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Summary

Plastic deformation of metals and alloys produces different changes in the 

density and distribution of lattice defects inside the materials. Many techniques 

can be used to study the deformation processes and their effects in iron based 

alloys. The positron annihilation technique is well known to be a highly sensitive 

method for open volume defects (such as vacancies, vacancy clusters, 

dislocations,..). The defect structure after plastic deformation of metallic samples 

can be investigated with the positron annihilation technique. The high sensitivity 

of positrons to defects stems from two facts: their attraction to atomic-size 

defects and their long diffusion length, which is about a few hundred nanometres 

in most materials. The positron annihilation lifetime spectroscopy (PALS) can 

quantify the type of the open volume defect as well as the defect concentration 

and is based on the precise measurement of the lifetime of a positron in a solid. 

The concentration can be deduced from the fraction of positrons that annihilates

in a trapped state. The defect size is directly related to the value of the positron

lifetime: the larger the defect, the lower the local electron density and 

consequently the longer the positron lifetime will be.

The general aim of the present research is to show that the use of the non-

destructive Positron Annihilation Spectroscopy (PAS) technique, together with 

X-ray diffraction (XRD), optical microscopy (OM) and some additional

techniques is meaningful for the investigation of the different kinds of defects 

formed during the cold and warm deformation of metals and alloys in general 

and in iron-based materials in particular.

In deformed metals, positrons are captured by dislocations and vacancies. In 

polycrystalline samples, the deformation becomes more complex due to the 

various interactions between dislocations and grain boundaries. Furthermore, the 

interaction of dislocations during the deformation can lead to the formation of 

jogs and point defects.

In the present work, three iron-based materials have been studied: first, iron is 

studied by PAS as a base material. The results for the positron mean lifetime 
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after isochronal annealing reveal that the traps for positrons in the deformed iron 

are mainly dislocations. Less pure iron is much more resistant to 

recrystallization. The interstitial elements in a very low concentration have a 

profound effect on recovery processes. In particular, interstitial elements are 

associated with retardation of recovery 

The second iron-based material to be studied is FeMnSiCrNi, a shape memory 

alloy. The FeMnSiCrNi(C) alloys have a one way shape memory effect. For this 

reason, the phase transformation, the effect of the degree of plastic deformation 

and the isochronal annealing of these alloys was investigated. During 

deformation, the austenite transforms to stress-induced martensite. During 

heating above a critical temperature the reverse transformation→occurs and 

the material recovers its original shape. Samples deformed from 2 to 20% (tensile 

deformation) were investigated. The positron annihilation parameters show a 

sudden increase in the defect concentration between 4 and 6% deformation. For 

deformations higher than 10 percent the concentration of defects seems to 

saturate. 

The variations of the nature and the concentration of defects are studied as a 

function of the isochronal annealing temperature. Using the positron annihilation 

techniques, the effect of isochronal annealing on the deformation-induced defects 

and phase transition in FeMnSiCrNiC is studied. A set of deformed 

FeMnSiCrNiC samples (2- 20% tensile deformation) were annealed isochronally 

(15 minutes) starting from room temperature up to 500°C in steps of 100°C. The 

2% deformed sample has almost no -phase after annealing at 500°C.  In the case 

of the 20% deformed sample, the value of the S parameter is higher than the one 

for the defect-free sample. This means that the 20% deformed samples still have 

defects after annealing at 500°C. The XRD and the OM show that deformation of 

2% and 20% result in the stress-induced transformation of austenite to 

martensite. The  martensite appears as thin parallel lines with dark contrast 

inside the austenite grains. Increasing stress induces the appearance of large 

domains. At the same time, zones of thin parallel  plates containing ’

martensite appear. During annealing at high temperatures, the reverse -
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martensite to austenite phase transformation occurs. The 2% deformed sample 

has almost no  phase after annealing at 500°C. If the deformation is small (less 

than 4%), the reverse movement of the Shockley partials is not impeded because 

only primary  variants move through the parent austenite under the influence of 

stress. The microstructure of the 20% deformed samples still contains 

martensite.

The influence of the addition of carbon to the FeMnSiCrNi base material was 

studied at room temperature by different techniques. The concentration of 

dislocations in both deformed samples (FeMnSiCrNi and FeMnSiCrNiC) is 

calculated. The concentration values for both samples indicate that the alloy 

without carbon has more dislocations than the one with carbon.

The third iron-based material to be studied is FeSi electrical steel. Alloying iron 

with silicon improves its magnetic performance by reducing the effect of 

magnetostriction, noise and energy losses, while the electrical resistivity 

increases. These properties are also influenced by the grain size and 

crystallographic texture. Despite of the magnetic improvement of electrical steels 

their workability is extremely reduced by solid solution hardening and by the 

appearance of ordered structures.

Several problems arise from increasing the silicon content up to 6.5 wt.%. For 

this reason it is too hard to do a cold deformation for high silicon steel. Steels 

with high amounts of silicon are used in electrical applications. The different 

kinds of defects formed when the FeSi samples are deformed at high temperature 

(1000°C) and room temperature are investigated in this work. A comparison of 

the defect concentration for the samples deformed at high temperature and the 

ones deformed at room temperature is also one of the subjects to be investigated.

The data of the positron annihilation techniques show that the deformation 

temperature affects the concentration and the type of defects formed in the alloys 

through the deformation process. Mono-vacancies are the main defects formed 

when the alloys are deformed at high temperatures. In the case of the alloys 

deformed at room temperature, dislocations and vacancy clusters are formed. For 
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the high temperature deformed samples, the positron annihilation lifetime in 

defects (2) and the S parameter decrease with increasing Si-content in the alloy. 

For the samples deformed at room temperature, there is a saturation trapping for 

positrons in defects. There are two lifetime components present: the first one is 

around 150 ps, which is related to the positron annihilation in dislocations, the 

second component is around 250 ps. This lifetime value is an indicator for the 

existence of vacancy clusters. 

In general we have tried to classify the different kinds of defects in different iron 

based alloys and to have data for the positron annihilation parameters.
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Samenvatting

Plastische vervorming van metalen en legeringen veroorzaakt veranderingen in 

de dichtheid en de distributie van roosterstoringen of -defecten in het inwendige 

van het materiaal. Voor het bestuderen van de onderliggende processen tijdens 

het vervormen van op ijzer gebaseerde legeringen worden verschillende 

technieken aangewend. Het is bekend dat de positronannihilatietechniek een zeer 

gevoelige methode is om open volume defecten (zoals vacatures, vacature-

clusters, dislocaties,...) te bestuderen. Daarom kan de defectstructuur, bekomen 

na plastische vervorming, bestudeerd worden met deze 

positronannihilatietechniek. De hoge gevoeligheid van het positron voor het 

detecteren van open volume defecten is te wijten aan twee feiten: de aantrekking 

van het positron door defecten op atomaire schaal en de grote diffusielengte van 

het positron, die een paar honderd nanometer bedraagt in de gebruikelijke 

metalen. Met positronannihilatie-levensduurmetingen (PALS) kan zowel de 

grootte als de concentratie van de open volume defecten bepaald worden. Deze 

methode is gebaseerd op de precieze meting van de positronlevensduur in een 

vaste stof. De bepaling van de concentratie van defecten kan afgeleid worden uit 

de fractie van positronen die annihileren in de elektronenwolk van een defect. De 

positronlevensduur is evenredig met de grootte van het defect: hoe groter het 

defect, hoe kleiner de elektronenconcentratie in het defect, met als gevolg dat de 

positronlevensduur langer wordt. 

De algemene doelstelling van voorliggend onderzoekswerk is de inzet van een 

niet-destructieve positronannihilatietechniek (PAS), samen met X-stralen 

diffractie (XRD), optische microscopie (OM) en enkele complementaire 

technieken voor de studie van de verschillende soorten defecten die door 

plastische vervorming in metalen en legeringen gevormd worden. 

In plastisch vervormde, monokristallijne metalen worden positronen 

voornamelijk ingevangen door dislocaties en vacatures. In vervormde 

polykristallijne materialen wordt het deformatieproces ingewikkelder ten 

gevolge van verschillende interacties tussen dislocaties en korrelgrenzen. Ook de 
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interactie tussen dislocaties tijdens het vervormingsproces kan leiden tot de 

vorming van jogs en puntdefecten (vacatures en interstitiële atomen).

In een eerste fase van het onderzoek wordt het basismateriaal zuiver ijzer 

bestudeerd met PAS. Uitgaande van metingen van de positron gemiddelde 

levensduur tijdens isochrone gloeiproeven kan aangetoond worden dat de 

invangcentra voor positronen in vervormd zuiver ijzer hoofdzakelijk dislocaties 

zijn. De evolutie van de concentratie aan roosterfouten tijdens de gloeiproeven 

(herstel en ev. rekristallisatie) kan met PAS gevolgd worden. Bij minder zuiver 

ijzer verlopen de rekristallisatie-fenomenen na plastische vervorming trager: 

interstitiële onzuiverheden, die in lage concentratie aanwezig zijn, hebben een 

grote invloed op het herstelgedrag. In het bijzonder verklaart de aanwezigheid 

van interstitiële onzuiverheden de vertraging van het herstelfenomeen bij 

verhoogde temperaturen.

De vormgeheugenlegering FeMnSiCrNi is het belangrijkste materiaal dat in dit 

onderzoek bestudeerd wordt. Deze legeringen vertonen een één-weg 

vormgeheugen effect (one-way shape memory effect). De optredende 

fasentransformaties en het effect van de vervormingsgraad werden bij deze 

legeringen bestudeerd tijdens isochroon gloeien. Tijdens de plastische 

vervorming transformeert austeniet in spanningsgeïnduceerde -martensiet. 

Wanneer deze legering terug opgewarmd wordt tot boven een kritische 

temperatuur treedt de inverse transformatie    op en neemt het materiaal zijn 

oorspronkelijke vorm terug op. De onderzochte monsters hadden een plastische 

verlenging ondergaan tussen 2 en 20%. Tussen 4 en 6% vervorming tonen de 

metingen van de positronparameters een plotse toename van de defecten-

concentratie. Bij vervormingen boven de 10% lijkt er een verzadiging van de 

defecten-concentratie op te treden.

Ook de verandering van het type defect en de evolutie van de concentratie aan 

verschillende defecten werd in functie van de gloeitemperatuur bestudeerd. Het 

effect van het isochrone gloeien op de door vervorming geïnduceerde defecten 

en op de transformaties in FeMnSiCrNiC werd bestudeerd door gebruik te 
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maken van de positronannihilatietechniek. Daartoe werden vervormde 

FeMnSiCrNiC monsters (2 - 20% verlenging) isochroon gegloeid (15 minuten) 

op temperaturen van kamertemperatuur tot 500°C in stappen van 100°C. Het 

monster dat vervormd werd tot 2% bevat, na gloeien bij 500°C,  vrijwel geen -

fase meer. Voor het monster dat vervormd werd tot 20% is na gloeien op 500°C 

de S-parameter hoger dan deze gemeten in het defectvrije (referentie-)monster. 

Dit betekent dat er in het 20% vervormde monster, na gloeien bij 500°C, nog 

steeds defecten aanwezig zijn. XRD en OM waarnemingen tonen aan dat 

vervormingen van 2% en 20% een spanningsgeïnduceerde transformatie van 

austeniet naar -martensiet induceren. De -martensiet wordt waargenomen als 

dunne parallelle lijnen met een donker contrast binnen de austenietkorrels. 

Wanneer de spanning toeneemt ontstaan er grotere -domeinen. Tegelijkertijd 

ontstaan er zones waar dunne parallelle -platen aanwezig zijn, die ook ’-

martensiet bevatten. Bij gloeien op verhoogde temperatuur doet zich de inverse 

transformatie van -martensiet naar austeniet voor. In het 2% vervormde monster 

is er na gloeien op 500°C vrijwel geen -fase meer aanwezig. Voor 

vervormingen kleiner dan 4% wordt de beweging van Shockley partiële 

dislocaties niet gehinderd omdat er enkel primaire ε-varianten doorheen de 

austeniet bewegen onder invloed van de spanning. In de microstructuur van het 

20% vervormde monster is er nog steeds -martensiet aanwezig.

Er werden proeven uitgevoerd om de invloed van koolstoftoevoegingen aan het 

FeMnSiCrNi basismateriaal te bestuderen. Deze experimenten werden met 

verschillende meettechnieken op kamertemperatuur uitgevoerd. De 

dislocatieconcentratie werd berekend in de legeringen FeMnSiCrNi en 

FeMnSiCrNiC. Uit de berekeningen volgt dat er in de legering zonder koolstof 

meer dislocaties aanwezig zijn dan in de legering met koolstof.

Een derde materiaal op ijzerbasis dat eveneens bestudeerd werd is elektrisch 

staal (FeSi-staal) met Si-toevoegingen die tot 6,5 m.-% kunnen oplopen. Het 

toevoegen van Si aan Fe zorgt ervoor dat de magnetische eigenschappen van het 

materiaal beter worden: reductie van de magnetostrictie en de ruis en een 

vermindering van het energieverlies bij gebruik, via een verhoging van de 

elektrische resistiviteit. De magnetische eigenschappen worden ook beïnvloed 
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door de korrelgrootte en door de kristallografische textuur. Alhoewel de 

magnetische eigenschappen van elektrisch staal verbeterd zijn, vertoont het 

materiaal tegelijkertijd een groot nadeel door een drastische vermindering van de 

plastische vervormbaarheid, bvb. bij het walsen tot dunne plaat. 

Talrijke problemen ontstaan wanneer het silicium gehalte stijgt tot 6,5 m.-% 

(waarde voor minimale magnetostrictie). Staal met een hoog Si-gehalte is te hard 

om nog een koudvervorming te kunnen ondergaan, hun bewerkbaarheid is sterk 

gereduceerd. In voorliggend onderzoek worden de defecten bestudeerd in FeSi-

monsters die warm- (1000°C) en koudvervormd (kamertemperatuur) werden. 

Eén van de centrale doelstellingen van het werk is het vergelijken van de 

defectconcentratie in de monsters die vervormd werden bij hoge temperatuur en 

bij kamertemperatuur. 

Resultaten van de positronannihilatieproeven tonen aan dat de temperatuur 

waarbij de monsters vervormd worden bepalend is voor zowel de concentratie 

als het type defect dat in de legeringen door de plastische vervorming 

geïnduceerd wordt. Mono-vacaturen zijn de defecten die in hoofdzaak aanwezig 

zijn wanneer de legering bij hoge temperatuur vervormd wordt. Wanneer de 

legering echter bij kamertemperatuur vervormd wordt, dan worden dislocaties en 

vacatureclusters gevormd. Voor de legeringen die vervormd worden bij hoge 

temperatuur stijgt zowel de positron levensduur (2) als de S-parameter wanneer 

het siliciumgehalte in de legering toeneemt. Voor de legeringen vervormd bij 

kamertemperatuur treedt er saturatie-invang op. Er zijn twee 

levensduurcomponenten aanwezig: de eerste heeft een waarde rond 150 ps en 

wordt toegeschreven aan positronen die annihileren uit een ingevangen toestand 

in dislocaties, de tweede component heeft een waarde rond 250 ps en suggereert 

de aanwezigheid van vacatureclusters.

Als algemeen besluit kan gesteld worden dat er aangetoond werd dat het 

mogelijk is op basis van PAS verschillende types defecten te herkennen en te 

classificeren die in verschillende op ijzer gebaseerde legeringen optreden en 

specifieke waarden te bekomen voor de verschillende positronparameters die 

deze roosterfouten typeren.
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HCP hexagonal close packed
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Chapter 1
Introduction
______________________________________________________

1.1 General introduction

The material research is of the utmost importance, since the design and 

construction of new products often requires materials of high quality. This means

that there is a demand for detailed knowledge of, e.g., the atomic structure, the 

crystal lattice defects, the concentration of defects, and interface effects of the 

used materials. Therefore, analysis techniques that yield qualitative or 

quantitative information are not only desirable, but also necessary. 

Positron physics is concerned with the interaction of positrons with matter. From 

the discovery of the positron seventy five years ago, positron physics has 

developed into an important technique for providing unique information on a 

wide variety of problems in condensed-matter physics. Positron annihilation 

lifetime spectroscopy (PALS), Doppler broadening of annihilation radiation 

(DBAR) and the slow positron beam were the main positron techniques used.

DBAR measurements were done in-situ with a tensile machine. The positron 

techniques are used to identify the kind of defects and also to calculate the 

concentration of defects (vacancies or dislocations). The phase transitions can 

also be identified. The optical microscopy (OM) and the X ray diffraction (XRD) 

are used to see the phase transition and correlate their results with the ones of the 

positron techniques.

1.2 Iron based alloys

Different kinds of iron based alloys are developed according to what properties 

or applications they are intended for. In the present work of this thesis, the 

FeMnSiCrNi(C) shape memory alloys have been studied. Iron as the base 
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material has also been investigated. The effect of the deformation of FeSi at high 

and low temperature has been studied. 

1.2.1 FeMnSiCrNi(C) Shape memory alloys (SMAs)

Shape memory alloys (SMAs) are one of these kinds of materials, which are 

characterized by a shape memory effect and which may show effects of super-

elasticity, which ordinary metals and alloys do not have. SMAs are materials that 

have the ability to return to some or all previously defined shape or size when 

subjected to the appropriate thermo-mechanical procedure [1]. More than 20 

alloys have been reported to show substantial shape memory effects. Only NiTi 

based alloys have been used for major technological applications [2]. The NiTi 

alloys have an excellent shape memory behavior and are corrosion resistant but 

the cost of these alloys is very high. Copper based shape memory alloys also 

have some minor applications. These alloys are less expensive but their low 

corrosion resistance reduces the number of applications [3]. 

It has been found that Fe-based alloys such as FePt, FePd, FeNi, FeAlC and 

FeMnSi could exhibit a shape memory effect (SME) but under certain 

conditions. The determining factors influencing the transformation are the extent 

of pre-strain, the deformation temperature, the degree of thermo-mechanical 

training and the annealing temperature. Some of these Fe-based SMAs are 

expensive such as FePt and FePd, so that, they are only used in the academic 

research. Other materials have incomplete SME. The very low Ms of FeNiCoTi 

(below 200 K) is the main disadvantage for this alloy being widely used. 

Ferrous shape memory alloys based on the FeMn alloy system have received 

much attention since the eighties of the last century and there are definite signals 

from the shape memory materials research community that they may become a 

new class of one-way SMAs of great technical importance due to their cost-

effectiveness [4, 5]. The shape memory effect in FeMnSi alloys was first 

reported by Sato et al. [6]. They found that a single crystal of a Fe-30wt.%Mn-

1wt.%Si alloy exhibited a complete shape memory effect when deformed in the 
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<414> direction. Sato et al. [7] succeeded in developing polycrystalline FeMnSi 

shape memory alloys. Murakami et al. [8] developed the polycrystalline FeMnSi 

shape memory alloys and reported the nearly complete shape recovery for alloys 

with a composition of 28% Mn and 6 wt.% Si. Moriya et al. [9] and Otsuka et al. 

[4] developed FeCrNiMnSi and FeCrNiMnSiCo shape memory alloys, which 

show excellent corrosion resistance. Tsuzaki et al. [10] have found that adding 

0.3 wt.% carbon to the Fe–17%Mn–6%Si alloy improves the SME of this alloy. 

Thermo-mechanical treatments are necessary to obtain a good shape memory 

effect [11, 12]. The best thermo-mechanical treatment consists of a 

recrystallization, a deformation at room temperature and a final annealing. 

One-way shape memory alloys have been used in various applications. Joining 

pipes is one of the most important applications of the FeMnSi based SMAs (see 

Figure 1.1) [13]. The alloys are also used for heavy duty joint components for 

railway constructions [13- 15]. 

Figure 1.1 A schematic drawing of pipe joints (two pipes and a shape 

memory alloy [13])

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TY2-4KR3JN8-8&_user=794998&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000043466&_version=1&_urlVersion=0&_userid=794998&md5=e6b18dbcae405fb9365cf52744a0f346#bbib10
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1.2.2 FeSi Electrical Steel

The importance of FeSi alloys in electrical industry arises from their excellent 

electrical and magnetic properties, which are optimal when the Si content 

reaches 6.5 wt.%. At this concentration the electrical resistance is increased, the 

eddy current loss is reduced and the magnetostriction is almost zero. This 

concurrence of properties makes Si steel the most suitable material for the 

construction of electrical devices like transformers and motors. However, by 

increasing the Si concentration, the alloy becomes very brittle and therefore 

difficult to be cold rolled into the required thin sheets. This embrittlement is 

mainly due to ordering phenomena [16]. Surface diffusion techniques for the 

enrichment on Si and/or Al have shown its beneficial effect on magnetic 

properties like power losses and magnetostriction. 

Among these techniques hot dipping in a hypereutectic AlSi bath is a promising 

alternative under development at Ghent University (Belgium). This procedure 

modifies the alloy composition through the deposition of a Si–Al rich layer on 

top of a substrate with a lower Si-content and a subsequent diffusion annealing 

of Si and Al in the steel matrix until the desired content is obtained [17].

1.3 Positron annihilation spectroscopy (PAS)

The positron is the antiparticle of the electron. This was first predicted by Dirac 

in 1930 [18]. In the special relativity theory, the relationship between the energy 

E and the linear momentum p of the free particle with rest mass m is 

E2 = p2 c2 + m2 c4                          (1.1)

where, c is the velocity of light. The solution of this equation is E = ± 

c 222 cmp  . His theory contained a solution with a negative energy in 

addition to the positive energy solution that corresponds to the electron. Dirac 

then argued that, if there was a negative energy state, the electron with positive 

energy could decay into the negative energy state with the emission of 2mc2
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radiation. He concluded that an electron with negative energy moves in an 

external field as thought it carries a positive charge. He had predicted the 

annihilation of an electron-positron pair. However, the only positively charged 

particle known at that time was a proton, and he assumed that the particle was a 

proton, even though the difference in the mass of an electron and a proton was 

puzzling. 

The first experimental discovery of a positron came in 1932 when Anderson was 

measuring traces of cosmic rays in cloud chambers [19, 20]. Positron was thus 

the first antiparticle in physics. Anderson believed the pair production theory of 

Dirac only when he saw the positron and electron tracks, which are always 

present in his cloud chamber. This new particle penetrated a 6 mm lead plate and 

made a path much longer than that expected for a proton (see Figure 1.2). 

Anderson concluded that the particle should to be less massive than a proton and 

most likely has the mass of an electron. He called this new particle “the positive 

electron” or “positron”. In 1936 Anderson was honoured with the Nobel Prize 

for his discovery of positrons.

Figure 1.2 A 63 million volt positron passing through a 6mm lead plate 

and emerging as 23 million volt positron (Anderson [19])



6

In 1934 Thibaud [21] observed the annihilation of positrons with electrons. The 

bound state of a positron and electron was predicted classically by Mohorovicic 

[22] and quantum mechanically by Ruark [23] in 1945. In 1949 DuMond [24] 

discovered that the 511 keV annihilation gamma-ray line was broadened and 

could attribute this to the momentum of the annihilating electron. This was the 

birth of the development of the Doppler Broadening of annihilation Radiation 

(DBAR) spectroscopy. In 1950 Deutsh discovered the positronium atom [25]. 

In 1952 Bell and Graham performed positron lifetime measurements in liquids 

and solids [26]. They were the first to use a timed beam set-up for fast positrons. 

During the 1960’s electronics improved to the point where PALS was able to 

probe positron lifetimes in metals (typically a few hundred picoseconds). By the 

end of the 1960’s it was realized that the positron annihilation parameters are 

sensitive to the lattice imperfections. Positrons can be trapped in crystal defects 

which, means that the wave function of a positron is localized at the defect site 

until annihilation. The sensitivity of positron annihilation spectroscopy (PAS) to 

the defects in deformed materials was first realized by Dekhtyar et al. 1964 [27], 

Berko and Erskine 1967 [28], and MacKenzie et al. 1967(29). The first 

observation of trapping of positrons in dislocations in metals and alloys was by 

Dekhtyar et al. [27]. Berko and Erskine [28] studied the angular correlation of 

deformed and annealed Al and concluded that the positron would be localized on 

the dilatational side of a (edge) dislocation. MacKenzie [29] showed this 

behavior for thermal vacancies in metals. Arponen et al. [30] assumed that the 

positron lifetime observed in deformed metal is due to dislocation line. Doyama 

and Cotterill [31] listed the lifetimes for annihilation in the bulk and dislocations 

for a number of metals. They measured the positron annihilation at dislocation 

loops in Al to be 250 ± 30 ps. This value is in agreement with the value of the 

deformed Al measured by Hautojarvi et al in 1970 [32], which is 229 ps. 

The positron annihilation technique has been applied to the study of various 

phase transitions in condensed matter (Fukushima and Doyama 1979) [33]. 

Some measurements of positron annihilation have been made for martensitic 

transformations in metals and alloys (Troev et al., 1977 [34], Tanigawa et al. 
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1976 [35] and Hauytojarvi et al. 1979 [36]). Dislocations produced during the 

transformation must be considered when martensitic transformation is studied by 

positron annihilation [33, 36]. D. Segers, J. Van Humbeeck and I. Hurtado 

studied different types of shape memory alloys [37-39]. Their most interesting 

work is described in reference [39] where they studied the defect accumulation 

during martenstic transformation in FeMnSi shape memory alloys. They 

determined the phase transition temperatures of the shape memory alloys using 

the positron annihilation spectroscopy.

A number of studies have been published in which the annihilation 

characteristics of trapped positrons in cold rolled metals are described in terms of 

dislocations [40, 41]. U. Holzwarth et al. [42] carried out the positron lifetime 

measurements at room temperature before and after isochronal annealing of 

cylindrical, machined fatigued specimens and of round slabs of austenitic 

stainless steel AISI316L deformed in compression. Annealing experiments are 

evaluated in terms of vacancy migration with vacancy sinks at grain boundaries 

and dislocations. 

Techniques for defect analysis There are many methods for detection of open 

volume defects. Transmission electron microscopy (TEM), scanning tunnelling 

microscopy (STM), atomic force microscopy (AFM) and optical microscopy 

(OM) are the most common used techniques. Neutron scattering and X-ray 

scattering are also used in defect spectroscopes. Each of these techniques has 

specific regions of high sensitivity and resolution. Howell et al. [43] compared 

the capabilities of these techniques and positron annihilation lifetime 

spectroscopy. Figure 1.3 shows the comparison of these techniques with PALS. 

Each method is displayed by its ability to resolve or detect defects of some size 

at some sample depth. PALS is effective in providing size information at any 

sample depth for defect sizes below the effective resolution of other generally 

applied techniques.
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   a) b)

Figure 1.3 Comparison of positron annihilation spectroscopy to other 

techniques (according to Reference [43])

1.4 Aim of the work

The general aim of this doctoral thesis is to try to use the non-destructive 

Positron Annihilation Spectroscopy (PAS) technique together with X-ray 

diffraction (XRD), optical microscopy (OM) and other techniques to investigate 

the different kinds of defects formed during the deformation of iron based alloys. 

The FeMnSiCrNi shape memory alloy is the main material to be studied. The 

phase transformation, the effect of order of deformation and the annealing of 

these alloys has to be investigated. The goal also included the calculation of the 

defect concentration in these materials. The effect of increasing the Si content in 

the FeSi has to be studied. The different kinds of defects formed when the FeSi 

samples are deformed at high and room temperature has to be investigated. 

1.5 Scope of this thesis

The thesis consists of 9 chapters and can in principle be divided into three main 

parts. The first part contains three chapters, where general aspects are described.
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The second part contains 5 chapters with experimental results. Part 3 contains the 

last chapter where general conclusions of this work are summarized. 

The structure of this thesis is as follows. The present chapter gives an overview 

of the materials used in this study and also the history of the positron physics. 

A literature study about the materials used is presented in chapter 2. This chapter 

proceeds with discussing the principles of the positron annihilation spectroscopy. 

In chapter 3, the used experimental methods are described. The effect of 

annealing of deformed iron was studied in chapter 4. The recovery temperature 

range was detected using the positron annihilation measurements. The impurities 

affect the recovery temperature for the deformed iron. In chapter 5 a study of 

defects induced in FeSi, which is deformed at high temperature and low (room) 

temperature was done by positron annihilation spectroscopy (PAS). The effect of 

the Si content is also studied. The influence of adding C to the FeMnSiCrNi 

alloy is investigated in chapter 6. In chapter 7, the martensitic transformation and 

defects induced by the deformation (tensile strain) of a FeMnSiCrNiC alloy is 

described. Samples deformed from 2 to 20% will be used in this study to have an 

idea about the kind of defects formed and the phase transition takes place with 

increasing the tensile deformation. The effect of annealing of the FeMnSiCrNiC 

alloy is presented in chapter 8. The general conclusions of all the chapters and 

the future work as a consequence of the results of this thesis are included in 

chapter 9.  
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Chapter 2
Literature study
______________________________________________________

The purpose of this chapter is to give an introductory overview on some general 

aspects of iron based alloys (FeSi electrical steel and FeMnSiCrNi shape 

memory alloys), their properties and applications.

2.1 FeSi electrical steel

2.1.1 Definition of steel

Steel is a hard, strong alloy of iron and carbon, usually containing between 0.02 

and 1.5 wt.% carbon, often with other constituents such as manganese, 

chromium, nickel, silicon, molybdenum, tungsten, cobalt, or copper depending 

on the desired alloy properties. Steel is widely used as a structural material. 

2.1.2 Electrical steels

Electrical steels are special flat steel products, which are soft magnetic materials, 

produced as thin steel sheets in the range of 0.15 to 1 mm thickness. The amount 

of production is about 1% of the worldwide steel production [1]. The addition of 

silicon increases the electrical resistivity of the steel, which decreases the 

induced eddy currents and thus reduces the core loss. Si-steel is the soft magnetic 

material, which is most in demand. It represents about 80% of the total 

production of soft magnetic materials. At a silicon content of approximately 6.5

wt.%, the magnetic permeability increases to a maximum value and 

magnetostriction falls to zero. At the other side when the silicon content exceeds 

the workability is dramatically reduced, making it extremely difficult to produce 

thin silicon steel sheets by the traditional hot-cold rolling process.
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The concentration levels of carbon, sulfur, oxygen and nitrogen must be kept low 

in the alloying process as these elements are responsible for the presence of 

carbides, sulfides, oxides and nitrides in the alloy. These compounds increase 

hysteresis losses.

2.1.3 Types of electrical steel

There are many types of electrical steels such as lamination steels, non-oriented

and grain-oriented electrical steels.

The lamination steels are alloyed with 0.2 to 0.8 wt.% Mn and 0.03 to 0.15% P 

for resistivity. Carbon is added up to 0.08%. They are used for the alternating 

current applications in which magnetic properties are not very critical [2]. 

The grain-oriented electrical steels reveal a high anisotropy of the magnetic 

properties. They have superior magnetic properties in the rolling direction. They 

are developed to provide a low core loss and high permeability, which are

obtained through a combination of a well-defined chemical composition, rolling 

and heat treatment. For that reason the grain-oriented electrical steels are 

basically used in magnetic cores of transformers, where the magnetic flux is 

mainly following one direction. Grain oriented steels are expensive compared to 

the non-oriented steels.

Non-oriented steels are widely used as the magnetic core material in a variety of 

electrical machinery and devices, particularly in motors where low core loss and 

high magnetic permeability in all directions of the strip are desired. Magnetic 

properties of non-oriented electrical steels are improved by the control of the 

chemistry, the grain size and the texture. The electrical steels, which are used in 

rotating electrical machines or in transformers, have to be processed in order to 

satisfy the industry requirements concerning magnetic and mechanical 

properties. This means that they have to have low power losses, a high 

permeability and a good cutting behavior [3]. 
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We have to mention that, the FeSi steel used in the present work is non-oriented 

electrical steel.

2.1.4 Magnetic properties

There are many properties that affect the final product of the electrical steel. The 

most important properties are:

2.1.4.1 Magnetic Permeability

The permeability  is the degree of magnetization of a material that responds 

linearly to an applied magnetic field. It is a constant of proportionality that exists 

between magnetic induction B and magnetic field intensity H. It is determined as 

follows:

 = B/H                                  (2.1)

2.1.4.2 Magnetostriction

It is a property of ferromagnetic and also ferrimagnetic materials that causes 

them to change their dimensions in the presence of a magnetic field. 

Ferromagnetic materials have a structure divided into domains, each of which is 

a region of uniform magnetic polarization. When a magnetic field is applied to 

the material, the boundaries between the domains shift and the domains rotate. 

Both of these effects cause a change in the material's dimensions [4]. The 

materials exhibiting a large magnetostriction can be used for various sensor 

applications, because it influences the shape of the loop. Even though the 

magnetostriction of the FeSi alloys is small (below 10 ppm), it is responsible for 

the acoustic noise in transformers.

2.1.4.3 Core loss

In transformers or inductors, some of the power that would ideally be transferred 

through the device is lost in the core, resulting in heat. There are many reasons 

for such losses: 
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1. Hysteresis loss The larger the area of the hysteresis loop, the more loss per 

cycle. Hysteresis loss is a heat loss caused by the magnetic properties of the 

armature. When an armature core is in a magnetic field, the magnetic particles of 

the core tend to line up with the magnetic field. When the armature core is 

rotating, its magnetic field keeps changing direction. The continuous movement 

of the magnetic particles, as they try to align themselves with the magnetic field, 

produces molecular friction. This molecular friction produces heat. Hysteresis 

loops are obtained by applying a cyclic magnetic field H to the specimen and by 

recording the magnetic induction B along the field direction. It can take a variety 

of different forms. The method of determining the hysteresis loop depends on the 

type of magnetic material. Soft magnetic materials need a high resolution at low 

fields, while hard magnetic materials need sufficiently high external fields.  

2. Eddy current loss

The induction of eddy currents within the core causes a resistive loss. The higher 

the resistance of the core material the lower the loss will be. Lamination of the 

core material can reduce the eddy current loss.

3. Movement of magnetic domains

As the magnetic field changes, some magnetic domains grow while others 

shrink, thus the walls of the domains can be said to move. This movement 

absorbs energy.

Soft magnetic materials These materials are easily magnetized, where a low 

coercive field is a prime requirement. The main application of these materials is 

the cores of rotating electrical machines and transformers. The parameter, often 

used as a figure of merit for soft magnetic materials, is the relative permeability 

(r), which is a measure of how readily the material responds to the applied 

magnetic field. The other main parameters of interest are the coercivity and 

saturation magnetization, which are characterized by the hysteresis loop. The 

loop should exhibit a small area, which is proportional to the losses.

http://www.answers.com/topic/magnetic-domains
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Hard magnetic materials These materials are stable and are a permanent source 

of magnetic field, insensitive to external actions. They are characterized by a 

broad hysteresis loop. Hysteresis loops may take many different shapes. There 

are two important quantities, which are the remanent magnetization (remanence, 

Mr and coercive field Hc).

Remanence It is the natural quantity expressing the fact that the 

ferromagnetic material can be spontaneously magnetized even in the absence of 

external actions.

Coercive field This is the field needed to bring magnetization from the 

remanent value to zero. It measures the order of magnitude of the fields that must 

be applied to a material in order to inverse its magnetization. Materials can be 

classified according to the values taken by these parameters. It is common to 

subdivide materials into soft and hard magnetic materials [5].

2.1.5 Chemical composition 

To have different applications for the iron alloys, small amounts of selected 

elements should be added to modify its properties. An example for that is the 

addition of Si or Al that produce a significant increase in the resistivity. The 

details of the iron-rich side of the FeSi phase diagram shown in Figure 2.1

indicate that silicon is soluble in -Fe up to about 4 wt.%. Beyond that limit, the 

brittle intermetallic Fe3Si (with a B2 or DO3) phase may also be present. 
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Figure 2.1 Fe-Si phase diagram

The addition of Si to iron causes changes in a number of physical properties 

(Figure 2.2). It is known that Si not only increases the electrical resistivity but 

also significantly reduces the magnetic anisotropy and has little effect on 

magnetostriction up to 4 wt.%.
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Figure 2.2 Variation of physical properties of iron with Si content [6]  

The addition of Si to iron produces significant effects in lowering the core loss. 

Figure 2.3 shows a monotonic decrease in the core loss of low carbon steel with 

increasing Si content (increasing resistivity) and lower core loss for thinner 

gauge sheet [6]. 

Figure 2.3 Core loss at 60 Hz and 15 kG for low-carbon and silicon 

steels.
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2.2 FeMnSi Shape memory alloys
Shape memory alloys are a unique class of metal alloys that can recover apparent 

permanent strains when they are heated above a certain temperature. The shape

memory alloys have two stable phases - the high–temperature phase, called 

austenite, and the low–temperature phase, called martensite. There are different 

kinds of SMAs, and this study is concerned about the FeMnSi systems. 

FeMnSi based shape memory alloys have been widely studied in recent years. It 

has been found that the efficiency of the shape memory FeMnSi based alloys is 

affected by many factors such as pre-strain [7, 8] deformation temperature [9,

10], annealing treatment [11, 12] and thermo-mechanical training [9, 11-14]. All 

of these effects are highly correlated with ↔ transformation, which governs 

the shape memory effect in FeMnSi based shape memory alloys. 

2.2.1 Shape memory effect (SME)

The SME is a unique property of certain alloys exhibiting martensitic 

transformations. If the alloy is deformed in the low temperature phase, it 

recovers to its original shape by the reverse transformation upon heating above a 

critical temperature called the reverse transformation temperature (see Figure 

2.4). This effect was first found by Chang and Read in an AuCd alloy [15]. 

SMAs could also have the super-elasticity (SE) property at a higher temperature, 

which is associated with a large nonlinear recoverable strain upon loading and 

unloading.

Te
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Austenite

Cooling

Heating

Loading

Twinned martensite Deformed martensite

Load

Figure 2.4 Microscopic Diagram of the Shape Memory Effect



21

2.2.1.1 One- way shape memory effect

The one-way shape memory effect refers to the memorization of one shape, i.e. 

the original ‘hot shape’, which is recovered on reheating a deformed sample. The 

only restriction is that the deformation may not exceed a certain strain limit (up 

to 8%) [16]; as long as the total strain does not induce permanent plastic flow 

(see Figure 2.4). The deformation may be of any type (e.g. tension, compression, 

bending or more complex combinations).

During the one–way shape memory effect internal structural changes take place. 

When a load is applied to the self–accommodated martensite, the structure 

becomes deformed through variant rearrangement, resulting in a net macroscopic 

shape change. When the alloy is unloaded this deformed structure remains, 

resulting in an apparent permanent strain. If the alloy is now reheated to a 

temperature above the martensitic transformation range, the original parent phase 

microstructure and macroscopic geometry is restored. This is possible because 

no matter what the post–deformation distribution of martensite variants are, there 

is only one reversion pathway to the parent phase for each variant [17]. If the 

alloy is cooled again under the martensitic finish temperature, a self–

accommodated martensite microstructure is formed and the original shape before 

deformation is retained. Thus a one–way shape memory is achieved.

2.2.1.2 Two- way shape memory 

In the one-way shape memory effect there is only one shape remembered by the 

alloy. That is the parent phase shape (so-called hot shape). The two-way shape 

memory effect is the effect that the material remembers two different shapes: one 

at the low temperature, and one at the high temperature. This can be achieved 

without the application of an external force (intrinsic two way effect). The two-

way shape memory effect is only obtained after a specific thermo-mechanical 

treatment, called training. 

2.2.1.3 Pseudo-elasticity or the super-elastic effect

It is possible to induce a phase transformation by applying a pure mechanical 

load isothermally at a temperature above austenite finish temperature. The result 
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of this load application is fully detwinned martensite and very large strains are 

observed. The martensite formed in this way is known as stress–induced 

martensite and is only stable under the application of stress. On unloading, the 

reduction in stress and surrounding elastic forces generated during the 

transformation cause the martensite to return back to the original parent phase. 

This effect is known as pseudo-elastic or super-elastic effect [17].  Reversible 

strains up to 8% of the initial length can be obtained, compared to 0.2% elastic 

strain of a common metallic material. Figure 2.5 shows the mechanical behavior 

of such super-elastic material, and compares it with a conventional metallic 

alloy. 

Figure 2.5 Comparison of the stress–strain curves of conventional and 

super-elastic alloys [17].

Since both SME and SE are related to the martensitic transformation (MT), so 

we should define the MT process here.

2.2.2 Martensitic transformation (MT)

MT is diffusion less phase transformation in solids, in which atoms move 

cooperatively, and often by a shear- like mechanism. Usually the parent phase 

(the high temperature phase) is cubic, and the martensite phase at lower 

temperatures has a lower symmetry (see Figure 2.6) [18, 19].
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Figure 2.6 (a, b) Schematic representation of the relation between the 

parent phase and the martensite phase [16- 17]

When the temperature is lowered below the critical value (martensite start 

temperature Ms), the MT starts by a shear-like mechanism. Figure 2.6 shows the 

crystallographic structure after the transformation. The martensite in region A 

and in region B, have the same crystallographic structure, but the orientations are 

different. These are called the corresponding variants of the martensite. Since the 

martensite has a lower symmetry, many variants can be formed from the same 

parent phase. If the temperature is raised, the martensite becomes unstable and 

the reverse transformation occurs. If the transformation is crystallographically 

reversible, the martensite reverts to the parent phase with the original orientation.  

The phase transformation can be determined by measuring some physical 

properties such as the change in the electrical resistivity with temperature (see 

Figure 2.7), or by measuring the positron annihilation lifetime and the S 

parameter (will be described in more detail in the next chapters).

(a)

                                                        

(b)
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Figure 2.7 Electrical resistance changes during cooling and heating FeNi 

and AuCd alloys, illustrating the hysteresis of the martensitic 

transformation on cooling, and the reverse transformation on heating, for 

non-thermoelastic and thermoelastic transformations respectively [18].

2.2.3 Morphology and substructure of ferrous martensite

In Ferrous alloys, a FCC austenite () is transferred to three kinds of martensites 

with different crystal structures depending on alloying elements and 

compositions:

 →' (BCC or BCT) martensite

 →HCP) martensite

 →FCT martensite



25

Table 2.1 Some Fe- based SMAs and their martensite structure

The most popular ferrous martensite is ' formed in FeC and FeNi alloys. The 

martensite is formed only in ferrous alloys with low stacking fault energy such as 

FeCrNi and Fe alloys with a high content of Mn. A shape memory effect has 

been observed in each of the three types of ferrous martensites. The ferrous 

shape memory alloys are listed in Table 2.1 [20]. The martensite morphology of 

all these alloys is a thin plate type with a planar interface.

2.2.4 Thermodynamic aspects

The martensitic phase transformation temperatures are:

Ms (martensite start temperature),

Mf (martensite finish temperature),

As (reverse transformation start temperature)

Af (reverse transformation finish temperature). It is the temperature above which 

the martensite becomes completely unstable.

Alloy   Composition Martensite

FePt

FeNiCoTi

FeNiC        

FeNiNb

25 at% Pt

23% Ni-10%Co-10%Ti

33% Ni-10%Co-4%Ti

31% Ni-10% Co-3%Ti

31%Ni-0.4%C

31%Ni- 7%Nb

’ (BCC, BCT)

’ (BCC, BCT)

’ (BCC, BCT)

’ (BCC, BCT)

’ (BCC, BCT)

’ (BCC, BCT)

FeMnSi 

FeMnSiC  

FeMnSiCrNi  

30%Mn-1%Si

(28 - 33)%Mn-(4-6)%Si

17%Mn-6%Si-0.3%C

(8-20)%Mn-(5-6)%Si

-(8-13)%Cr-(5-6)%Ni

 (HCP)

 (HCP)

 (HCP)

 (HCP)

FePd

FePt

30at%Pd

25at%Pt

FCT

FCT
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Since the martensitic transformations are not associated with a compositional 

change, the Gibbs free energy curves of both parent and martensite phases as a 

function of temperature may be represented as schematically shown in Figure 

2.8, where T0 represents the thermodynamic equilibrium temperature between 

the two phases. The driving force for diffusion less transformation is the 

difference in free energy between the martensite and the parent phase 

(austensite). ΔTS is the super-cooling required for nucleation of a martensitic 

transformation.

Figure 2.8 Schematic representation of free energy curves for both 

parent and martensitic phases, and their relation to the Ms and As

temperatures.

The distinction between the thermal martensite, stress induced and strain 

induced martensite

Thermal martensite is formed by cooling below the martensitic start temperature 

Ms. As the stress level increases, pre-existing nuclei can be activated at a higher 

temperature (see Figure 2.9): (stress induced martensite). When the stress 

reaches the yield strength of the parent austenite, at the Ms
 temperature, plastic 

deformation further assists the transformation by creating additional nuclei. 
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Ms
occurs where the stresses needed to originate the stress induced 

transformation exceed the yield stress of the austenite; therefore the strain 

induced transformation is activated at new sites produced by plastic deformation. 

Below Ms
, the yielding is initiated by transformation, and above Ms

, the 

yielding is initiated by slip or dislocation glide. Finally a temperature, Md, is 

reached when the insufficient driving force exists for any nuclei to be created 

and consequently the transformation does not occur at temperatures above Md.

Figure 2.9 The characteristic temperatures for the martensic

transformation [20].

2.2.5 Conditions for shape memory and super-elastic 
characteristic

The shape memory effect (SME) and the super-elasticity (SE) are closely related 

phenomena. The relation between them is shown in Figure 2.10. Both can be 

observed in the same specimen depending upon the test temperature as long as

the critical stress for slip is high enough. SME occurs below As, followed by 

heating above Af, while SE occurs above As, where martensites are completely 

unstable in the absence of stress. In the temperature regime between As and Af, 

both occur partially. The essential conditions for the realization of SME and SE 

are the crystallographic reversibility of the martensitic transformation and the 

avoidance of slip during deformation.
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Figure 2.10 Schematic diagram representing the region of shape 

memory effect and super-elasticity in temperature-stress coordinates

2.2.6 Shape memory effect (SME) associated in FeMnSi alloys

2.2.6.1 FeMnSi shape memory alloys

It was found that the shape memory effect of FeMnSi alloys is remarkably 

increased by introducing of a slight deformation (2.5%) and annealing at about 

873 K [21]. This kind of treatment is called ‘training’. After 5 cycles of training, 

a perfect shape memory effect is achieved. This treatment suppresses slip 

deformation through introducing dislocations (which raise the strength of the 

austenite matrix) and generates martensite at lower stress through introducing 

stacking faults in austenite (which act as nucleation sites for martensite).  

2.2.6.2 General features of →  martensitic transformation and →

reverse transformation

The → martensite transformation is produced by the motion of a/6<112> 

Shockley partial dislocations on every second (111) austenite plane. The stress-

induced  band consists of a single variant. The thermally induced or 

spontaneous transformation of  martensite is known to be generally self-

accommodating. The stress- induced  transformation is generally accompanied 
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by the selective motion of a single type of Shockley partial dislocation being 

most favorable to the direction of the applied stress. Therefore, the stress-

induced  band consists of a single variant. The →  reverse transformation 

occurs by the motion of Shockley partial dislocations with three kinds of 

equivalent shear directions in a similar way to the →forward transformation.

This reversible movement of transformation dislocation in FeMnSi alloys has 

been confirmed by surface relief observation of  martensite upon heating above 

Af temperature. The surface relief of the  martensite in these alloys almost 

completely disappears with the reverse transformation [18].

2.2.7 The effect of alloying elements

● Mn affects phase and magnetic transformation temperatures. The Ms

temperature decreases as the Mn content increases (Figure 2.11), while the Néel 

temperature (TN) increases. At certain Mn content, TN becomes equal to MS. For 

higher Mn content, where TN lies above Ms, no  martensite forms spontaneously 

because of the stabilization of austenite due to anti-ferromagnetic ordering. If TN

lies above Ms, even the stress induced transformation does not take place and no 

SME is observed. If TN is lower than MS, the austenite is not stabilized. For Mn 

contents from 28 to 34 wt.%, the Ms temperature lies above the room 

temperature, which allows the existence of thermally induced martensite which 

suppresses the stress assisted formation of martensite and leads to the 

degradation of the SME.

● Si lowers the stacking fault energy of the austenite. In addition, Si is a solid 

solution hardening element, which increases the yield stress of the parent 

austenite phase and prevents the permanent deformation by slip.

● Co also lowers the stacking fault energy of austenite. FeMnCo alloys [22] only 

exhibit a small shape memory effect comparable to FeMn binary alloys. This is 

very likely due to the fact that Co does not sufficiently strengthen the austenite 

matrix.
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Figure 2.11 Thermodynamic equilibrium as a function of the Mn content

in the FeMn alloy [14]

● Ni lowers the MS temperature. Ni is a  stabilizer, which suppresses the 

formation of ferrite and the  phase precipitation [23]. The presence of the inter-

metallic  phase reduces the fracture toughness of the alloy. Otsuka et al. [21] 

found evidence for the presence of the  phase in a Fe–25 wt.%Mn– 6 wt.%Si–9 

wt.%Cr alloy which had an initial shape recovery of more than 60% after a 2.5% 

strain deformation, but which broke when the deformation and heating cycles 

were repeated.

● Cr is added to improve the corrosion resistance. The yield stress of the 

austenite increases by adding Cr. An increasing Cr content lowers the MS 

temperature. Cr also lowers the stacking fault energy.

● the interstitial impurities C and N readily strengthen the parent austenite

phase, they may also form carbides and nitrides. The presence of precipitates can 

cause the SME to occur incompletely by suppressing the mobility of the 

austenite/martensite interface [24, 25].
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Figure 2.12 Change in the degree of shape recovery with increase in the 

training cycles in some FeMnSi alloys

Interstitials also influence the stacking fault energy; whereas C increases the 

stacking fault energy, N decreases it. C and N are also known to influence the 

ordering of the substitutional elements. The nitrogen atoms favor short range 

ordering. In contrast, C atoms have a tendency to cluster [26]. Tsuzaki et al. [27] 

have found that the shape memory effect is improved by the addition of C as 

shown in Figure 2.12. The effect of carbon is investigated in more details in 

chapter 6. The phase transformation temperatures, the magnetic transformation 

temperature and the recovered strain as a function of composition are listed in 

Table 2. 2. 
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Table 2.2 Composition dependence of phase and magnetic 

transformation temperatures and recovered strain

Specimen     Composition (wt.%)

Mn        Si      Cr         Ni

Recovered 

strain (%)

Transformation 

températures (K)

Ms     As        TN

14Mn-6Si-9Cr-5Ni

l5Mn-6Si-9Cr-5Ni               

16Mn-6Si-9Cr-5Ni

13.6     6         9.2        4.8            

14.7     6         9.2        4.9

15.7     5.9      9.2        4.9

0.97

1.11

1.55

  -       400       -

  -        389       -

  -        394       -

11Mn5Si-12Cr-7Ni

l3Mn-5Si-12Cr-7Ni

l6Mn-5Si-12Cr-5Ni

11.2     4.7      11.6      6.7

13.0     4.7      11.4      6.8

16.0     5.0      11.6      4.9

1.35

1.64

1.45

266     369       -

243     367       -

267     382      169

2.2.8 Applications of shape memory alloys

Shape memory alloys have a wide range of applications in different fields. 

NASA uses them in the space industry. They are used in many biomedical 

applications. Table 2.3 summarizes the applications of the One-Way SME, the 

Two-Way SME and the Super-elastic shape memory alloys.
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Table 2.3 The applications of the One-Way SME, the Two-Way SME and 

the Super-elastic shape memory alloys.

Some other applications:

Broken bones can be mended with shape memory alloys. The alloy plate has a 

memory transfer temperature that is close to body temperature, and is attached to 

both ends of the broken bone. From body heat, the plate wants to contract and 

retain its original shape, therefore exerting a compression force on the broken 

bone at the place of fracture. After the bone has healed, the plate continues 

exerting the compressive force, and aids in strengthening during rehabilitation. 

Dental wires: used for braces and dental arch wires, shape memory alloys 

maintain their shape since they are at a constant temperature, and because of the 

super elasticity of the shape memory alloys, the wires retain their original shape 

after stress has been applied and removed.

Golf Clubs: A new line of golf putters and wedges has been developed using 

shape memory alloys are inserted into the golf clubs.

Super-elastic Devices: One Way SME: Two Way SME:

Medical Guide wires 

Medical Guide pins 

Surgical Localization-

Hooks 

Eyeglass Frames 

Cellular Telephone-

Antennas 

Pipe Coupling 

Vibration Dampers 

Bendable Surgical 

Electrical Connectors 

Coffee pot thermostats 

Water temperature 

controller 

Green house window 

actuator 

Satellite Release Bolts 

Aero-space Actuators 
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________________________________
Chapter 3

Positron annihilation spectroscopy (PAS)
______________________________________________________

Introduction 

The first application of positron annihilation to the study of solid states was in 

the 1942 [1]. The antimatter equivalent of the electron, the positron, turns out to 

be an extremely sensitive probe for studying both structural and electronic 

properties of the solid lattice. In addition, the source intensities, typically 

required for most useful experiments are sufficiently low that probe-induced 

radiation damage is negligibly small. Tremendous advances in positron/solid-

state research were made; not only in the understanding of some of the 

fundamental aspects of positron-solid interactions but also in the development of 

new techniques and applications [2]. Positron annihilation is quite sensitive to 

lattice defects and is becoming a common technique used in the study of lattice 

defects and phase transition.

In the present chapter we will briefly discuss some of the fundamental aspects of 

positron annihilation spectroscopy, the most common experimental techniques, 

and at the end we will talk about the experimental techniques that have been used 

in our study. 

3.1 Annihilation of positrons in solids

When a positron approaches a solid surface it may be scattered back or may 

penetrate the sample. In the latter case, the positron rapidly loses its high kinetic 

energy, i.e. it thermalizes and diffuses into the sample. The kinetic energy of the 

positron is decreased to kT, where T is the temperature of the material and k is 
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Boltzmann’s constant = 1.38×10-23 J/K. The positron diffuses with this energy 

until it annihilates with an electron, which is relatively far from the nucleus 

(conduction electron). As a result of this annihilation, two gamma rays are 

emitted in most cases, each with an energy of 511 keV by the Einstein relation E

= mc2, where c is the velocity of light and m is the rest mass of an electron or 

positron. It is these -rays that are detected in the positron annihilation 

spectroscopy, and it is by means of these that one can probe the electronic and 

atomic environment from which the positron annihilates. The positron may be 

localized during its diffusion by traps, such as lattice defects, and then 

annihilates from a localized state.  

3.1.1 Annihilation rate

The electromagnetic interaction between electrons and positrons leads to the 

creation of gamma photons. The number of photons involved indicates the type 

of annihilation, such as two-gamma or three-gamma annihilation. The emission 

of two gamma photons has almost 100% probability in dense materials.

                     

e+ +e- → 2     3.1)



The annihilation probability per unit time (the annihilation rate ) can be 

obtained from the non-relativisitic limit of the 2 annihilation cross section 

derived by Dirac [3]. 



=r0
2 cne (3.2)

Where, r0 is the classical radius of electron or positron which is r0= e2/m0c
2 =

2.8 10-15 m, c is the velocity of light and ne is the electron density at the site of 

the positron. 

The equation above shows that  is independent of the positron velocity. The 

electron density can be calculated if the annihilation rate  which is the inverse 

of the lifetime  is known.
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3.1.2 Linear momentum contribution

If the positron-electron pair is at rest at the instant of annihilation, then the 2

photons are emitted in exactly opposite directions. The kinetic energy of the 

annihilation pair is typically a few electron volts. In their center of mass frame 

the photon energy is moc
2 = 511 keV and the photons are moving strictly into 

opposite directions.  Because of the nonzero linear momentum of the electron –

positron pair, the pair the photons deviate from co-linearity in the laboratory 

frame.  From Figure 3.1 the deviation angle is given as:

  
 PT/m0c (3.3)

PT is the linear momentum component of the electron – positron pair transverse 

to the photon emission direction. 180°-  is the angle between the two photons 

in the laboratory frame. The value of the linear momentum of the electrons in 

metals, based on the free electron model is of the order of 1.5 10-24 kg.m/s. In 

the laboratory frame the centre of mass is not at rest. Moreover the angle 

between the photons deviates from 180° if the positron-electron linear momentum 

is not along the line of emission of the two photons. This is shown in Figure 3.1. 

Figure 3.1 The vector diagram of the linear momentum conversation in 

the 2-annihilation process. P is the momentum of the annihilation pair, 

subscripts L and T refer to longitudinal and transverse components, 

respectively.
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3.1.3 Positronium

Positronium is a hydrogen-like atom composed of an electron and a positron, 

which is formed as a positron is slowed down in matter (typically an insulator)

and captured by an electron. Two forms are known: para-positronium (p-Ps) and 

ortho-positronium (o-Ps). Para-positronium the singlet 1S0 state, in which the 

spins of the positron and electron are oppositely directed (antiparallel spins), 

decays by annihilation into two photons, with a mean life of about one-tenth of a 

nanosecond (or 10-10 second). Ortho-positronium the triplet 3S0 state, in which 

the spins are in the same direction (parallel spin), annihilates into three photons 

with a mean life of about 100 nanoseconds (10-7 second).

The existence of positronium was predicted by Mohorovicic in 1934 [4]. The 

name "positronium" was introduced by A. E. Ruark in 1945 [5]. It was 

discovered by M. Deutsch in 1951 The Schrödinger equation for positronium is 

identical to that for hydrogen, where the reduced mass of the hydrogen atom is 

replaced by one half of the electron mass (Akhiezer and Berestetskii (1965)) [6].

The energy difference between these spin states (hyperfine splitting) is 8.4x10-4

eV.

3.1.3.1 Formation of positronium

The electron density in matter must be sufficiently low in order to allow the 

formation of positronium. In metals, it is hard to talk about positronium. The 

high density of free electrons there will prevent the positron to bind with a single 

electron and forming a positronium [7].

There are several models for positronium formation, which were reviewed in a 

monograph by Mogensen (1995) [8]. In the Ore- gap model (1949) [9],

positronium is formed during slowing down of positrons at energies E+ in the 

"Ore gap", Eion- 6.8 eV < E+< Eion. Eion is the ionization energy of molecules or 

atoms in the crystal, i.e. the energy necessary to release the electron for the Ps 

formation. This model can only be applied for solids.

http://www.britannica.com/eb/topic?idxStructId=443147&typeId=13
http://www.britannica.com/eb/topic?idxStructId=433537&typeId=13
http://www.britannica.com/eb/topic?idxStructId=433537&typeId=13
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There is another model which is called the bubble model of the Ps states in 

liquids was introduced by Ferrell (1958) [10]. The most accepted model 

nowadays is the "spur model" by Mogensen (1974) [11]. Positronium is formed 

mainly by the reaction between the positron and an excess electron in the spur. 

The positron spur is the terminal track of the positron, formed when it loses the 

last part of its kinetic energy. 

The blob model for Ps formation was introduced by Byakov and Stephanov [12].

They concentrated on calculating the intensity of the long lifetime component, 

particularly its dependency on an applied electrical field, but they ignored the 

details of the sub nanosecond behavior of positrons and the age-dependent 

formation of Ps [13].

3.1.3.2 Positronium molecules

With a more intense positron source, D. B. Cassidy and A. P; Mills [14] expected

an increase of the Ps density to the point where many thousands of atoms interact 

and can undergo a phase transition to form a Bose–Einstein condensate. The 

interactions between Ps atoms have been studied by implanting intense positron 

pulses into a thin film of porous silica.

3.2 Conventional Experimental work

3.2.1 Positron sources

Positrons emitted during nuclear decay can be used in laboratories. Common 

sources are listed in Table 3.1. The stopping profiles of - particles in solids 

decrease exponentially with increasing penetration depth z, P (z) ~ exp (-z/z0), 

where the typical mean penetration depths z0 are of the order of 10-100 m. Thus 

positrons from radioactive sources probe volume properties of matter. 
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Table 3.1 Positron sources commonly used

Nuclei Half-life +-decay (%) Energy emitted (Max.) 

Mev
22Na 2.62 y 91 0.545
55Co 18.2 h 81 1.5
57Ni 36.0 h 46 0.85
58Co 71.3 d 15 0.475
64Cu 12.80 h 19 0.656
90Nb 14.6 h 54 1.5

From the table above, it is clear that 22Na is the most convenient source because 

of its long half-life (2.62 year) and its high decay efficiency of 90.4 % (Figure

3.2). Positrons can be obtained from the + -decay of radioactive isotopes, e.g. 

from 22Na according to the decay reaction  

22Na 22Ne +e. (3.4)

The 22Na isotope has other advantages. The very important one is the appearance 

of a 1.27 - MeV - quantum almost simultaneously with the positron, which 

enables positron lifetime measurement by a start–stop coincidence -

spectrometer. Since the biological half-life for sodium is only a few days, the 

accidental contamination of laboratory personnel is less harmful. Moreover, the 

manufacture of laboratory sources is simple, due to the easy handling of different 

sodium salts in aqueous solution, such as sodium chloride or sodium acetate. 

Besides, a reasonable price makes this isotope the most common used source 

material in positron research. A simplified decay scheme is shown in Figure 3.2.
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Figure 3.2 Decay scheme of the radioactive isotope 22Na. 90.4 % of the 

isotope decays by emission of a positron and an electron neutrino to the 

excited state of 22Ne. The ground state is reached after 3.7 ps by 

emission of a - quantum of 1.274 MeV. Competitive processes with 

lower probabilities are electron capture (EC) and direct transition to the 

Ne ground state.

3.2.1.1 The preparation of a source

The sources are prepared by evaporating a solution of a 22Na salt on a thin metal 

or polymer foil e.g. Al, Ni and Kapton. Sources of weak activity (8×105 Bq 

which is 20 µCi) are used for conventional positron lifetime and Doppler-

broadening measurements.

The positron beam and angular correlation techniques require much stronger 

sources. Source capsules of about 4 GBq (100 mCi) are required [15].  

Another possibility for strong positron sources is to generate positrons by pair 

production [16]. In this case, an electron beam is stopped in an absorber of high 

atomic number creating bremsstrahlung -rays. Provided that the energy of the 

primary electron beam is high enough, the generation probability of electron–

positron pairs is sufficiently high.

The source should be surrounded by two identical samples in order to ensure the 

almost complete annihilation of positrons in the specimen volume (Sandwich 

arrangement). When a positron is produced in the 22Na source a 'start' signal (a 
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1274 keV photon) is generated that is detected in a scintillator-photomultiplier 

combination. When the positron annihilates a 'stop' signal (511 keV) is produced 

that is also detected with a nuclear scintillator detector. Energy selection is done 

in the constant fraction differential discriminators. Both signals are used in a 

time to amplitude convertor that generates a signal proportional to the lifetime of 

the positron. This signal is further processed by a multichannel analyzer.

3.2.1.2 Source correction

A small fraction of the positrons annihilates in the source. It is about 2 to 15% 

depending on the foil thickness and the atomic number of the sample, which 

determines the backscattering and, thus, the multiple passing of positrons 

through the source. In the positron lifetime spectra analysis, this fraction must be 

determined and subtracted [17].

3.2.2 Sample features

The samples should be flat and larger than the source. For the room temperature 

measurements, the sample size is almost unlimited but should not be less than the 

size of the source. In order to ensure that 99.99% of the positrons will stop and 

annihilate in the sample, a certain sample thickness is required. The positron 

implantation profiles have been studied by Brandt and Paulin [18]. 

The implantation profile of high-energy positrons emitted from a radioactive 

source into a solid can be described by an equation which states that the positron 

intensity I (z) decays as:

I (z) = 0I e –
 z (3.5)

where,  is the absorption coefficient. 

They found out that the absorption coefficient is in a wide varity of materials 

given by:
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α+= R+
-1 = (16 ± 1) 

 MeV1.43
max

-3

E

]cmg[d [cm-1] (3.6)

where, d is the sample mass density and E max the maximum kinetic energy of 

emitted positrons. This approximation can be used for the determination of the 

minimal thickness of the samples. This is shown in Figure 3. 3.  
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Figure 3.3 The relation between the mass density of the material used in 

positron annihilation lifetime measurements and the minimum thickness 

required from that material to stop 99% of positrons  

In the case of temperature-dependent measurements, the samples should fit into 

the cryostats. Maximum size is therefore about 10 x 10 mm. If the samples are 

thinner, one can make a stack of several samples, or putting a reference sample 

with a known value of annihilation lifetime behind the sample under 

investigation. 
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3.2.3 Experimental techniques

There are different techniques of PAS:

1. Angular Correlation of Annihilation Radiation (ACAR).

2. Positron Annihilation Lifetime Spectroscopy (PALS).

3. Doppler Broadening of Annihilation Line (DBAR).

4. Age-Momentum Correlation (AMOC).

5. Positron Beams System (PBS).

The principles of the different positron techniques are illustrated in Figure 3.4.

They are classified into two main groups which are distinguished by the 

sensitivity of positrons to the electron density (PALS) and to the electron linear 

momentum distribution in the material (DBAR and ACAR).

In this Ph. D study, three positron techniques were used:

1 PALS

2 Slow positron beam of Ghent University 

3 In-situ measurements of the DBAR at the same time of the tensile test.
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Figure 3.4 Scheme of different positron experiments

3.2.3.1 Positron Annihilation Lifetime Spectroscopy (PALS)

When energetic positrons are injected into a condensed medium they first slow 

down to thermal energies in a very short time of the order of 1ps. The positron is 

injected into the sample almost simultaneously with the emission of - ray of

1274 keV. Ages of individual positrons, can be measured as time differences 

between the emission of the birth - quantum and one of the annihilation 

photons. The mean implantation range varying between 10 to 1000 m, which 

means that, the positrons reaches the bulk of the sample. After living in a thermal 

equilibrium, the positron annihilates with an electron from the surrounding 

medium mainly into two 511 keV gamma quanta. The average lifetime of 

positrons is characteristic of each material and varies from 100 to 500 ps [19].

The lifetime of positrons annihilated in metals or alloys is determined by the 

average density of electrons at the annihilation site. A reliable method is to 

measure the slope of the logarithm of the number of counts as a function of time
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(the slope method). By this method, a few components of the lifetime of 

positrons can be differentiated. A typical system for measuring the lifetime of 

positrons is represented in Figure 3.5. 22Na is the most commonly used positron 

source. The 22Na nucleus emits a positron with a maximum energy of 0.544 

MeV, and the nucleus transmutes to 22Ne*(the excited state). The excited 22Ne*

emits a gamma ray (1.28 MeV) after a few picoseconds and changes to the 

ground state 22Ne, therefore the birth time of positron is set to be the time when 

the 1.28 MeV gamma ray is detected. The time for the positron to annihilate is 

the time when the 0.511 MeV gamma rays are detected. The time interval 

between the 1.28 MeV pulse and the 0.511 MeV pulse is the age of the positron. 

The time interval is converted to a voltage pulse by charging a condenser with a 

constant current by a time to amplitude converter (TAC). This pulse is 

transferred to the multichannel analyzer for digitizing the time interval and 

storage. The pulse is only transferred by opening the linear gate when the two 

pulses detected by the detectors are within a certain time interval.

The positron annihilation rate is proportional to the electron density. When a 

positron gets trapped into an open volume defect, it sees a lower electron density 

than in a free or delocalized Bloch-like state. The positron annihilation lifetime 

in the bulk material is shorter than the one for trapped positrons in defects. Thus 

positron lifetimes gives information on the annihilation sites. PALS is used to 

distinguish between the different types of defects [20].
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Figure 3.5 The experimental set-ups for the measurement of the positron 

annihilation lifetime.

3.2.3.2 Doppler-broadening of the annihilation radiation spectroscopy 

(DBAR)

The positron source is attached to tensile sample. A Ge detector with an energy 

resolution of 1.24 keV at 514 keV is used to record the  – ray spectra. The shape 

of the Doppler broadened annihilation ray spectrum contains detailed 

information on the linear momentum distribution of the annihilating electrons. It 

was proposed to characterize the Doppler broadened annihilation line by 

introducing the so-called Shape and Wing parameter (S, W). The S parameter is 

defined as the area of the central low-momentum part of the spectrum, C, divided 

by the total area below the annihilation peak, (A+B+C+D+E) after background

subtraction.
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Figure 3.6 Schematic representation of the calculation of the S and W

parameters. The S parameter is the area of the central low-momentum 

part of the spectrum, C, divided by the total area below the annihilation 

peak, (A+B+C+D+E) after background subtraction, while the W

parameter is area of the two wings  (A+E) divided by the total area below 

the annihilation peak, (A+B+C+D+E).

The W parameter is defined as the area of the two wings for (the high momentum 

regions which is far from the center); (A+E) divided by the total area below the 

annihilation peak, (A+B+C+D+E). The calculation of the S and W parameters is 

illustrated in Figure 3.6

                   

S = C/ (A+B+C+D+E), W= (A+E) / (A+B+C+D+E)

(3.7)

The integer C expresses the number of counts in a symmetrically located central 

region of the annihilation line and (A+B+C+D+E) is the integral number of 

counts under the whole curve. The boundaries of the integral C are chosen so 

that S' equal to 0.5 in the well-annealed Fe sample. The physical relevance of the 

S parameter is based on the linear momentum difference between valence and 
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core electrons. The core electrons localized in the ion core have a much higher 

linear momentum than the valence electrons. Owing to the locally reduced 

density of core electrons in vacancy-like defects such as vacancies, vacancy 

clusters or lattice dilatations, positron traps exhibit a lower density of electrons 

with high linear momentum. Thus, the probability of positron annihilation with a 

low-linear momentum valence electron is increased compared to the situation in 

the perfect lattice. This causes an increased number of counts in C, i.e., with 

small Doppler shifts of the annihilation energy. Consequently, the S parameter is 

larger in a specimen containing vacancy-like defects than in a defect-free 

material. Usually, the S parameter is measured for a series of samples as a 

function of the implantation energy, temperature or other extrinsic parameter in 

an attempt to correlate the line-shape parameter behavior to some physical 

characteristics such as variations in defect concentrations.

Trapping of positrons in vacancy type defects tends to increase the S parameter

value. Positrons that trap at such defects have a lower probability of annihilating 

with high-linear momentum core electrons than they do while freely diffusing. 

These parameters have no direct physical meaning and cannot be compared in an 

absolute way because of the specific detector resolution and choice of the 

intervals for the integration. That is why; they are only used to be compared to 

reference materials parameters. In depth resolving measurements, it is common 

to normalize the parameters to the bulk values of the sample material, described 

as Sb and Wb.

S and W are sensitive to the concentration and type of the defect because they are 

a combination of bulk and defect broadening effects. The defect concentration 

can be calculated if the defect-specific parameters Sd and Wd are known. Another 

parameter R can be introduced which is defect-type dependent, but not 

concentration dependent [21].  R is defined as follows:

bd

bd

b

b

WW

SS

WW

SS
R








 (3.8)



52

S-versus-W plots give also information about the types of defects that exist. If 

there is only one type of defect, the S- W relation will be linear and if there are 

more than one type of defect, there will be more than one straight line.

3.2.3.3 Angular Correlation of Annihilation Radiation (ACAR)

The principle for the measurement of the angular correlation of annihilation 

radiation is illustrated in Figure 3.7. The linear momentum component of the 

annihilating electron perpendicular to the propagation direction of the  -photons 

results in an angle deviation. This transversal component of the electron linear 

momentum could be measured by analyzing the deviation from exact anti co 

linearity. A simple position sensitive detection can be used in one dimension by a 

mechanical movement of a long scintillation detector with lead slits allowing for 

angular resolution [22]. 

Figure 3.7 The experimental setup for the measurement of one-

dimensional angular correlation of annihilation radiation with a long-slit 

geometry. Sodium iodide crystals are used as scintillation detectors (S1

and S2) in the y direction. The left arm with detector and the lead 

collimators is fixed, while, the right arm can be the angle  x
.
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The sample-detector distance and the slit size determine the angular resolution. A 

resolution of 1 mrad corresponds to 250 eV for an energy detecting system, 

which is much better than a good Ge-detector (1.1 keV). Current angular 

correlation systems even have resolutions smaller then 1 mrad. Therefore, ACAR 

is mainly applied in the study of the electron structure of bulk material or 

defects. In order to minimize the reduction of the counting rate due to the 

distance of several mm between sample and source, a strong magnetic field of 

about 1 T is usually applied to guide the positrons to the sample.

Figure 3.8 Schematic drawing of a 2D angular correlation setup.

The momentum distribution can also be recorded in two dimensions using a 

detector with two dimensional arrays [22]. The sample-to-detector distance 

amounts typically to several metres so that  quanta from only a small solid angle 

are detected. The angular resolution can be adjusted in the range of 0.2 to 5 mrad

[23]. The resolution of such a system is 0.2 mrad x 0.2 mrad. To collect a 2D-

ACAR spectrum, several days will be needed, which is the main disadvantage of 

the 2D-ACAR method which is illustrated in Figure 3.8.

3.2.4 Positron Beams System (PBS)

The main advantage of the conventional sample–source sandwich arrangement is 

that the emitted positrons immediately penetrate the bulk sample. But in order to 

obtain a defined small penetration depth or to study the sample surface, mono-

energetic positrons (slow positrons) that can be accelerated to defined energies 
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by simple linear electric field are necessary. Such setups are called slow-

positron-beam techniques. They are also called variable energy positron 

annihilation spectroscopy (VEPAS). 

Monitoring of defects as a function of depth (defect depth profiling) is possible 

by adjusting the positron energy in a range of a few eV to several tens of keV.

The mono-energetic positrons are obtained by moderation. Only a small fraction 

of less than 1 % of incident positrons undergoes this moderation process. The 

rest of the positrons (unmoderated positrons) must be separated from the beam of 

mono-energetic positrons that is used for defect experiments after defined 

acceleration. The moderation and acceleration requires the spatial separation of 

the source and the sample, and thus a beam guidance system must be used.

In order to obtain the defect depth profile from the measured variation of 

annihilation parameters as a function of the incident positron energy, knowledge 

of the positron implantation profile is required. This will be treated in a separate 

part of this chapter where the depth profiling with slow positrons will be 

explained.

3.3 Depth profiling with slow positrons

3.3.1 Overview of slow positron beam interactions

The ability of positrons to be effectively used for depth profiling studies is 

connected with a detailed knowledge of the interaction of positrons with solids 

and solid surfaces. A survey of the possible various interactions that can occur 

when a beam of mono-energetic positrons collides with a solid is represented in 

Figure 3.9. Some of these incident positrons impinging on the surface will be 

scattered elastically and the rest of the beam penetrates the solid and rapidly slow 

down to near thermal energies by transferring their energy to the lattice of the 

material. A fraction of these positrons reach back to the surface before being 

thermalized. At the surface these positrons may either be emitted directly as epi-

thermal positrons or form positronium at the surface and escape the material as 
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epi-thermal (‘hot’) positronium. A small fraction of the positrons may even 

annihilate inside the material without being fully thermalized.

Figure 3.9 Schematic representation of slow positron beam interactions

The positrons which have become thermal inside the material and can be 

considered as the dominating part also have different fates. After the fast 

thermalization process (10 ps) the positron diffuses through the material. Now 

there are three main possibilities:

1- The thermalized positron may remain in a delocalized (Bloch) state and 

diffuse around until it annihilates with an electron in the material due to 

the overlap of its wave function with the electron wave function.

2- The positron may annihilate due to the trapping into a defect, its wave 

function becoming strongly localized and annihilate in its trapped state.

3- The free positrons may diffuse back to the surface, where it either traps 

in a two dimensional surface state or a near-surface defect, or is emitted 

as a free positrons, or is emitted while forming a free positronium atom.
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Some of these processes will be explained in more detail in the next paragraphs.

3.3.1.1 Moderation

Moderators can be subdivided in two types of setup: transmission and reflection. 

In the transmission setup a thin moderator foil, with a thickness smaller than the 

positron diffusion length, is mounted in front of the primary positron beam, 

producing moderated positrons at the other side. In a reflection setup, the 

moderated positrons are produced at the same side of the primary beam.

Materials with negative positron work functions can act as moderator for 

energetic positrons with a broad energy distribution. In order to leave the 

material through a surface, a positron must gain energy the so called work

function. This energy is defined as the minimum energy required for moving a 

positron from a point inside to one just outside the surface. The work function is 

the combination of the surface barrier D and the positron chemical potential +.

 D -   3.9)

The surface dipole barrier D is primarily caused by the tailing of the electron 

distribution in the vacuum. The positron chemical potential (is the difference

between the bottom of the lowest positron band and the average potential over 

the interstitial regions between the atoms. It is mainly the effect of D which is 

negative for positrons that causes the work function to be sometimes 

negative. This allows the emission of slow mono-energetic positrons into the 

vacuum.

The potential energy diagram of a thermalized positron near the surface is 

represented in Figure 3.10. The attractive potential well is a combination of 

image forces at large distances and interactions with the low-density electron gas 

near the surface. Positrons can annihilate in this surface state or get out of the 

potential well because of thermal desorption. At low temperatures, trapping in 

the surface states or in surface defects increases. In some cases positrons 

approaching the surface are reflected due to the potential step at the surface.
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Figure 3.10 Different interaction mechanisms for positrons reaching the 

material surface. In this case the positron work function is negative.

The moderation is based on the fact that a negative positron work function 

exists for many solids. In most cases, transmission geometry with a thin 

moderator foil placed directly in front of the source capsule is used. The 

thickness of the foil is much smaller than the mean penetration depth and, 

therefore, only a small fraction of positrons thermalizes and starts to diffuse 

there. If the surface is reached during the diffusion, the positrons are 

spontaneously emitted from the moderator foil with a kinetic energy equal to the 

thermally broadened work function . 

Materials with high atomic numbers are favorable for moderation, because the 

ratio of the mean diffusion length to the thermalization distance is larger. A 

suitable material is a single-crystal tungsten foil in a (100) orientation with a 

thickness of a few μm or a (110) tungsten single crystal for application in 

backscattering geometry. Since the positrons may be trapped in defects during 

their diffusion to the surface, a foil containing only a small number of positron 

traps must be prepared by annealing. The work function of a (110)-oriented 
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tungsten single crystal was measured to be = 3.0 eV and a moderation 

efficiency of 310-3 could be achieved [24]. The moderation efficiency is given 

as the ratio of the number of moderated slow positrons to the total number of 

incident positrons. 

Recently solid state rare-gas moderators, obtained by deposition of neon, argon 

or krypton on a carrier foil (on the surface capsule) at low temperatures have 

been used. These moderators have the highest efficiency due to their long 

diffusion length. They have the efficiency of 10-2.

3.3.1.2 Implantation

In case of using a conventional source without moderation, the positrons are 

implanted very deep into the sample. See the implantation profile in paragraph 

3.2.2.

In case of using a mono-energetic slow positron beam, positrons can be 

implanted close to the surface and the implantation profile is completely 

different. The implantation profile P (E, z) as a function of depth z for 

monoenegetic positrons having an energy E is given as:
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The penetration parameter z0 is described by:
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The implantation profile is called a Makhov profile, after Makhov’s original 

electron implantation experiments [25]. Where m, r, and A are empirical 

parameters. is the mass density of the sample and the gamma function. 
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Widely used empirical values are: A = 4.0 μgcm2 keV-r, m = 2 and r = 1.6 

(Vehanen et al. 1987).

The mean penetration depth is given as:

z = AEr/    3.12



3.3.1.3 Positron diffusion

After thermalization the positron starts to diffuse through the solid. Because the 

positron has a positive charge, it is repelled by the nuclei and attracted by the 

surrounding electrons. In a periodic lattice the ion cores produce a periodic 

potential with minima at the lattice positions, resulting in a Bloch-like positron 

wave function. The De Broglie wavelength th at a temperature T has a value that 

is an order of magnitude larger than the typical lattice parameter and is given by

[26]

)(
300

2.6
3

2
nm

TTkm

h

Bp

th 
 (3.3)

with mp the rest mass of the positron and kB the Boltzmann constant 

(1.38xl0-23 J/K). 

The position probability density increases in interstitial regions. In analogy to 

electrons, diffusion of positrons is described with a semi-classical three-

dimensional random-walk theory [27]. Scattering mechanisms determine the 

positron mean free path  l 

*

3

3

m

Tk

D
I

B

 (3.14)

 l  is a function of temperature T, with D+ the positron diffusion coefficient and 

m* the effective positron mass. The positron diffusion coefficient is related to the 

mobility by the Einstein equation:

eD+ = kBT (3.15)
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with e the elementary charge (1.60x10-19 C).

Phonon scattering is the main determining process for the positron diffusion. For 

semiconductor materials and a lot of metals scattering occurs by longitudinal 

acoustic phonons. This results in a temperature-dependent diffusion coefficient 

D+T-1/2, as was shown for silicon [28]. 

The positron diffusion length L+ is related to the positron diffusion coefficient 

and limited due to the finite lifetime of positrons. In defect-free bulk material this 

leads to:

*m

Tk
DL Br

bb

           (3.16)

The relaxation time for the dominant scattering mechanism is r and b is the 

lifetime of the positrons in the defect-free bulk. The “effective” positron mass m*

is 1.3 to 1.7 times larger than the rest mass of the positrons, due to three 

contributions [29]. The most important is phonon scattering: the positron linear 

momentum distribution broadens due to phonon absorption by the low-energy 

positron. The other contributions are the effect of the electron density 

enhancement in the vicinity of the positive particle and the effect of the periodic 

lattice. Diffusion lengths are of the order of 100 nm, which is small compared to 

the implantation depth.

The Doppler-broadening VEP-beam experiments give depth-resolved and time-

independent information. Thus, all processes to which thermal positrons are 

subjected, such as diffusion, drift, trapping at defects or free annihilation, can be 

combined in a single one-dimensional equation. This steady-state positron 

diffusion equation can be written as:

  0),()()()()(
2

2
 zEIzczcz

dz

d
zc

dz

d
D effd 

(3.17)
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Here, c (z) is the steady-state positron density as a function of depth z, I (E, z) the 

positron implantation rate and d the positron drift velocity depending on the 

local electric field strength E (z):

)(zEd   (3.18)

In the diffusion equation the positron trapping into defects is taken into account 

and this leads to an effective annihilation rate eff:

)(
1

zk
b

eff 


 (3.19)

Next to the bulk annihilations, represented by b , positrons are trapped into 

defects with a rate (z), which is a function of specific positron trapping rate for 

defects , and the defect concentration nt(z):

)()( znz tt  (3.20)

In some materials different specific positron trapping rates can be associated 

with typical defect types like mono-vacancies and dislocations [30].

The effective diffusion length Leff is influenced by electric fields and crystal 

defects and this leads to:
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Positron traps are taken into account by eff and cause a decrease in effective 

diffusion length. The electric field strength E provides an increase of the 

effective diffusion length.

3.3.2 Data analysis of positron beam experiments

There are several measurement parameters that can be analyzed using the 

differential equation 3.16. Solving this diffusion equation leads to the 

determination of depth profiles. By varying the implantation energy of the 

positron beam, one can analyze a material in depth using positron annihilation 

spectroscopy. The most common method is depth selective DBAR. The results 
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are often presented as the Doppler line-shape parameter S in function of the 

implantation energy or sometimes the mean implantation depth.

3.3.2.1 Analysis of the depth resolved data

VEPFIT

VEPFIT [31] is a very important program for the analysis of depth resolved 

Doppler broadening data. The model is based on describing the sample by a set 

of layers with different characteristics such as S-parameter (or W-parameter), 

positron diffusion length, layer thickness or a build-in electric field. These 

properties can carry information about the material and the defect concentration 

in the respective layers. Also Gaussian defect profiles can be implemented. 

3.4 Positron annihilation lifetime spectroscopy data 
The calculated and measured positron lifetimes for different types of defects in 

pure iron and other iron based alloys are summarized in Table 3.2. This table 

contains data for the positron annihilation lifetime measured and calculated in 

Gent University and compared with other data done by others.

We have measured the value for defect free Fe, FeMnSiCrNi and FeSi. The 

values of the defect free lifetimes for those materials varied between 107-110 ps.
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Table 3.2 The calculated and measured positron lifetimes for different 

types of defects in pure iron and other iron based alloys

Material Positron 

lifetime 

(ps)

Reference Measured 

in Gent (ps)

Fe-bulk

Fe-dislocations

Fe-mono-vacancy

Fe-di-vacancy

Fe-3 vacancy cluster

Fe-4 vacancy cluster

Fe-6 vacancy cluster

FeSi (2,3 and 4 wt.% Si 

well annealed)

Fe75Si25

FeMnSiCrNi(C)

110 

165 

175 

197 

232 

262 

304 

109

[32]

[33]

[32]

[33]

[33]

[33]

[33]

[34]

107

150-165

108±3

107±3

3.5 Instrumental methods

3.5.1 Positron annihilation spectroscopy

1. The Doppler broadening (DB) of the 511 keV annihilation line is measured for 

the bulk material using a high purity germanium detector with a resolution of 1.2 

keV at the 514 keV line of 85Sr [35]. The results are analyzed in terms of the so-

called S and W parameters. 

The slow positron beam of Gent University, which is fully described in [35], is 

used to study the FeMnSiCrNi(C) and the FeSi samples. The energy of the 

magnetically guided positron beam is variable between 0.1 and 30 keV and the 

resolution of the high purity Ge detector is 1.2 keV at 514 keV.  
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2. Positron lifetime measurements were performed at room temperature using a 

fast-fast lifetime spectrometer. Each spectrum contained more than 106 counts 

and several spectra were accumulated for each measuring point in order to ensure 

the reproducibility of the data. The lifetime spectrum was analyzed with the LT 

program by Kansy [36] using a single Gaussian resolution function with a 

FWHM = 200 ps, while the source contribution was 14 % with a single lifetime 

of 384 ps.

As a positron source 22NaCl of about 10 Ci was sealed between two kapton 

foils with a thickness of 7.5 m. This source is surrounded by two identical 

samples in the so-called sandwich configuration [37]. The resolution of the setup 

is 200 ps, while the source contribution was 14 % with a single lifetime of 384ps.

3.5.2 Light optical Microscopy (LOM)

The FeMnSiCrNi(C) samples examined by the LOM were mechanichally 

polished and then electro-polished by means of a LectroPol-5 set up. The 

electrolyte used is a solution of 20% perchliric acid and 80% butylcellosolve. 

The electrotical polishing is important to eliminate the  martensite formed on 

the surface as a result of the mechanical polishing of the samples. The effect of 

polishing was examined by the slow positron beam. The time of polishing and 

the pressure used in polishing the samples affect the surface. Afterwards, the 

specimens were color etched in an aqueous solution of 1.2% K2S2O5 and 0.5% 

NH4HF2. Each phase could clearly be distinguished on the basis of their color 

and morphology [38]. The microstructure was investigated on a Zeiss Jenavert 

optical microscope.

3.5.3 XRD

X- Ray diffraction (XRD) is used in the study to identify the different phases in 

the FeMnSiCrNi(C) samples. A Siemens D5000 diffractometer with a Mo 

K=0.7071nm) radiation and operating with an intensity of 50 Ma and a 

voltage of 45 V was used.
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Chapter 4

Effect of annealing of deformed Iron
_________________________________________________________________

In this chapter the isochronal annealing effect on deformed iron samples is 

studied using the positron annihilation lifetime (PAL) and the Doppler 

broadening of the annihilation radiation (DBAR) techniques to figure out the 

effect of the sample compositions on the annealing temperature. In the first 

section the positron annihilation lifetimes of the pure and the commercial Fe 

(less pure iron), which were deformed and annealed isochronically were 

investigated. In the second section, the data for the bulk S parameter for the less 

pure Fe is presented against the annealing temperature. Undeformed Fe with 

purity of (99.99%) was used as a reference material to compare it with the 

commercial Fe used.

4.1 Introduction

The positron annihilation lifetime spectroscopy (PALS) can quantify the size of 

open volume defects, as well as the defect concentration, and is based on the 

precise measurement of the lifetime of a positron in a solid. The concentration is 

deduced from the fraction of positrons that annihilate from a trapped state. The 

defect size is directly related to the value of the position lifetime; the larger the 

defect, the lower the local electron density and consequently the longer the 

positron lifetime will be [1]. 

Values of the lifetime of positrons trapped in dislocations are close or slightly 

below the vacancy lifetime [2, 3]. For this reason, one can say that the positron 

lifetime may be related to vacancies trapped in the stress field around a 

dislocation line or in vacancies on a dislocation line which would be equivalent 

to a pair of monoatomic jogs [4]. Hidalgo et al. [5] measured the positron 
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lifetime in deformed iron to be 150 ps. They suggested that positrons annihilate 

at associated defects (vacancies or jogs) rather than at the dislocation line. Park 

et al. [6] have studied the effectiveness of trapping by edge and screw 

dislocations, and the ability to determine the number of dislocations of each type 

per unit area.

Calculation of positron lifetimes in jogs and vacancies on an edge dislocation 

line in Fe was done by Yasushi Kamimura et al. [7]. They concluded that the 

positron annihilation lifetime in the edge-dislocation is 117 ps, which is almost 

the same value for the positron lifetime in the jog. The positron lifetime in the 

associated vacancy in dislocation is 140 ps.

DBAR is based on the measurement of the linear momentum of the annihilating 

electron - positron pair. The photons created during the electron - positron 

annihilation are detected by a germanium detector. The shape of the resulting 

photo-peak reflects the momentum distribution of the original electron - positron 

pair. This distribution is determined by the momentum distribution of the 

electrons seen by the positron. This is influenced by the size and the nature of the 

defects. Measurements of the Doppler broadening of positron - electron 

annihilation radiation are generally characterized by the S (Shape) parameter, 

defined as the ratio between the content of the central part of the annihilation 

spectra and the content of the total spectra. This parameter reflects the positron 

annihilation with valence electrons (low momentum). In general, a high value of 

S indicates positron annihilation in open volume defects. A second useful 

parameter for the analysis of DBAR is the W (Wing) parameter, which reflects 

the positron annihilation with high momentum electrons (core electrons). It is 

defined as the ratio of counts in two side windows and the total number of counts 

in the annihilation line. 

4.1.1 Deformation induced defects

The plastic deformation of metals and alloys produces changes in the density and 

distribution of defects. In plastic deformed metals and alloys, the positrons are 



71

captured by dislocations and vacancies. In polycrystalline samples, the 

deformation becomes complex due to the various interactions between 

dislocations and grain boundaries [2- 4]. It is known that deformation of metals 

such as rolling induces many defects [8]. Plastic deformation of metals occurs by 

the generation and movement of dislocations, which stores a small amount of 

energy in the form of the elastically distorted region along each dislocation line. 

Dislocations accumulating during deformation gather together first as tangled 

groups, then as tangled networks defining ‘cells’ with slight orientation 

differences [9- 11]. 

4.1.2 Isochronal annealing effect

The microstructural changes due to annealing of deformed metals are commonly 

described in terms of recovery and recrystallization. Upon annealing, the 

microstructural rearrangements depending on the amount of deformation, where 

in case of metals deformed to small strains, the dislocations rearrange themselves 

into boundaries and eventually into a fully developed sub-grain structure. In 

metals deformed to large strains the softening reaction prior to the onset of 

recrystallization appears to be controlled by sub-grain growth. 

Less pure iron is much more resistant to recrystallization. The interstitial 

elements in a very low concentration have a profound effect on recovery 

processes. In particular, interstitial elements are associated with retardation of 

recovery [12- 13]. Snead et al. [14] and MacKenzie [15] have investigated the 

recovery of deformed iron using the positron annihilation technique. Both works 

were on Fe containing a noticeable amount of carbon. They concluded that 

trapping would be due to vacancies produced during plastic deformation and 

only minor contribution was attributed to dislocations. Hautojarvi et al. [16] have 

studied deformed iron of 99.998 % purity and commercial Fe of 99.86 % purity. 

They concluded that the traps of positrons in both types of deformed iron 

samples are dislocations. The results are shown in Figure 4.1
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Figure 4.1 the recovery of the positron lifetime and annihilation the line-

shape parameter in the two deformed iron samples with different purity as 

a function of Isochronal (1h) annealing temperature [this Figure is a copy 

from reference 16].

4.2 Experimental

In this work, the effect of annealing of less pure iron samples (with purity of 

99.7%) is studied. The samples were cold- rolled at room temperature to a 

thickness reduction of 75%. A high pure Fe sample (with purity of 99.998%) was 

measured as a defect free reference sample. 

The chemical composition of the less pure iron samples was determined with a 

Spectro LAVWA18A spectrometer of Spectro Analytical Instruments. The main 

impurities were Al (0.056 wt. %), Nb (0.03 wt. %), Si (0.008 wt. %), (Cr, Mo 

and Ni) all with 0.005 wt. % and C (0.002 wt. %). The Doppler broadening (DB) 
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of the 511 keV annihilation line was measured and the results were analyzed in 

terms of the so-called S and W parameters. Positron lifetime measurements were 

performed at room temperature using a fast-fast lifetime spectrometer. Each 

spectrum contained more than 106 counts and several spectra were accumulated 

for each measuring point in order to ensure the reproducibility of the data. 

After deformation the less pure samples were annealed at 100°C (one hour) in 

boiling distilled water, and at 200-1000°C in a vacuum furnace in steps of 

100°C. The samples were cooled in furnace. The DBAR and the positron lifetime 

measurements were preformed at room temperature after each annealing step for 

the pure iron samples.

4.3 Results and discussion

4.3.1 Positron annihilation lifetime spectroscopy (PALS)

The positron annihilation lifetime measured for the pure undeformed Fe sample 

was 107 ± 3 ps, and used as a reference material. Deformed less pure iron 

samples were annealed isochronally in the temperature range (23-1000°C). 

Figure 4.2 shows the temperature dependence of the positron annihilation mean 

lifetime mean (which is calculated using equation 4.1) of the highly deformed less 

pure iron samples during the annealing. The samples were full of defects due to 

the high degree of deformation (cold rolled to thickness reduction of 75%). The 

positron annihilation mean lifetime in the temperature range from 20°C – 400°C 

was around 150 ps. It was slightly decreasing with the increase of the annealing 

temperature. This effect is due to the start of recovery 

In the temperature range from 400°C to 700°C defects anneal out and the 

material is partially recrystallized. The mean lifetime decreases significantly and 

reaches a value of around 107 ps after annealing at 700°C, leading to the 

conclusion that the material is fully recrystallized. Hautojarvi et al. [16] reported 

on a positron annihilation study of pure deformed Fe (99.998 %) and compared it 

with less pure deformed Fe (99.86 %) (see Figure 4.1). It was shown that the 
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temperature range for the recrystallization of deformed very pure Fe is 300-

600°C. The start of recrystallization at 300°C is a result of the rearrangement 

process of the dislocations. Comparing the two recrystallization ranges for our 

less pure iron samples and the pure iron samples of Hautojaravi, one can 

conclude that in the less pure iron the annealing out of defects starts at a higher 

temperature. This might be related to the higher impurity content of the samples. 

A possible explanation could be the pinning of dislocations by interstitial atoms 

such as carbon [16].
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Figure 4.2 The relation between the annealing temperature and the 

positron annihilation mean lifetime for the less pure Fe samples (cold-

rolled at room temperature to a thickness reduction of 75%).

The defect concentration and trapping rates were quantitatively calculated using 

the two state trapping model. The measured values for the positron annihilation 

lifetimes (1, 2) and their intensities (I1, I2) were used to calculate the mean 

positron annihilation lifetime using the following relation:

   
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 mean= (1I1 + 2I2) (4.1)

The positron trapping rate for defects  can be calculated as:

  =d Cd = 
1

2

I

I (b -d) (4.2)

 b = [( (4.3)

Where d is the trapping coefficient for defects (dislocations), Cd is the 

dislocation concentration, b and d are the positron annihilation lifetime in bulk 

and in dislocations respectively. The concentration of dislocations is calculated 

from equation 4.2 using the trapping model with a trapping efficiency for 

dislocations in iron, d10-5 m2s-1 [6]. It was tried to decompose all the 

lifetime data into two components. Only for the spectra measured at 500°C and 

600°C the trapping model could be applied to the results. The bulk lifetime was 

calculated for both and it was found to be approximately 109 ps. Table 4.1 shows 

the values of the positron annihilation lifetime parameters and the concentration 

of defects in cold rolled less pure Fe samples annealed at 500°C and 600°C. The 

density of dislocations decreases with the increase of annealing temperature. At 

700°C almost no trapping sites exist and hence there is no data for the density of 

dislocations starting from 700°C. It is known that after 900°C there will be a 

phase transformation/ (see Figure 2.1). We wanted to see change in the 

positron annihilation parameters due to this phase transition. The data for the 

mean after the annealing at 800°C shows a tiny change but can not be considered 

significant. 



76

Table 4.1 The positron annihilation lifetime parameters and the 

concentration of defects in cold rolled Less pure Fe samples annealed at 

500°C and 600°C

T(°C) 1 (ps) 2(ps) I2 b (ps) Defect Concentration 

x 1014 (m-2)

500 62 155.3 0.713 109 1.15

600 63.9 146.9 0.724 109 1.0447

4.3.2 S Parameter (bulk)

The dependence of the S and W parameters on the isochronal annealing 

temperature for deformed less pure Fe is shown in Figure 4.3 (a, b). In the 

temperature range (23- 400°C) the S parameter slightly decreases while the W 

parameter slightly increases. Starting from 400°C, a significant decrease of the S 

parameter accompanied with a significant increase of the W parameter is 

observed and both become constant above 700°C. The behavior of the S 

parameter presented in Figure 4.3 (a) is similar to one observed for the mean in 

Figure 4.2. Figure 4.3 (b) shows the S- W relation for all the isochronal 

annealing temperatures from 100°C up to 1000°C for the less pure iron samples. 

The relation shows one straight line. This means that only one type of defect 

(dislocations as identified by the lifetime), exists in the deformed iron through 

the isochronal annealing temperature range. 
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Figure 4.3 a) The annihilation line shape parameters (S, W) as a function 

of the isochronal annealing temperature of the deformed less pure iron 

(annealing time 1 h), and b) the S– W relation.
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4.4 Conclusions

The isochronal annealing curve for the positron mean lifetime reveals that the 

traps for positrons in the deformed iron are mainly dislocations. With increasing 

the annealing temperature, the Doppler broadening parameter S and the positron 

annihilation lifetime mean have a slight decrease before the recovery temperature 

region. The S- W relation shows only one straight line, which means that only 

one type of defect, exists in the deformed iron through the whole isochronal 

annealing temperature range. This is consistent with the positron lifetime data. 
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Chapter 5
A study of defects in deformed FeSi alloys using positron 
annihilation techniques
______________________________________________________

Steels with high silicon content are used in electrical applications due to their 

low magnetostriction, high electrical resistivity and reduced energy losses, but 

unfortunately they exhibit poor formability.

In this chapter a study of defects in FeSi was performed using the positron 

annihilation spectroscopy (PAS). The defects were induced by deforming the 

alloys at high and low (room) temperature. The effect of Si content on the

positron annihilation lifetime of the deformed samples was also studied. The 

slow positron beam of Gent University was used to investigate defects in 

different deformed FeSi alloys. It was found that the concentrations of defects 

for the alloys deformed at high temperatures are different from the ones of the 

alloys deformed at room temperature. 

5.1 Introduction

Alloying iron with silicon improves its magnetic performance by reducing the 

effect of magnetostriction, noise and energy losses while the electrical resistivity 

increases, although all those properties are also influenced by the grain size and 

crystallographic texture. Despite of the magnetic improvement of electrical steels 

their workability is extremely reduced by the appearance of ordered structures, 

namely B2 and D03, once the Si content is higher than 4.5 wt.%. The addition of 

silicon has also a strong influence on the iron α-γ allotropic transformation, 

where steels with Si content higher than 1.8 wt.% have a bcc crystallographic 

phase up to their liquidus temperature. The magnetic losses can be reduced by 

controlling the final microstructures and crystallographic textures. The energy 

stored in the material during the room temperature deformation is used during 
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the annealing treatment to obtain new recrystallized grains [1-3]. The positron 

annihilation technique is known to be a highly sensitive probe for open volume 

defects [4]. The defect structure after deformation of metallic samples can also 

be investigated with the positron annihilation technique [5]. PALS can quantify 

the size of open volume defects as well as the defect concentration and is based 

on the precise measurement of the lifetime spectrum for positrons in a solid. The 

concentration of defects can be deduced from the fraction of positrons that 

annihilate from a trapped state. The defect size is directly related to the position 

lifetime; the larger the defect, the lower the local electron density is and 

consequently the longer the positron lifetime will be [6].

Thermally formed defects have also been observed by applying infrared 

spectroscopy [7] or electrical experiments [8] in samples that have been rapidly 

quenched after thermal or laser annealing. These experiments, however, do not 

report vacancy concentrations at thermal equilibrium. Positron annihilation 

spectroscopy has been one of the major techniques used to study the formation of 

thermal vacancies in metals [9].

5.2 Experimental work

The chemical composition of the investigated alloys was determined with a 

Spectro LAVWA18A spectrometer of Spectro Analytical Instruments. This 

composition is shown in Table 5.1. The production of the alloys is described in 

detail by Rodriguez in [10]. The deformation was carried out by plane strain 

compression tests using the Material Testing System (MTS), see Figure 5.1.

Table 5.1 Chemical composition (wt. %) for the FeSi alloys

Element wt. % C Si Al Mn P S Ti N

Steel A 0.002 1.88 0.075 0.048 0.016 0.009 0.002 0.003

Steel B 0.004 3.02 0.098 0.046 0.015 0.009 0.003 0.002

Steel C 0.003 4.06 0.096 0.066 0.016 0.009 0.003 0.007
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Figure 5.1 MTS compression machine

This MTS machine has two moving actuators, called hammer and anvil. The first 

one with a maximum force capacity of 500 kN and maximum crosshead speed of 

4 m/s was used for the high temperature deformations, while the anvil with 2500 

kN and 3 m/s, respectively, was used for the room temperature tests.

The microstructures of the alloys were investigated by the electron backscatter 

diffraction (EBSD) technique [10, 11]. The crystallographic information was 

obtained from polished samples using a scanning electron microscope (SEM). 

The samples were prepared following standard metallographic procedures. The 

last polishing was with colloidal silica (OPU) of 0.035 µm particle size [10, 11]. 

As the electron beam of the SEM strikes the surface perpendicular to the 

transversal direction (TD) of a tilted specimen, the electrons are elastically 

scattered beneath the surface. The diffracted electrons form Kikuchi patterns on a 
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fluorescent screen, allowing the identification of the crystal orientation. As a 

polycrystalline sample is scanned by the electron beam, information on the 

crystalline orientation at each point is collected [12]. The resulting scans reveal 

the grain morphology and crystallographic orientations of the sample. The 

samples scanned using the EBSD technique were analyzed with orientation 

imaging microscopy (OIM) software.

From the deformed and as-received material, samples with an area of 1 cm2

perpendicular to the normal direction of deformation (ND) were prepared for 

positron annihilation measurements, using a similar metallographic procedure as 

for the EBSD samples to avoid the distortion of the crystalline lattice while 

polishing.

The DBAR measurements were performed using the Ghent Slow positron facility, 

which is fully described in [13]. The spectra were analysed using line-shape 

parameters, explained in Chapter 3. Positron lifetime measurements were 

performed at room temperature using a fast-fast lifetime spectrometer. 

5.3 Results and discussion
5.3.1 Mechanical properties
5.3.1.1 High temperature deformation

The mechanical behavior of the materials compressed to 75 % at 1000°C with a 

strain rate of 5s-1 is characterized by an increase in the stress values as the Si 

concentration increases. The initial microstructure consists of average equiaxed 

grain size of 215, 225 and 200 µm for Steel A, B and C, respectively. Increasing 

the Si concentration leads to a well developed sub-grain structures and elongated 

grain in the rolling direction. [10]. 

5.3.1.2 Room temperature deformation

The same initial materials were deformed at room temperature with strain rate of 

15 s-1 to 10, 35 and 75 % levels of thickness reduction. When deforming to a 

thickness reduction of 5 % the flow stress is above 700 MPa, see Figure 5.2 (a), 
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then extensively mechanical twins (Σ3 Coincident Site Lattice [CSL] boundary) 

are observed which are produced by a rotation of 60° along <111> axis respect to 

the parent grain. Σ is defined as the reciprocal density of coincident sites at the 

boundary between two adjoining grains. Σ3 means that one out of three atoms 

overlap in a new lattice. When the flow stress is below 700 MPa, then the plastic 

deformation is accommodated by mechanical slip. At deformations to a thickness 

reduction of 35 %, bended twins and shear bands (deviated 20 to 35° from the 

rolling direction) within pancake grains elongated along the rolling direction are 

commonly observed in the EBSD scans; see Figure 5.2 (b).

Finally, in samples deformed to 75% thickness reduction more shear bands and 

fragmentized twins inside banded shape grains are present. In general, the room 

temperature deformation behavior of the studied alloys is similar to the one 

reported for 2.7 wt. % Si [11]. The drop in the image quality parameter obtained 

by EBSD, as the deformation progresses, indicates an increase in the dislocation 

density and the amount of the shear band increases as the Si content increases.
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a)

                              

b)  Steel B

Figure 5.2 (a) Stress-strain curves of the Fe-Si alloys deformed at room 

temperature and (b) EBSD scan of FeSi sample with 3 wt.% Si deformed 

35 % (steel B).
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5.3.2 Positron techniques:
5.3.2.1 High temperature deformation

5.3.2.1.1 Slow positron beam Doppler Broadening analysis.

The Doppler broadening of the annihilation radiation (DBAR) measurement was 

performed using the Ghent Slow positron beam, which is fully described in [13]. 

The measurements were done at room temperature. The three alloys were 

measured before and after a deformation at 1000°C to a thickness reduction of 75 

% and water quenched. The depth profiling was achieved by varying the 

implantation energy of the slow positrons from 0.1 to 30 keV corresponding to 

mean implantation depths up to 1m. The results, presented in Figure 5.3, show 

the S parameter as a function of incident energy of the implanted positrons and 

the evolution of the line-shape parameters (W, S) at 30 keV as a function of the 

Si content. The windows for the line-shape parameters were set in order to have 

a bulk (S, W) for defect free iron of (0.44, 0.125). From the shape of the curve of 

the S parameter with increasing implantation energy, it is possible to observe that 

the line-shape parameter in the bulk of deformed samples changes drastically. 

The evolution of bulk line-shape parameters (S, W) lays nearly on one line 

indicating that one fraction of the positrons annihilate in the defect free state 

while the other fraction in one type of defect. For each sample with the same Si 

content (2%, 3% or 4%) upon deformation, the S parameter increases. The S 

parameter decreases with increasing the Si content for the undeformed as well as 

for the deformed samples.



88

0 5 10 15 20 25 30
0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.09 0.10 0.11 0.12 0.13

0         67       202      387      613     877     1173 

S
 p

ar
am

et
er

e+ incident energy (keV)

 ( 2%  Si undeform ed)
 ( 3%  Si undeform ed)
 ( 4%  Si undeform ed)
 ( 2%  Si deform ed)
 ( 3%  Si deform ed)
 ( 4%  Si deform ed)

Mean implantaion depth [nm]

W parameter

Figure 5.3 Representation of (a) the S parameter as a function of 

incident energy of the implanted positrons and (b) the evolution of the

line-shape parameters (W, S) at 30keV as a function of the Si content 

and deformation.

5.3.2.1.2 Positron annihilation lifetime spectroscopy (PALS)

The positron annihilation lifetime value for the three undeformed FeSi alloys is 

108 ± 3 ps. This value is not far from the one of the pure iron, which is 107± 3 

ps. For the deformed alloys 75% thickness reduction at high temperature 

(1000°C) and water quenched, there are two components in the positron lifetime 

spectrum. Figure 5.4 shows the relation between the positron annihilation 

lifetime and the Si content. The value of the second lifetime component (2), 

which is related to the annihilation in defects decreases by increasing the Si 

content, while its intensity (I2) has a maximum value for the alloys with 3 wt.% 

Si. Also, the mean positron lifetime shows a maximum value for the alloys with 

3 wt.% Si. The value of the second lifetime component is around 190 ps. This 

value indicates the existence of mono-vacancies. The other component, which is 

less than 100 ps, is the result of the annihilation of free positrons. For the 

Fe2%Si, the defect lifetime is about 210ps which larger than the lifetime of a 

mono-vacancy. This lifetime is a superposition of two lifetime components: one 
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originating from a vacancy cluster and a second one from mono-vacancies or 

dislocations.

Comparing between the data of Figure 5.3 and Figure 5.4, it is clear that the 

positron annihilation lifetime in defects (2) decreases with increasing the Si 

content in the alloy, which is the same behaviour as the S parameter in Figure 

5.3. The mean value of the positron annihilation lifetime has a maximum value 

for the alloys with 3 wt.% Si. Calculating the bulk lifetime (equation 4.3) for the 

three samples, shows that the Fe3%Si has a bulk value around 120ps while a 

value of 112ps is found for the Fe2%Si and the Fe4%Si. As it was shown before 

that the bulk lifetime value is 108 ps. This can give a conclusion that the 

maximum defect concentration (Figure5.3) for the Fe3%Si is a fitting artefact.   
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Figure 5.4 Comparison of Positron annihilation lifetime data for the 

different contents of Si 75% deformed at high temperature (1000°C) and 

water quenched.

Using the trapping model with a trapping coefficient for a single vacancy in pure 

Fe, v= 1.11015 s-1
 [14, 15], a defect concentration could be calculated.
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Figure 5.5 Representation of the variation of the vacancy concentration, 

Cv, with Si content for a 75% deformed samples at high temperature 

(1000°C) and water quenched.

Figure 5.5 shows the relation between the vacancy concentration Cv with the Si 

content. It was found that at 3 wt.% Si there is a maximum value for the vacancy 

concentration. The delay in quenching the samples was approximately 2 s, which 

was time enough to trigger the static restoration process as recovery and 

recrystallization in different extent. It is hard to have a clear conclusion from 

only 3 points. For this reason more samples with different Si content are needed 

to be examined.

5.3.2.2 Room temperature deformation

5.3.2.2.1 Positron annihilation lifetime spectroscopy (PALS)

The samples in the same initial state used for the high temperature deformations 

were deformed at room temperature (75% thickness reduction). All positrons 

were trapped in defects as shown in Figure 5.6. The spectra were fitted using two 

positron lifetime components. The first one is around 150 ps, which is attributed 

to the annihilation of positrons in dislocations. The other component is higher 
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than 240 ps and is related to the annihilation of positrons in vacancy clusters 

[14]. The intensity of positron annihilation in dislocations higher than 85 %, see 

Figure 5.6 b, indicates that the deformation temperature affects the concentration 

and the type of defects formed in the alloys through the deformation process.
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Figure 5.6 Representation of (a) the positron annihilation lifetime and (b)

intensity for different Si samples 75% thickness reduction at room 

temperature.
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5.4 Conclusions

The data of the positron annihilation techniques have shown that the deformation 

temperature affects the concentration and the type of defects formed in the alloys 

through the deformation process and it is possible to withdraw the following 

conclusions:

1. Mono-vacancies are found to be the main type of defect formed during 

deformation at high temperatures. In case of room temperature deformation 

both dislocations and vacancy clusters are formed in the FeSi alloys.

2. For the high temperature deformed samples, the positron annihilation 

lifetime in defects (2) and the S parameter decrease with increasing Si 

content in the alloy. 

3. For the room temperature deformed samples, there is a saturation trapping 

for positrons in defects and the two lifetime components present of 150 ps 

and 250 ps are related to the positron annihilation in dislocations and 

indicator for the existence of vacancy clusters, respectively). The 

concentration of vacancy clusters increase with increasing the Si content.
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Chapter 6
Influence of carbon on the microstructure of a FeMnSiCrNi 
alloy
_________________________________________________________________

In this chapter the influence of the addition of carbon to the FeMnSiCrNi base 

material is investigated at room temperature. Steel samples were deformed 

during a tensile experiment up to a strain of 17 %. Light optical microscopy 

(OM) and XRD gave information about the different microstructural phases that 

exist in the deformed and the undeformed alloys. The evolution of the defect 

structure is followed by positron annihilation techniques such as Doppler 

broadening of the annihilation radiation spectroscopy (DBAR) and the positron 

annihilation lifetime spectroscopy (PALS). During deformation a martensitic 

phase is induced. The size of the martensite plates increases with increasing 

deformation. 

6.1 Introduction

The large hysteresis and a poor shape recovery in the FeMn binary system was 

addressed by making specific alloying additions of Si, C, Co, Ni, and Cr. In 

order to reach a complete shape memory effect, three conditions must be 

fulfilled. First, the deformation must result in the stress-induced  martensite 

formation only. Second, the yield stress of the  matrix should be as high as 

possible to avoid an initial deformation by slip. Finally, the shape strain of stress-

induced martensite should be completely reversible, which means that the 

martensite interface must remain mobile at all times. The forward and reverse 

transformations occur by the movement of planar martensite interfaces, which 

contain the transformation dislocations. The required martensite morphology for 

ferrous SMA is of the thin plate type. 
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Because the shape memory alloys possess low stacking fault energy, the 

nucleation of the martensite may occur by means of the stacking fault 

mechanism [1]. The transformation results in thin  martensite plates, which 

have specific crystallographic orientations with respect to each other. This is due 

to the fact that the martensitic  transformation is obtained by the glide of 

isolated Shockley partial dislocations on every second {111} plane. There is no 

macroscopic deformation of the single crystal when the  transformation is 

induced thermally. The deformation results in the dominance of  martensite 

variants, which are suitably oriented with respect to the applied stresses, and a 

decrease of the volume fraction of the other  variants in each original  grain. 

The  martensite forms dense regions of transformed regions, which still contain 

the parent  phase. At the intersection of two variants of  martensite, ’ 

martensite was often observed [2]. It is very likely that the formation of ’ 

martensite is the main cause for relatively low recovery of the ferrous SMAs. 

The ’ regions impede the reverse motion of the Shockley partial dislocations. 

In the present study, the influence of deformation and carbon addition on 

FeMnSiCrNi alloys is studied by a combination of optical microscopy (OM), X-

ray diffraction (XRD) and Positron Annihilation Spectroscopy (PAS) techniques. 

OM and XRD can give information on the different phases present in the 

material. PAS techniques were used to study the defect behavior in the samples 

and to see if any effect of the phase transformation during deformation could be 

detected.

During the last few years, the positron annihilation technique has been widely 

used to study defects and phase transition in SMAs. Most of the work had done 

on the Ni-Ti and Cu-based alloys [3- 5]. Very few publications had been 

published about the FeMn based alloys [6, 7]. The defect structure after plastic 

deformation of metallic samples can also be investigated with the positron 

annihilation technique [8]. S. Hautakangas et al. [9] studied the tensile 

deformation of Al alloys to detect the nano-cracks in the tensile deformed 

materials using the positron annihilation technique. They concluded that the 

increased plastic load increases the S parameter and the positron annihilation 
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mean lifetime while, the elastic deformation of the sample does not have a 

recordable effect on the positron annihilation data. Yasuhiro Kawaguchip et al.

[10] studied the fatigue evaluation of Type 316 Stainless Steel. They have found 

that positron annihilation line-shape parameter and the positron annihilation 

lifetime measurement can detect fatigue damage at an early stage of fatigue. F. 

Selim et al. [11] used the positron annihilation technique to probe the defects at 

high depths in thick materials up to several centimeters. Stress measurements 

were performed using accelerator-based -ray induced positron annihilation 

spectroscopy technique.

Some measurements of positron annihilation have been made for martensitic 

transformations in metals and alloys [12- 15]. Dislocations produced during the 

transformation must be considered when martensitic transformation is studied by 

positron annihilation. D. Segers, J. Van Humbeeck and I. Hurtado studied 

different types of shape memory alloys [6, 16- 17].

It is expected that PAS can help in understanding more about the stress- induced 

martensitic transformation in FeMn based alloys. Two basic techniques are used: 

positron annihilation lifetime spectroscopy (PALS) and Doppler broadening of 

the annihilation radiation spectroscopy (DBAR). 

6.2 Experimental

Two different FeMnSiCrNi alloys were prepared for this study. Their chemical 

composition is given in Table 6.1. They were cast in an air furnace, air cooled, 

reheated to 1200°C and hot rolled on a laboratory mill from 20 mm to 2 mm and 

air cooled. In order to austenitize the samples; they were heated to 1100°C for 15 

minutes and water quenched to room temperature.
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Table 6.1 The chemical composition of FeMnSiCrNi-(C) in wt. %

Element Fe Mn Si Cr Ni C

FeMnSiCrNi 67.34 12.6 6 9.27 4.74 0.05

FeMnSiCrNiC 66.84 12.56 6.09 9.44 4.89 0.18

Positron lifetime measurements were performed at room temperature using a 

fast-fast lifetime spectrometer. The tensile tests were carried out on LRX–PLUS 

(LLOYD Instruments) tensile test machine with maximum force of 5 kN. The 

shape and dimensions of the specimens are shown in Figure 6.1. 
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Figure 6.1 LRX–PLUS tensile machine and the shape and dimensions of 

the sample
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Tensile test was performed to make elongation of the sample. The elongation 

rate was 0.1 mm/min. The machine is controlled by a LabVIEW program written 

by S. VAN Petegem. The strain is determined using the motor position. During 

the deformation of the sample (in-situ measurement), the Doppler broadening 

(DB) of the 511 keV annihilation line is measured using a high purity 

germanium detector with a resolution of 1.2 keV at the 514 keV line of 85Sr. The 

results are analyzed in terms of the so-called S- and W-parameter. The positron 

annihilation lifetime the light optical microscopy and the XRD are measured for 

the samples before and after the tensile deformation. 

6.3 Results and discussion

6.3.1 XRD and OM

Figure 6.2 shows the microstructure of the FeMnSiCrNi(C) alloys before, and 

after deformation. The microstructural analysis for the undeformed samples 

revealed the presence of large austenite grains (phase), residual ferrite grains 

and phase. The amount of residual ferrite grains between the austenite is less in 

the alloy without carbon.
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Figure 6.2 Light optical microstructures (OM) for the alloys:

(a) undeformed FeMnSiCrNi, (b) deformed FeMnSiCrNi, 

(c) undeformed FeMnSiCrNiC and (d) deformed FeMnSiCrNiC

This is also measured with XRD (Figure 6.3). The  martensite is clearly visible 

in the alloy without carbon and is less present in the carbon alloyed one. As can 

be seen from Figure 6.2, it appears as thin parallel lines with dark contrast inside 

the austenite grains. This small quantity of  martensite before the deformation 

process is probably induced during grinding or polishing or can be induced 

thermally. The OM images show that the alloy without carbon has more 

martensite than the alloys with carbon before the deformation (see Figure 6.2 a 
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and c). The XRD shows something different, where the intensity of the (100)

for the alloy with carbon is higher than the one for the alloy without carbon. This 

may support the idea that the  marentsite seen in the low carbon is related to 

polishing. By deformation, more martensite is transformed from the austenite. 

There is an increase in the intensity of the (002)peak. In the OM, the  phase 

appears as broader white lines in the alloy without carbon (Figure 6.2-b) and 

clearly thinner black lines in the alloy with carbon (Figure 6.2-d). From the XRD 

result we can also conclude that the alloy without carbon contains more 

martensite phase.
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Comparing the deformed and the non-deformed samples through the OM 

pictures, one can see that the stress induced    transformation increases with 

deformation. The high resolution electron microscopy (HRTEM) clarified that 

the stress induced    transformation proceeds by the growth and broadening 

of the existing martensite plates rather than the formation of new plates [18,

19].

6.3.2 Positron annihilation
6.3.2. a Positron annihilation lifetime

Positron annihilation lifetime data are presented in Table 6.2. For the 

undeformed samples of FeMnSiCrNi-(C), the lifetime for positrons was 107 ps 

which is the same as for defect free Fe. In the widely used two-state trapping 

model [20] it is assumed that positrons annihilate either in the bulk portion or get 

trapped in defects before annihilation. In the latter case, they survive longer in 

the material, which results in a longer lifetime. This variation of the lifetime 

values is related to the defect type (dislocation, mono-vacancy, cluster of 

vacancy, micro-void). In pure Fe, the lifetime value for positrons trapped in 

dislocations is around 160 ps and for positrons trapped in mono-vacancies, it is 

around 180ps [21- 24]. For the deformed samples, the positron annihilation 

lifetime spectra have two lifetime components. The shortest lifetime components 

1 for the two samples are 61 ps and 67 ps, and are due to the annihilation of 

non-trapped positrons. The second lifetime component for the two samples is 

151 ps and 150 ps, which are related to the positron annihilation in dislocations. 

The concentrations of dislocations in both deformed samples (see Table 6.2) are 

calculated using the same equations and parameters used by Park [25]. 
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Table 6.2 The positron annihilation lifetime and its intensity for in 

FeMnSiCrNi(C) samples before and after the tensile deformation.

6.3.2. b Doppler broadening (DB) and stress–strain relation

There are different stages of deformation of the shape memory alloys, which 

have different deformation mechanisms. The first stage happens in the range of 

smaller strains, the self-accommodation mechanism of martensite plates, not the 

dislocation slip mechanism, is responsible for the deformation of the shape 

memory alloys. The orientation of martensite plates is adjusted or reoriented in 

accordance with the direction of the applied stress, which results in macroscopic 

deformation, but does not result in an increase of micro defects. Once the strain 

increases beyond several percent (7%), another deformation mechanism will take 

place. Dislocation slip produces many defects, capable to trap the positrons. The 

S parameter can be written as 

S =
i

iiSP +
i

dd ii
SP (6.1)

Where Pi is the probability of the annihilation of positrons in phase i and Si is the 

respective line shape parameter.
idS counts for the part of positrons 

Sample  (ps)  (ps)  Concentration of 

dislocations (1014m-2)

FeMnSiCrNi 107 100 - -

FeMnSiCrNi

(15% deformed)

61 21 151 79 1.287

FeMnSiCrNiC 107 100 - -

FeMnSiCrNiC 

(15% deformed) 

67 24 150 76 1.046
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annihilated due to the defects of phase i with its respective probability 
idP [6]. In 

Figure 6.4, as the true strain is smaller than 7%, the change in S parameter is 

very small to be recognized and for deformations higher than 7% the S

parameters increases remarkably. An increase of the defect density leads to an 

increase of the S-parameter in both samples, which can be recognized through 

the comparison of the data of the deformed and the undeformed samples. For the 

common metals and alloys the positron parameters increase markedly at the early 

stage of increasing strain, and rapidly became saturate when the samples are 

subjected to plastic deformation [26- 28]. After certain tensile strain, there will 

not be extra increase in the defect concentration, which could be the raison for 

the saturation of the S parameter (which is sensitive to the defects as explained 

before). S. Hautakangas et al. [29] concluded that the positrons are sensitive only 

to plastic deformation. i.e. generation of dislocations and other open volume 

defects, while the detection of the elastic deformation is obscured not only by a 

small increase in dislocation density at low strain values (< 2.3%), but also by 

experimental scattering and stability of set up (in- situ measurements).
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Effect of carbon on the S parameter

In both samples (low carbon, high C sample) the pattern of the S parameter 

versus the true strain gave the S-line shape curve (Figure 6.4). At the first stage 

increasing the true strain up to 7% (a → b) and (a/ → b/) respectively leads to a 

slight increase in the value of the S parameter. In situ positron annihilation 

measurement, it is seems that is difficult to perform in the case of the 

FeMnSiCrNi the very early stages of deformation with low dislocation density. 

That is could be related to the non-homogenous low density dislocations. The 

next stage is starting from 7% up to 11% (b→ c) in case of the low C sample and 

from 7% to 16% (b/→ c/) for the high C sample. The value of the S parameter 

increases greatly with increasing strain and starts to have a kind of saturation 

when the low C sample is subjected to a strain higher than 11% (c→ d).

In the case of the high C sample the start of saturation is not recognized in the 

same way as for the low carbon sample, but it could be starting at a strain higher 

than 16% (c/→ d/). This is also observed in CuZnAl shape memory alloys [5]. 

The behavior of the S parameter in the case of the high carbon sample differs 

from that of the low carbon sample. The S parameter increases with increasing 

strain but the change in the S parameter is not that high as the one of the low 

carbon sample. This means that, the carbon content added to the alloy has an 

effect in the change of the microstructure and the concentration of defects 

created in the alloys.

During deformation the transformation proceeds and ’ martensite is 

formed at the intersections of the  plates, which causes strain hardening. As 

shown by the XRD measurement, the low carbon alloy forms much more 

martensite during deformation, which results in a higher strain hardening 

compared to the high C alloy. Van Caenegem. N [30] said that the uniform 

elongation is larger for low C alloy. This might be correlated with the fact that 

due to the formation of the  phase or twinning, the microstructure is 

progressively subdivided in much smaller sized units in the C- added alloy.

Consequently, the effective grain size is reduced. In such steels with a smaller 
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grain size, more stress is needed for the movement and multiplication of 

dislocations. They are impeded by the grain boundaries, which lead to a lower 

strain hardening and a smaller uniform elongation. This can be recognized in the 

behavior of the S parameter in both samples. The S parameter increases with 

increasing deformation and in the case of low carbon steel, it is clear that the 

change in the S parameter is more than the one of high C sample. 

From the S-W curve, the relation is not giving the very fine straight line 

especially in the low carbon sample. This can be ascribed to the existence of two 

types of effects or mechanisms. The first could be dislocations, which is 

correlated with lifetime results. The second might be related to the phase 

transition This phase transition is very clear from the OM micrographs and the 

XRD, which is described above.

6.4 Conclusions

From the results of the positron annihilation, the Doppler broadening parameter S

increases as a result of the trapping of positrons in defects. In the early stages of 

deformation, no significant increase of the S parameters for both alloys is

observed. The increase of S is caused by an increasing number of lattice defects 

(dislocations). The starting of saturation of the S parameter corresponds to the 

equilibrium defect density. Phase transition might be detected from the S-W

relation. The carbon content in the alloys has a significant effect in the value of 

the S parameter, which means the concentration of defects.
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Chapter 7
Investigation of defects and phase transitions in deformed 
FeMnSiCrNiC
______________________________________________________

In this chapter, the martensitic transformation and defects induced by the tensile 

deformation of a FeMnSiCrNiC alloy were investigated. Samples deformed from 

2 to 20% were investigated using positron annihilation spectroscopy, optical 

microscopy (OM) and X-ray diffraction (XRD). Both Doppler broadening of the 

annihilation radiation (DBAR) and positron annihilation lifetime spectroscopy 

(PALS) measurements were performed. The DBAR experiments, carried out 

using a slow positron beam, indicate a sudden increase in the defect 

concentration in between 4 and 6% deformation. This is confirmed by the 

lifetime measurements. In between 6% and 8% deformation the line-shape 

parameter significantly changes which coincides with the drastic increase of the 

concentration of the martensite phase as confirmed by XRD. Positron 

annihilation spectroscopy is indirect probes the  martensitic phase 

transformation by probing correlated dislocations. 

7.1 Introduction

In the present study, the influence of the tensile deformation on FeMnSiCrNiC 

alloys is studied by a combination of optical microscopy (OM), X- ray 

diffraction (XRD) and Positron Annihilation Spectroscopy (PAS) techniques. 

OM and XRD are used to investigate the different phases formed with 

deformation. X-ray diffraction [1] is widely used in investigating the 

microstructure of materials, but it is restricted to small penetration depths (about 

10 μm maximum). 
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In order to better understand the relation between the defects introduced in the 

sample by deformation and the evolution of the presence of “strain induced” 

phases, DBAR and positron annihilation lifetime spectroscopy (PALS)

measurements are compared with OM and XRD measurements. 

Dislocation lines or any change in the spacing of the lattice planes due to 

deformation act as open volume defects. They form an attractive potential that 

trap positrons at these sites [2].

7.2 Experimental work

The chemical composition of FeMnSiCrNiC is given in Table 7.1.

Table 7.1 Chemical composition of the FeMnSiCrNiC samples

The samples were deformed by tensile loading (2%, 4%, 6%, 8%, 10% and 20%) 

at room temperature. These deformed specimens were cut, mechanically polished 

and then electrolytically polished in a solution of 20% perchloric acid and 80% 

butylcellosolve. For the OM the specimens were color etched (see chapter 3). 

The microstructure was investigated on a Zeiss Janavert optical microscope.

Positron lifetime measurements were performed at room temperature using a 

fast-fast lifetime spectrometer. The DBAR measurements were performed using 

the Ghent Slow positron facility, which is fully described in [3]. The spectra 

were analyzed using the well known line-shape parameters. 

Element Fe Mn Si Cr Ni C

Wt. % 66.84 12.56 6.09 9.44 4.89 0.18



115

7.3 Experimental results

7.3.1 Light optical microscopy (OM) and XRD

The color etching method is very important to verify the presence of the different 

phases that exist in this alloy especially the ′-martensite. When the volume 

fraction of this phase is very low, the X-ray diffraction can not identify it.

The microstructural analysis of the samples by OM reveals the presence of large 

austenite grains, residual ferrite grains and phase. An example is shown in 

Figure 7.1. The  martensite appears as thin parallel lines with dark contrast 

inside the -austenite grains. Stress-induced - martensite appears as thin 

martensite plates randomly distributed through the sample.

The images for 2 and 4 % deformation are indistinguishable. Starting from 6% 

deformation the number of  martensite plates are increasing with a pronounced 

increase for the 10 % deformation, where thick white bands of martensite 

become clear. It was possible with this etchant to observe the different 

orientations of - martensite plates inside the austenite grains. Also, at the high 

deformation orders, the ’- phase is formed through the intersections of the 

martensite plates. The presence of ′- martensite increases with increasing 

deformation [4, 5]. It’s possible to make an estimation for the  martensite phase 

by the OM micrographs and to compare with the X-ray data shown in Figure 7.2.
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Figure 7.1 OM images of FeMnSiCrNiC for different deformations
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Figure 7.2 XRD spectra of FeMnSiCrNiC for different deformations

Figure 7.2 confirms that there is an increase in the intensity of the  martensite 

with increasing deformation up to 10% deformation. After 10% there is no 

significant increase in the  martensite, which can be attributed to the increase of 

the ’ phase formed in the intersections of the  martensite plates [6, 7]. The ’ 

martensite has a blocking effect on the reversion of  martensite and in addition 

reverts directly to the austenite, →. This causes a decrease in the SME. 

Tomota and Yamaguchi [8] showed that a volume fraction of  martensite 

below about 4% deformation does not interfere with the extent of the SME.

7.3.2 Slow positron beam Doppler Broadening analysis

The S parameter can be written as 

S = 
ii d

i
d

i
ii SPSP   (7.1)
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Where Pi is the probability of the annihilation of positrons in phase i and Si is the 

respective line shape parameter. 
idS counts for the part of positrons annihilated 

due to the defects of phase i with its respective probability 
idP [9]. The phases 

present are and 
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From the data of Figure 7.3, the presence of a subsurface layer in the 0% and 6% 

samples, probably due to the sample preparation, is visible. The line-shape 

parameter for the different subsurface layers is comparable but their thicknesses 

are different. Because the thicknesses of these subsurface layers are not 

accurately known, a thorough VEPFIT analysis is not feasible and hence only a 

qualitative indication of the diffusion length is possible. From the shape of the 

evolution of the W parameter with increasing implantation energy it is clear that 

the diffusion length starts to decrease for a deformation of 6%. Starting from 6% 

the evolution of the W parameter with the high energies goes far from the surface 

towards the bulk faster than the lower deformed samples. This means that the 

concentration of defects increases with increasing deformation which is 

correlated with the lifetime data. For a deformation of 8% the line-shape 

Figure 7.3 The W parameter as a function of incident energy of the 
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parameter in the bulk of the sample changes drastically. The evolution of the 

bulk line-shape parameters (S,W) lays on one line indicating that one fraction of 

the  positrons annihilate in the defect free state while the other fraction in one 

type of defect. The fraction annihilating in the defect increases with higher 

deformation. 

7.3.3 Positron annihilation lifetime measurements

Using the insight gained from the DBAR measurements the lifetime spectra were 

analyzed by a two component analysis. The results presented in Figure 7.4 

indicate a trapping mechanism [10] with a defect lifetime d 153 ± 3ps associated 

to a dislocation like defect. The defect lifetime intensity increases at 6% 

deformation, which coincides with the DBAR results. For deformations higher 

than 10 percent the intensity seems to saturate indicating the concentration of 

positron detectable defects does not change anymore. Using the trapping model 

with a trapping efficiency for dislocations in iron, 10-5 m2s-1 [11] a defect 

concentration could be calculated.

The bulk lifetime can be calculated using equation 4.3 and the values of the 

lifetime and its intensity which are presented in Figure 7.4. These values are 

varied randomly between 109ps and 119ps. This implies the trend seen in Figure 

7.5 is probably reliable.
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The evolution of the defect concentration is presented in Figure 7.5.
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Figure 7.5 Comparison of the defect concentration of the dislocation like 

defect and the intensity of the  phase derived from the  {100} XRD

peak.

7.4 Discussions

The evolution of the positron detectable defects were compared with the 

martensitic  transformation in the samples by deriving the intensity of the 

{100} phase from the XRD measurements. The result is also presented in Figure 

7.5. It is clear from the comparison that there is a very strong correlation between 

the dislocation like defects and the martensite phase. This is in agreement with 

[12] where it was concluded from high resolution electron microscopy (HRTEM) 

that the martensitic transformation is achieved by propagation of a correlated 

distribution of glide dislocations. Also they said that the thickness of the 

martensite increase with increasing deformation and the  -phase densification is 
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achieved by nucleation of new thin plates rather than by thickening of those 

already formed. 

There are few previous publications show the calculation of the dislocations 

density in iron based alloys using different techniques, such as TEM or the XRD. 

J. Pesicka et al. [13] studied the dislocation density in the two tempered 

martensite ferritic steels during heat treatment and creep using TEM and XRD. 

They said that TEM can help to measure lower dislocation densities; in contrast, 

the XRD method becomes less reliable when line broadening is not very 

pronounced (lower dislocation densities). They concluded that long term 

tempering and creep of these materials is characterized by a decrease of 

dislocation density; but dislocation densities are still high as compared to other 

metals. Normal tempering results in a decrease of dislocation density by almost a 

factor of ten. The mean value dislocation density was in between around 1014. J. 

Bouquerel et al. [14] reported the density of dislocation in bainitic ferrite to be 

1013m-2. 

7.5 Conclusions

Combining DBAR and PALS analysis, the defect structure of deformed 

FeMnSiCrNiC samples were investigated. Above 4 % deformation the intensity

of dislocation-like defects starts to increase, saturating at 10%. The evolution of 

the positron detectable defects correlates with the presence of the  martensite 

phase. Positrons indirectly probe the  phase transition in FeMn SMA by 

probing the correlated dislocations. 

From all the experimental results shown above, one can says that positron 

annihilation spectroscopy seems to be a sensitive technique that can be used to 

detect, classify and calculate the defect concentration.
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Chapter 8

Study of the effect of annealing on defects in FeMnSiCrNiC 
alloys by slow positron beam measurements
______________________________________________________

In this chapter the effect of isochronal annealing on a deformed FeMnSiCrNiC

alloy is studied using a Variable-energy (0– 30 keV) positron beam experiment. 

Doppler broadening profiles of the positron annihilation as a function of the 

incident positron energy were shown to be quite sensitive to defects introduced 

by deformation. The variations of the nature and the concentration of defects are

studied as a function of the isochronal annealing temperature. These results are

correlated with the data obtained with the positron annihilation lifetime 

spectroscopy (PALS). The positron annihilation results are compared with XRD 

and optical microscopy (OM).

8.1 Introduction

The Shape Memory Alloys (SMAs) are metallic materials, which have the ability 

to return to some previously defined shape when subjected to the appropriate 

thermal procedure. These materials can be plastically deformed at some 

relatively low temperature, and upon exposure to some higher temperature they 

will return to their shape prior to the deformation. The shape memory effect 

(SME) for FeMnSi based alloys arises from the reverse transformation of stress-

induced  martensite (HCP structure) into  austenite (FCC structure) upon 

heating [1] by the movement of Shockley partial dislocations. There has been a 

considerable amount of research conducted on the FeMnSi system, and this 

research has led to a maximum measured recoverable strain of ~5% [2], but this 

value is significantly lower than the recoverable strains possible in NiTi of 8% 

[3]. A good shape recovery depends strongly on the alloy composition and on the 

thermo-mechanical treatment of the alloy. The width of martensite plate should 

be extremely small and must be uniformly distributed [4– 6].
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There are efforts to increase the use of these materials, especially the “heat-to-

shrink” pipe couplings [7]. The fitting technique by using FeMnSi based shape 

memory alloys is a brand-new method to connect engineering pipes. It exhibits 

much merit than conventional welding and can be widely applied in various 

engineering fields. 

Positron annihilation spectroscopy (PAS) is a useful technique to study defects in 

materials [8, 9]. From this point of view, it can be used for the calculations of the 

density of defects (vacancies and dislocations) and the detection of defect 

recovery after the annealing of deformed SMAs. The phase transition 

temperatures for the SMAs can be detected using the PAS. A number of positron 

annihilation studies have dealt with the interaction of positrons with dislocations 

in metals and alloys [10, 11]. S. Hautakangas et al. [11] concluded that the 

positrons are sensitive only to plastic deformation i.e. generation of dislocations 

and other open volume defects, while the detection of the elastic deformation is 

obscured not only by a small increase in dislocation density at low strain values 

(< 2.3%), but also by experimental scattering and stability of set up (in-situ 

measurements).

8.2 Experimental work

The chemical composition of the FeMnSiCrNiC alloy is given in Table 7.1(the 

previous chapter). 

After deformation by tensile loading (2% up to 20%), the specimens were cut, 

mechanically polished and then electrolytically polished in a solution of 20% 

perchloric acid and 80% butylcellosolve.  The samples were employed to 

perform the positron annihilation measurements at room temperature, and then 

were isochronally annealed for 15 minutes from 100 °C to 500 °C. After each 

annealing the samples are measured by the different techniques (positron 

annihilation life time, the slow positron beam, OM and the XRD). It is used to 

start the XRD and the positron annihilation measurements before the OM. This is 

because the samples prepared for the OM should be color etched. 
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8.3 Results and discussion

8.3.1 Positron annihilation lifetime

In this work we investigate the effect of annealing on the deformation-induced 

defects and on phase transition using the positron annihilation techniques. 

Different deformed FeMnSiCrNiC samples (2 up to 20% tensile deformation) 

were annealed isochronally (15 minutes) at 100°C in boiling water and from 

200°C up to 500°C in steps of 100°C in an evacuated furnace. The positron-

lifetime spectra were analyzed using two components. The lifetime for the 

trapped positrons has a value around 150 ps. This value is shorter than that for 

positrons trapped in vacancies, which is 180 ps [12]. This value is attributed to 

positron annihilation from dislocations [13].

The temperature dependence of the mean value of the positron annihilation 

lifetime mean for the 2% deformed sample is shown in Figure 8.1. A decrease of 

mean with increasing annealing temperature is observed. This is attributed to the 

decrease of the defect concentration with increasing temperature. Only one 

positron lifetime (1) component can be extracted after annealing at 500°C for 

the 2 % deformation. This value is 107 ps, which is the same value for the 

sample before deformation. This means that the 2% deformation sample has 

almost no defects or phase at 500 °C. The positron annihilation lifetime and its 

intensity data at the different annealing temperatures can be used to calculate the 

density of dislocations for every annealing temperature.



128

0 100 200 300 400 500 600
100

110

120

130

D e fec t free  life tim e

 m
ea

n
(p

s)

T em perature(°C )

 2%  deform ation

Figure 8.1 Temperature dependence of the mean value of the positron 

annihilation lifetime of the 2% deformed sample(the samples were 

annealed in a boiling distilled water for 15 minute and then start from

200°C up to 500°C in steps of 100°C in high vacuum furnace. 

In chapter 7 it was shown that there is an increase of the concentration density 

with increasing the degree of deformation (see Figure 7.5). Figure 8.2 shows the

positron annihilation mean lifetime (mean) and the defect concentration of 

different deformation FeMnSiCrNi-C samples annealed at 500°C. Also the 

positron annihilation lifetime 1 and its intensity are shown also in this figure. 

Starting from the 6% deformation a long component of lifetime 2 is found to be 

around 150ps which is related to existence of the dislocations. Figure 8.2 shows 

that annealing of the samples at 500°C leads to a significant decrease of the 

defect concentration (see Figure 7.5 for comparison). For the low deformed

samples (2, 4%) annealed at 500°C, most of the positrons annihilate in the defect 

free lattice, giving a lifetime near to 107 ps. This means that, the samples 

deformed for 2 and 4%, are almost free of defects after the annealing at 500°C. 

For the samples deformed for more than 4%, the mean is higher than 107 ps. This 

means that these samples still have defects after annealing at 500°C. 
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Figure 8.2 The positron annihilation lifetime parameters and the defect 

concentration of different deformation FeMnSiCrNi-C samples annealed 

at 500°C.
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8.3.2 Slow positron beam Doppler Broadening analysis

Figure 8.3a shows the evolution of the S parameter as a function of the incident 

energy of the implanted positrons for the undeformed, the 2% and 20% deformed 

samples, before and after annealing at 500°C. It seems that there is no subsurface 

layer for most of the samples. From the shape of the evolution of the S parameter 

with increasing implantation energy, it is concluded that the diffusion length is 

slightly shorter for the samples deformed for 20% than for the samples deformed 

for 2%. This could support the idea that the 20% sample still has defects. The S 

parameter value at high positron implantation energy (28 keV) slightly increases 

with increasing deformation. The effect of annealing can be clearly observed. A 

defect free sample (its positron lifetime is 107 ps) is measured in the beam to be 

used as a reference sample. At the annealing temperature of 500°C, the value of 

the S parameter at high positron implantation energy (28 keV) decreases after the 

annealing. It seems that after annealing at 500°C the sample deformed to 2% is 

almost defect free compared to the 20% deformation sample. The value of the S 

parameter for the sample deformed to 20% at the high positron implantation 

energy (28 keV) is much higher than the defect free sample (reference sample), 

which means that the sample still has defects. 

Figure 8.3b shows the evolution of the line shape parameters (S, W). This 

indicates that one fraction of the positrons annihilate in the defect free state (low 

S, high W) while the other fraction in defects (high S, low W). The annihilating 

fraction in defects increases with increasing of deformation and decreases at the 

high temperature annealing (500°C).
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Figure 8.3 a) The S parameter as a function of the incident energy of the 

implanted positrons for the 2%, 20% deformation before and after 

annealing at 500°C. A defect free sample is measured as a reference 

sample and b) the evolution of the line-shape parameters (W, S) for low 

and high deformed material before and after annealing at 500°C.

8.3.3 OM and XRD

To determine the type of defects, optical microscopy and XRD were performed 

on the 2% and 20% deformed samples, before and after annealing at 500°C. 

Figure 8.4 (a - c) shows the microstructure of the undeformed sample (Figure 

8.4a) and two deformed FeMnSiCrNiC samples (Figure 8.4b for the 2% and 

Figure 8.4c for the 20% deformation) after annealing at 500°C for 15 minutes. 

Deformation of 2% and 20% results in the stress-induced transformation of 

austenite to  martensite. The  martensite appears as thin parallel lines with dark 

contrast inside the austenite grains. Increasing stress induces the appearance of 

large  domains. During annealing at high temperatures, the reverse  martensite 
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to austenite phase transformation occurs. The 2% deformed sample has almost 

no  phase after annealing at 500°C (Figure 8.4b). If the deformation is small

(not more than 4%), the reverse movement of the Shockley partials is not 

impeded because only primary  variants move through the parent austenite 

under the influence of stress. The microstructure of the 20% deformed samples

still contains  martensite (Figure 8.4c). When the strain is large, several 

variants will be activated and the intersection of  plates will impede the back 

movement of the partials. In addition, the plastic deformation of the austenite 

will be initiated at higher strains, such as 20%. The presence of dislocations in 

the parent phase prevents the free motion of the interface. This influence of the 

amount of pre-strain was also described before in [14- 16].

The XRD results (Figure 8.5) confirm what is seen in the optical microstructure. 

The intensity of the (002), (100) peaks is higher for the 20% deformed samples

compared to the one of the 2% deformation. The 2% deformed sample has 

almost no  phase after the annealing at 500°C. The 20% deformed sample still 

has martensite phase.
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a) b) 

c)

Figure 8.4 OM images of FeMnSiCrNiC a) 0 % deformation, b) 2 % and 

c) 20% deformation annealed at 500°C
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Figure 8.5 XRD spectra for 2 % and 20% deformation annealed at 

500°C. 

Figure 8.6 (a, b) shows the XRD data for the 4% and 10% FeMnSiCrNi-C 

deformed samples at room temperature, and after the isochronal annealing at 

500°C. The intensity of the (002), (100) peaks is higher for the 10% 

deformation compared to the one of the 4% deformation. The 4% deformed 

sample has almost no 

sample still have a significant amount of the  martensite phase.

 phase at 500°C (Figure 8.6 b) while the 10% deformation 
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8.4 Conclusions

The FeMnSiCrNiC SMA, subjected to plastic deformation by tensile loading at 

different levels was studied by OM, XRD and positron annihilation techniques. 

The effect of the isochronal annealing was studied. The OM, and XRD 

measurements show that the reversion of the  martensite to the  phase is low 

for the 10 and 20% deformation after annealing at 500°C, although the number 

of large  phase domains clearly decreases. This morphology is a result of the 

incomplete reversion of large  domains. The 2% and the 4% deformed samples

have almost no  phase after annealing at 500°C. The positron annihilation mean 

lifetime mean and the Doppler broadening line-shape parameters show a decrease 

of the defect concentration with increasing annealing temperature. In case of the 

20% deformed sample, the value of the S parameter is higher than the one for the 

defect free sample. This means that the 20% deformed samples still have defects. 

The mean and the S parameter for the 2% deformation after annealing at 500°C 

have almost the same value as the 0% deformation sample. 
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Chapter 9

General conclusions
______________________________________________________

9.1 Introduction

This chapter gives an overview of the very important conclusions included in 

each chapter of this thesis, and also a proposal of the future work concerning the 

field of iron based alloys and positron annihilation spectroscopy will be 

discussed.

9.2 General conclusions

The positron annihilation techniques can be used to classify the types of defects 

and also it can be used to calculate the defect concentration. For the high 

deformed iron (chapter 4), the isochronal curve for the positron mean lifetime 

reveals that the traps for positrons are dislocations. With increasing the annealing 

temperature, the Doppler broadening parameter S has a slight decrease before the 

recovery temperature region. The S-W relation shows only one straight line, 

which means that only one type of defect, exists in the deformed iron through the 

whole isochronal annealing temperature range, which is consistent with the 

positron lifetime data.

A study of defects induced in FeSi which is deformed at high temperature and 

low (room) temperature was done by positron annihilation spectroscopy (PAS) 

(chapter 5). The effect of the Si content is also studied. The data of the positron 

annihilation techniques shows that the deformation temperature affects the 

concentration and the type of defects formed in the alloys through the 

deformation process. Mono-vacancies are the main defects formed when the 
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alloys are deformed at high temperatures. In case of the alloys deformed at room 

temperature, dislocations and vacancy clusters are formed.

In chapter 6 the influence of the addition of C to the FeMnSiCrN base material is 

investigated at room temperature. Steel samples were deformed during a tensile 

experiment up to a strain of 17 %. Light optical microscopy (OM) and XRD 

gave information about the different microstructural phases that exists in the 

deformed and the undeformed alloys. From the results of the positron 

annihilation, the Doppler broadening parameter S increases as a result of the 

trapping of positrons in defects. In the early stages of deformation, no significant 

increase of the S parameters for both alloys is observed. The increase of S is 

caused by an increasing number of lattice defects (dislocations). The starting of 

saturation of the S parameter corresponds to the equilibrium defect density. 

Phase transition might be detected from the S-W relation. The carbon content in 

the alloys has a significant effect in the value of the S parameter, which means a 

change in the concentration of defects.

The martensitic transformation and defects induced by the deformation of a 

FeMnSiCrNiC alloy were investigated (chapter 7). Samples deformed from 2 to 

20% were investigated using positron annihilation spectroscopy, optical 

microscopy (OM) and X-ray diffraction (XRD). It has been found that above 4% 

deformation the concentration of dislocation like defects starts to increase, and 

saturation after 10% tensile deformation was found. The evolution of the 

positron detectable defect (the defect concentration and its size) correlates with 

the presence of the  martensite phase. Positrons indirectly probe the  phase 

transition in FeMn SMA by probing the correlated dislocations.

In chapter 8, the effect of isochronal annealing on a deformed FeMnSiCrNiC 

alloy is studied using a Variable-energy (0–30 keV) positron beam. Doppler 

broadening profiles of the positron annihilation as a function of incident positron 

energy were shown to be quite sensitive to defects introduced by deformation. 

The variation of the nature and concentration of defects is studied as a function 

of isochronal annealing temperature. The OM and XRD measurements show that 
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the reversion of the  martensite to the  phase is low for the 20% deformed 

sample annealed at 500°C, although the number of large  phase domains clearly 

decreases. This morphology is a result of the incomplete reversion of large 

domains. The 2% deformed sample has almost no  phase after annealing at 

500°C. The positron annihilation mean lifetime mean and the Doppler broadening 

line-shape parameters show a decrease of the defect concentration when

increasing the annealing temperature in both samples. The mean and the S 

parameter for the 2% deformation after annealing at 500°C have almost the same 

value as the 0% deformed sample. This can be an indication that the 2% 

deformed sample is almost recovered at 500°C.

From all the conclusions discussed, it is clear that the positron annihilation 

spectroscopy is a sensitive technique can be used to detect and classify the kind 

of defects. Also it is a unique technique to calculate the defect concentration. 

This is very important to the industry, where the positron annihilation is also 

sensitive to the nano-cracks. The slow positron beam can visualize the 

differences between the surface and the bulk material. This is very important for 

the FeSi to be sure of the EBSD results. Also can give an answer for the question 

about the martensite can be seen by the optical microscopy, if it is only on the 

surface or it is related to the bulk.  
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9.3 Suggestions for future work

9.3.1 FeMnSiCrNi shape memory alloys

The quantification of the martensite phase induced by deformation in these 

alloys still needs more work to have a complete and clear image about this phase. 

It is clear from the comparison of the data shown in chapter 7, that there is a 

correlation between the dislocation like defects calculated from the positron 

annihilation lifetime parameters and the -martensite phase identified by the 

XRD. What should be done is doing more measurements for a set of deformed 

samples and trying to make the correlation between the XRD, high resolution 

TEM and the positron annihilation results.

It should be taken into account that the stress-induced martensite exists in

different variants. For this reason the high resolution EBSD could be also a good 

method to do more research on that. The effect of the surface treatments on the 

first micron of the sample should be given more attention. The slow positron 

beam can help to have information about the effect of the different surface 

treatments. It was clear that the defect concentration in FeMnSiCrNiC samples 

decreases with increasing temperature. A further annealing for the high deformed 

samples up to 1000°C needed to have an idea about those highly deformed 

samples. The positron annihilation spectroscopy could be used to determine the 

phase transition temperature. Also the electrical resistivity (four-point probe 

method) is a simple experiment can do that.  

9.3.2 FeSi electrical steel

The positron annihilation data in chapter 5 shows that the Si content affects the 

positron annihilation parameters, but the number of samples used in this study 

was not enough to have clear idea about the microstructure change. More

different Si content samples should be examined by PAS and correlate the results 

with a high resolution TEM measurements. 
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Appendix 

Trapping Models

1 Simple trapping model

1.1 General Case
The simple trapping model (STM) [1] is based on the following assumptions:

 At time t = 0 all positrons are free

 The positron trapping rate is proportional to the defect concentration:

= D cD (1)

where D is the defect specific trapping coefficient.

 The positron may escape from a trap. The de-trapping rate is denoted by 

.

Supposing N different defects, we can make the following set of differential 

equations:

dt

dnB = - (B +


N

j 1

j) nB + 


N

j 1

jnD j

(2)

dt

dnDj  = jnB – (D j +j) nD j

where nB(t) and nDj(t) are the probabilities that the positron is in the free state and 

defect state, and B and Dj are the annihilation rates from the free and trapping 

state. The boundary conditions are:

nB(0) = 1, nDj (0) = 0 (3)

The probability for a positron to be alive at time t is given by:

n (t) = nB (t) + 


N

j 1

nD j(t) = 




1

1

N

i

I i exp(-it) (4)

where the decay constants i and Ii are found by solving eq. 2. The lifetime 

spectrum is the probability for annihilation at time t:

-
dt

tdn )( = 




1

1

N

i

Iii exp (-it) (5)

From equation 5 one can calculate the average positron lifetime:
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av = 


0

(-
dt

tdn )(
) t dt = 



0

n (t) dt =




1

1

N

i

Iii (6)

In the case of no de-trapping (j=0) the general solution can be written as:

1= B + 
N

j 1
 j (7)

i+1= Di (8)

n(t)= [1-
N

j 1





 DjB

j ]e-(λ
B
)t

+
N

j 1


t

DjB

j jDe



 


(9)

The annihilation rate from the free state is given by:

B= 




1

1

N

i

Ii i (10)

The fraction of positrons annihilating form the free and trapped state is given by:

 B = 


0

)( dttn BB (11)

And

 D j= dttnDjjD )(
0




(12)

This gives in the case of no de-trapping:






B

B
B

(13)








B

j
Dj (14)

1.2 One type of defect
In this case we get two annihilation rates:

1=B +      (15)

2 =  D (16)

The following relations can be calculated
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B =I11 + I2 2 (17)

av = 
B

D







1

1 B (18)

1= 

1

1

I
(B -I2D) (19)

 =
1

2

I

I (B -D) (20)

The validity of the trapping model can be tested by comparing I11+ I22 with 

the free annihilation rate according to equation 17.

1.3 Two types of defects

A quantitative analysis of annihilation characteristics in terms of positron 

trapping rates and defects concentration is made using the so-called two state 

trapping model [2, 3].

The following annihilation rates are found:

1= B + 1 + 2,      I1= 1 – I2 – I3 (21)

2 =D1, 

 I2= 
211

1




 DB

(22)

3=D2,

  I3= 
212

2




 DB

(23)

A few cases can be distinguished:

Case1. If 1, 2 >> B -D1, 2, positron trapping is in saturation. All positrons 

annihilate in defects and the sensitivity to defects concentrations is lost. From the 

experiment we get only two lifetime components 1, exp and 2, exp with

exp,1

1


 =  D1 (24)

,exp2

1


 = D2 (25)
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exp,2

exp,1

I

I
 = 

2

1


 (26)

Case2. Suppose that the two shortest components cannot be separated. In this 

case one also gets only two components with:

1, exp = 
21

1

II

I


1 + 

21

2

II

I


 2 (27)

,exp2

1


 =  3,  I2, exp = I3 (28)

From this we can calculate the trapping rates:

1 = 
exp,1

exp,12exp,2

1

exp,1
)(









D

II DB
(29)

2 = 
exp,1

exp,2

I

I
(B – D2 + 1) (30)

Case3. The two longest components  D1 and  D2 are mixed up (e.g. in 

semiconductors one can have a vacancy existing in two different charge states 

having two lifetimes differ only by 5-10%. We get:

,exp1

1


= 1 = B +  (31)

2, exp = 
32

2

II

I


D1 + 

32

3
II

I


D2 (32)

If  B –D1, 2 <<  then


 2, exp = 

21

1





D1 + 
21

2





D2 (33)

The total trapping rate

  = 
av

Bav






exp,2 B
1 (34)

can be calculated as if there was only one type of defect with , exp.
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2 Diffusion trapping model

The space and time dependent positron diffusion equation is given by:

t

trn


 ),( = D+

2n(r, t) – n(r, t) (35)

with n the position probability, D+ the diffusion constant and the positron 

annihilation rate. This equation has no general solution and depends on the 

specific geometry of the problem. We will mention here only a few cases, 

relevant for this thesis.

In the case of spatially large defects such as voids, the positron trapping 

coefficient may become so large that the positron diffusion to defects starts to 

limit the total trapping rate. The switching from transition-limited to diffusion 

limited trapping was first studied by McMullen [4, 5]. The case of trapping at 

voids has been studied by Niemimen et al. [6].

A similar approach for positron trapping at grain boundaries in metals was 

developed by Dupasquier et al. [7, 8]. The model is based on the following 

assumptions: 

a) the material is formed by identical spherical domains with a radius R, 

b) positron trapping occurs only at the surface of the domains with a thickness 

 <<R, 

c) the thermal trapping rate at the surface is much larger than the local 

annihilation rate of free positrons, 

d) de-trapping is negligible and 

e) all trapped positrons annihilate with the same rate  trap. 

It is also assumed that the positron motion is governed by diffusion with a 

characteristic diffusion length L+ related to the positron diffusion constant D+ by:

bulk

D
L




 
(36)
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Using these assumptions the solution of the space and time dependent diffusion 

equation leads to a lifetime spectrum with an infinite number of components and 

is given by the equation:

f (t) = t
BB

n

t
nn

trapn eIeI   




 
1

(37)

Where n to be calculated from

n  =  bulk (1 +
2

22

R

Ln  ) (38)

With n the nth solution of the eigenvalue equation:

01cot  nn (39)

and   is a regime parameter defined by:

= 
 L

R

L
trap

(40)

with  trap the effective trapping thickness

trap  = 
bulk

s


 (41)

The intensities are:

In =

2

2

1 



















R

L

R

L

n


)1(

6
2

2
















 








ntrapn

trap

bulkn

bulk

(42)
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