the gran-
ularity of the resulting gBSD. In other words, the hierarchical structure of a
gBSD is established during the transformation. In this example, the gBSD
contains details up to the level of a NALU. Every NALU corresponds to a
gBSDUnit (line 3 in Listing 3.2).

3.3 gBFlavor

In this section, gBFlavor [127, 128] is introduced. It is a novel solution for
the creation of gBSDs in a format-agnostic way. In the next subsections, the
motivation to develop gBFlavor and the architectural design of the gBFlavor
adaptation chain are discussed. An in-depth specification of gBFlavor together
with an elaboration on the transformation process is provided as well.

3.3. gBFlavor 51

Process
element

Calculate length
of the element in

terms of bits

Element has
child elements? no

yes

Call: Process
element for all
child elements

Return length

Name of the
element?Bit_stream

Output a gBSDUnit
with start = 0,

initialize
previousEnd=0

Byte_stream_nal_unit

other

Calculate the sum of
the length of all the

child elements

Output a gBSDUnit with
start=previousEnd and

length=calculatedLength,
previousEnd+=calculatedLenght

Call: Process
element for all
child elements

Calculate the sum of
the length of all the

child elements

Figure 3.6: Workflow of an XML transformation filter which transforms BSDs for
SVC into gBSDs. An implementation of this filter by means of a STX stylesheet can
be found in Listing B.2.

3.3.1 Motivation

The automatic generation of gBSDs is a well-known problem. As indicated by
Panis et al. in [94], the generation of a gBSD is application-specific. Thomas-
Kerr et al. stated in [117] that “gBS Schema is generic (format-independent),
but the generation process is not since this requires specific software which
is able to parse the format in question”. Both this application-dependent and
format-dependent aspect of the generation process for gBS Schema makes it
difficult to create a so-called ‘BintogBSD parser’, i.e., a format-agnostic parser
that produces application-specific gBSDs.

Although the two-step approach discussed in Section 3.2.3.2 is format-
agnostic, it has a number of disadvantages. First, two different technolo-
gies/languages (i.e., BSD generation and BSD-to-gBSD transformation) have
to be used. For example, both BSDL and STX need to be used to obtain
a gBSD. Second, the format-specific BSDs contain significantly more detail
than the resulting gBSD. For instance, in case of H.264/AVC, adding markers
to gBSDUnits corresponding with a NALU based on their NALU type implies
that the BSD has to contain the syntax element nal unit type. This is be-
cause the BSD-to-gBSD transformation needs access to this syntax element in
order to set proper markers. However, there is no need to include these details
in the gBSD because the transformation (based on the usage environment de-
scription) can make use of the markers. Hence, often more detail is needed
in the BSD than in the gBSD, implying a decrease in execution speed of the

52 gBFlavor

gBFlavor
code

gbflavorc
translator

Java source
classes

Format-specific
gBSD generator gBSD

gBSD
transformation

Transformed
gBSD

(1)

(2)

(3)

(4)

(5)

Usage
environment
description

gBSDtoBin
parser

gBS Schema

Original scalable bitstream

Adapted scalable bitstream

Figure 3.7: Adaptation framework based on gBFlavor.

format-specific BSD generation process (this will also be discussed in Sec-
tion 3.4, where performance results are given). However, this amount of detail
is needed for transforming the BSD into the resulting gBSD.

In order to offer a better solution for the creation of gBSDs in terms of ex-
ecution time and implementation effort, we propose gBFlavor. It is a technol-
ogy that enables the automatic generation of a format-specific parser. Subse-
quently, this parser is able to produce an application-specific gBSD for a given
bitstream. Hence, gBFlavor provides an efficient format-agnostic solution for
the generation of application-specific gBSDs.

3.3.2 Overall Functioning of gBFlavor

gBFlavor is built on top of BFlavor (BSDL + XFlavor, [126]). As discussed in
Chapter 2, BFlavor is a description tool for the efficient creation of format-
specific BSDs that are compliant with BSDL, using a modified version of
XFlavor. Consequently, gBFlavor relies on the same principles as BFlavor,
i.e., the automatic generation of a parser that is able to produce an XML de-
scription of the high-level structure of a given bitstream. The general workflow
of a gBFlavor-enabled adaptation framework is illustrated in Figure 3.7. The
following steps are needed to adapt a media resource using gBFlavor.

(1) The first step is the creation of a gBFlavor code. This code describes
the high-level syntax or structure of a (scalable) coding format in an
object-oriented manner (as discussed in the next section).

(2) The gbflavorc translator uses the gBFlavor code to automatically gener-
ate Java source classes, which are subsequently compiled to a format-

3.3. gBFlavor 53

specific gBSD generator.

(3) The automatically generated format-specific gBSD generator takes as
input a media resource and generates a gBSD. This gBSD is conformant
to the MPEG-21 gBS Schema.

(4) According to the capabilities of a given usage environment, the gBSD
is transformed by using an XML transformation tool such as XSLT or
STX.

(5) The gBSDtoBin parser, the behavior of which is standardized in MPEG-
21 DIA, takes as input the transformed gBSD and the original media
resource, producing an adapted version of the original bitstream. The
resulting bitstream is now suited for playback in a constrained usage
environment.

Following the gBFlavor approach, the two-step operation (discussed in
Section 3.2.3.2) is avoided for generating gBSDs, since the gBSD is directly
generated by a format-specific parser. Note that, based on the different ap-
proaches to obtain gBSDs (discussed in Section 3.2.3), gBFlavor is located in
the second option (i.e., using a format-specific gBSD generator). However,
despite the fact that gBFlavor produces a format-specific parser, it is still a
format-agnostic solution since the gbflavorc translator operates in a format-
agnostic way. Every format-specific parser is thus generated in an automatic
and format-independent manner.

3.3.3 gBFlavor versus BFlavor

As already mentioned, gBFlavor is built on top of BFlavor. Both serve as BSD
generation tools, i.e., they provide a description tool for the automatic creation
of efficient format-specific BSD generators. However, a number of key dif-
ferences can be identified. BFlavor was introduced as a harmonized solution
combining the strenghts of BSDL and XFlavor [31]. It serves as an efficient al-
ternative for the format-agnostic generation of format-specific BSDs, i.e., it is
an efficient replacement for BSDL’s BintoBSD parser. In other words, BFlavor
enables the creation of format-specific BSD generators compliant with BSDL.
On the contrary, gBFlavor provides a solution for the efficient, automatic gen-
eration of gBSDs (i.e., format-agnostic BSDs compliant with MPEG-21 gBS
Schema) by enabling the creation of format-specific gBSD generators. Note
that, in contrast to BSDL’s BintoBSD parser, gBS Schema does not offer a so-
called ‘BintogBSD parser’. In practice, BFlavor differs from gBFlavor in the
following points.

54 gBFlavor

• Specification: as will be discussed in Section 3.3.4, the gBFlavor spec-
ification is an extension of the BFlavor specification. This extension,
i.e., the application-specific code part, is needed to enable the cre-
ation of application-specific gBSDs in a format-agnostic way (see Sec-
tion 3.3.4.2). Note that the application-specific code part is not available
in BFlavor because BSDL does not offer support for markers and hier-
archical adaptations. Using BSDL, application-specific aspects can be
exploited during the XML transformation.

• Translation process: although the gBFlavor specification is an exten-
sion of the BFlavor specification, their translation processes (i.e., the
bflavorc and gbflavorc translators) are completely different. The rea-
son is that BFlavor is compliant with BSDL and hence the translation
process maps the constructs of the BFlavor code to constructs occur-
ring in BSDL. On the other hand, gBFlavor is compliant with MPEG-21
gBS Schema which results in a translation process mapping constructs
of gBFlavor to constructs occurring in MPEG-21 gBS Schema. Further-
more, additional mapping rules are necessary to provide a translation
from the application-specific code to the corresponding gBS Schema hi-
erarchy and marker occurrence. More information regarding the trans-
lation process of gBFlavor will be provided in Section 3.3.5.

• Format-specific BSD generator: the resulting BSD generators of BFla-
vor are able to generate BSDs compliant with BSDL, while the resulting
BSD generators of gBFlavor are able to generate gBSDs compliant with
MPEG-21 gBS Schema.

3.3.4 gBFlavor Specification

In this section, the syntax specification of gBFlavor is discussed in more detail.
A gBFlavor code is divided into two sections: the high-level syntax code and
the (optional) application-specific code. In Listing B.3, an excerpt of a gBFla-
vor code for SVC is provided [127]. The high-level syntax code is discussed in
Section 3.3.4.1; the application-specific code is explained in Section 3.3.4.2.

The high-level syntax code corresponds to the BFlavor specification3,
which is in its turn derived from the XFlavor specification [51]. The latter
has arisen from the Syntactic Description Language (SDL, [7]) which was de-
veloped to describe existing (and future) audiovisual coding standards. SDL

3This means that gBFlavor is backwards compatible with BFlavor. More specifically, based
on a gBFlavor code, the gbflavorc translator is also able to generate a BS Schema (compliant to
BSDL) and to produce a coding-format specific parser which is able to generate BSDs compliant
to that BS Schema.

3.3. gBFlavor 55

Listing 3.4: Example of a simple gBFlavor class.

1 %targetns{example%targetns}
%ns{ex%ns}
%root{Example%root}
%emulationBytes{(0002, 00);%emulationBytes}

5 %emulateBytes{(0001, 000201);%emulateBytes}

class Example (int param) {
fixedByteRange(2) startcode = 0x0001;
bit(2) parsable_var;

10 if(param == 0){
align();
varByteRange() payload = 0x0001;

}
}

addresses the need to disengage the definition of the bitstream syntax of audio-
visual content from the decoding and rendering tools. More specifically, the
description of the syntax should indicate what the bitstream contains, and not
how to obtain it.

SDL is based on a set of well-defined elements with unambiguous seman-
tics. Hence, the bitstream syntax definition features of SDL are described
in the form of formal grammar rules. These rules form a context-free gram-
mar and more specifically a LALR(1) (Look-Ahead Left to right, Rightmost
derivation) grammar [2]. Therefore, compiler-compilers such as Yacc (Yet
another compiler compiler, [69]) can be used to generate a parser for SDL,
(X)Flavor or (g)BFlavor. In the next sections, the Extended Backus-Naur Form
(EBNF, [57]) is used to describe the syntax constructs of gBFlavor in a formal
way.

3.3.4.1 High-level Syntax Code

The high-level syntax code denotes how the generated parser has to parse the
media resource. Hence, this high-level syntax code is based on the specifica-
tion of the coding format used.

Classes

Syntax 1:
high level syntax code = {hint code | (class, class name, [’(’, parameter list,

56 gBFlavor

’)’,] ’{’, {statement}, ’}’) };

With the gBFlavor specification, it is possible to describe the (high-level)
syntax of a coding format. Since this code is organized in a Java-like manner,
the class structure is the building block of the gBFlavor code. Inside a class,
the bitstream representation information is placed together with the data dec-
larations. The high-level syntax code of gBFlavor is a declarative language,
which implies that no user-defined methods are allowed in the gBFlavor code.
However, in order to pass external information to a class, class parameters are
allowed. This is illustrated on line 7 of Listing 3.4, where the class Example
contains the parameter param.

Control Flow

Syntax 2:
if else expression = if, ’(’, condition, ’)’, ’{’, {statement}, ’}’, [else, ’{’,
{statement}, ’}’];
while expression = while, ’(’, condition, ’)’, ’{’, {statement}, ’}’;
for expression = for, ’(’, [initialisation,] ’;’, [condition,] ’;’, [update,] ’)’, ’{’,
{statement}, ’}’;
switch case expression = switch, ’(’, expression, ’)’, ’{’, {case, constant-
expression, ’:’, {statement}, ’;’}, [default, ’:’, {statement}, ’;’,] ’}’;

It is possible to add control flow into classes by using if-else, switch-
case, for, and while constructs. An example of the use of an if-statement
is illustrated on line 10 of Listing 3.4.

Variables

Syntax 3:
variable declaration = type, [’(’, length, ’)’,] element name, [’=’, value,] ’;’ ;

A class may contain two different kinds of variables: parsable and non-
parsable variables. A non-parsable variable can be seen as a regular variable
used in Java. Parsable variables, illustrated on line 9 of Listing 3.4, include a
parse length immediately specified after their type declaration. Parsable vari-
ables define the bitstream syntax elements because their value is fetched from
the bitstream itself, while non-parsable variables are typically used for internal
computations.

Variables can have built-in datatypes or user-defined datatypes. The fol-
lowing datatypes are supported by gBFlavor.

3.3. gBFlavor 57

Table 3.1: Exponential Golomb bit strings and codewords.

bit string ue() se()
1 0 0

010 1 1
011 2 -1

00100 3 2
00101 4 -2
00110 5 3
00111 6 -3

...

• bit: the bit datatype is used to describe syntax elements having a fixed
bit length.

• short, int, long: adopted from procedural languages such as Java, gBFla-
vor supports the signed and unsigned short (2 bytes), int (4 bytes), and
long (8 bytes) datatypes.

• ue, se: signed and unsigned exponential Golomb datatypes, as used in
H.264/AVC, are supported by gBFlavor. Note that these datatypes have
a variable bit length, implying that no parse length can be specified. In
Table 3.1, an overview is given of the first bit strings and correspond-
ing codewords for the signed and unsigned exponential Golomb codes.
Their use in SVC is illustrated on line 14 of Listing B.3.

• varByteRange: the varByteRange datatype is used for referring to a par-
ticular bitstream segment. For instance, this datatype is used when it is
not relevant to describe a part of the bitstream syntax in the resulting
gBSD. Only the start and the length of the bitstream segment are written
into the gBSD in order to correctly reconstruct the bitstream. The end
of the bitstream segment is indicated by a particular byte sequence (or
range of byte sequences). This is illustrated on line 12 of Listing 3.4,
where the element payload ends before the next occurrence of the bit
string 0x0001. Note that such a bit string usually corresponds to a start
code (e.g., the start code for a NALU in SVC corresponds to the byte
sequence 0x000001).

• fixedByteRange: similar to the varByteRange datatype, the fixed-
ByteRange datatype is used for referring to a particular bitstream seg-
ment. However, this datatype is used for segments of a fixed length in
terms of bytes. The use of this datatype is illustrated on line 8 of List-

58 gBFlavor

ing 3.4, where the element startcode contains a fixed length of 2
bytes.

• Encoded base class: in order to provide an extension mechanism for the
creation of new datatypes, gBFlavor contains a built-in class, Encoded.
This class provides a well-defined interface for user-defined datatypes.
Hence, user-defined datatypes in gBFlavor are classes that extend the
Encoded base class. More detailed information about this extension
mechanism can be found in [31].

During gBSD generation, it is possible to check whether the values of par-
ticular syntax elements match with predefined values in the gBFlavor code. As
illustrated on line 8 of Listing 3.4, this is done by simply assigning the pre-
defined value to the parsable variable that needs to be checked. A warning is
given during the gBSD generation when a validation check fails for a particu-
lar syntax element. Note that this feature is typically used to validate the value
of syntax elements containing fixed values (e.g., start codes).

Built-in Functions

Syntax 4:
builtin function = function name, ’(’, [function parameter list,] ’)’, ’;’ ;

gBFlavor provides five built-in functions that can assist in describing the
high-level syntax of a coding format.

• align(): this function reads bits from the bitstream until a byte-aligned
position is reached. The value of the padding bits is added to the result-
ing gBSD. The use of this function is illustrated on line 11 of Listing 3.4.

• getcontext(class, index, variable): classes can carry information that is
needed for the parsing of future syntax elements or for future processing
steps. Such information is called context information. gBFlavor offers
two possibilities for dealing with context information: information can
be passed through class parameters or by using context classes. A con-
text class is a class that is kept in memory during the parsing process.
A possible use case is for instance the Sequence Parameter Set (SPS)
in SVC. How to declare a context class in gBFlavor is discussed further
in this section. The getcontext() function is able to retrieve information
from a class that is kept in the context (i.e., stored in the system mem-
ory). Its use is illustrated on line 3 of Listing 3.5, where the syntax
element element1 is fetched from the class ContextClass. The
first parameter of the function is the name of a class that was previously

3.3. gBFlavor 59

Listing 3.5: Using context classes in gBFlavor.

1 class RegularClass {
bit(4) context_index;
int var = getcontext("ContextClass", context_index,

$element1);
if(var > 0)

5 // ...
}

%context{index%context}
class ContextClass{

10 bit(4) index;
bit(6) element1;
//...

}

stored in the context. The second parameter denotes the value of the
index element of the context class. Different instances of a context class
can have different values for their index element (they are thus stored
separately in the context). For instance, this is the case when different
SPSs are present in an SVC bitstream. Note that this is discussed further
in this section. The last parameter indicates the variable that must be
accessed inside the selected context class. Its value will be returned by
the getcontext() function [131].

• nextbits(n): a look-ahead mechanism is provided by this function. It
takes as parameter the number of bits to look forward into the bitstream.
The value of these bits is returned by this function.

• numbits(): this function returns the number of bits that have already been
parsed since the start of the parsing process.

• skipbits(n): bit skipping is possible by using this function. It takes as
parameter the number of bits that have to be skipped. Note that, in con-
trast to the use of the byteRange datatypes, nothing is written into the
resulting gBSD when the skipbits() function is applied.

Hint codes

Syntax 5:
hint code = ’%’, hint code type, ’{’, hint content, ’%’, hint code type, ’}’;

60 gBFlavor

Hint codes are used to signal additional information to the automatically
generated parser. Note that we explicitly introduce a new term to indicate that
the information provided by the code is used to provide hints for the gbflavorc
translator, which is in contrast to the so-called verbatim codes of XFlavor. Six
hint codes are defined within the gBFlavor specification.

• ns, targetns: these two hint codes are used to signal information about
the classification scheme that has to be used in the resulting gBSD. The
hint codes have to occur at the beginning of the gBFlavor code (shown
on line 1 and 2 in Listing 3.4).

• root: the root hint code is used to indicate the root class of the gBFlavor
code. The generated parser has to start with the parsing of this class
when it receives a bitstream as input. In the example in Listing 3.4, the
root class is Example (line 3). Note that this hint code is required to be
present at the start of the gBFlavor code.

• context: the context hint code can appear at the start of a class declara-
tion and will mark this class as a context class (discussed earlier in this
section). Instances of this class will be kept in memory (context) during
the parsing process. The hint code takes as parameter the name of the
index element of the context class. Figure 3.8 illustrates the processing
of context classes in gBFlavor. In this example, the SPS class is a con-
text class with index element seq parameter set id. Each context
class has its own array in system memory. Instances of context classes
are stored in this array based on the value of their index element. Storing
a context class implies that every syntax element of the class, together
with its value, is stored in the array. The use of this hint code is shown
on line 8 in Listing 3.5. 0 is used as index element when no index el-
ement exists within the class (implying that only the last occurrence of
this class is kept in memory). As already discussed in this section, the
built-in getcontext() function can be used to retrieve values stored in the
context classes.

• emulationBytes and emulateBytes: gBFlavor provides support for em-
ulation prevention bytes by introducing the emulationBytes and emu-
lateBytes hint codes. When a start code occurs coincidentally in the
bitstream (i.e., false start code generation), emulation prevention bytes
are inserted in order to prevent a start code emulation. Recent coding
formats such as H.264/AVC and Video Codec-1 (VC-1, [113]) make use
of emulation prevention bytes. The emulationBytes hint code is used

3.3. gBFlavor 61

CC RC

0

1

…

RCBitstream:

Array for the context
class SPS

SPS_id = 0
fn_length = 2
...

SPS

getcontext(“SPS”, 0, $fn_length)

RC
CC
SPS
fn_length
SPS_id

CC

SPS_id = 1
fn_length = 4
...

SPS

CC

SPS_id = 0
fn_length = 3
...

SPS

getcontext(“SPS”, 0, $fn_length)

…

= Regular Class
= Context Class
= Sequence Parameter Set
= log2_max_frame_num_minus4
= seq_parameter_set_id

Figure 3.8: Processing context classes in gBFlavor. The SPS is used as context class.
A regular class is a class which is not a context class.

by gBFlavor to detect and to ignore the emulation prevention bytes dur-
ing the bitstream parsing. A list of couples (byte sequence with emula-
tion prevention byte, byte sequence without emulation prevention byte)
is given as an argument to this hint code (illustrated on line 4 in List-
ing 3.4).

The emulateBytes hint code is used to signal the occurrence of emu-
lation prevention bytes in the resulting gBSD. This is needed because
the gBSDtoBin parser needs to know if there are emulation prevention
bytes or not. The argument of this hint code is a list of couples (byte se-
quence that cannot appear in the bitstream, emulated version of the byte
sequence) (illustrated on line 5 in Listing 3.4) [131]. Note that the hint
codes dealing with emulation prevention bytes and context information
are optional, in contrast to the three hint codes discussed earlier.

3.3.4.2 Application-specific Code

Syntax 6:
app spec code = gBSDApp, application name, ’{’, class declaration, ’}’;

Thus far, we have only discussed the specification of the high-level syntax
code. With this specification, it is already possible to automatically generate
a format-specific parser that is able to generate gBSDs. These gBSDs contain
the same level of detail as described in the high-level syntax code. Indeed,

62 gBFlavor

Listing 3.6: Example of the application-specific part of a gBFlavor code.

1 gBSDApp Example_Application {
class Example {
if(parsable_var > 0)
setmarker("Example", "", "Marked!");

5 }
}

every parsed syntax element described in the high-level syntax code will also
occur in the resulting gBSD. Given the high-level syntax code for SVC in
Listing B.3, a parser can be generated that takes as input an SVC bitstream and
produces the gBSD given in Listing B.4. This gBSD contains the same level
of detail as described in the high-level syntax code, i.e., up to and including
the slice header.

As discussed in Section 3.2, MPEG-21 gBS Schema provides support for
hierarchical adaptations by describing hierarchies of gBSDUnits. It also en-
ables semantically meaningful marking of syntactical elements. However, the
high-level syntax code of gBFlavor is not able to exploit these two features
of gBS Schema. Indeed, it is not possible to produce different hierarchies of
gBSDUnits (i.e., the level of detail within gBSDs is equal to the level of detail
within the gBFlavor code). Also, no possibility exists to add markers to the
XML elements (i.e., gBSDUnits and Parameters). Note that these two features
of gBS Schema make the resulting gBSDs application-specific.

In order to support different hierarchies and the insertion of markers in
gBFlavor, application-specific code can be added to the gBFlavor code. A
simple example of an application-specific code, belonging to the high-level
syntax code of Listing 3.4, is given in Listing 3.6. Note that in Listing B.3,
an example of application-specific code for SVC is included. In this example,
markers are added to NALUs of the resulting gBSD in order to support the
exploitation of scalability along the different axes of SVC. More detailed in-
formation regarding the functioning of sub-sequences and the exploitation of
scalability in SVC can be found in [30] and [34] respectively.

Each target application within the application-specific code is denoted by
using the keyword gBSDApp, followed by the name of the target application
(illustrated on line 1 of Listing 3.6). Within the gBSDApp environment, a list
of classes can be specified where a number of calculations have to occur in
order to be able to set a marker at a specific syntax element (the formal syntax
can be found in Syntax 6). Each class within a gBSDApp environment also has

3.3. gBFlavor 63

to be present in the high-level syntax part of the gBFlavor code. The code of a
particular class occurring in a gBSDApp environment is executed after having
parsed the corresponding class in the high-level syntax part of the gBFlavor
code (in case the application is selected by the parser as target application).
Note that we have separated the application-specific code from the high-level
syntax code because multiple target applications can be specified. The gener-
ated parser is in this case able to support multiple target applications.

Within each class inside the application-specific environment, a
lightweight version of the high-level syntax code specification (Sec-
tion 3.3.4.1) can be used. This lightweight version contains restrictions, due
to the fact that it is not allowed to parse anything from the bitstream during
the assignment of the markers. Hence, the use of the following constructs is
prohibited in the application-specific code:

• parsable variables;

• the built-in functions skipbits() and align();

• classes which extend the Encoded base class;

• hint codes.

The application-specific code also contains a new built-in function: set-
marker(class, variable, marker). This function makes it possible to assign a
marker to a specific syntax element. Its use is illustrated on line 4 of List-
ing 3.6. This built-in function takes three parameters as input. The first pa-
rameter is the name of the class where the marker has to occur. The second
parameter is the name of the variable where the marker has to be inserted. In
case the second parameter is empty, the marker is inserted at the place where
the class starts. In practice, this is considered as adding a marker to a Param-
eter (in case a variable is given in the second parameter) or to a gBSDUnit,
which corresponds to the given class specified in the first parameter (in case
the second parameter is empty). The third parameter is the actual value of
the marker. In the SVC example (Listing B.3), a marker is assigned to a gB-
SDUnit that corresponds to the class ByteStreamNalUnit. This marker
contains information regarding the temporal, spatial, and quality levels of the
corresponding NALU.

3.3.5 Mapping between gBFlavor and MPEG-21 gBS Schema

Creating a gBFlavor code for a specific coding format enables the automatic
creation of a parser for bitstreams compliant with that particular coding format.

64 gBFlavor

Table 3.2: Mapping between the high-level syntax code of gBFlavor and MPEG-21
gBS Schema language constructs.

gBFlavor code gBS Schema
Element Datatype Element Datatype

class gBSDUnit
bit Parameter bx

short Parameter xsd:short
int Parameter xsd:int

long Parameter xsd:long
Parsable ue Parameter bs1:unsignedExpGolomb
variable se Parameter bs1:signedExpGolomb

varByteRange gBSDUnit
fixedByteRange gBSDUnit

Encoded Parameter bx
align() Parameter bs1:align8

The result of the parsing process is a gBSD. Hence, a mapping has to be es-
tablished between the gBFlavor specification and the MPEG-21 gBS Schema
specification.

3.3.5.1 Mapping of High-level Syntax Code to gBS Schema Constructs

An overview of the mapping of the high-level syntax code to gBS Schema is
tabulated in Table 3.2. A class in the gBFlavor code is mapped to a gBSDUnit
in the gBSD. Within a class, the parsable variables, which may have datatypes
such as bit, short, int, long, ue, and se, are mapped to a Parameter containing
the corresponding datatype of the gBS Schema. Note that a parsable variable
defined by means of the Encoded base class (i.e., a user-defined datatype) also
maps to a Parameter. However, since gBS Schema does not support an exten-
sion mechanism for user-defined datatypes, the length of the datatype becomes
fixed under the form of a bx4 datatype (the actual length will be known during
the parsing process).

Furthermore, parsable variables of the type fixedByteRange and var-
ByteRange are mapped to a gBSDUnit. This is straightforward since a
byteRange datatype points to a bitstream segment, just like a gBSDUnit does.
Finally, the align() built-in function is mapped to a Parameter having the
datatype bs1:align8. Note that the bs1:align8, bs1:unsignedExpGolomb, and
bs1:signedExpGolomb datatypes have been adopted in the second amendment
of the MPEG-21 DIA specification [65].

4bx denotes the built-in integer datatypes of MPEG-21 gBS Schema. For instance, datatype
b2 denotes a length of two bits.

3.3. gBFlavor 65

Algorithm 1 Marking of the full-detailed classes.
Require: T represents the full class tree, U contains all the user-marked

classes: (∀u ∈ U)(setmarker(u, s1, s2) occurs in the gBFlavor code) with
s1 and s2 string constants

Ensure: a list M containing the classes that must be described in full detail
repeat

for all c ∈ T do
if c /∈M then

for all d ∈ list of children of c do
if (d ∈M) ∨ (d ∈ U) then

add c to M
end if

end for
end if

end for
until M has not changed
return M

3.3.5.2 Hierarchical Changes in an Application-specific gBSD

As discussed in Section 3.3.4.2, the application-specific part of the gBFlavor
code enables support for the insertion of markers by using the setmarker()
function. This function does not only lead to the addition of a marker to a
syntax element, its use also results in a change in the hierarchical structure
of the gBSD. More specifically, classes (and hence their corresponding gBS-
DUnits) that do not include a marker, will not occur in the resulting gBSD.
Listing 3.7 shows a gBSD after selecting the target application ‘TemporalSpa-
tialQuality Scalability’ (described in Listing B.3). As one can see, the gBSD
only contains the corresponding gBSDUnits of the classes bitStream and
byteStreamNalUnit. Further, markers are added to gBSDUnits that cor-
respond to a byteStreamNalUnit class.

The logic for obtaining the list of classes whose corresponding gBSDUnits
have to occur in the resulting gBSD is given in Algorithm 1. It starts from the
list U , which contains the list of classes that were marked by the author of the
gBFlavor code (using the setmarker() function). The goal is to find the list M ,
which contains all the classes whose corresponding gBSDUnits have to occur
in the resulting gBSD. In each iteration, the classes containing a child class
that occurs in U or in M , are added to M . The algorithm ends if M did not
change anymore during an iteration.

66 gBFlavor

BitStream

ByteStreamNalUnit

NalUnit

NalUnitHeaderSvcExtensionRawByteSequencePayload

class does not appear in the gBSD
class appears in the gBSD, but not in full detail
class appears in the gBSD, in full detail

Figure 3.9: Part of the class tree, extracted from the high-level syntax code given in
Listing B.3.

Listing 3.7: Excerpt of a gBSD, generated by gBFlavor and using the gBFlavor code
given in Listing B.3 (‘TemporalSpatialQuality Scalability’ is set as application).

1 <gBSDUnit syntacticalLabel=":jsvm:bitStream" start="0">
<!-- ... -->
<gBSDUnit syntacticalLabel=":jsvm:byteStreamNalUnit"

start="53776" length="112488" marker="TL=1:SL:0:QL=1"
/>

<gBSDUnit syntacticalLabel=":jsvm:byteStreamNalUnit"
start="166264" length="100432" marker="TL=1:SL:0:QL=2"
/>

5 <gBSDUnit syntacticalLabel=":jsvm:byteStreamNalUnit"
start="266696" length="92800" marker="TL=1:SL:1:QL=0"
/>

<gBSDUnit syntacticalLabel=":jsvm:byteStreamNalUnit"
start="359496" length="105872" marker="TL=1:SL:1:QL=1"
/>

<!-- ... -->
</gBSDUnit>

3.4. Performance Results 67

We will illustrate Algorithm 1 by applying it to the gBFlavor code given
in Listing B.3. The corresponding gBSD is shown in Listing 3.7. A part of the
class tree, extracted from the high-level syntax code, is depicted in Figure 3.9.
All the classes within the class tree occur in the list T . The list U only con-
tains the class ByteStreamNalUnit. The result of the algorithm in this
example is the list M = {BitStream}, which contains the classes whose
corresponding gBSDUnits have to occur in the resulting gBSD (gray classes
in Figure 3.9). The corresponding gBSDUnits of classes that occur in list U
but not in list M are present in the resulting gBSD, but not in full detail (dot-
ted classes in Figure 3.9). Indeed, they are represented by a gBSDUnit, which
does not have children (illustrated on line 3 of Listing 3.7). The gBSDUnits
corresponding to the remaining classes are not described in the gBSD (white
classes in Figure 3.9).

It is important to remark that the classes whose corresponding gBSDUnits
do not occur in the resulting gBSD, are still parsed. These classes typically
provide information to assign proper markers to syntax elements. For instance,
the syntax element nal unit type, which is located in the class NalUnit
(line 69 in Listing B.3), is used in the application-specific code to determine
the value of a marker (line 97 in Listing B.3). However, since this syntax
element is located in a class that does not occur in the list M or U , it is not
present in the corresponding gBSD (Listing 3.7).

3.4 Performance Results

In order to evaluate the performance of our description-driven adaptation
framework, we have tested gBFlavor in the context of two scalable coding
formats, i.e., SVC and JPEG2000. An overview of the characteristics of the
test sequences used is given in Table 3.3. Screenshots of these test sequences
are provided in Figure 3.10. The target application of the gBSDs within the
adaptation framework is the exploitation of scalability along the different axes
of the coding formats.

For the gBSD generation process, two different approaches are compared.
The first approach is the generation of a format-specific BSD, followed by
the transformation of this BSD into a gBSD (as discussed in Section 3.2.3.2).
BSDL is used to generate format-specific BSDs, while STX is used to trans-
form the BSDs into gBSDs. In the second approach, gBFlavor is used. Note
that we have only included format-agnostic solutions in our experiments.

For the generation of the BSDs, we have relied on an optimized version
of BSDL (as discussed in [34]). Joost (version 2006-10-05) is used as STX
engine. In order to generate the adapted bitstreams from the (transformed) gB-

68 gBFlavor

Table 3.3: Bitstream characteristics of the test sequences.

SVC
Name Resolution # frames Frame Size Length Bit rate # temporal # spatial # quality

rate (Hz) (MB) (s) (MBit/s) layers layers layers
Crew 1280x720 1200 60 18.7 20 7.5 4 3 3

Cyclists 1280x720 1200 60 10.0 20 4.0 4 3 3
Raven 1280x720 1200 60 12.4 20 5.0 4 3 3

JPEG2000
Name Resolution Size Bit rate # colour # spatial # quality

(MB) (bit/pixel) components layers layers
Image1 4000x4000 5.4 2.8 3 10 23
Image2 5600x7200 10.8 2.3 3 10 23
Image3 6476x6224 19.6 4.1 3 10 23

SDs, we have used DIA’s reference software (version 3.0.3 of the gBSDtoBin
parser). In order to provide an estimate of the overhead of the XML descrip-
tions in terms of file size, the (g)BSDs were compressed using XWRT [149],
which is a high-performance XML compressor. Performance measurements
were done on a PC having an Intel Pentium D 2,8 GHz CPU and 1 GB of sys-
tem memory at its disposal. The operating system used was Windows XP Pro
SP2, running Java 2 Runtime Environment (SE version 5). Every step was ex-
ecuted five times, whereupon the average was calculated (the average standard
deviation for the different adaptation chains was 0.06 s).

(a) Crew (b) Cyclists (c) Raven

(d) Image1 (e) Image2 (f) Image3

Figure 3.10: Screenshots of the test sequences.

3.4.P
erform

ance
R

esults
69

Table 3.4: Execution times and file sizes for the gBSD generation process (SVC).

BSDL + STX
Name BintoBSD BSD Size compr. BSD Size STX gBSD Size compr. gBSD Size Speed Total time

(s) (MB) (KB) (s) (KB) (KB) (MBit/s) (s)
Crew 49.2 13.0 70.6 8.7 1379.0 63.6 2.6 57.9

Cyclists 44.2 13.0 67.4 8.6 1371.3 58.6 1.5 52.8
Raven 45.4 13.0 68.2 8.7 1372.3 59.4 1.8 54.0

gBFlavor
Name gBSD generatora gBSD Size compr. gBSD Size Speed Total time

(s) (KB) (KB) (MBit/s) (s)
Crew 4.6 1391.9 63.4 32.1 4.6

Cyclists 3.4 1384.2 58.7 23.6 3.4
Raven 3.7 1385.1 59.2 26.8 3.7

a‘gBSD generator’ denotes the parser that is generated with the gbflavorc translator.

Table 3.5: Execution times and file sizes for the gBSD generation process (JPEG2000).

BSDL + STX
Name BintoBSD BSD Size compr. BSD Size STX gBSD Size compr. gBSD Size Total time

(s) (KB) (KB) (s) (KB) (KB) (s)
Image1 3.3 174.2 8.4 1.5 554.4 17.9 4.8
Image2 5.3 174.5 8.5 1.6 555.4 17.8 6.8
Image3 8.7 174.9 8.8 1.6 556.6 18.2 10.2

gBFlavor
Name gBSD generatora gBSD Size compr. gBSD Size Total time

(s) (KB) (KB) (s)
Image1 1.5 624.1 18.3 1.5
Image2 2.3 625.0 18.2 2.3
Image3 3.5 626.3 18.5 3.5

a‘gBSD generator’ denotes the parser that is generated with the gbflavorc translator.

70 gBFlavor

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

Crew Cyclists Raven

Ex
ec

ut
io

n
tim

e
(s

)

gBFlavor BSDL+STX

BFlavor+STX

Figure 3.11: Execution times for gBSD generation (SVC).

3.4.1 gBSD Generation

3.4.1.1 General Observations

The execution times of the gBSD generation process for SVC and JPEG2000
are tabulated in Table 3.4 and Table 3.5, respectively. In these tables, gBFla-
vor and the combination of BSDL and STX are compared. Note that we did
not include the time spent by the gbflavorc translator and the compilation of
the java source classes to a format-specific parser. This is because these steps
can be seen as pre-processing steps since both only need to be done once for
each coding format. Therefore, the time spent on these first two steps can be
ignored (and is negligibly small in practice). As one can see, gBFlavor out-
performs the combination of BSDL and STX in terms of execution speed. The
combination of BSDL and STX performs bad in comparison with gBFlavor
due to the following reasons.

• Performance of BSDL’s BintoBSD parser. The generation of a format-
specific BSD takes 80% of the total time for generating an application-
specific gBSD using the two-step approach. There are several reasons
for the high execution times of the BintoBSD parser.

– XPath evaluation: the BSDL specification offers XPath [22] as a
mechanism to obtain context information (i.e., information of al-
ready parsed bits). On the contrary, gBFlavor uses context classes
and class parameters to obtain context information. The perfor-
mance of the context mechanism used by (g)BFlavor has proven to
be superior to the evaluation of XPath expressions [131].

– Granularity of the format-specific BSD: as already mentioned in
Section 3.3.1, the format-specific BSD contains significantly more

3.4. Performance Results 71

detail than the resulting gBSD. This is because the BSD-to-gBSD
transformation needs access to certain syntax elements in order to
set proper markers. However, there is no need to include these de-
tails in the resulting gBSD because the transformation can make
use of the markers. Hence, the format-specific BSDs will typically
be larger in terms of file size than the resulting gBSDs because
they have a finer granularity. This is illustrated in Table 3.4, where
the file sizes of the BSDs and gBSDs are given for the different
SVC test sequences. A BSD for the Crew sequence has a size of
13 MB, while the corresponding gBSD takes only 1.3 MB. Larger
BSD sizes imply more I/O operations in order to write the BSDs
to disk, introducing a decrease of execution time for the Binto-
BSD parser. Note that the granularity of BSDs and gBSDs does
not always differ. This is in particular true for the JPEG2000 cod-
ing format, where the BSDs and corresponding gBSDs contain the
same level of detail because it should be possible to modify syntax
elements deep in the syntax structure (e.g., the modification of the
resolution).

– Generic software module: the BintoBSD parser is a generic parser
which can take any bitstream as input, regardless of the coding
format. This implies that format-specific information (i.e., the BS
Schema) needs to be interpreted. Hence, genericity comes at a cost
of execution time for loading the BS Schema in order to interpret
it (approximately 1 s).

• Performance of the BSD-to-gBSD transformation. The transforma-
tion of a format-specific BSD to an application-specific gBSD is im-
plemented by means of a STX stylesheet. Note that this transformation
process was discussed in Section 3.2.3.2 for the SVC coding format. De-
spite the BintoBSD parser being the bottleneck in the two-step approach
for generating gBSDs, the BSD-to-gBSD transformation also introduces
an increase in execution time due to the following reasons.

– Granularity of the incoming format-specifc BSD: as mentioned
above, the granularity of the format-specific BSD is mostly finer
than the granularity of the resulting gBSD. Hence, the STX pro-
cessor needs to read and parse a fine-detailed BSD, resulting in a
lot of I/O operations.

– Length calculations: during the BSD-to-gBSD transformation, the
length of the different gBSDUnits needs to be calculated (as dis-
cussed in Section 3.2.3.2). This means that every detail of the

72 gBFlavor

format-specific BSD needs to be catched and processed in order to
determine the exact length in terms of bits of a gBSDUnit. On the
contrary, gBFlavor has all the information regarding the length of
a specific gBSDUnit at its disposal because the application-specific
calculations are performed during the parsing of the bitstream.

– Generic software module: analogous to the BintoBSD parser, the
STX processor is also a generic software module which has to in-
terpret a STX stylesheet. Loading the STX stylesheet during the
BSD-to-gBSD transformation takes 0.7 s on average.

Generation of application-specific gBSDs can be done very fast using
gBFlavor thanks to the following reasons.

• No XPath evaluation: dealing with context information in gBFlavor is
possible by using context classes or class parameters. As discussed in
Section 3.3.4.1, context classes use arrays as underlying implementation
to fetch context information. This is in contrast to BSDL where XPath
evaluation is used to obtain context information.

• Combination of parsing and application-specific gBSD generation:
where the combination of BSDL and STX introduces a lot of overhead
in terms of I/O operations due to the two-step approach, gBFlavor does
not suffer from this. Since gBFlavor allows to create a format-specific
and application-specific parser at the same time, an application-specific
gBSD can be obtained in one step. This is in particular illustrated in
Figure 3.11, where the execution times for the gBSD generation (using
the SVC format) are also illustrated for the combination of BFlavor and
STX. BFlavor is an optimized solution for BSDL’s BintoBSD parser;
however, the execution speed of BFlavor followed by STX is still lower
than gBFlavor’s execution speed due to the need for more I/O operations
(generation of an intermediate BSD).

• Granularity of the resulting gBSD: as already discussed above, the gran-
ularity of the resulting gBSD is often more coarse than its corresponding
format-specific BSD. This results in a limited amount of I/O operations
to write the resulting gBSD.

• Format-specific software module: since gBFlavor enables the creation
of a format-specific parser in a format-agnostic way, there is no need
to interpret format-specific information (like the BintoBSD parser) or
application-specific information (like the STX processor).

3.4. Performance Results 73

Note that we have not compared gBFlavor with XFlavor due to the fol-
lowing reasons. First of all, XFlavor is not able to generate gBSDs. XFlavor
is a description tool able to create an efficient format-specific parser. Such
a parser creates for a given bitstream an XML description, compliant with a
W3C XML Schema. However, this XML description can only be used by
XFlavor’s non-standardized bitgen tool, which takes as input the XML de-
scription and produces an adapted bitstream. A two-step approach, analogous
to the BSDL+STX approach, could be used in order to solve this problem.
In this case, an XML transformation filter (e.g., a STX stylesheet) needs to
be written which is able to transform the XML description generated by the
format-specific parser into a gBSD with a specific granularity and with the
presence of particular markers. However, there is an important disadvantage
using XFlavor for the generation of XML descriptions, making the two-step
approach not feasible in practice. This is explicitly stated in [31]: “In XFlavor,
the complete bitstream data are actually embedded in the BSD, resulting in
potentially verbose descriptions, while BSDL uses a specific datatype to point
to a data range in the original bitstream when it is too verbose to be included
in the BSD”. Hence, XFlavor can be seen as a representation language, rather
than a description language, because it describes the bitstream at a low-level,
bit-per-bit basis. This implies that using XFlavor for the adaptation of scalable
coding formats is not feasible in practice.

Table 3.4 and Table 3.5 also show the file sizes of the different BSDs and
gBSDs. Both the two-step approach BSDL+STX and gBFlavor generate the
same output. First, it is obvious that both approaches have a gBSD (i.e., a BSD
compliant with MPEG-21 gBS Schema) as output. Second, the granularity of
the gBSDs is the same. In other words, the amount of detail of the gBSDs is the
same for the BSDL+STX and the gBFlavor approach. Note that the granularity
is determined during the STX transformation in case of the BSDL+STX ap-
proach; for the gBFlavor approach, this is specified in the application-specific
code (which is discussed in Section 3.3.4.2). Third, the same markers occur
in the gBSDs of both approaches. These three points make that the gBSDs
are totally equivalent for both the BSDL+STX and the gBFlavor approach. An
example of such a gBSD can be found in Listing 3.7, where an excerpt is listed
of a gBSD having SVC as underlying coding format. Note that the little dif-
ferences between the gBSD sizes of both approaches are caused by a different
use of spaces, tabs, or new lines. However, they are syntactically completely
equal.

Comparing the sizes of the format-specific BSDs and the gBSDs for the
SVC format, the gBSDs are smaller than their corresponding BSDs because
the gBSDs describe less syntax elements, i.e., syntax elements up to the NALU

74 gBFlavor

0,0

10,0

20,0

30,0

40,0

50,0

60,0

0 500 1000 1500
frames

E
xe

cu
tio

n
tim

e
(s

)

BSDL+STX
gBFlavor

Figure 3.12: Impact of the # frames on the execution times for gBSD generation.

(see Listing 3.7). The corresponding BSDs contain a description up to and
including the NALU header. Note that this detailed information is needed
to set the proper markers in the resulting gBSD. For the JPEG2000 format,
the gBSDs and corresponding BSDs contain the same level of detail because
it should be possible to modify syntax elements deep in the syntax structure
(e.g., the modification of the resolution). However, compressing the gBSDs
results in a rather small overhead in comparison to the file size of the media
resource (about 0.5 % – 5 %).

3.4.1.2 Impact Parameters for the gBSD Generation Process

In this section, a number of parameters are discussed that influence the perfor-
mance of the gBSD generation process. These parameters apply to both the
two-step approach and gBFlavor; however, a number of parameters will have
a bigger impact on one of the approaches due to the different bottlenecks dis-
cussed in the previous section. The characteristics of the SVC test sequences
used for this comparison are tabulated in Table 3.6. The execution times of the
gBSD generation process for these test sequences can be found in Table 3.7.
The following parameters are taken into account.

• bit rate: the number of I/O-operations is mostly determined by the bit
rate of the bitstream (i.e., a higher bit rate results in a higher number of
I/O-operations). The bit rate is dependent on other parameters such as
the content of the sequence, the resolution, and the number of scalability
axes.

3.4. Performance Results 75

• content: the content of a media resource has a big impact on its bit rate.
Factors such as the amount of motion and the presence of complex tex-
tures, together with the coding algorithm used determine the bit rate of a
media resource. Comparing the bit rate of the Cyclists sequence and the
Crew1 sequence, one can see that the bit rate of Crew1 is much higher
(see Table 3.6). This results in faster execution times for the Cyclists se-
quence (52.8 s in comparison with 57.9 s for Crew1 when using BSDL’s
BintoBSD parser and STX).

• frame rate: a higher frame rate results in a higher bit rate, which in its
turn results in a lower execution time for the gBSD generation process.

• resolution: as mentioned above, the bit rate is dependent on the reso-
lution. Hence, higher resolution bitstreams will have higher execution
times for the gBSD generation process. Note that in case of the two-step
approach, only the BintoBSD parser is dependent on the resolution, be-
cause the STX processor only has to deal with the format-specific BSD.
The size of the latter is independent of the resolution of the underlying
bitstream.

• # frames: varying the number of frames reveals that the gBSD genera-
tion has linear execution times. This is also illustrated in Figure 3.12,
where the linear behavior of both the two-step approach and gBFlavor is
shown.

• # scalability layers: the number of scalability layers is an important
factor for the gBSD generation process. It does not only have an impact
on the bit rate of the bitstream, but also on the size of the format-specific
BSDs, as can be seen in Table 3.6. For the SVC coding format, the
number of scalability layers influences the number of NALUs, which
are the main parse units inside an SVC bitstream. Less scalability layers
imply a decrease of the number of NALUs. The less NALUs occur in
the bitstream, the lower the execution times for the gBSD generation
process and the lower the sizes of the (g)BSDs will be (Table 3.7).

76
gB

Flavor

Table 3.6: Bitstream characteristics for the different SVC test sequences.

Name Resolution # frames # NALUs Frame rate Size Length Bit rate # temporal # spatial # quality
(Hz) (MB) (s) (MBit/s) layers layers layers

Crew1 1280x720 1200 13208 60 18.7 20 7.5 4 3 3
Cyclists 1280x720 1200 13208 60 10.0 20 4.0 4 3 3
Crew2 704x576 1200 13208 60 10.6 20 4.2 4 3 3
Crew3 704x576 1200 13208 30 12.7 40 2.5 4 3 3
Crew4 704x576 600 6608 30 6.4 20 2.5 4 3 3
Crew5 704x576 300 3308 30 3.2 10 2.5 4 3 3
Crew6 704x576 1200 13208 30 12.3 40 2.5 6 3 3
Crew7 704x576 1200 6008 30 8.5 40 1.7 4 1 3
Crew8 704x576 1200 6008 30 11.3 40 2.3 4 3 1

3.4.P
erform

ance
R

esults
77

Table 3.7: Execution times and file sizes for the gBSD generation process (SVC).

BSDL + STX
Name BintoBSD BSD Size compr. BSD Size STX gBSD Size compr. gBSD Size Speed Total time

(s) (MB) (KB) (s) (KB) (KB) (MBit/s) (s)
Crew1 49.2 13.0 70.6 8.7 1379.0 63.6 2.6 57.9

Cyclists 44.2 13.0 67.4 8.6 1371.3 58.6 1.5 52.8
Crew2 45.5 13.0 69.9 8.7 1372.4 61.3 1.6 54.2
Crew3 46.6 13.0 70.9 8.7 1375.5 63.1 1.8 55.2
Crew4 24.1 6.5 38.7 4.9 687.3 32.1 1.8 29.0
Crew5 12.7 3.3 22.4 3.0 343.6 16.4 1.6 15.7
Crew6 46.0 13.0 70.3 8.7 1374.9 62.8 1.8 54.8
Crew7 22.9 5.7 31.0 4.5 624.1 25.9 2.5 27.4
Crew8 24.3 5.7 28.2 4.5 625.0 24.6 3.1 28.8

gBFlavor
Name gBSD generatora gBSD Size compr. gBSD Size Speed Total time

(s) (KB) (KB) (MBit/s) (s)
Crew1 4.6 1391.9 63.4 32.1 4.6

Cyclists 3.4 1384.2 58.7 23.6 3.4
Crew2 3.5 1385.3 61.2 24.3 3.5
Crew3 3.8 1388.3 62.9 26.9 3.8
Crew4 2.1 693.7 32.0 24.6 2.1
Crew5 1.2 346.8 16.4 21.1 1.2
Crew6 3.7 1387.7 62.6 26.4 3.7
Crew7 2.4 629.9 26.0 28.3 2.4
Crew8 2.7 630.8 24.7 32.7 2.7

a‘gBSD generator’ denote the parser that is generated with the gbflavorc translator.

78 gBFlavor

Table 3.8: Execution times and file sizes for the gBSD transformation and bitstream
generation process. The last column denotes the total execution time of the gBFlavor-
enabled adaptation framework.

SVC
Name Version STX gBSD Size compr. gBSD Size gBSDtoBin Bitstream Size Tot. time

T-S-Qa (s) (MB) (KB) (s) (MB) (s)
2-1-1 1.0 0.4 17.3 0.5 2.6 6.2

Crew 2-2-2 1.1 0.7 34.2 1.1 14.6 6.9
3-1-2 1.1 1.0 44.0 0.8 6.2 6.6
3-2-1 1.2 1.0 45.3 1.0 10.5 6.8
2-1-1 1.0 0.4 16.4 0.5 1.4 4.9

Cyclists 2-2-2 1.1 0.7 32.6 0.8 8.6 5.3
3-1-2 1.1 1.0 40.7 0.7 3.4 5.2
3-2-1 1.2 1.0 41.9 0.8 5.5 5.4
2-1-1 1.0 0.4 16.7 0.5 1.8 5.2

Raven 2-2-2 1.1 0.7 32.9 1.0 11.2 5.8
3-1-2 1.1 1.0 41.3 0.7 4.2 5.6
3-2-1 1.2 1.0 42.5 0.8 6.5 5.7

JPEG2000
Name Version STX gBSD Size compr. gBSD Size gBSDtoBin Bitstream Size Tot. time

C-S-Qb (s) (MB) (KB) (s) (KB) (s)
0-4-4 0.8 27.5 2.2 0.2 6.3 2.5

Image1 0-9-22 0.9 160.8 6.1 0.4 2727.3 2.9
2-9-4 0.8 104.8 4.4 0.3 70.7 2.7

2-4-22 0.9 251.4 7.9 0.4 41.7 2.9
0-4-4 0.8 27.6 2.2 0.2 19.4 3.3

Image2 0-9-22 0.9 161.2 6.2 0.7 7993.8 3.8
2-9-4 0.8 105.1 4.3 0.3 175.3 3.4

2-4-22 1.0 251.8 8.2 0.4 96.9 3.6
0-4-4 0.8 27.6 2.2 0.2 15.3 2.5

Image3 0-9-22 0.9 161.2 6.1 0.6 6690.2 5.0
2-9-4 0.8 105.2 4.4 0.3 183.8 4.7

2-4-22 1.0 251.9 8.2 0.4 105.5 4.9

aT, S, and Q denote the number of temporal, spatial, and quality layers in the bitstream.
bC, S, and Q denotes the number of colour, spatial, and quality layers in the bitstream.

3.4.2 Transformation and Adapted Bitstream Generation

Table 3.8 contains the execution times and file sizes for the adaptation and
bitstream generation processes. The adaptation is implemented by means of
STX stylesheets (one for each coding format). The adapted gBSD is then fed
to MPEG-21 DIA’s gBSDtoBin parser in order to obtain the desired adapted
bitstream. As one can see, the actual adaptation process can be executed very
fast (approximately one second). This is because the transformation is based
on the markers inside the gBSD, which avoid complex computations during
the transformation. The gBSDtoBin processor also performs very well and
is highly dependent on the size of the resulting (adapted) bitstream. Indeed,

3.5. Conclusions and Original Contributions 79

higher bitstream sizes imply more I/O-operations and hence higher execution
times.

The last column of Table 3.8 shows that a gBFlavor-enabled adaptation
framework is able to adapt media resources very efficiently (i.e., 5.8 s and 3.5 s
on average for SVC and JPEG2000 respectively). Moreover, it is clear that
gBFlavor enables the creation of a real-time XML-driven adaptation frame-
work (less than 7 s for an SVC video of 20 s), in contrast to the two-step ap-
proach. Furthermore, the memory consumption is low and constant during
the full adaptation chain for both gBFlavor and the combination of BSDL and
STX (a maximum of 2.0 MB).

3.5 Conclusions and Original Contributions

Due to the lack of an efficient method for the generation of gBSDs in a format-
independent manner, we proposed gBFlavor in this chapter. gBSDs are used
in an MPEG-21 gBS Schema-based framework for content adaptation. Such a
framework is able to adapt scalable bitstreams in a format-independent man-
ner. The gBSD generation process is not standardized within MPEG-21 DIA,
implying that a gBSD may be generated in a proprietary way. In this chap-
ter, we discussed and evaluated existing methods for gBSD generation. The
two-step approach as currently proposed in the scientific literature is an ex-
isting format-independent solution. More specifically, gBSDs are created by
a format-specific BSD generation step, followed by a transformation into a
gBSD. However, the latter solution requires knowledge of two different tech-
nologies (i.e., BSD generation and BSD-to-gBSD transformation). Further-
more, often more detail is needed in the BSD than in the resulting gBSD,
implying a decrease in execution speed of the format-specific BSD generation
process. Note that these detailed BSDs are necessary to set proper markers
during the BSD-to-gBSD transformation.

gBFlavor makes it possible to automatically generate a format-specific
parser that is able to produce an application-specific gBSD for a given bit-
stream. Such a parser is generated by the gbflavorc translator, which takes as
input a gBFlavor code. We have proposed the specification for this code, which
describes the high-level structure of a particular coding format. The gBFlavor
specification, which is an extension of the BFlavor specification, provides sup-
port for the addition of semantically meaningful information to gBSDs (by
means of markers). Hence, gBSDs targeting specific applications can be ob-
tained.

In order to get an estimate of the expressive power and performance of
a gBFlavor-enabled adaptation framework, we have compared the gBFlavor

80 gBFlavor

approach with the existing two-step approach. The creation of gBSDs using
gBFlavor avoids the two-step approach, since only one technology is needed
to obtain gBSDs targeting a specific application. The exploitation of the scal-
able properties of two coding formats, i.e., SVC and JPEG2000, was used as
the target application in our gBFlavor-enabled adaptation framework. Perfor-
mance results have shown that gBFlavor outperforms the two-step approach in
terms of execution speed.

The research that has led to this chapter is also described in the following
publications.

1. W. De Neve, D. Van Deursen, D. De Schrijver, K. De Wolf, and R. Van
de Walle. Using Bitstream Structure Descriptions for the Exploitation of
Multi-layered Temporal Scalability in H.264/AVC’s Base Specification.
Lecture Notes in Computer Science – Advances in Mulitmedia Informa-
tion Processing, volume 3768, pages 641–652, November 2005

2. D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle.
BFlavor: an Optimized XML-based Framework for Multimedia Content
Customization. In Proceedings of the 25th Picture Coding Symposium,
6 pages on CD-ROM, April 2006, Beijing, China

3. D. Van Deursen, D. De Schrijver, W. De Neve, and R. Van de Walle. A
Real-Time XML-Based Adaptation System for Scalable Video Formats.
Lecture Notes in Computer Science – Advances in Multimedia Informa-
tion Processing, volume 4261, pages 339–348, November 2006

4. W. De Neve, D. Van Deursen, D. De Schrijver, S. Lerouge, K. De Wolf,
and R. Van de Walle. BFlavor: a Harmonized Approach to Media Re-
source Adaptation Inspired by MPEG-21 BSDL and XFlavor. Signal
Processing: Image Communication, 21(10):862–889, November 2006

5. D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle. Au-
tomatic Generation of generic Bitstream Syntax Descriptions Applied to
H.264/AVC SVC Encoded Video Streams. In Proceedings of the 14th
International Conference on Image Analysis and Processing, pages 382–
387, September 2007, Modena, Italy

6. D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle.
gBFlavor: a New Tool for Fast and Automatic Generation of generic
Bitstream Syntax Descriptions. Multimedia Tools and Applications,
40(3):453–494, December 2008

Chapter 4

Model-driven content
adaptation

Enthusiasm is everything. It must be taut and vibrating like a
guitar string.

Pelé (1940 -)

4.1 Introduction

In Chapter 2, we gave an overview of format-independent content adaptation.
Adaptation systems operating independently of the underlying coding format
are based on automatically generated XML-based descriptions of the high-
level structure of the media resources [3]. By performing simple, high-level
operations such as the removal of particular data blocks and the modification
of the value of certain syntax elements, media resources can be customized in
a format-independent way. However, XML-driven content adaptation still has
a number of issues:

• creators of XML filters have to implement low-level, coding-format de-
pendent algorithms that are needed to obtain format-independent adap-
tation operations;

• the integration of semantic adaptation operations and content metadata
standards is realized in an ad-hoc way.

In this chapter, we tackle the problems of XML-driven content adaptation
and present a new method for the adaptation of media resources in a format-

82 Model-driven content adaptation

independent way, called model-driven content adaptation1. It is inspired by
the principles of XML-driven content adaptation techniques such as BSDL or
gBS Schema, while its final design is based on a model describing structural,
content, and scalability information of media bitstreams. Existing coding and
metadata formats are mapped to this model in order to be supported. Hence,
adaptation operations (e.g., frame rate scaling or scene selection) can be ex-
pressed and implemented based on this model, in a way that is independent
of the underlying coding format. Instead of using XML, Semantic Web tech-
nologies such as the Resource Description Framework (RDF, [72]), the Web
Ontology Language (OWL, [83]), and the SPARQL Protocol And RDF Query
Language (SPARQL, [99]) are used to implement our adaptation technique.
This way, the interoperability between different metadata standards can be en-
hanced thanks to a more natural representation of objects and relationships, as
reported in [6, 41, 122, 139].

The organization of this chapter is as follows. Section 4.2 elaborates on
a number of problems of XML-driven content adaptation. A model for media
bitstreams is presented in Section 4.3. Our new method for multimedia content
adaptation, i.e., model-driven content adaptation, is discussed in Section 4.4.
This new technique is compared to other approaches in Section 4.5. Perfor-
mance results are provided in Section 4.6. Finally, conclusions are drawn in
Section 4.7.

4.2 Problem Description

As discussed in the introduction, there are still a number of issues regarding
current content adaptation systems based on XML descriptions of the high-
level structure of media bitstreams. In this section, we discuss these issues
in more detail by means of simple examples. Suppose we have video content
encoded by making use of MPEG-2 Video and H.264/AVC. A BSD is created
using BSDL’s BintoBSD parser for both sequences, as shown in Figure 4.1.
Now suppose that we want to express the adaptation operation ‘remove the
highest temporal layer’, which will result in a decrease of the frame rate. In
Figure 4.1, workflow diagrams are shown that correspond to XML filters ex-
pressing the adaptation operation. Note that for the H.264/AVC example, a
simplified algorithm is given; more information on exploitation of temporal
scalability in H.264/AVC can be found in [30].

1Model-driven content adaptation is equivalent to RDF-driven content adaptation, which is
the term used in publications.

4.2. Problem Description 83

BSDL /
H.264/AVC

BSDL /
MPEG-2 Video

gBS Schema /
H.264/AVC

gBS Schema /
MPEG-2 Video

Exploitation of
temporal
scalability

Scene selection
using MPEG-7

metadata

Scene selection
using TV-Anytime

metadata

= XML filter

<H264AVC_bitstream>
<!-- ... -->
<bsnu>

<zero_byte>00</zero_byte>
<startcode>000001</startcode>
<nalu>

<fzb>0</fzb>
<nal_ref_idc>3</nal_ref_idc>
<nalu_type>7</nalu_type>
<raw_byte_sequence_payload>

<!-- slice header elements -->
 </raw_byte_sequence_payload>

</nalu>
</bsnu>
<!-- ... -->

</H264AVC_bitstream>

<MPEG2Video_bitstream>
<!-- ... -->
<GOP>

<GOP_header>
<!-- ... -->

</GOP_header>
<picture>

<picture_header>
<start>00000100</start>
<temp_ref>0</temp_ref>
<pict_type>1</pict_type>
<!-- ... -->

</picture_header>
<!-- ... -->

</picture>
<!-- ... -->

</GOP>
<!-- ... -->

</MPEG2Video_bitstream>

Match
picture

yes

pict_type == 3

Drop the
picture

Keep the
picture

no

Match
bsnu

yes

nal_ref_idc == 0 &&
(slice_type == 1 or 6)

Drop the
bsnu

Keep the
bsnu

no

BSDL / H.264/AVC

BSDL / MPEG-2 Video

Structural metadata Remove highest temporal layer

Structural metadata Remove highest temporal layer

<MediaBitstream>
<!-- ... -->
<DataBlock>

<start>5</start>
<length>85</length>
<scal_info>

<temp_level>2</temp_level>
</scal_info>

</DataBlock>
<!-- ... -->

</MediaBitstream>

Model for media streams Match
DataBlock

yes

temp_level == 2

Drop the
DataBlock

Keep the
DataBlock

no

Figure 4.1: Implementing temporal scalability using XML-driven content adaptation.

High-level Adaptation Operations

The actual adaptation engines in an XML-driven content adaptation system
are format-independent, while the descriptions themselves are format-specific.
Hence, an XML filter implementing a particular adaptation operation (e.g., re-
moval of temporal layers in a scalable video stream) needs to know the struc-
ture of these descriptions, and is thus dependent on the coding format. There-
fore, multiple format-dependent XML filters need to be created to implement
the same adaptation operation for different formats, as illustrated in Figure 4.1.
The functionality of these XML filters is the same: calculate the temporal level
for each video frame and decide whether the frame should be dropped or not.

84 Model-driven content adaptation

However, the calculation of the temporal levels is format-specific and should
be avoided during the BSD transformation step.

The same observation can be made for semantic adaptation operations,
which typically express a selection of media fragments based on content meta-
data (e.g., selection of sport fragments in a news sequence). Content metadata
are often linked to the multimedia content by means of timestamps, whereas
structural metadata use bit offsets. Therefore, a mapping between the times-
tamp values of the content metadata and the bit offsets of the structural meta-
data needs to be implemented in the XML filter. Such a mapping is dependent
on the underlying coding format and should be avoided during the BSD trans-
formation step.

Hence, despite the use of an abstraction layer (i.e., a BSD) within XML-
driven content adaptation, the adaptation operations themselves are not ab-
stracted. More specifically, compared to format-specific adaptation software,
the format-dependency is shifted from the binary to the XML domain. Cre-
ators of XML filters cannot think in terms of high-level and format-indepen-
dent adaptations but have to be aware of the underlying coding formats. Hence,
with the current XML-driven approach, format-independency is obtained in an
ad-hoc manner.

Integration with Other Metadata Formats

The second problem regarding the integration of semantic adaptation opera-
tions and content metadata formats is related to the interoperability issues of
XML [41,139]. Metadata formats typically consist of an XML Schema accom-
panied with plain text (e.g., MPEG-7). The text usually describes the semantic
meaning of the XML tags specified in the XML Schema. The role of XML
Schema is to define a grammar for XML documents. However, when it comes
to semantic interoperability and making data understandable, XML has disad-
vantages. XML’s major limitation is that it only describes grammars. It is im-
possible to recognize a semantic unit from a particular domain because XML
aims at document structure and imposes no common interpretation of the data
contained in the document [6,41,122]. For instance, taking into account differ-
ent metadata standards, the same tags can have different meanings while tags
with the same meaning can occur in different structures. Hence, expressing the
semantic adaptation operation ‘select sport fragments’ in a scenario where two
different content metadata standards are used (e.g., annotations are provided
in both MPEG-7 and TV-Anytime), requires the development of two different
XML filters (i.e., one that can interpret MPEG-7 and one that can interpret
TV-Anytime). Note that the previous observation also holds true for different

4.3. Modeling Media Bitstreams 85

BSDL /
H.264/AVC

BSDL /
MPEG-2 Video

gBS Schema /
H.264/AVC

gBS Schema /
MPEG-2 Video

Exploitation of
temporal
scalability

Scene selection
using MPEG-7

metadata

Scene selection
using TV-Anytime

metadata

= XML filter

Figure 4.2: Problems with XML-driven content adaptation.

structural metadata standards. Examples of standardized solutions for express-
ing structural metadata are BSDL and gBS Schema; however, other represen-
tations such as XFlavor are also possible. It is obvious that XML filters are also
dependent on the technology used for the representation of structural metadata.

Both problems are also illustrated in Figure 4.2, where video content is
encoded by making use of MPEG-2 Video and H.264/AVC. Furthermore, con-
tent metadata regarding the different scenes in the video is available in both
MPEG-7 and TV-Anytime. Finally, metadata regarding the high-level struc-
ture of the encoded video bitstreams is provided by descriptions compliant
with both BSDL and gBS Schema. As can be seen in this figure, XML fil-
ters performing the BSD transformation step (discussed in Section 2.2.1) are
depending on the coding format (i.e., H.264/AVC and MPEG-2 Video), the
metadata format of the structural metadata (i.e., BSDL and gBS Schema), and
the metadata format of the content metadata (i.e., MPEG-7 and TV-Anytime).

4.3 Modeling Media Bitstreams

In order to solve the problems discussed in Section 4.2 (i.e., format-specific
XML filters and an ad-hoc integration of semantic adaptation operations and
content metadata standards), we propose a novel format-independent adapta-
tion technique.

As mentioned in Section 4.2, XML filters are dependent on the underly-
ing coding format because the descriptions of the high-level structure of media
bitstreams are format-dependent. As such, despite the fact that the underlying

86 Model-driven content adaptation

BSDL /
H.264/AVC

BSDL /
MPEG-2 Video

gBS Schema /
H.264/AVC

gBS Schema /
MPEG-2 Video

Exploitation of
temporal
scalability

Scene selection
using MPEG-7

metadata

Scene selection
using TV-Anytime

metadata

= XML filter

<H264AVC_bitstream>
<!-- ... -->
<bsnu>

<zero_byte>00</zero_byte>
<startcode>000001</startcode>
<nalu>

<fzb>0</fzb>
<nal_ref_idc>3</nal_ref_idc>
<nalu_type>7</nalu_type>
<raw_byte_sequence_payload>

<!-- slice header elements -->
 </raw_byte_sequence_payload>

</nalu>
</bsnu>
<!-- ... -->

</H264AVC_bitstream>

<MPEG2Video_bitstream>
<!-- ... -->
<GOP>

<GOP_header>
<!-- ... -->

</GOP_header>
<picture>

<picture_header>
<start>00000100</start>
<temp_ref>0</temp_ref>
<pict_type>1</pict_type>
<!-- ... -->

</picture_header>
<!-- ... -->

</picture>
<!-- ... -->

</GOP>
<!-- ... -->

</MPEG2Video_bitstream>

Match
picture

yes

pict_type == 3

Drop the
picture

Keep the
picture

no

Match
bsnu

yes

nal_ref_idc == 0 &&
(slice_type == 1 or 6)

Drop the
bsnu

Keep the
bsnu

no

BSDL / H.264/AVC

BSDL / MPEG-2 Video

Structural metadata Remove highest temporal layer

Structural metadata Remove highest temporal layer

<MediaBitstream>
<!-- ... -->
<DataBlock>

<start>5</start>
<length>85</length>
<scal_info>

<temp_level>2</temp_level>
</scal_info>

</DataBlock>
<!-- ... -->

</MediaBitstream>

Model for media bitstreams Match
DataBlock

yes

temp_level == 2

Drop the
DataBlock

Keep the
DataBlock

no

Figure 4.3: Expressing adaptation operations on top of format-independent BSDs.

adaptation engines are independent of the coding format, the actual transfor-
mation logic is not. Therefore, the transformations of the structural metadata
should be shifted to a higher level. This can only be realized if format-specific
calculations (e.g., calculation of temporal levels or calculation of a timestamp
for a particular frame) can be avoided during the BSD transformation step.
Hence, we propose to shift these format-specific calculations from the BSD
transformation step to the BSD generation step. As a result, we are able to ob-
tain a fully format-independent BSD that enables the expression of high-level
adaptation operations (an example can be found in Figure 4.3). We have de-
fined the structure and semantics of such a fully format-independent BSD in
the form of a model for media bitstreams. That way, the adaptation operations
can be formulated in terms of transformations based on the model; hence they
are shifted to a higher level, independent of the coding format. Our model for
media bitstreams is based on previous work regarding the definition and im-
plementation of a model for media bitstreams [76,89,130]. However, the latter
only provides support for high-level structural adaptations and uses XML as
underlying technology.

To obtain a seamless integration between semantic adaptation operations
and content metadata standards, our model for media bitstreams needs to sup-
port semantic adaptation operations. More specifically, it has to enable the
extraction of specific media fragments from a media bitstream, independent of
the coding format. Furthermore, the model has to provide hooks to connect to
existing metadata standards. That way, semantic adaptation operations can be
expressed by using concepts defined in existing content metadata standards.

We have avoided XML Schema to describe our model because the use of
XML as underlying technology causes interoperability problems between dif-

4.3. Modeling Media Bitstreams 87

ferent metadata standards, as discussed in Section 4.2. In contrast to XML,
Semantic Web technologies such as RDF and OWL enhance the interoper-
ability among metadata standards for multimedia content [139] (see also Sec-
tion 1.1.2). Therefore, our model for media bitstreams is implemented by us-
ing OWL2. The instances of the model (i.e., the structural metadata or BSDs)
are expressed in RDF. The transformation of the structural metadata is im-
plemented by using SPARQL queries, which are independent of the coding
format.

To summarize, the requirements for our model for media bitstreams can be
listed as follows:

• fully independent of coding formats;

• support for expressing adaptation operations (both structural and seman-
tic) independent of coding formats;

• description of the link between low-level coding structures and high-
level media segments;

• seamless integration between adaptation operations and other metadata
models.

4.3.1 Model for Media Bitstreams

As elaborated on above, a model for media bitstreams is needed in order to ab-
stract the transformation of the structural metadata. In this section, we present
such a model covering structural, content, and scalability information. As dis-
cussed above, we implemented the model by using OWL (see Listing C.1). In
Figure 4.4, an overview is given of the model. More detailed views on this
model are provided in the next subsections. Note that for figures visualiz-
ing (parts of) the multimedia model, ellipses, rectangles, and arrows represent
OWL classes, literals, and properties respectively.

4.3.1.1 Structural Metadata

The modeling of the high-level structure of a media bitstream is shown in
Figure 4.5. The MediaBitstream class corresponds to a particular compressed,
elementary media bitstream. It contains a description of the underlying format
(e.g., H.264/AVC) (i.e., the format property) and a reference to the location of
the media bitstream by means of the bitstreamSource property.

2Using RDFS to implement our model is not sufficient, because we need OWL-specific
constructs such as the transitivity relationship.

88 Model-driven content adaptation

Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

DataBlock

Scalability
Axis

Scalability
AxisInfo

Feature
Value

Temporal
Segment

Feature

Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

hasStructure

hasTemporalSegment

hasTemporal
Segment

hasBitstreamData

hasFeature

boundTo
hasFeatureValue

hasScalabilityInfo

hasScalabilityInfo

constrains

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

hasStructure

isRepresentedBy

Figure 4.4: Overview of the multimedia model.

A MediaBitstream consists of a number of RandomAccessUnits. Random
access refers to the ability of the decoder to start decoding at a point in a com-
pressed media bitstream other than at the beginning and to recover an exact
representation of the decoded bitstream [25, 49]. A RandomAccessUnit con-
tains a number of successive DataBlocks, pointing to particular segments in
the media bitstream. More detailed information regarding the modeling of
DataBlocks is provided in Section 4.3.1.3.

The property hasStructure, which is used to connect the classes in the
structural metadata, is a transitive property. This means that if a pair (x, y) is an
instance of hasStructure, and the pair (y, z) is also an instance of hasStructure,
then we can infer that the pair (x, z) is also an instance of hasStructure. We
introduce this transitivity relationship to express that DataBlocks are always
contained in MediaBitstreams (even if they are located within a RandomAc-
cessUnit). Additionally, it is possible that a MediaBitstream has DataBlocks
not occurring in RandomAccessUnits (e.g., a Sequence Parameter Set (SPS) in
H.264/AVC).

4.3. Modeling Media Bitstreams 89

Media
Bitstream

Random
Access

Unit

DataBlock

hasStructure

hasStructure

bitstreamSource

format

MIME
type

anyURI

Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Temporal
Segment

hasStructure

isRepresentedBy

hasTemporalSegment

has
Temporal
Segment

hasBitstreamData

description

string

keyword

string

Media
Bitstream

Scalability
Axis

Feature
Value

Feature has
Feature

hasFeatureValue

Scalability
AxisInfo

has
Scalability

Info

constrains

has
Value

unitstring

name
string

nlevels
integer

levelinteger

Random
Access

Unit

DataBlock Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

value integer
length start

long long

Scalability
AxisInfo

has
Scalability

Info

boundTo

nbytes integer

start time

duration

duration

hasStructure

Figure 4.5: Model for the structural metadata.

4.3.1.2 Scalability Information

The scalability information part of the model provides information regarding
properties of the media bitstream that are related to possible adaptation oper-
ations. It enables the declaration of what types of adaptations may or should
be applied to the media bitstream in order to optimally fit a given context [87].
The modeling of the scalability information is depicted in Figure 4.6. A Medi-
aBitstream contains a number of Features, each containing a specific unit. An
example of a feature is ‘frame rate’, having as unit ‘fps’. Each Feature contains
one or more FeatureValues. Note that the data type of the hasValue property
is not specified since this is dependent on the feature. Furthermore, a Feature
can be bound to one or more ScalabilityAxes containing an amount of levels
(e.g., a temporal scalability axis containing four levels). A FeatureValue can
be linked to a ScalabilityAxisInfo class, which provides information regarding
the relationship between the scalability axes and the feature values. This is
established by constraining a ScalabilityAxis by means of a level (e.g., 15 fps
corresponds to the second level of the temporal scalability axis).

90 Model-driven content adaptation

Media
Bitstream

Random
Access

Unit

Datablock

hasStructure

hasStructure

bitstreamSource

format

MIME
type

anyURI

Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Temporal
Segment

hasStructure

isRepresentedBy

hasTemporalSegment

has
Temporal
Segment

hasBitstreamData

description

string

keyword

string

Media
Bitstream

Scalability
Axis

Feature
Value

Feature has
Feature

hasFeatureValue

Scalability
AxisInfo

has
Scalability

Info

constrains

has
Value

unitstring

name
string

nlevels
integer

levelinteger

Random
Access

Unit

Datablock Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

value integer
length start

long long

Scalability
AxisInfo

has
Scalability

Info

boundTo

nbytes integer

start time

duration

duration

hasStructure

Figure 4.6: Model for the scalability information.

4.3.1.3 Data Blocks

As already mentioned above, DataBlocks point to particular segments in the
media bitstream. In Figure 4.7, the modeling of a data block is shown in de-
tail. A DataBlock is always characterized by two properties: the start and
length of the datablock in terms of bits. Additionally, a datablock can contain
ScalabilityAxisInfo (see Section 4.3.1.2), indicating to which scalability layers
the data block belongs.

Three possible subclasses exist for a DataBlock.

• TruncatablePayload: points to a bitstream segment that can be truncated
by a number of bytes, something that typically occurs within bitstreams
encoded with Fine Granularity Scalability (FGS) techniques.

• StuffingBits: allow to write padding bits to the output bitstream until it
is byte-aligned. The property nbytes determines on how many bytes the
bitstream is aligned. E.g., if nbytes is equal to four, then padding bits are
added until the output bitstream is aligned on four bytes.

• SyntaxElement: represents a specific syntax element of the media bit-
stream. The value property indicates the value of the syntax element,
i.e., the decimal representation of the bits covered by the syntax element
(specified by the start and length property).

4.3. Modeling Media Bitstreams 91

Media
Bitstream

Random
Access

Unit

DataBlock

hasStructure

hasStructure

bitstreamSource

format

MIME
type

anyURI

Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Temporal
Segment

hasStructure

isRepresentedBy

hasTemporalSegment

has
Temporal
Segment

hasBitstreamData

description

string

keyword

string

Media
Bitstream

Scalability
Axis

Feature
Value

Feature has
Feature

hasFeatureValue

Scalability
AxisInfo

has
Scalability

Info

constrains

has
Value

unitstring

name
string

nlevels
integer

levelinteger

Random
Access

Unit

DataBlock Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

value integer
length start

long long

Scalability
AxisInfo

has
Scalability

Info

boundTo

nbytes integer

start time

duration

duration

hasStructure

Figure 4.7: Model for a data block.

4.3.1.4 Content Metadata

A MediaBitstream can be annotated by means of AnnotatedMultimedia, which
contains a description of the content of the MediaBitstream. The content meta-
data model is depicted in Figure 4.8. AnnotatedMultimedia consists of a num-
ber of TemporalSegments, each pointing to a specific segment of the multi-
media content by means of a start and duration property. A TemporalSeg-
ment can in its turn contain a number of other TemporalSegments, allowing to
model a hierarchy of TemporalSegments. Furthermore, a TemporalSegment has
a keyword property, allowing a simple annotation of the multimedia content by
means of keywords (i.e., a form of tagging). More complicated descriptions
of TemporalSegments can be obtained by linking existing ontologies to our
content metadata model. More information regarding the linking of other on-
tologies to our multimedia model is provided in Section 4.3.2.2.

The connection between the media bitstream and the TemporalSegments is
established by means of the hasBitstreamData property. Each RandomAccess-
Unit of a media bitstream can belong to one or more TemporalSegments. This
way, the TemporalSegments are connected to the bits of particular media bit-
streams. Note that AnnotatedMultimedia points to the multimedia content by
means of timestamps, independently of the coding format, while a MediaBit-
stream points to specific bitstream segments in terms of bits.

Furthermore, since AnnotatedMultimedia can be linked to different Medi-
aBitstreams, the model for media bitstreams provides support for media bit-
stream selection (see Chapter 1). Indeed, it is possible to relate multiple Me-
diaBitstream instances (each corresponding to a different version in terms of
coding format, bit rate, etc.) to one AnnotatedMultimedia instance.

92 Model-driven content adaptation

Media
Bitstream

Random
Access

Unit

Datablock

hasStructure

hasStructure

bitstreamSource

format

MIME
type

anyURI

Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Temporal
Segment

hasStructure

isRepresentedBy

hasTemporalSegment

has
Temporal
Segment

hasBitstreamData

description

string

keyword

string

Media
Bitstream

Scalability
Axis

Feature
Value

Feature has
Feature

hasFeatureValue

Scalability
AxisInfo

has
Scalability

Info

constrains

has
Value

typestring

name
string

nlevels
integer

levelinteger

Random
Access

Unit

Datablock Truncatable
Payload

StuffingBits

Syntax
Element

hasStructure

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

value integer
length start

long long

Scalability
AxisInfo

has
Scalability

Info

boundTo

nbytes integer

start time

duration

duration

hasStructure

Figure 4.8: Model for the content metadata.

4.3.2 The Multimedia Model in Practice

In this section, the relationship between the multimedia model presented in
Section 4.3.1 and existing coding and metadata formats is illustrated.

4.3.2.1 Mapping H.264/AVC to the Multimedia Model

Existing multimedia coding formats need to be mapped to the model defined
in Section 4.3.1. As an example, we map the H.264/AVC coding format to
the model. Figure 4.9 provides a visual representation of the mapping of an
H.264/AVC encoded bitstream to the multimedia model. Note that an excerpt
of the resulting RDF triples is shown in Listing C.2.

An H.264/AVC encoded bitstream is a succession of Network Abstraction
Layer Units (NALUs). Different NALU types exist: a Sequence Parameter
Set (SPS), which contains information related to the whole sequence; a Picture
Parameter Set (PPS), which contains information related to a set of pictures;
and a slice layer, which contains the actual encoded data such as the motion
vectors and the residual data.

As shown in Figure 4.9, when mapping an H.264/AVC encoded bitstream
to the multimedia model, each NALU is mapped to a DataBlock. The SPS and
PPS DataBlocks are directly connected to the MediaBitstream. Furthermore,
the Instantaneous Decoding Refresh (IDR) slices indicate the start of a new
RandomAccessUnit.

Slice DataBlocks are provided with ScalabilityInfo indicating in which
scalability layer the data block is located. In this case, only one ScalabilityAxis

4.3. Modeling Media Bitstreams 93

MediaBitstream_0

IDR sliceSPS PPS P slice B slice B slice B slice

RAU_0

DB_3DB_0 DB_1 DB_2 DB_4 DB_5 DB_6

: hasStructure

ScalabilityAxisInfo_0 ScalabilityAxisInfo_1 ScalabilityAxisInfo_2

ScalabilityAxis_0

rdfs:label

Temporal

nlevels

3

constrains constrains constrains
level

0

level
1

level

2

: hasScalabilityInfo

MediaBitstream_0

hasFeature

: hasFeatureValue

ScalabilityAxisInfo_0 ScalabilityAxisInfo_1 ScalabilityAxisInfo_2

ScalabilityAxis_0

rdfs:label

Temporal

nlevels

3

constrains constrains constrains
level

0

level
1

level

2

: hasScalabilityInfo

Feature_0

FeatureValue_0 FeatureValue_1 FeatureValue_2

hasValue

25

hasValue

12.5

hasValue

6.25

rdfs:label

frame
rate

type fps

boundTo

Figure 4.9: Describing an H.264/AVC bitstream with the multimedia model. DB and
RAU denote DataBlock and RandomAccessUnit respectively.

is present, i.e., the temporal scalability axis containing three levels. Since the
example H.264/AVC bitstream is encoded using hierarchical B-pictures, the
first B-picture is located in the second temporal layer, while the other two B-
pictures are located in the third temporal layer. I- and P-pictures are located in
the first temporal layer [30].

Figure 4.10 illustrates the description of the features of the bitstream. For
instance, a feature in this example is ‘frame rate’ with possible FeatureValues
6.25, 12.5, and 25 fps. These values correspond to the first, second, and third
temporal layer respectively.

4.3.2.2 Linking the Content Metadata Model to Existing Ontologies

As discussed in Section 4.3.1.4, the multimedia model allows to create simple
annotations of the multimedia content by adding keywords to AnnotatedMul-
timedia or TemporalSegment instances. However, more sophisticated content
descriptions are often needed. Therefore, the content metadata model pro-
vides hooks for existing ontologies. An example is shown in Figure 4.11,

94 Model-driven content adaptation

MediaBitstream_0

IDR sliceSPS PPS P slice B slice B slice B slice

RAU_0

DB_3DB_0 DB_1 DB_2 DB_4 DB_5 DB_6

: hasStructure

ScalabilityAxisInfo_0 ScalabilityAxisInfo_1 ScalabilityAxisInfo_2

ScalabilityAxis_0

rdfs:label

Temporal

nlevels

3

constrains constrains constrains
level

0

level
1

level

2

: hasScalabilityInfo

MediaBitstream_0

hasFeature

: hasFeatureValue

ScalabilityAxisInfo_0 ScalabilityAxisInfo_1 ScalabilityAxisInfo_2

ScalabilityAxis_0

rdfs:label

Temporal

nlevels

3

constrains constrains constrains
level

0

level
1

level

2

: hasScalabilityInfo

Feature_0

FeatureValue_0 FeatureValue_1 FeatureValue_2

hasValue

25

hasValue

12.5

hasValue

6.25

rdfs:label

frame
rate

type fps

boundTo

Figure 4.10: Describing scalability information of an H.264/AVC bitstream with the
multimedia model.

where a class Person, defined in the Friend-Of-A-Friend (FOAF3) ontology, is
connected with TemporalSegments and AnnotatedMultimedia by means of the
foaf:depicts property. A second example is shown in Figure 4.12, where con-
cepts described in a soccer ontology are linked to AnnotatedMultimedia and
TemporalSegment. This way, media bitstreams that are annotated as illustrated
above can be adapted based on the concepts defined in the linked ontologies.
For example, fragments can be selected that are related with a specific person
corresponding to a URI that is an instance of the class Person defined in the
FOAF ontology.

The content metadata model discussed in Section 4.3.1.4 can also be linked
to existing ontologies specifying how to connect content descriptions to parts
of a media asset. Examples are MPEG-7 [53], DIG354, and Exif5.

3http://xmlns.com/foaf/spec/
4http://www.w3.org/2005/Incubator/mmsem/XGR-vocabularies/

#formal-DIG35
5http://www.w3.org/2005/Incubator/mmsem/XGR-vocabularies/

#formal-Exif

http://xmlns.com/foaf/spec/
http://www.w3.org/2005/Incubator/mmsem/XGR-vocabularies/#formal-DIG35
http://www.w3.org/2005/Incubator/mmsem/XGR-vocabularies/#formal-DIG35
http://www.w3.org/2005/Incubator/mmsem/XGR-vocabularies/#formal-Exif
http://www.w3.org/2005/Incubator/mmsem/XGR-vocabularies/#formal-Exif

4.3. Modeling Media Bitstreams 95

foaf:Person

Temporal
Segment

Annotated
Multimedia

hasTemporalSegment

foaf:depicts

Temporal
Segment

Annotated
Multimedia

hasTemporalSegment

SoccerMatchfoaf:depicts

Half

Scene

foaf:depicts

foaf:depicts

half

scene

foaf:depicts

Figure 4.11: Linking domain-specific ontologies with the content metadata model.

foaf:Person

Temporal
Segment

Annotated
Multimedia

hasTemporalSegment

foaf:depicts

Temporal
Segment

Annotated
Multimedia

hasTemporalSegment

SoccerMatchfoaf:depicts

Half

Scene

foaf:depicts

foaf:depicts

half

scene

foaf:depicts

Figure 4.12: Extending the content metadata model with domain-specific ontologies.

4.3.2.3 The Model for Media Bitstreams versus COMM

Arndt et al. have proposed the Core Ontology for MultiMedia (COMM, [6]),
which is a formal description of a high quality multimedia ontology that is
compatible with existing Semantic Web technologies. COMM is based on
both MPEG-7 [78] and the DOLCE6 foundational ontology [82]. More specif-
ically, it is composed of multimedia patterns specializing the DOLCE design
patterns for Descriptions & Situations and Information Objects and covers a
very large part of the MPEG-7 standard. COMM defines four multimedia pat-
terns, based on the two most important functionalities provided by MPEG-7
(i.e., decomposition of a media asset and the annotation of its parts):

• media annotation pattern: description of the physical instances of mul-
timedia content;

• decomposition pattern: description of spatial, temporal, spatiotemporal,
and media source decompositions of multimedia content into segments;

6DOLCE stands for Descriptive Ontology for Linguistic and Cognitive Engineering.

96 Model-driven content adaptation

• content annotation pattern: description of the attachment of MPEG-7-
specific metadata to the multimedia content (e.g., dominant colors);

• semantic annotation pattern: a specialization of the content annota-
tion pattern which describes the connection of multimedia content with
domain-specific ontologies.

Although the goals of COMM and our multimedia model are different
(i.e., formally describing multimedia content versus multimedia content adap-
tation), they share the following functionalities.

• Media bitstream description: COMM uses the media annotation pat-
tern to describe media bitstreams. Within our model, the MediaBitsteam
class is used to represent a media bitstream.

• Temporal and media source decomposition description: COMM uses
the decomposition pattern to describe, amongst others, temporal and
media source decompositions of multimedia content. Within our model,
the TemporalSegment class is used to represent temporal decompositions
of multimedia content. Further, the AnnotatedMultimedia class is used
to describe media source decompositions. More specifically, using the
isRepresentedBy property, multimedia content (i.e., AnnotatedMultime-
dia) can be decomposed into different media sources (i.e., MediaBit-
streams).

Next to these similarities, there are also a number of differences between
COMM and our multimedia model. The following functionalities are sup-
ported by our multimedia model, but are not available within COMM (mainly
because COMM is not focussed on multimedia content adaptation):

• structural decomposition: decomposition of a MediaBitstream into Ran-
domAccessUnits and DataBlocks;

• link between structural and temporal decomposition: RandomAccess-
Units are connected to TemporalSegments by using the hasBitstream-
Data propery;

• link between scalability axes and media bitstream features: our model
for scalability information (see Figure 4.6) is able to link scalability axes
and features of media bitstreams (e.g., link the feature ‘frame rate’ to the
temporal scalability axis);

• link between scalability axes and structural decomposition: DataBlocks
are connected to scalability axes through the ScalabilityAxisInfo class.

4.4. Model-driven Content Adaptation 97

We can conclude that COMM and our multimedia model partly overlap
with each other. Therefore, it would be interesting to investigate how both
models can be linked to each other. Connecting our multimedia model to
COMM would result in a number of benefits such as a much more extensive
content metadata model, MPEG-7 compliance, a formal definition for link-
ing to domain-specific ontologies, and an enhanced interoperability within the
Linked Data cloud7. The following approaches could be followed to link both
models.

• Definition of a mapping between the overlapping parts of both mod-
els: the relationship between both models could be expressed by using
common ontology matching techniques [45]. For instance, the OWL
constructs sameAs, equivalentClass, and equivalentProperty or more so-
phisticated mapping rules could be used.

• Extending COMM: since COMM is extensible through the use of multi-
media patterns, we could start from COMM and extend it with the same
functionalities as our current multimedia model. This could for instance
be realized by extending COMM’s media annotation pattern or by defin-
ing new multimedia patterns to express the structural decomposition and
scalability information. This way, our scalability and structural models
will be rebuilt with a well designed foundational ontology as a modeling
basis.

4.4 Model-driven Content Adaptation

In order to cope with the problems of XML-driven content adaptation men-
tioned in Section 4.2, we present a new technique for multimedia content
adaptation in a format-independent way, i.e., model-driven content adapta-
tion [133]. On the one hand, Semantic Web technologies are used to represent
the metadata for multimedia content. On the other hand, a model for media
bitstreams covering structural, content, and scalability information (defined in
Section 4.3) is used to abstract the transformation process.

4.4.1 Metadata Generation

Several possibilities exist to generate metadata compatible with the multimedia
model defined in Section 4.3.1. Figure 4.13 shows an example of an architec-
ture which takes as input raw media bitstreams. The first step is to extract

7For more information, visit http://esw.w3.org/topic/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData.

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

98 Model-driven content adaptation

RDF repository

Media
encoder

Raw
media

bitstream

Encoded
media

bitstream

Feature
extraction /
Annotation

(1)

(3)

File server

(2)

bitstream

metadata

Figure 4.13: Example architecture for the generation of metadata compatible with the
multimedia model.

features (e.g., shot segmentation) and/or to manually add annotations regard-
ing the multimedia content. The resulting content metadata will consist of
instances of AnnotatedMultimedia and TemporalSegments and is stored in an
RDF repository (arrow (1) in Figure 4.13). Next, the raw media bitstream is
encoded. The encoded media bitstream is sent to a file server. During the en-
coding process, the structural metadata is generated (arrow (3) in Figure 4.13).
More specifically, a MediaBitstream instance is created accompanied by in-
stances of RandomAccessUnits, DataBlocks, Features, etc. The content meta-
data, obtained during the feature extraction and/or annotation, is used by the
multimedia encoder (arrow (2) in Figure 4.13) in order to connect the struc-
tural metadata with the content metadata (i.e., the bits of the encoded bitstream
are linked to the timestamps available in the content metadata). As discussed
in Section 4.3.1.4, this is realized by linking RandomAccessUnits to Tempo-
ralSegments by using the hasBitstreamData property. Finally, the structural
metadata is also stored in an RDF repository.

It is important to remark that the scenario described above is not appli-
cable for already encoded media bitstreams, possibly described by a specific
metadata format (e.g., H.264/AVC encoded bitstreams annotated with MPEG-
7 metadata [26] and described by BSDL). In this case, software is needed to
translate the available metadata into metadata compliant with the multimedia
model [132]. In case no structural metadata is present, coding-format specific
parsers have to be created, taking as input an encoded media bitstream and
producing structural metadata compliant with the multimedia model. Note that

4.4. Model-driven Content Adaptation 99

such coding-format specific parsers could be automatically generated by using
a technique similar to XFlavor [51], which is able to automatically generate
a coding-format specific parser producing XML descriptions of the high-level
structure of the media bitstreams. The same approach could be followed in the
context of model-driven content adaptation. More specifically, instead of pro-
ducing XML descriptions, such parsers could generate RDF triples compliant
with the multimedia model.

4.4.2 General Workflow

Having generated all the necessary metadata, it is now possible to retrieve and
adapt a specific media bitstream. The general workflow is depicted in Fig-
ure 4.14. There are three main steps during model-driven content adaptation:
data block selection, transformation, and binarization. RDF graphs describ-
ing data blocks are queried during the data block selection step. These RDF
graphs can be adapted during the data block transformation step. Finally, each
selected and adapted RDF graph is used to generate the resulting media bit-
stream. More detailed information regarding the different steps in the work-
flow is provided in the next subsections.

A comparison of the workflow of XML-driven content adaptation (dis-
cussed in Section 2.2.1) and model-driven content adaptation can be made as
follows. The generation of an XML description, the transformation of the
XML description, and the creation of an adapted bitstream using the trans-
formed XML description correspond to RDF metadata generation, data block
selection and transformation, and data block binarization respectively.

4.4.2.1 Data Block Selection

Selecting data blocks is done by taking into account terminal and network
characteristics together with user preferences. The preferred data blocks can be
obtained by performing the following sequence of steps (see also Figure 4.15).

(1) Content selection: an instance of AnnotatedMultimedia is selected based
on the user preferences (e.g., select a soccer match of a specific team).
Furthermore, the content selection can be refined by selecting only spe-
cific fragments that are desired by the user (e.g., only select fragments
where a specific soccer player occurs). Moreover, fragments from dif-
ferent instances of AnnotatedMultimedia can be selected. The result of
the content selection is a list of TemporalSegments corresponding to the
fragments selected based on the usage environment.

100 Model-driven content adaptation

File serverRDF repository

Data block
selection

Data block
transformation

Data block
binarization

Resulting
bitstream

RDF triples
describing one

data block

Based on terminal and network characteristics
and user preferences

Figure 4.14: The general workflow of model-driven content adaptation.

(2) Bitstream selection: given an instance of AnnotatedMultimedia, a Me-
diaBitstream representing this multimedia content is selected. Note that
this selection can be based on the usage environment (e.g., the device of
the end-user only supports a limited amount of coding formats).

(3) Content to structural mapping: the selected TemporalSegments are used
to obtain the DataBlocks contained in the selected MediaBitstream. This
is possible by following the links between the TemporalSegments and the
RandomAccessUnits.

(4) Structural selection: the subset of DataBlocks obtained by the content
selection is further restricted by selecting only the DataBlocks occurring
in specific scalability layers. For instance, if a video stream with a frame
rate of 15 fps is requested, only the DataBlocks having ScalabilityInfo
meeting this condition are selected.

Note that it is not necessary to execute each step every time. One could for
instance avoid the structural selection if there is no scalability information
present.

The selection of data blocks can be performed by using the SPARQL Pro-
tocol and RDF Query Language (SPARQL, [99]). This is a query language

4.4. Model-driven Content Adaptation 101

DB1

...

DB2
DB3

DB4
DB5
DB6

DB7
DB8

...

TS2

TS1

AM1 MB1

R
A

U
1

R
A

U
2

R
A

U
3

(1)
(2)

(3)

(4)

(4)

isRepresentedBy

hasBitstreamData
AM = AnnotatedMultimedia
TS = TemporalSegment

MB = MediaBitstream
RAU = RandomAccessUnit
DB = DataBlock

Figure 4.15: Different steps to select data blocks based on the usage environment.

and data access protocol for the Semantic Web, standardized by the RDF Data
Access Working Group (DAWG) of the World Wide Web Consortium (W3C).
SPARQL offers querying based on triple patterns, conjunctions, disjunctions,
and optional patterns; results of SPARQL queries can be results sets or RDF
graphs.

In order to demonstrate the data block selection process, a number of
SPARQL queries are discussed. Since we want to obtain RDF graphs de-
scribing data blocks, we need SPARQL CONSTRUCT queries, i.e., queries
resulting in RDF graphs. Listing 4.1 shows a query which selects data blocks
occurring in the temporal base layer. Lines 2–8 contain the RDF triples needed
to describe one data block. The WHERE clause (lines 9–29) determines which
data blocks are selected. In this example, no content metadata is used to se-
lect the MediaBitstream, i.e., the bitstream is selected based on its label (line
11). Lines 12-21 bind the variables defined in the CONSTRUCT clause. Lines
22–28 specify that only data blocks which occur in the temporal base layer or
which do not have scalability information (e.g., SPS or PPS in an H.264/AVC
bitstream) are selected. For example, executing this SPARQL query over the
RDF triples listed in Listing C.2 (Annex C) results in the RDF triples listed in
Listing C.3 (Annex C).

102 Model-driven content adaptation

An example of selecting datablocks based on content metadata is provided
in Listing 4.2. In this example, data blocks belonging to the first half of a spe-
cific soccer match are selected. Lines 3–8 contain the RDF triples needed to
describe one data block, analogous to the previous example. In the WHERE
clause, the TemporalSegment is selected which depicts the first half of the soc-
cer match (lines 13–17). Next, the data blocks are determined by the Random-
AccessUnits related to this temporal segment (lines 18–20).

Listing 4.1: Format-independent SPARQL query which selects data blocks occurring
in the temporal base layer.

1 PREFIX mmo: <multimedia_model.owl#>
CONSTRUCT {
?db rdf:type ?types.
?db mmo:start ?start.

5 ?db mmo:length ?length.
?db mmo:nBytes ?sb.
?db mmo:value ?value.

}
WHERE {

10 ?bitstream rdf:type mmo:MediaBitstream.
?bitstream rdfs:label 'nieuws_avc'.
?bitstream mmo:hasStructure ?db.
?db rdf:type ?types.
?db mmo:start ?start.

15 ?db mmo:length ?length.
OPTIONAL {
?db mmo:syntaxElementValue ?value.

}
OPTIONAL {

20 ?db mmo:nStuffingBytes ?sb.
}
OPTIONAL {
?db mmo:hasScalabilityInfo ?si_temp.
?si_temp mmo:hasScalabilityAxis ?sa_temp.

25 ?sa_temp rdfs:label 'temporal'.
?si_temp mmo:level ?temp_level.

}
FILTER(!bound(?temp_level) || ?temp_level = 0)

}

4.4.2.2 Data Block Transformation

The data block transformation step is in the first place meant to make changes
inside the selected RDF graphs describing a data block. For instance, the value

4.4. Model-driven Content Adaptation 103

Listing 4.2: Format-independent SPARQL query to obtain data blocks belonging to
the first half of a specific soccer match.

1 PREFIX mmo: <multimedia_model.owl#>
PREFIX so: <soccer.owl#>
CONSTRUCT {
?db rdf:type ?types.

5 ?db mmo:start ?start.
?db mmo:length ?length.
...

}
WHERE {

10 ?bitstream rdf:type mmo:MediaBitstream.
?bitstream rdfs:label 'soccer_avc'.
?annoMM mmo:isRepresentedBy ?bitstream.
?annoMM rdf:type mmo:AnnotatedMultimedia.
?annoMM mmo:hasTemporalSegment ?segment.

15 ?segment foaf:depicts ?half.
?half rdf:type so:Half.
?half so:number 1ˆˆxsd:integer.
?segment mmo:hasBitstreamData ?rau.
?bitstream mmo:hasStructure ?rau.

20 ?rau mmo:hasStructure ?db.
?db rdf:type ?types.
?db mmo:start ?start.
?db mmo:length ?length.
...

25 }

of a SyntaxElement can be changed or the length of a TruncatablePayload can
be shortened. In practice, data block transformation is needed when a partic-
ular coding format requires, next to the selection of datablocks, certain syntax
element modifications in order to deliver a compliant adapted bitstream. An
example of such a coding format is Scalable Video Coding (SVC). For in-
stance, the following approach needs to be followed to adapt the SVC syntax
element num layers minus1, which denotes the amount of scalability layers
available in an SVC bitstream. The structural part of the multimedia model
needs to be extended with a coding-format specific syntax element as illus-
trated in Figure 4.16. In this figure, the class Num layers minus1 is created as
a subclass of SyntaxElement. When a data block of type Num layers minus1
is detected during the data block transformation step, the value of this syntax
element is changed according to the requested scalability properties.

104 Model-driven content adaptation

DataBlock

Syntax
Element

rdfs:subClassOf

Num_layers
_minus1

rdfs:subClassOf

value integer

DataBlock

Syntax
Element

rdfs:subClassOf

Num_layers
_minus1rdfs:subClassOfvalueinteger

Figure 4.16: Extending the multimedia model for the scalability information located
in an SVC bitstream.

A second use case for data block transformation is the support for dynamic
adaptations, i.e., when the multimedia content is delivered during varying us-
age environment conditions. In order to avoid the initialization and evaluation
of a new query each time a structural adaptation property (e.g., amount of tem-
poral layers) changes, the structural selection is omitted during the data block
selection step. More specifically, the content selection is established during
the data block selection step and the structural selection is performed during
the data block transformation step. For example, during data block selection,
all data blocks can be selected belonging to the first half of a soccer match;
during data block transformation, the frame rate of the video fragment can be
scaled to 15 fps by dropping the necessary temporal scalability layers. Hence,
when structural adaptation parameters change during the adaptation process,
the query does not need to be re-executed.

Currently, no standardized solution exists to transform RDF graphs. Next
to ontology-specific software (i.e., write an own RDF transformer based on a
specific ontology), the following solutions are available.

• XML transformation technologies: XPath and XSLT can be used to ac-
cess and transform an XML serialization of RDF data. However, the
main problem with this approach is that the standard RDF/XML serial-
ization is non-deterministic (i.e., there are many possible serializations
for a given RDF model). Furthermore, XPath expressions are not a-
ware of the semantics of the RDF model. Several approaches such as
Twig [141] and RxPath [114] define a set of XPath/XSLT extension
functions and/or provide a mapping of RDF to the XPath data model,
in order to cope with the RDF/XML serialization problem.

• RDF transformation technologies: the non-deterministic character of
RDF/XML serialization is caused by the fact that XML is tree-based

4.5. Model-driven Content Adaptation vs. Other Techniques 105

while RDF is graph-based. Converting a graph-based model such as
RDF to a tree-based model such as XML is not trivial. Therefore, a
graph-oriented RDF access mechanism is needed. RDF Path [93] is one
example of an attempt to come to an RDF Path language. It is triple
oriented, tries as far as possible to mimic XPath, and treats a graph as an
extended tree with no root.

• SPARQL/Update: in addition to SPARQL, which provides a retrieval
language for RDF, SPARQL/Update (a.k.a. SPARUL, [108]) is pro-
posed as an update language for RDF graphs. It is a language to express
updates to an RDF store and is intended to be a standard mechanism
by which updates to a (remote) RDF Store can be described, communi-
cated, and stored.

4.4.2.3 Data Block Binarization

The final step in the workflow of model-driven content adaptation is the bi-
narization of the data blocks. More specifically, based on the original media
bitstream (present in the file server as shown in Figure 4.14) and the selected
and adapted data block graphs, an adapted media bitstream is created. The
start and length properties of the data block are used to copy a part of the orig-
inal bitstream into the adapted bitstream. If the data block is a SyntaxElement,
the syntax element value is written to the adapted bitstream. In case the data
block has as type StuffingBits, stuffing bits are added to the adapted bitstream
until it is byte-aligned.

4.5 Model-driven Content Adaptation vs. Other Tech-
niques

In this section, a comparison is made between the proposed model-driven con-
tent adaptation technique and other techniques for multimedia content adapta-
tion, i.e., XML-driven content adaptation and dedicated software approaches.
The comparison is based on a number of criteria that are listed below.

Criterion 1: Format-independency of the software. The software mod-
ules used between the original compressed bitstream and the adapted
compressed bitstream are investigated in terms of their independency of
underlying coding and/or metadata formats. The more software mod-
ules are format-agnostic in the adaptation chain, the more extensible the
adaptation framework and the better the support for new formats will be.

106 Model-driven content adaptation

Criterion 2: Knowledge needed for adaptation operations. This cri-
terion examines the specific knowledge needed to define adaptations.
More specifically, to what extent is knowledge needed regarding a spe-
cific coding format in order to define a specific adaptation. Within
format-independent content adaptation systems, it is important to avoid
coding-format specific calculations when defining adaptation opera-
tions. Otherwise, format-independency is obtained in an ad-hoc way,
as discussed in Section 4.2.

Criterion 3: Content metadata integration. In order to perform adap-
tations based on content metadata (e.g., indication of violent video
scenes), a straightforward integration between the adaptation logic and
the content metadata is desired.

Criterion 4: Adaptation possibilities. The different kinds of adaptations
that are possible with a specific content adaptation technique are exam-
ined in this criterion. Furthermore, prerequisites of the compressed bit-
streams are investigated in order to enable certain kinds of adaptations.

Criterion 5: Performance. The performance of adaptation techniques is
measured in terms of execution speed, memory consumption, and meta-
data overhead in terms of disk usage.

The first four criteria are discussed below, while the performance measure-
ments are provided in Section 4.6. A summarizing table is provided in Sec-
tion 4.7. The first four criteria are applied to model-driven content adaptation,
XML-driven content adaptation, and dedicated software approaches.

Criterion 1: Format-independency of the software

It is clear that dedicated software approaches do not provide format-agnostic
software modules. Hence, support for new coding and/or metadata formats
requires the development of new software modules.

Both XML- and model-driven content adaptation are able to deliver
format-agnostic software modules for the content adaptation chain. The trans-
formation and binarization steps are driven by coding-format and metadata
agnostic software modules (i.e., modules for transformation and binarization).
The generation of structural metadata can also be performed by using format-
agnostic software modules; BSDL even provides a standardized solution tak-
ing the form of the BintoBSD parser.

4.5. Model-driven Content Adaptation vs. Other Techniques 107

Criterion 2: Knowledge needed for adaptation operations

Developing dedicated software for particular multimedia content adaptation
operations requires knowledge of the high-level structure of the coding for-
mats that will be supported by the dedicated software (to be able to parse the
compressed bitstream), knowledge of the supported content metadata formats,
and the coupling (i.e., the mapping) of the structure of the compressed bit-
stream and the content metadata.

XML-driven content adaptation requires the same knowledge as the dedi-
cated software approach. The technique claims to rely on high-level descrip-
tions of the media bitstreams. However, as discussed in Section 4.2, these de-
scriptions are just a textual representation of the coding-format specific struc-
tures and syntax elements. Coding-format specific algorithms to implement
coding-format independent adaptation operations such as ’lower the frame
rate’ have to be used within the BSD transformation step. Therefore, an XML
filter is dependent on the coding format and the metadata formats used. Fur-
thermore, the mapping between the structure of the compressed bitstream and
the content metadata is also defined inside the XML filter. In comparison to the
dedicated software approach, XML-driven content adaptation requires less im-
plementation effort since I/O operations are abstracted by the format-agnostic
software modules.

Model-driven content adaptation also requires knowledge regarding the
high-level structure of the coding formats, metadata formats, and mapping be-
tween structural and content metadata; however, this knowledge is obtained
during the metadata generation and is separated from the actual adaptation
operations. Indeed, the high-level structure of coding formats is mapped to
the structural multimedia model (see Section 4.3.1.1) and is independent of
possible adaptations. The same holds true for the content metadata model
(see Section 4.3.1.4), which contains a description of the multimedia content.
Hence, defining adaptations within an model-driven content adaptation system
is purely based on the multimedia model.

Criterion 3: Content metadata integration

As discussed in Section 4.2, integrating content and structural metadata is ob-
tained in an ad-hoc way in case of XML-driven content adaptation. This is due
to the lack of semantic interoperability of XML, resulting in a metadata-format
dependency of the XML filters. Furthermore, coding-format specific mappings
between structural and content metadata need to be created during the adapta-
tion process. However, as discussed in Chapter 3, markers containing content
metadata can be inserted in gBSDs. Hence, no coding-format specific map-

108 Model-driven content adaptation

pings need to be made during the adaptation process. The problem with these
markers (and XML-based metadata in general) is a lack of a formal description
of their semantic meaning. Therefore, even XML filters for gBSDs containing
markers are dependent on the metadata format used. The dedicated software
approach is similar to XML-driven content adaptation, since the content meta-
data needs to be mapped to the coding-format specific bitstream structures.

By the definition of a multimedia model, model-driven content adapta-
tion provides a seamless integration of structural and content metadata. More
specifically, the structural part of the model can be seen as a layer on top of
media bitstreams, providing support for easy access to the high-level structures
and syntax elements of the media resource. Based on a subset of the structural
metadata (i.e., a subset of the data blocks), an adapted media resource is gen-
erated. Because we are working with an additional layer on top of the media
resource (i.e., the structural metadata), it is possible to link these metadata to
content descriptions of the media resource (i.e., the content metadata). More-
over, Semantic Web technologies, which solve the semantic interoperability
problem of XML, are inherently present since the multimedia model is imple-
mented by making use of Semantic Web technologies.

Criterion 4: Adaptation possibilities

All adaptation operations are possible by using dedicated software. Both se-
mantic and structural adaptations are possible and do not require any prereq-
uisites of the compressed bitstream, except that the bitstream needs to be en-
coded in a coding format that is supported by the software. In particular cases,
the compressed bitstream can be completely decoded and re-encoded in order
to perform the necessary adaptations.

XML-driven content adaptation is mainly focussed on the adaptation of
scalable bitstreams as discussed in Section 2.3. Hence, when structural adap-
tations need to be established, the compressed bitstreams need to be encoded
in such a way that it is possible to perform the adaptations without the need
of a complete recode process. For example, efficiently exploiting temporal
scalability using the H.264/AVC coding format requires the presence of a hier-
archical coding structure [30]. The same observation can be made for seman-
tic adaptations: the encoded bitstreams need to provide several random access
points in order to extract specific segments of the bitstream.

The adaptation possibilities of model-driven content adaptations are equal
to the ones of XML-driven content adaptation. They both operate on com-
pressed bitstreams and do not perform any decoding and/or re-encoding of the
bitstream.

4.5.M
odel-driven

C
ontentA

daptation
vs.O

ther
Techniques

109

Table 4.1: Overview of the bitstream characteristics.

Coding Size Bit rate Parse # Parse # Temp. # Spat. # Qual. XML descr. # RDF RDF
format (MB) (kbit/s) unit units levels levels levels size (MB) triples gen. (s)

H.264/AVC 35.9 2942 NALU 5004 3 1 1 4.4 47330 54.6
SVC 40.8 3343 NALU 15008 3 2 4 18.5 147506 282.5

H.263+ 45.2 3705 Picture 5000 3 2 1 7.7 54492 121.6
MPEG-2 Video 77.3 6332 Picture 2500 3 1 1 9.6 29830 67.6

AAC 1.5 128 Frame 4691 - - - 3.0 60729 54.8
MP3 2.3 192 Frame 4170 - - - 1.9 54136 50.9

110 Model-driven content adaptation

4.6 Performance Measurements

In this section, the fifth criterion is discussed in the context of XML- and
model-driven content adaptation. We do not discuss the dedicated software ap-
proach since it is clear that the performance of dedicated software in terms of
execution speed and memory consumption will generally be better or equal to
the performance of format-independent approaches such as XML- and model-
driven content adaptation. Also, no overhead in terms of disk usage is present
in case of dedicated software solutions since no structural metadata is present.

We assume that the metadata generation step is done in advance, i.e., the
XML descriptions and RDF triples are present. Previous work has shown that
the generation of XML descriptions of the high-level structure of a media bit-
stream can be performed in real time by making use of BFlavor [31], which
is able to automatically generate a coding-format specific parser producing
XML descriptions compliant to BSDL. In our research, the same approach
was followed in the context of model-driven content adaptation, i.e., automat-
ically generated parsers can produce RDF triples compliant with the multime-
dia model presented in Section 4.3.1. The content metadata was obtained by
manually annotating the multimedia content.

4.6.1 Application Scenario

In order to evaluate and compare XML- and model-driven content adaptation,
the following application scenario is used. A video fragment of a part of a
soccer game is present as test sequence, together with the appropriate audio
fragment. Furthermore, information regarding the level of importance of spe-
cific scenes is present. Each scene was annotated by a number equal to 0 (ev-
erything except game interruptions), 1 (goals, chances, and faults), or 2 (only
goals).

The video fragment is encoded using four different video codecs (i.e.,
H.264/AVC, the scalable extension of H.264/AVC (SVC), H.263+, and
MPEG-2 Video); the appropriate audio fragment is encoded with two audio
codecs (i.e., Advanced Audio Coding (AAC) and MPEG-1 Audio Layer 3
(MP3)). The user selects specific parts of the test sequence based on the level
of importance (i.e., semantic adaptation). Furthermore, exploitation of scala-
bility properties of the encoded bitstreams is performed (i.e., structural adapta-
tion). The latter can vary dynamically during the adaptation, implying that the
adaptation parameters regarding the scalability properties need to be adjustable
in an on-the-fly fashion.

4.6. Performance Measurements 111

4.6.2 Experimental Results

4.6.2.1 Bitstream Characteristics

The video fragment contains a length of 100 s, a frame rate of 25 fps, and a
resolution of 720x576 pixels. Selecting scenes with a level of importance of
0, 1, or 2 results in an adapted bitstream of 2484, 1503, or 855 frames respec-
tivily. An overview of the properties of the encoded bitstreams can be found in
Table 4.1. The sizes of the XML descriptions and the number of RDF triples
corresponding to the structural metadata8 are also shown in this table. Note that
the overhead of format-agnostic content adaptation (i.e., the XML descriptions
and RDF triples) is dependent on the number of parse units present in the bit-
stream. The number of parse units will also have an impact on the execution
times regarding the adaptation of the bitstreams (see Section 4.6.2.3). How-
ever, it is clear that both XML- and model-driven content adaptation introduce
a significant amount of overhead in terms of disk usage due to the occurrence
of the structural metadata.

The last column of Table 4.1 shows the execution times for the genera-
tion of RDF triples describing structural metadata and scalability information.
These RDF triples can be generated in the same way as XML descriptions suit-
able for XML-driven content adaptation. More specifically, a modified version
of BFlavor [31] was used to automatically create format-specific parsers that
are capable of outputting RDF triples (in its original form, BFlavor was only
able to automatically create format-specific parsers producing XML descrip-
tions compliant to the BSDL standard). As can be seen in Table 4.1, the execu-
tion times depend on the number of parse units and the bit rate. Note that each
parse unit corresponds to an RDF data block graph. SVC and H.263+ perform
less than real-time as the length of the test sequences used is 100 seconds. This
is due to the use of multiple scalability layers (resulting in a higher amount of
parse units) and a higher bit rate.

4.6.2.2 Implementation Details

In our experiments, BSDL and STX9 were used to perform XML-driven con-
tent adaptation. Bitstream Syntax Schemas (BS Schemas) for the six codecs
were designed, together with ten STX stylesheets (six stylesheets to implement

8The number of RDF triples to represent the scalability information and content metadata is
in this case negligible in comparison with the number of RDF triples needed for the structural
metadata. Note that in our configuration, one RDF triple took approximately 90 bytes of disk
usage.

9Version 1.3.1 of the BSDL reference software and version 2008-03-09 of the STX engine
Joost were used.

112 Model-driven content adaptation

the scene extraction (one for each codec) and four stylesheets to implement
the exploitation of scalability (one for each video codec)). The STX engine
transforms the XML descriptions based on a STX stylesheet. The BSDtoBin
parser is a standardized parser from BSDL taking as input the transformed
XML description and the original bitstream and producing the adapted bit-
stream. The STX engine and the BSDtoBin parser are connected through SAX
events. More specifically, no intermediate (transformed) XML description is
generated, since the transformed SAX events are immediately transferred to
the BSDtoBin parser. This will significantly speed up the XML-driven adapta-
tion process because I/O operations regarding intermediate XML descriptions
are avoided.

The data block selection, transformation, and binarization modules of our
model-driven content adaptation framework are built on top of Sesame10 (ver-
sion 2.0.1), which is an open source RDF database with support for RDF
Schema inferencing and querying. The built-in SPARQL engine of Sesame
is used for the evaluation of queries during the data block selection step. The
native store facilities of Sesame were used for our RDF repository, implying
that the RDF data is retrieved directly from disk. Using a native store pro-
vides better scalability since it is independent of the available system memory.
However, when generic RDF storage solutions such as the native store facilities
of Sesame become insufficient in terms of scalability due to a high number of
RDF triples (i.e., the structural metadata), other solutions should be considered
to store the structural metadata.

For example, one solution for this problem is to store the structural meta-
data and scalability information in an RDF store which is specifically designed
for the model for media bitstreams. More specifically, the structural meta-
data and scalability information can be stored in a highly scalable Relational
Database Management System (RDBMS), using a database scheme based on
the structural and scalability part of the model for media bitstreams. Hence,
such a RDBMS can be seen as an efficient RDF store specifically designed for
our model for media bitstreams. This way, SPARQL queries can be translated
into SQL queries. The results of these SQL queries can then be converted back
to RDF graphs corresponding to the selected data blocks. RDBMSs should be
capable of dealing with a large amount of structural metadata since they are
mature, stable, and scalable, while also providing a high performance in terms
of query execution speed.

In contrast to the combination of BSDL and STX where a lot of BS
Schemas and STX stylesheets need to be developed, only one SPARQL state-

10Available on http://www.openrdf.org/.

http://www.openrdf.org/

4.6. Performance Measurements 113

ment and a domain-specific ontology11 was needed for model-driven content
adaptation. In order to build this SPARQL statement, knowledge of the mul-
timedia model is needed together with the concepts of the domain-specific
ontology which is coupled with the content metadata model. Note that the ex-
ploitation of scalability was included during the data block selection step (i.e.,
scalability options are static during the adaptation). Additionally, an imple-
mentation where the exploitation of scalability was performed during the data
block transformation step (i.e. scalability options can dynamically vary dur-
ing the adaptation) was used to compare the static and dynamic exploitation of
scalability.

Performance measurements were done on a PC having an Intel Pentium
D 2,8 GHz CPU and 1 GB of system memory at its disposal. The operating
system used was Windows XP Pro SP2, running Java 2 Runtime Environment
(SE version 1.5.0 09). The memory consumption of the Java programs was
measured by relying on JProfiler 4.2.1. All time measurements were executed
six times, whereupon an average was calculated over the last five runs to avoid
startup effects (the standard deviation was 0.05 s).file sizes

Page 1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

0,0

5,0

10,0

15,0

20,0

25,0

F
il
e
 s

iz
e
 (

M
B

)

E
x
e
c

u
ti

o
n

 t
im

e
 (

s
)

STX + BSDtoBin

Model-driven adaptation

Adapted file size

Figure 4.17: Execution times and file sizes for the video coding formats.

11In our case, a simple soccer ontology was used, including concepts such as SoccerMatch
and SoccerScene, as well as properties such as levelOfImportance.

114 Model-driven content adaptation

Table 4.2: Overview of the execution times and resulting file sizes.

Sequence STX + Model-driven Adapted
BSDtoBin adaptation file size

(s) (s) (MB)

avc i0 t2 18.0 9.3 35.5
avc i0 t0 12.8 7.7 20.3
avc i1 t2 13.2 5.9 22.8
avc i1 t0 9.9 4.9 12.6
avc i2 t2 10.0 3.7 14.4
avc i2 t0 8.1 3.1 7.8

svc i0 t2 s1 q3 47.1 42.3 40.4
svc i0 t2 s1 q0 36.7 31.1 38.7
svc i0 t2 s0 q0 28.9 27.1 3.7
svc i0 t0 s1 q3 31.7 39.0 23.3
svc i0 t0 s1 q0 28.9 28.9 22.8
svc i0 t0 s0 q0 25.5 26.2 2.6
svc i1 t2 s1 q3 32.7 25.7 25.8
svc i1 t2 s1 q0 26.5 18.9 24.8
svc i1 t2 s0 q0 21.6 16.7 2.3
svc i1 t0 s1 q3 23.4 23.5 14.5
svc i1 t0 s1 q0 21.7 17.6 14.1
svc i1 t0 s0 q0 19.6 16.1 1.6
svc i2 t2 s1 q3 23.3 14.8 16.2
svc i2 t2 s1 q0 19.8 11.0 15.6
svc i2 t2 s0 q0 16.8 9.7 1.4
svc i2 t0 s1 q3 17.9 13.6 8.9
svc i2 t0 s1 q0 16.9 10.9 8.7
svc i2 t0 s0 q0 15.6 9.3 1.0

m2v i0 t2 23.1 7.8 76.6
m2v i0 t0 13.5 5.3 25.0
m2v i1 t2 14.7 5.3 48.4
m2v i1 t0 8.8 3.6 15.6
m2v i2 t2 9.6 3.3 29.2
m2v i2 t0 6.1 2.4 9.4

263 i0 t2 s1 20.2 12.4 44.8
263 i0 t2 s0 13.9 8.6 9.6
263 i0 t0 s1 13.6 10.7 22.8
263 i0 t0 s0 11.9 8.1 4.9
263 i1 t2 s1 14.1 7.6 25.1
263 i1 t2 s0 10.5 5.5 5.4
263 i1 t0 s1 10.3 6.8 12.6
263 i1 t0 s0 9.4 5.2 2.7
263 i2 t2 s1 10.2 4.6 13.5
263 i2 t2 s0 8.2 3.4 2.9
263 i2 t0 s1 8.1 4.1 6.7
263 i2 t0 s0 7.6 3.3 1.4

aac i0 4.5 3.9 1.5
aac i1 3.4 2.6 0.9
aac i2 2.7 1.8 0.5
mp3 i0 3.9 3.6 2.3
mp3 i1 3.0 2.5 1.4
mp3 i2 2.4 1.4 0.6

4.6. Performance Measurements 115
avc_ET

Page 1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

avc_i0_t2 avc_i0_t0 avc_i1_t2 avc_i1_t0 avc_i2_t2 avc_i2_t0

F
il

e
 s

iz
e

 (
M

B
)

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

STX + BSDtoBin

Model-driven adaptation

Adapted file size

Figure 4.18: Execution times for the H.264/AVC coding format.

4.6.2.3 Results

An overview of the execution times and resulting file sizes of the adapted bit-
streams is given in Table 4.2. The names of the resulting sequences correspond
to CCC iI tT sS qQ, with CCC equal to the coding format; I corresponds to
the level of importance; and T, S, and Q respectively correspond to the num-
ber of temporal, spatial, and quality scalability layers present in the adapted
bitstream.

In general, both XML- and model-driven content adaptation perform well
and are able to adapt bitstreams of various coding formats in real time. As can
be seen from Table 4.2, the coding format (more specifically the number of
parse units per frame and the bit rate) has a significant impact on the execution
times. For instance, in case of model-driven content adaptation, the higher the
number of parse units per frame, the higher the number of data blocks that need
to be selected, optionally transformed, and serialized. Furthermore, a high bit
rate of the adapted bitstream results in a high number of I/O operations during
the binarization of the data blocks. The same observations can be made for
XML-driven content adaptation. In Figure 4.17, this is illustrated by plotting
the execution times together with the adapted file sizes for the video coding
formats.

In most of the cases, model-driven content adaptation has lower execution

116 Model-driven content adaptation
static_vs_dynamic

Page 1

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

F
il
e
 s

iz
e
 (

M
B

)

E
x
e
c

u
ti

o
n

 t
im

e
 (

s
)

Model-driven adaptation
(static)
Model-driven adaptation
(dynamic)
Adapted file size

Figure 4.19: Execution times for the SVC coding format, comparing static versus
dynamic exploitation of scalability.

times than XML-driven content adaptation, but both techniques have a com-
parable performance. This is for instance illustrated in Figure 4.18, where
the execution times for the H.264/AVC coding format are plotted. There are
two reasons why model-driven content adaptation performs slightly better than
XML-driven content adaptation. First, coding-format specific algorithms need
to be executed during the transformation step in case of XML-driven content
adaptation. As discussed in Section 4.3, these coding-format specific algo-
rithms are already executed during the structural metadata generation step in
case of model-driven content adaptation. Second, descriptions compliant to the
model for media bitstreams only contain information that is really necessary
for the adaptation operation. On the contrary, XML-driven content adapta-
tion needs to process BSDs containing coding-format specific structures and
syntax elements necessary to execute these coding-format specific algorithms.
Hence, the processing of these BSDs will take longer than the processing of
a description compliant with the model for media bitstreams. Further, both
XML- and model-driven content adaptation have a low and constant memory
consumption (approximately 2 MB).

A comparison between static and dynamic exploitation of scalability is
shown in Figure 4.19. In case of static adaptation, the proper data blocks are
already present after the data block selection step. On the contrary, dynamic

4.7. Conclusions and Original Contributions 117

Table 4.3: Overview of the discussed criteria.

Criterion Dedicated XML- Model-
software driven driven

adaptation adaptation
Format- No Yes Yes

independency
Knowledge
needed for High High Low
adaptation
Content
metadata Low Low High

integration
Adaptation Coding- Coding-
possibilities All format format

dependent dependent
Execution Real Real Real

speed time time time
Memory Low Low Low

consumption
Metadata None Structural Structural
overhead metadata metadata

adaptation implies that during the data block selection step, only a selection
is made based on content preferences (and not regarding scalability options).
Hence, more data blocks are selected during the data block selection step. The
actual structural adaptation is then performed during the data block transfor-
mation step. This declares why the execution times for the dynamic adaptation
process are almost constant (between 11 and 12 s in Figure 4.19), since the
same amount of data blocks are selected, regardless of the scalability prefer-
ences. The little variations in execution times are due to the varying file sizes
of the adapted bitstreams.

4.7 Conclusions and Original Contributions

In this chapter, we have introduced the concept of model-driven content adap-
tation, a novel multimedia content adaptation technique that operates indepen-
dently of coding and metadata formats. It is based on the definition of a mul-
timedia model describing and coupling structural metadata, content metadata,

118 Model-driven content adaptation

and scalability information. Existing coding and metadata formats are mapped
to this multimedia model. An implementation of the model is realized using
Semantic Web technologies such as RDF, OWL, and SPARQL. The adaptation
of media bitstreams is performed by selection, transformation, and serializa-
tion of the structural metadata, based on the content metadata and scalability
information.

We have compared model-driven content adaptation with dedicated mul-
timedia content adaptation software and XML-driven content adaptation (dis-
cussed in Chapter 2). A summary of the evaluation of different criteria is
provided in Table 4.3. The most significant advantages of model-driven con-
tent adaptation are the low amount of knowledge needed to define adaptation
operations and the seamless integration with content metadata. Furthermore,
performance results have shown that model-driven content adaptation is char-
acterized by real-time execution times and a low and constant memory con-
sumption.

The research that has led to this chapter is also described in the following
publications.

1. S. De Bruyne, D. De Schrijver, W. De Neve, D. Van Deursen, and R.
Van de Walle. Enhanced Shot-Based Video Adaptation using MPEG-
21 generic Bitstream Syntax Schema. In Proceedings of the 2007 IEEE
Symposium Series on Computational Intelligence, 6 pages on CD-ROM,
April 2007, Honolulu, Hawaii

2. D. Van Deursen, D. De Schrijver, S. De Bruyne, and R. Van de Walle.
Fully Format Agnostic Media Resource Adaptation Using an Abstract
Model for Scalable Bitstreams. In Proceedings of the 2007 IEEE In-
ternational Conference on Multimedia and Expo, pages 240–243, July
2007, Beijing, China

3. S. De Bruyne, D. Van Deursen, J. De Cock, W. De Neve, P. Lambert, and
R. Van de Walle. A Compressed-domain Approach for Shot Boundary
Detection on H.264/AVC Bit Streams. Signal Processing: Image Com-
munication – Special Issue on Semantic Analysis for Interactive Multi-
media Services, 23(7):473–498, August 2008

4. D. Van Deursen, C. Poppe, G. Martens, E. Mannens, and R. Van de
Walle. XML to RDF Conversion: a Generic Approach. In Proceedings
of the 4th International Conference on Automated Production of Cross
Media Content for Multi-channel Distribution, pages 138–143, Novem-
ber 2008, Florence, Italy

4.7. Conclusions and Original Contributions 119

5. D. Van Deursen, W. Van Lancker, S. De Bruyne, W. De Neve, E. Man-
nens, and R. Van de Walle. Format-independent and Metadata-driven
Media Resource Adaptation using Semantic Web Technologies. Sub-
mitted to Multimedia Systems Journal

120 Fully integrated multimedia delivery platforms

Chapter 5

Fully integrated multimedia
delivery platforms

One man alone can be pretty dumb sometimes, but for real bona
fide stupidity, there ain’t nothin’ can beat teamwork.

Edward Abbey (1927 - 1989)

5.1 Introduction

As already mentioned in this dissertation, recent years have witnessed an in-
creasing heterogeneity in the multimedia landscape on different fronts such as
end-user devices, network technologies, and coding formats. Next to coding
formats, there also exists a wide variety of delivery formats, i.e., formats en-
capsulating encoded media bitstreams (e.g., the MP4 file format [59] or the
Real-time Transport Protocol (RTP, [105])). Finally, end-users with specific
preferences often want to obtain a personalized version of multimedia content
(e.g., an end-user only requesting scenes satisfying his/her interests).

As discussed in the previous chapters, format-independent adaptation tech-
niques can be used to tackle the above described multimedia heterogeneity and
to obtain Universal Multimedia Access (UMA, [136]). In order to investigate
the feasibility of these techniques in practice, a fully integrated adaptation plat-
form based on format-independent adaptation techniques needs to be designed.
The platform must be able to support both structural and semantic adaptation
operations. Further, it needs to be deployable in streaming environments, re-
quiring real-time processing of the media bitstream using format-independent
adaptation techniques.

122 Fully integrated multimedia delivery platforms

In this chapter, we address the design and functioning of two fully inte-
grated platforms for multimedia adaptation and delivery. The implementa-
tion of both platforms was largely performed by Wim Van Lancker. In Sec-
tion 5.2, the first platform, which is called MuMiVA, is introduced. It relies on
two standardized, XML-driven content adaptation tools, i.e., MPEG-B BSDL
and MPEG-21 gBS Schema (see Chapter 2) and is able to deliver multime-
dia content using the RTP/RTSP protocol. Further, in Section 5.3, we intro-
duce NinSuna, our second multimedia adaptation and delivery platform which
solves a number of problems of the MuMiVA platform, such as the problems
with XML-driven content adaptation and the lack of other delivery formats
(next to RTP/RTSP). Therefore, the adaptation engines used within the Nin-
Suna platform rely on model-driven content adaptation, which was discussed
in Chapter 4. Furthermore, NinSuna also provides support for the packaging
of adapted multimedia content in a format-independent way. The latter allows
NinSuna to deliver the multimedia content using various delivery formats. In
Section 5.4, synchronization issues within our platforms are discussed which
are caused by semantic adaptations of synchronized, compressed media bit-
streams. Finally, related work and conclusions are discussed in Section 5.5
and Section 5.6, respectively.

5.2 MuMiVA

In this section, we address the design and performance evaluation of a mul-
timedia delivery platform that relies on XML-driven adaptation engines. Our
platform is called MuMiVA1; it is a fully integrated, extensible platform for
multimedia delivery in heterogeneous usage environments, using streaming
technologies [125]. Thanks to the use of XML-driven adaptation technology,
format-independent adaptation logic can be used to adapt (scalable) media re-
sources. To demonstrate the flexibility of our multimedia delivery platform, we
discuss the functioning of two different applications (i.e., exploitation of tem-
poral scalability and shot selection) applied to two different coding formats
(i.e., MPEG-4 Visual and H.264/AVC).

5.2.1 MuMiVA Architecture

As discussed above, MuMiVA is a multimedia delivery platform that is able
to transparently deliver multimedia content for heterogeneous usage environ-
ments. Moreover, this transparent approach reflects both a format-agnostic

1MuMiVA is short for “Mutare, Mittere, Videre, Audire”, which is Latin for “to adapt, to
send, to watch, to hear”.

5.2. MuMiVA 123

ADTE
Streaming

Server
Broker

Global
Manager

Clients

Application Layer

Pool of Adaptation Engines

Pool of Streaming Servers

Network

(1)

(2)

(7) (3)

(6) (8)

(10) (9)

(5)

(4)

Session Manager

Content
Management

System

Streaming
Server

Streaming
Server

Adaptation
Engine

Adaptation
Engine

Session Manager

Selected
Adaptation

Engines

Selected
Streaming

Server
CMS

...

...

Figure 5.1: A global view on MuMiVA.

(i.e., independent of the underlying coding format) and application-agnostic
characteristic (i.e., independent of the adaptations applied to the media re-
sources). In this section, an overview is given of the MuMiVA architecture,
together with its strengths.

5.2.1.1 Distributed Architecture: a Global View on MuMiVA

Our multimedia delivery platform contains multiple components that can be
distributed across a managed network. Distributing the components of Mu-
MiVA across the network makes it possible to achieve a scalable multimedia
delivery platform. More specifically, a distributed multimedia system makes
it easy to expand or contract its pool of servers to accommodate increasing or
decreasing loads on the platform. Figure 5.1 gives an overview of the compo-
nents present in our MuMiVA platform. Explanatory notes for this figure are
given below.

• Content Management System (CMS) is a multimedia archive that con-
tains multimedia content encoded with (scalable) coding formats, as
well as metadata about the content. Both structural (e.g., a BSD of a
particular bitstream) and content metadata (e.g., scene information for a
particular video sequence) are present in the CMS.

• Pool of Adaptation Engines is a collection of distributed adaptation en-
gines, which allows to select adaptation engines based on the current

124 Fully integrated multimedia delivery platforms

ADTE
Streaming

Server
Broker

Global
Manager

Clients

Application Front-end

Pool of Adaptation Engines

Pool of Streaming Servers

Network

(1)

(2)

(7) (3)

(6) (8)

(10) (9)

(5)

(4)

Session Manager

Content
Management

System

Streaming
Server

Streaming
Server

Adaptation
Engine

Adaptation
Engine

Session Manager

Selected
Adaptation

Engines

Selected
Streaming

Server
CMS

...

...

Figure 5.2: Functioning of MuMiVA.

adaptation engine load. An adaptation engine may deploy multiple adap-
tation techniques. The current implementation only supports format-
agnostic adaptation techniques, i.e., BSDL and gBS Schema. How-
ever, MuMiVA allows the adoption of other (format-specific) adaptation
tools. Examples of such adaptation tools are bitstream extractors and
transcoders.

• Pool of Streaming Servers is a collection of distributed streaming
servers, which allows to select the proper streaming server based on an
assessment of the current server load.

• Session Manager couples the CMS, adaptation engines, and streaming
servers. It provides an access point for clients to the multimedia deliv-
ery platform by means of an application front-end (e.g., web service).
Furthermore, this component selects the proper streaming server, man-
ages the different client sessions, and is able to take decisions regarding
the adaptation of the requested content, based on information about the
usage environment of the clients.

5.2.1.2 Functioning of MuMiVA

The MuMiVA architecture is shown in Figure 5.2, as well as the communica-
tion between its different components. Explanatory notes for the interactions

5.2. MuMiVA 125

between the different components of the MuMiVA platform are provided be-
low.

(1) A client requests multimedia content by contacting the MuMiVA plat-
form. Besides the content request, a client also sends information about
its usage environment.

(2) The application front-end provides the information about the client to
the global manager. The manager initializes a new session for each par-
ticular client. Consequently, the client receives a session ID.

(3) The global manager contacts the broker for the streaming server in order
to select a proper streaming server based on the current server load. The
selected streaming server will be announced to the client by the global
manager through the application front-end.

(4) The client connects to the selected streaming server, and provides its
session ID in order to receive the desired content.

(5) The selected streaming server contacts the global manager, in order to
receive information about the existing request of the client, based on its
session ID.

(6) The global manager fetches metadata about the requested content (e.g.,
bit rate and resolution), which are stored in the CMS.

(7) Once the global manager has all the necessary information at its dis-
posal (i.e., metadata about the requested content and information about
the usage environment), it contacts the Adaptation Decision Taking En-
gine (ADTE). The ADTE first decides which adaptation technique to
use, based on the available adaptation engines. Once an adaptation tech-
nique is chosen (e.g., gBS Schema), the ADTE might take additional
decisions related to the adaptation technique (e.g., the XML transfor-
mation tool in case of an XML-driven adaptation technique). Next, it
calculates the adaptation parameters by matching the metadata about
the requested content and the information about the usage environment
(e.g., comparison of the resolution of a video sequence with the size of
the screen of the end-user device). When the requested content includes
both audio and video, the ADTE will select two adaptation engines: one
for the video stream and one for the audio stream. In the latter case, the
synchronization between the output of the adaptation engines is done by
the streaming server.

126 Fully integrated multimedia delivery platforms

(8) The global manager initializes the selected adaptation engines with the
collected adaptation parameters.

Once the necessary negotiation between the client and MuMiVA is done,
the client can start consuming the requested multimedia content. The stream-
ing server, adaptation engines, and CMS form a pipeline system, where the
communication is based on a pull-system. More specifically, the streaming
server pulls content from the adaptation engine, which subsequently pulls con-
tent from the CMS. The following steps are performed during the streaming of
the multimedia content to the client.

(9) The streaming server reads the adapted media resources from the adap-
tation engines. Subsequently, these adapted resources are sent to the
client by using the Real-time Transport Protocol (RTP) [105]. The Real
Time Streaming Protocol (RTSP) [106] is used for the exchange of con-
trol operations between client and streaming server (e.g., the client can
decide to pause the streaming of the content).

(10) The adaptation engines read the original media resources from the CMS.
Furthermore, an adaptation engine customizes a given media resource
according to the adaptation parameters received from the global man-
ager. More detailed information about the internal working of an adap-
tation engine within MuMiVA is provided in Section 5.2.1.3.

5.2.1.3 XML-driven Adaptation Engine

One of the main features of our MuMiVA platform is the use of XML-driven
content adaptation engines, based on MPEG-B BSDL and MPEG-21 gBS
Schema. As discussed in Chapter 2, XML-driven content adaptation consists
of three steps: BSD generation, BSD transformation, and adapted bitstream
generation. Within the MuMiVA platform, BSD generation is seen as a prepro-
cessing step. Consequently, the BSDs of the corresponding media resources
are already available in the CMS. Hence, the adaptation engines only need to
perform the last two steps of the XML-driven content adaptation chain, i.e.,
BSD transformation and adapted bitstream generation.

As discussed in Chapter 2, different XML transformation tools exist to
transform a BSD. There are two approaches to interpret and to transform
XML documents. Firstly, traditional procedural programming languages such
as Java or C++, together with a parser, can be used to consume XML data.
Secondly, transformations can be implemented by using stylesheets together

5.2. MuMiVA 127

Adaptation Engine

(g)BSDtoBin

STX engine
adapted
bitstream

SAX filter

(g)BSD +
STX stylesheet(s) +

adaptation
parameters

original
bitstream

Figure 5.3: Functioning of a MuMiVA adaptation engine, based on XML-driven
content adaptation. The dashed arrows denote the adaptation parameters and STX
stylesheets. The bold arrows denote the multimedia data flow of the (g)BSD. The dot-
ted arrows illustrate the possibility for multiple transformations of a (g)BSD during
the adaptation.

with a generic engine for interpreting these stylesheets (e.g., XSLT and STX).
The main difference between the two approaches is the possibility to make
use of generic software modules (transformation engines) in the latter case.
Moreover, two main types of XML parsers exist: one built on top of tree-
based models (e.g., Document Object Model (DOM)) and one on event-based
models (e.g., Simple API for XML (SAX)). MuMiVA only uses SAX-based
XML transformation tools, since these can be used in streaming environments
(in contrast to DOM-based XML transformation tools) [42]. Therefore, two
different transformation tools can be used within an adaptation engine of Mu-
MiVA: a SAX filter (i.e., a Java program for XML transformations using a
SAX-based parser) and a STX engine.

The functioning of an adaptation engine is depicted in Figure 5.3. As dis-
cussed above, the adaptation engine receives adaptation parameters from the
global manager. Furthermore, it reads the original bitstream from the CMS,
together with its corresponding (g)BSD. When STX is used as XML transfor-
mation technology, the necessary STX stylesheets are also fetched from the
CMS.

Based on the adaptation parameters, the adaptation engine selects the
proper transformation tool (i.e., SAX filter or STX) and transforms the
(g)BSD. Different transformations can be applied to the (g)BSD during the
adaptation (see the dotted arrows in Figure 5.3). For example, the first trans-

128 Fully integrated multimedia delivery platforms

formation may consist of temporal rescaling by using a SAX filter; the second
transformation may consist of scene extraction by using a STX engine. This
will be further explained in Section 5.2.2.

After the transformation of the (g)BSD, the adapted content is generated by
a (g)BSDtoBin parser, taking as input the transformed (g)BSD and the original
bitstream.

It is important to notice that the underlying software modules of the adap-
tation engine are fully format-agnostic when STX is used, since STX uses a
format-agnostic engine for executing a particular stylesheet. This is in contrast
with the use of a SAX filter, which does not rely on format-agnostic logic.

5.2.1.4 Strengths of the MuMiVA Platform

In the previous subsections, we have discussed the overall architecture of our
multimedia delivery platform, together with the internal functioning of its dif-
ferent components. Delivering multimedia content by using MuMiVA has the
following benefits:

• Support of format-agnostic adaptation: the use of XML-driven content
adaptation implies that the adaptation engines can operate independently
of the underlying coding format (i.e., the software modules are format-
agnostic).

• Support of application-agnostic adaptation: the use of XML-driven
content adaptation also implies that the adaptation engines support
application-agnostic adaptations, i.e., the software modules are indepen-
dent of the application. In this context, an application corresponds to the
kind of adaptation that is executed on the media resource (e.g., temporal
scalability or scene selection).

• Extensibility: since our multimedia delivery platform is format-agnostic
and application-agnostic, it can be considered straightforward to extend
MuMiVA with new coding formats and applications.

• Support for streaming: the MuMiVA platform offers (adapted) multime-
dia content in a streaming environment. As discussed above, it imple-
ments the RTSP protocol, implying that media players such as VideoLan
Client (VLC [138]), Osmo [48], and QuickTime [100] can play the con-
tent streamed by the MuMiVA platform. The adaptation of the content
also occurs in a streaming fashion, since the XML-driven content adap-
tation engine is fully SAX-based [42].

5.2. MuMiVA 129

• Interoperability: it is important to make use of standardized and open
technologies to obtain interoperability. The following technologies are
used within the MuMiVA platform: MPEG-21 DIA, SAX, STX, RTSP,
and RTP. Note that STX is not standardized yet; however, this technol-
ogy is currently under consideration for standardization by W3C.

• Full integration: to the best of our knowledge, the MuMiVA platform
is the first multimedia content delivery platform that offers a fully inte-
grated solution regarding format-agnostic and application-agnostic de-
livery of multimedia content in a streaming environment.

To illustrate the extensibility of our platform, we will discuss the neces-
sary steps that need to be taken to extend the MuMiVA platform with the
H.264/AVC Scalable Video Coding (SVC) format. We did not yet provide
support for SVC within MuMiVA due to the lack of real-time SVC decoders.
A straightforward application for SVC is the exploitation of scalability along
its three scalability axes (i.e., temporal, spatial, and Signal-to-Noise Ratio
(SNR)) [107]. The following steps need to be taken so that MuMiVA can
provide support for the delivery of SVC bitstreams, adapted according to a
certain usage environment:

• The SVC-compliant bitstreams, located in the CMS, need to be accom-
panied by their structural metadata (i.e., XML descriptions of the high-
level structure of the bitstreams). These metadata will be used to adapt
the bitstreams.

• One or more STX stylesheets or SAX filters need to be written, so that
the adaptation engine is able to apply the necessary XML transforma-
tions to the XML descriptions. More specifically, these transformations
correspond to the exploitation of different types of scalability in SVC
bitstreams.

• Finally, the streaming server needs to be extended in order to enable the
streaming of SVC-compliant bitstreams.

Note that, besides SAX filters, only new software has to be written for
the streaming server. All other steps have no impact on the software of the
MuMiVA platform. Consequently, the streaming server is not format-agnostic.

5.2.2 MuMiVA Applications

Two applications (i.e., video frame rate reduction and shot selection), which
are deployed on our MuMiVA platform, are discussed in more detail in this

130 Fully integrated multimedia delivery platforms

section. Both applications are applied to two coding formats, i.e., MPEG-4
Visual [60] and H.264/AVC [68]. Since MuMiVA supports both coding for-
mats, multimedia content compliant with these two coding formats is present
in the CMS, together with its metadata. MPEG-21 gBS Schema is used as
adaptation technology2. Note that multiple gBSDs can be present for one re-
source. Indeed, as discussed in Section 3.2, gBSDs can be application-specific
due to the occurrence of markers. For simplicity, we assume that the gBSDs,
present in the CMS, support both applications. More specifically, markers con-
tain information regarding the different shots of the corresponding bitstream
(see Section 5.2.2.1) and the frame rate (see Section 5.2.2.2). An example of
such a gBSD is given in Listing 5.1. Note that the gBSD contains details up to
frame level, which is sufficient for both applications.

5.2.2.1 Shot Selection

Shot selection enables the personalization of video content according to the
preferences of a user. More specifically, a user can select individual shots out
of a video sequence (e.g., goals in a soccer match). However, special attention
needs to be payed to the extraction of the desired shots as the adapted bitstream
needs to remain compliant with the corresponding specification. Therefore, we
use the algorithm proposed in [25], where the gBSDs contain a description of
the Random Access Units (RAUs). Each RAU contains a list of one or more
frames, which in their turn belong to a particular shot. This is also illustrated
in Listing 5.1, which contains two RAUs (lines 3 and 9).

As depicted in Listing 5.1, each gBSDUnit corresponding to a RAU con-
tains a marker. This marker denotes, among other things, the shots that are
located within the RAU. During the transformation, only the RAUs containing
frames which belong to the requested shot are kept. Subsequently, within each
selected RAU, frames which do not belong to the requested shot and which are
located after the frames belonging to the requested shot (in decoding order),
are dropped. Given the gBSD in Listing 5.1, selecting shot 4 will keep only the
two RAUs depicted in this figure. Furthermore, the last frame of the second
RAU will be dropped, since it does not belong to shot 4. Note that the above
discussed algorithm for shot selection can be applied to both H.264/AVC and
MPEG-4 Visual.

2Similar results would be obtained using MPEG-B BSDL.

5.2. MuMiVA 131

Listing 5.1: Example of a gBSD for an H.264/AVC-encoded bitstream, containing
information about the frame rate and the different shots.

1 <gBSDUnit syntacticalLabel="bitstream" start="0">
<!-- ... -->
<gBSDUnit syntacticalLabel="RAU" start="0" marker=":shot

=3|shot=4">
<gBSDUnit syntacticalLabel="FRAME" start="0" length="

876" marker=":shot=4:fps=6"/>
5 <gBSDUnit syntacticalLabel="FRAME" start="876" length="

604" marker=":shot=4:fps=12"/>
<gBSDUnit syntacticalLabel="FRAME" start="1480" length=

"597" marker=":shot=3:fps=24"/>
<gBSDUnit syntacticalLabel="FRAME" start="2077" length=

"595" marker=":shot=4:fps=24"/>
</gBSDUnit>
<gBSDUnit syntacticalLabel="RAU" start="2672" marker="

:shot=4|shot=5">
10 <gBSDUnit syntacticalLabel="FRAME" start="2672" length=

"945" marker=":shot=5:fps=6"/>
<gBSDUnit syntacticalLabel="FRAME" start="3617" length=

"545" marker=":shot=4:fps=12"/>
<gBSDUnit syntacticalLabel="FRAME" start="4162" length=

"675" marker=":shot=4:fps=24"/>
<gBSDUnit syntacticalLabel="FRAME" start="4837" length=

"611" marker=":shot=5:fps=24"/>
</gBSDUnit>

15 <!-- ... -->
</gBSDUnit>

5.2.2.2 Video Frame Rate Reduction

Reduction of the frame rate in a video sequence is obtained by dropping
frames. This form of adaptation is also known as the exploitation of temporal
scalability. Since the gBSDs already contain information regarding the frame
rate, the transformation of the gBSDs can be considered straightforward for
both H.264/AVC and MPEG-4 Visual. Indeed, as illustrated in Listing 5.1, ev-
ery gBSDUnit corresponding to a frame contains a frame rate. When the user
requests a frame rate equal to 12 fps, each frame containing a higher frame rate
than 12 is dropped. This is also illustrated by the simplified STX stylesheet that
is depicted in Listing 5.2.

132 Fully integrated multimedia delivery platforms

Listing 5.2: Simplified STX stylesheet for the exploitation of temporal scalability.
gBSDUnits are dropped based on the frame rate located in their marker.

1 <stx:transform pass-through="all" output-method="xml">
<stx:param name="frame_rate" select="12"/>
<stx:template match="gBSDUnit[@syntacticalLabel='FRAME']"

>
<stx:if test="number(substring-after(@marker,':fps='))

<= $frame_rate">
5 <stx:process-self/>

</stx:if>
<!-- else: drop the gBSDUnit -->

</stx:template>
</stx:transform>

The logic for obtaining the mapping between the frames and their frame
rate information is located in the gBSD generation step. This mapping is dif-
ferent for the two coding formats, i.e., MPEG-4 Visual and H.264/AVC. For
the MPEG-4 Visual coding format, exploitation of temporal scalability is rel-
atively easy since this can be done by simply dropping Bi-directional frames
(B frames). This is possible since B frames are not used as reference for the
coding of other frames in the video sequences.

Exploitation of temporal scalability is more complicated for H.264/AVC.
This is because B slice-encoded frames can be used as reference for the en-
coding of other slices. As described in [30], using hierarchical coding patterns
allows the dropping of frames in H.264/AVC.

5.2.2.3 Combining Shot Selection and Frame Rate Reduction

If the gBSDs support both shot selection and frame rate reduction, the two ap-
plications can be combined (i.e., selection of a particular shot, at a particular
frame rate). Two approaches are possible for this combination within the Mu-
MiVA framework. A first option is the creation of a single STX stylesheet (or
SAX filter) that can deal with both applications. This stylesheet would take two
parameters as input: the requested shot and the frame rate. A second option is
the development of two separate STX stylesheets (and/or SAX filters), one for
each application. This is possible since an adaptation engine allows multiple
XML transformations during the adaptation of media resources (as discussed
in Section 5.2.1.3). Note that the second approach provides more flexibility
since it allows the reuse of the two transformation filters as stand-alone filters
(e.g., when only shot selection is needed as an application).

5.2. MuMiVA 133

5.2.3 Implementation

MuMiVA is implemented using Java’s Standard Edition version 1.5. The adap-
tation engines rely on the reference software implementations of the BSDtoBin
and gBSDtoBin parsers. The Joost3 (version 2006-10-5) STX transformation
engine is used to interpret the STX stylesheets. The streaming server is based
on the C++ library of Live555 Streaming Media4.

5.2.4 Performance Results

In order to provide an estimate of the necessary computational power for our
MuMiVA platform, we have evaluated the MuMiVA applications described in
Section 5.2.2, i.e., exploitation of temporal scalability, shot selection, and the
combination thereof, applied to MPEG-4 Visual and H.264/AVC. These appli-
cations were implemented by means of STX stylesheets. The gBSDs describe
the bitstream syntax up to the level of a frame; however, in order to estimate
the impact of the level of detail of a gBSD, we have also created an additional
gBSD for the H.264/AVC format which is detailed up to the RAU level only.
Note that this coarse-grained gBSD is only suitable for a simplified version
of the shot selection application (i.e., unnecessary frames are not removed in-
side the selected RAUs). Characteristics of the used test sequences (having a
resolution of 1280x512) can be found in Table 5.1. Note that the gBSD for
MPEG-4 Visual is more verbose than the gBSD for H.264/AVC due to the
inclusion of parameters for each Video Object Sequence (VOS).

The experiments were done on a PC having an Intel Pentium D 2.8 GHz
CPU and 1 GB of system memory at its disposal. The operating system used
was Windows XP Pro SP2, running Sun Microsystems’s Java 2 Runtime En-
vironment (Standard Edition version 1.5). JProfiler version 4.2.1 and AQ-
Time version 4 were used for profiling the adaptation engine and the streaming
server, respectively. All time measurements were executed six times, where-
upon an average was calculated over the last five runs to avoid startup effects.

Table 5.2 tabulates the CPU usage of the adaptation engine and the stream-
ing server (both executed on a separate core), together with the file sizes of the
transformed gBSDs and the resulting bitstreams. A comparison between the
adaptation engine and the streaming server in terms of CPU usage reveals that
the adaptation engine operates very efficiently (from 3 % to 10 % average CPU
usage), while the streaming server requires two times more CPU power than
the adaptation engine (average CPU usage varying from 19 % to 25 %). The
latter is due to the fact that the streaming server needs to parse the incoming

3http://joost.sourceforge.net/
4Available on http://www.live555.com/liveMedia/.

http://joost.sourceforge.net/
http://www.live555.com/liveMedia/

134 Fully integrated multimedia delivery platforms

Table 5.1: Bitstream and gBSD characteristics of the test sequences.

Format Bitstream Frame Length Bit rate gBSD Coarse gBSD
size (MB) rate (fps) (s) (Mbit/s) size (KB) size (KB)

H.264/AVC 36.3 24 83.3 3.5 231 13
MPEG-4 Visual 72.1 24 83.3 6.9 392 n/a

bitstreams in order to assign proper timestamps to the RTP packets. This is in
contrast with the adaptation engine, which can rely on the information located
in the gBSD to perform the adaptations.

The following factors influence the CPU usage of the adaptation engine
and/or the streaming server: application, coding format, and the level of detail
of the gBSD (see Table 5.2). It is important to remark that the STX engine
takes the most CPU usage of the adaptation engine, since it includes the trans-
formation logic (the gBSDtoBin parser mainly performs byte copy operations).

• Application: the CPU usage of the adaptation engine is application-
dependent. Shot selection is more complex than temporal scalability
because large parts of the sequence might be skipped (in case they do
not belong to the wanted shots), which implies that the transformation
needs to be faster than real time during the skipping of particular shots.
Combining two applications takes more CPU time; however, the second
XML transformation (i.e., temporal scalability) only has to transform
the gBSD fragments selected by the first transformation (i.e., shot selec-
tion). The CPU usage of the streaming server is application-independent
as shown in Table 5.2.

• Coding format: the CPU usage of both the adaptation engine and the
streaming server is format-dependent. The adaptation engine takes more
CPU usage for MPEG-4 Visual than for H.264/AVC due to the more
verbose gBSD for the MPEG-4 Visual bitstream. This larger gBSD de-
mands more CPU time during the XML transformation. The streaming
server takes more CPU usage for H.264/AVC than for MPEG-4 Visual
because the parsing process is more complex for H.264/AVC in order to
assign proper timestamps to video frames.

• The level of detail of the gBSD: this factor only influences the CPU us-
age of the adaptation engine. This can be deduced from Table 5.2 by
comparing the CPU usage of the shot selection application once for a
gBSD with detail up to frame level and once for a gBSD with detail up

5.2. MuMiVA 135

Table 5.2: File sizes and CPU usage for the different MuMiVA scenarios.

H.264/AVC MPEG-4 Visual
TSa SS SS+TS SSc TS SS SS+TS

Transformed gBSD size (KB) 122 96 53 6 280 156 122
Adapted bitstream size (MB) 21.8 16.2 9.9 18.0 43.5 31.4 19.1
Adaptation Engine CPUA

b (%) 3 5 7 4 8 9 10
Adaptation Engine CPUP (%) 5 8 10 6 15 20 25
Streaming Server CPUA (%) 25 24 24 23 19 18 19
Streaming Server CPUP (%) 50 50 50 50 45 45 40

aTS, SS, and SSc denote Temporal Scalability (obtain a frame rate of 12 fps), Shot Selection
(select 25 shots out of 60 shots), and Shot Selection with a coarse-grained gBSD, respectively.

bCPUA and CPUP denote average and peak CPU usage, respectively.

0%

20%

40%

60%

80%

100%

TS SS SS+TS SSc TS SS SS+TS

gBSDtoBin
STX engine

H.264/AVC MPEG‐4 Visual

Figure 5.4: Partition of the execution times (including I/O operations) of the STX
engine and the gBSDtoBin parser.

to RAU level. The CPU usage of the adaptation engine increases when
the level of detail of the gBSD increases. Obviously, the CPU usage of
the streaming server is independent of the level of detail of the gBSD.

The memory usage is constant for both the adaptation engine and the
streaming server (a maximum of 5 MB of memory is used). Moreover, ap-
plications, coding formats, and the level of detail of a gBSD have a negligible
impact on the memory usage of these components.

To examine the adaptation engine in more detail, the proportion in terms of
execution times between the STX engine and the gBSDtoBin parser is depicted
in Figure 5.4. In case of the MPEG-4 Visual format, the gBSDtoBin parser
takes most of the execution time (63 % to 83 %) because the bit rate of the
MPEG-4 Visual sequence is twice as high as the bit rate of the H.264/AVC
sequence. Hence, more I/O operations need to be performed by the gBSDtoBin
parser for the MPEG-4 Visual bitstream. Furthermore, the application also

136 Fully integrated multimedia delivery platforms

influences the proportion between the STX engine and the gBSDtoBin parser,
i.e., the STX engine will take more time when more complex transformations
are executed.

5.2.5 Shortcomings of MuMiVA

As discussed in Chapter 4, XML-driven content adaptation has a number of
disadvantages, despite its format-independent nature. The XML filters are
dependent on the structure of the metadata and underlying coding formats.
Furthermore, due to interoperability problems between XML-based metadata
standards [41], integration with content metadata occurs in an ad-hoc manner.
Mappings between different XML-based metadata formats need to be imple-
mented in different XML filters. Hence, creators of these XML filters cannot
think in terms of high-level adaptation operations but have to be aware of the
underlying coding and metadata formats.

Another problem is the multimedia delivery within MuMiVA, which is
implemented by means of a dedicated and coding-format specific streaming
server. Hence, an adapted media bitstream that is sent to the streaming server
will be parsed again in order to determine the different fragments and their
corresponding timestamps. Also, when a new coding format needs to be sup-
ported, the streaming server needs to be extended for being able to correctly
parse bitstreams compliant with the new coding format. Hence, no generic
solution for multimedia delivery is present.

5.3 NinSuna

In order to solve the shortcomings of our MuMiVA platform, we present
the design and functioning of NinSuna5, which is a fully integrated and
format-independent platform for the purpose of multimedia adaptation and
delivery [134, 135]. Its basic design is inspired by the principles of XML-
driven content adaptation techniques, while its final design consists of a hy-
brid architecture using both XML and Semantic Web technologies such as
the Resource Description Framework (RDF, [72]), the Web Ontology Lan-
guage (OWL, [83]), and the SPARQL Protocol And RDF Query Language
(SPARQL, [99]). Furthermore, a tight coupling exists between NinSuna’s de-
sign and the model for media bitstreams for describing the structural, content,
and scalability properties of media bitstreams (as discussed in Chapter 4). This

5NinSuna is short for “The NinSuna INtelligent Search framework for UNiversal multimedia
Access”. A website containing information regarding the NinSuna platform and an online demo
is available on http://multimedialab.elis.ugent.be/NinSuna.

http://multimedialab.elis.ugent.be/NinSuna

5.3. NinSuna 137

H.264/AVC

SVC

MPEG-2
Video/Audio

MPEG-4
Visual

AAC

H.263

MP4

3GP

RTP

ASF

Matroska

Format-independent
multimedia packager

Figure 5.5: Obtaining a format-independent multimedia packager.

model, implemented using OWL, provides support for a seamless integration
of adaptation operations and content metadata. Furthermore, we extend this
model so that it allows format-independent packaging and delivery of multi-
media content.

5.3.1 Format-independent Multimedia Content Packaging

A logical step after the adaptation of multimedia content is multimedia de-
livery. Multimedia content is usually not delivered as elementary bitstreams
but packed in a particular delivery format. Today, a significant number of de-
livery or packaging formats exists; examples are MPEG-4 Part 14 (MP4 file
format, [59]), Material eXchange Format (MXF, [111]), and Real-time Trans-
port Protocol (RTP, [105]). As illustrated in Figure 5.5, we have to deal with
different coding formats on the one hand, and different delivery formats on the
other hand. Our goal is to develop a format-independent multimedia packager,
i.e., a generic software module that is independent of the incoming coding for-
mat and the outgoing delivery format. An additional challenge is the coupling
of format-independent multimedia adaptation with format-independent multi-
media packaging.

Encapsulating multimedia content in a particular delivery format typically
consists of two main processes: fragmentation and packetization. The frag-
mentation process divides the input media bitstream into portions, each rep-
resenting one fragment. A simple example of a fragment in the context of
video streams is a single frame. The packetization process selects (and possi-
bly aggregates) the obtained fragments and maps them to the output delivery
format. This mapping includes the assignment of timestamps and the addition
of syntactical structures such as packet headers.

138 Fully integrated multimedia delivery platforms

Media
Bitstream

Annotated
Multimedia

Random
Access

Unit

Datablock Scalability
Info

Temporal
Segment

hasStructure

hasStructure

isRepresentedBy

hasTemporalSegment

hasTemporal
Segment

hasBitstreamData

hasScalabilityInfo

hasStructure

(1) (2)

(3)

bitstream
Sourcecodec

string anyURI

start
time

duration duration

Truncatable
Payload

StuffingBits

Syntax
Element

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

length

start

long

long

Media
Bitstream

Random
Access

Unit

DataBlock

hasStructure

hasStructure

Delivery
Parameter

key

string

value

timestamplong

hasParameter

hasParameter

timestamp
Rate

double

Figure 5.6: Extending the model for media bitstreams to support format-independent
multimedia packaging.

In this section, we present a new method for format-independent multime-
dia content packaging. We use MPEG-B BSDL to abstract the packed media
bitstream and to enable the use of format-agnostic software modules. It is
based on an extension of our model for media bitstreams, as previously out-
lined in Chapter 4. Furthermore, a seamless integration is obtained between
multimedia content adaptation and packaging in a format-independent way.

5.3.1.1 Extension of the Model for Media Bitstreams

In Figure 5.6, an overview is given of the extensions added to the model for
media bitstreams in order to support format-independent packaging. Two cat-
egories can be distinguished: support for timestamps and support for delivery
parameters.

A timestamp property is added to the DataBlock class, which represents a
number related to the display time of the data block. In order to actually cal-
culate the display time, the timestampRate property is added to the MediaBit-
stream class. The latter contains a number indicating the amount of timestamps
that are contained in one second. Note that a data block does not necessarily
correspond to a fragment (i.e., the outcome of the fragmentation process as de-
scribed above). Multiple data blocks can make one fragment (e.g., data blocks
representing H.264/AVC slices can be grouped in one fragment). However,
one data block cannot be split up into several fragments.

Next, in order to assist in the fragmentation and packetization process, it
is possible to define DeliveryParameters. This can be done at the level of
a media bitstream, as well as at the level of a data block. An example of

5.3. NinSuna 139

H.264/AVC

SVC

MPEG-2
Video/Audio

MPEG-4
Visual

AAC

H.263

MP4

3GP

RTP

ASF

Matroska

Format-independent
multimedia packager

Original
bitstream

Metadata
generation RDF triples

Selected
(and transformed)

RDF triples

Data block
selection and
transformation

RDF-to-XML
transformation

BSD
(elementary
bitstream)

BSD
transformation

BSD
(packed

bitstream)

BSDtoBin
BS Schema

(delivery
format)

Packed and
adapted
bitstream

(1)

(2)

(3)

(4)

(5)

(6)

Transformation
stylesheet

Figure 5.7: The general workflow of model-driven content adaptation and packaging.

a delivery parameter added at the level of a media bitstream is the sampling
frequency when the underlying coding format is AAC (i.e., key property is
equal to ‘samplingFrequency’, while the value property is for example equal
to ‘48000’). The sampling frequency is an example of a delivery parameter
that is needed by the packetization process, since the value of this parameter
may be needed in the headers of a particular delivery format.

5.3.1.2 Coupling Model-driven Content Adaptation with Multimedia
Packaging

The extension of our model for media bitstreams enables the creation of meta-
data (compliant with the model) that can assist in the format-independent adap-
tation and packaging of media bitstreams. The general workflow of model-
driven content adaptation and packaging is depicted in Figure 5.7. Explanatory
notes are given below.

(1) Metadata generation: media bitstreams that need to be adapted and
packaged in our framework have to be equipped with metadata com-
pliant with our (extended) multimedia model. As discussed in Chap-
ter 4, the metadata generation can occur during the encoding process or
by means of a (generic or format-specific) software module. Note that
such a generic solution could rely on the principles of techniques such

140 Fully integrated multimedia delivery platforms

<MediaBitstream
source="http://foo.foo/example.aac">

<DeliveryParameters>
<samplingFreq>48000</samplingFreq>

</DeliveryParameters>
<DataBlock start="665279" length="475"

sec="0" msec="0"/>
<DataBlock start="665754" length="447"

sec="0" msec="21"/>
<!-- ... -->

</MediaBitstream>

<RTP_stream
bs1:bitstreamURI="http://foo.foo/example.aac">
<rtp_packet>
<rtp_header>

<V>2</V>
<P>0</P>
<X>0</X>
<CC>0</CC>
<M>1</M>
<PT>96</PT>
<SN>0</SN>
<TS>0</TS>
<SSRC>0</SSRC>
<au_Header_Section>

<length>16</length>
<au_header>
<au_size_p1>14</au_size_p1>
<au_size_p2>160</au_size_p2>

</au_header>
</au_Header_Section>

</rtp_header>
<rtp_payload>665286 468</rtp_payload>

</rtp_packet>
<!-- ... -->

</RTP_stream>

Figure 5.8: BSD-driven RTP packaging of AAC media bitstreams.

as BSDL or BFlavor, where structural metadata is generated based on a
description of the high-level structures and syntax elements of a partic-
ular coding format. The result of the metadata generation process is a
collection of RDF triples compliant with the model for media bitstreams.

(2) Data block selection and transformation: as discussed in Chapter 4,
adaptation of media bitstreams is performed by selecting the proper data
blocks and by possibly transforming the selected data blocks.

(3) RDF-to-XML transformation: instead of creating an adapted, elemen-
tary media bitstream based on the selected (and adapted) data blocks,
we perform a simple RDF-to-XML transformation. The result of this
transformation is a BSD (see Chapter 2) which can be used to create
a packaged version of the adapted media bitstream. An example of
such a BSD is shown on the left-hand side of Figure 5.8. The classes
and properties defined in our model, needed for the packaging process,
are mapped to XML elements and attributes respectively. Note that the
timestamps are represented in terms of seconds and milliseconds.

(4) BSD transformation: the actual packaging process starts with the trans-
formation of the BSD representing the adapted, elementary media bit-
stream. The resulting BSD represents an adapted and packaged media
bitstream. Figure 5.8 illustrates the BSD transformation for the RTP

5.3. NinSuna 141

packaging of an AAC bitstream. The obtained BSD is compliant with
MPEG-B BSDL, which implies that the BSDL framework can be used
for further processing. The BSD transformation can be implemented us-
ing XSLT or STX, which enables the use of a format-independent trans-
formation engine. However, it is important to note that the transforma-
tion stylesheets are not only dependent on the target delivery format, but
also on the incoming coding format since each coding format requires a
different packaging (i.e., fragmentation and packetization) strategy.

(5) BS Schema creation: as discussed in Chapter 2, a BS Schema describes
the high-level structures and syntax elements of a particular format. In
this case, a BS Schema for the target delivery format needs to be created.
The BSD obtained in the previous step needs to be compliant with this
BS Schema.

(6) Adapted and packed bitstream generation: finally, an adapted and pack-
aged media bitstream can be created using BSDL’s format-independent
BSDtoBin parser, based on the BSD representing the adapted and pack-
aged media bitstream, the BS Schema for the target delivery format, and
the original media bitstream.

As discussed above, packaging media bitstreams typically consists of two
main processes: fragmentation and packetization. It is not trivial to see where
these two processes actually occur in the above discussed workflow for model-
driven content adaptation and packaging. Fragmentation is realized during the
BSD transformation process, where the data blocks are mapped to fragments.
Packetization is spread across multiple steps. One aspect is the assignment of
timestamps to fragments. During the metadata generation step, the data blocks
are labeled with initial timestamps (i.e., timestamps of the original media bit-
streams). However, since the adaptation process can cause gaps in the initial
timestamps (e.g., a particular scene is deleted during the adaptation), these
timestamps need to be recalculated (i.e., the gaps need to be detected and cor-
rected). The latter is performed during the RDF-to-XML transformation. The
packetization process also includes the addition of syntactical structures such
as packet headers. This is done during the BSD transformation.

The choice to go back from RDF to XML during the packaging process
can be justified as follows. We introduced Semantic Web technologies such
as RDF to enhance the interoperability between different metadata standards.
However, the latter is mainly an adaptation issue. More specifically, seman-
tic adaptations such as scene selection based on content metadata are suffer-
ing from these interoperability problems (in case the adaptation is performed

142 Fully integrated multimedia delivery platforms

in the XML domain). In order to obtain packaging of media bitstreams in a
format-independent way, a description of headers and syntax elements of the
target delivery format is needed, together with pointers to data segments in the
original bitstream, which is exactly what already existing technologies such as
MPEG-B BSDL support.

5.3.2 The NinSuna Platform

NinSuna is a fully integrated platform for multimedia adaptation and deliv-
ery in heterogeneous usage environments, relying on both XML and Semantic
Web technologies for the implementation of format-independent adaptation
and packaging engines. Furthermore, it aims at being deployable in streaming
environments. Its multimedia content adaptation and packaging techniques
rely on our model for media bitstreams. Note that these adaptation and pack-
aging techniques were previously discussed in Chapter 4 and Section 5.3.1 re-
spectively. Next to the delivery of multimedia content, NinSuna also provides
support for uploading content with corresponding metadata.

5.3.2.1 Architecture

The NinSuna architecture is shown in Figure 5.9. Three layers can be distin-
guished: the storage layer, the processing layer, and the front-end layer. The
storage layer consists of a multimedia content server, containing the media bit-
streams, and an RDF repository, containing all the necessary metadata (i.e.,
RDF triples compliant with our model for media bitstreams). The processing
layer contains an Adaptation and Packaging Engine (APE) (the working of
which has been discussed in Section 5.3.1.2), a Structural Metadata Generator
(SMG) that enables the creation of RDF triples compliant with the structural
part of the model, and an Adaptation Decision-Taking Engine (ADTE). The
ADTE calculates adaptation parameters, initializes the APE, and manages the
different client sessions [87]. The front-end layer provides access points for
clients of the NinSuna platform. New media bitstreams can be uploaded with
their corresponding metadata using the authoring service. Information regard-
ing media bitstreams can be obtained using the retrieval service. The adapted
and packaged multimedia content is retrieved through the download or stream-
ing service. The streaming service implements the RTSP protocol [106], while
the download service makes multimedia content available through (progres-
sive) download-and-play scenarios (e.g., using MP4 as delivery format).

Workflow Explanatory notes for the workflow within the NinSuna platform
(see Figure 5.9) are given below. The NinSuna platform allows authoring

5.3. NinSuna 143

RDF
repository

Multimedia
 content

Authoring
service

Retrieval
service

Streaming
service

Download
service

Structural
Metadata
Generator

Adaptation & Packaging
Engine

Adaptation
Decision-

Taking
Engine

Data block selection

Data block transformation

RDF2XML transformation

BSD transformation

BSDtoBin

(A2)

(A3)

(A1)

(R1)

(R2)(R3)

(R7)

Consumer client Authoring client

(R4)
(R6)(R6)

Fr
on

t-e
nd

 la
ye

r
P

ro
ce

ss
in

g
la

ye
r

S
to

ra
ge

 la
ye

r

(R5)

Streaming
service

APE (video)

DB selection

DB adaptation

RDF2XML

BSD transf.

BSDtoBin

APE (audio)

DB selection

DB adaptation

RDF2XML

BSD transf.

BSDtoBin

Download
service

DB selection

DB adaptation

APE (audio+video)

DB selection

DB adaptation

RDF2XML

BSD transf.

BSDtoBin

(a) (b)

Figure 5.9: Architecture of the NinSuna platform.

clients to communicate with the authoring service in order to extend the mul-
timedia database. The workflow for uploading new multimedia content to the
NinSuna platform is as follows.

(A1) The authoring client sends content annotations for a particular media
bitstream to the authoring service. These annotations, stored in the RDF
repository, consist of RDF triples compliant with the content metadata
part of the model for media bitstreams.

(A2) The authoring client uploads the actual multimedia content, encoded
with a specific coding format, to the multimedia content repository.

(A3) The SMG is used to generate the structural part of the metadata belong-
ing to the uploaded media bitstream. It takes as input the encoded media
bitstream and its content annotations and produces RDF triples compli-
ant with the structural part of the multimedia model. The RDF triples
are subsequently stored in the RDF repository. Note that the content

144 Fully integrated multimedia delivery platforms

metadata are needed by the SMG to create a mapping between the struc-
tural and content metadata (i.e., to connect random access units with
temporal segments using the hasBitstreamData property, as discussed in
Chapter 4).

Consumer clients of the NinSuna platform can make use of three services:
retrieval, download, and streaming. The workflow for retrieving multimedia
content is given below.

(R1) The retrieval service makes it possible to query the RDF repository (by
making use of SPARQL) in order to browse through the multimedia
content, based on the available content metadata. Hence, the retrieval
service can be compared to a SPARQL endpoint [23] with a number of
additional shortcuts to retrieve media bitstreams. Note that only the con-
tent metadata part can be browsed: the structural metadata are unavail-
able through the retrieval service since these metadata are irrelevant for
the consumer client.

(R2) The consumer client sends a SPARQL query in order to request a partic-
ular media bitstream (for an example of such a query, see Listing 4.1),
together with a description of its usage environment, to the retrieval ser-
vice which passes this information to the ADTE. The latter creates a
new session and selects coding and delivery formats based on the given
usage environment characteristics. When the client desires both audio
and video, two appropriate coding formats are selected. Next, the ADTE
calculates the adaptation parameters for the selected coding formats by
matching the scalability information of the requested content with the
information about the usage environment (e.g., by comparing the video
resolution with the screen size of the end-user device).

(R3) The ADTE initializes one or more APEs (see further) with the received
SPARQL query and the calculated adaptation parameters. Furthermore,
it creates an URL for the consumer client which indicates where the
requested multimedia content can be found. This URL, which contains
a session ID, is sent back to the consumer client.

The number of APEs that is initialized depends on the number of re-
quested media bitstreams and the delivery service used. When only one
media bitstream is requested, one APE is initialized. When two or more
media bitstreams are requested (e.g., a video stream with a correspond-
ing audio stream), the number of APEs that needs to be initialized de-
pends on the requested delivery service (i.e., streaming or download).
This is illustrated in Figure 5.10 for a video and corresponding audio

5.3. NinSuna 145

RDF
repository

Multimedia
 content

Authoring
service

Retrieval
service

Streaming
service

Download
service

Structural
Metadata
Generator

Adaptation & Packaging
Engine

Adaptation
Decision-

Taking
Engine

Data block selection

Data block transformation

RDF2XML transformation

BSD transformation

BSDtoBin

(A2)

(A3)

(A1)

(R1)

(R2)(R3)

(R7)

Consumer client Authoring client

(R4)
(R6)(R6)

Fr
on

t-e
nd

 la
ye

r
P

ro
ce

ss
in

g
la

ye
r

S
to

ra
ge

 la
ye

r

(R5)

Streaming
service

APE (video)

DB selection

DB transf.

RDF2XML

BSD transf.

BSDtoBin

APE (audio)

DB selection

DB transf.

RDF2XML

BSD transf.

BSDtoBin

Download
service

DB selection

DB transf.

APE (audio+video)

DB selection

DB transf.

RDF2XML

BSD transf.

BSDtoBin

(a) (b)

Figure 5.10: Structural variations of APEs during the adaptation and delivery of cor-
responding audio and video streams.

stream. If the media bitstreams need to be delivered using the streaming
service, two APEs are initialized (Figure 5.10(a)). Two separate streams
of RTP packets are created for the streaming service, where each stream
corresponds to a different RTP session. When the media bitstreams are
delivered through the download service, merging of the two streams oc-
curs earlier. More specifically, the two streams are associated with dif-
ferent adaptation processes (i.e., data block selection and adaptation),
but these are merged at the beginning of the packaging process (i.e.,
the RDF-to-XML transformation) (Figure 5.10(b)). This way, the me-
dia bitstreams can be packed together in a delivery format targeted for
(progressive) download-and-play scenarios (e.g., MP4).

(R4) Dependent on the received URL, the consumer client contacts the pro-
gressive download or streaming service to retrieve the desired content.
When the streaming service was selected, the consumer client starts an
RTP/RTSP session with the NinSuna platform.

(R5) By using the session ID (included in the URL), the download or stream-
ing service contacts the ADTE in order to obtain the proper session.
Hence, based on the answer of the ADTE, the download or streaming
service can determine which APE(s) will provide the requested content.

(R6) The APEs start working (as described in Section 5.3.1.2) and provide
the adapted and packaged media bitstream to the download or streaming
service. When the streaming service is selected, the APE provides a

146 Fully integrated multimedia delivery platforms

stream of RTP packets. The latter are sent out by the streaming service
to the consumer client according to the RTSP protocol.

(R7) When the usage environment conditions change (e.g., the network con-
nection changes from broadband to smallband), adaptation parameters
can be dynamically adjusted. The consumer client uses the retrieval ser-
vice to announce its new usage environment. The ADTE recalculates
and changes the adaptation parameters. As discussed in Chapter 4, to
avoid the initialization and evaluation of a new query each time an adap-
tation property changes, support for dynamic adaptations is provided in
the data block transformation step.

Distributing NinSuna across the Network Communication within the Nin-
Suna platform is realized using the HTTP protocol [46]. Hence, the different
components can be distributed across a network. First of all, the different
layers (storage, processing, and front-end) can be divided across different ma-
chines. Furthermore, a pool of APEs and SMGs can be created to serve a large
number of clients. These pools can also be divided across multiple machines.
The management of these pools can be done by brokers in the network decid-
ing which APE and/or SMG to select based on the current load. Note that such
a distributed architecture increases the scalability of the platform, since it al-
lows extending the platform with additional components in order to anticipate
an increasing load.

Extensibility One of the main features of the NinSuna platform is its format-
independency. Both the adaptation and packaging processes are format-
independent. Hence, it is rather straightforward to extend the platform with
support for new coding, metadata, and delivery formats. Adding support for a
new coding format consists of the following steps.

• A mapping needs to be created between the coding format and the model
for media bitstreams. This mapping is actually implemented and per-
formed during the metadata generation step.

• XML transformation filters (implemented in STX or XSLT) need to be
created for use during the BSD transformation step. More specifically,
delivery formats that support the encapsulation of the new coding format
and that are already available in the platform (i.e., a BS Schema exists
for the delivery format) need to be taken into account. Hence, for each
delivery format that needs to be supported for the new coding format, an
XML transformation filter needs to be created.

5.3. NinSuna 147

New metadata formats are inherently supported thanks to the use of our OWL-
based model for media bitstreams: it is only necessary to align the new meta-
data format (i.e., ontology) with the content metadata part of the model. Fi-
nally, a new delivery format is supported by taking the following steps.

• A BS Schema needs to be created, which describes the high-level syntax
structures and syntax elements of the delivery format (as discussed in
Section 5.3.1.2).

• XML transformation filters (implemented in STX or XSLT) need to be
created for use during the BSD transformation step. More specifically,
coding formats that are already supported by the platform and that are
allowed to be encapsulated in the new delivery format need to be taken
into account. Hence, for each coding format that needs to be supported
for the new delivery format, an XML transformation filter needs to be
created.

5.3.2.2 Implementation

The Java Platform is used to implement NinSuna. Sesame6 (version 2.1),
which is an open source RDF database with support for RDF Schema infer-
encing and querying, is used as RDF repository. The Sesame RDF API is used
to access the repository and to evaluate the SPARQL queries. Within the APE,
Saxon 6.5.5 and Joost v.2008-05-28 are used as XSLT and STX transforma-
tion engine respectively. Also, an own Java implementation of the BSDtoBin
parser is used. Note that we did not use the BSDL reference software due to
a lack of support for multithreading. The SMG consists of parsers generated
by Flavor [44], enhanced with support for the generation of RDF triples com-
pliant with the structural part of the model for media bitstreams. Finally, the
streaming service uses the RTSP implementation available in the C++ library
of Live555 Streaming Media.

5.3.2.3 Performance Measurements

In this section, a number of performance measurements are presented to pro-
vide the reader with an impression of the performance of the NinSuna plat-
form. First, a use case scenario is discussed, which is then followed by the
experimental results.

6Available on http://www.openrdf.org/.

http://www.openrdf.org/

148 Fully integrated multimedia delivery platforms

Use Case Scenario A number of news sequences were used to test our adap-
tation and delivery platform [79]. Semi-automatic annotation was used for
each news sequence, i.e., shots were automatically detected after which each
detected shot was manually annotated by a number of keywords. When map-
ping these metadata to our model for media bitstreams, each shot corresponds
to a TemporalSegment which contains a keyword property (values for this prop-
erty correspond to the keywords).

The scenario to obtain (parts of) a news sequence is as follows. The user
searches, based on keywords, for news sequences containing news topics that
are of his/her particular interest. Next, the user requests the selected news
scenes and provides a description of the usage environment to the NinSuna
platform. The latter selects the requested audio and video scenes, performs
structural adaptations if needed (i.e., exploitation of scalability such as frame
rate scaling), and packages the selected streams.

The multimedia content archive of NinSuna contained seven news se-
quences, each having a resolution of 720x432, a frame rate of 25 fps, and a
length of approximately 22 minutes. The video streams of the news sequences
were encoded using H.264/AVC. A hierarchical coding structure was used to
obtain three layers of temporal scalability (i.e., the videos can be rescaled from
25 fps to 12.5 fps and 6.25 fps) [30]. Instantaneous Decoding Refresh (IDR)
frames were inserted every 16 frames to obtain feasible random access. Fur-
ther, the audio streams of the news sequences were encoded using AAC (with a
sampling frequency equal to 48000). Additional bitstream characteristics can
be found in Table 5.3.

Two delivery formats are available in our scenario: RTP (streaming
service) and MP4 (download service). Hence, three XML transformation
stylesheets were developed: one STX stylesheet to guide the packaging of an
H.264/AVC stream into RTP packets, one STX stylesheet to guide the pack-
aging of an AAC stream into RTP packets, and one XSLT stylesheet to guide
the packaging of an H.264/AVC and AAC stream into an MP4 container. We
use STX stylesheets to guide the RTP packetization because of STX’s stream-
ing capabilities. An XSLT stylesheet is used for the packaging into an MP4
container because the format defines header values containing information re-
lated to the whole media bitstream, and these values need to be calculated at
runtime (e.g., length of the resulting MP4 file and random access points in the
media bitstreams). Note that we could also used STX to implement the pack-
aging process for MP4, but that would have introduced a significant overhead
in terms of implementation effort because of the streaming character of STX.

5.3. NinSuna 149

Table 5.3: Overview of the bitstream characteristics.

Video Audio
Name Length Size Bit rate Size Bit rate

(s) (MB) (MBit/s) (MB) (Kbit/s)
news1 1302 217.5 1.34 19.7 124
news2 1301 198.7 1.22 19.4 122
news3 1274 184.7 1.16 19.9 128
news4 1284 196.9 1.23 20.0 128
news5 1460 198.2 1.09 22.3 125
news6 1269 187.3 1.18 19.2 124
news7 1305 174.4 1.07 20.4 128

Experimental Results Performance measurements were done on a PC hav-
ing an Intel Pentium D 2.8 GHz CPU and 1 GB of system memory at its dis-
posal. The operating system used was Windows XP Pro SP2, running Java 2
Runtime Environment (SE version 1.5.0 09). JProfiler 5.1.4 was used to pro-
file our platform components. All time measurements were executed six times,
whereupon an average was calculated over the last five runs to avoid startup
effects.

Structural Metadata Generation As discussed in Section 5.3.2.1, the
SMG enables the creation of RDF triples compliant with the structural part
of the model for media bitstreams. Enhanced Flavor-based [44] parsers are
used to implement the SMG. For each of the seven news sequences, the SMG
is used to generate their structural metadata. The memory usage of the SMG
is low and constant (approximatly 3 MB). Its execution times are provided in
Table 5.4. For all media bitstreams (audio and video streams), the SMG is
able to generate the structural metadata in real time (i.e., the execution speed
is higher than the bit rate of the media bitstream). The execution time of the
SMG is dependent on the following parameters.

• # parse units per second: a media bitstream characterized by a higher
number of parse units per second implies a higher execution time for the
SMG. Note that the number of parse units per second is dependent on
the coding format (and its encoding parameters). For instance, a parse
unit in H.264/AVC corresponds to a Network Abstraction Layer Unit
(NALU). We have encoded the seven video news sequences in such
a way that each NALU corresponds to one frame. Hence, the video
streams are characterized by 25 parse units per second. Further, parse

150 Fully integrated multimedia delivery platforms

Table 5.4: Execution times for the generation of structural metadata.

Video Audio
Name Time Speed # Data Time Speed # Data

(s) (MBit/s) blocks (s) (KBit/s) blocks
news1 695.8 2.5 32561 398.3 405.5 61051
news2 753.0 2.1 32538 381.8 417.0 61008
news3 634.2 2.3 31875 395.7 412.0 59765
news4 625.1 2.5 32111 396.2 413.4 60207
news5 779.8 2.0 41008 474.4 385.3 76889
news6 736.6 2.0 31729 403.0 391.3 59491
news7 659.7 2.1 32638 392.5 425.6 61196

units for the audio news sequences correspond to AAC frames (contain-
ing 1024 samples), implying that the audio news sequences are charac-
terized by 46.9 parse units per second.

• # skipped bytes per parse unit: a higher number of skipped bytes per
parse unit implies a lower execution time for the SMG. These skipped
bytes correspond to the coded (audio or video) data (e.g., motion vec-
tors and transform coefficients), because the SMG only parses high-level
syntax structures of a media bitstream. In our example, the video news
sequences have a higher bit rate than the audio news sequences (see Ta-
ble 5.3), implying that the video streams contain more coded data and
hence that more bytes can be skipped by the SMG.

Table 5.4 also shows the number of data blocks that is generated for each
media bitstream. Since each data block is represented as an RDF graph, we can
calculate the number of RDF triples that is necessary to represent the structural
metadata. One RDF data block graph consists of 5 RDF triples7. Further,
one RAU (consisting of 3 RDF triples) points to 16 data blocks (for video)
or 30 data blocks (for audio). For example, the total number of RDF triples
to represent the structural metadata for the news1 video sequence is equal to
(32561 ∗ 5) + ((32561/16) ∗ 3) = 168910.

Delivery of News Fragments Three scenarios are considered to evalu-
ate the delivery of (partial) media bitstreams. In the first scenario, a fragment

7The number of RDF triples to represent a class instance is one (to indicate the class) plus
its number of properties.

5.3. NinSuna 151

Table 5.5: Characteristics of the three delivery scenarios applied to the news2 se-
quence.

Original start Fragment Fragment Peak memory Latency
offset (s) length (s) size (MB) usage (MB) (s)

RTP MP4 RTP MP4 RTP MP4
Scenario 1 18 128 12.0 11.8 10 24 0.2 2.4
Scenario 2 810 139 18.0 18.5 10 25 0.2 2.5
Scenario 3 18 267 30.8 30.3 10 37 0.2 8.2

of the media bitstream is selected occuring in the beginning of the media bit-
stream. The second scenario takes a fragment at the end of the media bitstream.
The third scenario takes both fragments of scenarios 1 and 2. We distinguish
these three scenarios to be able to investigate the impact of the place of the
shots of interest in the original bitstream and the length of the selected frag-
ments. More information regarding the resulting multimedia fragments of the
news2 audio and video sequences is provided in Table 5.5.

We have evaluated the media adaptation and delivery processes within Nin-
Suna in terms of peak memory consumption and execution times. Regarding
the peak memory consumption, we do not consider the memory usage of the
Java Virtual Machine and the Java Application Server, i.e., only the memory
usage is measured for the APE (i.e., data block selection and adaptation, RDF-
to-XML transformation, and BSD transformation and BSDtoBin). As shown
in Table 5.5, RTP delivery is characterized by a low and constant memory us-
age (i.e., 10 MB). On the contrary, delivery using MP4 introduces memory us-
age that is dependent on the length (in terms of data blocks) of the multimedia
fragments. This is due to the XSLT transformation that needs to store the full
XML document, resulting from the RDF-to-SAX transformation, in memory.
Note that this is necessary due to the presence of headers occurring in front
of the MP4 file and covering information regarding the full bitstream (e.g., a
list of random access points). Also in Table 5.5, the time between the client’s
request and the first delivered byte (measured at server-side to avoid network
delay) is provided (i.e., the latency). For RTP, the latency is low and indepen-
dent of the length and position of the media fragment (i.e., 0.2 s). For MP4,
the latency is dependent on the length of the requested media fragment. For
instance, for scenario 3, the resulting MP4 file is available for (progressive)
download after 8.2 s. Note that the latency for MP4 increases non-linearly
because the performance of the XPath evaluation process during the XSLT
transformation decreases, due to an increasing DOM tree.

In Figure 5.11, the proportion between components of the APE are shown
in terms of execution time percentages. RDF query, RDFtoSAX, and SAXto-

152 Fully integrated multimedia delivery platforms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scenario 1 Scenario 2 Scenario 3

SAXtoBin

RDFtoSAX

RDF query

(a) News fragments delivered using RTP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scenario 1 Scenario 2 Scenario 3

SAXtoBin

RDFtoSAX

RDF query

(b) News fragments delivered using MP4

Figure 5.11: Proportion in terms of execution time percentages between components
of the NinSuna platform.

Bin correspond to data block selection, data block transformation and RDF-
to-XML transformation, and BSD transformation and BSDtoBin respectively.
For RTP delivery, SAXtoBin takes most of the time with 65 % on average.
RDFtoSAX only requires a small proportion in terms of execution time (2 %),
while RDF query takes 33 %. These proportions are independent of the length
of the resulting media fragment, i.e., they are only influenced by the resulting
bit rate of the media fragment. For MP4 delivery, the proportions between
the APE components are not independent of the length of the media fragment
(the longer the fragment, the more time is spent by SAXtoBin). This is due
to the decreasing performance of the BSD transformation when the size of
the incoming XML document, which is dependent on the length of the media
fragment, increases.

5.3.3 Limitations and Future Work

Although NinSuna solves a number of problems of the MuMiVA platform,
there are still a number of issues that need to be solved in the future.

• Increasing memory usage due to XSLT transformation: as discussed in
Section 5.3.2.3, the use of XSLT to obtain a BSD representing a pack-
aged media resource introduces a memory usage that is dependent on
the length of the requested media fragment. Therefore, XSLT should
be avoided and replaced by STX or SAX filters. However, the memory
usage is also dependent on the delivery format. More specifically, if the
headers of a particular delivery format contain information regarding the
whole media fragment (e.g., byte offsets), this information is only avail-
able when the entire BSD is constructed (for example as a DOM tree).

5.4. Synchronization 153

• Structural metadata overhead: the amount of overhead of the structural
metadata is dependent on the length of the media bitstream. Hence,
for long media bitstreams, the number of RDF triples representing the
structural metadata can be a burden for the RDF store. As discussed in
Chapter 4, one solution for this problem is to store the structural meta-
data in an RDF store which is specifically designed for the model for
media bitstreams. More specifically, the structural metadata and scala-
bility information can be stored in a highly scalable Relational Database
Management System (RDBMS), using a database scheme based on the
structural and scalability part of the model for media bitstreams. An-
other possibility is the definition of a container format based on the
model for media bitstreams. This way, the structural metadata is seri-
alized within the headers of this container format.

• Structural metadata generation: as discussed in Section 5.3.2.3, en-
hanced Flavor-based parsers are used to implement the structural meta-
data generation. Each Flavor-based parser is able to generate structural
metadata compliant to the multimedia model for one particular coding
format. Note that the enhancements of our parsers need to be imple-
mented manually. As a result, the structural metadata generation module
is the only software module within NinSuna containing format-specific
software. To avoid this format-specific software, a BSDL-like Binto-
BSD parser could be created or the BFlavor specification could be ex-
tended to support the model for media bitstreams.

5.4 Synchronization

Our two platforms discussed in Section 5.2 and Section 5.3 (i.e., MuMiVA
and NinSuna) are able to deliver adapted media bitstreams that were originally
synchronized. Both platforms also support high-level semantic adaptations
along the temporal axis (e.g., scene selection or video summarization). This
kind of adaptations introduces problems for synchronized, compressed media
bitstreams (e.g., synchronized audio and video streams). Typically, dependen-
cies exist between different parse units (e.g., frames) in compressed media
bitstreams. For instance, intra-coded frames are independent of other frames,
while inter-coded frames are dependent on previous and/or future frames. To
garantuee that the adapted media bitstream can be decoded in a correct way,
cuts in the bitstream should only be performed at random access points, i.e. at
frames that are independent of previous frames (see also Section 2.3.2). How-
ever, the problem with synchronized media bitstreams is that their random

154 Fully integrated multimedia delivery platforms

access points do not necessarily coincide with each other. In this section, we
discuss three possible approaches that can be applied within our two platforms.

5.4.1 Synchronization during XML Transformation

The first approach [129] is suited for XML-driven content adaptation and is
implemented within the MuMiVA platform. The synchronization between
the different media bitstreams is implemented within the XML transformation
step. In other words, the transformation of a BSD is not only meant to imple-
ment the adaptation of the media bitstreams, but also to synchronize them.

The first step consists of finding a match between byte ranges (units used
in a BSD) and timing information in terms of timestamps (units used in con-
tent metadata). Therefore, we propose the following algorithm to calculate the
mapping between timestamps and byte ranges, taking into account the random
access points of the compressed media bitstream [129]. Suppose we have al-
ready calculated the relationship between the byte ranges of a media bitstream
and its display numbers (note that this relation is coding-format dependent). If
Di corresponds to the display number of frame i, R represents the frame rate
of the media bitstream, and Ti is equal to the display time of frame i, then we
can state that Ti = Di/R (we suppose the media bitstream is characterized
by a fixed frame rate). From the content metadata, we know Tx, i.e., the start
time of shot x. Hence, a display number Dresult corresponding to a frame that
represents the beginning of shot x on a random access point can be calculated
as follows:

Dresult = RAP (Dx) with Dx = Tx ∗R.

The function RAP () takes as input a display number Dx and returns the clos-
est display number Dy, with y corresponding to a random access point and
where Dx ≥ Dy.

As an example, we want to select a fragment starting from frame with
display number 71 (see Figure 5.12). However, this frame is not a random
access point. Hence, RAP (71) is in this example equal to 70. Therefore, the
selected fragment will start at the frame with display number 70.

Within a XML-driven content adaptation engine, the above described algo-
rithm for realizing semantic adaptations along the temporal axis is performed
during the BSD transformation. First, based on the incoming BSD, display
numbers are assigned to particular byte ranges (i.e., representing frames) of
the media bitstream. Next, the BSD transformation takes as input the content
metadata, selects the relevant scene information (based on the user’s interests),
and applies the mapping algorithm as discussed above. Finally, a decision is
made for each frame whether the frame should be dropped or not.

5.4. Synchronization 155

Frame Frame Frame

Random Access
Point (RAP)Frame rate =

25 fps

Display
number 68 70 72

...Frame

71

Frame Frame Frame

RAP
Frame rate =
46,875 fps

Display
number 130 131 132

...Frame

133

RAPRAP

...

...

RAP

A
ud

io
 s

tre
am

V
id

eo
 s

tre
am

Figure 5.12: Random access points in synchronized audio and video streams.

In order to keep two or more media bitstreams synchronized during se-
mantic adaptation along the temporal axis, we introduce the SRAP () func-
tion, which provides the display number of the closest previous random access
point that all the synchronized media bitstreams have in common. n media bit-
streams have a common random access point c if Tc = Tx1 = Tx2 = ... = Txn ,
with Tx equal to the display time of frame x and xi (0 < i ≤ n) a frame cor-
responding to a random access point. Hence, for a number of synchronized
media bitstreams, the formula to calculate the correct display number Dresult

corresponding to a frame that represents the beginning of shot x is equal to:

Dresult = SRAP (Dx) with Dx = Tx ∗Rb,

with Rb representing the fixed frame rate of a media bitstream b. When the
media bitstream is characterized by a varying frame rate, the display time of
a particular frame needs to be determined using external information (e.g.,
presentation times available in an MP4 container).

An illustration of the above formula can be found in Fig. 5.12. Two syn-
chronized audio and video streams need to be cut at 2.84 s. In this example, the
audio stream is straightforward to adapt, since each audio frame corresponds
to a random access point. When no synchronization was needed between the
audio and video stream, we could have cut the audio stream in this example at
audio frame 133. However, since we need to obtain synchronization with the
video stream, the SRAP () function needs to be applied. Since the closest pre-
vious random access point of the video stream is video frame 70 (or timepoint
2.80 s), the random access point for the audio stream that needs to be selected
is audio frame 131.

156 Fully integrated multimedia delivery platforms

stream1

BSD (stream1)

BSD
generation

Adapted
bitstream

generation

BSD trans-
formation

Transformed
BSD (stream1)

Adapted
stream1

Transform
logic for
stream1

stream2

BSD (stream2)

BSD
generation

Adapted
bitstream

generation

BSD trans-
formation

Transformed
BSD (stream2)

Adapted
stream2

Transform
logic for
stream2Semantic

metadata

User
preferences

+ usage
environment
properties

Figure 5.13: Adapting synchronized media bitstreams using XML-driven content
adaptation.

The general workflow for the adaptation of two synchronized media bit-
streams using format-independent adaptation engines is depicted in Fig. 5.13.
The two adaptation chains for both streams can be executed in parallel. The
content metadata and user preferences (i.e., the desired scenes) are provided
as an input for the BSD transformation processes. To be able to evaluate
SRAP (), the BSD transformation needs input from the other (synchronized)
media bitstreams by means of their BSD. This is necessary to determine the
display numbers of the random access points occurring in the other (synchro-
nized) media bitstreams. Note that, except for live scenarios, the BSD gen-
eration is only performed once for each bitstream. Hence, the information
regarding the occurrence of random access points can be extracted from the
obtained BSDs. In this case, the BSD transformation takes as input, next to
the BSD and the transformation logic, a list of display times (corresponding to
random access points) for each media bitstream.

5.4. Synchronization 157

Frame Frame Frame

Frame rate =
25 fps

Display
number 68 70 72

...Frame

71

Frame Frame Frame

RAP

Frame rate =
46.875 fps

Display
number 130 131 132

...Frame

133

RAPRAP

...

...

RAP

A
ud

io
 s

tre
am

V
id

eo
 s

tre
am RAP

RAP

RAP

DB DB DB

RAU

DB DB DB

RAU

RAU RAU RAU

RAU RAU RAU RAU

MediaBitstream1:

MediaBitstream2:

1 2 3 4 5 6 7 8 9 10 110
RAU RAU RAU RAU

RAU RAU RAU RAU RAU RAU RAU RAU RAU RAU RAU RAU

Video stream:

Audio stream:
12 13 14

RAU

RAU RAU RAU

0 1 2 3 4 5
RAU RAU

RAU RAU RAU RAU

Adapted video stream:

Adapted audio stream:
6 7 8

RAU

RAU RAU

Streaming
service

DB selection

DB adaptation

APE (audio+video)

DB selection

DB adaptation

RDF2XML

BSD transf.

BSDtoBin

Download
service

Figure 5.14: Random Access Unit alignment with the model for media bitstreams.
RAP, RAU, and DB stand for Random Access Point, Random Access Unit, and Data
Block respectively.

5.4.2 Synchronization during Structural Metadata Generation

A second option is to implement the synchronization between different media
bitstreams in the structural metadata generation step. We used this approach
within the NinSuna platform. The idea is to align the Random Access Units
(RAUs) in the structural metadata, as illustrated in Figure 5.14. As discussed
in Chapter 4, RAUs start with a Random Access Point (RAP) and end just
before the next RAP. Hence, generation of structural metadata (compliant with
the model for media bitstreams) of the audio stream depicted in Figure 5.14
should result in one RAU per audio frame (because each audio frame is a RAP).
However, because this audio stream is synchronized with a video stream, the
RAUs of both bitstreams are aligned during the structural metadata generation.

An advantage of this approach is that the adaptation process (i.e., selection
and adaptation of data blocks) is totally unaware of synchronization issues be-
tween different bitstreams. Semantic adaptations will not disturb the synchro-
nization between two or more streams, because these adaptations are based on
the selection of RAUs (as discussed in Chapter 4).

During the structural metadata generation step, the media bitstream which
is least flexible in terms of random access (i.e., the video stream in Figure 5.14)

158 Fully integrated multimedia delivery platforms

Frame Frame Frame

Frame rate =
25 fps

Display
number 68 70 72

...Frame

71

Frame Frame Frame

RAP

Frame rate =
46,875 fps

Display
number 130 131 132

...Frame

133

RAPRAP

...

...

RAP

A
ud

io
 s

tre
am

V
id

eo
 s

tre
am RAP

RAP

RAP

DB DB DB

RAU

DB DB DB

RAU

Streaming
service

APE (video)

DB selection

DB adaptation

RDF2XML

BSD transf.

BSDtoBin

APE (audio)

DB selection

DB adaptation

RDF2XML

BSD transf.

BSDtoBin

Sync
manager

RAU RAU RAU

RAU RAU RAU RAU

MediaBitstream1:

MediaBitstream2:

Figure 5.15: Synchronized media bitstreams with non-coinciding random access
units.

is handled first. Next, structural metadata are generated for the other synchro-
nized bitstreams (i.e., the audio stream in Figure 5.14), taking into account the
structural metadata of the first bitstream (i.e., its RAUs). This way, the RAUs
of the synchronized media bitstreams can be aligned as depicted in Figure 5.14.

However, there are a number of limitations when the synchronization issue
is implemented in the structural metadata generation step:

• When only one of the synchronized media bitstreams is requested, we
still have to deal with the aligned random access units (due to the syn-
chronization). For instance, consider the audio stream in Figure 5.14. If
this audio stream needs to be delivered from timepoint 2.84 s (i.e., au-
dio frame 133) without its corresponding video stream, the audio stream
needs to be cut at audio frame 131 (i.e., the start of a random access unit).
Hence, although only the audio stream needs to be delivered and each
audio frame corresponds to a random access point, the aligned random
access units need to be taken into account.

• If two or more synchronized media bitstreams have less random access
in common, synchronization in the structural metadata generation step
becomes infeasible. Such a scenario is depicted in Figure 5.15. The
resulting aligned random access units will be too large in such cases,
which will cause an insufficient amount of random access for the media
bitstreams.

5.4.3 Synchronization during Packaging

In order to avoid the limitations of implementing the synchronization in the
structural metadata generation step, we propose a third possibility to solve the
synchronization issues caused by semantic adaptations. Therefore, we shift
the synchronization from the structural metadata generation to the packaging
process (discussed in Section 5.3.1). Since semantic adaptations can cause
gaps in the initial timestamps of the data blocks, the timestamps of the data
blocks need to be recalculated (i.e., the gaps need to be detected and corrected)

5.4. Synchronization 159

Frame Frame Frame

Frame rate =
25 fps

Display
number 68 70 72

...Frame

71

Frame Frame Frame

RAP

Frame rate =
46,875 fps

Display
number 130 131 132

...Frame

133

RAPRAP

...

...

RAP

A
ud

io
 s

tre
am

V
id

eo
 s

tre
am RAP

RAP

RAP

DB DB DB

RAU

DB DB DB

RAU

Streaming
service

APE (video)

DB selection

DB adaptation

RDF2XML

BSD transf.

BSDtoBin

APE (audio)

DB selection

DB adaptation

RDF2XML

BSD transf.

BSDtoBin

Sync
manager

RAU RAU RAU

RAU RAU RAU RAU

MediaBitstream1:

MediaBitstream2:

1 2 3 4 5 6 7 8 9 10 110
RAU RAU RAU RAU

RAU RAU RAU RAU RAU RAU RAU RAU RAU RAU RAU RAU

Video stream:

Audio stream:
12 13 14

RAU

RAU RAU RAU

0 1 2 3 4 5
RAU RAU

RAU RAU RAU RAU

Adapted video stream:

Adapted audio stream:
6 7 8

RAU

RAU RAU

Figure 5.16: Recalculation of timestamps after semantic adaptation.

during the packaging process (and more specifically during the RDF-to-XML
transformation), as explained in Section 5.3.1.2.

When synchronization is implemented during the structural metadata gen-
eration step, the random access units of the synchronized media bitstreams
were aligned. Hence, semantic adaptations cause gaps at the same positions
for all synchronized media bitstreams. However, when we drop the condition
that random access units of synchronized media bitstreams have to be aligned,
the recalculation algorithm for the timestamps needs to be adjusted. In Fig-
ure 5.16, a scenario is shown with two synchronized media bitstreams hav-
ing non-aligned random access units8. Suppose we want to select data blocks
from the synchronized media bitstreams starting from timestamp 4 to 7 and
from 13 to 14. The algorithm to obtain the corrected timestamps can be for-
mulated as follows. Initialize the variable timestampFix to 0. Handle all
synchronized media bitstreams in parallel and search for the next gap in the
sequence of timestamps. Meanwhile, correct the timestamps of the processed
data blocks with timestampFix. When a gap is detected in all the synchro-
nized media bitstreams, add the number corresponding to the smallest detected
gap to timestampFix. Repeat these steps until the end of the synchronized
bitstreams is reached.

We illustrate this algorithm by applying it to the example given in Fig-
ure 5.16. For the video stream, the first gap that is detected is situated at the
first selected data block, which has a timestamp equal to 3. The corresponding
gap detected in the audio stream is equal to 4. Hence, timestampFix is in-
creased by min(3, 4) = 3. Hence, timestamps 4, 5, 6, and 7 are corrected by 3
resulting in the timestamps 1, 2, 3, and 4 for the audio stream. The next gap is
located at the data block with timestamp equal to 12 for the video stream (gap
is equal to 3). The corresponding gap for the audio stream is detected at the

8Note that, as a matter of convenience, both media bitstreams have the same number of
timestamps per second.

160 Fully integrated multimedia delivery platforms

data block with timestamp equal to 13, resulting in a gap equal to 5. Hence,
timestampFix is increased by min(3, 5) = 3 and is now equal to 6. For
example, the data blocks of the video stream with timestamp equal to 12, 13,
and 14 are thus corrected to 6, 7, and 8.

As discussed in Section 5.3.2.1, there are two possible scenarios for the
packaging process, based on the requested delivery service (i.e., streaming or
download). It is important to remark that the revised timestamp recalculation
algorithm can only be implemented in the RDF-to-XML transformation in case
of the download scenario (see Figure 5.10(b)). In case of the streaming sce-
nario (see Figure 5.10(a)), separate RDF-to-XML transformation processes are
present for the different synchronized media bitstreams. Since no communica-
tion between these processes is available, it is impossible to detect the smallest
gap of all synchronized media bitstreams (as required by the above described
algorithm). Therefore, in the streaming scenario, communication between the
APEs is necessary to implement the timestamp recalculation in the RDF-to-
XML transformation process. Another option is to implement the timestamp
recalculation in the streaming service.

5.5 Related Work

European projects such as ISIS (Intelligent Scalability for Interoperable Ser-
vices, [47]) and DANAE (Dynamic and distributed Adaptation of scalable mul-
timedia coNtent in a context-Aware Environment, [101]) aimed at the design,
implemention, and validation of a multimedia framework that allows to adapt
audio-visual content to a wide range of service scenarios. Both projects use
XML-driven content adaptation. However, the scope of both projects is much
broader than only media resource adaptation, since they also investigate con-
text collection, advanced adaptation decision taking, etc. Key points where
MuMiVA differentiates from these projects are:

• support for both MPEG-21 gBS Schema and MPEG-B BSDL, while
ISIS and DANAE were focussed on MPEG-21 gBS Schema only;

• support for STX and SAX filters to implement streaming BSD transfor-
mations, while ISIS and DANAE only provide support for XSLT;

• a distributed architecture to achieve a scalable multimedia adaptation
and delivery platform, while ISIS and DANAE were not focussed on
scalability of their media resource adaptation platforms.

The Continuous Media Markup Language (CMML, [96]) allows to anno-
tate and index continuous media files. The presented architecture is able to

5.5. Related Work 161

extract temporal segments of media resources using a temporal URI scheme.
A new file format is presented (i.e., Annodex), which enables encapsulation
of any type of streamable media resource (i.e., coding-format independent).
Annodex is based on the Ogg encapsulation format and is basically a bitstream
consisting of media bitstreams combined with a CMML file. Comparing Ann-
odex to NinSuna, we can state that both solutions allow to extract temporal
fragments from media resources in a format-independent manner. However,
Annodex requires the use of a single delivery format (i.e., Ogg) while Nin-
Suna is able to deliver media content using any delivery format, in a format-
independent way. Further, in contrast to our platforms, Annodex does not
support structural adaptations (i.e., exploitation of scalability layers).

Digital Item Streaming (DIS, [64]) is part 18 of MPEG-21 and enables
the incremental delivery of a Digital Item (covering both metadata and me-
dia resources) in a piece-wise fashion. DIS relies on the Bitstream Binding
Language (BBL, [117]) for this purpose. BBL defines syntax and semantics
to describe instructions on how a Digital Item can be fragmented and mapped
into one or more delivery channels. It uses the same principles for serializ-
ing the packed media bitstream as NinSuna, i.e., MPEG-B BSDL is used to
abstract the media bitstream and to enable the use of format-agnostic soft-
ware modules. However, the BBL approach requires a new language to be
used to specify the fragmentation and packetization process. Our proposed
method to perform format-independent packaging only requires knowledge of
commonly used XML transformation languages such as XSLT or STX. Fur-
thermore, our model for media bitstreams provides support for the multimedia
packaging process (i.e., timestamp support and coding-format specific param-
eters). Hence, this information can already be calculated during the metadata
generation step, which is in contrast to the BBL approach where this informa-
tion needs to be calculated during the packaging process.

Ransburg et al. propose to use Media Streaming Instructions within gB-
SDs to implement a generic streaming server [102]. More specifically, access
units (i.e., the smallest unit of data to which timing may be attached) are iden-
tified and timestamps are assigned to them. Note that these Media Streaming
Instructions have been adopted in the second amendment of the MPEG-21 DIA
specification [65]. Using Media Streaming Instructions, the fragmentation pro-
cess and timestamp calculation is performed during the gBSD generation step
(i.e., during structural metadata generation). However, the fragmentation pro-
cess is dependent on the delivery format (e.g., fragmentation of H.264/AVC
streams is different for RTP and MP4 packetization). Also, gBSDs including
Media Streaming Instructions are processed by delivery-format specific soft-
ware modules (e.g., an RTP packetizer).

162 Fully integrated multimedia delivery platforms

Smooth Streaming [86], which is an Internet Information Server (ISS) Me-
dia Services extension, enables adaptive streaming of multimedia content to
Silverlight [85] clients over HTTP. Providing multiple encoded bitrates of the
same media source allows Silverlight clients to seamlessly and dynamically
switch between bitrates depending on network conditions and CPU power.
Further, by using MP4 fragments combined with XML-based descriptions of
the media content (called manifest files9), temporal media fragment selection
can be applied. However, Smooth Streaming does not use a real stream-
ing protocol, but a rather smart form of progressive download. Further, it
only supports one delivery format (i.e., MP4) and four coding formats (i.e.,
H.264/AVC, VC-1, AAC, and WMA).

Finally, the Darwin Streaming Server10 (DSS) is an open source, cross-
platform RTP/RTSP streaming server. It provides a coding-format agnostic
design, i.e., no codecs are present in the server. The streaming of media re-
sources is guided by hint tracks, which contain all the information necessary
to packetize and stream the media resource. Note that the creation of these
hint tracks is coding-format specific (e.g., MP4Box11 is a commonly used tool
for the creation of hint tracks). Hint tracks can be compared to a part of our
structural metadata (i.e., the mapping of timestamps to byte ranges of the me-
dia resource). However, support for adaptation operations is not available in
DSS. Also, packing multimedia content with other delivery formats (other than
RTP) is not possible.

5.6 Conclusions and Original Contributions

In this chapter, we have introduced two multimedia delivery platforms rely-
ing on format-agnostic software modules. First, we have discussed MuMiVA,
which is a multimedia delivery platform relying on XML-driven content adap-
tation engines. MuMiVA tackles the diversity in the current multimedia land-
scape by streaming multimedia content that is adapted according to the con-
straints of a certain usage environment. The multimedia content is customized
using format-agnostic adaptation engines which, in their turn, use MPEG-B
BSDL and MPEG-21 gBS Schema as underlying technologies. An in-depth
discussion of the architecture and functioning of our multimedia delivery plat-
form has been provided. Furthermore, we have shown that MuMiVA is a fully
integrated, extensible platform that is deployable in streaming environments.

9More technical information can be found on http://alexzambelli.com/blog/
2009/02/10/smooth-streaming-architecture/

10http://developer.apple.com/opensource/server/streaming/
11http://gpac.sourceforge.net/packager.php

http://alexzambelli.com/blog/2009/02/10/smooth-streaming-architecture/
http://alexzambelli.com/blog/2009/02/10/smooth-streaming-architecture/
http://developer.apple.com/opensource/server/streaming/
http://gpac.sourceforge.net/packager.php

5.6. Conclusions and Original Contributions 163

In order to demonstrate the flexibility of MuMiVA in terms of applications and
coding formats, two different applications (i.e., exploitation of temporal scal-
ability and shot selection) were applied to two different coding formats (i.e.,
MPEG-4 Visual and H.264/AVC). We identified the following factors that in-
fluence the performance in terms of CPU usage of the XML-driven content
adaptation engine used in MuMiVA:

• application: one application can be more complex than another applica-
tion and combining two applications can decrease the performance;

• coding format: the parsing process of coding formats differs in com-
plexity;

• level of detail of the gBSD: the performance decreases when the level of
detail of the gBSD increases.

Second, we presented NinSuna, which is a format-independent multimedia
content adaptation and delivery platform that provides solutions for the short-
comings of our MuMiVA platform, i.e., interoperability problems of XML-
driven content adaptation and the lack of a generic multimedia delivery solu-
tion. NinSuna is based on our model for media bitstreams, which covers the
structural, content, and scalability properties of media bitstreams. Further, it
provides support for a seamless integration of adaptation operations and con-
tent metadata, and supports format-independent packaging of multimedia con-
tent. Multimedia adaptation is performed by selecting and adapting portions
of the structural metadata using SPARQL. Multimedia packaging is obtained
by encapsulating the selected and adapted structural metadata within a specific
delivery format. This packaging process is implemented using XML trans-
formation filters and MPEG-B BSDL. We evaluated the NinSuna platform by
enabling the user to select news fragments matching his/her specific interests
and usage environment characteristics. The multimedia content, encoded with
H.264/AVC and AAC, was delivered through RTP or MP4 according to the
choice of the user. Both the generation of the structural metadata and the adap-
tation and delivery of news fragments can occur in real time. The performance
of the media adaptation and delivery in terms of memory usage and latency
depends on the delivery format.

Finally, we provided more insight into the synchronization issues caused
by semantic adaptations. Three possible solutions were presented, i.e., one for
MuMiVA and two for NinSuna. Within the MuMiVA platform, synchroniza-
tion between adapted media bitstreams is implemented in the BSD transforma-
tion step. Within the NinSuna platform, the synchronization problem is solved
during the structural metadata generation step by aligning the random access

164 Fully integrated multimedia delivery platforms

units of the synchronized media bitstreams. Another possibility for the Nin-
Suna platform would be to introduce a synchronization manager which is able
to synchronize the adapted media bitstreams during the packaging process.

The research that has led to this chapter is also described in the following
publications.

1. D. Van Deursen, S. De Bruyne, W. Van Lancker, W. De Neve, D. De
Schrijver, H. Hellwagner, and R. Van de Walle. MuMiVA: a Multimedia
Delivery Platform using Format-agnostic, XML-driven Content Adapta-
tion. In Proceedings of the 9th International Symposium on Multimedia,
pages 131–138, December 2007, Taichung, Taiwan

2. D. Van Deursen, W. Van Lancker, T. Paridaens, W. De Neve, E. Man-
nens, and R. Van de Walle. NinSuna: a Format-independent Multimedia
Content Adaptation Platform based on Semantic Web Technologies. In
Proceedings of the 10th International Symposium on Multimedia, pages
491–492, December 2008, Berkeley, United States

3. E. Mannens, R. Troncy, K. Braeckman, D. Van Deursen, W. Van
Lancker, R. De Sutter, and R. Van de Walle. Automatic Information
Enrichment in News Production. In Proceedings of the 10th Interna-
tional Workshop on Image Analysis for Multimedia Interactive Services,
pages 61–64, May 2009, London, United Kingdom

4. D. Van Deursen, W. Van Lancker, W. De Neve, T. Paridaens, E. Man-
nens, and R. Van de Walle. Semantic Adaptation of Synchronized Multi-
media Streams in a Format-independent Way. In Proceedings of the 27th
Picture Coding Symposium, 4 pages on CD-ROM, May 2009, Chicago,
United States

5. D. Van Deursen, W. Van Lancker, T. Paridaens, W. De Neve, E. Man-
nens, and R. Van de Walle. NinSuna: a Fully Integrated Platform
for Format-independent Multimedia Content Adaptation and Delivery
based on Semantic Web Technologies. Submitted to Multimedia Tools
and applications – Special Issue on Data Semantics for Multimedia Sys-
tems

6. S. Coppens, E. Mannens, D. Van Deursen, and R. Van de Walle. Se-
mantic Bricks for Performing Arts Archiving and Dissemination. Ac-
cepted for publication in the Insurance Accounting & Systems Associa-
tion (IASA) 2009 Annual Educational Conference and Business Show

Chapter 6

Conclusions

I never think of the future - it comes soon enough.

Albert Einstein (1879 - 1955)

The multimedia landscape is characterized by a growing amount of mul-
timedia content. This is due to ongoing digitization processes by public and
private broadcasters, as well as to the growing popularity of user-generated
content. There is also a large diversity in end-user devices that are able to
consume multimedia. These devices differ in terms of device characteristics
such as screen size, processing power, and battery life, and in terms of net-
work characteristics, such as bandwidth, jitter, and error robustness. Further-
more, end-users with specific preferences often want to consume personalized
versions of multimedia content (e.g., an end-user only requesting scenes sat-
isfying his/her interests). Finally, the number of multimedia coding standards
(e.g., MPEG-1 Audio, H.264/AVC, and JPEG2000) and multimedia delivery
formats (e.g., MP4, Ogg, and RTP) has grown significantly over the last few
years. Hence, the efficient delivery of multimedia content in today’s world of
ubiquitous multimedia consumption is an important technological challenge.

In order to obtain Universal Multimedia Access and thus providing (per-
sonalized) multimedia content anywhere, at anytime, and on any device, a
transparent multimedia content adaptation and delivery approach is needed.
In this context, metadata, which are generally defined as ‘data about data’,
play a crucial role. Multimedia metadata enable the effective organization, ac-
cess, and interpretation of multimedia content. Therefore, metadata have an
increasingly important role in bringing order to the growing amount of avail-
able multimedia content. In this dissertation, we have tackled the aforemen-
tioned problems by using format-independent content adaptation and delivery

166 Conclusions

techniques. Furthermore, these techniques provide a seamless integration with
today’s manifold available multimedia metadata schemes.

In Chapter 2, we gave an overview of existing format-independent content
adaptation techniques. These techniques rely on XML-based Bitstream Syntax
Descriptions (BSDs), which contain information about the high-level structure
of a media bitstream. They typically apply a three-step-based adaptation chain
to obtain format-independent adaptation, i.e., BSD generation, BSD transfor-
mation, and adapted bitstream generation. Rather than directly operating on
the binary bitstream, the actual adaptation is performed on the BSD level, en-
abling the use of already existing XML transformation technologies such as
XSLT or STX. Note that a BSD is not meant to replace the original binary
data; it rather acts as an additional layer, similar to metadata. Further in this
chapter, we discussed how a BSD-based content adaptation chain can be im-
plemented by means of generic, coding-format independent software modules.
Examples of existing format-independent adaptation techniques following the
three-step-based approach are MPEG-B BSDL, MPEG-21 gBS Schema, XFla-
vor, and BFlavor.

One important restriction of BSD-driven content adaptation techniques is
that they can only perform high-level adaptation operations. Removing par-
ticular data blocks or modifying the value of certain syntax elements are con-
sidered as high-level adaptation operations. We identified two main target ap-
plications for BSD-driven content adaptation techniques, i.e., structural and
semantic adaptations. Structural adaptations are typically performed to adapt
media bitstreams by exploiting their scalability properties in order to meet the
terminal and network characteristics of the end-user. Hence, structural adapta-
tions are possible on condition that the media bitstreams consist of a number
of scalability layers. Semantic adaptations are high-level adaptations based on
semantic information about the multimedia content (e.g., selection of specific
temporal segments that are of interest to the user). In this dissertation, we
focussed on semantic adaptations along the temporal axis. Hence, semantic
adaptations are possible on condition that media bitstreams are provided with
random access points that are occurring in a regular way.

Also, in Chapter 2, we described a number of remaining challenges for
format-independent content adaptation techniques, which were tackled in the
following chapters of this dissertation:

• efficient and format-independent generation of generic Bitstream Syntax
Descriptions (gBSDs);

• format-independent definition and implementation of high-level adapta-
tion operations;

167

• integration with metadata standards;

• design and implementation of a fully integrated adaptation platform,
based on format-independent content adaptation;

• format-independent packaging of adapted multimedia content;

• reduction of the structural metadata overhead.

In Chapter 3, we tackled a challenge that is specific for MPEG-21 gBS
Schema, i.e., efficient and format-independent generation of generic Bitstream
Syntax Descriptions (gBSDs). Within the MPEG-21 DIA specification, only
the gBS Schema is described, together with the behaviour of a gBSDtoBin
parser. This implies that a gBSD may be generated in any proprietary way.
Therefore, we have proposed gBFlavor, which is an efficient tool for the
generation of gBSDs in a format-independent manner. An existing format-
independent solution is a two-step approach as currently proposed in the sci-
entific literature, i.e., format-specific BSD generation, followed by a transfor-
mation in a gBSD. However, the latter solution requires knowledge of two
different technologies (i.e., BSD generation and BSD-to-gBSD transforma-
tion). Furthermore, often more detail is needed in the BSD than in the result-
ing gBSD, implying a decrease in execution speed of the format-specific BSD
generation process. These detailed BSDs are necessary for the BSD-to-gBSD
transformation to produce an application-specific gBSD.

gBFlavor makes it possible to automatically generate a format-specific
parser that is able to produce an application-specific gBSD for a given bit-
stream. Such a parser is generated by the gbflavorc translator, which takes as
input a gBFlavor code. We have proposed the specification for this code, which
describes the high-level structure of a particular coding format. The gBFlavor
specification, which is an extension of the BFlavor specification, provides sup-
port for the addition of semantically meaningful information to gBSDs (by
means of markers). Hence, gBSDs targeting specific applications can be ob-
tained.

Further in Chapter 3, we have compared gBFlavor with the existing two-
step approach. This comparison allowed getting an estimate of the expressive
power and performance of a gBFlavor-enabled adaptation framework. The cre-
ation of gBSDs using gBFlavor avoids the two-step approach, since only one
technology is needed to obtain gBSDs targeting a specific application. The
exploitation of the scalable properties of two coding formats, i.e., SVC and
JPEG2000, was used as the target application in our gBFlavor-enabled adap-
tation framework. Performance results have shown that gBFlavor outperforms
the two-step approach in terms of execution times.

168 Conclusions

In order to solve a number of problems with XML-driven content adap-
tation (i.e., lack of support for defining high-level adaptation operations in a
format-independent way and an ad-hoc integration with content metadata), we
have presented a new format-independent adaptation technique in Chapter 4.
It relies on a model for media bitstreams that takes into account the structural
metadata, content metadata, and scalability information. The model is imple-
mented using the Web Ontology Language (OWL). Existing coding formats
are mapped to the structural part of the model, while existing metadata stan-
dards can be linked to the metadata content part of the model. Our new adap-
tation technique, which is called model-driven content adaptation, is based on
executing SPARQL Protocol And RDF Query Language (SPARQL) queries
over instances of the model for media bitstreams.

A comparison was made between model-driven content adaptation and ex-
isting format-independent and format-specific content adaptation techniques
using different criteria. Compared to XML-driven content adaptation, advan-
tages of model-driven content adaptation are the low amount of knowledge
needed to define adaptation operations and the seamless integration with con-
tent metadata. Furthermore, both techniques have a comparable performance
in terms of execution speed.

Two challenges were solved in Chapter 5: format-independent packaging
of adapted multimedia content and design and implementation of fully inte-
grated adaptation and delivery platforms, based on format-independent adap-
tation and packaging techniques. Therefore, we have introduced two multime-
dia delivery platforms relying on format-agnostic software modules: MuMiVA
and NinSuna.

MuMiVA tackles the diversity in the current multimedia landscape by
streaming multimedia content that is adapted according to the constraints of
a certain usage environment. The multimedia content is customized using
format-agnostic adaptation engines which, in their turn, use MPEG-B BSDL
and MPEG-21 gBS Schema. We have discussed MuMiVA’s architecture and
functioning, and elaborated on its extensibility features. The platform was
evaluated using two different adaptation operations (i.e., exploitation of tem-
poral scalability and shot selection) applied to two different coding formats
(i.e., MPEG-4 Visual and H.264/AVC). We concluded that the performance
of MuMiVA in terms of CPU usage is not only dependent on the adaptation
operation and coding format, but also on the level of detail of the (g)BSDs
used.

NinSuna is a format-independent multimedia content adaptation and de-
livery platform that provides solutions for the shortcomings of MuMiVA, i.e.,
interoperability problems of XML-driven content adaptation and the lack of

169

a generic multimedia delivery solution. NinSuna is based on our model for
media bitstreams, which was introduced in Chapter 4. It provides support
for a seamless integration of adaptation operations and content metadata, and
supports format-independent packaging of multimedia content. Multimedia
adaptation is performed by selecting and adapting portions of the structural
metadata using SPARQL. Multimedia packaging is obtained by encapsulating
the selected and adapted structural metadata within a specific delivery format.
This packaging process is implemented using XML transformation filters and
MPEG-B BSDL. We evaluated the NinSuna platform by enabling the user to
select news fragments matching his/her specific interests and usage environ-
ment characteristics. The multimedia content, encoded with H.264/AVC and
AAC, can be delivered through RTP or MP4 according to the choice of the
user. Both the generation of the structural metadata and the adaptation and de-
livery of news fragments can occur in real time. The performance of the media
adaptation and delivery steps in terms of memory usage and latency depends
on the delivery format.

In this dissertation, we have shown that format-independent media re-
source adaptation and delivery is feasible in practice. Multimedia content can
be adapted and delivered in real-time using a feasible amount of memory. The
generation of the structural metadata, which is less time-critical than the actual
adaptation and delivery, is also characterized by reasonable execution times
and memory consumption. Furthermore, in order to prove the practicability of
format-independent content adaptation and delivery techniques in real-life sce-
narios, two fully integrated format-independent multimedia content adaptation
and delivery platforms were developed in Chapter 5. However, the question
remains whether such platforms will ever be used in real-world multimedia
applications. In order to be able to answer this question in a positive way, a
number of additional challenges need to be addressed. Some of them are al-
ready described in the scientific literature, while others are considered as future
work.

Adaptation Possibilities

As discussed in this dissertation, format-independent content adaptation tech-
niques are characterized by limited adaptation possibilities. More specifically,
only high-level bitstream structures can be removed and only high-level syn-
tax elements can be modified. Hence, compressed media bitstreams have to
support adaptation operations that are possible without the need of a complete
or partial recode process. Two options exist to handle this issue.

170 Conclusions

• Adoption of scalable coding formats: as discussed in Chapter 2, scal-
able coding is an interesting coding technique in the context of format-
independent adaptation since it enables the extraction of multiple (lower
quality) versions of the same media resource without the need of a com-
plete recoding process. A significant number of scalable coding formats
exists. However, thus far, scalable coding formats are rarely used in
practice mainly due to their complexity and coding efficiency problems.

• Hybrid adaptation systems: in contrast to coding-format independent
adaptation techniques, coding-format specific adaptation techniques are
more flexible in terms of adaptation possibilities. They typically per-
form low-level (coding-format specific) adaptation operations such as
adapting transform coefficients or converting from one coding format to
another one (e.g., MPEG-2 Video to H.264/AVC [147]). Hence, coding-
format specific and agnostic adaptation techniques are complementary.
Therefore, it would be interesting to investigate in which way these two
approaches can be integrated into one hybrid adaptation platform.

Structural Metadata Overhead

Next to limited adaptation possibilities, description-driven content adaptation
introduces structural metadata, which results in file size overhead. In this
dissertation, structural metadata was expressed by means of XML in case of
XML-driven content adaptation and by means of RDF triples in case of model-
driven content adaptation. Structural metadata in its textual form (i.e., uncom-
pressed) is too verbose to be used in real-world multimedia applications. The
following actions can be undertaken to tackle this problem.

• Compressed structural metadata: as already discussed in Chapter 2,
XML-based structural metadata can be compressed by using algorithms
such as WinZip, BiM, or XWRT. However, such an approach is only vi-
able if XML transformations can be applied to the compressed form of
the structural metadata. This way, we can avoid the uncompression (and
possibly recompression) of the structural metadata during the adaptation
process. An initial approach was introduced by Timmerer et al. in [120],
where an approach is presented to transform XML documents, encoded
with BiM [63], in the binary domain (as discussed in Chapter 2). In case
of model-driven content adaptation, generic RDF storage solutions be-
come insufficient in terms of scalability due to a high number of RDF
triples representing the structural metadata. As discussed in Chapter 4,
other solutions should be considered to store these RDF triples such as

171

an RDF store specifically designed for the model for media bitstreams.
Hence, an RDBMS using a database scheme based on the structural and
scalability part of the model for media bitstreams could serve as an effi-
cient RDF store for model-driven content adaptation. RDBMSs should
be capable of dealing with a large amount of structural metadata since
they are mature, stable, and scalable, while also providing a high perfor-
mance in terms of query execution speed.

• Compact structural metadata: besides compression, the structural meta-
data can be made more compact by removing information that is not
necessary for the transformation or adapted bitstream generation pro-
cess. In this dissertation, we applied this approach in two different ways.
First, in Chapter 3, gBFlavor supports the insertion of markers within
a gBSD, which results in a change in the hierarchical structure of the
gBSD. More specifically, gBSD elements that do not include a marker,
will not occur in the resulting gBSD since these are considered useless
during the transformation and binarization steps. Second, in Chapter 4,
the structural metadata are compliant to our model for media bitstreams.
Hence, coding-format specific information within the structural meta-
data is avoided since it is now fully independent of the underlying coding
format in terms of syntax elements and hierarchical structure. Note that
in some specific cases, one can even go further to compact the structural
metadata. As elaborated on in [32], coding formats such as JPEG XR
and JPEG2000 are able to store an index table within the headers. Such
an index table can be roughly compared to a binary representation of the
structural metadata. Hence, parsing the actual data packets (i.e., tiles) is
no longer necessary, because this information can be constructed from
the main headers and the index table.

Adaptation Decisions

In this dissertation, we presented solutions to adapt and deliver media re-
sources independent of the coding format. An important research domain is the
logic that is needed to steer the adaptation engines. An interesting challenge
is the integration of format-independent adaptation techniques and adaptation-
decision taking logic. Two possibilities exist to take structural and semantic
adaptation decisions.

• Manual: the end-user decides which adaptation needs to be applied to
the media resource. For instance, he/she can select the bit rate of the
media resource (structural adaptation) or he/she can select which scenes
the resulting media resource should contain (semantic adaptation).

172 Conclusions

• Automatic: adaptations are taken by a so-called Adaptation-Decision
Taking Engine (ADTE). In order to be able to take the proper decisions,
the ADTE needs information about the end-user’s preferences and its us-
age environment. The latter can for example be represented in MPEG-
21 DIA [61]. For structural adaptation decisions, the ADTE typically
compares the media resource characteristics (e.g., resolution) with the
usage environment (e.g., screen size). A number of adaptation-decision
algorithms have already been presented in the context of the MPEG-
21 DIA framework [87, 88, 97, 98]. For semantic adaptation decisions,
techniques such as content ranking and content recommendation can be
applied to make proper decisions [5]. Note that with our introduction of
Semantic Web technologies during the adaptation process (i.e., model-
driven content adaptation), rule-based ADTEs could be integrated. More
specifically, usage environment descriptions and bitstream characteris-
tics can be expressed in RDF. This way, the adaptation-decision taking
process can be steered by rules defined on top of these descriptions.

In-network Adaptations

The presented media resource adaptation and delivery platforms in Chapter 5
perform the adaptation operations at server-side. However, it would be inter-
esting to investigate how these adaptation operations could be executed within
network adaptation nodes. In [73], Kuschnig et al. presented an RTP/RTSP-
based network adaptation node for SVC, based on MPEG-21 gBS Schema.
In-network adaptation aims at minimizing adaptation delay by placing adap-
tation nodes close to the location where dynamically changing usage environ-
ments are expected (e.g., in the wireless access networks of the end-users).
Another feature of in-network adaptation is to save bandwidth when multiple
clients want to consume the same content. Hence, the content is delivered to
the access network of the clients, where it is replicated for and adapted to the
usage environment of each client. This way, bandwidth can be saved in the
core network.

Next to Client-(Proxy-)Server architectures, Peer-to-Peer (P2P) networks
are gaining importance to perform multimedia content streaming [92]. P2P
networks avoid the bottleneck around a centralized server due to its distributed
design and architecture [84]. For instance, streaming and adapting SVC en-
coded bitstreams over a P2P network is described in [8]. However, it would
be interesting to investigate how P2P networks and format-independent con-
tent adaptation techniques could be integrated. For instance, in [54], the au-
thors propose a P2P streaming solution based on MPEG-21 gBS Schema. Fur-

173

ther, the SEAmless Content Delivery (SEA, [109]) project aims to implement a
context-aware networking delivery platform based on SVC, on-the-fly content
adaptation, and P2P overlays.

Application Scenarios

Compared to format-specific adaptation techniques, format-independent adap-
tation techniques come with additional complexity. Whether format-
independent content adaptation techniques will be adopted in real-world mul-
timedia applications depends on, among other things, the presence of appli-
cation scenarios that justify the additional complexity. In the early days of
XML-driven content adaptation, these scenarios were hard to find, mainly be-
cause of two reasons.

• Lack of adoption of scalable coding formats: as elaborated on above,
format-independent adaptation techniques are dependent on the adap-
tation possibilities of the underlying coding format. As scalable cod-
ing formats provide several adaptation possibilities along their different
scalability axes, they are a rewarding coding technique to be used in
combination with format-independent content adaptation.

• Focus on structural adaptations: the primary motivation behind the de-
velopment of XML-driven content adaptation was the exploitation of
scalability with metadata tools, i.e., structural adaptations. However,
these are only possible if the (scalable) coding format provides support
for these adaptation operations. Furthermore, scalable coding formats
often come with low-complexity bitstream extractors which are able to
perform exactly the same structural adaptations as XML-driven content
adaptation.

However, a number of observations in the current multimedia landscape
indicate an increasing importance of format-independent content adaptation in
the near future.

• Development of new scalable coding formats: there is a growing interest
in scalable coding techniques. Within the video coding community, a
fully scalable coding format (i.e., SVC) was developed and standardized
in July 2007. Further, Microsoft has developed a scalable image coding
format (i.e., HD Photo) which will be standardized in the course of 2009
under the name JPEG XR. With the development of new scalable cod-
ing formats such as SVC and JPEG XR, new chances arise for scalable
coding formats to be adopted.

174 Syntax and BSD fragments

• Efficiency of adaptation engines: compared to format-specific bitstream
extractors, format-independent content adaptation has an advantage in
terms of processing efficiency. Indeed, ordinary bitstream extractors
have to parse the media resource each time it needs to be adapted. On
the contrary, format-independent content adaptation only has to parse
media resources once (i.e., during the structural metadata generation).
Since the parsing process of newly developed coding formats becomes
more and more complex (e.g., parsing an MPEG-1 Video stream is less
complex than parsing an H.264/AVC stream), this form of caching ap-
plied by format-independent content adaptation will gain importance.

• Semantic adaptations: with an increasing interest in personalization of
multimedia content, semantic adaptations are gaining importance. There
is also a growing amount of content metadata that can assist in request-
ing personalized versions of media resources. Also, high-level semantic
adaptation is one of the use cases of the W3C Media Fragments Work-
ing Group1 (see also Annex D). Their mission is to address temporal
and spatial media fragments in the Web using Uniform Resource Iden-
tifiers (URIs). It is important to remark that nearly every video coding
format supports semantic adaptations along the temporal axis; the only
condition is the occurrence of random access points in a regular way.
This is in contrast to structural adaptations, which are heavily dependent
on the abilities of the coding formats. Hence, thanks to their format-
independent nature, format-independent content adaptation techniques
are perfectly suited to perform semantic adaptations (combined with
structural adaptations) for a wide range of coding formats. Furthermore,
the adaptation technique presented in Chapter 4 (i.e., model-driven con-
tent adaptation) provides a seamless integration between content meta-
data and semantic adaptation operations. With the standardization of
media fragment identifiers, semantic adaptation could result in a break-
through for format-independent content adaptation.

To conclude, we hope that this dissertation convinced the reader that within
the wide range of multimedia adaptation techniques, there is room for format-
independent content adaptation. Furthermore, this dissertation can serve as a
basis for future work towards the deployment of format-independent adapta-
tion techniques in real-world multimedia applications.

1http://www.w3.org/2008/WebVideo/Fragments/

http://www.w3.org/2008/WebVideo/Fragments/

Appendix A

Syntax and BSD fragments

A.1 Introduction

In this annex, a number of syntax and BSD fragments for BSDL, gBS Schema,
and XFlavor are listed. Furthermore, an XSLT and STX stylesheet are shown
for the H.264/AVC coding format illustrating the removal of NAL units con-
taining non-reference B slices (i.e., having nal ref idc equal to 0 and slice type
equal to 1 or 6). Note that these stylesheets need to be applied to BSDs gener-
ated using BSDL’s BintoBSD parser with a BS Schema containing details up
to and including the slice header.

A.2 MPEG-B BSDL

Listing A.1: Excerpt from a BS Schema for H.264/AVC.

1 <xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"
xmlns:bs2="urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS"

5 xmlns:jvt="h264_avc" targetNamespace="h264_avc"
elementFormDefault="qualified"
bs2:rootElement="jvt:bitstream">

<xsd:element name="bitstream">
10 <xsd:complexType>

<xsd:sequence>
<xsd:element ref="jvt:byte_stream_nal_unit"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="bs1:bitstreamURI"/>

176 Syntax and BSD fragments

15 </xsd:complexType>
</xsd:element>

<xsd:element name="byte_stream_nal_unit">
<xsd:complexType>

20 <xsd:sequence>
<xsd:element name="zero_byte" type="

xsd:unsignedByte" fixed="0" minOccurs="0"
maxOccurs="unbounded" bs2:ifNext="000000"/>

<xsd:element name="startcode" type="
jvt:StartCodeType" fixed="000001" bs2:ifNext="
000001"/>

<xsd:element ref="jvt:nal_unit" minOccurs="0"/>
</xsd:sequence>

25 </xsd:complexType>
</xsd:element>

<xsd:element name="nal_unit">
<xsd:complexType>

30 <xsd:sequence>
<xsd:element name="forbidden_zero_bit" type="jvt:b1

" fixed="0"/>
<xsd:element name="nal_ref_idc" type="jvt:b2"/>
<xsd:element name="nal_unit_type" type="jvt:b5"/>
<xsd:element name="raw_byte_sequence_payload"

minOccurs="0" type="jvt:ByteRangeType"/>
35 </xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Listing A.2: Excerpt from a BSD for H.264/AVC, compliant with the BS Schema
shown in Listing A.1.

1 <bitstream
xmlns="h264_avc"
bs1:bitstreamURI="city_300_4cif.264"
xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"

5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="h264_avc H264_AVC.xsd"
xmlns:jvt="h264_avc">

<byte_stream_nal_unit>
10 <zero_byte>00</zero_byte>

<startcode>000001</startcode>
<nal_unit>
<forbidden_zero_bit>0</forbidden_zero_bit>

A.3. MPEG-21 gBS Schema 177

<nal_ref_idc>3</nal_ref_idc>
15 <nal_unit_type>7</nal_unit_type>

<raw_byte_sequence_payload>5 86</
raw_byte_sequence_payload>

</nal_unit>
</byte_stream_nal_unit>

20 <!-- ... -->

</bitstream>

A.3 MPEG-21 gBS Schema

Listing A.3: Excerpt from a gBSD for H.264/AVC, compliant with gBS Schema.

1 <dia:DIA xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS" xmlns="
urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS">

<dia:DescriptionMetadata>
<dia:ClassificationSchemeAlias alias="jvt" href="

h264_avc"/>
</dia:DescriptionMetadata>

5 <dia:Description
xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
bs1:bitstreamURI="city_300_4cif.264"
xsi:type="gBSDType"

10 addressUnit="bit"
addressMode="absolute">
<gBSDUnit syntacticalLabel=":jvt:bitstream" start="0">
<gBSDUnit syntacticalLabel=":jvt:byte_stream_nal_unit

" start="0">
<gBSDUnit syntacticalLabel=":jvt:zero_byte" start="

0" length="8"/>
15 <gBSDUnit syntacticalLabel=":jvt:startcode" start="

8" length="24"/>
<gBSDUnit syntacticalLabel=":jvt:nal_unit" start="

32">
<Parameter name=":jvt:forbidden_zero_bit" start="

32" length="1">
<Value xsi:type="b1">0</Value>

</Parameter>
20 <Parameter name=":jvt:nal_ref_idc" start="33"

length="2">
<Value xsi:type="b2">3</Value>

</Parameter>

178 Syntax and BSD fragments

<Parameter name=":jvt:nal_unit_type" start="35"
length="5">

<Value xsi:type="b5">7</Value>
25 </Parameter>

<gBSDUnit syntacticalLabel="
:jvt:raw_byte_sequence_payload" start="40"
length="688"/>

</gBSDUnit>
</gBSDUnit>

</gBSDUnit>
30 <!-- ... -->

</dia:Description>
</dia:DIA>

A.4 XFlavor

Listing A.4: Excerpt from an XFlavor code for H.264/AVC.

1 class bitstream {
while(nextbits(32)==0){
Byte_stream_nal_unit byte_stream_nal_unit;

}
5 }

class Byte_stream_nal_unit {
while (nextbits(24) != 0x000001)
bit(8) zero_byte = 0;

10 bit(24) startcode = 0x000001;
Nal_unit nal_unit;

}

class Nal_unit {
15 bit(1) forbidden_zero_bit = 0;

bit(2) nal_ref_idc;
bit(5) nal_unit_type;
Raw_byte_sequence_payload raw_byte_sequence_payload;

}
20

class Raw_byte_sequence_payload {
// ...

}

A.5. Stylesheets 179

Listing A.5: Excerpt from a BSD for H.264/AVC, compliant with the XFlavor code
shown in Listing A.4.

1 <bitstream
xmlns="http://www.ee.columbia.edu/flavor"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<byte_stream_nal_unit>

5 <zero_byte bitLen="8">0</zero_byte>
<startcode bitLen="24">1</startcode>
<nal_unit>
<forbidden_zero_bit bitLen="1">0</forbidden_zero_bit>
<nal_ref_idc bitLen="2">3</nal_ref_idc>

10 <nal_unit_type bitLen="5">7</nal_unit_type>
<raw_byte_sequence_payload>
<!-- ... -->

</raw_byte_sequence_payload>
</nal_unit>

15 </byte_stream_nal_unit>
<!-- ... -->

</bitstream>

A.5 Stylesheets

Listing A.6: Example of an XSLT stylesheet for H.264/AVC removing non-reference
B slices.

1 <xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="h264_avc"

5 xmlns:jvt="h264_avc">

<xsl:output method="xml" indent="yes"/>

<!-- drop non-referenced B slices -->
10 <xsl:template match="jvt:byte_stream_nal_unit[

jvt:nal_unit/jvt:nal_ref_idc = 0]">
<xsl:variable name="slice_type" select="jvt:nal_unit/

jvt:raw_byte_sequence_payload/jvt:slice/
jvt:slice_header/jvt:slice_type"/>

<xsl:if test="$slice_type != 1 and $slice_type != 6">
<xsl:copy>
<xsl:apply-templates/>

15 </xsl:copy>
</xsl:if>
<!-- else: drop the NALU -->

180 Syntax and BSD fragments

</xsl:template>

20 <!-- default: pass-through -->
<xsl:template match="@*|node()">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
25 </xsl:template>

</xsl:stylesheet>

Listing A.7: Example of a STX stylesheet for H.264/AVC removing non-reference B
slices.

1 <stx:transform
xmlns:stx="http://stx.sourceforge.net/2002/ns"
version="1.0"
pass-through="all"

5 strip-space="no"
stxpath-default-namespace="h264_avc"
output-method="xml">

<stx:variable name="slice_type"/>
10 <stx:variable name="isReference"/>

<!-- drop non-reference B slices -->
<stx:template match="byte_stream_nal_unit">
<stx:buffer name="nalu_buffer">

15 <stx:process-self group="nalu_group"/>
</stx:buffer>
<stx:if test="$isReference != 0 or ($slice_type != 1

and $slice_type != 6)">
<stx:process-buffer name="nalu_buffer" group="empty"/

>
</stx:if>

20 <!-- else: drop the NALU -->
</stx:template>

<stx:group name="nalu_group">
<stx:template match="nal_ref_idc">

25 <stx:assign name="isReference" select="."/>
<stx:process-self group="nalu_group"/>

</stx:template>
<stx:template match="slice_type">
<stx:assign name="slice_type" select="."/>

30 <stx:process-self group="nalu_group"/>
</stx:template>

</stx:group>

A.5. Stylesheets 181

<stx:group name="empty"/>
35 </stx:transform>

182 gBFlavor fragments

Appendix B

Automatic generation of
gBSDs using BSDL and

gBFlavor

B.1 BSD-to-gBSD Conversion for SVC Bitstreams

Listing B.1: Excerpt of a BS Schema for SVC.

1 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Bit_stream">
<xsd:complexType>
<xsd:sequence>

5 <xsd:element name="byte_stream_nal_unit" maxOccurs=
"unbounded">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="zero_byte" type="

xsd:unsignedByte" fixed="0" minOccurs="0"
bs2:ifNext="000000"/>

<xsd:element name="startcode" fixed="000001">
10 <xsd:simpleType>

<xsd:restriction base="xsd:hexBinary">
<xsd:length value="3"/>

</xsd:restriction>
</xsd:simpleType>

15 </xsd:element>
<xsd:element ref="svc:nal_unit" minOccurs="0"

/>
</xsd:sequence>

</xsd:complexType>

184 gBFlavor fragments

</xsd:element>
20 </xsd:sequence>

<xsd:attribute ref="bs1:bitstreamURI"/>
</xsd:complexType>

</xsd:element>
<xsd:element name="nal_unit">

25 <xsd:complexType>
<xsd:sequence>
<xsd:element name="forbidden_zero_bit" type="svc:b1

" fixed="0"/>
<xsd:element name="nal_ref_idc" type="svc:b2"/>
<xsd:element name="nal_unit_type" type="svc:b5"/>

30 <xsd:element ref="svc:raw_byte_sequence_payload"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<!-- ... -->

35 </xsd:schema>

Listing B.2: Excerpt of a STX stylesheet for transforming BSDs into gBSDs (with
SVC as underlying coding format).

1 <stx:transform pass-through="none" strip-space="no" output-
method="xml">

<stx:variable name="prevEnd" select="0"/>
<stx:variable name="currentSize" select="0"/>
<stx:template match="Bit_stream">

5 <stx:element name="gBSDUnit">
<stx:attribute name="syntacticalLabel">

:svc:Bit_stream</stx:attribute>
<stx:attribute name="start">0</stx:attribute>
<stx:process-children group="byte_stream_nal_unit"/>

</stx:element>
10 </stx:template>

<stx:group name="byte_stream_nal_unit">
<stx:template match="zero_byte">
<stx:assign name="currentSize" select="$currentSize +

8"/>
</stx:template>

15 <stx:template match="startcode">
<stx:assign name="currentSize" select="$currentSize +

24"/>
</stx:template>
<stx:template match="nal_unit_type">
<stx:assign name="currentSize" select="$currentSize +

8"/>
20 </stx:template>

B.2. gBFlavor Code for SVC 185

<stx:template match="
slice_layer_without_partitioning_rbsp">

<stx:process-children group="slice"/>
<stx:assign name="prevEnd" select="$prevEnd + $

currentSize"/>
<stx:assign name="currentSize" select="0"/>

25 </stx:template>
<!-- ... -->

</stx:group>
<stx:group name="slice">
<stx:template match="slice_payload">

30 <stx:variable name="pstart" select="substring-before
(., ' ')"/>

<stx:variable name="plength" select="substring-after
(., ' ') "/>

<stx:variable name="currentSize" select="$currentSize
+ ($plength*8)"/>

<stx:element name="gBSDUnit">
<stx:attribute name="syntacticalLabel">:svc:bsnu</

stx:attribute>
35 <stx:attribute name="start"><stx:value-of select="$

prevEnd"/></stx:attribute>
<stx:attribute name="length"><stx:value-of select="

$currentSize"/></stx:attribute>
</stx:element>

</stx:template>
</stx:group>

40 <!-- ... -->
</stx:transform>

B.2 gBFlavor Code for SVC

Listing B.3: Excerpt of a gBFlavor code for SVC [143].

1 /**************************
* High-level syntax code *
**************************/

5 %targetns{jsvm8%targetns}
%ns{jsvm%ns}
%root{BitStream%root}
%emulationBytes{(000003, 0000);%emulationBytes}
%emulateBytes{(000001, 00000301);%emulateBytes}

10
%context{seq_parameter_set_id%context}

186 gBFlavor fragments

class SeqParameterSet{
//...
ue() seq_parameter_set_id;

15 //...
}

class SliceHeaderInScalableExtension{
ue() first_mb_in_slice;

20 ue() slice_type;
ue() pic_parameter_set_id;
bit(getcontext("Seq_parameter_set_rbsp",
getcontext("Pic_parameter_set_rbsp",

pic_parameter_set_id, $seq_parameter_set_id),
$log2_max_frame_num_minus4) + 4) frame_num;

25 align();
varByteRange() slice_payload = 0x000001;

}

%context{0%context}
30 class SubSeqInfo{

ue() sub_seq_layer_num;
ue() sub_seq_id;
//...

}
35

class RawByteSequencePayload (int nal_unit_type){
switch(nal_unit_type){
case 1:
case 5:

40 SliceLayer sliceLayer;
break;

case 6:
Sei sei;
break;

45 case 7:
SeqParameterSet seqParameterSet;
break;

case 8:
PicParameterSet picParameterSet;

50 break;
case 20 .. 21:
SliceLayerInScalableExtension

sliceLayerInScalableExtension;
break;

//...
55 }

}

class NalUnitHeaderSvcExtension{

B.2. gBFlavor Code for SVC 187

//...
60 bit(3) temporal_level;

bit(3) dependency_id;
bit(2) quality_level;
//...

}
65

class NalUnit{
bit(1) forbidden_zero_bit = 0;
bit(2) nal_ref_idc;
bit(5) nal_unit_type;

70 if(nal_unit_type == 20 || nal_unit_type == 21)
NalUnitHeaderSvcExtension nalUnitHeaderSvcExtension;

RawByteSequencePayload rawByteSequencePayload(
nal_unit_type);

}

75 class ByteStreamNalUnit {
//...
fixedByteRange(3) startcode = 0x000001;
NalUnit nalUnit;
//...

80 }

class BitStream{
while(1)
ByteStreamNalUnit byteStreamNalUnit;

85 }

/*****************************
* Application-specific code *

90 *****************************/

gBSDApp TemporalSpatialQuality_Scalability {

//assign markers to slice NALUs occurring in the base
layer

95 class NalUnit {
int temp_level;
if (nal_unit_type == 1 || nal_unit_type == 5){
int temp_level = getcontext("SubSeqInfo", 0,

sub_seq_layer_num);
setmarker("ByteStreamNalUnit", "", "TL=" + temp_level

+ ":SL=0:QL=0");
100 }

}

188 gBFlavor fragments

//assign markers to slice NALUs occurring in the
enhancement layers

class NalUnitHeaderSvcExtension {
105 int temp_level, spat_level, qual_level;

//interpret temporal_level, dependency_id, and
quality_level to

//fill in the variables ...
setmarker("ByteStreamNalUnit", "", "TL=" + temp_level +

":SL=" + spat_level + ":QL=" + qual_level);
}

110 }

Listing B.4: Excerpt of a gBSD, generated by gBFlavor and using the high-level
syntax code given in Listing B.3 (no application is specified).

1 <gBSDUnit syntacticalLabel=":jsvm:bitStream" start="0">
<!-- ... -->
<gBSDUnit syntacticalLabel=":jsvm:byteStreamNalUnit"

start="53776">
<!-- ... -->

5 <gBSDUnit syntacticalLabel=":jsvm:startcode" start="
53784" length="24"/>

<gBSDUnit syntacticalLabel=":jsvm:nalUnit" start="53808
">

<Parameter name=":jsvm:forbidden_zero_bit" start="
53808" length="1">

<Value xsi:type="b1">0</Value>
</Parameter>

10 <Parameter name=":jsvm:nal_ref_idc" start="53809"
length="2">

<Value xsi:type="b2">3</Value>
</Parameter>
<Parameter name=":jsvm:nal_unit_type" start="53811"

length="5">
<Value xsi:type="b5">21</Value>

15 </Parameter>
<gBSDUnit syntacticalLabel=":jsvm:

nalUnitHeaderSvcExtension" start="53816">
<!-- ... -->
<Parameter name=":jsvm:temporal_level" start="53824

" length="3">
<Value xsi:type="b3">0</Value>

20 </Parameter>
<Parameter name=":jsvm:dependency_id" start="53827"

length="3">
<Value xsi:type="b3">0</Value>

</Parameter>

B.2. gBFlavor Code for SVC 189

<Parameter name=":jsvm:quality_level" start="53830"
length="2">

25 <Value xsi:type="b2">1</Value>
</Parameter>
<!-- ... -->

</gBSDUnit>
<gBSDUnit syntacticalLabel=":jsvm:

rawByteSequencePayload" start="53840">
30 <gBSDUnit syntacticalLabel=":jsvm:

sliceLayerInScalableExtension" start="53840">
<gBSDUnit syntacticalLabel=":jsvm:

sliceHeaderInScalableExtension" start="53840">
<Parameter name=":jsvm:first_mb_in_slice" start

="53840" length="1">
<Value xsi:type="bs1:expGolomb">1</Value>

</Parameter>
35 <Parameter name=":jsvm:slice_type" start="53841

">
<Value xsi:type="bs1:expGolomb">4</Value>

</Parameter>
<Parameter name=":jsvm:pic_parameter_set_id"

start="53846">
<Value xsi:type="bs1:expGolomb">4</Value>

40 </Parameter>
<Parameter name=":jsvm:frame_num" start="53851"

length="9">
<Value xsi:type="b9">0</Value>

</Parameter>
<!-- ... -->

45 <Parameter name=":jsvm:stuffing" start="53897">
<Value xsi:type="bs1:align8">0</Value>

</Parameter>
<gBSDUnit syntacticalLabel=":jsvm:slice_payload

" start="53904" length="58584"/>
</gBSDUnit>

50 </gBSDUnit>
</gBSDUnit>

</gBSDUnit>
</gBSDUnit>
<!-- ... -->

55 </gBSDUnit>

190 Multimedia Model and RDF Instances

Appendix C

Multimedia model and RDF
instances

C.1 Model for Media Bitstreams

In Listing C.1, the full model for media bitstreams is provided, implemented
using OWL. The result is an OWL DL ontology counting respectively 13, 9,
and 15 classes, object properties, and data properties.

Listing C.1: The model for media bitstreams implemented using OWL.

1 <!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">

]>
5

<rdf:RDF xmlns="http://multimedialab.elis.ugent.be/
ontologies/multimedia_model.owl#"

xml:base="http://multimedialab.elis.ugent.be/ontologies/
multimedia_model.owl"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

10 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
<owl:Ontology rdf:about=""/>

<!--//
15 // Object Properties

///-->
<owl:ObjectProperty rdf:about="#boundTo">
<rdfs:domain rdf:resource="#Feature"/>
<rdfs:range rdf:resource="#ScalabilityAxis"/>

192 Multimedia Model and RDF Instances

20 </owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#constrains">
<rdfs:range rdf:resource="#ScalabilityAxis"/>
<rdfs:domain rdf:resource="#ScalabilityAxisInfo"/>

</owl:ObjectProperty>
25 <owl:ObjectProperty rdf:about="#hasBitstreamData">

<rdfs:range rdf:resource="#RandomAccessUnit"/>
<rdfs:domain rdf:resource="#TemporalSegment"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasFeature">

30 <rdfs:range rdf:resource="#Feature"/>
<rdfs:domain rdf:resource="#MediaBitstream"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasFeatureValue">
<rdfs:domain rdf:resource="#Feature"/>

35 <rdfs:range rdf:resource="#FeatureValue"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasScalabilityInfo">
<rdfs:range rdf:resource="#ScalabilityAxisInfo"/>
<rdfs:domain>

40 <owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#DataBlock"/>
<rdf:Description rdf:about="#FeatureValue"/>

</owl:unionOf>
45 </owl:Class>

</rdfs:domain>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasStructure">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>

50 <rdfs:range>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#DataBlock"/>
<rdf:Description rdf:about="#RandomAccessUnit"/>

55 </owl:unionOf>
</owl:Class>

</rdfs:range>
<rdfs:domain>
<owl:Class>

60 <owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#DataBlock"/>
<rdf:Description rdf:about="#MediaBitstream"/>
<rdf:Description rdf:about="#RandomAccessUnit"/>

</owl:unionOf>
65 </owl:Class>

</rdfs:domain>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#hasTemporalSegment">

C.1. Model for Media Bitstreams 193

<rdfs:range rdf:resource="#TemporalSegment"/>
70 <rdfs:domain>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#AnnotatedMultimedia"

/>
<rdf:Description rdf:about="#TemporalSegment"/>

75 </owl:unionOf>
</owl:Class>

</rdfs:domain>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="#isRepresentedBy">

80 <rdfs:domain rdf:resource="#AnnotatedMultimedia"/>
<rdfs:range rdf:resource="#MediaBitstream"/>

</owl:ObjectProperty>

<!--//
85 // Data properties

///-->
<owl:DatatypeProperty rdf:about="#format">
<rdfs:domain rdf:resource="#MediaBitstream"/>
<rdfs:range rdf:resource="&xsd;string"/>

90 </owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#codingDescription">
<rdfs:domain rdf:resource="#MediaBitstream"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>
95 <owl:DatatypeProperty rdf:about="#description">

<rdfs:domain rdf:resource="#AnnotatedMultimedia"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#duration">

100 <rdfs:range rdf:resource="&xsd;duration"/>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#AnnotatedMultimedia"

/>
105 <rdf:Description rdf:about="#TemporalSegment"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
</owl:DatatypeProperty>

110 <owl:DatatypeProperty rdf:about="#keyword">
<rdfs:range rdf:resource="&xsd;string"/>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">

115 <rdf:Description rdf:about="#AnnotatedMultimedia"

194 Multimedia Model and RDF Instances

/>
<rdf:Description rdf:about="#TemporalSegment"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
120 </owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#level">
<rdfs:domain rdf:resource="#ScalabilityAxisInfo"/>
<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>
125 <owl:DatatypeProperty rdf:about="#nStuffingBytes">

<rdfs:domain rdf:resource="#StuffingBits"/>
<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#nlevels">

130 <rdfs:domain rdf:resource="#ScalabilityAxis"/>
<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#start">
<rdfs:range rdf:resource="&xsd;time"/>

135 <rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#AnnotatedMultimedia"

/>
<rdf:Description rdf:about="#TemporalSegment"/>

140 </owl:unionOf>
</owl:Class>

</rdfs:domain>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#syntaxElementValue">

145 <rdfs:domain rdf:resource="#SyntaxElement"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#timestamp">
<rdfs:domain rdf:resource="#DataBlock"/>
<rdfs:range rdf:resource="&xsd;long"/>

150 </owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#timestampRate">
<rdfs:domain rdf:resource="#MediaBitstream"/>
<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>
155 <owl:DatatypeProperty rdf:about="#unit">

<rdfs:domain rdf:resource="#Feature"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#value">

160 <rdfs:domain rdf:resource="#FeatureValue"/>
</owl:DatatypeProperty>

C.1. Model for Media Bitstreams 195

<!--//
// Classes

165 ///-->
<owl:Class rdf:about="#AnnotatedMultimedia">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
<owl:Class rdf:about="#DataBlock">

170 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
</owl:Class>
<owl:Class rdf:about="#Feature">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
175 <owl:Class rdf:about="#FeatureValue">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>
</owl:Class>
<owl:Class rdf:about="#MediaBitstream">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

180 </owl:Class>
<owl:Class rdf:about="#RandomAccessUnit">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
<owl:Class rdf:about="#ScalabilityAxis">

185 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
</owl:Class>
<owl:Class rdf:about="#ScalabilityAxisInfo">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
190 <owl:Class rdf:about="#StuffingBits">

<rdfs:subClassOf rdf:resource="#DataBlock"/>
</owl:Class>
<owl:Class rdf:about="#SyntaxElement">
<rdfs:subClassOf rdf:resource="#DataBlock"/>

195 </owl:Class>
<owl:Class rdf:about="#TemporalSegment">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
<owl:Class rdf:about="#TruncatablePayload">

200 <rdfs:subClassOf rdf:resource="#DataBlock"/>
</owl:Class>

</rdf:RDF>

196 Multimedia Model and RDF Instances

C.2 RDF Instances Compliant to the Multimedia
Model

An excerpt of RDF triples describing scalability information, structural meta-
data, and content metadata is shown in Listing C.2. The underlying media
bitstream is encoded with H.264/AVC. First, an instance of the class MediaBit-
stream is created (lines 9-21). It contains one Feature (i.e., frame rate) which
is linked to the temporal scalability axis (line 95). The media bitstream points
directly to two DataBlocks corresponding to the sequence and picture param-
eter set (lines 16-17). It also points to the RandomAccessUnits (lines 18-19).
A random access unit consists of a list of data blocks (lines 23-33) containing
a start and length property, together with scalability information. For exam-
ple, the data block http://www.foo.be/nieuws_avc.rdf#db_2 is
located in the temporal base layer (i.e., level 0 of the temporal scalability axis)
(line 49). The content metadata consists of an instance of AnnotatedMulti-
media containing a list of temporal segments (lines 115-121). Each temporal
segment has a start, a duration, and optionally a keyword property. Further, the
link to the structural metadata is expressed by the hasBitstreamData property
(lines 127-128).

Listing C.2: Excerpt of resulting RDF triples compliant with the model for media
bitstreams. The underlying H.264/AVC bitstream represents a news sequence.

1 <rdf:RDF
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:mmm="http://multimedialab.elis.ugent.be/ontologies/

multimedia_model.owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

5 xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>

<mmm:MultimediaBitstream rdf:about="http://www.foo.be/
nieuws_avc.rdf#mmb">

10 <mmm:bitstreamSource rdf:resource="http://www.foo.be/
nieuws.264"/>

<mmm:hasFeature rdf:resource="http://www.foo.be/
nieuws_avc.rdf#feat_frame-rate"/>

<mmm:format>video/H264</mmm:format>
<rdfs:label>nieuws_avc</rdfs:label>
<mmm:codecDescription>H.264/AVC</mmm:codecDescription>

15 <mmm:timestampRatePerSecond>25.0</
mmm:timestampRatePerSecond>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_0"/>

http://www.foo.be/nieuws_avc.rdf#db_2

C.2. RDF Instances Compliant to the Multimedia Model 197

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_1"/>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#rau_0"/>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#rau_1/>

20 <!-- ... other RAUs ... -->
</mmm:MultimediaBitstream>

<mmm:RandomAccessUnit rdf:about="http://www.foo.be/
nieuws_avc.rdf#rau_0">

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_2"/>

25 <mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_3"/>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_4"/>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_5"/>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_6"/>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_7"/>

30 <mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_8"/>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_9"/>

<mmm:hasStructure rdf:resource="http://www.foo.be/
nieuws_avc.rdf#db_10"/>

</mmm:RandomAccessUnit>

35 <mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.
rdf#db_0">

<mmm:start>3592</mmm:start>
<mmm:length>224</mmm:length>
<mmm:timestamp>0</mmm:timestamp>

</mmm:DataBlock>
40 <mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.

rdf#db_1">
<mmm:start>3816</mmm:start>
<mmm:length>64</mmm:length>
<mmm:timestamp>0</mmm:timestamp>

</mmm:DataBlock>
45

<mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.
rdf#db_2">

<mmm:start>3880</mmm:start>
<mmm:length>4800</mmm:length>
<mmm:hasScalabilityInfo rdf:resource="http://www.foo.be

198 Multimedia Model and RDF Instances

/nieuws_avc.rdf#si_temp_0"/>
50 <mmm:timestamp>0</mmm:timestamp>

</mmm:DataBlock>
<mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.

rdf#db_3">
<mmm:start>8680</mmm:start>
<mmm:length>192</mmm:length>

55 <mmm:hasScalabilityInfo rdf:resource="http://www.foo.be
/nieuws_avc.rdf#si_temp_0"/>

<mmm:timestamp>4</mmm:timestamp>
</mmm:DataBlock>
<mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.

rdf#db_4">
<mmm:start>8872</mmm:start>

60 <mmm:length>176</mmm:length>
<mmm:hasScalabilityInfo rdf:resource="http://www.foo.be

/nieuws_avc.rdf#si_temp_1"/>
<mmm:timestamp>2</mmm:timestamp>

</mmm:DataBlock>
<mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.

rdf#db_5">
65 <mmm:start>9048</mmm:start>

<mmm:length>184</mmm:length>
<mmm:hasScalabilityInfo rdf:resource="http://www.foo.be

/nieuws_avc.rdf#si_temp_2"/>
<mmm:timestamp>1</mmm:timestamp>

</mmm:DataBlock>
70 <mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.

rdf#db_6">
<mmm:start>9232</mmm:start>
<mmm:length>184</mmm:length>
<mmm:hasScalabilityInfo rdf:resource="http://www.foo.be

/nieuws_avc.rdf#si_temp_2"/>
<mmm:timestamp>3</mmm:timestamp>

75 </mmm:DataBlock>

<mmm:ScalabilityAxis rdf:about="http://www.foo.be/
nieuws_avc.rdf#sa_temp">

<rdfs:label>temporal</rdfs:label>
<mmm:nlevels>3</mmm:nlevels>

80 </mmm:ScalabilityAxis>
<mmm:ScalabilityAxisInfo rdf:about="http://www.foo.be/

nieuws_avc.rdf#si_temp_0">
<mmm:constrains rdf:resource="http://www.foo.be/

nieuws_avc.rdf#sa_temp"/>
<mmm:level>0</mmm:level>

</mmm:ScalabilityAxisInfo>
85 <mmm:ScalabilityAxisInfo rdf:about="http://www.foo.be/

nieuws_avc.rdf#si_temp_1">

C.2. RDF Instances Compliant to the Multimedia Model 199

<mmm:constrains rdf:resource="http://www.foo.be/
nieuws_avc.rdf#sa_temp"/>

<mmm:level>1</mmm:level>
</mmm:ScalabilityAxisInfo>
<mmm:ScalabilityAxisInfo rdf:about="http://www.foo.be/

nieuws_avc.rdf#si_temp_2">
90 <mmm:constrains rdf:resource="http://www.foo.be/

nieuws_avc.rdf#sa_temp"/>
<mmm:level>2</mmm:level>

</mmm:ScalabilityAxisInfo>

<mmm:Feature rdf:about="http://www.foo.be/nieuws_avc.rdf#
feat_frame-rate">

95 <mmm:boundTo rdf:resource="http://www.foo.be/nieuws_avc
.rdf#sa_temp"/>

<mmm:hasFeatureValue rdf:resource="http://www.foo.be/
nieuws_avc.rdf#featvalue_0"/>

<mmm:hasFeatureValue rdf:resource="http://www.foo.be/
nieuws_avc.rdf#featvalue_1"/>

<mmm:hasFeatureValue rdf:resource="http://www.foo.be/
nieuws_avc.rdf#featvalue_2"/>

<rdfs:label>frame rate</rdfs:label>
100 <mmm:unit>fps</mmm:unit>

</mmm:Feature>
<mmm:FeatureValue rdf:about="http://www.foo.be/nieuws_avc

.rdf#featvalue_0">
<mmm:hasScalabilityInfo rdf:resource="http://www.foo.be

/nieuws_avc.rdf#si_temp_2"/>
<mmm:value>25.0</mmm:value>

105 </mmm:FeatureValue>
<mmm:FeatureValue rdf:about="http://www.foo.be/nieuws_avc

.rdf#featvalue_1">
<mmm:hasScalabilityInfo rdf:resource="http://www.foo.be

/nieuws_avc.rdf#si_temp_1"/>
<mmm:value>12.5</mmm:value>

</mmm:FeatureValue>
110 <mmm:FeatureValue rdf:about="http://www.foo.be/nieuws_avc

.rdf#featvalue_2">
<mmm:hasScalabilityInfo rdf:resource="http://www.foo.be

/nieuws_avc.rdf#si_temp_0"/>
<mmm:value>6.25</mmm:value>

</mmm:FeatureValue>

115 <mmm:AnnotatedMultimedia rdf:about="http://www.foo.be/
nieuws_avc.rdf#nieuws_annotation">

<mmm:description>News annotation</mmm:description>
<mmm:isRepresentedBy rdf:resource="http://www.foo.be/

nieuws_avc.rdf#mmb"/>
<mmm:hasTemporalSegment rdf:resource="http://www.foo.be

200 Multimedia Model and RDF Instances

/nieuws_avc.rdf#ts_0"/>
<mmm:hasTemporalSegment rdf:resource="http://www.foo.be

/nieuws_avc.rdf#ts_1"/>
120 <!-- ... other temporal segments ... -->

</mmm:AnnotatedMultimedia>

<mmm:TemporalSegment rdf:about="http://www.foo.be/
nieuws_avc.rdf#ts_0">

<mmm:segmentStart>T00:00:00:00F25</mmm:segmentStart>
125 <mmm:segmentDuration>PT10S0N25F</mmm:segmentDuration>

<mmm:keyword>intro</mmm:keyword>
<mmm:hasBitstreamData rdf:resource="http://www.foo.be/

nieuws.264#rau_0"/>
<mmm:hasBitstreamData rdf:resource="http://www.foo.be/

nieuws.264#rau_1"/>
<!-- ... other RAUs -->

130 </mmm:TemporalSegment>
</rdf:RDF>

Listing C.3: Excerpt of resulting RDF triples after execution of the SPARQL query
listed in Listing 4.1), applied to the triples listed in Listing C.2.

1 <rdf:RDF
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:mmm="http://multimedialab.elis.ugent.be/ontologies/

multimedia_model.owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

5 xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>

<mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.
rdf#db_0">

10 <mmm:start>3592</mmm:start>
<mmm:length>224</mmm:length>
<mmm:timestamp>0</mmm:timestamp>

</mmm:DataBlock>
<mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.

rdf#db_1">
15 <mmm:start>3816</mmm:start>

<mmm:length>64</mmm:length>
<mmm:timestamp>0</mmm:timestamp>

</mmm:DataBlock>

20 <mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.
rdf#db_2">

<mmm:start>3880</mmm:start>
<mmm:length>4800</mmm:length>

C.2. RDF Instances Compliant to the Multimedia Model 201

<mmm:timestamp>0</mmm:timestamp>
</mmm:DataBlock>

25 <mmm:DataBlock rdf:about="http://www.foo.be/nieuws_avc.
rdf#db_3">

<mmm:start>8680</mmm:start>
<mmm:length>192</mmm:length>
<mmm:timestamp>4</mmm:timestamp>

</mmm:DataBlock>
30

</rdf:RDF>

202 W3C Media Fragments Working Group

Appendix D

W3C Media Fragments
Working Group

D.1 Introduction

The W3C Media Fragments Working Group1 (MFWG) is part of W3C’s Video
in the Web activity2, which originated from the workshop on Video in the
Web3. The goal of the Video in the Web activity is to make video a “first class
citizen” on the Web. In this context, Video in the Web does not only include
video, but also audio and still images. Because of the explosive growth of me-
dia on the Web, challenges such as content discovery, searching, indexing, and
accessibility are appearing. Enabling users (from individuals to large organiza-
tions) to put media on the Web requires the development of a solid architectural
foundation that enables people to create, navigate, search, link, consume, and
distribute media resources. This way, media resources are effectively part of
the Web instead of an extension that does not take full advantage of the Web
architecture.

The mission of the MFWG, in which the author is actively participating,
is to address temporal and spatial media fragments on the Web using Uniform
Resource Identifiers (URIs, [11]). Having global identifiers for arbitrary media
fragments would allow substantial benefits, including linking, bookmarking,
caching, and indexing. For example, one could be able to point to the 20th
second of a news video sequence, bringing you directly to a specific news item
within the news sequence. The main tasks of the MFWG can be summarized
as follows:

1http://www.w3.org/2008/WebVideo/Fragments/
2http://www.w3.org/2008/WebVideo/
3http://www.w3.org/2007/08/video/

http://www.w3.org/2008/WebVideo/Fragments/
http://www.w3.org/2008/WebVideo/
http://www.w3.org/2007/08/video/

204 W3C Media Fragments Working Group

• to develop a mechanism to uniquely identify temporal and/or spatial
fragments within a media resource that is independent of underlying
coding formats;

• to investigate the delivery of the requested media resource to allow full
or partial media retrieval using at least the HTTP protocol;

• to provide a partial mapping between the developed URI syntax and
existing ways of defining temporal and/or spatial fragments.

In this Annex, we elaborate on how format-independent adaptation logic
could be used within the W3C MFWG. More specifically, we discuss the im-
plementation of the media resource adaptation use case using model-driven
content adaptation.

D.2 Media Resource Adaptation Use Case

One of the use cases identified by the MFWG is media resource adapta-
tion [123]. In this use case, a client attempts to retrieve a media fragment
using a URI-based syntax. An example of such a URI could be http:
//foo.com/media.mp4#t=0,10, which identifies the first ten seconds
of the media resource http://foo.com/media.mp4. Of course, the
client often has the desire not to retrieve the full resource, but only the identi-
fied subpart. In our example, only the first ten seconds of the requested media
resource should be delivered to the client.

To save bandwidth and processing power at client-side, the extraction of
fragments from media resources preferrably occurs at the server (although this
is not mandatory). Note that in Chapter 2, we have defined such media adap-
tations as semantic adaptations. The use case describes three scenarios, each
discussing the media fragment delivery along a different axis:

• temporal: select a specific sport fragment from a news video;

• spatial: select a region corresponding to one particular person from a
family picture;

• track: select the audio track from a multimedia resource.

Starting from various use cases, a number of requirements were identified
that need to be implemented by the MFWG [123]. A subset of these require-
ments will provide more insight in the kind of adaptation methods that can be
used to implement the media resource adaptation use case:

http://foo.com/media.mp4#t=0,10
http://foo.com/media.mp4#t=0,10
http://foo.com/media.mp4

D.3. Using Model-driven Content Adaptation 205

• Format-independent: the media fragment URI scheme has to be inde-
pendent of any coding and delivery format;

• Unique resource: media fragments need to be specified as a secondary
resource for the complete primary media resource;

• Valid resource: media fragments need to be valid media resources by
themselves (and can thus be played back by existing media players);

• Avoid recompression: media fragments need to be delivered as actual
subresources of the media resource, implying that it is preferrable to
not decode and recompress media resources in order to create media
fragments.

From these four requirements, we can conclude that media fragments can
be obtained by using adaptation methods only performing the removal of high-
level bitstream structures and the modification of high-level syntax elements.
As a consequence, the compressed media bitstreams need to be encoded in
such a way that it is possible to perform media fragment extraction without
the need of a complete or partial recode process. In Chapter 2, Section 2.3.2,
we discussed how semantic adaptations along the temporal axis could be es-
tablished. To support the extraction of spatial fragments, (interactive) Region-
Of-Interest coding should be supported by the coding format. Examples of
such coding formats are SVC and JPEG2000, as discussed in Section 2.3.1.
Extraction of media tracks is dependent on the container format (e.g., MP4 or
Ogg) and is usually not a problem since container formats do not introduce
compression algorithms, i.e., they are mainly a wrapper around compressed
media bitstreams.

D.3 Using Model-driven Content Adaptation

As discussed in Chapter 2, description-driven content adaptation is able to
perform the removal of high-level bitstream structures and the modification of
high-level syntax elements. Hence, this technique can be used to implement
the media resource adaptation use case. More specifically, in this annex, we
use model-driven content adaptation (introduced in Chapter 4).

In Figure D.1, the structural metadata of a multimedia resource is depicted.
These structural metadata are compliant to the extended model for media bit-
streams (discussed in Chapter 5). The multimedia resource is described by an
AnnotatedMultimedia instance, which contains two MediaBitstream instances
(i.e., a video and an audio track). The video and audio tracks are characterized

206 W3C Media Fragments Working Group

DB_48

DB_49

DB_50

DB_51

R
A

U
... ...

Data blocks selected based on the media fragment
http://foo.com/media.mp4#track=’video1'&t=2,10

DB_x = data block instance with timestamp equal to x

DB_90

DB_91

DB_92

DB_93

DB_94

R
A

U

DB_95

...

DB_96

...

2 s

...

MediaBitstream
name = audio1

timestamp rate = 46.875 tps

MediaBitstream
name = video1

timestamp rate = 25.0 tps

AnnotatedMultimedia

=

tps = timestamps per second

Figure D.1: Extracting temporal and track fragments using model-driven content
adaptation.

by a timestamp rate of 25.0 and 46.875 timestamps per second, respectively.
Since these two tracks are synchronized, their random access units are aligned,
as discussed in Section 5.4.

Suppose we only want to select the video track from the media resource
described in Figure D.1, and more specifically only a subpart of the video
track starting from 2 s and ending at 10 s. A possible syntax4 for such a me-
dia fragment URI could look as follows: http://foo.com/media.mp4#
track=’video1’&t=2,10. The extraction of this media fragment can be
established using model-driven content adaptation, as illustrated in Figure D.1.

4At the time of writing this dissertation, the syntax was not specified yet by the MFWG.

http://foo.com/media.mp4#track='video1'&t=2,10
http://foo.com/media.mp4#track='video1'&t=2,10

D.3. Using Model-driven Content Adaptation 207

First, the track having as name ‘video1’ is selected. In other words, only the
MediaBitstream instance corresponding to the video track is considered for
adaptation and delivery using the model-driven content adaptation tool chain
(see Figure 4.14). Next, data blocks are selected based on the temporal pa-
rameters (i.e., from 2 s to 10 s). As shown in Figure D.1, DB 50 corresponds
to 2 s in the video stream. However, to garantuee that the adapted video bit-
stream can be decoded in a correct way, cuts in the bitstream should only be
performed at random access points (as discussed in Section 2.3.2). Hence, data
blocks are selected starting from DB 48. Finally, the selected data blocks are
packed in an MP4 container (as discussed in Section 5.3.1.2) and delivered to
the client.

208 W3C Media Fragments Working Group

References

[1] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang. Video Transcoding: an Overview
of Various Techniques and Research Issues. IEEE Transactions on Multimedia,
7(5):793–804, 2005.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 1985.

[3] M. Amielh and S. Devillers. Multimedia Content Adaptation with XML. In
Proceedings of 8th International Conference on Multimedia Modeling, pages
127–145, Amsterdam, The Netherlands, November 2001.

[4] M. Amielh and S. Devillers. Bitstream Syntax Description Language: Appli-
cation of XML-Schema to Multimedia Content Adaptation. In Proceedings
of 11th International World Wide Web Conference, Honolulu, Hawaii, May
2002. Available on http://wwwconf.ecs.soton.ac.uk/archive/
00000185/01/index.html.

[5] M. C. Angelides and A. A. Sofokleous. Semantic content ranking through
collaborative and content clustering. Neurocomputing, 71(13-15):2587–2595,
August 2008.

[6] R. Arndt, R. Troncy, S. Staab, L. Hardman, and M. Vacura. COMM: Design-
ing a Well-Founded Multimedia Ontology for the Web. In 6th International
Semantic Web Conference (ISWC 2007), Busan, Korea, November 2007.

[7] O. Avaro, P. A. Chou, A. Eleftheriadis, C. Herpel, C. Reader, and J. Signès.
The MPEG-4 Systems and Description Languages: a Way Ahead in Audio
Visual Information Representation. Signal Processing: Image Communication,
9(4):385–431, 1997.

[8] P. Baccichet, T. Schierl, T. Wiegand, and B. Girod. Low-delay peer-to-peer
streaming using scalable video coding. In Packet Video 2007, pages 173–181,
Lausanne, Switzerland, November 2007.

[9] J. Baltazar, P. Pinho, and F. Pereira. Visual Attention Driven Image to Video
Transmoding. In Proceedings of 25th Picture Coding Symposium, pages 6 on
CD–ROM, Beijing, China, April 2006.

http://wwwconf.ecs.soton.ac.uk/archive/00000185/01/index.html
http://wwwconf.ecs.soton.ac.uk/archive/00000185/01/index.html

210 REFERENCES

[10] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josi-
fovski. Streaming XPath processing with forward and backward axes. In
Proceedings of the 19th International Conference on Data Engineering, pages
455–467, Bangalore, India, 2003.

[11] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396: “Uniform Resource
Identifier (URI): Generic Syntax,” Available on http://www.ietf.org/
rfc/rfc3986.txt.

[12] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, pages 34–43, May 2001.

[13] P. V. Biron and A. Malhotra, editors. XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation. World Wide Web Consortium, October 2004.
Available on http://www.w3.org/TR/xmlschema-2/.

[14] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau, editors.
Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C Recommen-
dation. World Wide Web Consortium, August 2006. Available on http:
//www.w3.org/TR/2006/REC-xml-20060816/.

[15] D. Brickley and R. Guha, editors. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation. World Wide Web Consortium, February
2004. Available on http://www.w3.org/TR/rdf-schema/.

[16] D. Bulterman, G. Grassel, J. Jansen, A. Koivisto, N. Layaı̈da, T. Michel,
S. Mullender, and D. Zucker, editors. Synchronized Multimedia Integration
Language (SMIL 2.1). W3C Recommendation. World Wide Web Consortium,
December 2005. Available on http://www.w3.org/TR/SMIL2/.

[17] I. Burnett, F. Pereira, R. Van de Walle, and R. Koenen, editors. The MPEG-21
book. John Wiley & Sons, March 2006.

[18] S.-F. Chang and A. Vetro. Video Adaptation: Concepts, Technology, and Open
Issues. Proceedings of the IEEE, 93(1):145–158, January 2005.

[19] C. Christopoulos, A. Skodras, and T. Ebrahimi. The JPEG2000 Still Image
Coding System: an Overview. IEEE Transactions on Consumer Electronics,
46(4):1103–1127, November 2000.

[20] P. Cimprich. Streaming Transformations for XML, July 2004.
Available on http://stx.sourceforge.net/documents/
spec-stx-20040701.html.

[21] J. Clark, editor. XSL Transformations (XSLT) Version 1.0. W3C Recom-
mendation. World Wide Web Consortium, November 1999. Available on
http://www.w3.org/TR/xslt.

[22] J. Clark and S. DeRose, editors. XML Path Language (XPath) 1.0. W3C
Recommendation. World Wide Web Consortium, 1999. Available on http:
//www.w3.org/TR/xpath.html.

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/SMIL2/
http://stx.sourceforge.net/documents/spec-stx-20040701.html
http://stx.sourceforge.net/documents/spec-stx-20040701.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath.html

REFERENCES 211

[23] K. Clark, L. Feigenbaum, and E. Torres, editors. SPARQL Protocol for RDF.
W3C Recommendation. World Wide Web Consortium, January 2008. Avail-
able on http://www.w3.org/TR/rdf-sparql-protocol/.

[24] D. Connolly, editor. Gleaning Resource Descriptions from Dialects of Lan-
guages (GRDDL). W3C Recommendation. World Wide Web Consortium,
September 2007. Available on http://www.w3.org/TR/grddl/.

[25] S. De Bruyne, D. De Schrijver, W. De Neve, D. Van Deursen, and R. Van de
Walle. Enhanced Shot-Based Video Adaptation using MPEG-21 generic Bit-
stream Syntax Schema. In Proceedings of the 1st IEEE Symposium on Com-
putational Intelligence in Image and Signal Processing, pages 380–385, Hon-
olulu, United States, April 2007.

[26] S. De Bruyne, D. Van Deursen, J. De Cock, W. De Neve, P. Lambert, and
R. Van de Walle. A compressed-domain approach for shot boundary de-
tection on H.264/AVC bit streams. Signal Processing: Image Communica-
tion – Special Issue on Semantic Analysis for Interactive Multimedia Services,
23(7):473–498, August 2008.

[27] J. De Cock, S. Notebaert, P. Lambert, D. De Schrijver, and R. Van de Walle.
Requantization Transcoding in Pixel and Frequency Domain for Intra 16x16
in H.264/AVC. Lecture Notes in Computer Science – Advanced Concepts for
Intelligent Vision Systems, 4179:533–544, September 2006.

[28] W. De Neve, D. De Schrijver, D. Van Deursen, P. Lambert, and R. Van de Walle.
Real-Time BSD-Driven Adaptation Along the Temporal Axis of H.264/AVC
Bitstreams. In Lecture Notes in Computer Science – Advances in Multimedia
Information Processing - PCM 2006, volume 4261, pages 131–140, Hangzhou,
China, November 2006.

[29] W. De Neve, D. De Schrijver, D. Van Deursen, and R. Van de Walle. XML-
Driven Bitstream Extraction Along the Temporal Axis of SMPTE‘s Video
Codec 1. In Proceedings of the 7th International Workshop on Image Anal-
ysis for Multimedia Interactive Services, pages 233–236, Seoul, South Korea,
April 2006.

[30] W. De Neve, D. Van Deursen, D. De Schrijver, K. De Wolf, and R. Van de
Walle. Using Bitstream Structure Descriptions for the Exploitation of Multi-
layered Temporal Scalability in H.264/AVC‘s Base Specification. Lecture
Notes in Computer Science: Advances in Mulitmedia Information Processing
– PCM 2005, 3768:641–652, November 2005.

[31] W. De Neve, D. Van Deursen, D. De Schrijver, S. Lerouge, K. De Wolf, and
R. Van de Walle. BFlavor: A harmonized approach to media resource adap-
tation inspired by MPEG-21 BSDL and XFlavor. Signal Processing: Image
Communication, 21(10):862–889, November 2006.

[32] W. De Neve, D. Van Deursen, W. Van Lancker, Y. M. Ro, and R. Van de
Walle. Improved BSDL-based Content Adaptation for JPEG 2000 and HD
Photo (JPEG XR), July 2009.

http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/grddl/

212 REFERENCES

[33] W. De Neve, S. Yang, D. Van Deursen, C. Kim, Y. Ro, and R. Van de Walle.
Analysis of BSDL-Based Content Adaptation for JPEG 2000 and HD Photo
(JPEG XR). In Proceedings of the 5th International Conference on Visual In-
formation Engineering: Workshop on Scalable Coded Media Beyond Compres-
sion, pages 717–722, Xi‘an, China, July 2008.

[34] D. De Schrijver, W. De Neve, K. De Wolf, R. De Sutter, and R. Van de
Walle. An Optimized MPEG-21 BSDL Framework for the Adaptation of Scal-
able Bitstreams. Journal of Visual Communication and Image Representation,
18(3):217–239, June 2007.

[35] D. De Schrijver, W. De Neve, K. De Wolf, P. Lambert, D. Van Deursen, and
R. Van de Walle. XML-driven Exploitation of Combined Scalability in Scal-
able H.264/AVC Bitstreams. In Proceedings of the 2007 IEEE International
Symposium on Circuits and Systems, pages 1521–1524, New Orleans, United
States, May 2007.

[36] D. De Schrijver, W. De Neve, K. De Wolf, and R. Van de Walle. Generating
MPEG-21 BSDL Descriptions Using Context-Related Attributes. In Proceed-
ings of IEEE International Symposium on Multimedia, pages 79–86, Irvine,
USA, December 2005.

[37] D. De Schrijver, W. De Neve, K. De Wolf, D. Van Deursen, and R. Van de
Walle. Exploitation of Combined Scalability in Scalable H.264/AVC Bit-
streams by Using an MPEG-21 XML-Driven Framework. In Lecture Notes in
Computer Science – Advanced Concepts for Intelligent Vision Systems, volume
4678, pages 699–710, August 2007.

[38] D. De Schrijver, W. De Neve, D. Van Deursen, S. De Bruyne, and R. Van de
Walle. Exploitation of Interactive Region of Interest Scalability in Scalable
Video Coding by Using an XML-driven Adaptation Framework. In Proceed-
ings of the 2nd International Conference on Automated Production of Cross
Media Content for Multi-channel Distribution, pages 223–231, Leeds, United
Kingdom, December 2006.

[39] D. De Schrijver, W. De Neve, D. Van Deursen, J. De Cock, and R. Van de Walle.
On an evaluation of transformation languages in a fully XML-driven frame-
work for video content adaptation. In Proceedings of the first international
conference on innovative computing, information and control (ICICIC06), vol-
ume 3, pages 213–216, Beijing, China, September 2006.

[40] D. De Schrijver, W. De Neve, D. Van Deursen, Y. Dhondt, and R. Van de Walle.
XML-based Exploitation of Region of Interest Scalability in Scalable Video
Coding. In Proceedings of the 8th International Workshop on Image Analysis
for Multimedia Interactive Services, pages 4 on CD–ROM, Santorini, Greece,
June 2007.

[41] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. C. A. Klein, J. Broekstra,
M. Erdmann, and I. Horrocks. The Semantic Web: The Roles of XML and
RDF. IEEE Internet Computing, 4(5):63–74, 2000.

REFERENCES 213

[42] S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner. Bitstream Syntax
Description-Based Adaptation in Streaming and Constrained Environments.
IEEE Transactions on Multimedia, 7(3):463–470, June 2005.

[43] Dublin Core Metadata Initiative. Dublin Core Metadata Element Set, version
1.1: Reference Description. Technical report, Dublin Core Metadata Initia-
tive, 2004. Available on http://www.dublincore.org/documents/
dces/.

[44] A. Eleftheriadis. Flavor: A Language for Media Representation. In Proceed-
ings of ACM Multimedia Conference, pages 1–9, Seattle, WA, November 1997.

[45] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg
(DE), 2007.

[46] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: “Hypertext Transfer Protocol – HTTP/1.1,” Avail-
able on http://www.w3.org/Protocols/rfc2616/rfc2616.
html.

[47] P. Gioia, K. Kamyab, I. Wolf, G. Panis, A. Difino, M. Kimiaei, T. DiGiacomo,
A. Cotarmanac’h, P. Goulev, A. Graffunder, A. Hutter, B. Negro, C. Concolato,
C. Joslin, E. Mamdani, J. Dufourd, and N. Thalmann. ISIS: Intelligent Scala-
bility for Interoperable Services. In Proceedings of 1st European Conference
on Visual Media Production, pages 295–304, London, United Kingdom, March
2004.

[48] GPAC Project on Advanced Content. Osmo player. Available on http://
gpac.sourceforge.net/.

[49] M. M. Hannuksela, Y.-K. Wang, and M. Gabbouj. Isolated Regions in Video
Coding. IEEE Transactions on Multimedia, 6:259–267, April 2004.

[50] M. Hartle, F.-D. Möller, S. Travar, B. Kröger, and M. Mühlhäuser. Using Bit-
stream Segment Graphs for Complete Data Format Instance Description. In
Proceedings of The Third International Conference on Software and Data Tech-
nologies (ICSOFT), pages 198–205, Porto, Portugal, August 2008.

[51] D. Hong and A. Eleftheriadis. XFlavor: providing XML features in media
representation. Multimedia Tools and Applications, 39(1):101–116, 2008.

[52] M. Humphrey and J. Freeman. How xDSL Supports Broadband Services to the
Home. IEEE Network, 11(1):14–23, January–February 1997.

[53] J. Hunter. Adding Multimedia to the Semantic Web - Building an MPEG-7
Ontology. In First Semantic Web Working Symposium (SWWS), Proceedings,
pages 261–281, Stanford, USA, 2001.

[54] R. Iqbal, D. Ahmed, and S. Shirmohammadi. Distributed Video Adaptation
and Streaming for Heterogeneous Devices. In Proceedings of the 6th Annual
IEEE International Conference on Pervasive Computing and Communications,
pages 492–497, Kowloon, Hong Kong, March 2008.

http://www.dublincore.org/documents/dces/
http://www.dublincore.org/documents/dces/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://gpac.sourceforge.net/
http://gpac.sourceforge.net/

214 REFERENCES

[55] R. Iqbal, S. Shirmohammadi, and A. El Saddik. A Framework for MPEG-21
DIA Based Adaptation and Perceptual Encryption of H.264 Video. In Pro-
ceedings of SPIE/ACM Multimedia Computing and Networking Conference,
San Jose, USA, January 2007.

[56] ISO/IEC. Information technology – Coding of moving pictures and associ-
ated audio for digital storage media at up to about 1,5 Mbit/s – Part 3: Audio.
ISO/IEC 11172-3:1993, 1993.

[57] ISO/IEC. Information technology – Syntactic metalanguage – Extended BNF.
ISO/IEC 14977:1996, December 1996.

[58] ISO/IEC. Information technology – Generic coding of moving pictures and
associated audio information: Video. ISO/IEC 13818-2:2000, 2000.

[59] ISO/IEC. Information technology – Coding of Audio, Picture, Multimedia and
Hypermedia Information – Part 14: MP4 file format. ISO/IEC 14496-14:2003,
December 2003.

[60] ISO/IEC. Information technology – Coding of audio-visual objects – Part 2:
Visual. ISO/IEC 14496-2:2004, May 2004.

[61] ISO/IEC. Information technology – Multimedia framework (MPEG-21) – Part
7: Digital Item Adaptation. ISO/IEC 21000-7:2004, October 2004.

[62] ISO/IEC. Information technology – Coding of audio-visual objects – Part 3:
Audio. ISO/IEC 14496-3:2005, 2005.

[63] ISO/IEC. Information technology – MPEG systems technologies – Part 1: Bi-
nary MPEG Format for XML. ISO/IEC 23001-1:2006, March 2006.

[64] ISO/IEC. Information technology – Multimedia framework (MPEG-21) – Part
18: Digital Item Streaming. ISO/IEC 21000-18:2007, June 2007.

[65] ISO/IEC. Information technology – Multimedia framework (MPEG-21) – Part
7: Digital Item Adaptation, Amendment 2: Dynamic and Distributed Adapta-
tion. ISO/IEC 21000-7:2007/FPDAmd 2, January 2007.

[66] ISO/IEC. Resolutions of the 42nd ISO/IEC JTC1/SC29/WG1 Meeting, 2007-
07-02/06. Technical Report ISO/IEC JTC1/SC29/WG1 N4293, Joint Photo-
graphic Experts Group (JPEG), Lausanne, Switzerland, July 2007.

[67] ISO/IEC. Information technology – MPEG systems technologies – Part 5: Bit-
stream Syntax Description Language. ISO/IEC 23001-5:2008, February 2008.

[68] ITU-T and ISO/IEC. Advanced Video Coding for Generic Audiovisual Ser-
vices. ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, 2003.

[69] S. C. Johnson. Yacc: Yet Another Compiler-Compiler. Available on http:
//dinosaur.compilertools.net/yacc/index.html.

[70] Joint US/EU ad hoc Agent Markup Language Committee. DAML+OIL,
March 2001. Available on http://www.daml.org/2001/03/daml+
oil-index.html.

http://dinosaur.compilertools.net/yacc/index.html
http://dinosaur.compilertools.net/yacc/index.html
http://www.daml.org/2001/03/daml+oil-index.html
http://www.daml.org/2001/03/daml+oil-index.html

REFERENCES 215

[71] M. Kay. XSLT Programmers’s Reference, 2nd Edition. Wrox Press Ltd., Birm-
ingham, UK, 2001.

[72] G. Klyne and J. J. Carroll, editors. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation. World Wide Web
Consortium, February 2004. Available on http://www.w3.org/TR/
rdf-concepts/.

[73] R. Kuschnig, I. Kofler, M. Ransburg, and H. Hellwagner. Design options and
comparison of in-network H.264/SVC adaptation. Journal of Visual Commu-
nication and Image Representation, 19(8):529–542, 2008.

[74] P. Lambert, D. De Schrijver, D. Van Deursen, W. De Neve, Y. Dhondt, and
R. Van de Walle. A Real-Time Content Adaptation Framework for Exploiting
ROI Scalability in H.264/AVC. Lecture Notes in Computer Science – Advanced
Concepts for Intelligent Vision Systems, 4179:442–453, September 2006.

[75] A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and
S. Byrne, editors. Document Object Model (DOM) Level 3 Core Specification.
W3C Recommendation. World Wide Web Consortium, April 2004. Available
on http://www.w3.org/TR/DOM-Level-3-Core/.

[76] S. Lerouge, P. Lambert, and R. Van de Walle. Multi-criteria Optimization for
Scalable Bitstreams. Lecture Notes in Computer Science, Visual Content Pro-
cessing and Representation, 2849:122–130, September 2003.

[77] J. Magalhães and F. Pereira. Using MPEG standards for multimedia customiza-
tion. Signal Processing: Image Communication, 19(5):437–456, May 2004.

[78] B. Manjunath, P. Salembier, and T. Sikora, editors. Introduction to MPEG-7:
Multimedia Content Description Interface. Wiley, New Jersey, 2003.

[79] E. Mannens, R. Troncy, K. Braeckman, D. Van Deursen, W. Van Lancker,
R. De Sutter, and R. Van de Walle. Automatic Information Enrichment in
News Production. In Proceedings of the 10th International Workshop on Im-
age Analysis for Multimedia Interactive Services, pages 61–64, London, United
Kingdom, May 2009.

[80] J. Martinez, R. Koenen, and F. Pereira. MPEG-7: The Generic Multimedia
Content Description Standard, Part 1. IEEE Multimedia, 9(2):78–87, April-
June 2002.

[81] J. Martinez, V. Valdes, J. Bescos, and L. Herranz. Introducing CAIN: a
Metadata-driven Content Adaptation Manager Integrating Heterogeneous Con-
tent Adaptation Tools. In Proceedings og International Workshop on Image
Analysis for Multimedia Interactive Services, pages 5 on CD–ROM, Montreux,
Switzerland, April 2005.

[82] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and L. Schnei-
der. The WonderWeb Library of Foundational Ontologies (WFOL). Technical
report, WonderWeb Deliverable 17, 2002.

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/DOM-Level-3-Core/

216 REFERENCES

[83] D. McGuinness and F. van Harmelen, editors. OWL Web Ontology Language:
Overview. W3C Recommendation. World Wide Web Consortium, February
2004. Available on http://www.w3.org/TR/owl-features/.

[84] D.-E. Meddour, M. Mushtaq, and T. Ahmed. Open Issues in P2P Multime-
dia Streaming. In IEEE ICC 2006 Workshop on Multimedia Communications
Workshop (MultiCom), June 2006.

[85] Microsoft. Silverlight. Available on http://silverlight.net/.

[86] Microsoft. Smooth Streaming. Available on http://www.iis.net/
extensions/SmoothStreaming.

[87] D. Mukherjee, E. Delfosse, J.-G. Kim, and Y. Wang. Optimal Adaptation
Decision-taking for Terminal and Network Quality-of-service. IEEE Trans-
actions on Multimedia, 7(3):454–462, June 2005.

[88] D. Mukherjee, G. Kuo, S. Hsiang, S. Liu, and A. Said. Format-independent
scalable bit-stream adaptation using MPEG-21 DIA. In Proceedings of the
2004 International Conference on Image Processing, volume 4, pages 2793–
2796, Singapore, October 2004.

[89] D. Mukherjee and A. Said. Structured Scalable Meta-formats (SSM) for Digital
Item Adaptation. In Internet Imaging IV, volume 5018 of Proceedings of SPIE,
January 2003.

[90] OECD. OECD Study on the Participative Web: User Generated Content, Oc-
tober 2007. Available on http://www.oecd.org/dataoecd/57/14/
38393115.pdf.

[91] J.-R. Ohm. Advances in Scalable Video Coding. Proceedings of the IEEE,
93(1):42–56, January 2005.

[92] P2PMMS’05: Proceedings of the ACM workshop on Advances in peer-to-peer
multimedia streaming, New York, NY, USA, 2005. ACM.

[93] S. B. Palmer. Pondering RDF Path, 2003. Available on http://infomesh.
net/2003/rdfpath.

[94] G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timmerer, S. Dev-
illers, and M. Amielh. Bitstream Syntax Description: a Tool for Multimedia
Resource Adaptation within MPEG-21. Signal Processing: Image Communi-
cation, 18(8):721–747, September 2003.

[95] F. Peng and S. S. Chawathe. XPath Queries on Streaming Data. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, San
Diego, California, June 2003.

[96] S. Pfeiffer, C. Parker, and C. Schremmer. Annodex: A Simple Architecture
to Enable Hyperlinking, Search & Retrieval of Time Continuous Data on the
Web. In MIR ’03: Proceedings of the 5th ACM SIGMM international work-
shop on Multimedia information retrieval, pages 87–93, Berkeley, California,
November 2003.

http://www.w3.org/TR/owl-features/
http://silverlight.net/
http://www.iis.net/extensions/SmoothStreaming
http://www.iis.net/extensions/SmoothStreaming
http://www.oecd.org/dataoecd/57/14/38393115.pdf
http://www.oecd.org/dataoecd/57/14/38393115.pdf
http://infomesh.net/2003/rdfpath
http://infomesh.net/2003/rdfpath

REFERENCES 217

[97] M. Prangl, H. Hellwagner, and T. Szkaliczki. Fast Adaptation Decision Taking
for Cross-Modal Multimedia Content Adaptation. In Proceedings of the 2006
International Conference on Multimedia and Expo, pages 137–140, Toronto,
Canada, July 2006.

[98] M. Prangl, T. Szkaliczki, and H. Hellwagner. A Framework for Utility-based
Multimedia Adaptation. IEEE Transactions on Circuits and Systems for Video
Technology, 17(6):719–728, June 2007.

[99] E. Prud’hommeaux and A. Seaborne, editors. SPARQL Query Language for
RDF. W3C Recommendation. World Wide Web Consortium, November 2007.
Available on http://www.w3.org/TR/rdf-sparql-query/.

[100] Quicktime. Available on http://www.apple.com/quicktime/.

[101] M. Ransburg, R. Cazoulat, B. Pellan, C. Concolato, S. De Zutter, C. Poppe,
A. Hutter, H. Hellwagner, and R. Van de Walle. Dynamic and Distributed
Adaptation of Scalable Multimedia Content in a Context-Aware Environment.
In Proceedings of European Symposium on Mobile Media Delivery, Alghero,
Italy, September 2006.

[102] M. Ransburg, S. Devillers, C. Timmerer, and H. Hellwagner. Processing and
Delivery of Multimedia Metadata for Multimedia Content Streaming. In Pro-
ceedings of 6th Workshop on Multimedia Semantics - The Role of Metadata,
Aachen, Germany, March 2007.

[103] M. Ransburg and H. Hellwagner. Generic Streaming of Multimedia Content. In
Proceedings of IASTED International Conference on Internet and Multimedia
Systems and Applications, pages 324–330, Grindelwald, Switzerland, February
2005.

[104] RealNetworks. SureStream. Available on http://service.
realnetworks.com/help/library/guides/producerplus85/
htmfiles/preparin.htm.

[105] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC 3550: “RTP: A
Transport Protocol for Real-Time Applications,” Available on http://www.
ietf.org/rfc/rfc3550.txt.

[106] H. Schulzrinne, A. Rao, and R. Lanphier. RFC 2326: “Real Time Streaming
Protocol,” Available on http://www.ietf.org/rfc/rfc2326.txt.

[107] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable Video Cod-
ing Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and
Systems for Video Technology, 17(9):1103–1120, September 2007.

[108] A. Seaborne and G. Manjunath. SPARQL/Update: a language for updating
RDF graphs, January 2008. Available on http://jena.hpl.hp.com/

˜afs/SPARQL-Update.html.

[109] SEAmless Content Delivery. Available on http://www.ist-sea.eu/.

http://www.w3.org/TR/rdf-sparql-query/
http://www.apple.com/quicktime/
http://service.realnetworks.com/help/library/guides/producerplus85/htmfiles/preparin.htm
http://service.realnetworks.com/help/library/guides/producerplus85/htmfiles/preparin.htm
http://service.realnetworks.com/help/library/guides/producerplus85/htmfiles/preparin.htm
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc2326.txt
http://jena.hpl.hp.com/~afs/SPARQL-Update.html
http://jena.hpl.hp.com/~afs/SPARQL-Update.html
http://www.ist-sea.eu/

218 REFERENCES

[110] J. R. Smith and P. Schirling. Metadata Standards Roundup. IEEE Multimedia,
13(2):84–88, 2006.

[111] SMPTE. Material Exchange Format (MXF) – File Format Specification (Stan-
dard). SMPTE 377M-2004, 2004.

[112] SMPTE. Standard for Television: VC-1 Compressed Video Bitstream Format
and Decoding Process. SMPTE 421M-2006, 2006.

[113] SMPTE. Proposed SMPTE Standard for Television: VC-1 Compressed Video
Bitstream Format and Decoding Process. document 421M, SMPTE, New York,
USA, August 2005.

[114] A. Souzis. RxPath: a mapping of RDF to the XPath Data Model. In Extreme
Markup Language 2006, Montreal, Canada, August 2006.

[115] S. Srinivasan, C. Tu, S. L. Regunathan, and G. J. Sullivan. HD Photo: a New
Image Coding Technology for Digital Photography. In Proceedings of the SPIE,
volume 6696, San Diego, US-CA, USA, August 2007.

[116] X. Sun, C.-S. Kim, and C.-C. Jay Kuo. MPEG video markup language and its
applications to robust video transmission. Journal of Visual Communication
and Image Representation, 16(4-5):589–620, August-October 2005.

[117] J. Thomas-Kerr, I. Burnett, and C. Ritz. Format-Independent Multimedia
Streaming. In Proceedings of 2006 IEEE International Conference on Mul-
timedia and Expo (ICME), pages 1509–1512, July 2006.

[118] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, editors. XML
Schema Part 1: Structures Second Edition. W3C Recommendation. World
Wide Web Consortium, October 2004. Available on http://www.w3.org/
TR/xmlschema-1/.

[119] Tim Berners-Lee. Notation 3: An readable language for data on the Web. Avail-
able on http://www.w3.org/DesignIssues/Notation3.html.

[120] C. Timmerer, T. Frank, and H. Hellwagner. Efficient processing of MPEG-21
metadata in the binary domain. In Proceedings of SPIE International Sym-
posium ITCom 2005 on Multimedia Systems and Applications VIII, Boston,
Massachusetts, USA, October 2005.

[121] C. Timmerer, G. Panis, H. Kosch, J. Heuer, H. Hellwagner, and A. Hutter. Cod-
ing Format Independent Multimedia Content Adaptation using XML. In Pro-
ceedings of SPIE International Symposium ITCom 2003 on Internet Multime-
dia Management Systems IV, volume 5242, pages 92–103, Orlando, September
2003.

[122] R. Troncy, W. Bailer, M. Hausenblas, P. Hofmair, and R. Schlatte. En-
abling Multimedia Metadata Interoperability by Defining Formal Semantics
of MPEG-7 Profiles. In 1st International Conference on Semantics And dig-
ital Media Technology (SAMT 2006), pages 41–55, Athens, Greece, December
2006.

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/DesignIssues/Notation3.html

REFERENCES 219

[123] R. Troncy, J. Jansen, Y. Lafon, E. Mannens, S. Pfeiffer, and D. Van Deursen,
editors. Use cases and requirements for Media Fragments. W3C Working
Draft. World Wide Web Consortium, April 2009. Available on http://www.
w3.org/TR/media-frags-reqs/.

[124] D. Van Deursen. Ontwikkeling van een referentiemodel voor bitstroomstructu-
urbeschrijvingstalen, toegepast op MPEG-21 BSDL en (X)FLAVOR. Master’s
thesis, Ghent University, June 2005.

[125] D. Van Deursen, S. De Bruyne, W. Van Lancker, W. De Neve, D. De Schrijver,
H. Hellwagner, and R. Van de Walle. MuMiVA: a Multimedia Delivery Plat-
form using Format-agnostic, XML-driven Content Adaptation. In Proceedings
of the 9th International Symposium on Multimedia, pages 131–138, Taichung,
Taiwan, December 2007.

[126] D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle. BFlavor:
an Optimized XML-based Framework for Multimedia Content Customization.
In Proceedings of the 25th Picture Coding Symposium, pages 6 on CD–ROM,
Beijing, China, April 2006.

[127] D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle. Automatic
generation of generic Bitstream Syntax Descriptions applied to H.264/AVC
SVC encoded video streams. In Proceedings of the 14th International Con-
ference on Image Analysis and Processing, pages 382–387, Modena, Italy,
September 2007.

[128] D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de Walle. gBFlavor:
a New Tool for Fast and Automatic Generation of generic Bitstream Syntax
Descriptions. Multimedia Tools and Applications, 40(3):453–494, December
2008.

[129] D. Van Deursen, W. De Neve, W. Van Lancker, and R. Van de Walle. Seman-
tic Adaptation of Synchronized Multimedia Streams in a Format-independent
Way. In Proceedings of the 27th Picture Coding Symposium, pages 4 on CD–
ROM, Chicago, United States, May 2009.

[130] D. Van Deursen, D. De Schrijver, S. De Bruyne, and R. Van de Walle. Fully For-
mat Agnostic Media Resource Adaptation Using an Abstract Model for Scal-
able Bitstreams. In Proceedings of the 2007 IEEE International Conference on
Multimedia and Expo, pages 240–243, Beijing, China, July 2007.

[131] D. Van Deursen, D. De Schrijver, W. De Neve, and R. Van de Walle. A Real-
Time XML-Based Adaptation System for Scalable Video Formats. In Lecture
Notes in Computer Science – Advances in Multimedia Information Processing -
PCM 2006, volume 4261, pages 339–348, Hangzhou, China, November 2006.

[132] D. Van Deursen, C. Poppe, G. Martens, E. Mannens, and R. Van de Walle.
XML to RDF Conversion: a Generic Approach. In Proceedings of the 4th In-
ternational Conference on Automating Production of Cross Media Content for
Multi-channel Distribution, pages 138–143, Florence, Italy, November 2008.

http://www.w3.org/TR/media-frags-reqs/
http://www.w3.org/TR/media-frags-reqs/

220 REFERENCES

[133] D. Van Deursen, W. Van Lancker, S. De Bruyne, W. De Neve, E. Mannens, and
R. Van de Walle. Format-independent and Metadata-driven Media Resource
Adaptation using Semantic Web Technologies. Submitted to Multimedia Sys-
tems.

[134] D. Van Deursen, W. Van Lancker, W. De Neve, T. Paridaens, E. Mannens, and
R. Van de Walle. NinSuna: a Fully Integrated Platform for Format-independent
Multimedia Content Adaptation and Delivery based on Semantic Web Tech-
nologies. Submitted to Multimedia Tools and Applications – Special Issue on
Data Semantics for Multimedia Systems.

[135] D. Van Deursen, W. Van Lancker, T. Paridaens, W. De Neve, E. Mannens,
and R. Van de Walle. NinSuna: a Format-independent Multimedia Content
Adaptation Platform based on Semantic Web Technologies. In Proceedings of
the 10th International Symposium on Multimedia, pages 491–492, Berkeley,
United States, December 2008.

[136] A. Vetro, C. Christopoulos, and T. Ebrahimi. Universal Multimedia Access.
IEEE Signal Processing Magazine, 20(2):16, March 2003.

[137] A. Vetro, C. Christopoulos, and H. Sun. Video Transcoding Architectures and
Techniques: an Overview. IEEE Signal Processing Magazine, 20(2):18–29,
2003.

[138] VideoLan. VLC media player. Available on http://www.videolan.
org/.

[139] W3C Multimedia Semantics Incubator Group. Available on http://www.
w3.org/2005/Incubator/mmsem/.

[140] B. Walke, P. Seidenberg, and M. Althoff. UMTS: The Fundamentals. John
Wiley & Sons, April 2003.

[141] N. Walsh. RDF Twig: accessing RDF graphs in XSLT. In Extreme Markup
Language 2003, Montreal, Canada, August 2003.

[142] R. Whitmer, editor. Document Object Model (DOM) Level 3 XPath Specifica-
tion. W3C Working Group Note. World Wide Web Consortium, February 2004.
Available on http://www.w3.org/TR/DOM-Level-3-XPath/.

[143] T. Wiegand, G. Sullivan, J. Reichel, H. Schwarz, and M. Wien. Joint Draft 8 of
SVC Amendment, October 2006. JVT-document JVT-U201, Hangzhou, China.
Available on http://ftp3.itu.ch/avarch/jvt-site/2006_10_
Hangzhou/JVT-U201.zip.

[144] Windows Media Series. Intelligent Streaming. Available on
http://www.microsoft.com/windows/windowsmedia/howto/
articles/intstreaming.aspx.

[145] WinZip. Available on http://www.winzip.com/.

[146] J. Xin, C.-W. Lin, and M.-T. Sun. Digital Video Transcoding. Proceedings of
the IEEE, 93(1):84–97, 2005.

http://www.videolan.org/
http://www.videolan.org/
http://www.w3.org/2005/Incubator/mmsem/
http://www.w3.org/2005/Incubator/mmsem/
http://www.w3.org/TR/DOM-Level-3-XPath/
http://ftp3.itu.ch/avarch/jvt-site/2006_10_Hangzhou/JVT-U201.zip
http://ftp3.itu.ch/avarch/jvt-site/2006_10_Hangzhou/JVT-U201.zip
http://www.microsoft.com/windows/windowsmedia/howto/articles/intstreaming.aspx
http://www.microsoft.com/windows/windowsmedia/howto/articles/intstreaming.aspx
http://www.winzip.com/

REFERENCES 221

[147] J. Xin, A. Vetro, H. Sun, and Y. Su. Efficient MPEG-2 to H.264/AVC transcod-
ing of intra-coded video. EURASIP Journal of Applications and Signal Pro-
cessing, 2007(1):217–229, January 2007.

[148] M. Xu, J. Li, Y. Hu, L. Chia, B. Lee, D. Rajan, and J. Cai. An Event-Driven
Sports Video Adaptation for the MPEG-21 DIA Framework. In Proceedings
of IEEE International Conference on Multimedia and Expo, pages 1245–1248,
Toronto, Canada, July 2006.

[149] XWRT (XML-WRT). Word Replacing Transform for eXtended Markup Lan-
guage, Available on http://xwrt.sourceforge.net/.

http://xwrt.sourceforge.net/

	Introduction
	Context
	Multimedia Content Customization
	Multimedia Metadata

	Goals and Outline
	Overview of Publications
	A1 Publications
	Other Publications

	Format-independent content adaptation
	Introduction
	Overall Approach
	Adaptation Chain
	Generic Software Modules
	Advantages

	Target Adaptation Operations
	Structural Adaptations
	Semantic Adaptations

	Existing Technologies
	MPEG-B BSDL
	MPEG-21 gBS Schema
	XFlavor
	BFlavor: Optimizing MPEG-B BSDL

	Challenges
	gBSD Generation Process
	Defining Adaptation Operations
	Integration with Metadata Standards
	Fully Integrated Description-driven Adaptation Platforms
	Combining Adaptation and Packaging in Coding-format Independent Environments
	Structural Metadata Overhead

	Conclusions and Original Contributions

	gBFlavor
	Introduction
	gBS Schema
	Functioning
	gBS Schema in Practice
	Generation of gBSDs
	Using Dedicated Software
	Using a Format-agnostic Approach

	gBFlavor
	Motivation
	Overall Functioning of gBFlavor
	gBFlavor versus BFlavor
	gBFlavor Specification
	High-level Syntax Code
	Application-specific Code

	Mapping between gBFlavor and MPEG-21 gBS Schema
	Mapping of High-level Syntax Code to gBS Schema Constructs
	Hierarchical Changes in an Application-specific gBSD

	Performance Results
	gBSD Generation
	General Observations
	Impact Parameters for the gBSD Generation Process

	Transformation and Adapted Bitstream Generation

	Conclusions and Original Contributions

	Model-driven content adaptation
	Introduction
	Problem Description
	Modeling Media Bitstreams
	Model for Media Bitstreams
	Structural Metadata
	Scalability Information
	Data Blocks
	Content Metadata

	The Multimedia Model in Practice
	Mapping H.264/AVC to the Multimedia Model
	Linking the Content Metadata Model to Existing Ontologies
	The Model for Media Bitstreams versus COMM

	Model-driven Content Adaptation
	Metadata Generation
	General Workflow
	Data Block Selection
	Data Block Transformation
	Data Block Binarization

	Model-driven Content Adaptation vs. Other Techniques
	Performance Measurements
	Application Scenario
	Experimental Results
	Bitstream Characteristics
	Implementation Details
	Results

	Conclusions and Original Contributions

	Fully integrated multimedia delivery platforms
	Introduction
	MuMiVA
	MuMiVA Architecture
	Distributed Architecture: a Global View on MuMiVA
	Functioning of MuMiVA
	XML-driven Adaptation Engine
	Strengths of the MuMiVA Platform

	MuMiVA Applications
	Shot Selection
	Video Frame Rate Reduction
	Combining Shot Selection and Frame Rate Reduction

	Implementation
	Performance Results
	Shortcomings of MuMiVA

	NinSuna
	Format-independent Multimedia Content Packaging
	Extension of the Model for Media Bitstreams
	Coupling Model-driven Content Adaptation with Multimedia Packaging

	The NinSuna Platform
	Architecture
	Implementation
	Performance Measurements

	Limitations and Future Work

	Synchronization
	Synchronization during XML Transformation
	Synchronization during Structural Metadata Generation
	Synchronization during Packaging

	Related Work
	Conclusions and Original Contributions

	Conclusions
	Syntax and BSD fragments
	Introduction
	MPEG-B BSDL
	MPEG-21 gBS Schema
	XFlavor
	Stylesheets

	Automatic generation of gBSDs using BSDL and gBFlavor
	BSD-to-gBSD Conversion for SVC Bitstreams
	gBFlavor Code for SVC

	Multimedia model and RDF instances
	Model for Media Bitstreams
	RDF Instances Compliant to the Multimedia Model

	W3C Media Fragments Working Group
	Introduction
	Media Resource Adaptation Use Case
	Using Model-driven Content Adaptation

