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LEGENDE VON DERENTSTEHUNG DESBUCHESTAOTEKING

AUF DEM WEG DESLAOTSE IN DIE EMIGRATION

1
Als er siebzig war und war gebrechlich
Drängte es den Lehrer doch nach Ruh
Denn die G̈ute war im Lande wieder einmal schwächlich
Und die Bosheit nahm an Kräften wieder einmal zu.
Und er g̈urtete den Schuh.
2
Und er packte ein, was er so brauchte:
Wenig. Doch es wurde dies und das.
So die Pfeife, die er immer abends rauchte
Und das B̈uchlein, das er immer las.
Weißbrot nach dem Augenmaß.
3
Freute sich des Tals noch einmal und vergaß es
Als er ins Gebirg den Weg einschlug.
Und sein Ochse freute sich des frischen Grases
Kauend, ẅahrend er den Alten trug.
Denn dem ging es schnell genug.
4
Doch am vierten Tag im Felsgesteine
Hat ein Z̈ollner ihm den Weg verwehrt:
“Kostbarkeiten zu verzollen ?” – “Keine.”
Und der Knabe, der den Ochsen führte, sprach: “Er hat gelehrt.”
Und so war auch das erklärt.
5
Doch der Mann in einer heitren Regung
Fragte noch: “Hat er was rausgekriegt ?”
Sprach der Knabe: “Daß das weiche Wasser in Bewegung
Mit der Zeit den m̈achtigen Stein besiegt.
Du verstehst, das Harte unterliegt.”
6
Daß er nicht das letzte Tageslicht verlöre
Trieb der Knabe nun den Ochsen an.
Und die drei verschwanden schon um eine schwarze Föhre
Da kam pl̈otzlich Fahrt in unsern Mann
Und er schrie: “He, du ! Halt an !
7
Was ist das mit diesem Wasser, Alter ?”
Hielt der Alte: “Intressiert es dich ?””
Sprach der Mann: “Ich bin nur Zollverwalter
Doch wer wen besiegt, das intressiert auch mich.
Wenn du’s weißt, dann sprich !
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8
Schreib mir’s auf! Diktier es diesem Kinde !
So was nimmt man doch nicht mit sich fort.
Da gibt’s doch Papier bei uns und Tinte
Und ein Nachtmahl gibt es auch: ich wohne dort.
Nun, ist das ein Wort ? ”
9
Über seine Schulter sah der Alte
Auf den Mann: Flickjoppe. Keine Schuh.
Und die Stirne ein einzige Falte.
Ach, kein Sieger trat da auf ihn zu.
Und er murmelte: “Auch du ? ”
10
Eine ḧofliche Bitte abzuschlagen
War der Alte, wie es schien, zu alt.
Den er sagte laut:“Die etwas fragen
Die verdienen Antword.“ Sprach der Knabe:“Es wird auch schon kalt.”
“Gut, ein kleiner Aufenthalt.”
11
Und von seinem Ochsen stieg der Weise
Sieben Tage schrieben sie zu zweit.
Und der Z̈ollner brachte Essen (und er fluchte nur noch leise
Mit den Schmugglern in der ganzen Zeit).
Und dann war’s soweit.
12
Und dem Z̈ollner händigte der Knabe
Eines Morgens einundachtzig Sprüche ein
Und mit Dank f̈ur eine kleine Reisegabe
Bogen sie um jene F̈ohre ins Gestein.
Sagt jetzt: kann man höfflicher sein ?
13
Aber rühmen wir nicht nur den Weisen
Dessen Name auf dem Buche prangt !
Denn man muß dem Weisen seine Weisheit erst entreißen.
Darum sei der Z̈ollner auch bedankt:
Er hat sie ihm abverlangt.
(Bertolt Brecht, 1938)
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LEGENDE VAN HET ONTSTAAN VAN HET BOEKTAOTEKING

TIJDENS DE EMIGRATIETOCHT VANLAOTSE

1
Toen hij zeventig was en zwak op zijn benen
Wou de leraar op rust, hij was moe,
Want het goede in het land was haast weer eens verdwenen
En het kwaad nam gaandeweg weer eens in krachten toe.
En hij bond zijn schoenen toe.
2
En hij pakte in wat hij nodig vond:
Weinig. Wat toch een en ander was.
Ook het pijpje dat hij rookte elke avond
En het boekje dat hij telkens las.
Ook wat witbrood, net van pas.
3
Blij keek hij nog eens het dal in en vergat het
Nu hij de weg naar de bergen insloeg.
Zijn os genoot van het frisse gras, hij at het
Traag terwijl hij de oude man droeg.
Want hem ging het snel genoeg.
4
In het gebergte echter verscheen,
Op de vierde dag, een tollenaar.
“Kostbaarheden aan te geven ?” – “Geen.”
En de jongen die de os geleidde, zei: “Hij is leraar.”
Dat was dan verklaard zowaar.
5
Maar de man, in opgewekte stemming,
Vroeg toen nog: “ Vond hij wel al iets uit ?”
De jongen zei:“Het zachte water in beweging
Haalt de sterkste steen ooit onderuit.
Je begrijpt dat hardheid niets beduidt.”
6
Omdat de zon al zwak begon te schijnen
Spoorde de jongen de os nu aan.
Toen het drietal achter een zwarte den zou verdwijnen
Liep onze man plots achter hen aan
En hij riep:“H é jij! Blijf staan!
7
Hoe zit dat met dat water nou ?”
De oude stopte:“Heb j’er oren naar ?”
De man zei:“Wie van wie wint wil ik wel van jou
Vernemen, al ben ik slechts een tollenaar.
Als jij het weet, verklaar !
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8
Schrijf het op, dicteer het aan dit kind hier !
Zoiets neem je toch niet met je mee.
Daar woon ik: je vindt er inkt en papier
En een maaltijd ook, is dat geen goed idee ?
Jij zegt toch niet nee ?”
9
De oude keek om en zag een simpele
Stakker: blootsvoets. Verstelde kledij.
En zijn voorhoofd was een en al rimpel.
Ach, geen winnaar kwam hier naderbij.
En hij mompelde:“Ook jij ? ”
10
Om wie iets hoffelijks vraagt te mishagen
Was de oude, naar het leek, te oud.
En toen sprak hij luid: “Zij die iets vragen
Verdienen een antwoord.” De jongen zei:“Het wordt ook al koud.”
“Goed, een luttel oponthoud.”
11
En de wijze stapte af. Zij schreven
Samen zeven dagen na elkaar.
En de tollenaar bracht eten (en hij vloekte amper even
In die dagen op een smokkelaar.)
En toen was het klaar.
12
En de jongen gaf dan op een morgen
Eenentachtig spreuken aan de tollenaar weg.
En met dank voor wat reisgeld en de goede zorgen
Trokken zij omheen die zwarte den op weg.
Kan het echt nog hoffelijker, zeg ?
13
Maar, laten wij niet slechts de wijze prijzen
Wiens naam op het titelblad mocht !
Wijsheid moet men eerst afhandig maken van de wijze.
Danken wij dus ook de tollenaar nog:
Hij vroeg ernaar, zo is het toch.
(Bertolt Brecht, 1938, vertaling: Koen Stassijns en Ivo vanStrijten, 1998)

iv



Acknowledgements

One mark of a great educator is the ability to lead students out to new places
where even the educator has never been. (Thomas Groome)

First of all, I wish to acknowledge my supervisor Prof. Dr. Bernard De Baets.
He gave me the opportunity to work at his research group and arranged a scholarship
and additional financial support which allowed me to complete this dissertation. Being
first one of two and then the only fuzzy modeller at the search group, I’m very grateful
for the numerous chances he gave me to present my work and meetother researchers
from the fuzzy modelling domain at international summer schools, conferences and
during two research visits abroad. I also wish to thank him for the freedom he gave me
in my research and for the thorough reviews of our proceedings and articles as well as
this dissertation.

Next, I would like to express my gratitude to Prof. Dr. UlrichBodenhofer
for hosting me twice at his (former) company Software Competence Center Hagen-
berg in Austria. Our discussions convinced me that there wasa need within the fuzzy
modelling community for research on monotonicity and that this interesting topic had
hardly been addressed yet. It was his enthusiasm that made mechange subject halfway
my PhD scholarship and start working on the monotonicity of linguistic fuzzy models.
A decision which I never regretted.

I wish to thank the other members of the examination committee, Prof. Dr. ir.
D. Botteldooren, Prof. Dr. J. Casillas, Prof. Dr. H. De Meyer, Prof. Dr. ir. V. Pauwels
and Prof. Dr. ir. W. Steurbaut for the valuable feedback and suggestions to improve
this dissertation.
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CHAPTER 1

Introduction

”Would you tell me, please, which way I ought to go from
here?”
”That depends a good deal on where you want to get to,”
said the Cat.
”I don’t much care where–” said Alice.
”Then it doesn’t matter which way you go,” said the Cat.
”–so long as I getsomewhere,” Alice added as an explana-
tion.
”Oh, you’re sure to do that,” said the Cat, ”if you only walk
long enough.”
(Alice’s Adventures in Wonderland, Lewis Carroll, 1865)

1.1 Setting

Linguistic fuzzy modelling is an attractive mathematical framework to formally repre-
sent systems for which qualitative knowledge,i.e. a linguistic description, is available.
In linguistic fuzzy models the knowledge about the system isexpressed in words, more
specifically in if-then rules such as ’IF the slope is very large AND the coverage by
vegetation is low THEN the expected soil loss by erosion is high’. Hence the term
linguistic fuzzy models. They are referred to as linguisticfuzzymodels since fuzzy sets
are used to incorporate the uncertainty in the definition of the linguistic values ‘very
large’, ‘low’ and ‘high’ of the linguistic variables ‘slope’, ‘coverage by vegetation’ and
‘expected soil loss by erosion’ in the model. In contrast to classical set theory where
one or zero is assigned to an object (e.g.a real value) depending on whether the object
is in or not in a set, a fuzzy set is characterized by a membership function which assigns
a grade ranging between zero and one to each object to reflect the degree to which an
object is ‘a member’ of the fuzzy set.

The components of a linguistic fuzzy model,i.e. the if-then rules, membership
functions and mathematical operations used to obtain a model output from an input,
can all be based on knowledge from an expert familiar with thesystem, or can — ei-
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ther partially or completely — be derived from data. The firstlinguistic fuzzy models,
reported in the 1970’s and mainly applied as controllers to replace manual control by
human operators, were completely designed based on expert knowledge. Later, data-
driven model identification of linguistic fuzzy models gained importance. With this
shift from knowledge-based to data-driven model identification, the model accuracy,
i.e. the degree to which the output returned by the model resembles the output in the
data set, became the principal model performance measure, while the underlying mean-
ing of the different model components was neglected. Most ofthese early data-driven
identification methods resulted for instance in models applying fuzzy sets with such
strange shapes that no meaningful labels as ‘very low’, ‘medium’ or ‘rather high’ could
be assigned to them. However, in the last decade their interpretable model structure,i.e.
the fact that a simple reading of the if-then rules gives insight in the system’s behaviour
and that a meaning can be assigned to the fuzzy sets, is no longer solely regarded as the
property that sets linguistic fuzzy models apart from othermodelling techniques, but is
also considered their greatest asset. Awareness has grown that the interpretability of a
model should be safeguarded or at least be balanced against the model accuracy in the
model identification process. A good trade-off between accuracy and interpretability
can be obtained by including as much qualitative knowledge as possible, how little this
may be, in the data-driven model identification process. Whena data-driven identifi-
cation method results in interpretable linguistic fuzzy models, this method can be used
for data mining purposes since the obtained if-then rules and fuzzy sets give insight in
the system’s behaviour.

Monotonicity is the type of qualitative knowledge that plays a central role in
this dissertation. Monotone is hereby interpreted as order-preserving. Man often uses
ordered linguistic values when describing a system and human decision making fre-
quently involves monotonicity. A garden is for instance described as ‘small’, ‘medium’
or ‘large’ and a location is considered ‘very easy’, ‘fairlyeasy’ or ‘difficult’ to reach
by public transport,i.e. the linguistic values assigned to variables such as ‘gardensize’
and ‘accessibility by public transport’ are ordered. Consequently, an environmentally
conscious person with a green thumb shall be willing to pay more for a house with a
large garden in easy reach of a main train station than for an house with a small patio
two blocks away from a bus stop. Or, expressed more mathematically, the price this
person is willing to pay for a house increases with increasing garden size and increas-
ing accessibility by public transport. Formulated more generally, it is said that the price
is monotone in the garden size and the accessibility by public transport.

In the ecological case studydescribed in this dissertation habitat suitability
models were developed. Fuzzy ordered classifiers were used to assign fuzzy labels to
river sites expressing their suitability as a habitat for a certain macroinvertebrate taxon,
given up to three abiotic properties of the considered riversite. Ordered linguistic
values were assigned to both input and output variables, butthe output variable,i.e.
the habitat suitability, was not necessarily monotone in the input variables. The mod-
els were built using expert knowledge and evaluated on data collected in the Province
of Overijssel in the Netherlands. In literature only performance measures for (fuzzy)
classifiers were found that indicate to which degree objectsare assigned to a same
class or a different class by the model and in the data set. With these measures a same
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performance is assigned to models assigning ‘small’ objects to the class of ‘medium’
objects and to models assigning ‘small’ objects to the classof ‘very large’ objects,i.e.
these measures do not incorporate the available qualitative knowledge that the output
classes are ordered. Therefore, a new performance measure for fuzzy ordered classi-
fiers was introduced, referred to as the average deviation (AD) as it takesthe order of
the output classesinto account by returning the average deviation between theposi-
tion of the class obtained with the model and the position of the class stored in the data
set. Furthermore an interpretability-preserving geneticoptimization of the member-
ship functions in the input domains, applying once binary-coded and once real-coded
genetic algorithms, was carried out.

The second, more methodological halfof this dissertation discusses the mono-
tonicity of linguistic fuzzy models. In monotone models, ordered linguistic values are
assigned to both input and output variables andthe model output is monotone in
all input variables. Linguistic fuzzy models applying different inference procedures,
i.e. different procedures to determine the model output corresponding to a given in-
put, were considered. Apart from two existing inference procedures, the Mamdani–
Assilian and the implicator-based inference, that can be used but are not specifically
designed for monotone models, a new inference procedure formodels with a monotone
rule base, called ATL–ATM inference, is introduced. This new inference procedure is
based on a cumulative interpretation of the rule base. For each inference procedure the
model behaviour was investigated for the most commonly applied mathematical oper-
ators. Combinations of inference procedures and operatorswere selected that result in
a monotone input-output behaviour for all sets of if-then rules describing a monotone
relation between the input variables and the output variable. This selection could be
used as a guideline by designers of interpretable monotone linguistic fuzzy models.

1.2 A road map to this dissertation

This dissertation consists of three main parts as shown in Fig 1.1. The first part includes
introductions to fuzzy rule-based models and genetic algorithms. In the second part the
identification and optimization of a fuzzy ordered classifier for an ecological modelling
problem is described. The final part discusses the monotonicity of linguistic fuzzy
models.

Part I consists of three chapters. Chapter 2 starts with an introduction to fuzzy
sets, one of the main components of fuzzy models. This is followed by the description
of the two main types of fuzzy rule-based models: the linguistic fuzzy models, includ-
ing the Mamdani–Assilian models and the models applying implicator-based inference,
on the one hand and the Takagi–Sugeno models, on the other hand. The goal of this
chapter is twofold: to familiarize fuzzy modellers with thenotation used in this dis-
sertation and to provide other readers with a sufficient stock-in-trade concerning fuzzy
modelling. Note that reading the tough Section 2.3.1 is not required to comprehend the
inference procedures applied in linguistic fuzzy models. In Chapter 3 a computation-
ally attractive and accurate implementation of the Center of Gravity (COG) defuzzifi-
cation method, applied in the final step of the Mamdani–Assilian inference procedure,
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I. BASICS

II. ECOLOGICAL
CASE STUDY

III. MONOTONE
MODELS

Chapter 2

Fuzzy rule-based
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Chapter 4
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Chapter 10

ATL–ATM models

Figure 1.1: A road map to this dissertation.

is introduced and compared to two other implementations. Even if the results described
in Chapter 3 were essential for the research written down in Chapter 8, reading Chap-
ter 3 is not essential to comprehend Chapter 8. Chapter 4 discusses the fundamentals of
both binary-coded and real-coded genetic algorithms. These optimization algorithms
were applied in the ecological case study to optimize the membership functions in the
input domains of the habitat suitability models.

Part II deals with the ecological case study carried out in the framework of this
dissertation. In Chapter 5 the habitat suitability models,built using expert knowledge
described in literature, are described and the data on whichthe models were evaluated
are discussed. Next, the measures used to evaluate the models as well as the results of
the model evaluation are presented. Chapter 6 starts with a description of the genetic
algorithm applied to optimize the membership functions of 48 selected habitat suitabil-
ity models, with special attention to the applied representation of candidate solutions
and fitness function. Futhermore, the optimization resultsare discussed.

Part III of this dissertation, consisting of Chapters 7–10,is dedicated to my work
on the monotonicity of linguistic fuzzy models. In Chapter 7some general aspects are
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discussed, as the applicability of monotone linguistic fuzzy models, the model prop-
erties assumed in this work, the applied representation of if-then rules and the issue
of incomparable fuzzy model outputs. In Chapters 8–10 the monotonicity of linguis-
tic fuzzy models under different inference procedures is discussed. Chapters 8–9 deal
with Mamdani–Assilian models applying the t-normsTM, TP andTL combined with
respectively the COG and MOM defuzzification method. Chapter 10 focusses on mod-
els applying either plain implicator-based inference or ATL–ATM inference, one of the
three basic t-normsTM, TP or TL, one of the three residual implicatorsIM, IP or
IL and the MOM defuzzification method. For each inference procedure, combinations
of t-norm, implicator or defuzzification method were selected, resulting in a monotone
input-output behaviour for any monotone rule base, or at least for any smooth rule base.

The dissertation concludes with general conclusions and suggestions for future
research in Chapter 11.
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CHAPTER 2

Fuzzy rule-based models

Associer le mot flou avec le mot logique est choquant. La
logique, au sens vulgaire du mot, est une conception des
mécanismes de la pensée qui ne devrait̂etre jamais floue,
mais toujours rigoureuse et formelle. [...] La pensée hu-
maine, superposition d’intuition et de rigueur, c’est-à-dire
d’une prise en compte globale ou parallèle (ńecessairement
floue) et d’une prise en compte logique ou séquentielle
(nécessairement formelle), est un mécanisme flou. Les lois de
la penśee que nous pouvons faire entrer dans les programmes
des ordinateurs sont obligatoirement formelles, les lois de la
penśee dans le dialogue homme-homme sont floues.
(Introduction à la Th́eorie des Sous-Ensembles Flous -
Vol. 1: Eléments Th́eoriques de Base, Arnold Kaufmann,
1973)

2.1 Introduction

Modelling the behaviour of a system can be done in various ways. The most traditional
approach is white-box modelling, which assumes that the system’s behaviour is fully
known, and there exists a suitable mathematical scheme, forinstance a set of differen-
tial equations, to represent this behaviour. The requirement for a good understanding
of the system shows to be a severe limiting factor in practice, when complex and poorly
understood systems are considered. In white-box modellingdifficulties can arise from,
for instance, poorly understanding the underlying phenomena, inaccurate values of var-
ious system parameters, or from the complexity of the resulting model (Casillas et al.,
2003a).

In black-box modelling the system under study is represented by a mathematical
structure that is sufficiently general to correctly capturethe dynamics and the nonlin-
earity of the system. In this modelling approach, the model identification consists of
the selection of an appropriate mathematical structure followed by the estimation of its
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parameters. If representative data are available, black-box models usually can be de-
veloped quite easily, without requiring system-specific knowledge. A severe drawback
of this approach is that the structure and parameters of these models usually do not
have any physical significance, in other words that these models are not interpretable
(Babǔska, 1998).

A third, intermediate approach, called grey-box modelling, attempts to combine
the advantages of the white-box and black-box approaches, such that the known parts
of the system are modelled using a priori knowledge, and the unknown or partially
known parts are identified with black-box procedures. A common drawback of most
standard modelling approaches is that they cannot make effective use of extra infor-
mation, such as knowledge of persons who are familiar with the system, information
which is often imprecise and qualitative in its nature (Babuška, 1998). The type of
grey-box models used in this dissertation, the fuzzy rule-based models, can be identi-
fied using quantitative as well as qualitative information (Casillas et al., 2003a).

The main component of fuzzy rule-based models is the fuzzy rule base, con-
taining rules of the form

IF antecedent part THEN consequent part

These if-then rules describe relations between the variables of the system. A fuzzy
controller of a heater could for instance contain the following rule: IF temperature
is low AND change in temperature is negative THEN strongly increase the power of
the heater. The antecedent defines when the rule holds and theconsequent describes
the corresponding conclusion (in fuzzy models) or desired action (in fuzzy control).
The if-then rule of the heat controller contains the linguistic variables ‘temperature’,
‘temperature change’ and ‘power change’. These linguisticvariables take linguistic
values such as ‘low’, ‘OK’, ‘zero’ and ‘strong increase’. The rule-based nature of
the model allows for a linguistic description of the knowledge, which is captured in
the model (Sousa and Kaymak, 2002). Studies have been carried out to prove that
fuzzy systems are universal approximators,i.e. they can uniformly approximate any
continuous real function on a compact domain to any degree ofaccuracy (Buckley,
1993; Campello and do Amaral, 2006; Perfilieva and Kreinovich, 2002; Ying et al.,
1999).

Depending on the structure of the rules, two main types of fuzzy rule-based
models can be distinguished:

• linguistic fuzzy models, where both the antecedent and consequent contain lin-
guistic values, and

• Takagi–Sugeno models, where the antecedent contains linguistic values and the
consequent contains a crisp function of the antecedent variables.

The linguistic values in the rules are defined by fuzzy sets, aconcept which is in-
troduced in Section 2.2. The fuzzy sets serve as an interfacebetween the linguistic
variables in the model, and the input and output numerical variables.

The rules and fuzzy sets can be identified from data using various techniques
such as fuzzy clustering, neural learning methods or genetic algorithms (see (Guil-
laume, 2001) for an overview). Takagi–Sugeno models are mostly obtained by a
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temperature (◦C)

A(t)

10 18 21 30
0

1

low OK high

temperature (◦C)

A(t)

10 17 19 20 22 30
0

1

low OK high

(a) (b)

Figure 2.1: Definition of the three linguistic values assigned to temperature by means
of (a) crisp and (b) fuzzy sets.

purely data-driven identification, whereas when developing linguistic fuzzy models a
knowledge-based identification approach is generally adopted. Data-driven identifica-
tion methods for fuzzy models used to be focussed on increasing the model’s accuracy,
paying little attention to the interpretability of the finalmodel. Recently, however,
obtaining a good balance between the interpretability and accuracy is gaining impor-
tance in fuzzy modelling. Several mechanisms have been proposed to either guarantee
the interpretability of a model obtained by purely data-driven identification (Espinosa
and Vandewalle, 2000), improve the interpretability of accurate fuzzy models (Casillas
et al., 2003a) or improve the accuracy of linguistic fuzzy models with a good inter-
pretability (Casillas et al., 2003b). Linguistic fuzzy models and Takagi–Sugeno models
are respectively discussed in more detail in Sections 2.3 and 2.4.

2.2 Fuzzy sets

2.2.1 Crisp sets versus fuzzy sets

In classical set theory, an element either belongs to a set (it has membership degree
one to the set) or it does not (it has membership degree zero tothe set). In the fuzzy
modelling field, the sets used in classical set theory are referred to ascrispsets in order
to avoid confusion with thefuzzysets used in fuzzy models. To the three linguistic
values, ‘low’, ‘OK’ and ‘high’ of the linguistic variable temperature, for instance, crisp
sets can be assigned as in Fig. 2.1(a). In words, temperatures below 18◦C are consid-
ered ‘low’, temperatures between 18◦C and 21◦C ‘OK’ and temperatures higher than
21◦C ‘high’.

Such assignment does not correspond to the way temperature is experienced.
When applying crisp sets a temperature of 17.9◦C is considered completely ‘low’. If
the temperature increases with 0.2◦C it becomes completely ‘OK’ and a different set of
rules in the rule base would be fired if temperature would be aninput variable of model
controlling a heater. When manually adjusting the power of a heater, however, one will
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never change ones behaviour in such an abrupt way as one will consider a temperature
around 18◦C to a certain extent ‘low’ as well as ‘OK’. Note that, the richer one’s
vocabulary is, the more precise one will be able to linguistically describe a situation or
value. In general, however, man seldom assigns more than nine linguistic values to a
variable (Miller, 1956).

The terms ‘low’, ‘OK’ and ‘high’ temperature are fuzzy concepts. Describing
them by means of crisp sets is therefore an arduous task. It isfar more straightforward
to define them by fuzzy sets (Zadeh, 1965), as fuzzy sets allowa gradual transition
between not belonging and completely belonging to a set. Mathematically speaking, a
fuzzy set is defined as a function from the domainX to the unit interval[0, 1] that maps
an elementx to A(x)

A : X→ [0, 1] : x 7→ A(x) . (2.1)

If the value of the membership functionA in x, called the membership degree ofx to
A, is one,x completely belongs to the fuzzy set. If it is equal to zero,x does not belong
to the fuzzy set. If the membership degree is between 0 and 1,x partially belongs to
the fuzzy set. A crisp set is a particular fuzzy set with membership degrees restricted to
{0,1}. In Fig. 2.1(b) the three linguistic values ‘low’, ‘OK’ and ‘high’ of the linguistic
variable temperature are defined by membership functions inthe domainT = [10,30].

2.2.2 Characteristics of fuzzy sets

In principle any function of the formA : X→ [0, 1] describes a membership function
associated with a fuzzy setA. In most applications, however, fuzzy sets are represented
by a parameterized function. Popular types of membership functions, commonly used
in fuzzy models determined based upon expert knowledge, aretrapezial and triangular
fuzzy sets. A trapezial fuzzy set (Fig. 2.2(a)) can be characterized by four parameters
(a1, a2, a3, a4) and be defined as

A(x) =







0 if x < a1 ,
x−a1

a2−a1
, if x ∈ [a1, a2] ,

1 if x ∈ [a2, a3] ,
a4−x
a4−a3

, if x ∈ [a3, a4] ,

0 if x > a4 .

(2.2)

A triangular membership function is obtained ifa2 is equal toa3 (Fig. 2.2(b)). In
this dissertation, membership functions defining the linguistic values of a certain input
or output variable of a model are assumed to be trapezial (including triangular) and to
form a fuzzy partition in the sense of Ruspini (1969), which guarantees an interpretable
description of the linguistic values (Bodenhofer and Bauer, 2005; Jin, 2003). A family
(Ai)

n
i=1 of membership functions forms a fuzzy partition of a domainX if for each

elementx the sum of itsn membership degrees to all membership functions equals
one

(

∀x ∈ X

)( n∑

i=1

Ai(x) = 1

)

. (2.3)
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A(x)

X
a1 a2 a3 a4

0

1

A(x)

X
a1 a2=a3 a4

0

1

A(x)

X
µ-σ µ µ+σ

0

1

(a) (b) (c)

Figure 2.2: Representation of a (a) trapezial, (b) triangular and (c) symmetric Gaussian
membership function.

The membership functions defining the three linguistic values ‘low’, ‘OK’ and ‘high’
of the linguistic variable temperature in Fig. 2.1(b) form afuzzy partition.

Other commonly used types of membership functions are Gaussian membership
functions, as for instance the symmetric Gaussian functionpresented in Fig. 2.2(c),
determined by two parametersµ andσ

A(x) = e−
(x−µ)2

2σ2 , (2.4)

as well as, (piece-wise) exponential and polynomial functions (Pedrycz and Gomide,
1998). In contrast to trapezial membership functions, these types of membership func-
tions have the advantage that they are differentiable in thewhole domain on which they
are defined, which can be of importance in data-driven identification procedures.

Fuzzy sets can be characterized in more detail by referring to the features of
the membership functions that describe them. Below the concepts normality, support,
kernel, core, (weak)α-cut and strictα-cut of a fuzzy set are defined (Fig. 2.3).

Definition 2.1 A fuzzy setA is normal if there exists an elementx ofX that completely
belongs toA

(∃x ∈ X)(A(x) = 1) .

Fuzzy setsA which are not normal, are called subnormal.

Definition 2.2 By the support of a fuzzy setA, denoted by supp(A), all elements ofX
are meant that belong toA to a nonzero degree

supp(A) = {x ∈ X | A(x) > 0} .

Definition 2.3 The set of elements that completely belong to a fuzzy setA is called the
kernel ofA, denoted by kern(A)

kern(A) = {x ∈ X | A(x) = 1} .
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0
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X
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0
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Aα+

0

α

1

Figure 2.3: Support, kernel andα-cut of a trapezial membership function.

Definition 2.4 The set of elements having the largest degree of membership in a fuzzy
setA is called the core ofA

core(A) = {x1 ∈ X | (∀x2 ∈ X)(A(x2) ≤ A(x1))} .

Definition 2.5 The (weak)α-cut (α ∈ [0, 1]) of a fuzzy setA, denoted byAα, is a set
consisting of those elements of the domainX whose membership degrees exceed or are
equal to the threshold levelα

Aα = {x ∈ X | A(x) ≥ α} .

Definition 2.6 The strictα-cut (α ∈ [0, 1[) of a fuzzy setA, denoted byAα+ , is a set
consisting of those elements of the domainX whose membership degrees exceed the
threshold levelα

Aα+ = {x ∈ X | A(x) > α} .

In this dissertation there will be referred to two special fuzzy sets: the empty set
and the universal set. The empty set is defined as the fuzzy setA to which all elements
x of a domainX have membership degree zero

(∀x ∈ X)(A(x) = 0) , (2.5)

whereas the universal set is defined as the fuzzy setA to which all elementsx of a
domainX have membership degree one

(∀x ∈ X)(A(x) = 1) . (2.6)

2.2.3 Operations on fuzzy sets

In the following paragraphs the basic operations offuzzyset theory — intersection,
union and complement — are introduced. These operations areextensions of the oper-
ations used in classical set theory. For fuzzy setsA andB defined in a domainX, the
intersection ofA andB is defined by

A ∩B(x) = T (A(x), B(x)) , (2.7)
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whereT is a triangular norm, t-norm for short. The union ofA andB is defined by

A ∪B(x) = S(A(x), B(x)) , (2.8)

whereS is a triangular co-norm, t-conorm for short, and the complement ofA is de-
fined by

coA(x) = 1−A(x) . (2.9)

Dozens of definitions have been suggested for t-norms and t-conorms. In this
dissertation the three most commonly applied t-norms and t-conorms, illustrated in
Fig. 2.4, are considered: the minimum t-normTM, the product t-normTP and the
Łukasiewicz t-normTL

TM(a, b) = min(a, b) , (2.10)

TP(a, b) = a · b , (2.11)

TL(a, b) = max(0, a + b− 1) , (2.12)

and the corresponding t-conorms, the maximumSM, the algebraic sumSP and the
Łukasiewicz t-conormSL

SM(a, b) = max(a, b) , (2.13)

SP(a, b) = a + b− a · b , (2.14)

SL(a, b) = min(1, a + b) . (2.15)

Formally, a t-norm is defined as a binary operationT on the unit interval [0,1],
i.e.a functionT : [0, 1]2 → [0, 1], satisfying the following requirements

• commutativity: T (x, y) = T (y, x) , (2.16)

• associativity: T (x, T (y, z)) = T (T (x, y), z) , (2.17)

• monotonicity: T (x, y) ≤ T (x, z) whenevery ≤ z , (2.18)

• neutral element 1: T (x, 1) = x . (2.19)

From Eqs. (2.18–2.19) is follows that 0 is the absorbing element,T (x, 0) = 0.
To fuzzy sets defining linguistic values, such as ‘low’, ‘OK’and ‘high’, apart

from the intersection, union and complement, a group of operators can be applied that
do not have a counterpart in classical set theory. These operators are referred to as
linguistic hedges or linguistic modifiers. Examples of linguistic hedges are ‘very’, ‘ex-
tremely’, ‘greatly’ and ‘at least’. The application of a linguistic hedge modifies the
shape of the membership function of a fuzzy set, transforming one fuzzy set into an-
other. The meaning of the transformed set (e.g. ‘very high’) can easily be interpreted
from the meaning of the original set (e.g. ‘high’) and that embedded in the hedge ap-
plied (e.g.‘very’). The definition of hedges has more to do with common sense knowl-
edge in a domain than with mathematical theory. For a fuzzy set defined by a trapezial
membership function characterized by four parameters (a1, a2, a3, a4) (Eq. (2.2)) the
hedgevery can for instance either be defined by

veryA(x) = A(x)2 , (2.20)
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Figure 2.4: Intersection and union of two fuzzy setsA andB.

or by

a′
2 =

1

2
(a2 + a3)−

1

2

(
1

2
(a2 + a3)− a2

)

(2.21)

a′
3 =

1

2
(a2 + a3) +

1

2

(

a3 −
1

2
(a2 + a3)

)

(2.22)

a′
1 = a′

2 −
1

2
(a2 − a1) (2.23)

a′
4 = a′

3 +
1

2
(a4 − a3) (2.24)

where the fuzzy set ‘veryA’ is defined by a trapezial membership function character-
ized by four parameters (a′

1, a′
2, a′

3, a′
4) (Maŕın-Blázquez and Shen, 2002).

In Chapter 10 the modifiers ‘at least’ (ATL) and ‘at most’ (ATM) introduced by
Bodenhofer (1999) and illustrated in Fig. 2.5 are applied

ATL(A)(x) = sup{A(t) | t ≤ x} , (2.25)

ATM(A)(x) = sup{A(t) | t ≥ x} . (2.26)

2.3 Linguistic fuzzy models

The main component of linguistic fuzzy models is a rule base consisting of rules in
which both the antecedent and the consequent part contain fuzzy sets. The rule base and
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A(x)

X

0

1
ATL(A)

A(x)

X

0

1
ATM(A)

A(x)

X

0

1

Figure 2.5: Illustration of the modifiers ‘at least’ (ATL) and ‘at most’ (ATM).

the fuzzy sets are generally determined by expert knowledge. The rules of a linguistic
fuzzy model withm input variablesXl (l ∈ L = {1, . . . ,m}) and one output variable
Y are of the form

Rs: IF X1 IS B1
j1,s

AND . . . AND Xm IS Bm
jm,s

THEN Y IS Ais

whereBl
jl,s

(resp.Ais
) are linguistic values of variableXl (resp.Y ) in the domainXl

(resp.Y) (s ∈ S = {1, . . . , r}). The input vector is denoted byx = (x1, . . . , xm).
In this dissertation two kinds of linguistic fuzzy models are distinguished: models ap-
plying t-norm-based inference and models applying implicator-based inference. These
two inference methods correspond to two fundamentally different interpretations of if-
then rules, which are discussed in Section 2.3.1. Next, in Sections 2.3.2 and 2.3.3, the
inference methods are described.

2.3.1 Interpretation of if-then rules

Crisp inputs Let us consider an if-then rule ‘IFX is B THEN Y is A’ with X
(resp.Y ) a variable in the domainX (resp.Y) and B (resp.A) a fuzzy set inX
(resp.Y). Regardless of the interpretation given to this if-then rule, it is modelled as a
fuzzy relationR from X to Y. The direct imageA′(y) of a fuzzy setB′ in X under a
fuzzy relationR from X to Y is the fuzzy set inY defined by

A′(y) = sup
x∈X

T (B′(x), R(x, y)) . (2.27)

As only crisp inputsB′(x) are considered in this study, for which the following
equation holds

B′(x) =

{

1 , if x = x∗,

0 , otherwise,
(2.28)
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Figure 2.6: Illustration of the interpretation given to crisp if-then rules when applying a
t-norm-based inference procedure. The shaded regions are the pairs(x, y)
for which the rule ‘IFX is B THEN Y is A’, respectively the four rules
‘IF X is Bs THEN Y is As’ hold.

and, asT (0, x) = 0 andT (1, x) = x (Eq. (2.19)), Eq. (2.27) can be simplified to

A′(y) = max( sup
x∈X\{x∗}

T (B′(x), R(x, y)), T (B′(x∗), R(x∗, y)))

= max( sup
x∈X\{x∗}

T (0, R(x, y)), T (1, R(x∗, y)))

= max(0, R(x∗, y))

= R(x∗, y) .

(2.29)

T-norm-based inference For the sake of simplicity, let us first consider a crisp if-
then rule ‘IFX is B THEN Y is A’ to illustrate the first interpretation given to fuzzy
if-then rules, withX (resp.Y ) a variable in the domainX (resp.Y) andB (resp.A)
a subset ofX (resp.Y). When applying t-norm-based inference the crisp rule is mod-
elled as

(x, y) ∈ R with R = B ×A ,

i.e. the expression ‘IFX is B THEN Y is A’ is said to hold only for those(x, y) for
which x is a member ofB andy is a member ofA. These pairs(x, y) are indicated
in gray in Fig. 2.6(a). Note that strictly mathematically speaking, it is incorrect to
interpret if-then rules in this way. WhenA andB are fuzzy sets, the rule is modelled
as

(X,Y ) ∈ R with R(x, y) = T (B(x), A(y)) ,

with T being a t-norm. The fuzzy outputA′, given a crisp inputx∗, is obtained by

A′(y) = T (B(x∗), A(y)) .

Rule bases of fuzzy linguistic models do not consist of a single rule, but are a
collection ofr if-then rules ‘IFX is Bs THEN Y is As’. When applying t-norm-based
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inference the global fuzzy model outputA′(y) is derived from the individual outputs
A′

s(y) by
A′(y) =

r
max
s=1

A′
s(y) with A′

s(y) = T (Bs(x
∗), As(y)) , (2.30)

or, alternatively, by

A′(y) = R(x∗, y) with R(x, y) =
r

max
s=1

T (Bs(x), As(y)) , (2.31)

as illustrated in Fig. 2.6(b) for the four rules ‘IFX is B1 THEN Y is A1’, ‘IF X is B2

THEN Y is A2’, ‘IF X is B3 THEN Y is A3’ and ‘IF X is B4 THEN Y is A2’.
In literature, if-then rules interpreted and fuzzy models applying if-then rules

according to the interpretation above, are referred to as possibility rules (‘the moreX
is B, the more possibleA is a range forY ’) (Dubois and Prade, 1996), pessimistic
modelling (De Baets, 1996) or Mamdani-type constructive linguistic models (Yager
and Filev, 1994).

Implicator-based inference When applying an implicator-based inference proce-
dure, a crisp if-then rule ‘IFX is B THEN Y is A’ is modelled as

(x, y) ∈ R with R = (B ×A) ∪ (coB ×Y) ,

i.e. the expression ‘IFX is B THEN Y is A’ is implemented as a logical implication:
if x is a member ofB, y is a member ofA, but if x is not a member ofB, y can take any
value in the domainY. These pairs are indicated in gray in Fig. 2.7(a). Mathematically
speaking, this is the only correct interpretation of an if-then rule. WhenA andB are
fuzzy sets, the above rule is modelled as

(X,Y ) ∈ R with R(x, y) = I(B(x), A(y)) ,

with I being an implicator,i.e. a functionI : [0, 1]
2 → [0, 1] coinciding with the

Boolean implication on{0, 1}2 (i.e. I(0, 0) = I(1, 1) = I(0, 1) = 1 andI(1, 0) = 0)
and having decreasing first and increasing second partial functions

(∀x, y, z ∈ [0, 1])(x ≤ y ⇒ I(x, z) ≥ I(y, z)) , (2.32)

(∀x, y, z ∈ [0, 1])(y ≤ z ⇒ I(x, y) ≤ I(x, z)) . (2.33)

In the work by De Baets and Kerre (1993) two other representations of the crisp
rule ‘IF X is B THEN Y is A’ are derived

(x, y) ∈ {C | C is a subset ofX×Y and(B ×Y) ∩ C ⊆ X×A} , and (2.34)

(x, y) ∈ (coB ×Y) ∪ (X×A) , (2.35)

corresponding to the following implicators

IT (x, y) = sup{z | T (x, z) ≤ y} , (2.36)

IT,N (x, y) = S(1− x, y) . (2.37)
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Figure 2.7: Illustration of the interpretation given to crisp if-then rules when applying
a implicator-based inference procedure. The shaded regions are the pairs
(x, y) for which the rule ‘IFX is B THEN Y is A’, respectively the four
rules ‘IFX is Bs THEN Y is As’ hold.

The implicators defined in Eq. (2.36) are called R-implicators: the implicatorsIM, IP
andIL are obtained by replacingT by TM, TP andTL respectively. The implicators
defined in Eq. (2.37) are called S-implicators: the implicators IM,N , IP,N andIL,N

are obtained by replacingS by SM, SP andSL respectively (note thatIL,N = IL).
For a crisp inputx∗, the fuzzy outputA′(y) is obtained as

A′(y) = I(B(x∗), A(y)) , (2.38)

or in case ofr fuzzy rules

A′(y) =
r

min
s=1

A′
s(y) with A′

s(y) = I(Bs(x
∗), As(y)) , (2.39)

or
A′(y) = R(x∗, y) with R(x, y) =

r

min
s=1

I(Bs(x), As(y)) , (2.40)

illustrated in Fig. 2.7(b) for the same four rules used to illustrate t-norm-based inference
procedures in Fig. 2.6(b). If the rule base of a model contains one rule for eachBs of a
set of crisp sets forming a partition of the input domain, both interpretations result in the
same global relationR. Applying if-then rules according to the first interpretation in
fuzzy models can therefore be consideredmathematically defensibleif fuzzy partitions
are assigned to the linguistic values of all input variablesXl (l ∈ L = {1, . . . ,m}) and
if the rule base contains one rule for each combination of fuzzy sets(A1

j1
, . . . , Am

jm
)

with Al
jl

(jl ∈ Jl = {1, . . . , nl}) membership functions of an input variableXl.
In the work by Dubois and Prade (1996), fuzzy if-then rules modelled by R-

implicators are called gradual rules as they correspond to statements of the form ’the
moreX is B, the moreY is A’, whereas the term certainty rules is used in case of
S-implicators, modelling statements as ’the moreX is B, the more certainY is A’.
Modelling applications defining if-then rules as implications are referred to as opti-
mistic modelling (De Baets, 1996) or logical-type destructive linguistic models (Yager
and Filev, 1994).
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Figure 2.8: Determining the membership degrees of the modelinput vectorx =
(x1, x2) to the linguistic values of the input variablesX1 andX2.

2.3.2 Mamdani–Assilian inference

Linguistic fuzzy models applying t-norm-based inference are called Mamdani–Assilian
models (Assilian, 1974; Mamdani, 1974). When determining the model output via
Mamdani–Assilian inference, first the membership degreesBl

jl,s
(xl) of the model in-

put vectorx to the linguistic values in the antecedents of the rules are determined. In
Fig. 2.8 the membership degrees of the input valuesx1 andx2 (x = (x1, x2)) to the
corresponding linguistic values of the input variablesX1 andX2 are

B1
1(x1) = 0 B1

2(x1) = 0.75 B1
3(x1) = 0.25

B2
1(x2) = 0.33 B2

2(x2) = 0.67

In the following step, the fulfilment degreesβs of the r rules (s ∈ S =
{1, . . . , r}) are computed from the membership degreesBl

jl,s
(xl) of the model input

vectorx to the linguistic values in the antecedents of the rules . Forthe t-normsTM,
TP andTL this results in

βs =







m

min
l=1

Bl
jl,s

(xl) , if T = TM ,
m∏

l=1

Bl
jl,s

(xl) , if T = TP ,

max

(
m∑

l=1

Bl
jl,s

(xl)− (m− 1), 0

)

, if T = TL .

(2.41)

Next, the adapted membership functionsB′
s(y) are computed using the same t-normT

as for the fulfilment degreesβs (see Fig. 2.9)

A′
is

(y) =







min(βs, Ais
(y)) , if T = TM ,

βs ·Ais
(y) , if T = TP ,

max(βs + Ais
(y)− 1, 0) , if T = TL ,

(2.42)

and the global fuzzy outputA(y) is determined as follows

A(y) =
r

max
s=1

A′
is

(y) . (2.43)
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α α α

(a)TM (b) TP (c) TL

Figure 2.9: Adapted membership functions (in black) obtained by applying Eq. (2.42)
with TM, TP andTL to the membership function in grey.

Finally, the crisp model outputy∗ is obtained by defuzzifying the fuzzy output. In this
dissertation the Center of Gravity (COG) defuzzification resulting in the crisp model
outputy∗

COG and the Mean of Maxima (MOM) defuzzification resulting in thecrisp
model outputy∗

MOM (Kruse et al., 1994) are considered

y∗
COG =

∫

Y

yA(y) dy

∫

Y

A(y) dy
, (2.44)

y∗
MOM =

∫

core(A)

y dy

∫

core(A)

dy
. (2.45)

When the core of the fuzzy model outputA is a set of discrete values, the integrals in
the expression for the crisp outputy∗

MOM in Eq. (2.45) vanish. In this case the crisp
outputy∗

MOM is defined as the average of these discrete values.
In practice Eqs. (2.42–2.43) are implemented in a slightly different way. From

the fulfilment degreesβs of the r rules, a fulfilment degreeαi is computed for each
linguistic output valueAi,

αi = max{βs | is = i} . (2.46)

For each linguistic output value an adapted membership function A′
i is determined with

the corresponding fulfilment degreeαi

A′
i(y) =







min(αi, Ai(y)) , if T = TM ,

αi ·Ai(y) , if T = TP ,

max(αi + Ai(y)− 1, 0) , if T = TL ,

(2.47)

and the global fuzzy outputA(y) is determined as follows

A(y) =
n

max
i=1

A′
i(y) . (2.48)

In Fig. 2.10 the Mamdani–Assilian inference procedure is illustrated for a model
with two input variablesX1 andX2 and one output variableY . The linguistic values
of all three variables are described by membership functions forming a fuzzy partition.
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The linguistic values are ‘low’, ‘medium’ and ‘high’ forX1 andY , and ‘low’ and
‘high’ for X2. The fulfilment degreeβs of each of the six rules is the minimum of the
membership degree ofx1 andx2 to the corresponding linguistic value in the antecedent
of the rule and the membership functions in the consequent part of the rules are trun-
cated according to this fulfilment degreeβs (T = TM). The global fuzzy output is
the union, based on the maximum, of all these truncated fuzzysets. Finally, the crisp
model outputy∗

COG is obtained by the COG defuzzification method.

2.3.3 Implicator-based inference

When applying implicator-based inference, the fulfilment degreesβs andαi are cal-
culated as described in Eqs. (2.41) and (2.46), but the adapted membership functions
A′

i are computed using an implicator instead of a t-norm. In thisdissertation the three
R-implicatorsIM, IP andIL are considered. Note that the adapted membership func-
tionsA′

i do not necessarily have to be computed with the corresponding implicatorIT

of the t-normT used for the conjunction when computing the fulfilment degrees.
For IM the adapted membership functions are obtained by

A′
i(y) =

{

1 , if αi ≤ Ai(y) ,

Ai(y) , otherwise,
(2.49)

for IP by

A′
i(y) =

{

1 , if αi ≤ Ai(y) ,
Ai(y)

αi
, otherwise,

(2.50)

and forIL by

A′
i(y) = min(1− αi + Ai(y), 1) . (2.51)

Figs. 2.9 and 2.11 show how membership functions are changedwhen applying
respectively a t-norm or an implicator, given a fulfilment degreeα. It nicely illustrates
the two different interpretations of fuzzy if-then rules: the better rule corresponds to
the current situation,i.e. the higher the fulfilment degree, the more the adapted mem-
bership function is restricted when applying an implicator, but the more the adapted
membership function is extended when applying a t-norm. WhileTM is less restrictive
thanTP, which on his turn is less restrictive thanTL, the reverse order applies for the
implicator operators. The implicatorIL is the least restrictive implicator, followed by
IP andIM.

The global fuzzy outputA is the intersection, based on the minimum, of then
adapted membership functionsA′

i

A(y) =
n

min
i=1

A′
i(y) . (2.52)

The only specific defuzzification method for models applyingimplicator-based
inference known to the author is the defuzzification method introduced by Dvǒrák and
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R1: IF X1 IS low AND X2 IS low THEN Y IS low
x1

X1

x2

X2 Y

R2: IF X1 IS low AND X2 IS high THEN Y IS low
x1

X1

x2

X2 Y

R3: IFX1 IS medium AND X2 IS low THEN Y IS low
x1

X1

x2

X2 Y

R4: IFX1 IS medium AND X2 IS high THEN Y IS medium
x1

X1

x2

X2 Y

R5: IF X1 IS high AND X2 IS low THEN Y IS medium
x1

X1

x2

X2 Y

R6: IF X1 IS high AND X2 IS high THEN Y IS high
x1

X1

x2

X2 Y

y∗

COG

Y

Figure 2.10: Illustration of Mamdani–Assilian inference (T = TM, COG defuzzifica-
tion) applied to a model with six rules.
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α α
α

1 − α

(a) IM (b) IP (c) IL

Figure 2.11: Adapted membership functions (solid black line) obtained by applying
Eqs. (2.49–2.51) to the membership function represented bythe dotted
black line.

Jedelsḱy (1999) for models applyingIL resulting in the crisp outputy∗
COGDJ (Y =

[y0, yend])

y∗
COGDJ =







1
2 (y0 + yend) , if min

Y
A(y) = max

Y
A(y) ,

R

Y

y·(A(y)−min
Y

A(y)) dy

R

Y

(A(y)−min
Y

A(y)) dy
, otherwise.

(2.53)

If the smallest membership degreemin
Y

A(y) obtained in the output domain to the

fuzzy outputA is equal to zero, the defuzzification method introduced by Dvořák and
Jedelsḱy (1999) coincides with the COG defuzzification method defined in Eq. (2.44).
In models applying implicator-based inference also the MOMdefuzzification method
defined in Eq. (2.45) can be applied.

In Fig. 2.12 implicator-based inference is illustrated fora model with two in-
put variablesX1 andX2 and one output variableY . The linguistic values of all three
variables are described by membership functions forming a fuzzy partition. The lin-
guistic values are ‘low’, ‘medium’ and ‘high’ forX1 andY , and ‘low’ and ‘high’ for
X2. The fulfilment degreeβs of each of the six rules is the minimum of the member-
ship degrees ofx1 andx2 to the corresponding linguistic value in the antecedent of
the rule (T = TM) and the membership functions in the consequent part of the rules
are adapted according to this fulfilment degreeβs using the implicatorIL. The global
fuzzy output is the intersection of all these adapted fuzzy sets. Finally, the crisp model
outputy∗

MOM is obtained by the MOM defuzzification method.

2.4 Takagi–Sugeno models

A different type of fuzzy models is the Takagi–Sugeno model,introduced by Takagi
and Sugeno (Takagi and Sugeno, 1985). The Takagi–Sugeno model differs from the
linguistic model on this point that its consequent parts arezero-, first- or higher-order
polynomial functions of the input variables. Rules in Takagi–Sugeno models withm
input variablesXl (l ∈ L = {1, . . . ,m}) and one output variableY can be expressed
in following general form

Rs: IF X1 IS B1
j1,s

AND . . . AND Xm IS Bm
jm,s

THEN Y = fs(X1, . . . ,Xm)
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R1: IF X1 IS low AND X2 IS low THEN Y IS low
x1

X1

x2

X2 Y

R2: IF X1 IS low AND X2 IS high THEN Y IS low
x1

X1

x2

X2 Y

R3: IFX1 IS medium AND X2 IS low THEN Y IS low
x1

X1

x2

X2 Y

R4: IFX1 IS medium AND X2 IS high THEN Y IS medium
x1

X1

x2

X2 Y

R5: IF X1 IS high AND X2 IS low THEN Y IS medium
x1

X1

x2

X2 Y

R6: IF X1 IS high AND X2 IS high THEN Y IS high
x1

X1

x2

X2 Y

y∗

MOM

Y

Figure 2.12: Illustration of implicator-based inference (T = TM, I = IL, MOM de-
fuzzification) applied to a model with six rules.
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whereBl
jl,s

are linguistic values of variableXl (s ∈ S = {1, . . . , r}). The input vector
is denoted byx = (x1, . . . , xm).

The model outputy is obtained as

y =

r∑

s=1

βs(x) fs(x)

r∑

s=1

βs(x)

, (2.54)

with βs(x) the fulfilment degree of ruleRs

βs(x) =
m

T
l=1

Bl
jl,s

(xl) . (2.55)

The most commonly used Takagi–Sugeno models are first-orderTakagi–Sugeno
models, where the functionfs is a linear function of the input variables (Cordón et al.,
2001; Jin, 2003; Sousa and Kaymak, 2002)

Rs: IF X1 IS B1
j1,s

AND . . . AND Xm IS Bm
jm,s

THEN Y = a1,sX1 + a2,sX2 + . . . + am,sXm + bs

The first-order Takagi–Sugeno model approximates a nonlinear function by means
of local linear models, represented in the consequent parameters. By computing a
weighted average of the individual rule outputs,i.e. the linear functions, the nonlinear
function can be approximated, and a smooth transition between the consequent func-
tions is established, which is different from an ordinary piecewise linear approxima-
tion method (Takagi and Sugeno, 1985). The structure of a first-order Takagi–Sugeno
model with one input variableX and one output variableY is illustrated in Figure 2.13.
Three fuzzy setsA1, A2 andA3, the antecedent fuzzy sets, are assigned to the input
variable. This results in three fuzzy rules of the form

Rs : IF X is Ais
THEN Y = asX + bs (2.56)

with as andbs the parameters of the consequent part of ruleRs.
By using functions instead of linguistic values in the consequent parts of the

rules, the human interpretation of the phenomenon described by a rule is garbled, but
on the other hand this rule structure significantly increases the approximation capabil-
ity of the model (Casillas et al., 2003b). Mostly, the identification of Takagi–Sugeno
models consists of the determination of the number of rules and the parameters of the
antecedent and the consequent parts of these rules and is mostly carried out using a
data-driven approach (Sousa and Kaymak, 2002). The antecedent part of the rules are
generally identified by means of clustering algorithms (Babuška and Verbruggen, 1997)
and neural networks (Jang, 1993) and the consequent parameters by a least squares
method (Babǔska, 1998).
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Figure 2.13: Schematic representation of a Takagi–Sugeno model.
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CHAPTER 3

Computational aspects of COG defuzzification

Good, Fast, Cheap: Pick any two.
(Sign in Print Shop)

3.1 Introduction

As most modelling and control applications require crisp outputs, when applying fuzzy
inference systems, the fuzzy system outputA usually has to be defuzzified,i.e. to be
converted into a crisp outputy∗. The most popular defuzzification methods for linguis-
tic fuzzy models applying t-norm-based inference are theCenter Of Gravity(COG)
and theMean Of Maxima(MOM) methods. More general frameworks have been pro-
posed, in which the COG and MOM defuzzification methods have their place, such as
the parametric BADD (BAsic Defuzzification Distribution) and SLIDE (Semi-LInear
DEfuzzification) methods of Yager and Filev (Filev and Yager, 1991; Yager and Filev,
1993). They are essentially based on the transformation of apossibility distribution into
a probability distribution based on Klir’s principle of uncertainty invariance. The main
emphasis is on the learning of the parameters involved, which is treated as an optimiza-
tion problem (Jiang and Li, 1996; Roychowdhury and Wang, 1996; Song and Leland,
1996). This issue falls outside the scope of this dissertation. Note that in literature the
terms for describing different defuzzification methods vary from source to source. The
terms Center of Gravity defuzzification, Center of Area defuzzification and Center of
Sum defuzzification, for instance, refer to different methods in some sources and are
used as synonyms in other sources. Therefore one should pay attention to the formal
definitions of the defuzzification methods rather than to their names. In (Roychowd-
hury and Pedrycz, 2001; Van Leekwijck and Kerre, 1999) comprehensive overviews
are given on defuzzification methods. In this dissertation the same terminology is used
as by Van Leekwijck and Kerre (1999).

This chapter deals with the computational aspects of the COGdefuzzification
method. When applying the COG defuzzification method, the crisp outputy∗ of the
system will change continuously when the input values change continuously, a desir-
able property in modelling and control applications. However, the COG defuzzifica-
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tion method has a high computational burden (Driankov et al., 1993; Patel and Mohan,
2002), which is a considerable disadvantage in control and model identification, and in
tuning applications. This high cost is often circumvented by introducing new defuzzi-
fication methods that intend to approximate the center of gravity (Patel and Mohan,
2002; Sakly and Benrejeb, 2003). In this study, however, thedefinition of the center of
gravity is sticked to and other ways are introduced to compute the crisp output in case
the membership functions of the output variable are trapezial and form a fuzzy parti-
tion (Eq. (2.3)). Two computational methods, theslope-based methodand themodi-
fied transformation function method, are introduced and compared to the well-known
discretization method. The accuracy, straightforwardness of implementation andcom-
putational burden of the three mentioned techniques are examined for the three most
commonly applied t-norms: the minimumTM, the productTP and the Łukasiewicz
t-normTL.

In this work the linguistic output values are assumed to be described by trapezial
membership functions forming a fuzzy partition. A fuzzy partition guarantees that a
value in the domain characterized by a full membership to a certain linguistic value
is completely excluded from all other linguistic values. Trapezial fuzzy partitions are
used in many applications of fuzzy set theory, including modelling and control, pat-
tern recognition and classification. Although they are based on intuitively plausible
grounds and have become popular due to their striking simplicity of the membership
functions, there exist deeper motivations for using them. Pedrycz (1994), for instance,
showed that, based on a specific linear notion of entropy of fuzzy sets, suitably de-
signed trapezial fuzzy partitions can guarantee uniformlyexcited fuzzy rule bases, in
accordance with the distribution of the input variables. Since the work described in this
chapter is about defuzzification, it essentially only requires a trapezial fuzzy partition of
the domain of the output variable. In the same work (Pedrycz,1994), Pedrycz provides
an additional argument, based on a specific defuzzification procedure involving modal
values, that the use of trapezial fuzzy partitions can guarantee an error-free inversion
of the defuzzification strategy considered. The influence ofthe form of membership
functions on the accuracy of fuzzy rule-based systems was also studied by Chang et al.
(1991), although Delgado et al. (1998) enunciated that trapezial membership functions
might adequately approximate other,e.g.Gaussian or exponential-shaped, membership
functions, presenting the advantage of their simplicity aswell (Cord́on et al., 2001).

This chapter is organized as follows. After a short introduction on the COG
defuzzification method, the three computational methods are presented in Section 3.2.
Experimental results showing that the newly introduced methods exhibit excellent ac-
curacy at an extremely low computational cost compared to the widely applied dis-
cretization method, are described in Section 3.3. Conclusions and further work are
summarized in Section 3.4.

30



Chapter 3. Computational aspects of COG defuzzification

Y

A(y)

0

0.5

1

y∗

COG

Figure 3.1: Center of gravity defuzzification method.

3.2 Computational methods for the COG defuzzifica-
tion

3.2.1 COG defuzzification and related methods

The procedure applied in Mamdani–Assilian models to determine the model output is
described in detail in Section 2.3.2. First the fulfilment degreesβs (s ∈ {1, . . . , r}) of
ther rulesRs in the rule base are computed. In a next step the fulfilment degreesαi

(i ∈ {1, . . . , n}) of then linguistic output valuesAi are determined and used to define
the membership functions of the adapted membership functionsA′

i. The global fuzzy
outputA is the union of then adapted membership functionsA′

i. Finally, the crisp
model outputy∗ is obtained by defuzzifying the fuzzy outputA, for instance with the
COG defuzzification method. As illustrated in Fig. 3.1, the crisp outputy∗ obtained
with the COG defuzzification method is the abscissa of the center of gravity of the
surfaceF described by the fuzzy outputA. The crisp outputy∗

COG is defined by

y∗
COG =

∫∫

F

y du dy

∫∫

F

du dy
. (3.1)

In case the fuzzy output is the empty set, the midpoint of the domain (fixed beforehand)
is returned as crisp output. Some authors (Cordón et al., 2001; Sakly and Benrejeb,
2003) refer to the above strategy asMode A(aggregation first, defuzzification after)
and propose converse procedures that consist of defuzzifying the individual adapted
membership functions, and averaging the resulting crisp values in one way or another.
The latter approach could be calledMode B(defuzzification first, aggregation after),
but is not based on a solid theoretical basis.

In practice,y∗
COG is approximated by means of numerical methods. Although
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Figure 3.2: In this chapter representation (a) is used to describe trapezial membership
functions, except in Section 3.2.4 where representation (b) is applied.

Eq. (3.1) is formally identical to the problem of determining the expected value of an
unnormalized probability density functionA, the functionsA considered here are atyp-
ical for probability theory, and no results from that field can be drawn upon. Through-
out this chapter, except in Section 3.2.4 (for reasons that will become clear), a trapezial
membership function with support[a, d] and kernel[b, c] is represented by the four pa-
rametersa, b, c andd. As the modified transformation function method described in
Section 3.2.4 is inspired by the transformation function method by Patel and Mohan
(2002), their membership function representation by meansof the parametersa′, b′, c′

andh′ is used. Both ways to represent trapezial membership functions are illustrated
in Fig. 3.2.

3.2.2 Discretization method

The discretization method is the most straightforward implementation of the COG de-
fuzzification strategy. The fuzzy output in the interval [ymin,ymax] is approximated by
k rectangles of equal width (= (ymax − ymin)/k) and heightA(yj). Eq. (3.1) is then
converted into Eq. (3.2), in whichA(yj) is the membership degree ofyj to the global
fuzzy output andA′

i(yj) its membership degree to the adapted membership function of
theith linguistic output value

y∗
COG ≈

∑k−1
j=0 yj ·A(yj)
∑k−1

j=0 A(yj)
, (3.2)

with yj = ymin + j ·
ymax − ymin

k
, (3.3)
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or, explicitly

y∗
COG ≈

∑k−1
j=0 yj ·

n
max
i=1

A′
i(yj)

∑k−1
j=0

n
max
i=1

A′
i(yj)

. (3.4)

The greaterk is, the narrower the rectangles are in which the fuzzy outputis
divided and the closer the exacty∗

COG is approximated. However, Eq. (3.4) shows that
not only the accuracy, but also the computational cost increases with increasing values
of k.

When applying the discretization method to defuzzify a fuzzyoutput, the fol-
lowing calculations are executed:

1. construction of a vector with discretization point valuesyj (Eq. (3.3)),

2. calculation of membership degreesAi(yj) of all discretization pointsyj in the
vector for then original membership functions,

3. calculation of membership degreesA′
i(yj) using theAi(yj)-values, the fulfil-

ment degreesαi and the appropriate t-norm (Eq. (2.47)),

4. determination of the maximum of then membership degrees for each discretiza-
tion pointyj (Eq. (2.48)) and

5. calculation ofy∗
COG (Eq. (3.2)).

3.2.3 Slope-based method

3.2.3.1 Introduction

Like the other techniques presented in this work, the slope-based method is based on
the fact that the moment of a surface about an axis equals the sum of the moments about
the same axis of the surfaces obtained bypartitioning this surface. The momentMax

of a surface about an axis equals the product of its areaO and the distancedax of its
center of gravity to the axis

Max = dax ·O = dax ·
k∑

j=1

Oj =
k∑

j=1

dax,j ·Oj =
k∑

j=1

Max,j . (3.5)

In the slope-based method, the surfaceF described by the fuzzy output is parti-
tioned such that the slope of the fuzzy output is constant within each part and different
in two adjacent parts. When the output values are described bytrapezial membership
functions, as assumed in this work, linguistic fuzzy modelswith t-norm-based infer-
ence using the t-normsTM, TP andTL always result in piecewise linear fuzzy outputs.
A general representation of the partitioning of the fuzzy output is given in Fig. 3.3.

Note that the intersection of two parts obtained with the above-described method
is always empty. This implies that the centers of gravityy∗

j and areasOj of thek parts
(j = {1, . . . , k}) allow an exact computation of the crisp outputy∗

COG as shown in
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Figure 3.3: Partitioning of the fuzzy output obtained when applying the slope-based
method.

Eq. (3.6). Furthermore, the centers of gravityy∗
j and areasOj of the obtained parts are

easy to compute

y∗
COG =

∑k
j=1 y∗

j ·Oj
∑k

j=1 Oj

, (3.6)

with y∗
j =

∫∫

Fj

y du dy

∫∫

Fj

du dy
, (3.7)

and Oj =

∫∫

Fj

du dy . (3.8)

In the following lines, Eqs. (3.7) and (3.8) of the center of gravity and area of
the parts are derived for a surface as depicted in Fig. 3.3. Inthe interval [yj-1,yj ] the
fuzzy output is computed as follows

A(y) =
A(yj)−A(yj-1)

yj − yj-1
(y − yj-1) + A(yj-1) . (3.9)

First the numerator and denominator in Eq. (3.7) are worked out separately

∫∫

Fj

y du dy

=

∫ yj

yj-1

∫ A(y)

0

y du dy
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=

∫ yj

yj-1

[
A(yj)−A(yj-1)

yj − yj-1
(y − yj-1) + A(yj-1)

]

y dy

=
A(yj)−A(yj-1)

yj − yj-1

[
y3

j

3
−

yj-1 y2
j

2
+

y3
j-1

6

]

+
A(yj-1)

2

[

y2
j − y2

j-1

]

=
1

6
(yj − yj-1)[(2A(yj) + A(yj-1)) yj + (A(yj) + 2A(yj-1)) yj-1] , (3.10)

and
∫∫

Fj

du dy

=

∫ yj

yj-1

∫ A(y)

0

du dy

=

∫ yj

yj-1

[
A(yj)−A(yj-1)

yj − yj-1
(y − yj-1) + A(yj-1)

]

dy

=
A(yj)−A(yj-1)

yj − yj-1

[
y2

j

2
− yj-1 yj +

y2
j-1

2

]

+ A(yj-1)

[

yj − yj-1

]

=
1

2
(yj − yj-1)(A(yj) + A(yj-1)) . (3.11)

This results in Eqs. (3.12) and (3.13) for the center of gravity y∗
j and areaOj of

the parts

y∗
j =

∫∫

Fj

y du dy

∫∫

Fj

du dy

=
1

3
(yj + yj-1) +

1

3

A(yj) yj + A(yj-1) yj-1

A(yj) + A(yj-1)
, (3.12)

Oj =

∫∫

Fj

du dy

=
1

2
(yj − yj-1)(A(yj) + A(yj-1)) . (3.13)

3.2.3.2 Transition points

In order to apply this new method, apart from the formulae forthe centers of gravity
and areas of the parts, also a method is needed to partition the fuzzy output. When
determining thetransition points, as the points defining the parts will be called in the
following, it is assumed that the membership functions forma fuzzy partition. As the
shape of the fuzzy output depends on the t-norm used to adapt the original membership
functions (Eq. (2.47)), the procedure to determine the transition points is different for
TM, TP andTL. In the formulae of the slope-based method, parametersa, b, c andd
are used to characterize the trapezial membership functions as illustrated in Fig. 3.2a.
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Table 3.1: Co-ordinates of the potential transition pointsin Fig. 3.5.
point co-ordinates
ptM,1 (di − αi (di − ci), αi)
ptM,2 (ci + αi (di − ci), αi)
ptM,3 (di − αi+1 (di − ci), αi+1)
ptM,4 (ci + αi+1 (di − ci), αi+1)
ptM,5 ( 1

2 (ci + di), 0.5)
ptP,1 (ci, αi)
ptP,2 (ci + αi

αi+αi+1
(di − ci),

αi·αi+1
αi+αi+1

)

ptP,3 (di, αi+1)
ptL,1 (ci, αi)
ptL,2 (ci + αi (di − ci), 0)
ptL,3 (ci + 1

2 (αi − αi+1 + 1)(di − ci),
1
2 (αi + αi+1 − 1))

ptL,4 (di − αi+1 (di − ci), 0)
ptL,5 (di, αi+1)

The case ofTM In Fig. 3.4 all possible configurations are depicted that mayoccur
for two adjacent membership functionsAi andAi+1 whenT = TM. At each overlap
of the two membership functionsAi andAi+1, the following five points, whose co-
ordinates are listed in Table 3.1, should be taken in consideration as potential transition
points:

• ptM,1, the intersection ofA = αi with the line through (ci,1) and (di,0),

• ptM,2, the intersection ofA = αi with the line through (ci,0) and (di,1),

• ptM,3, the intersection ofA = αi+1 with the line through (ci,1) and (di,0),

• ptM,4, the intersection ofA = αi+1 with the line through (ci,0) and (di,1),

• ptM,5, the point of intersection ofAi andAi+1.

The five points are indicated in Fig. 3.4. Note that in some configurations some
of the points coincide. Actual transition points are coloured black. One can see that at
each overlap up to three of the five points are added to the listof transition points. As
a consequence, whenT = TM the total number of transition points forn membership
functions is at least two (namely the first point (y0,α1) and the last point (yk,αn)) and at
most3n−1 (= 2+3(n−1)). The rules used for the selection of transition points are vi-
sualized in Fig. 3.5a. If both degrees of fulfilment are larger than 0.5, the pointsptM,1,
ptM,4 andptM,5 are selected as transition points (Fig. 3.4a). If this is notthe case and
αi is larger thanαi+1, the transition points areptM,1 andptM,3 (Fig. 3.4b,c,f,k); if
αi andαi+1 are equal no transition points are selected (Fig. 3.4e,j) and finally, if αi is
smaller thanαi+1, the transition points areptM,2 andptM,4 (Fig. 3.4d,g–i).
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Figure 3.4: Different configurations at the intersection oftwo membership functions
whenT = TM.

The case ofTP The selection of transition points forTP is more straightforward. The
four typical configurations occurring at the intersection of two membership functions
are shown in Fig. 3.6.

As long as both degrees of fulfilmentαi andαi+1 are strictly positive (Fig. 3.6a),
the following three points are added to the list of transition points (see Table 3.1 for
their co-ordinates):

• ptP,1, the point with the maximum of the kernel ofAi as abscissa and the mem-
bership degree in this point toA′

i as ordinate,

• ptP,2, the point of intersection of the two adapted membership functionsA′
i and

A′
i+1,

• ptP,3, the point with the minimum of the kernel ofAi+1 as abscissa and the
membership degree in this point toA′

i+1 as ordinate.

If one of the degrees of fulfilment is zero, onlyptP,1 andptP,3 are selected
(Fig. 3.6b–c). No transition points are added to the list if both degrees of fulfilment are
zero (Fig. 3.6d). Fig. 3.5b summarizes which points are selected as transition points
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Figure 3.5: Selection of the transition points as a functionof αi andαi+1 in the slope-
based method for the three t-norms.
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Figure 3.6: Different configurations at the intersection oftwo membership functions
whenT = TP.

given the degrees of fulfilmentαi andαi+1. As for TM, the total number of transition
points is at least two and at most3n− 1 for n membership functions.

The case ofTL When usingTL, the following five points are the potential transition
points (see Table 3.1 for their co-ordinates):

• ptL,1, the point with the maximum of the kernel ofAi as abscissa and the mem-
bership degree in this point toA′

i as ordinate,

• ptL,2, the intersection of the right non-parallel side of the adapted membership
functionA′

i with A = 0,

• ptL,3, the point of intersection of the adapted membership functionsA′
i andA′

i+1,

• ptL,4, the intersection of the left non-parallel side of the adapted membership
functionA′

i+1 with A = 0,

• ptL,5, the point with the minimum of the kernel ofAi+1 as abscissa and the
membership degree in this point toA′

i+1 as ordinate.
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Figure 3.7: Different configurations at the intersection oftwo membership functions
whenT = TL.

If the sum of the fulfilment degreesαi andαi+1 is larger than or equal to one,
as shown in Fig. 3.7a, the transition points areptL,1, ptL,3 andptL,5. If the sum of the
fulfilment degreesαi andαi+1 is strictly positive and smaller than 1: all points except
ptL,3 are selected if both fulfilment degrees are strictly positive (Fig. 3.7b),ptL,1 and
ptL,2 are selected ifαi+1 is zero (Fig. 3.7c) andptL,4 and ptL,5 are selected ifαi

is zero (Fig. 3.7d). Finally no points are selected if both fulfilment degrees are zero
(Fig. 3.7e). The selection of transition points forT = TL is summarized in Fig. 3.5c.
The total number of transition points forn membership functions is at least two and at
most4n− 2 (= 2 + 4(n− 1)) for TL.

3.2.3.3 Implementation

The practical implementation of the slope-based method consists of the following
steps:

1. the transition points are determined (according to the rules visualized in Fig. 3.5),

2. y∗
i andOi are calculated for each part with Eqs. (3.12–3.13),

3. y∗
COG is obtained with Eq. (3.6).

3.2.4 Modified transformation function method

The modified transformation function method is based on the transformation function
method presented by Patel and Mohan. In their joint article (Patel and Mohan, 2002),
they claim their method to be a computationally attractive technique to compute the
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Table 3.2: Formulae for the transformation functionsf(h′
i, αi) and areasSi of the

adapted membership functions in Eqs. (3.15) and (3.16).
t-norm f(h′

i, αi) Si

TM
3h′

i
2−3αih

′

i+α2
i

h′

i·(2h′

i−αi)
(a′

i+b′i)·αi·(2h′

i−αi)
2h′

i

TP
3h′

i
2−3h′

i+1
h′

i·(2h′

i−1)
(a′

i+b′i)·αi·(2h′

i−1)
2h′

i

TL
α2

i +3αih
′

i−3αi+3h′

i
2−6h′

i+3
h′

i·(αi+2h′

i−2)
(a′

i+b′i)·αi·(2h′

i+αi−2)
2h′

i

center of area defuzzification, which they use as a synonym for the center of gravity
defuzzification defined in Eq. (3.1), for triangular membership functions. In a more
recent article, Patel (2004) correctly states that their method is not valid for the COG
defuzzification, but for the computationally less demanding (Driankov et al., 1993, Sec-
tion 3.6)Center Of Sum(COS) defuzzification, and extends the transformation function
method to trapezial membership functions. The definition ofthe COS defuzzification
is given by

y∗
COS =

∫

Y

y ·
∑n

i=1 A′
i(y) dy

∫

Y

∑n
i=1 A′

i(y) dy
. (3.14)

The crisp outputy∗
COS is computed from the centers of gravityy∗

i and areasSi

of the adapted membership functions

y∗
COS =

∑n
i=1 y∗

i · Si
∑n

i=1 Si

, (3.15)

with y∗
i = c′i +

a′
i − b′i
3

f(h′
i, αi) . (3.16)

Given a trapezial fuzzy partition, the functionf appearing in Eq. (3.16) only depends
on the t-norm used to adapt the original membership functions (Eq. (2.47)). This func-
tion is called ‘transformation function’ by Patel and Mohan, whence the name of this
method. In (Patel, 2004) the formulae for the transformation functionsf(h′

i, αi) and
areasSi of the adapted membership functionsA′

i are derived for 12 t-norms. In Ta-
ble 3.2 the formulae are shown for the basic t-normsTM, TP andTL. The parameters
a′

i, b′i, c′i andh′
i characterize the shape of the membership function of theith linguis-

tic output valueAi. The parameterαi is the corresponding fulfilment degree. The
meaning of the parameters used in Eq. (3.16) and Table 3.2 is illustrated in Fig. 3.2b.

However, the center of sum defuzzification method is rarely applied. Based
on the transformation function method, a new computationalmethod is presented for
the commonly used COG defuzzification method. The COS and COGdefuzzification
methods differ in the number of times overlapping parts of the adapted membership
functions are taken into account: only once with the COG defuzzification method
and more than once (twice in case of a fuzzy partition) with the COS defuzzifica-
tion method. The difference between both defuzzification methods is illustrated in
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Figure 3.8: Center of gravity and center of sum defuzzification methods (after (Dri-
ankov et al., 1993, Section 3.6)).

Fig. 3.8. Sakly and Benrejeb (2003) have suggested yet another defuzzification method
that amounts to the replacement of the areasSi in Eq. (3.15) by the respective fulfil-
ment degreesαi. This approach fits into theMode Bstrategy mentioned before, but
does obviously not result in the true COG defuzzification.

The center of gravityy∗
COG of the surface defined by the global fuzzy output

is obtained by taking not only the centers of gravityy∗
i and areasSi of then adapted

membership functions into account, but also the centers of gravity y∗
op,i and areasSop,i

of then− 1 overlapping parts, which results in the following formula

y∗
COG =

∑n
i=1(y

∗
i · Si)−

∑n−1
i=1 (y∗

op,i · Sop,i)
∑n

i=1 Si −
∑n−1

i=1 Sop,i

. (3.17)

This expression is formally similar to that of Wang and Luoh (2000) who also treat
the COG defuzzification problem as a COS defuzzification problem accounting for
overlapping parts. However, their approach requires the explicit computation of the
co-ordinates of the vertices of the adapted membership functions as well as of their
overlapping parts (both viewed as 2D-objects), and is therefore computationally not at
all attractive.

When trapezial membership functions forming a fuzzy partition are adapted
according toTM, TP or TL, the overlapping areas are always trapezial or triangular.
The formula fory∗

op,i andSop,i are given in Table 3.3. In case ofTM, the bases of the
trapezial overlapping parts coincide with the projection of the non-parallel sides of the
membership functions on theY -axis as illustrated in Fig. 3.9. The heighthop,i of the
trapezium varies between 0 and 0.5 and depends on the fulfilment degrees of the two
adjacent linguistic output values

hop,i = min(αi, αi+1, 0.5) . (3.18)

As the membership functions form a fuzzy partition, the trapezia always have a vertical
axis of symmetry through the intersection of the two adjacent membership functions.
The center of gravityyop,i of the overlapping areas therefore has the same abscissa as
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the intersection of the two adjacent membership functions

y∗
op,i = c′i + a′

i

(

1−
1

2h′
i

)

. (3.19)

The formula for the areaSop,i can easily be derived given the co-ordinates of the over-
lapping parts in Fig. 3.9

Sop,i =
hop,i

2

(

−c′i − a′
i

(

1−
1

h′
i

)

− c′i − a′
i

(
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h′
i

)

+ c′i
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i

(

1−
hop,i

h′
i

)

+ c′i + a′
i

)

=
a′

ihop,i(1− hop,i)

h′
i

. (3.20)

ForTP the centers of gravityy∗
op,i and areasSop,i of the triangular overlapping

parts are given by (Fig. 3.10)

y∗
op,i =

1

3

(

c′i + a′
i

(

1−
1

h′
i

)

+ c′i + a′
i

(

1−
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h′
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)

+ c′i + a′
i

)

= c′i + a′
i

(
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3h′
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)

, (3.21)
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1

2

αi αi+1
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(
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i

(

1−
1

h′
i

))

=
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i αi αi+1

2h′
i(αi + αi+1)

. (3.22)

ForTL, overlapping parts are only obtained if the sum of the fulfilment degrees
αi andαi+1 of the two consecutive membership functionsAi andAi+1 is larger than 1.
In this case, the formulae for the centers of gravityy∗

op,i and areasSop,i are given by
(Fig. 3.11)

y∗
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, (3.23)

Sop,i =
1

4

(
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)(
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1− αi

h′
i

)

− c′i − a′
i

(
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αi+1

h′
i

))

=
a′

i

4h′
i

(αi + αi+1 − 1)2 . (3.24)

The practical implementation of the modified transformation function method
consists of the following steps:
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Table 3.3: Formulae for the centers of gravityy∗
op,i and areasSop,i of the overlapping

parts in Eq. (3.17).
t-norm y∗

op,i Sop,i
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i · (1−

1
2h′
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Figure 3.9: Co-ordinates of the trapezial membership functions and the triangular over-
lapping parts forTM.
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Figure 3.10: Co-ordinates of the trapezial membership functions and the triangular
overlapping parts forTP.
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Figure 3.11: Co-ordinates of the trapezial membership functions and the triangular
overlapping parts forTL.
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1. the transformation function valuef(h′
i, αi), the center of gravityy∗

op,i and the
areasSi andSop,i are calculated for all linguistic values (Tables 3.2 and 3.3),

2. y∗
i is calculated for all linguistic values (Eq. (3.16)),

3. y∗
COG is computed using Eq. (3.17).

3.3 Experiments and results

3.3.1 Implementation

As the defuzzification function was meant to be called by the objective function of a
model optimization algorithm, requiring, at once, the calculation of the corresponding
crisp outputs ofN (typically a few hundreds) training examples, the numerical meth-
ods were implemented as functions takingNn fulfilment degrees definingN fuzzy
outputs,4n membership function parameters definingn linguistic values, a label indi-
cating the t-norm and, in case of the discretization method,the number of discretization
stepsk as input and returningN crisp outputs. Note that, when defuzzifyingN fuzzy
outputs of a same model, or more generally,N fuzzy outputs defined on the same fuzzy
partition of trapezial output membership functions, some calculation steps should be
carried out only once. This concerns for instance the calculation of the discretization
point valuesyj and membership degreesAi(yj) in the first and second step of the dis-
cretization method and the calculation of theαi-independent factors for each of then
linguistic values in Tables 3.2 and 3.3 when applying the modified transformation func-
tion method. For the discretization method, the time complexity is O(Nnk) and the
space complexity isO(nk). For the two other methods to execute the COG defuzzi-
fication and the transformation function method by Patel (2004), the time complexity
isO(Nn) and the space complexity isO(n). All programs were written in MATLAB
and executed on a 1,8 GHz AMD Athlon with 512 Mb RAM.

3.3.2 Experimental setup

To illustrate the differences in accuracy and computational cost of the methods pre-
sented in Section 3.2, the centers of gravity of 1000 fuzzy outputs were calculated
for TM, TP andTL via the three computational methods for the COG defuzzification
method and via the transformation function method presented by Patel (2004). For the
discretization method the number of discretization steps was varied: 50, 100, 250, 500,
1000, 2500 and 5000 discretization steps were used. The samefive membership func-
tions shown in Fig. 3.12 and the same randomly generated set of 1000 times 5 fulfilment
degrees were used during all computations. Note that some ofthe used membership
functions have a particular shape which often occurs in optimization processes. When
for instance two parameter values coincide, a triangular instead of the more general
trapezial membership function is obtained or small differences between successive pa-
rameters result in membership functions with a very narrow support. This particularly
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Y

Ai(y)

y0 y1 y2 y3 – y6 y7

0

0.5

1

y0 y1 y2 y3 y4 y5 y6 y7

0.000 25.768 46.407 67.237 68.574 70.429 73.444 100.000

Figure 3.12: Membership functions of the output variableY used in the experiment.

shaped output membership functions often give rise to low accuracy when carrying out
the defuzzification with the discretization method.

The RMSE was used as a measure for the accuracy

RMSE=

√
∑N

z=1(yz − yz,MTF)2

N
. (3.25)

We considered the results obtained with the modified transformation function (MTF)
method as reference values. When applying the modified transformation function
method, apart from round-off errors by the computer, no approximations are made.
The computational burden of a method was assumed to be proportional to the time
needed to compute the crisp outputs for the 1000 fuzzy outputs.

3.3.3 Results

The results obtained during 50 repetitions of the experiment are shown in Table 3.4.
In the first column the RMSE-values are listed. Further, the table contains the average
absolute calculation timesta as well as the relative average calculation timestr,MTF to
the calculation time needed with the modified transformation function method.

As expected, the accuracy and computational cost of the discretization method
increases with increasing discretization steps (Fig. 3.13). When examining the results
in Table 3.4, its easy implementation appears to be the only advantage of the discretiza-
tion method. The two other methods to compute the COG defuzzification method are
not as straightforward to implement but allow for both a quicker and more accurate
computation. The same accuracies are obtained with the slope-based and modified
transformation function method, but due to the fact that no transition points have to be
determined in the modified transformation function method,the latter is faster. Finally,
the results obtained with the transformation function method (Patel, 2004) show that
taking the overlapping areas twice into account instead of once results in an error of
more than respectively 3%, 2% and 0.5% forTM, TP andTL, reflecting the decreasing
amount of overlapping.
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Table 3.4: RMSE-values and average computation times (over50 runs) for the different methods and t-norms.

T = TM T = TP T = TL

Method RMSE (-) ta (s) tr,MTF (-) RMSE (-) ta (s) tr,MTF (-) RMSE (-) ta (s) tr,MTF (-)
discret. (50) 1.03 0.13 2 1.21 0.11 1 1.43 0.13 0.7
discret. (100) 0.51 0.16 3 0.58 0.14 2 0.67 0.17 0.9
discret. (250) 0.20 0.29 5 0.23 0.24 3 0.26 0.32 2
discret. (500) 0.10 0.51 9 0.11 0.39 5 0.13 0.52 3
discret. (1000) 0.05 1.02 20 0.06 0.79 10 0.06 1.07 6
discret. (2500) 0.02 2.64 40 0.02 2.31 30 0.03 2.90 20
discret. (5000) 0.01 5.09 90 0.01 4.64 60 0.01 5.67 30
slope-based 0.00 0.15 3 0.00 0.15 2 0.00 0.16 0.8
transf. funct. 3.51 0.03 0.5 2.53 0.02 0.2 0.79 0.14 0.7
m. transf. funct. — 0.06 — — 0.08 — — 0.19 —
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Figure 3.13: RMSE as a function of the number of discretization steps.

3.4 Conclusion

In this chapter two computational methods, the slope-basedmethod and the modified
transformation function method, were introduced for the center of gravity defuzzifica-
tion method for trapezial membership functions forming a fuzzy partition. The accu-
racy, computational cost and implementational complexityof these two methods and
the commonly applied discretization method were discussedfor the basic t-normsTM,
TP andTL. Its easy implementation appears to be the only advantage ofthe discretiza-
tion method. The two other methods to compute the COG defuzzification method are
not as straightforward to implement but allow both a quickerand more accurate com-
putation. Of the three methods presented, the modified transformation function method
has the smallest computational cost while being as accurateas the slope-based method.
Note that in this study the linguistic output values were assumed to be described by
trapezial membership functions forming a fuzzy partition.

Future investigations could imply attractive computational methods for the de-
fuzzification of fuzzy rule-based models applying implicator-based inference. Fur-
thermore, it should be checked whether the computational methods could be further
simplified if not only the membership functions of the outputvariable, but also those
of the input variables are assumed to form a fuzzy partition or if the rule base is as-
sumed to be smooth. A rule base is called smooth if every set oftwo rules differing
in only one input variable in their antecedent and containing adjacent values for this
variable, have equal or adjacent values in their consequentas defined in Definition 7.3
in Section 7.2.2.

48



CHAPTER 4

Genetic algorithms

Once upon a time a fire broke out in a hotel, where just then
a scientific conference was held. It was night and all guests
were sound asleep. As it happened, the conference was at-
tended by researchers from a variety of disciplines. The first
to be awakened by the smoke was a mathematician. His first
reaction was to run immediately to the bathroom, where, see-
ing that there was still water running from the tap, he ex-
claimed: “There is a solution!”. At the same time, however,
the physicist went to see the fire, took a good look and went
back to his room to get an amount of water, which would be
just sufficient to extinguish the fire. The engineer was not so
choosy and started to throw buckets and buckets of water on
the fire. Finally, when the biologist awoke, he said to him-
self: “The fittest will survive” and went back to sleep.
(Anecdote originally told by C.L. Liu)

4.1 Introduction

Genetic algorithms (Goldberg, 1989; Holland, 1975) are oneof the four main types
of evolutionary algorithms, as the general class of search and optimization methods
which imitate the principles of natural evolution is called. The three other main groups
of evolutionary algorithms are (Cordón et al., 2001; Eiben and Smith, 2003): evolu-
tionary programming (Fogel et al., 1966), evolution strategies (Rechenberg, 1973) and
genetic programming (Koza, 1993). The computer science field dealing with evolu-
tionary algorithms is referred to as evolutionary computation. That some computer
scientists have chosen natural evolution as a source of inspiration is not surprising.
The power of evolution in nature is evident in the diverse species on earth, all being
well-adjusted to survive in their specific niche (Eiben and Smith, 2003).

The adaptation of species to a specific niche has occurred dueto selective pres-
sure from the environment. Species that are more successfulat avoiding death have the
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opportunity to produce more offspring than those that die young. This offspring inher-
its some of the beneficial features from the parents, allowing it to survive even better
under the environmental conditions. On average, the survival fitness of a generation
increases due to this selective pressure. Furthermore, because of the recombination of
the genetic material of the parents, the offspring developsnew features that were not
present in one of the parents. Mutation once in a while throwsin a wild card. This
wild card is sometimes bad causing early death, but occasionally it creates a somewhat
different feature that allows an individual to be even more successful than would have
been the case after simple recombination of the parents’ genetic material. In fact mu-
tation increases the diversity in a population. As the environment (the predators for
example) is dynamic, there is a constant struggle of all species to stay at the edge of
the current ‘genetic’ technology. Species that adapt too slowly to new environmental
conditions, will get extinct some time or another (Ducheyne, 2003).

In evolutionary algorithms a population of candidate solutions of the optimiza-
tion problem (individuals) is evolved. The fitness of the individuals is obtained by an
objective function. Operators mimicking natural selection (survival of the fittest) cause
a rise in the fitness of the population. The general scheme of an evolutionary algorithm
is given in pseudocode in Alg. 1. The optimization process starts with a population
of either randomly generated or previously known candidatesolutions. Based on their
fitness, some of the better candidates are chosen to seed the next generation by apply-
ing recombination and/or mutation to them. Recombination is an operator applied to
two or more selected candidates (the so-called parents) andresults in one or more new
candidates (the children). Mutation is applied to one candidate and results in one new
candidate. Executing recombination and mutation leads to aset of new candidates (the
offspring) that compete — based on their fitness (and possibly age) — with the old
ones for a place in the next generation. This process can be iterated until a candidate
with sufficient quality (a solution) is found or a previouslyset computational limit is
reached (Eiben and Smith, 2003).

Algorithm 1: The general scheme of an evolutionary algorithm in pseudocode
t← 0
Initialize PopulationPt at random
EvaluatePt

while stopping criterion not metdo
Select parents fromPt

Recombine parents
Mutate the resulting offspring
Evaluate new candidatesPt+1

Select individuals for the next generation
t← t + 1

end

The four variants of evolutionary algorithms differ in the data structure used
to represent a candidate solution, the relative importanceof recombination and muta-
tion as variation operator as well as in the procedures applied to select individuals as
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parents or as individuals of the next generation. Typically, the candidate solutions are
represented by strings over a finite alphabet in genetic algorithms, real-valued vectors
in evolution strategies, finite state machines in evolutionary programming, and trees in
genetic programming. In genetic algorithms and genetic programming, recombination
and mutation are respectively the primary and secondary variation operators, whereas
in evolution strategies the reverse order applies (Eiben and Smith, 2003).

In this chapter, genetic algorithms, the type of evolutionary algorithms applied
in Chapter 6 for the optimization of membership functions ofa Mamdani–Assilian
model, are described. First, the different elements and operators of a genetic algo-
rithm and the biologically inspired terminology used to refer to them, are introduced
by means of a simple example. Then, following issues that should be addressed when
setting up a genetic algorithm, are discussed:

• the representation of a candidate solution,

• the parent selection procedure,

• the variation operators,

• the replacement procedure, and

• the parameter setting

A sixth important component that should be specified in orderto define a genetic al-
gorithm is the fitness function. This issue is highly relatedto the optimization problem
under consideration. It is therefore not addressed in this general chapter on genetic
algorithms, but discussed in detail in Section 6.2.2.

4.2 Terminology

In the example below, after Eiben and Smith (2003), one selection-reproduction cy-
cle of a genetic algorithm is illustrated. The objective of the considered optimization
problem is to find the integer valueX ∈ {0, . . . , 15} for which the fitness function is
maximum

fitness(X) = 2 + sin(
πX

7
−

3

4
) . (4.1)

The fitness of the 16 candidate solutions{0, . . . , 15} is shown in Fig. 4.1.
The data structure used in a genetic algorithm to represent acandidate solution

is referred to as achromosome. In the example, the chromosomeC = (c1, . . . , cn)
is a binary string of four bits and the corresponding integervalue x is obtained by
(xmin = 0, xmax = 15, n = 4)

x = xmin +
xmax − xmin

2n − 1

n∑

i=1

ci 2i−1 . (4.2)

The binary string is called thegenotypeand the corresponding integer value thepheno-
typeof a candidate solution. All candidate solutions are herebyrepresented: chromo-
some0000 for instance representsx = 0 and chromosome1111 representsx = 15. In
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fitness(x)

X0 5 10 15
1

2

3

Figure 4.1: Fitness of the 16 candidate solutions in the genetic algorithm example.

Table 4.1: Illustration of a genetic algorithm: initiation, evaluation and parent selec-
tion.

string initial selection times
no. population x fitness prob. selected
1 1 1 0 1 13 1.07 0.13 0
2 0 0 0 1 1 1.70 0.20 1
3 0 1 0 0 4 2.87 0.34 2
4 0 1 1 1 7 2.68 0.32 1

string 1

string 2

string 3

string 4

this case the string represent only one variable, but a binary string or a string of reals
x = (x1, . . . , xn) can representn variables orgeneswith each gene taking several
values oralleles.

In the first step of a genetic algorithm, apopulationof individualsis initialized,
either generated randomly or seeded by previously known solutions. Here the popu-
lation size is equal to four. The four genotypes of the initial population are shown in
Table 4.1 with the corresponding phenotypes and fitness values. The genetic algorithm
applies fitness proportionate selection as parent selection procedure. The probability
that an individual is selected as a parent is given in the column ‘selection prob.’ and
is given by the quotient of its fitness and the average fitness of all individuals in the
population. The population is mapped to a roulette wheel such that the slot size of each
individual corresponds to its selection probability. The wheel is spun four times and
the number of copies of an individual in themating poolcorresponds to the number
of times the pointer pointed to the segment corresponding tothe individual when the
wheel stopped. Note that in the column ‘times selected’onepossible outcome of the
parent selection procedure is shown.

As crossoverandmutationprocedures respectively one-point crossover and bit
flip are applied. The selected individuals are paired at random, and for each pair a
random point along the string is chosen. The children are created by splitting both
parents at this point and exchanging the tails. In Table 4.2 the results of crossover
on the given mating pool are given for crossover points afterthe first and third bit
respectively. Next, a random number (from a distribution uniform over the range [0,1])
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Table 4.2: Illustration of a genetic algorithm: recombination.
string crossover offspring mutation offspring
no. parents point after xover mask after mutation
1 0 | 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0
2 0 | 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
3 0 1 0| 0 3 0 1 0 1 0 0 0 0 0 1 0 1
4 0 1 1| 1 3 0 1 1 0 1 0 0 0 1 1 1 0

Table 4.3: Illustration of a genetic algorithm: replacement procedure and evaluation of
the next generation.

string worst
no. offspring x fitness offspring generation 1 x fitness
1 0 1 0 0 4 2.87 0 1 0 0 4 2.87
2 0 0 0 1 1 1.70 0 0 0 1 1 1.70
3 0 1 0 1 5 3.00 0 1 0 1 5 3.00
4 1 1 1 0 14 1.32 × 0 1 0 0 4 2.87

is generated for each bit position. Positions for which thisrandom number is smaller
than a fixed low (e.g.0.001) value, themutation probability, are indicated by a one in
themutation maskand the corresponding bits are flipped.

In Table 4.3 the genotypes, phenotypes and fitness values of the offspring ob-
tained after crossover and mutation are shown. In the example, the nextgenerationis
obtained bygenerational replacementwith elitism. Generational replacement means
that the whole population is replaced by the offspring. Elitism guarantees that the best
individual of a generation is never worse that the best individual of the preceding gener-
ation, for instance by replacing the worst offspring by the best individual of the current
population. Although manually engineered, this example shows a typical progress: the
average fitness increases from 2.08 to 2.61, and the best fitness in the population from
2.87 to 3.00 after crossover and mutation.

A genetic algorithm as the one applied in the example using a binary representa-
tion, fitness proportionate selection, a low probability ofmutation, and an emphasis on
genetically inspired recombination as a means of generating new candidate solutions,
is referred to as a canonical or simple genetic algorithm. The theoretical foundation
why genetic algorithms work, is usually illustrated using asimple genetic algorithm
and can be found in the textbooks by Goldberg (1989) and Michalewicz (1996).

4.3 Binary and real-valued representation

The way a candidate solution is represented might be critical for the success or failure
of the optimization process (Eiben and Smith, 2003; Michalewicz, 1996). The success
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of a representation can be evaluated by the best fitness valueobtained after running
the genetic algorithm with the different representation. In Chapter 6 the performances
of a binary-coded and a real-coded genetic algorithm are compared for a membership
function optimization problem.

Fixed-length and binary-coded strings for the representation of candidate so-
lutions, as used in the simple genetic algorithm in Section 4.2, tend to dominate in
research and applications of genetic algorithms. The use ofa binary representation
is mainly inspired by the outcome of the theoretical analysis of genetic algorithms
by Holland (1975) and Goldberg (1989), recommending the useof alphabets of low
cardinality. In a binary representation the alphabet with the lowest possible cardinality
is applied, as bits only take values from the alphabet{0, 1} with cardinality two. More
recently, however, the use of genetic algorithms applying strings of real values,i.e.with
large alphabets, is rising. Real-coded genetic algorithms, as genetic algorithms apply-
ing strings of real values are called, showed to outperform binary-coded genetic algo-
rithms in the optimization problems presented by Wright (1991); Michalewicz (1996);
Herrera et al. (1998). Furthermore theoretical foundations were established on the
reason why and the way in which real-coded genetic algorithms are suitable optimiza-
tion algorithms (Antonisse (1989) and Eshelman and Schaffer (1993) in Herrera et al.
(1998) as well as Goldberg (1991) and Radcliffe (1991)).

The binary representation allows the use of straightforward variation opera-
tors, but has some drawbacks as illustrated below with two examples from the fuzzy
model optimization field. A first disadvantage of binary-coded genetic algorithms is
the difficulties they meet when dealing with continuous search spaces where a great
numerical precision is required, for instance when searching the set of variablesa =
(a2, . . . , a2n-1) definingn membership functions as shown in Fig. 4.2, which maximize
a certain fitness. If a binary representation is used, each variableak ∈ [amin,k, amax,k]
(k ∈ {2, . . . , 2n-1}) is represented by a binary stringCk of nbit,k bits

Ck = (ck,1, . . . , ck,nbit,k
) with ck,i ∈ {0, 1} , (4.3)

and a candidate solution is represented by a chromosomeC

C = (C2, . . . , C2n-1) . (4.4)

The phenotypea of a chromosomeC is obtained by

a = (a2, . . . , a2n-1) , (4.5)

with ak = amin,k +
amax,k − amin,k

2nbit,k − 1

nbit,k∑

i=1

ck,i 2i−1 . (4.6)

A variableak encoded by a 2-bit string, can take one of the values of the four-
element set

{amin,k,
2

3
amin,k +

1

3
amax,k,

1

3
amin,k +

2

3
amax,k, amax,k} .

If the variable should be defined by a higher precision, the number of bits used to
encode it should be increased, resulting in a larger search space. For example, for 100
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A1 A2 A3

Y
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0
a1 a2 a3

amin,4 amax,4

a5 a6

a4 = amin,4

a4 = amax,4

Figure 4.2: Optimization of membership functions used in a fuzzy model.

variables with domains in the range [-500,500] where a precision of six digits after the
decimal point is required

amax,k − amin,k

2nbit,k − 1
= 10−6 ,

the length of the binary solution vector is 3000. This, in turn, generates a search space
of about10900 (= 23000). For such problems genetic algorithms perform poorly. Dur-
ing the first generations, the algorithm wastes efforts evaluating the less significant
digits of the binary coded variables. However, their optimum values depend on the
most significant digits. As long as the most significant digits are not converged, the
manipulation of less significant digits is useless. When convergence of the most sig-
nificant digits is achieved, it is not necessary to waste moreefforts on them. However,
this ideal behaviour is not achieved by the genetic algorithm since all digits are handled
in a similar way (Herrera et al., 1998).

Both Michalewicz (1996) and Eiben and Smith (2003) call a string of real val-
ues the most sensible way to represent variables originating from a continuous distribu-
tion. Real-coded genetic algorithms offer the advantage that continuous parameters can
gradually adapt to the fitness landscape over the entire search space whereas parameter
values in binary implementations are limited to a certain interval and resolution. The
real-valued representation is sometimes referred to as thefloating-point representation
as the precision of these real values are actually limited bythat of the computer on
which the algorithm is executed. By using a real-valued representation the distinction
between genotype and phenotype is blurred, since in many problems the real-number
vector already embodies a solution in a natural way. This is also the case in the mem-
bership function optimization problem considered above where the chromosomeC and
phenotypea are obtained by

C = (c1, . . . , cnbit
) with ci ∈ [cmin,i, cmax,i] ⊂ R , (4.7)

a = (a2, . . . , a2n-1) with ai = ci-1 . (4.8)

The straightforward variation operators for binary representation cannot be applied in
case of real-valued representation, which forces, but alsoallows, the designer of the
genetic algorithm to design operators that are more problemspecific. Furthermore,

55



Chapter 4. Genetic algorithms

Table 4.4: Two coding strategies applied to binary representations: binary and Gray
coding.

integer 0 1 2 3 4 5 6 7
binary 000 001 010 011 100 101 110 111
Gray 000 001 011 010 110 111 101 100

. . .
IF X1 IS LOW AND X2 IS HIGH THEN Y IS a3

IF X1 IS MEDIUM AND X2 IS LOW THEN Y IS a4

IF X1 IS MEDIUM AND X2 IS MEDIUM THEN Y IS a5

. . .
with ak ∈ { NEGATIVE LARGE, NEGATIVE SMALL, ZERO, POSITIVE

SMALL, POSITIVE LARGE}

Figure 4.3: Identification of the rule consequents of a linguistic fuzzy model.

real-valued representation has the property that two points close to each other in the
representation space are also close in the problem space, and vice versa. This is not
generally true in the binary approach, where the distance ina representation is normally
defined by the number of different bit positions. This discrepancy can however be
omitted by using a binary representation with Gray coding. As illustrated in Table 4.4
for integer values in the interval [0,7] two points next to each other in the problem space
differ by one bit only when using Gray coding. Procedures to convert binary coding
into Gray coding and vice versa are described in Michalewicz(1996, p. 98).

Another shortcoming of binary representation is the problem of redundancy.
When a binary alphabet is used to represent variables belonging to a discrete set with
a cardinality different from a power of two, some codes may beredundant,i.e. their
phenotypes correspond to values that do not belong to the discrete set. When for in-
stance identifying the consequents of the rules of a Mamdani–Assilian model, where
the consequents can contain one of the five linguistic valuesof the set{ NEGATIVE
LARGE, NEGATIVE SMALL, ZERO, POSITIVE SMALL, POSITIVE LARGE } as
illustrated in Fig. 4.3, a binary string of two bits cannot represent all possible candi-
date solutions. When using a binary string of three bits however, three of the eight
binary strings are redundant as they do not correspond to a linguistic value. When
applying crossover or mutation to genotypes that correspond to a linguistic value, a
redundant binary string can be obtained. One can either overcome this problem by
replacing redundant binary strings by valid binary strings, assigning a very low fitness
value to redundant binary strings or remapping the redundant binary strings to valid
binary strings. A more straightforward solution however isthe application of integer
representation. Eiben and Smith (2003) give an overview of variation operators suited
to evolve integer representations, as well as a fourth type of representation, the permu-
tation representation.
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string 1

string 2

string 3

string 4

string 1

string 2

string 3

string 4

(a) (b)

Figure 4.4: Fitness proportional and rank-based selectionwith (a) roulette wheel sam-
pling or (b) stochastic universal sampling.

4.4 Parent selection

The role of parent selection or mating selection is to distinguish among individuals
based on their fitness, in particular, to allow the better individuals to become parents
of the next generation. Highly fit individuals get a higher chance to become parents
than those with a low fitness. Nevertheless, also unfit individuals can be selected as
parent in order to prevent the search of becoming too greedy and getting stuck in a
local optimum. Three main selection schemes can be distinguished: fitness propor-
tional (Holland, 1975), rank-based (Baker, 1985) and tournament selection (Blickle
and Thiele, 1995).

Both fitness proportional and rank-based selection can be graphically repre-
sented by a biased roulette wheel on which each slot corresponds to an individual. The
roulette wheel is biased as the slot size is proportional to the selection probability of
the corresponding individual. TheN parents are either obtained by spinning the wheel
N times and including as many copies of an individual in the mating pool as the num-
ber of times the point pointed to the corresponding segment,or by spinning the wheel
once and including as many copies of an individual in the mating pool as the number
of theN equally spaced points pointing to the corresponding segment when the wheel
comes to a halt. These two selection procedures are respectively referred to as roulette
wheel sampling and stochastic universal sampling and are illustrated in Fig. 4.4. As
the roulette wheel is calledN independent times in roulette wheel sampling, this may
result in a high variance in the number of copies made from each individual. Baker
(1987) developed stochastic universal sampling to reduce the variance. In this case the
number of copies of an individual is bounded by the integer floor and ceiling of the
expected number of copies, which is the product ofN and the selection probability of
the individual (Note that the sum of the selection probabilities of all individuals of a
population is equal to one).

In fitness proportional selection the selection probability is a function of the
fitness. In the original procedure proposed by Holland (1975), the selection probability
is given by the quotient of the fitness of the individual to thesum of the fitnesses of
all individuals of the population. In this case, if one individual has a much better
fitness that the others, that individual will tend to be selected much more often than the
others. If thissuperindividualrepresents a local optimum, there will be a premature
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convergence for that suboptimal solution. If on the other hand, most individuals have
about the same fitness, those individuals will have about thesame probability of being
selected, so that the selection will be almost random. Theseshortcomings can partially
be compensated by scaling the fitness (Goldberg, 1989) or by applying rank-based
selection (Baker, 1985). In rank-based selection the population is sorted on the basis
of fitness, and the selection probabilities of the individuals are a (linear or exponential)
function of their rank. Drawback of rank-based selection isthat information about the
magnitude of fitness differences between individuals is nottaken into account.

In tournament selection (Blickle and Thiele, 1995)k individuals are randomly
selected with replacement from the population and the best individual of this group
is selected as parent. This procedure is repeatedN times in order to obtain a mating
pool of N parents. Usually tournaments are held between two individuals (k = 2)
(Freitas, 2002). The larger the value ofk, the more the selection procedure will be in
favour of highly fit individuals. Tournament selection is perhaps the most widely used
selection operator in modern applications of genetic algorithms, due to its simplicity of
implementation and its time complexity ofO(N) because no sorting of the population
is required (Eiben and Smith, 2003).

4.5 Variation operators

Variation operators are applied to create new individuals from the parents in the mat-
ing pool, leading to exploration of new regions of the searchspace and exploitation
of the knowledge available in the current population about the optimization problem.
Two groups of variation operators can be distinguished: recombination (or crossover),
merging information of two (or more) parent genotypes into one or two offspring geno-
types and mutation, altering the genotype of a parent in a rather random way to create
one child. In this section a selection is given of recombination and mutation procedures
applied to binary and real-valued representations. The parent genotypes will be repre-
sented byC1 = (c1

1, . . . , c
1
nbit

) andC2 = (c2
1, . . . , c

2
nbit

) and the offspring genotypes
by H1 = (h1

1, . . . , h
1
nbit

) andH2 = (h2
1, . . . , h

2
nbit

).

4.5.1 Recombination

Recombination operators are usually applied stochastically according to a crossover
ratePc. For each pair of parents, selected (without replacement) from the mating pool,
a value is uniformly drawn from [0,1]. If the value is lower thanPc, two children are
created via recombination of the two parents. Otherwise, two children are obtained by
copying the parents. By many genetic algorithm theorists and practitioners recombina-
tion is considered the most important feature of genetic algorithms, whereas mutation
is regarded as a background search operator. Regardless of the merits (or otherwise) of
this viewpoint, recombination is certainly one of the features that most distinguishes
genetic algorithms from other global optimization algorithms (Eiben and Smith, 2003).

58



Chapter 4. Genetic algorithms

Binary representation Three forms of recombination are generally applied to binary
representations. One-point crossover, proposed by Holland (1975), is illustrated in the
introductory example. In this case, the genotypes of the children H1 and H2, are
obtained by

H1 = (c1
1, . . . , c

1
i , c

2
i+1, . . . , c

2
nbit

) , (4.9)

H2 = (c2
1, . . . , c

2
i , c

1
i+1, . . . , c

1
nbit

) , (4.10)

with i a random number from{1, . . . , nbit − 1}. A generalization of one-point cross-
over isn-point crossover (Spears and De Jong, 1991), where the parent strings are
broken in more than two segments of contiguous genes and the offspring are created by
taking alternative segments from the two parents. This means thatn random numbers
have to be selected from{1, . . . , nbit − 1}. For n = 2 the genotypes of the children
are

H1 = (c1
1, . . . , c

1
i1

, c2
i1+1, . . . , c

2
i2

, c1
i2+1, . . . , c

1
nbit

) , (4.11)

H2 = (c2
1, . . . , c

2
i1

, c1
i1+1, . . . , c

1
i2

, c2
i2+1, . . . , c

2
nbit

) , (4.12)

with i1, i2 ∈ {1, . . . , nbit − 1}. Syswerda (1989) introduced uniform crossover. It
is implemented by generating a mask, a (random) binary string of nbit bits. The first
offspring inherits the genes of the first parent in the positions where the mask contains
a zero and the genes of the second parent in the positions where the mask contains a
one. The second offspring is created using the inverse mapping. Given a maskM

M = (m1, . . . ,mnbit
) , (4.13)

the genotypes of the childrenH1 = (h1
1, . . . , h

1
nbit

) andH2 = (h2
1, . . . , h

2
nbit

), are
obtained by

h1
i =

{

c1
i , if mi = 0

c2
i , if mi = 1

h2
i =

{

c2
i , if mi = 0

c1
i , if mi = 1

. (4.14)

As it tends to keep together genes that are located close to each other in the
representation,n-point crossover (including one-point crossover) is said to suffer from
positional bias. The third crossover, uniform crossover, does not exhibit any positional
bias, but does have a strong tendency towards transmitting half of the genes of each
parent. This is known as distributional bias. It is however impossible to state that one
of these operators performs better than the others on any given problem (Eiben and
Smith, 2003).

Real-valued representation Real-valued strings can be recombined using the same
procedures as those described above for binary representations. The real counterparts
of one-point crossover and uniform crossover are respectively called simple crossover
(Wright, 1991; Michalewicz, 1996) and discrete crossover (Mühlenbein and Schlier-
kamp-Voosen, 1993). These recombination procedures however, do not lead to explo-
ration of the search space in the neighbourhood of the parents, since the allele value for
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genei is equal to the allele value of one of the parents,i.e.hi ∈ {c
1
i , c

2
i }. In literature a

wide range of recombination procedures is available where the allele values of the off-
spring lies between or within a certain distance from those of the parents. An extensive
literature review is given by Rademaker (2004). Below only the two recombination
procedures applied in this dissertation are described.

In arithmetic recombination (Michalewicz, 1996) the genotypes of the children
H1 = (h1

1, . . . , h
1
nbit

) andH2 = (h2
1, . . . , h

2
nbit

), are obtained by

h1
i = λc1

i + (1− λ)c2
i , (4.15)

h2
i = (1− λ)c1

i + λc2
i . (4.16)

The parameterλ can be constant (uniform arithmetic recombination) or change as a
function of the generation of the genetic algorithm (non-uniform arithmetic recombi-
nation).

Heuristic crossover, introduced by Wright (1991), is a unique crossover since it
uses values of the objective function in determining the direction of the search and it
produces only one offspring. The operator generates the genotype of a single offspring
H1 = (h1

1, . . . , h
1
nbit

) according to the following rule

h1
i = c1

i + r(c1
i − c2

i ) , (4.17)

with C1 the genotype of the best performing parent andr a random value from [0,1].

4.5.2 Mutation

The most common mutation operator used in binary encodings,bit flip mutation (Gold-
berg, 1989), is illustrated in the introductory example. Itconsiders each gene separately
and allows each bit to change with a probabilityPm, called the mutation probability.
In its real counterpart, uniform mutation (Michalewicz, 1996), allele valueshi of the
offspring are uniformly drawn from the interval[cmin,i, cmax,i]. Each allele value is
replaced by a random value with a probabilityPm.

Real-coded genetic algorithms also commonly apply non-uniform mutation
with a fixed distribution (Eiben and Smith, 2003). This operator adds to the allele
of all genes of a parent chromosome a value sampled from a distribution that is sym-
metric about zero, and is more likely to generate small changes that large ones. The
distribution is for instance normal with mean zero and a user-specified standard devi-
ation. If necessary, the obtained allelehi of the offspring is curtailed to the interval
[cmin,i, cmax,i]. It is normal practice to apply this operator with probability one per
gene, and use the parameterPm as standard deviation of the distribution instead.

4.6 Replacement procedure

Replacement can be regarded as the complementary operator to parent selection. It
determines which individuals among the current populationand the offspring will be
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included in the next generation. The simple genetic algorithm presented in the introduc-
tory example applies the most common replacement procedure, generational replace-
ment, in which the entire population is replaced by the offspring. A steady-state GA
operates on overlapping populations in which only a subset of the current population is
replaced in each generation. In fitness-based replacement the individuals of the current
generation and the offspring compete for a place in the next generation using one of the
procedures mentioned earlier when discussing parent selection (Section 4.4). Finally,
elitism can be applied in conjunction with any of the replacement procedures above in
order to prevent the loss of the current fittest member of the population. Elitism is for
instance obtained if the worst offspring is discarded and replaced by the best individual
of the current population.

4.7 Parameter setting

Apart from choosing a representation of the candidate solutions, a parent selection
procedure, variation operators and a replacement procedure, one also has to set the
values of the various parameters: the population size, the crossover probabilityPc and
the mutation probabilityPm. Furthermore a stopping criterion needs to be defined.

The values of the population size, the crossover probability Pc and the muta-
tion probabilityPm greatly determine whether the algorithm will find an optimalor
near-optimal solution, and whether it will find such a solution efficiently (Eiben and
Smith, 2003). If the population size is for instance too small, the genetic algorithm
may converge to a local minimum because the diversity in the population is too low.
On the other hand, if the population size is too large, the genetic algorithm may waste
computational resources, which means that the waiting timefor an improvement is too
long. The crossover probabilityPc is also a very important parameter and its influence
on the results is similar to that of the population size. A higher crossover probability
allows more exploration in the search space and reduces the chances of converging to
a local minimum. On the other hand, a crossover probability which is too high, results
in wastage of computation time in exploring unpromising regions of the search space.
The mutation probabilityPm on its turn controls the rate at which new genes are intro-
duced into the population. If the mutation probability is too low, many genes that might
be useful are never tried out. On the other hand, if the mutation probability is too high,
there will be much random perturbation and the offspring will lose their resemblance
to the parents. This means that the genetic algorithm will lose its ability to learn from
the history of the search (Osyczka, 2002).

Unfortunately, even though genetic algorithms have quite along history, few
heuristics are available for determining the values of the parameters of genetic algo-
rithms (Michalewicz, 1996). Several researchers (De Jong (1975), Grefenstette (1986)
and Schaffer et al. (1989) in Michalewicz and Fogel (2000)) found parameters values
that were good for a number of test problems, but as their recommendations are based
solely on experimental evidence, their generalizability is limited. At the time when that
research was carried out, genetic algorithms used to be seenas robust problem solvers
that exhibit approximately the same performance over a widerange of problems (Gold-

61



Chapter 4. Genetic algorithms

berg, 1989, p. 6). The contemporary view on evolutionary algorithms, however, ac-
knowledges that specific problems require specific evolutionary algorithm setups for
satisfactory performance (Bäck et al. (1997) in Eiben and Smith (2003)). Thus, the
scope of ‘optimal’ parameter settings is necessarily narrow. There are also theoretical
arguments that any quest for generally good evolutionary algorithms, thus generally
good parameter settings, is lost a priori (Wolpert and Macready, 1997). For real-world
applications the parameter values are mostly sought through trial and error (Osyczka,
2002), a hard task which is considered more ‘an art than a science’ (Michalewicz,
1996). In most genetic algorithm applications, the population size stays between 50
and 100, the probability of crossover between 0.65 and 1.00 and the probability of
mutation between 0.001 and 0.01.

Eiben and Smith (2003) remark that as the search carried out by an evolution-
ary algorithm is a dynamic, adaptive process, different values of parameters might be
optimal at different stages of the evolutionary process. For instance, large mutation
steps can be good in the early generations, helping the exploration of the search space,
and small mutation steps might be needed in the late generation to help fine-tune the
suboptimal chromosomes. Therefore, they argue that the fact that the values of the
parameters of the genetic algorithm remain fixed during the whole search process, can
itself be a cause of inferior algorithm performance. An overview of procedures to adapt
the parameters of genetic algorithms during the evolutionary process is given in the
textbooks by Michalewicz (1996, Section 4.4, dealing with the population size only),
Michalewicz and Fogel (2000, Section 10.4) and Eiben and Smith (2003, Chapter 8).

Stopping at a predefined number of generations or function evaluations is a quite
common stopping criteria and has the advantage that one knows how long it will take
to achieve a solution. The genetic algorithm can also stop searching when there is
no significant improvement of the fitness of the population. The search can either be
terminated if the number of converged chromosomes in the population is greater than
some predefined percentage of the population or if the improvement in the average or
best fitness in the lastt∗ generations is smaller than an preset value (Osyczka, 2002).

A fifth but implicit parameter that can largely influence the behaviour of a ge-
netic algorithm is the initial seed for the random population (Osyczka, 2002). Run-
ning any genetic algorithm with a different random startingseed might produce very
different results and this should be kept in mind when makingcomparisons between
algorithms. For real-world applications this means that repetitions of experiments are
needed in order to remove the random effect.
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CHAPTER 5

Fuzzy ordered classification

Knowledge is indivisible. When people grow wise in one di-
rection, they are sure to make it easier for themselves to grow
wise in other directions as well. On the other hand, when
they split up knowledge, concentrate on their own field, and
scorn and ignore other fields, they grow less wise — even in
their own field.
(The Roving Mind, Isaac Asimov, 1983)

5.1 Introduction

According to European Union (EU) standards and objectives,ecological water quality
in EU Member States is still far from satisfactory, both in terms of nutrient management
and habitat degradation (Chave, 2001). Within the last decade, the industrial pollution
load has significantly decreased, but household and agricultural pollution still causes a
high load of organic substances and nutrients (Hering et al., 2004). New requirements
at the EU level, mainly covered by the Water Framework Directive (EU, 2000) in which
Member States are hold to reach good ecological quality for their surface waters by
2015 (Chave, 2001), urge the Member States to extend their assessment methodologies
to implement the desired river management. A methodology ofinterest in this context
is the modelling of habitat suitability. Habitat suitability models describe which abi-
otic conditions are appropriate for a certain taxon or species to establish a population
(Guisan and Zimmerman, 2000).

Ecological models that are meant to be used in river management can differ in
biological endpoint. The choice of the endpoint can depend on the conservation value
of a specific group of organisms as well as on the functionality as a biological indicator
of river conditions. The biological endpoints for rivers asset by the Water Framework
Directive (EU, 2000) include phytoplankton, phytobenthosand macrophytes, macroin-
vertebrates and fish. In this study benthic macroinvertebrates are considered. Benthic
macroinvertebrates are invertebrate organisms that inhabit mainly bottom substrates of
freshwater habitats (Rosenberg and Resh, 1993). The term ‘macro’ assumes that they
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are large enough to be seen without magnification and that they are retained in a net
with mesh size of 500µm. Macroinvertebrate communities are made up of species that
constitute a broad range of trophic levels and pollution tolerances. Furthermore, they
show limited migration patterns and are therefore well suited for assessing site-specific
impacts, they are abundant in most streams and they are easily sampled. Because of
their central role in aquatic ecosystems, macroinvertebrates are widely used as indica-
tors for assessing the quality of freshwater (De Pauw and Vanhooren, 1983; Wieder-
holm, 1980; Sĺadecek et al., 1982; Metcalfe, 1989; Rosenberg and Resh, 1993).

The development of habitat suitability models is not an easytask. When devel-
oping ecological models to support decisions in river management, one should compro-
mise between the policy relevance of the variables, the ecological processes incorpo-
rated in the model and the accuracy of the model. Furthermore, the available knowledge
is usually only verbally described, with terminology and meaning differing from source
to source. On the other hand, data available are not only scarce, but insufficiently rep-
resentative for all river conditions, and can therefore play at most a role in model opti-
mization, but not in model identification (Casillas et al., 2003a,b). Taking into account
these limitations and the ultimate use of these models in decision support, requiring
understandability to the end user (Ehrlich and Daily, 1993;Ludwig et al., 1993; Par-
sons and Norris, 1996; Omlin and Reichert, 1999; Elith et al., 2002; Holling and Allen,
2002; Regan et al., 2002; Borsuk, 2003; Poff and Allan, 1995), it was opted for linguis-
tic fuzzy models and a knowledge-based design approach, described in this chapter,
followed by an interpretability-preserving data-driven optimization of the membership
functions, discussed in Chapter 6.

The models developed in this study describe the habitat suitability for macroin-
vertebrates in springs up to small rivers in the eco-region of the Central and Western
Plains of Europe (Illies, 1978). As will be explained further on, this modelling prob-
lem asks for a model that gives a shaded indication of a certain river site’s suitability
as habitat for a certain macroinvertebrate species. Therefore, fuzzy classifiers were ap-
plied, instead of classical models with crisp outputs or crisp classifiers. A more detailed
description of the habitat suitability models, built usingexpert knowledge described in
literature, is given in Section 5.2. In Section 5.3, the datacollected in the Province of
Overijssel in the Netherlands (Verdonschot, 1990) on whichthe models were evalu-
ated, referred to in this work as the EKOO data set, are discussed. The measures used
to evaluate the models, percentage of correctly classified instances (% CCI) and the
percentage of correctly fuzzy classified instances (% CFCI)as well as the results of
the model evaluation are presented in Section 5.4. The chapter concludes with some
remarks on the use of knowledge-based model identification and fuzzy modelling for
habitat suitability modelling in Section 5.5.
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5.2 Habitat suitability models

5.2.1 Knowledge base

The knowledge base, used during the model design process, isdescribed in detail in
Adriaenssens (2004). It summarizes observations of several ecological studies (Mauch,
1976; Moller Pillot and Buskens, 1990; Verdonschot, 1990; Usseglio-Polatera, 1994;
De Loose et al., 1995; Bayerisches Landesamt für Wasserwirtschaft, 1996; RIZA,
2000; Verdonschot, 2000a,b; Tachet et al., 2000) regardingunivariate preferences as
well as tolerances of 86 macroinvertebrate species for a limited set of environmental
variables. In Appendix A the names of the 86 macroinvertebrate species are listed.
Among them, 30 species are regarded as characteristic for the reference conditions of
the river types included in this study (high ecological quality; based on (Verdonschot,
2000a,b)) and will be referred to as indicator species. The other 56 species are so-called
common species, observed at river sites of diverse ecological quality. The information
in the knowledge base applies to springs up to small rivers within the limnological
eco-regions Central and Western Plains of Europe as defined by Illies (1978). The eco-
logical variables addressed in the knowledge base are: river dimension (stream width),
stream velocity, saprobic conditions, habitatsensu strictoand habitat diversity.

5.2.2 Input and output variables

As discussed in detail by Adriaenssens (2004), the selectedinput variables should be
of high ecological importance to the macroinvertebrate species under study as well as
to the whole macroinvertebrate community and should be of importance to river man-
agement. Furthermore, knowledge about their preferences for certain environmental
conditions needs to be available and the variables need to beincluded in the EKOO
data set. Physical variables do provide effective assessment criteria when rivers are not
affected by physical-chemical degradation (Karr et al., 1986). However, in the Central
and Western Plains of Europe, the main threats for biological communities in rivers
are the deteriorated physical-chemical water quality conditions. This is mainly due
to increased nutrient and organic loading mainly caused by agricultural activities and
pollution originating from households.

Therefore, apart from stream width and stream velocity, twovariables determin-
ing the river type and reflecting the water quantity conditions, an additional input vari-
able is used, expressing the physical-chemical conditionsat a river site. The knowledge
base contains preferences and tolerances for the saprobic status at a river site, which
can be represented by the ammonium concentration. During the model design process,
the information in the knowledge base concerning the preferences and tolerances for
the saprobic condition is interpreted in a more general way.For each macroinvertebrate
species, four different models were built: apart from an A-model including the stream
width, stream velocity and ammonium concentration as inputvariables, also an N- and
a P-model were constructed including respectively nitrateand phosphate concentration
(trophic status) and a C-model in which electrical conductivity (ionic status) was se-
lected as third input variable. This allowed us to evaluate to which extent knowledge
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concerning the saprobic status of the water column is also valid for its trophic and ionic
status. The occurrence of some of the 86 considered macroinvertebrate species is in-
dependent of the stream width. In these models stream width is not included and only
two input variables are used.

Due to the different context of the studies described in the eight publications
used as a source of expert knowledge, meanings given to the used linguistic terms are
not identical in all eight publications. However, in all considered studies, a similar
number of linguistic values is assigned to variables as stream width, stream velocity
and nutrient and organic loading and in most cases similar expressions are applied to
refer to the different situations distinguished. The linguistic values assigned to the
variables in the developed models are listed in Table 5.1. The number of linguistic
values distinguished for a certain variable ranges from three to five. All values are de-
fined by membership functions forming a fuzzy partition, as illustrated in Fig. 5.1(a)
for the five linguistic values for ammonium concentration (in order of increasing or-
ganic load):oligosaprobic, β, α-oligosaprobic, β-mesosaprobic, α-mesosaprobic
andpolysaprobic conditions. All membership functions are of the trapezial type, char-
acterized by four parameters (a1, a2, a3, a4): the membership degree linearly increases
from 0 to 1 for values betweena1 anda2, remains constant for values betweena2 and
a3 and linearly decreases from 1 to 0 for values betweena3 and a4. A triangular
membership function is obtained ifa2 is equal toa3. The values of the membership
function parameters of all variables, given in Table 5.1, are based on crisp boundaries
found in literature. The kernel of each of the membership functions is the intersection
of the crisp intervals used in the different literature sources to define the corresponding
linguistic term. As fuzzy partitions were opted for, the supports of the membership
functions are determined by the kernels of the membership functions of the adjacent
linguistic values and the lower and upper bounds of the underlying domain.

A site’s suitability as a habitat for macroinvertebrates cannot be measured di-
rectly. As output variable of the developed habitat suitability models, the abundance of
a macroinvertebrate species at a river site is used. The abundance is a measure for habi-
tat suitability: the higher the abundance of a species, the higher the site’s suitability as
a habitat. Furthermore the EKOO data set contains the numberof sampled individuals
of the 86 species considered at all investigated river sites. In the developed models
four linguistic values were assigned to the variable:absent, low, moderate andhigh.
They are defined by the membership functions shown in Fig. 5.1(b) with the help of
the same experts assigning the membership functions of the input variables. In order
to take into account the non-linear response of macroinvertebrate species to environ-
mental conditions (Statzner et al., 1988), the abundance values were log-transformed.
When comparing abundance values, relative differences rather than absolute differ-
ences should be considered, since the difference between 1 and 2 individuals found
at a river site is more significant than the difference between 101 and 102 recorded
individuals. We also want to stress that these abundance values are not equal to the
exact number of individuals present at a site, but are proportional to the number of
individuals present at a site (see the sampling procedures in Section 5.3).
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Table 5.1: Linguistic values assigned to the input and output variables of the habi-
tat suitability models. The values between brackets characterize the cor-
responding trapezial membership functions.

stream width (m) stream velocity (m/s)
1 spring / small stream (0,0,0,2) 1 low (0,0,0,0.25)
2 upper course stream (0,2,2,4) 2 moderate (0,0.25,0.25,0.5)
3 middle course stream (2,4,4,6) 3 high (0.25,0.5,1.2,1.2)
4 lower course stream / small river (4,6,201,201)

ammonium concentration (mg NH+4 -N/L) nitrate concentration (mg NO-3-N/L)
1 oligosaprobic (0,0,0,0.1) 1 oligotrophic (0,0,0,0.15)
2 β,α-oligosaprobic (0,0.1,0.1,0.15) 2β-mesotrophic (0,0.15,0.15,0.30)
3 β-mesosaprobic (0,0.15,0.15,4.5) 3α-mesotrophic (0.15,0.3,0.3,0.4)
4 α-mesosaprobic (4,5,8,10) 4 eutrophic (0.30,0.4,0.4,0.45)
5 polysaprobic (8,10,30,30) 5 hypertrophic (0.40,0.45,112,112)

phosphate concentration (mg PO3-
4 -P/L) conductivity (µS/cm)

1 oligotrophic (0,0,0,0.0080) 1 oligoionic (0,0,150,250)
2 β-mesotrophic (0,0.0080,0.0080,0.0150) 2β-mesoionic (150,250,450,550)
3 α-mesotrophic (0.0080,0.0150,0.0150,0.0250) 3 mesoionic (450,550,750,850)
4 eutrophic (0.0150,0.0250,0.0250,0.0450) 4α-mesoionic (750,850,1050,1150)
5 hypertrophic (0.0250,0.0450,5.45,5.45) 5 polyionic (1050,1150,2880,2880)

log10(abundance + 1) (-) corresponding abundance (-)
1 absent (0,0,0,0.477121) 1 absent (0,0,0,2)
2 low (0,0.477121,0.477121,0.778151) 2 low (0,2,2,5)
3 moderate (0.477121,0.778151,1.041393, 3 moderate (2,5,10,20)

1.322219)
4 high (1.041393,1.322219,3.602169, 4 high (10,20,4000,4000)

3.602169)

ammonium conc. (mg NH+4 -N/L)

A(x)
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Figure 5.1: Definition of the five linguistic values assignedto ammonium concentration
and the four fuzzy abundance classes through membership functions.
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5.2.3 Rule bases

Based on the knowledge base, rule bases were built describing the preferences of
macroinvertebrates with regard to the environmental variables stream width and stream
velocity in combination with the saprobic status represented by the ammonium con-
centration. The rule bases of the 86 species can be consultedin Appendix B. As the
preferences for habitat structure and habitat diversity are far too complex to be repre-
sented in such a compact way, these variables were not included in the rule bases. The
four linguistic values of stream width, the three linguistic values of stream velocity
and the five linguistic values of the variables describing the nutrient and organic con-
centration, define 60 environmental situations. The following procedure was followed
during the rule base development,i.e. the assignment of a linguistic abundance value to
this 60 environmental situations. First of all, a two-dimensional rule base with stream
width and stream velocity as input variables and abundance as output variable was con-
structed, based on the univariate preferences for stream width and stream velocity. The
development of the three-dimensional rule base was initiated by assigning the corre-
sponding abundance values for the 12 combinations of streamwidth and stream veloc-
ity in the two-dimensional rule base to all situations with an optimal saprobic condition
according to the univariate preference in the knowledge base. In a next step, the rule
base was completed for situations with suboptimal conditions being less saprobic than
the optimal saprobic condition(s). For all combinations ofstream width and stream
velocity, a lower abundance value than the corresponding abundance value in the two-
dimensional rule base was assigned, the difference betweenboth classes being equal
to the difference between the univariate preference for thesaprobic condition under
consideration and the abundance value ‘high’. Note that theabundance value ‘absent’
is the smallest linguistic abundance value and can therefore not be further decreased.
Finally, abundance values were assigned in case of sub-optimal saprobic conditions be-
ing more saprobic than the optimal saprobic conditions. Forlow and moderate stream
velocities, the same procedure was followed as for less saprobic conditions. For fast
running waters the abundance values were lowered less fast as a function of the uni-
variate preference for the saprobic condition, reflecting the lower effect on the water
chemistry and the related lower uptake of toxic substances due to the lower residence
time of organic components in the water.

The rule base development is illustrated by means of the rulebases of the crus-
taceanProasellus meridianusand the molluscStagnicola palustris(Fig. 5.2). The
univariate preference ofProasellus meridianusconcerning the saprobic status of its
habitat varies from low, low, moderate, high and low for oligosaprobic to polysaprobic
conditions (Adriaenssens, 2004). As such, the most optimalcondition for this species is
α-mesosaprobic. In this situation,Proasellus meridianuswill have its optimal distribu-
tion that is completely determined by (stream width and) stream velocity. At the other
saprobic levels, this macroinvertebrate will have a diminished distribution based on its
univariate preference for the saprobic status. For example, in oligosaprobic conditions,
the univariate preference ofProasellus meridianusis low. As such, the resulting abun-
dance level will be two classes lower than the optimal level,and only river sites with
moderate stream velocities will have a low abundance level.The methodology of rule
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Figure 5.2: Rule base of the four models describing the habitat suitability forProasel-
lus meridianusandStagnicola palustris.
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base development is applied in a similar way for higher saprobic levels, although tol-
erance and subsequent abundance are lowered more graduallyfor fast running rivers,
because of the smaller chance of negative effects at high nutrient or organic loading
and high current velocity. This can be seen in the rule base ofStagnicola palustris
(Fig. 5.2(b)) which univariate preference concerning the saprobic status of its habitat
varies from high, high, moderate, low and absent for oligosaprobic to polysaprobic
conditions. At mesosaprobic conditions, for whichStagnicola palustrishas a moderate
univariate preference, lower abundance values are assigned than atβ,α-oligosaprobic
conditions in case of low and moderate stream velocities, whereas equal abundances
are used for high velocities for both saprobic levels. The abundances at high veloci-
ties are however not maintained for all sub-optimal, more saprobic conditions. In the
saprobic level (α-mesosaprobic in case ofStagnicola palustris) preceding a saprobic
level for which the univariate preference of the species is absent (polysaprobic in case
of Stagnicola palustris), the abundances at high velocities are lowered with one class
compared to the abundances assigned in the preceding saprobic condition (mesosapro-
bic in case ofStagnicola palustris).

5.2.4 Fuzzy classifiers

In the A-, N-, P- and C-models of the 86 macroinvertebrate species, including respec-
tively ammonium concentration, nitrate concentration, phosphate concentration and
electrical conductivity as input variables, the same membership functions are used.
The rule bases of the models of the different species differ,but are identical for the four
models of a certain species (Appendix B) as the information in the knowledge base
concerning the preferences and tolerances for the saprobiccondition are interpreted in
a more general way and extended towards trophic and ionic conditions. All constructed
rule bases are complete,i.e.each rule base contains a rule for each combination of lin-
guistic values of them input variables. The 60 rules are of the following type

IF width IS upper course stream

AND velocity IS low

AND nitrate concentration IS eutrophic

THEN abundance IS moderate

The if-part of the rule (the antecedent) describes in which situations the then-part of
the rule (the consequent) holds.

The rule bases show that the abundance of some of the considered macroin-
vertebrate species is independent of the stream width or identical for two consecutive
linguistic values of an input variable. The rule bases, modelling the abundance of these
species, were simplified by removing redundant input variables or redundant linguistic
values, as these would slightly distort the model output.

The occurrence ofProasellus meridianus, for instance, is independent of stream
width, as one can see from the rule base in Fig. 5.2(a). Furthermore, according to the
rules derived from the eight consulted knowledge sources, its abundance is the same
in oligosaprobic (resp. oligotrophic and oligoionic) conditions as inβ,α-oligosaprobic
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Figure 5.3: Membership functions of (a) the original streamwidth values and (b) the
three width values used in the models ofStagnicola palustrisobtained by
combining the third and fourth original linguistic value.

(resp.β-mesotrophic andβ-mesoionic) conditions. If two consecutive linguistic val-
ues of a variable yield the same model output for all combinations of linguistic values
of the other input variables, then the corresponding rules are merged and a new lin-
guistic value is introduced defined as the convex hull of the membership functions
of the original linguistic values. Therefore, in the reduced model the variables am-
monium, nitrate and phosphate concentration and conductivity, take four values in-
stead of five, for ammonium concentration these linguistic values are ‘oligosaprobic
to β,α-oligosaprobic, ‘β-mesosaprobic’, ‘α-mesosaprobic’ and ‘polysaprobic’ condi-
tions. The linguistic value ‘oligosaprobic toβ,α-oligosaprobic’ conditions is defined
as the convex hull of the membership function of ‘oligosaprobic’ conditions and the
membership function of ‘β,α-oligosaprobic’ conditions.

The creation of new linguistic values and their corresponding membership func-
tions is illustrated in Fig. 5.3 for the variable stream width in the models ofStagnicola
palustris (Fig. 5.2(b)). For this species, the same abundance values are assigned to
middle course and lower course streams and small rivers for all combinations of stream
velocity and saprobic (respectively trophic and ionic) status. The two linguistic values
‘middle course stream’ and ‘lower course stream / small river’ were therefore replaced
by one linguistic value ‘middle course stream to small river’ defined by the convex hull
of the fuzzy sets describing the two original linguistic values.

As a result of the reduction of input variables and linguistic values, the number
of rules in the rule base decreases. The rule base of the resulting, fully reduced model
for Proasellus meridianusis shown in Fig. 5.4. This model reduction procedure is
carried out for the models of all 86 species, resulting in models with different numbers
of input variables, membership functions and number of rules.

Given the available qualitative expert knowledge and uncertainty in the defini-
tions of the used linguistic expressions, linguistic fuzzymodels are the most appropri-
ate model types for the modelling problem. Given crisp inputvaluesxw, xv andxa for
the three input variables width, velocity and for instance ammonium concentration in
case of an A-model, the fuzzy model output is obtained by the following procedure. In
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Figure 5.4: Reduced rule base of the four models describing the habitat suitability for
Proasellus meridianus.

a first step, the membership degrees of the input values to thelinguistic values of the
input variables are determined. The membership degrees ofxw = 2.4 m,xv = 0.25 m/s
andxa = 4.7 NH+

4 -N mg/l to the linguistic values in the antecedents of the rules of the
A-model ofGammarus pulex(model index = 42) are

width: spring/small stream to upper course streamAwidth,1(xw) = 0.8,
middle course stream Awidth,2(xw) = 0.2,
lower course stream/small river Awidth,3(xw) = 0,

velocity: low Avelocity,1(xv) = 0,
moderate Avelocity,2(xv) = 1,
high Avelocity,3(xv) = 0,

ammonium conc.: oligosaprobic Aammon,1(xa) = 0,
β,α-oligosaprobic toβ-mesosaprobic Aammon,2(xa) = 0.3,
α-mesosaprobic Aammon,3(xa) = 0.7 and
polysaprobic Aammon,4(xa) = 0.

Next, the degree of fulfilment is calculated for each rule as the minimum of the fulfil-
ment degrees in its antecedent. For the example above, the following four rules have a
non-zero fulfilment degree

IF w = Awidth,1 AND v = Avelocity,2 AND a = Aammon,2 THEN abundance = moderate
(0.3 =min(0.8,1,0.3))

IF w = Awidth,1 AND v = Avelocity,2 AND a = Aammon,3 THEN abundance = absent
(0.7 =min(0.8,1,0.7))

IF w = Awidth,2 AND v = Avelocity,2 AND a = Aammon,2 THEN abundance = low
(0.2 =min(0.2,1,0.3))

IF w = Awidth,2 AND v = Avelocity,2 AND a = Aammon,3 THEN abundance = absent
(0.2 =min(0.2,1,0.7))

Finally, to each linguistic output value a fulfilment degreeis assigned given by

74



Chapter 5. Fuzzy ordered classification

the maximum fulfilment degree obtained for all rules containing the linguistic output
value under consideration in their consequent. In the givenexample the following
fulfilment degrees are obtained: 0.7 for absent, 0.2 for low,0.3 for moderate and 0 for
high.

Up to this point, the procedure is the same as the one applied in Mamdani–
Assilian models (see Section 2.3.2). In Mamdani–Assilian models the procedure con-
tinues by adapting the membership functions of the output variable according to the
corresponding fulfilment degree, constructing the union ofall adapted membership
functions and deriving the model output, a crisp value, by defuzzifying this union, for
instance, by computing its center of gravity. It is, however, not the purpose of a habi-
tat suitability model to predict a precise numerical value for the occurrence of a given
species. No ecologist is interested in or would even trust a model stating an occurrence
of, e.g.37 individuals. It is rather the magnitude of the abundance which is of interest.
Therefore, a different kind of fuzzy model was applied: a fuzzy classifier. The model
output of the developed models is fuzzy. The model outputymodel is a set of four
values between zero and one and summing up to one, [(absent, A1(ymodel)), (low,
A2(ymodel)), (moderate, A3(ymodel)), (high, A4(ymodel))], expressing the degree to
which the considered river site is respectively regarded not (abundance value ‘absent’),
lowly, moderately or highly suitable as a habitat for the species. The output is obtained
by normalizing the fulfilment degrees of the abundance (output) classes, which results
in ymodel = [7/12,1/6,1/4,0] for the numerical example. Note that theabundance val-
ues included in the validation data set are crisp values (integers). When comparing the
fuzzy model outputs with the information in the validation data set, the membership
degrees of the crisp abundance values to the four linguisticabundance values are used
(Table 5.1).

5.3 EKOO data set

5.3.1 Data collection

The data used in this study to evaluate and optimize the habitat suitability models were
collected in running waters in the Province of Overijssel inthe Netherlands. They are
part of a larger data set described by Verdonschot (1990), which apart from the 445
data points collected along running waters and used in this study, also includes data
collected in pools and lakes, canals and large standing waters.

The sampling dates were spread over the four seasons as well as over several
years (from 1981 to 1985). The objective was to capture the majority of species present
at a given site, and assess their relative abundances. At each site, 70 abiotic variables
were measured, as stream width, depth, temperature, transparency of the water column,
bank shape, substratum, dissolved oxygen concentration, pH, nitrate concentration and
phosphate concentration, and samples were taken of the major habitats, the water body
and the bottom habitat to collect macroinvertebrates. In shallow sites, habitats with
vegetation were sampled by sweeping a hand net (20× 30 cm, mesh size 500µm)
several times over a length of 0.5 to 1 m through each vegetation type. Bottom habitats
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were sampled by vigorously pushing the hand net through the upper few centimeters
of each type of substratum over a length of 0.5 to 1 m. All habitat samples collected at
a site were combined in a single sample with a standard area of1.5 m2 (1.2 m2 of veg-
etation and 0.3 m2 of bottom). At sites lacking vegetation, the standard sampling was
confined to the bottom habitats. In deeper sites, five samplesfrom the bottom habitats
were taken with an Ekman-Birge sampler. These five grab-samples were equivalent to
one hand net bottom sample. Habitats with vegetation were sampled with a hand net as
described above. Again the total sampling area was standardized to 1.5 m2. Macroin-
vertebrate samples were taken to the laboratory, sorted by eye, counted and identified
to species level, except for chironomids.

In this work the term ‘EKOO data set’ (Ecologische Karakterisering van Opper-
vlaktewateren in Overijssel,ecological characterisation of surface waters in Overijs-
sel) does not refer to the complete data set described by Verdonschot (1990), but only
to those data used in this study: the values of the six abioticvariables, stream width,
stream velocity, ammonium concentration, nitrate concentration, phosphate concen-
tration and electrical conductivity, and the number of sampled individuals of the 86
macroinvertebrate species listed in Appendix A at 445 sitesalong running waters.

5.3.2 Data distribution over input and output space

When applying a model to data, one should examine the data set in order to be able to
interpret the scores obtained by performance measures (Fielding and Bell, 1997; Boone
and Krohn, 1999; Cowley et al., 2000; Manel et al., 2001). Whena data set contains
examples of all situations covered by the model, the whole model will be assessed. If,
however, some if-then rules in the rule base of a model apply to none of the examples
in the data set, one cannot draw any conclusion about the correctness of these rules.
Therefore, the distribution of the validation data set overthe input and output space has
to be taken into account.

As a measure for the uniformity of this distribution, the Shannon entropy mea-
sure was used (Shannon and Weaver, 1963). The fuzzy sets wereconverted into crisp
ones to calculate this measure. The boundaries of these crisp sets are the points having
membership degree 0.5 to the corresponding adjacent fuzzy sets. The entropy is given
by (convention0 · log2 0 = 0)

entropy= −
1

log2 n

n∑

i=1

pi · log2 pi , (5.1)

wheren is the number of classes,N is the number of data points andpi is the proportion
of data points belonging to classi. The entropy is 1 for a uniform distribution and 0 if
all data points are assigned to the same abundance class as isthe case forOdontomesa
fulva. Note that entropy is a non-linear concept. In Table 5.2 entropy values for some
species are given. When a distribution is highly non-uniform, as forAgabus affinis, the
shift of 1 data point from the most frequent class to a less frequent class results in an
entropy increase of at least 0.009. Given a more uniform initial distribution, a larger
shift towards a more uniform distribution, gives a smaller entropy increase, for instance
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Table 5.2: Distributions of data points over four crisp abundance classes and the corre-
sponding entropy.

number of data points classified as
Species absent low moderate high entropy
Odontomesa fulva 445 0 0 0 0.000
Agabus affinis 444 1 0 0 0.012
Elmis aenea 443 2 0 0 0.021
Plectronemia conspersa 399 15 15 16 0.322
Proasellus meridianus 247 78 80 40 0.835
Erpobdella octoculata 237 106 64 38 0.841

an entropy increase with 0.006 forErpobdella octoculatacompared to the entropy for
Proasellus meridianus.

The EKOO data set is characterized by a highly non-uniform distribution of the
data points in the input space. As the same input values and the same membership func-
tions are used in respectively all A-, N-, P- and C-models, the distribution of the input
values over the different regions of the input space is the same for all models of a given
type. By replacing the fuzzy sets describing the linguisticvalues of the input variables
by crisp sets, each data point can be assigned to one environmental condition. The
crisp sets are bounded by the points having membership degree 0.5 to the correspond-
ing fuzzy sets. The distribution of the data points over the 60 ‘crisp’ environmental
conditions considered by the habitat suitability models isgiven in Fig. 5.5 for the four
model types. This table gives an indication of the usefulness of the data set for the
validation of the developed habitat suitability models over a range of environmental
conditions that can be found in the Province of Overijssel.

When only considering ‘stream width’, the distribution of the sites is relatively
balanced over the four linguistic values used in the habitatsuitability models. For
‘stream velocity’, fast running streams are underrepresented in the data set. For the
saprobic status characterised by the ammonium concentration (A-model), most sites
are classified into theβ-mesosaprobic class, although other saprobic classes are also
present at the sampling sites. For nitrate and phosphate concentration (N- and P-
models), dominance of polytrophic conditions is obvious. When focussing on con-
ductivity (C-model), most of the sites are atβ-mesoionic conditions.

The sampling sites included in the EKOO data set were chosen in such a way
that a rather uniform geographical distribution was obtained, while trying to include
a similar number of examples of the different environmentalconditions present in the
region. In other words, during the selection of the samplingsites, a maximal input
entropy was strived for. However, due to the fact that the exact conditions at the sites
are unknown before the sampling, that some environmental conditions described by
the model are underrepresented in the considered region dueto human impact (e.g.ref-
erence conditions) and that the four model types include different input variables, no
perfectly uniform distribution among the 60 environmentalsituations described by the
models is obtained. As shown in Table 5.3, input entropies ranging between 0.63 and
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Figure 5.5: Distribution of the sites included in the EKOO data set over the 60 envi-
ronmental situations considered in the habitat suitability models. The lin-
guistic values assigned to the variables ‘ammonium concentration’, ‘nitrate
concentration’, ‘phosphate concentration’ and ‘electrical conductivity’ cor-
responding to the numbers 1 to 5 are given in Table 5.1.

Table 5.3: Entropy of the distribution of the data points of the EKOO data set over the
input space over the crisp classes derived from the fuzzy sets of the non-
simplified A-, N-, P- and C-models.

A-model N-model P-model C-model
0.6311 0.6622 0.7189 0.7044

0.72 were obtained for the four model types. As the sampling sites were selected with
great care, distributions with entropy values larger than or equal to the ones obtained
for the distributions of the data points over the input spacewill be regarded as suffi-
ciently uniform to allow for an objective validation. Therefore an entropy threshold of
0.7 was adopted in this study to distinguish not-sufficiently uniform from sufficiently
uniform distributions.

In Fig. 5.6, the entropy of the distribution of the data points over the crisp abun-
dance values as well as the mean presence of the species at thesampling sites is plotted.
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Figure 5.6: Entropy of the distribution of the abundance values in the EKOO data set
over the four crisp abundance classes, as well as the mean presence for the
86 species. The names corresponding to the model index in thehorizontal
axis are given in Appendix A.

Mean presence,i.e. the relative number of data points with a non-zero abundance, is
expressed on a scale from 0 to 1, the extreme values indicating respectively ‘absent
from all sites’ (0) and ‘present at all sites’ (1). This meansthat for N data points,
presence can be formulated as follows

presence=
1

N

N∑

i=1

min(abundancei, 1) , (5.2)

where abundancei is the number of individuals collected at sitei. As shown by the low
abundance entropy values in Fig. 5.6 the observed abundances of the species are dis-
tributed in a highly non-uniform way over the different abundance classes. Moreover,
the indicator species considered are absent from a large number of sites, as indicated
by their low presence value. The entropy and presence valuesfor the majority of the
indicator species indicate that the correctness of the models was hardly tested for sites
at which the species occur quite abundantly. On the other hand, for a significant part of
the non-indicator species a more uniform distribution overthe four abundance values
is recorded. Moreover, these species are observed at more sites in comparison to the
indicator species, making a more relevant evaluation of these models possible.

Only the models of the 12 species for which the abundance entropy, i.e. the en-
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Table 5.4: Distributions of 445 abundances over four abundances classes for the 12
species, for which an abundance entropy larger than 0.7 was obtained.

model number of data points classified as
index species name absent low moderate high entropy
25 Physa fontinalis 279 67 47 52 0.77
36 Anisus vortex 226 53 61 105 0.87
37 Asellus aquaticus 139 49 66 191 0.90
40 Erpobdella octoculata 237 106 64 38 0.84
42 Gammarus pulex 259 53 43 90 0.81
45 Glossiphonia heteroclita 282 85 56 22 0.73
51 Helobdella stagnalis 194 108 82 61 0.93
66 Planorbis planorbis 283 62 52 48 0.76
68 Proasellus meridianus 247 78 80 40 0.83
69 Radix peregra 187 101 82 75 0.95
75 Sigara striata 259 84 60 42 0.81
77 Valvata piscinalis 263 82 56 44 0.80

tropy of the distribution of the abundances over the four abundance classes, is larger
than 0.7 were considered to be evaluated in an objective way by the EKOO data set:
one indicator species and 11 non-indicator species. The selected species are:Physa
fontinalis, Anisus vortex, Asellus aquaticus, Erpobdella octoculata, Gammarus pulex,
Glossiphonia heteroclita, Helobdella stagnalis, Planorbis planorbis, Proasellus merid-
ianus, Radix peregra, Sigara striataandValvate piscinalis. For these 12 species, the
distributions of the abundance values over the four abundance classes are given in Ta-
ble 5.4. Moreover in Fig. 5.7 for one of the 12 selected species, namely forProasellus
meridianus, the distribution of the data belonging to the four crisp abundance classes
over the input space of the corresponding A-model is given. The reduced habitat suit-
ability models forProasellus meridianushave only two input variables, stream velocity
and ammonium concentration in case of the A-model, and the number of linguistic val-
ues assigned to ammonium concentration is reduced from five to four, as mentioned
earlier when discussing the reduced rule base forProasellus meridianusin Fig. 5.4.
Thus, the 0.5-cuts of the membership functions defining the three velocity values and
the four ammonium concentration values divide the 2-dimensional input space in 12
parts. Fig. 5.7 clearly illustrates that the data belongingto the crisp abundance class
absence, coloured in black, largely outnumber the data belonging to the three other
abundance classes and that data holding similar values for the considered environmen-
tal variables show highly variable registered abundances.Therefore, the EKOO data set
cannot be expected to reveal an unambiguous relationship between the selected abiotic
variables and macroinvertebrate abundance.
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Figure 5.7: Data points in the different parts of the input space defined by the 0.5-
cuts of the membership functions of velocity and ammonium concentra-
tion. The points are coloured according to the crisp (see Eq.(5.5) for the
defuzzification procedure) abundance classes to which the measured abun-
dance ofProasellus meridianusbelongs.
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5.4 Model evaluation

5.4.1 Performance measures

In order to compare the output obtained with the fuzzy ordered classifiers to the infor-
mation in the EKOO data set, model and reference output should have the same format.
In this study the membership degrees of the crisp abundance values in the data set to
the linguistic abundance values, defined by membership functions shown in Fig. 5.1(b),
are used as reference output. Two measures were used to evaluate the performance of
the models: the percentage of correctly fuzzy classified instances (% CFCI) and the
percentage of correctly classified instances (% CCI).

In ecology, % CCI is frequently used to compare the performance of species
distribution models (Manel et al., 2001). Note that the calculation of % CCI, a perfor-
mance measure for crisp classifiers, requires the defuzzification of the output of a fuzzy
classifier,i.e. the output of the fuzzy classifier has to be turned into a crispcounterpart.
In this study the fuzzy classifiers are defuzzified by assigning an objecty to the small-
est linguistic output value for which the maximum membership degree was obtained.
As fuzzy classifiers are dealt with, a new performance measure, inspired by the % CCI
and similar to the measure presented by Bodenhofer and Klement (2001), was defined:
the percentage of correctly fuzzy classified instances (% CFCI). ForN data points and
a classification inton fuzzy classes, the % CFCI and % CCI are calculated as follows

% CFCI=
100

N

N∑

j=1

(

1−
1

2

n∑

i=1

| Ai(ydata,j)−Ai(ymodel,j) |

)

, (5.3)

% CCI =
100

N

N∑

j=1

(

1−
1

2

n∑

i=1

| Acrisp,i(ydata,j)−Acrisp,i(ymodel,j) |

)

, (5.4)

with

Acrisp,i(y) =

{

1 , if i = min{k | Ak(y) =
n

max
l=1

Al(y)},

0 , otherwise.
(5.5)

whereAi(ydata,j) is the membership degree of thejth output to theith linguistic output
value andAi(ymodel,j) is the membership degree to theith linguistic output value
obtained as model output for thejth input of the data set.

The two performance measures % CFCI and % CCI are illustratedby classifi-
cation examples in Table 5.5. In case of a crisp classification, as in example 1, the two
performance measures coincide. If an instance is classifiedin the correct class, it has
a contribution of 100 to the global percentage of correctly (fuzzy) classified instances.
If an instance is classified in a wrong class it has a contribution of zero to the global
percentage of correctly (fuzzy) classified instances. Examples 2 to 4 in Table 5.5 are
examples of fuzzy classifications, where the output is a set of degrees between 0 and
1 summing up to one. As long as there are classes to which both model output and
reference output have a non-zero membership degree, the corresponding data point has
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Table 5.5: Percentage of correctly classified instances (% CCI) and percentage of cor-
rectly fuzzy classified instances (% CFCI) for a crisp and three fuzzy classi-
fication examples given the measured outputydataand the modelled output
ymodel.

ydata ymodel
A1 A2 A3 A4 A1 A2 A3 A4 % CCI % CFCI

1 0 1 0 0 0 0 1 0 0 0
2 0 0.2 0.8 0 0.8 0.2 0 0 0 20
3 0 0.2 0.8 0 0 0.4 0.6 0 100 80
4 0 0.2 0.8 0 0 0.2 0.8 0 100 100

0 20 40 60 80 100
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80

100

% CFCI

%
 C

C
I

Figure 5.8: Comparison of the two performance measures % CCIand % CFCI for the
344 models (4 models for 86 species) validated on the EKOO data set.

a positive contribution to the global percentage of correctly fuzzy classified instances.
Only if there exists no class to which both model output and reference output have a
non-zero membership degree, the corresponding data point has a contribution of zero
to the global percentage of correctly fuzzy classified instances. When determining the
% CCI for fuzzy classifications, both reference and model output are first converted
into crisp classifications and the % CCI is derived from thosecrisp classifications.

Similar values are obtained for % CCI as for its fuzzy alternative % CFCI, when
evaluating the 344 models on the EKOO data set (Fig. 5.8). Both % CFCI and % CCI
values obtained in this study can therefore be used for direct comparison with % CCI
values found in literature for other applications. As the models designed in this study
are fuzzy models, only the measure % CFCI was considered further in this study.
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Figure 5.9: Percentage correctly fuzzy classified instances for the A-model (�), N-
model (5), P-model (4) and C-model (©) for the 86 macroinvertebrate
species. The names corresponding to the model index in the horizontal
axis are given in Appendix A.

5.4.2 Results

The performances of the four models are given in Fig. 5.9. TheN- and P-models have
a relative high % CFCI (> 50%) for most of the macroinvertebrate species in contrast
to the A- and C-models, which have a low to moderate performance for a significant
number of species. The obtained performances (% CFCI) should, however, be inter-
preted in the light of the EKOO data set on which the models were evaluated. Only the
models of the 12 species listed in Table 5.4, with an abundance entropy larger than 0.7,
were considered to be evaluated in an objective way by the EKOO data set. Among
these 12 species, only one is an indicator species. One should therefore not conclude
from the relatively high model performances obtained for most of the indicator species
(Fig. 5.9) that these models really resemble the situation on the field to such a large
extent.

When comparing the performances (% CFCI) of the four model types for the
12 selected species by means of box-whisker plots (Fig. 5.10), one can see that in
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Figure 5.10: Box-whisker plots of the % CFCI obtained for thefour model types for
the 12 species for which a validation by the EKOO data set was consid-
ered objective. The box stretches from the 25th percentile to the 75th

percentile. The median is shown as a line across the box. Any individual
observation that is more than 1.5× interquartile range from the box is
identified separately with a horizontal line. The whiskers extend to the
maximal and minimal observations that are not potential outliers.

general, the A- and C-models perform worse than the N- and P-models, even though
the latter models still have some extremely low performancevalues for some species.
This difference in performance over the different model types is due to the high number
of sites having high N- and P-concentrations combined with arather low presence.

In Table 5.6 those models are listed which have a good performance (% CFCI
> 50) and which are evaluated in an objective way as the corresponding abundance
entropy,i.e. the entropy of the distribution of the abundance values overthe four abun-
dances classes, was larger than 0.7. Note that for those species, for which an abun-
dance entropy larger than 0.7 was obtained, a presence larger than 25% was recorded.
Some species with a presence larger than 25%, however, have an abundance entropy
smaller than 0.7. The corresponding species belong to the taxonomic groups Mollusca
(Physa fontinalis, Anisus vortex, Planorbis planorbis, Valvata piscinalis), Hirudinea
(Erpobdella octoculata, Glossiphonia heteroclita), Crustacea (Gammarus pulex) and
Hemiptera (Sigara striata), none of them, except forPhysa fontinalis, being character-
istic for reference conditions. Most of these species are widely distributed ubiquitous
species found in eutrophied very slow flowing and stagnant water bodies. The optimal
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Table 5.6: Models selected based on a % CFCI larger than 50 andan abundance entropy
larger than 0.7.

model model
index species name type % CFCI presence entropy

25 Physa fontinalis
N 61

0.37 0.77
P 58

36 Anisus vortex N 53 0.49 0.87

40 Erpobdella octoculata
N 57

0.47 0.84P 53
C 56

42 Gammarus pulex
N 54

0.42 0.81
P 54

45 Glossiphonia heteroclita
N 66

0.37 0.73
P 60

66 Planorbis planorbis
N 63

0.36 0.76
P 56

75 Sigara striata
N 52

0.42 0.81
P 57

77 Valvata piscinalis
N 59

0.41 0.80
P 58

environmental conditions for these species are quite different, as shown by the cor-
responding rule bases in Appendix B. This means that the selection results from an
objective evaluation of the respective habitat suitability models. These 16 good per-
forming and objectively evaluated models are all, except one model, N- or P-models.

Model performance comparison with other macroinvertebrate habitat suitability
models remains difficult because most of the models developed have different output
variables, for example a presence/absence proportion or a bio-assessment index such
as the prediction of river health in (Walley and Dzeroski, 1995). Few studies even
use validation measures (Rykiel, 1996; Fielding and Bell, 1997; Manel et al., 2001).
However, due to the high correlation of the model performance measures % CFCI and
% CCI in this study (Fig. 5.8), the obtained results can be compared with % CCI ex-
pressed results from more common presence-absence habitatsuitability models. Habi-
tat suitability models based on an Artificial Neural Networkmodel structure predicting
macroinvertebrate taxa in the Zwalm river basin in Belgium (Dedecker et al., 2002,
2004), obtained CCI-values of 60% for Gammaridae and 85% forAsellidae, taking
into account a set of 15 variables and based on a data set collected in the Zwalm river
basin. Although the predictive success was relative high, the large number of input vari-
ables needed (15) and the fact that these presence/absence models do not distinguish
between different abundance levels, makes them less usefulfor the aim of river man-
agement. Moreover a certain degree of overfitting of non-causal relationships (Vaughan
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and Ormerod, 2005) is expected from the very small data set used for model validation
(60 sites in (Dedecker et al., 2002); 60 sites measured yearly over 2 years in (Dedecker
et al., 2004)).

Sometimes, knowledge-based models do not have quantitative expressions as
outputs, but are qualitative models returning a certain degree of suitability that cannot
be evaluated by means of exact monitoring data. For example (Kerle et al., 2001),
(Schneider, 2001) and (Baptist et al., 2002) developed fish habitat suitability models
(CASIMIR) based on a fuzzy rule base taking the vegetation and hydraulic river con-
ditions as input and returning a degree of habitat suitability for the considered fish
species. This output is not further translated into any measurable indicator such as
abundance, diversity or presence/absence, which makes validation more difficult. In
the present study, the suitability levels were translated to abundance levels to facilitate
validation, but the translation itself can form a source of uncertainty and the reliability
of this translation requires further research.

5.5 Conclusion

Fuzzy classifiers were applied to a modelling problem concerning the habitat suitability
of river sites along springs to small rivers in the Central and Western Plains of Europe
for 86 macroinvertebrate species. For each species, four models were developed, an
A-, N-, P-, and C-model. The fuzzy classifiers take a certain width, velocity and either
ammonium (A), nitrate (N) or phosphate (P) concentration orelectrical conductivity
(C) as input and return four values between 0 and 1 as output, indicating the degree
to which the river site is concerned ‘not suitable’ respectively ‘lowly’, ‘moderately’
and ‘highly suitable’ for the species to establish a population. With the developed
models the influence on the habitat suitability can be assessed for the stream width
and stream velocity, two variables determining the river type and reflecting the water
quantity conditions at a river site, as well as for one aspectof the impact of human
activities,i.e. the nutrient and organic load.

Field data collected at 445 sites in the Province of Overijssel (the Netherlands)
allowed for an objective evaluation of the four developed models for 12 selected spe-
cies. The fact that among them only one is an indicator for reference conditions, indi-
cates that given the present environmental conditions of rivers in EU Member States,
shifts in abundance levels of more common species are more suitable to detect gradual
changes in water quality. With an improving water quality, the follow-up of indicator
species with more narrow niches will gain importance. This topic is addressed in more
detail in Van Broekhoven et al. (2006). Of these 48 models, 16models turned out to
have a good model performance expressed by the performance measure % CFCI. These
16 good performing and objectively evaluated models are all, except one model, N- or
P-models.

The usefulness of fuzzy rule-based models in ecosystem management was con-
firmed earlier by different studies (Adriaenssens et al., 2004; Bock and Salski, 1998;
Meesters et al., 1998; Steinhardt, 1998; Kampichler et al.,2000; Mackinson, 2000;
Kerle et al., 2001; Baptist et al., 2002). The question remains whether the fuzzy rule-
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based model structure, with its fuzzy sets, its if-then rules and its inference method, is
appropriate for habitat suitability modelling in particular. In this study the requirement
of interpretability was the decisive factor when determining the number of fuzzy sets
assigned to the input variables and the output variable. On the one hand, the number of
fuzzy sets is high enough to capture the different influence of the variables on the model
output at different values. On the other hand, the number of fuzzy sets is not too high,
and still allows for the formulation of an if-then rule for each combination of fuzzy
sets of the different input variables. Moreover, the labelsattached to the fuzzy sets are
relevant for river management as they were inspired by the existing classifications used
nowadays in bio-assessment and river typologies required by the Water Framework
Directive. The fuzzy sets allow working with vague information which makes them
very suitable for the variables and criteria used in this application field. The structure
of a fuzzy rule base allows for the incorporation of the information summarized in the
knowledge base into an inference system for habitat suitability modelling, by express-
ing non-linear relations in terms of if-then rules. The degrees of membership to the
different output classes provide the end-user with a quantification of the uncertainty
associated with the model output. This information has an added value in decision sup-
port. Hence, fuzzy rule-based modelling can be of great value as a knowledge-based
habitat suitability modelling technique in river management.

A disadvantage of fuzzy rule-based models is that the shape and overlap of the
fuzzy sets, having an important impact on the model output, are determined rather
subjectively (Kompare et al., 1994) and more complex models, incorporating a higher
number of input variables and fuzzy sets, are hard to developfollowing a purely knowl-
edge-based design approach. Alternative input variables that could be considered when
developing habitat suitability models, such as specific habitat structures, a specific
habitat diversity level or a parameter reflecting the hydraulic events in a watercourse,
are discussed in Van Broekhoven et al. (2006). Because of thesubjectivity involved
in the fuzzy rule-based model development, data-based techniques are often combined
with knowledge-based models, for either the optimization of the rule base, the member-
ship functions, or for the total fuzzy system. Likewise, in this study, there is certainly
a need for a more rigid basis for model construction and optimization, mainly for the
construction of membership functions. In Chapter 6 the application is discussed of
genetic algorithms in the optimization of the membership function parameters for the
four models of the 12 selected species.

88



CHAPTER 6

Membership function optimization

Not everything that can be counted counts,
and not everything that counts can be counted.
(Albert Einstein)

6.1 Introduction

Two main approaches to combine genetic algorithms and concepts from fuzzy logic or
fuzzy systems can be distinguished (Cordón et al., 2001). In fuzzy genetic algorithms,
a first type of hybrid approach, the performance of genetic algorithms is enhanced by
fuzzy tools. Fuzzy models are for instance used to adapt the values of the parameters of
the genetic algorithm, like the crossover probabilityPc and mutation probabilityPm,
during the search (Herrera and Lozano, 2003) or the genetic algorithm applies fuzzified
variation operators, as the fuzzy connectives based crossover (Herrera et al., 1997). In
the second type of hybrid approach, called genetic fuzzy systems, a genetic algorithm
evolves a fuzzy system. The most extended genetic fuzzy system type is the genetic
fuzzy rule-based system, where an evolutionary algorithm is employed to optimize or
identify different components of a fuzzy rule-based system. Other types of genetic
fuzzy systems include genetic fuzzy clustering systems, genetic fuzzy neural systems
and genetic fuzzy decision trees. An overview of the latter types of genetic fuzzy sys-
tems, which are not considered in this dissertation, is given in (Cord́on et al., 2001,
Chapter 10). Genetic fuzzy rule-based systems encompass both optimization and iden-
tification of membership functions and rules. In optimization problems the objective
is to find optimal values for a set of parameters, for instancemembership function pa-
rameters, whereas in identification problems model components, for instance the rule
base, are designed from scratch. The flexible data structureused in evolutionary al-
gorithms to represent a candidate solution and their ability to explore a large search
space for suitable solutions only requiring a simple scalarperformance measure, make
evolutionary algorithms suitable search techniques for a partial optimization or identi-
fication of the model structure (Cordón et al., 2004). Information about known model
properties, such as the shape of the membership functions, the rules or the number of
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rules, can be easily incorporated in the evolutionary search process.
In this study the accuracy is tried to be improved of the habitat suitability mod-

els obtained by the knowledge-based design process described in Chapter 5, for the
region where the EKOO data set was collected, while maintaining the interpretability,
i.e. the descriptive power of the models (Casillas et al., 2003b;Mencar et al., 2005).
In the framework of this study, interpretability means thatthe river manager consulting
the models is familiar with all components of the designed models and is able to get
insight in the models just by looking at the different components. Given the unifor-
mity of the qualitative information in the eight consulted knowledge sources, the rules
in the rule bases of the developed models can be considered generally applicable to
the Central and Western Plains of Europe. The knowledge sources also clearly reveal
that the definition of linguistic values of environmental variables slightly differ from
one river basin to another. Therefore the rule bases were kept unchanged, yet only the
membership functions of the input variables were optimizedin such a way that after
optimization all fuzzy sets still represent the meaning assigned by experts to the corre-
sponding linguistic values. As no straightforward relation exists between the member-
ship functions and the output of a linguistic fuzzy model, a genetic algorithm was used
as optimization method as it works on the complete solution of the optimization prob-
lem, in this case being the whole set of membership function parameters. In literature
examples can be found of membership function parameter optimization with genetic
algorithms for all common types of membership functions,i.e. for triangular (using bi-
nary encoding in (Arslan and Kaya, 2001; Chiou and Lan, 2005), using real encoding
in (Casillas et al., 2005; Ishigami et al., 1995; Rojas et al., 2001) and using a special en-
coding in (Kinzel et al., 1994)), trapezial (using binary encoding in (Ascia et al., 2006;
Bodenhofer and Klement, 2001; Karr and Gentry, 1993) and using real encoding in
(Lau et al., 2005; Suzuki et al., 2001)) and Gaussian functions (using binary encoding
in (Damousis et al., 2002; Shu and Burn, 2004; Surmann et al.,1993) and using real
encoding in (Damousis et al., 2002; Kim and Roschke, 2006; Kim et al., 2005; Suzuki
et al., 2001)). Other techniques used to optimize membership functions are gradient de-
scent (Shi and Mizumoto, 2000; Simon, 2002; Vishnupad and Shin, 1999), algorithms
inspired on those used in the neural networks field (Nauck andKruse, 1997; Paiva and
Dourado, 2004; Tanaka et al., 1995), the Levenberg-Marquardt algorithm (Botzheim
et al., 2004), Kalman filters (Simon, 2002; Sun, 1994), genetic programming (Bastian,
2000), evolution strategies (Jin et al., 1999), tabu search(Baǧiş, 2003) and simulated
annealing (Gúely et al., 1999; Śanchez et al., 2001).

The membership function optimization was only carried out for the A-, N-, P-
and C- models of the 12 species whose performance could be evaluated in an objective
way on the EKOO data set, as defined in Section 5.3.2. The 12 selected species are
Anisus vortex, Asellus aquaticus, Erpobdella octoculata, Gammarus pulex, Glossipho-
nia heteroclita, Helobdella stagnalis, Physa fontinalis, Planorbis planorbis, Proasel-
lus meridianus, Radix peregra, Sigara striataandValvata piscinalis. The membership
functions of the input variables were optimized using a classic genetic algorithm with
binary chromosomes, as well as a real-coded genetic algorithm. The properties of the
genetic algorithm are described in Section 6.2, with special attention to the applied
representation of candidate solutions and fitness function. The optimization results are
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Figure 6.1: Encoding of membership function parameters which does not ensure inter-
pretability.

discussed in Section 6.3 and conclusions are summarized in Section 6.4.

6.2 Properties of the genetic algorithm

6.2.1 Representation of a candidate solution

In the habitat suitability models obtained by the knowledge-based design described in
Chapter 5 the linguistic values assigned to each individualvariable are defined in a
meaningful way by membership functions forming a fuzzy partition. In order to main-
tain the interpretability of the definition of the linguistic values during the optimization,
the encoding of the membership function parameters should be well considered.

In Fig. 6.1 a straightforward encoding of the trapezial membership functions of
m variables is given. To thelth variablenl linguistic values are assigned and each
linguistic value is characterized by four parameterst1, t2, t3 andt4. These parameters
are real values in a real-valued representation and furtherencoded in a binary string in a
binary representation. However, if this chromosome is used, meaningless membership
functions as shown in Fig. 6.2 might be obtained.

To decide if a certain set of membership functions is interpretable or not is
a difficult and subjective task. Nevertheless, several properties ensuring good inter-
pretability of membership functions have been proposed (Valente de Oliveira, 1999).
The most important properties in the framework of membership function optimization
are (Casillas et al., 2003a)

• theσ-completenessproperty, requiring for each pointx the existence of a fuzzy
setAi to whichx has a membership degree larger thanσ

(∀x ∈ X)(∃i ∈ {1, . . . , n})(Ai(x) ≥ σ > 0) ,

with Ai a fuzzy set defined on the domainX of x, andσ a given completeness
degree,
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Figure 6.2: Interpretability might be lost when optimizingmembership functions using
an inappropriate encoding.

• the normality property, satisfied if all linguistic values are defined by normal
fuzzy sets such that each linguistic value exhibits full matching with, at least, a
value of the variable’s domain, and

• thedistinguishabilityproperty, asking for membership functions that are distinct
enough from each other such that each linguistic value has a clear meaning and
the corresponding fuzzy set clearly defines a range in the variable’s domain.

When optimizing membership functions, one can either represent the member-
ship functions is such a way that all candidate solutions satisfy (some of) the three
above properties (Ascia et al., 2006; Casillas et al., 2005;Chiou and Lan, 2005; Shu
and Burn, 2004), or include interpretability measures in the objective functions, thus
guiding the search to good solutions (Jin et al., 1999; Kim etal., 2005; Surmann et al.,
1993). As fuzzy partitions satisfy all three properties, encoding the membership func-
tions in such a way that all candidate solutions are fuzzy partitions, is very common
in membership function optimizations ensuring the semantic integrity of the linguistic
values (Casillas et al., 2003a,b). Also in this study an encoding which always result in
fuzzy partitions was opted for.

Thenl membership functions of an input variableXl of the considered models
are characterized by a vector of2nl reals (Fig. 6.3),al = (a1,l, . . . , a2nl,l), satisfying
the following two constraints

(∀ j ∈ {1, . . . , nl})(a2j-1,l ≤ a2j,l) , (6.1)

(∀ j ∈ {1, . . . , nl − 1})(a2j,l < a2j+1,l) . (6.2)

In this study both a binary-coded as well as a real-coded genetic algorithm is
applied. They evolve chromosomes as presented in Fig. 6.4. The representation of the
membership function parameters by a binary vector (using Gray encoding), restricts
the values the parameters can take to a limited set of values defined by the upper and
lower bound of the optimization interval and the length of the binary string, but has
the advantage that it allows the use of very straightforwardcrossover and mutation
strategies. The real-coded genetic algorithm is directly applied to a vector containing
the real values of the optimized parameters, which allows for a finer tuning of the
parameters.
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Figure 6.3: Illustration of the optimization intervals used for the membership function
parameters during the bounded simulation.
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Figure 6.4: Encoding of membership function parameters which does ensure inter-
pretability.

Two optimizations were carried out: a bounded and a free optimization. Dur-
ing the bounded optimization the kernels of the optimized membership functions are
always subsets of the 0.5-cuts of the corresponding original membership functions (as
illustrated in Fig. 6.3), whereas during the free optimization only the number of mem-
bership functions of the fuzzy partition is fixed for each input variable. The free op-
timization was carried out to investigate how the optimization process evolves if no
constraints are set. The membership function parameters were coded as binary strings
of 7 and 10 bits per parameter respectively for the bounded and free optimization re-
spectively.
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Table 6.1: Four fuzzy classification examples and their corresponding performances
expressed by % CFCI and AD.

ydata ymodel
A1 A2 A3 A4 A1 A2 A3 A4 % CFCI AD

a 0 0.2 0.8 0 0.8 0.2 0 0 20 1.6
b 0 0.2 0.8 0 0 0.4 0.6 0 80 0.2
c 0 0.2 0.8 0 0 0.1 0.8 0.1 90 0.2
d 0 0.2 0.8 0 0 0 0.8 0.2 80 0.4

6.2.2 Fitness

The % CFCI, presented in Section 5.4.1, has the advantage that it can be understood
intuitively. ForN data points and a classification inton fuzzy classes, the % CFCI is
obtained by

% CFCI=
100

N

N∑

j=1

(

1−
1

2

n∑

i=1

∣
∣
∣Ai(ydata,j)−Ai(ymodel,j)

∣
∣
∣

)

, (6.3)

whereAi(ydata,j) is the membership degree of thejth output to theith linguistic output
value andAi(ymodel,j) is the membership degree to theith linguistic output value
obtained as model output for thejth input of the data set.

However, it is not an appropriate objective function for theoptimization of a
fuzzy ordered classifier, as % CFCI is not sensitive to the position of the classes where
the wrong classification occurs. When visually comparing thereference output in Ta-
ble 6.1 with the model outputs b and d and given the fact that the output classes are
ordered fromA1 to A4, one would certainly say that model output b approximates the
reference output better than model output d. However, the same % CFCI is assigned
to examples b and d, as the sum of the absolute differences in membership degree in
the reference and model output to the four individual classes is identical, as shown in
Fig. 6.5.

Therefore another performance measure for fuzzy classifiers with an ordered set
of classes is introduced, returning the average deviation (AD) between the position of
the class obtained with the model and the position of the class stored in the reference
data set. The AD varies from 0 ton− 1 and is calculated as follows forN data points
and a classification inton fuzzy classes

AD =
1

N

N∑

j=1

n−1∑

i=1

∣
∣
∣

i∑

k=1

Ak(ydata,j)−
i∑

k=1

Ak(ymodel,j)
∣
∣
∣ , (6.4)

whereAi(ydata,j) is the membership degree of thejth output to theith linguistic output
value andAi(ymodel,j) is the membership degree to theith linguistic output value
obtained as model output for thejth input of the data set. In Fig. 6.6(a) the % CFCI-
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Figure 6.5: Illustration of the performance measures % CFCIand AD for the fuzzy
classification examples in Table 6.1. In the figures in the toprow, illus-
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output respectively. In the figures in the second row, illustrating AD, the
thin and thick lines are the cumulative functions of the reference and model
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and the AD- values obtained for the four models of the 86 macroinvertebrate species
are plotted. One sees that AD tends to decrease with increasing % CFCI.

The measure AD is illustrated in Table 6.1 on the same examples as the two
other performance measures. At first sight it seems hard to get insight in AD. When
considering the cumulative membership degrees,i.e. the sum of the membership de-
grees to a class and its lower classes as in Fig. 6.5, instead of the membership degrees,
one sees that the AD is nothing else but the area between the cumulative functions of
model and reference output.

The AD is zero if the model output equals the reference outputand increases
with increasing distance between the reference output and the model output. The AD
distinguishes between examples b and d, whereas the % CFCI does not. On the other
hand, the same AD, but a different % CFCI, is obtained for examples b and c. In ex-
ample b the membership degree assigned to classA2 is 0.2 too high. This surplus of
membership degree should in fact be assigned to the adjacentclassA3. In example c
the membership degree assigned to classA4 is 0.1 too high and this surplus of member-
ship degree should in fact have been assigned to classA2, i.e. two classes lower. The
distance between the reference output is therefore1 × 0.2 for example b and2 × 0.1
for example c. The % CFCI however is a measure of the sum of the errors made for
each individual class. For example b the error in membershipdegree is 0.2 for the two
classesA2 andA3, whereas in example d the errors are 0.1 for the two classesA2 and
A4. Note that the AD is insensitive to the direction of the wrongclassification as the
absolute values of the differences are taken. If classifying an instance in a too high
class is worse (or better) than classifying it in a too low class, the formula in Eq. (6.4)
should be slightly altered.

During the search, each candidate solution was evaluated oneach of the 445
data points, using a weighted average deviation (wAD) in which the weights guarantee
that each region of the input space defined by the 0.5-cuts of the membership functions
of the non-optimized models has the same contribution to thefitness

wAD =

N∑

j=1

wj ·
n−1∑

i=1

∣
∣
∣

i∑

k=1

Ak(ydata,j)−
i∑

k=1

Ak(ymodel,j)
∣
∣
∣ , (6.5)

with

wj =
1

Nj · nregions

.

In the definition of the weightswj , Nj is the number of data points in the same region
of the input space as thejth input of the data set andnregions is the number of regions
in which the input space is divided.

6.2.3 Algorithm

The structure of the genetic algorithm is shown in Algorithm2. A thorough inves-
tigation of the influence on the genetic algorithm performance of different mutation,
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Algorithm 2: Genetic algorithm
t← 0
Initialize PopulationPt at random
foreach Individual ofPt do

Decode chromosome
if chromosome represents unfeasible solutionthen

Try to restore chromosome

end
if chromosome represents feasible solutionthen

Calculate fitness of the individual
else

Assign very bad fitness value to the individual

end
end
while stop criterion not reacheddo

Select individuals by tournament selection
Recombine individuals by crossover and mutation
foreachChild ofPt do

Decode chromosome
if chromosome represents unfeasible solutionthen

Try to restore chromosome

end
if chromosome represents feasible solutionthen

Calculate fitness of the individual
else

Assign very bad fitness value to the individual

end
end
Replace worst individual ofPt+1 by best individual ofPt

Pt ← Pt+1

t← t + 1

end

crossover and selection procedures and the optimization oftheir parameters was out-
side the scope of this study. We carried out some fragmentaryinvestigation of the
parameter settings of the selected mutation and crossover procedures with some of the
48 models and applied the best setting obtained to optimize the membership functions
of all 48 models.

The same procedure was followed by the binary-coded and real-coded algo-
rithm, except for the recombination and mutation. Each optimization starts with a
population of 100 randomly generated strings, which, in case they do not represent a
feasible solution, are tried to be restored by replacing them by (the binary representa-
tion of) a vector consisting of substrings of sorted real values of the unfeasible string
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for each variable. Note that this restoration procedure does not always result in a string
satisfying Eq. (6.2).

At each generation step, 100 parents were selected by tournament selection.
Two by two the parents were recombined and mutated, resulting in two children. In the
binary-coded algorithm, uniform crossover is applied (crossover probability = 0.95).
Each bit of the strings obtained after recombination, or, incase no crossover was car-
ried out, the strings of the parents, were changed with a mutation probability being
the reverse of the length of the binary string. In the real-coded algorithm, one child is
created with heuristic crossover and one with arithmeticalcrossover (crossover prob-
ability = 0.95). The procedure of the heuristic crossover described by Michalewicz
(1996) was slightly adapted to guarantee that each real value achild1,l in the string of
the child derived from the corresponding valuesaparentb,l andaparentw,l of the best
and, respectively, the worst performing parent of the two parents, is an element of the
optimization interval [bl,Bl]. In Eq. (6.7),r1 is a random number between 0 and 1 and
identical for all values of a string during a recombination:

ainterval,l = max(bl,min(Bl, 2aparentb,l − aparentw,l)) , (6.6)

achild1,l = min(aparentb,l, ainterval,l)+

r1(max(aparentb,l, ainterval,l)−min(aparentb,l, ainterval,l)) , (6.7)

achild2,l =
1

2
(aparentb,l + aparentw,l) . (6.8)

The real strings of the children, or, in case no recombination was carried out, the strings
of the parents, were mutated as described in Eq. (6.9). Each valueal is replaced by a
randomly selected (uniform probability distribution) valuea′

l from an interval around
al being at most as large aspmut% of the interval [bl,Bl] (pmut = 3 andpmut = 0.4
for the bounded and, respectively, the free optimization).In Eq. (6.9),r2 is a random
number between 0 and 1 andr3 a random binary digit, both being identical for all
values of a string during a recombination:

a′
l =

{

min(al + 1
200r2pmut(Bl − bl), Bl) , if r3 is 0,

max(al −
1

200r2pmut(Bl − bl), bl) , if r3 is 1.
(6.9)

Children not satisfying Eqs. (6.1–6.2) are tried to be restored following the same
procedure as during the initialization of the population. Furthermore, elitism is applied
in the algorithm: the worst offspring is replaced by the bestindividual of the cur-
rent population. The genetic algorithm was stopped if only small improvements of
the fitness of the best individual (4 fitness< 0.001) were obtained during the last
50 consecutive generations as illustrated in Fig. 6.7 or if the 1000th generation was
reached. Hundred repetitions were carried out for each optimization and the model
with the highest % CFCI among the 100 candidate models was retained as result of the
optimization.
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Figure 6.7: Average fitness and best fitness as a function of the generation in the genetic
algorithm.

6.3 Optimization results

The results obtained for the four models of the 12 selected species are summarized in
Figs. 6.8–6.9. One expects the models obtained with the real-coded genetic algorithm
to perform at least as good as the corresponding models obtained with the binary-
coded genetic algorithm as the search space of the binary-coded genetic algorithm is a
subset of the search space of the real-coded genetic algorithm. Furthermore, the model
obtained through free optimization is expected to outperform the corresponding model
obtained through bounded optimization, which on its turn isexpected to score better
than the original model. Strictly speaking, the performance of the genetic algorithms
can only be compared based on the performance of the originaland optimized models
according to the performance measure wAD, used as fitness function. In Fig. 6.8 the
wAD of the original models are shown, together with the smallest wAD-value obtained
for the best individual of the last population of the 100 repetitions of each optimization.
In Fig. 6.9, however, the % CFCI of the original and optimizedmodels are given, as
% CFCI can be understood intuitively and resembles the performance measure % CCI
commonly used in ecology. When analyzing the results in Fig. 6.9, one should always
keep in mind the variability of the relationship between thetwo performance measures
wAD and % CFCI . As shown in Fig. 6.6(b) wAD tends to decrease with increasing
% CFCI, but it also shows that a model M1 scoring better than a model M2 according
to the wAD, might score worse according to the % CFCI. Therefore, the performance
of the genetic algorithms can only be really judged by the values obtained for wAD,
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the fitness.
When considering the performance measure wAD (Fig. 6.8),

• optimized models perform better than the corresponding original models,

• models obtained with the real-coded genetic algorithms do not perform worse
than those obtained with the corresponding binary-coded genetic algorithms, ex-
cept for the A- and N-models ofErpobdella octoculataobtained by free opti-
mization, the A-model ofPhysa fontinalisobtained by bounded optimization,
the N-models ofGammarus pulex, Glossiphonia heteroclita, Sigara striataand
Valvata piscinalisobtained by bounded optimization, as well as the N-model of
Sigara striataobtained by free optimization,

• models obtained with free optimizations of the binary-coded genetic algorithm
perform better than the corresponding models obtained by bounded optimization,
except for the N-models ofAnisus vortex, Asellus aquaticus, Physa fontinalisand
Radix peregraand,

• models obtained with free optimizations of the real-coded genetic algorithm per-
form better than the corresponding models obtained by bounded optimization.

When comparing the wAD of the models obtained with the corresponding bi-
nary and real-coded genetic algorithms, one sees that the models obtained by bounded
optimization are generally equally good for both types of genetic algorithms. The fact
that eight of the 96 real-coded genetic algorithms do not return a better solution than
their binary-coded counterpart, indicates that the implemented control structures were
maladjusted to these eight membership function optimization problems. The recorded
reversed order of the wAD-values obtained for the four N-models with the binary-
coded genetic algorithms might be caused by the binary coding, restricting the values
taken by the membership function parameters in the optimized models to a limited
set of values. Thus, when using binary encoding the search space of the binary-coded
genetic algorithm applied during the free optimization might simply not contain a solu-
tion outperforming the solution returned by the bounded optimization. The fact that all
wAD-values obtained by the real-coded genetic algorithms respect the expected order,
supports the above argument.

When considering the % CFCI, the models obtained with the real-coded genetic
algorithms do not perform worse than those obtained with thebinary-coded genetic al-
gorithms, except for the A-model forErpobdella octoculataobtained through free op-
timization. For this model, the optimized model obtained with the real-coded genetic
algorithm shows a negligible worse performance of 0.1% compared to the model ob-
tained with the binary-coded genetic algorithm (Fig. 6.9(a)). For the models obtained
with the binary-coded genetic algorithm, the expected order of the % CFCI-values of
respectively the original model and the models obtained through bounded and free op-
timization, is not respected by the results recorded for theA-model ofRadix peregra,
the N-models ofAnisus vortex, Erpobdella octoculata, Gammarus pulex, Glossipho-
nia heteroclita, Helobdella stagnalis, Physa fontinalis, Planorbis planorbisandRadix
peregra, nor for the P-models ofAnisus vortex, Glossiphonia heteroclitaandPhysa
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Figure 6.8: Weighted average deviation for the original models (©) and the models ob-
tained through bounded optimization with the binary-codedgenetic algo-
rithm (GA) (�), free optimization with the binary-coded GA (N), bounded
optimization with the real-coded GA (�) and free optimization with the
real-coded GA (4) for the 12 selected species: (a) A-models, (b) N-
models, (c) P-models and (d) C-models.
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Figure 6.9: Percentage of correctly fuzzy classified instances for the original mod-
els (©) and the models obtained through bounded optimization with
the binary-coded genetic algorithm (GA) (�), free optimization with the
binary-coded GA (N), bounded optimization with the real-coded GA (�)
and free optimization with the real-coded GA (4) for the 12 selected
species: (a) A-models, (b) N-models, (c) P-models and (d) C-models.
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fontinalis. When applying the real-coded genetic algorithm only the % CFCI-values of
the original, bounded and freely optimized N-models ofGammarus pulexandGlossi-
phonia heteroclitado not respect the expected order.

In Figs. 6.10–6.11 the results obtained for the A-model ofProasellus meridi-
anusare shown. Note that the membership function describing theoligosaprobic to
β, α-oligosaprobic conditions (hereafter calledoligosaprobic) in the original model
has such a small support that it can hardly be noticed in Fig. 6.10(a). For the A-model
of Proasellus meridianus, as for most models of the other selected species, the results
obtained with the real-coded genetic algorithm are very similar to the results obtained
with the binary-coded genetic algorithm. This is especially true in case of the bounded
optimization where the membership function parameters of the optimized models ob-
tained with both algorithms are often equal to the lower or upper bound, or the second
or next-to-last value of the corresponding optimization interval.

In Fig. 6.10 one sees that the membership functions of the velocity valuelow
and theoligosaprobic conditions are extended towards higher velocities and ammo-
nium concentrations respectively. The membership functions in Figs. 6.10(c)
and 6.10(e) no longer reflect the meaning given by the expertsto the linguistic values.
During the bounded optimization the extension is however limited by the constraints
described in Section 6.2, which guarantees the interpretability of the fuzzy partitions of
the optimized models. In Fig. 6.11 the number of data points belonging to the four de-
fuzzified abundance classesAcrisp,i (see Eq. (5.5) for the defuzzification procedure) in
the different regions of the input space are given and visualized by means of histograms
for the original models and the two models obtained with the binary-coded genetic al-
gorithm. No histograms are shown for the models obtained with the real-coded genetic
algorithm, as similar membership functions were obtained with the binary-coded and
real-coded genetic algorithm. One sees that, by extension of the support of the velocity
valuelow and theoligosaprobic conditions, more data points and in particular more
data points belonging to the abundance classabsent, fire the rule

IF vel IS low AND ammon IS oligotrophic THEN abundance IS absent,

instead of the rules

IF vel IS low AND ammon IS β-mesotrophic THEN abundance IS low,
IF vel IS moderate AND ammon IS oligotrophic THEN abundance IS low,
IF vel IS moderate AND ammon IS β-mesotrophic THEN abundance IS moderate,

which results in a better score for the used fitness wAD as wellas for the other perfor-
mance measures % CCI, % CFCI and AD.

The differences between the results obtained with the bounded and free opti-
mizations illustrate that one should not only focus on the accuracy of a model when
evaluating its performance, but that the global performance of a model implies a bal-
ance between its interpretability and its accuracy. In the framework of this study, in-
terpretability means that the river manager consulting themodels is familiar with all
components of the designed models and is able to get insight in the models just by
looking at the different components. In order to guarantee interpretability, the defini-
tion of the linguistic values,i.e. the membership functions, should correspond to those
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Figure 6.10: Membership functions of the A-model ofProasellus meridianus: (a) orig-
inal model and models obtained through (b) bounded optimization with
the binary-coded genetic algorithm (GA), (c) free optimization with the
binary-coded GA, (d) bounded optimization with the real-coded GA and
(e) free optimization with the real-coded GA.
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Figure 6.11: Distribution of the data points over the abundance classes in the different regions of the input space defined by 0.5-cuts of
the membership functions of (a) the original model, (b) the model obtained through bounded optimization with the binary-
coded genetic algorithm and (c) free optimization with the binary-coded genetic algorithm of the A-model ofProasellus
meridianus.
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used in the domain of biological water quality assessment. Therefore, the models ob-
tained with bounded optimization are considered to have a better performance than
those obtained with free optimization, even if higher accuracies are obtained for the
latter.

6.4 Conclusion

In this chapter the optimization of the membership functions of the input variables
of the habitat suitability models obtained by the knowledge-based design process de-
scribed in Chapter 5, was discussed. One type of interpretability-preserving data-driven
optimization, as well as an accuracy-oriented optimization, were applied using both a
binary-coded and a real-coded genetic algorithm. As fitnessfunction the average devi-
ation (AD), a new performance measure for fuzzy ordered classification, was used.

For four models the binary-coded genetic algorithms returned less accurate so-
lutions for the accuracy-oriented optimization than for the constrained optimization,
due to the fact that the optimized membership function parameters only take values
from a limited set of values. A shortcoming which, as shown bythe experiments, can
be remedied by applying a real-valued representation instead of a binary representation.
The real-coded genetic algorithms applied in this study, however, showed maladjusted
to eight of the 96 addressed membership function optimization problems, as an ex-
haustive investigation of the control structures of the genetic algorithms was outside
the scope of this study.

A purely accuracy-oriented optimization is no option when one wants to pre-
serve the interpretability of the habitat suitability models under study with the EKOO
data set. In this case, expert knowledge is a prerequisite tobuild interpretable models in
order to define the rule bases and determine the optimizationintervals of the member-
ship function parameters. The accuracy-oriented optimization, however, gives a better
insight in the driving force during the bounded optimization, i.e. the tendency to clas-
sify as much data points as possible in the abundance classabsent by increasing the
regions where the input is mapped toabsent, and stresses the importance of uniformly
distributed and unambiguous training data for model optimization.
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CHAPTER 7

Monotonicity of linguistic fuzzy models

The worthwhile problems are the ones you can really solve
or help solve, the ones you can really contribute something
to.
(Letter to Koichi Mano, Richard Feynman, 1966)

7.1 Introduction

When identifying models of real-world systems, one is often confronted with a small
number of data points. In such cases it is very important to fully exploit the addi-
tional non-quantitative knowledge about the system, in order to obtain meaningful,
interpretable models (Carmona et al., 2005; Jin, 2003). Moreover, taking the qualita-
tive knowledge about the system into account renders the model identification process
less vulnerable to noise and inconsistencies in the data andsuppresses overfitting (Sill,
1998). An example of this additional qualitative information is the monotonicity of the
model output with respect to an input variable,i.e. the model output is either increas-
ing or decreasing in the variable for all combinations of values of other input variables.
Without loss of generality, in this study only increasing model outputs are considered
and a fuzzy model is called monotone if it satisfies the following definition.

Definition 7.1

(i) A fuzzy model is called monotone in an input variableXl if for any two input
vectorsx1 andx2 such thatx1,j = x2,j for anyj ∈ L \ {l} andx1,l ≤ x2,l it
holds thaty∗(x1) ≤ y∗(x2).

(ii) A fuzzy model is called monotone if it is monotone in each input variable.

Monotonicity is a common property of evaluation and selection procedures. In
loan acceptance for instance, the decision rule should be monotone with respect to
income,i.e. it would be an unacceptable policy that a high-income applicant is rejected,
whereas a low-income applicant with otherwise equal characteristics is accepted. In
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Section 7.5 four (potential) applications of monotone linguistic fuzzy models in the
bioscience engineering field are described.

This work focusses on linguistic fuzzy models as their framework allows for the
design of interpretable models for non-experts. The monotonicity of Takagi–Sugeno
models is discussed in detail in the work by Koo et al. (2004) and Won et al. (2002),
while the work by Schott and Whalen (1996) addresses the influence of the height of
the overlap between triangular membership functions on themonotonicity of the input-
output behaviour of Mamdani–Assilian models. The design ofmonotone models has
also been investigated for other modelling techniques, such as neural networks (Sill,
1998), decision trees (Ben-David, 1995; Cao-Van and De Baets, 2003; Daniels and
Velikova, 2006) and instance-based classification techniques (Lievens et al., in press).

In Chapters 8–10 the monotonicity of linguistic fuzzy models under different
inference procedures is discussed. The properties assumedto hold for the linguistic
fuzzy models are described in Section 7.2. Section 7.3 dealswith the representation
used in Chapters 8–10 of if-then rules fired by a given input vector. In Section 7.4 the
issue of incomparable fuzzy model outputs is addressed. Finally, this chapter concludes
in Section 7.6 with an overview of the objectives of the work described in Chapters 8–
10.

7.2 Assumed model properties

The investigated linguistic fuzzy models havem input variablesXl (l ∈ L = {1, . . .
,m}) and a single output variableY . Their rule base containsr rules of the form

Rs: IF X1 IS B1
j1,s

AND . . . AND Xm IS Bm
jm,s

THEN Y IS Ais

whereBl
jl,s

(resp.Ais
) are linguistic values of variableXl (resp.Y ) in the domainXl

(resp.Y) (s ∈ S = {1, . . . , r}). The input vector is denoted byx = (x1, . . . , xm).

7.2.1 Linguistic values

The linguistic valuesAis
in the consequents of ther rules are selected amongn mem-

bership functionsAi (i ∈ I = {1, . . . , n}). These membership functions have a
trapezial shape, form a fuzzy partition (Eq. (2.3)) and are characterized by2n para-
meters as shown in Fig. 7.1. The extreme membership functions have one vertical
side at respectively the lower boundlboutput or the upper bounduboutput of the output
domain. The midpointsci andoi and the lengthski andli of the kernel of the mem-
bership functionAi, respectively the interval where the membership functionsAi and
Ai+1 overlap, are given by (l0 = ln = 0),

ci =
1

2
(a2i-1 + a2i) ki = a2i − a2i-1 , for all i ∈ I ,

oi =
1

2
(a2i + a2i+1) li = a2i+1 − a2i , for all i ∈ I \ {n} . (7.1)
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A1 A2
. . . An-1 An

Y

A(y)

1

0
a1

lboutput

a2 a3 a4 a5 a2n-4 a2n-3 a2n-2 a2n-1 a2n

uboutput

Figure 7.1: Parameters used to characterize the output membership functions forming
a fuzzy partition.

The linguistic valuesBl
jl,s

of variableXl (l ∈ L) in the antecedents of ther rules are

selected amongnl membership functionsBl
jl

(jl ∈ Jl = {1, . . . , nl}). The member-
ship functions in them input domains are also assumed to be trapezial and to form a
fuzzy partition.

The use of a fuzzy partition of trapezial membership functions imposes a natural
order on the linguistic values of a variable as the intersection of the kernels of any pair
of membership functions is empty. A linguistic valueAa is then said to be smaller than
a linguistic valueAb in the same fuzzy partition if the upper bound of the kernel ofAa

is smaller than the lower bound of the kernel ofAb

Aa is smaller thanAb ⇔ max(kern(Aa)) < min(kern(Ab)) . (7.2)

In the setting of this work, a linguistic valueAa (resp.Bl
a) is smaller than a linguistic

valueAb (resp.Bl
b) if and only if the indexa is smaller thanb

Aa is smaller thanAb ⇔ a < b , (7.3)

Bl
a is smaller thanBl

b ⇔ a < b . (7.4)

7.2.2 Rule base

The rule baseR is assumed to be either complete, consistent and monotone orcom-
plete, consistent, smooth and monotone. Completeness and consistency are commonly
required properties of rule bases in fuzzy models (Cordón et al., 2001). A model has a
completerule base if for any input vectorx at least one rule is fired. When using fuzzy
partitions of trapezial membership functions in all input domains, the rule base is com-
plete if and only if it contains a rule for each combination(j1, . . . , jm) ∈ J1× . . .×Jm

of linguistic values of them input variables. A set of IF-THEN rules isconsistentif it
does not contain contradictory rules. This concept is clearwhen using classical logical
rules but is more difficult to grasp in the case of fuzzy rule bases. Therefore, there are
many different interpretations of this property (Driankovet al., 1993). In this disserta-
tion the strictest definition is adopted: a fuzzy rule base issaid to be inconsistent if it
contains at least two rules with the same antecedent but a different consequent. There-
fore in the models considered in Chapters 8–10 the rule base contains exactly one rule
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for each combination(j1, . . . , jm) ∈ J1 × . . .× Jm and the number of rulesr is equal
to the product of the number of linguistic values assigned tothem input variables

r =

m∏

l=1

nl . (7.5)

In the definitions below a monotone rule base is defined for models whose
model output is expected to increase with increasing model input.

Definition 7.2 A rule baseR = {R1, . . . , Rr} is called monotone if for any two rules
Rs1

andRs2
it holds that(j1,s1

, . . . , jm,s1
) ≤ (j1,s2

, . . . , jm,s2
) impliesis1

≤ is2
.

Proposition 7.1 If a rule baseR is complete and consistent, then it is monotone if and
only if for any(j1, . . . , jm) ∈ J1× . . .×Jm and anyl ∈ {1, . . . ,m} such thatjl < nl

it holds thatis1
≤ is2

, with (j1,s1
, . . . , jm,s1

) = (j1, . . . , jm) and(j1,s2
, . . . , jm,s2

) =
(j1, . . . , jl-1, jl+1, jl+1, . . . , jm).

Definition 7.3 A complete consistent rule baseR is called smooth if for any
(j1, . . . , jm) ∈ J1 × . . . × Jm and anyl ∈ {1, . . . ,m} such thatjl < nl it holds
that is2

= is1
+p, with p ∈ {−1, 0, 1} and (j1,s1

, . . . , jm,s1
) = (j1, . . . , jm) and

(j1,s2
, . . . , jm,s2

) = (j1, . . . , jl-1, jl+1, jl+1, . . . , jm).

Corollary 7.1 A smooth complete consistent rule base is monotone if and only if, using
the notations of Definition 7.3, it always holds thatp ∈ {0, 1}.

7.2.3 Inference procedure

In Chapters 8–9 the monotonicity of models applying Mamdani–Assilian inference is
investigated, whereas in Chapter 10 the monotonicity of models applying either plain
implicator-based inference or ATL–ATM inference is discussed.

Mamdani–Assilian inference The procedure applied in Mamdani–Assilian models
to determine the model output is described in detail in Section 2.3.2. First the fulfilment
degreesβs of ther rulesRs are computed. In a next step the fulfilment degreesαi of
the n linguistic output valuesAi are determined and used to define the membership
functions of the adapted membership functionsA′

i. The global fuzzy outputA is the
union, based on the maximum, of then adapted membership functionsA′

i. Finally,
the crisp model outputy∗ is obtained by defuzzifying the fuzzy outputA. In this
study the three most commonly applied t-norms are considered: the minimumTM, the
productTP and the Łukasiewicz t-normTL. In Chapter 8, models applying the Center
of Gravity (COG) defuzzification method are discussed, whereas Chapter 9 deals with
models applying the Mean of Maxima (MOM) defuzzification method.

Plain implicator-based inference In Section 10.2 the monotonicity is discussed of
models applying implicator-based inference as described in detail in Section 2.3.3. This
inference procedure will be referred to asplain implicator-based inference in order to
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avoid confusion with the second implicator-based inference procedure considered in
this dissertation,i.e. the ATL–ATM inference described in the following paragraph.
As in the Mamdani–Assilian inference procedure first the fulfilment degreesβs of the
r rulesRs are computed and afterwards the fulfilment degreesαi of the n linguistic
output valuesAi are determined. However, in implicator-based inference procedures,
the adapted membership functionsA′

i are computed using an implicator instead of a
t-norm. In this study the three R-implicatorsIM, IP andIL are considered. The global
fuzzy outputA is the intersection, based on the minimum, of then adapted membership
functionsA′

i. In this work no specific defuzzification method is considered for models
applying plain implicator-based inference.

ATL–ATM inference In this dissertation a new inference procedure for linguistic
fuzzy models with a monotone rule base is introduced. It is animplicator-based infer-
ence procedure in which the modifiers ‘at least’ (ATL) and ‘atmost’ (ATM) defined
in Eqs. (2.25–2.26) play an important part, hence the name ATL–ATM inference. In
ATL–ATM models, as the linguistic fuzzy models applying thenewly introduced in-
ference procedure are called, the fuzzy model outputA is the intersection, based on the
minimum, of the fuzzy model outputsAATL andAATM of an ATL model and an ATM
model

A(y) = min(AATL(y), AATM(y)) . (7.6)

The ATL and ATM models are derived from a linguistic fuzzy model as defined in
Sections 7.2.1–7.2.2. For each rule in the rule base of this linguistic fuzzy model, the
rule base of the ATL model contains a corresponding rule obtained by applying the
modifier ATL to all linguistic values in the original rule

Rs: IF X1 IS ATL(B1
j1,s

) AND . . . AND Xm IS ATL(Bm
jm,s

)

THEN Y IS ATL(Ais
)

and the rule base of the ATM model contains a corresponding rule obtained by applying
the modifier ATM to all linguistic values of the original rule

Rs: IF X1 IS ATM(B1
j1,s

) AND . . . AND Xm IS ATM(Bm
jm,s

)

THEN Y IS ATM(Ais
)

The linguistic valuesBl
jl

andAi are defined by the same membership functions as in
the linguistic fuzzy model. The fuzzy model output of the ATLand ATM model are ob-
tained by implicator-based inference as described in Section 2.3.3. In Chapter 10, the
monotonicity of ATL–ATM models applying the Mean of Maxima (MOM) defuzzifi-
cation method is discussed.
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7.3 Rules determining the fuzzy model output

7.3.1 Models applying Mamdani–Assilian inference or plain impli-
cator-based inference

When defining the linguistic values of a variable by membership functions as described
in Fig. 7.1, a given crisp value partially belongs to at most two linguistic values. As
these fuzzy partitions are used in all input domains, a crispinput xl either completely
belongs to one linguistic value,i.e.

(∃!j1 ∈ Jl)(B
l
j1

(xl) = 1 ∧ (∀j2 ∈ Jl \ {j1})(B
l
j2

(xl) = 0)) ,

or partially belongs to two adjacent linguistic values,i.e.

(∃!j1 ∈ Jl \ {jnl
})(Bl

j1
(xl) ∈ ]0, 1[ ∧ Bl

j1+1(xl) = 1−Bl
j1

(xl)

∧ (∀j2 ∈ Jl \ {j1, j1+1})(Bl
j2

(xl) = 0)) . (7.7)

As a consequence, for a given input vectorx at most 2m rules are fired,i.e. at
most 2m rulesRs have a non-zero fulfilment degreeβs. All inputs belonging, in all
input domains, to the kernel of the same linguistic valueBl

jl
, are always mapped to the

same (fuzzy) model output. Therefore, a model always shows amonotone input-output
behaviour within these parts of the input space. In order to obtain a monotone input-
output behaviour for all input vectorsx, a monotone input-output behaviour should
also be obtained in all regions of the input space corresponding to the intersections of
the supports of the respective input membership functionsBl

jl
andBl

jl+1 defined in
Eq. (7.7). In order to avoid an overloaded notation, the variableγl is introduced

γl = 1−Bl
jl

(xl) = Bl
jl+1(xl) . (7.8)

7.3.1.1 Models with a single input variable

For models with a single input variable, monotonicity is guaranteed for any monotone
smoothrule base if in any interval[b2j1 , b2j1+1] (j1 ∈ J1 \ {jn1

}) of the input domain,
with b2j1 the upper bound of the kernel of a linguistic valueB1

j1
andb2j1+1 the lower

bound of the kernel of the next linguistic valueB1
j1+1, a monotone input-output behav-

iour is obtained not only if the linguistic valuesB1
j1

andB1
j1+1 are mapped to a same

linguistic output valueAi

IF X1 IS B1
j1

THEN Y IS Ai

IF X1 IS B1
j1+1 THEN Y IS Ai

but also if the linguistic valuesB1
j1

andB1
j1+1 are mapped to two consecutive linguistic

output valuesAi andAi+1

IF X1 IS B1
j1

THEN Y IS Ai

IF X1 IS B1
j1+1 THEN Y IS Ai+1
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For models with a single input variable, monotonicity is guaranteed for any monotone
rule base if a monotone input-output behaviour is obtained in the two cases above and
in the case when linguistic valuesB1

j1
andB1

j1+1 are mapped to two non-consecutive
output valuesAi andAi+p (p ∈ N, p > 1).

Thus, given the general representation of the rules containing a linguistic value
B1

j1
and the subsequent linguistic valueB1

j1+1 in their antecedent,i.e.

IF X1 IS B1
j1

THEN Y IS Ai

IF X1 IS B1
j1+1 THEN Y IS Ai+p

the values to be considered forp are 0 and 1 when investigating the monotonicity of
models with a monotone smooth rule base. The investigation of the monotonicity of
models with a monotone rule base also requires considering values ofp larger than 1.

7.3.1.2 Models with two input variables

For models with two input variables, the set of four rules that might be fired by a given
input vectorx = (x1, x2) and whose consequents might therefore contribute to the
model output can be represented as

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+p′′

2

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+p′′

1

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+p′′

3

with p′′1 , p′′2 , p′′3 ∈ N and, in order to obtain a monotone rule base,p′′1 ≤ p′′3 and
p′′2 ≤ p′′3 . As monotonicity of a model requires monotonicity in all of its input vari-
ables, if monotonicity is guaranteed forp′′1 ≤ p′′2 it follows by permutation ofX1 and
X2 that monotonicity is also guaranteed forp′′1 ≥ p′′2 . Thus, the investigation of the
monotonicity of models with two input variables only requires the verification of the
monotonicity of all situations included in the following general representation

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+p′

1+p′

2

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+p′

1

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+p′

3

with p′1, p
′
2, p

′
3 ∈ N and, in order to obtain a monotone rule base,p′1 + p′2 ≤ p′3. In

Chapters 8–9 the following, more straightforward representation will be used, incorpo-
rating all constraints the indices of the output membershipfunctions should satisfy

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+p1+p2

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+p1

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+p1+p2+p3

with p1, p2, p3 ∈ N. The four rules are represented schematically in Fig. 7.2.
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X1B1
j1

B1
j1+1

Ai

Ai+p1+p2

Ai+p1

Ai+p1+p2+p3

X2

B2
j2

B2
j2+1

Figure 7.2: General representation of the rules fired for a model with two input vari-
ables.

When the rule base is also smooth, the values ofp1, p2 andp3 in the rules above
are restricted to

(p1, p2, p3) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1)} . (7.9)

When investigating the monotonicity of models with a monotone rule base, eight sit-
uations wherep1, p2 and p3 are either equal to zero or strictly positive, should be
considered when applying a defuzzification method, like forinstance the MOM de-
fuzzification method, which allows for the application of the same procedure in the
occurrence and absence of consecutive linguistic values among the fired output values.
When applying a defuzzification method, like for instance theCOG defuzzification
method, requiring a different procedure whether or not there are consecutive linguistic
output values among the fired output values, 27 situations should be considered where
p1, p2 andp3 are either equal to zero, equal to 1 or larger than 1.

7.3.1.3 Models with three or more input variables

For models with three input variables the set of eight rules that might be fired to a non-
zero fulfilment degree and whose consequents might therefore contribute to the model
output can be represented in a general way as
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IF X1 IS B1
j1

AND X2 IS B2
j2

AND X3 IS B3
j3

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2

AND X3 IS B3
j3+1 THEN Y IS Ai+p′′

4

IF X1 IS B1
j1

AND X2 IS B2
j2+1 AND X3 IS B3

j3
THEN Y IS Ai+p′′

2

IF X1 IS B1
j1

AND X2 IS B2
j2+1 AND X3 IS B3

j3+1 THEN Y IS Ai+p′′

6

IF X1 IS B1
j1+1 AND X2 IS B2

j2
AND X3 IS B3

j3
THEN Y IS Ai+p′′

1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
AND X3 IS B3

j3+1 THEN Y IS Ai+p′′

5

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 AND X3 IS B3
j3

THEN Y IS Ai+p′′

3

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 AND X3 IS B3
j3+1 THEN Y IS Ai+p′′

7

with p′′1 , p′′2 , p′′3 , p′′4 , p′′5 , p′′6 , p′′7 ∈ N and, in order to obtain a monotone rule base,p′′1 ≤
p′′3 , p′′2 ≤ p′′3 , p′′1 ≤ p′′5 , p′′4 ≤ p′′5 , p′′2 ≤ p′′6 , p′′4 ≤ p′′6 , p′′3 ≤ p′′7 , p′′5 ≤ p′′7 andp′′6 ≤ p′′7 .

Any set of eight rules originating from a monotone rule base either satisfies, or
can, by permuting the input variables, be converted into eight rules satisfying

p′′1 ≤ p′′2 ≤ p′′3 . (7.10)

Therefore, the representation shown in Fig. 7.3 will be usedwhen investigating the
monotonicity of models with three input variables

IF X1 IS B1
j1

AND X2 IS B2
j2

AND X3 IS B3
j3

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2

AND X3 IS B3
j3+1 THEN Y IS Ai+p1+p2+p3

IF X1 IS B1
j1

AND X2 IS B2
j2+1 AND X3 IS B3

j3
THEN Y IS Ai+p1+p2

IF X1 IS B1
j1

AND X2 IS B2
j2+1 AND X3 IS B3

j3+1 THEN Y IS Ai+p1+p2+p3+p5

IF X1 IS B1
j1+1 AND X2 IS B2

j2
AND X3 IS B3

j3
THEN Y IS Ai+p1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
AND X3 IS B3

j3+1 THEN Y IS Ai+p1+p2+p3+p6

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 AND X3 IS B3
j3

THEN Y IS Ai+p1+p2+p4

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 AND X3 IS B3
j3+1 THEN Y IS Ai+p′

7

with p1, p2, p3, p4, p5, p6, p7 ∈ N andp′7 = p1 + p2 + max(p4, p3 + p5, p3 + p6) + p7.
In a smoothrule base the parameterspi are either zero or one and satisfy the

following inequalities

p1 + p2 + p3 ≤ 1 , (7.11)

p3 + p5 ≤ 1 , (7.12)

p2 + p3 + p6 ≤ 1 , (7.13)

p2 + p4 ≤ 1 , (7.14)

max(p4, p3 + p5, p3 + p6) + p7 − p3 − p5 ≤ 1 , (7.15)

max(p4, p3 + p5, p3 + p6) + p7 − p3 − p6 ≤ 1 , (7.16)

max(p4, p3 + p5, p3 + p6) + p7 − p4 ≤ 1 . (7.17)

There exists 26 vectors(p1, . . . , p7) satisfying Eqs. (7.11–7.17). Among them
four sets of three vectors correspond to rule bases that are identical after permuting
input variables. Of each of these sets only one vector is selected, which reduces the
number of rule bases that should be investigated to 18. The 18vectors(p1, . . . , p7) are
listed in Table 7.1.
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Figure 7.3: General representation of the rules fired for a model with three input vari-
ables.

General representations of the rules fired for models with three input variables
and a monotone, but non-smooth rule base, or models with morethan three input vari-
ables, are not included in this section as these models are not explicitly discussed in
Chapters 8–9.

7.3.2 ATL–ATM models

In this section it is shown that the fuzzy output of an ATL model (resp. ATM model)
for a given input vectorx is determined by the rules derived from the rules fired by the
input vectorx under consideration in case of Mamdani–Assilian or plain implicator-
based inference, even more rules of the ATL model (resp. ATM model) are fired
than of the corresponding linguistic model when applying Mamdani–Assilian or plain
implicator-based inference.

7.3.2.1 Models with a single input variable

As illustrated in Fig 7.4, an inputx1 of a model with a single input variable, with

γ1 = 1−B1
j1

(x1) = B1
j1+1(x1) , (7.18)
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Table 7.1: Combinations of values that should be consideredfor the parameterspi(i ∈
{1, . . . , 7}) in Fig. 7.3 when investigating the monotonicity of models with
three input variables and a monotone smooth rule base.

Case p1 p2 p3 p4 p5 p6 p7

I 0 0 0 0 0 0 0
II 0 0 0 0 0 0 1
III 0 0 0 0 1 1 0
IV 0 0 0 1 0 0 0
V 0 0 0 1 1 1 0
VI 0 0 0 1 1 1 1
VII 0 0 1 0 0 0 0
VIII 0 0 1 1 0 0 0
IX 0 0 1 1 0 0 1
X 0 1 0 0 0 0 0
XI 0 1 0 0 0 0 1
XII 0 1 0 0 1 0 0
XIII 1 0 0 0 0 0 0
XIV 1 0 0 0 0 0 1
XV 1 0 0 0 1 1 0
XVI 1 0 0 1 0 0 0
XVII 1 0 0 1 1 1 0
XVIII 1 0 0 1 1 1 1

119



Chapter 7. Monotonicity of linguistic fuzzy models
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)
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Figure 7.4: Membership degrees of an inputx1 to the linguistic values in the rule an-
tecedents of an ATL and an ATM model.

has the following membership degrees to the linguistic values in the antecedents of the
rules of the ATL and ATM model:

ATL(B1
j )(x1) =







1 , if j ≤ j1 ,

γ1 , if j = j1 + 1 ,

0 , if j > j1 + 1 ,

(7.19)

ATM(B1
j )(x1) =







0 , if j < j1 ,

1− γ1 , if j = j1 ,

1 , if j ≥ j1 + 1 .

(7.20)

Since in a model with a single input variable the fulfilment degree of a rule is
identical to the membership degree of the inputx1 to the linguistic value in the rule’s
antecedent, an inputx1 fires j1 rules in the ATL model,i.e. the rules containing the
linguistic valuesATL(B1

1) to ATL(B1
j1

) in their antecedent, ifγ1 = 0; and firesj1 +1

rules, i.e. the rules containing the linguistic valuesATL(B1
1) to ATL(B1

j1+1) in their
antecedent, ifγ1 > 0. In the ATM model it firesn1 − j1 rules,i.e. the rules containing
the linguistic valuesATM(B1

j1+1) to ATM(B1
n1

) in their antecedent, ifγ1 = 1; and
n1−j1+1 rules,i.e.the rules containing the linguistic valuesATM(B1

j1
) toATM(B1

n1
)

in their antecedent, ifγ1 < 1.
The fuzzy output of the ATL model is the intersection of the individual adapted
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output membership functions of ther rules,i.e.

AATL(y) =
r

min
s=1

(ATL(Ais
))′(y)

=
r

min
s=1

IT (βs,ATL(Ais
)(y))

=
r

min
s=1

IT (ATL(B1
j1,s

)(x1),ATL(Ais
)(y)) . (7.21)

In the following paragraphs the linguistic output values inthe consequents of the rules
of the ATL model containing respectivelyATL(B1

j1
) and ATL(B1

j1+1) in their an-
tecedent will be noted byATL(Ai) andATL(Ai+p), i.e.

IF X1 IS ATL(B1
j1

) THEN Y IS ATL(Ai)
IF X1 IS ATL(B1

j1+1) THEN Y IS ATL(Ai+p)

The fulfilment degrees of the linguistic output valuesATL(Ai) andATL(Ai+p) are
equal to 1 andγ1 respectively. Two groups can be distinguished among ther− 2 other
rules: rules containing in their antecedent a linguistic value smaller thanB1

j1
to which

the modifier ATL is applied and which is fired to a fulfilment degree equal to 1,i.e.

S1 = {s ∈ S | j1,s < j1} , (7.22)

and rules containing in their antecedent a linguistic valuelarger thanB1
j1+1 to which

the modifier ATL is applied and which are not fired,i.e.

S2 = {s ∈ S | j1,s > j1 + 1} . (7.23)

When describing the linguistic output valuesAi as defined in Section 7.2.1,
for all output values the membership degree toATL(Ai′) is larger than or equal the
membership degree toATL(Ai′′) whenAi′ is smaller thanAi′′ , i.e.

(∀y ∈ Y)(∀i′, i′′ ∈ I)(i′ < i′′ ⇒ ATL(Ai′)(y) ≥ ATL(Ai′′)(y)) . (7.24)

Furthermore, implicators have increasing second partial functions (Eq. (2.33)). Thus,
the membership degree to the adapted linguistic value(ATL(Ai′))

′ is larger than or
equal to the membership degree to the adapted linguistic value (ATL(Ai′′))

′ for all
output values ifAi′ is smaller thanAi′′ and if they are fired to the same fulfilment
degree,i.e.

(∀y ∈ Y)(∀i′, i′′ ∈ I)(i′ < i′′ ⇒ IT (α,ATL(Ai′)(y)) ≥ IT (α,ATL(Ai′′)(y))) .
(7.25)

As the rule base from which the rule base of the ATL model is derived is
monotone, the linguistic output values in the consequents of the first group of rules
are linguistic output values smaller than or equal toAi, to which the modifier ATL is
applied,i.e.

(∀s ∈ S1)(is ≤ i) , (7.26)
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and as the fulfilment degrees of the first group of rules are allequal to 1 and thus equal
to the fulfilment degree of the linguistic output valueATL(Ai), i.e.

(∀s ∈ S1)(βs = αATL,i = 1) , (7.27)

it follows from Eq. (7.25) that the minimum of the membershipdegree of an output
value to the adapted linguistic output value of a rule from the first group and its mem-
bership degree to the adapted linguistic value(ATL(Ai+p))

′ is given by the member-
ship degree to the latter,i.e.

(∀s ∈ S1)(∀y ∈ Y)(IT (1,ATL(Ais
)(y)) ≥ IT (1,ATL(Ai)(y))) . (7.28)

As the rules of the second group are not fired, their contributions to the global
fuzzy output are identical to the universal set,i.e.

(∀s ∈ S2)(∀y ∈ Y)((ATL(Ais
))′(y) = 1) . (7.29)

From Eqs. (7.28–7.29) and the fact that for the three considered implicatorsIT

it holds that
(∀x ∈ [0, 1])(IT (1, x) = x) , (7.30)

a property known as the neutrality principle, it follows that the fuzzy output of the ATL
model is given by the intersection of the original linguistic valueATL(Ai) and the
adapted linguistic value(ATL(Ai+p))

′, i.e.

AATL(y) = min(min
s∈S1

(ATL(Ais
))′(y), (ATL(Ai))

′(y), (ATL(Ai+p))
′(y),

min
s∈S2

(ATL(Ais
))′(y))

= min(IT (1,ATL(Ai)(y)), IT (γ1,ATL(Ai+p)(y)))

= min(ATL(Ai)(y), IT (γ1,ATL(Ai+p)(y))) . (7.31)

Analogously, one can show that the fuzzy output of the ATM model is given by
the intersection of the adapted linguistic value(ATM(Ai))

′ and the original linguistic
valueATM(Ai+p), i.e.

AATM(y) =
r

min
s=1

(ATM(Ais
))′(y)

= min(IT (1− γ1,ATM(Ai)(y)),ATM(Ai+p)(y)) . (7.32)

Thus, the rules that should be considered when determining the fuzzy output of
an ATL–ATM model with a single input value are the rules derived from

IF X1 IS B1
j1

THEN Y IS Ai

IF X1 IS B1
j1+1 THEN Y IS Ai+p

i.e. the same rules that have to be considered when using Mamdani–Assilian or plain
implicator-based inference to obtain the output of the linguistic fuzzy model from
which the ATL and ATM models are derived.

122



Chapter 7. Monotonicity of linguistic fuzzy models

7.3.2.2 Models with two input variables

For an input vectorx = (x1, x2) there always existj1 andj2 such that

γ1 = 1−B1
j1

(x1) = B1
j1+1(x1) , (7.33)

γ2 = 1−B2
j2

(x2) = B2
j2+1(x2) . (7.34)

When applying Mamdani–Assilian or plain implicator-based inference to the linguistic
fuzzy model from which the ATL and ATM models are derived, an input vectorx fires
at most four rules

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+p1+p2

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+p1

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+p1+p2+p3

As is shown below only the rules derived from these four rulesneed to be considered in
order to determine the fuzzy output of the corresponding ATLand ATM models. The
fuzzy outputsAATL andAATM of respectively the ATL and ATM models are obtained
by

AATL(y) = min(ATL(Ai)(y), IT (γ2,ATL(Ai+p1
)(y)),

IT (γ1,ATL(Ai+p1+p2
)(y)), IT (T (γ1, γ2),ATL(Ai+p1+p2+p3

)(y))) ,
(7.35)

AATM(y) = min(IT (T (1− γ1, 1− γ2),ATM(Ai)(y)),

IT (1− γ1,ATM(Ai+p1
)(y)), IT (1− γ2,ATM(Ai+p1+p2

)(y)),

ATM(Ai+p1+p2+p3
)(y)) . (7.36)

In the rule base of the ATL model, apart from the rules derivedfrom the four
rules above

IF X1 IS ATL(B1
j1

) AND X2 IS ATL(B2
j2

) THEN Y IS ATL(Ai)
IF X1 IS ATL(B1

j1
) AND X2 IS ATL(B2

j2+1) THEN Y IS ATL(Ai+p1+p2)
IF X1 IS ATL(B1

j1+1) AND X2 IS ATL(B2
j2

) THEN Y IS ATL(Ai+p1)
IF X1 IS ATL(B1

j1+1) AND X2 IS ATL(B2
j2+1) THEN Y IS ATL(Ai+p1+p2+p3)

four types of rules can be distinguished as illustrated in Fig. 7.5.
The first group of rules is derived from rules containing bothfor X1 andX2

linguistic values smaller than or equal to respectivelyB1
j1

andB2
j2

, i.e.

S1 = {s ∈ S | j1,s ≤ j1 ∧ j2,s ≤ j2} \ {(j1, j2)} . (7.37)

These rules are fired to a fulfilment degree equal to 1 for anys ∈ S1, i.e.

βs = T (ATL(B1
j1,s)(x1),ATL(B2

j2,s)(x2)) = T (1, 1) = 1 . (7.38)

As the rule

IF X1 IS ATL(B1
j1

) AND X2 IS ATL(B2
j2

) THEN Y IS ATL(Ai)
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)
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Figure 7.5: Fulfilment degrees obtained for the rules of an ATL model for an input
vectorx belonging to the indicated membership degrees to the linguistic
values ofX1 andX2.

is also fired to a fulfilment degree equal to 1,i.e.

αATL,i = T (ATL(B1
j1

)(x1),ATL(B2
j2

)(x2)) = T (1, 1) = 1 , (7.39)

and as the rule base from which the rule base of the ATL model isderived is monotone,
i.e.

(∀s ∈ S1)(is ≤ i) , (7.40)

it follows from Eq. (7.25) that all output values have a smaller or equal membership
degree to the adapted linguistic value(ATL(Ai))

′ than to the adapted linguistic output
value of a rule of the first group of rules,i.e.

(∀s ∈ S1)(∀y ∈ Y)((ATL(Ais
))′(y) ≥ (ATL(Ai))

′(y)) . (7.41)

The second type of rules is derived from rules containing a linguistic value
smaller thanB1

j1
for X1 and the linguistic valueB2

j2+1 for X2 in their antecedent,i.e.

S2 = {s ∈ S | j1,s < j1 ∧ j2,s = j2 + 1} . (7.42)

These rules are fired to the same fulfilment degree as the rule

IF X1 IS ATL(B1
j1

) AND X2 IS ATL(B2
j2+1) THEN Y IS ATL(Ai+p1+p2)

namely, to the degreeγ2

αATL,i+p1+p2
= T (ATL(B1

j1
)(x1),ATL(B2

j2+1)(x2)) = T (1, γ2) = γ2 . (7.43)

As the rule base from which the rule base of the ATL model is derived is monotone,
i.e.

(∀s ∈ S2)(is ≤ i + p1 + p2) , (7.44)
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it follows from Eq. (7.25) that all output values have a smaller or equal membership
degree to the adapted linguistic value(ATL(Ai+p1+p2

))′ than to the adapted linguistic
output value of a rule of the second group of rules,i.e.

(∀s ∈ S2)(∀y ∈ Y)((ATL(Ais
))′(y) ≥ (ATL(Ai+p1+p2

))′(y)) . (7.45)

The third group of rules is derived from rules containing either for X1 or for
X2 (or for both) a linguistic value larger than respectivelyB1

j1+1 andB2
j2+1 in their

antecedent,i.e.

S3 = {s ∈ S | j1,s > j1 + 1 ∨ j2,s > j2 + 1} . (7.46)

These rules are not fired as the membership degree to at least one of the linguistic
values in their antecedent is zero,i.e.

(∀s ∈ S3)(βs = 0) , (7.47)

and therefore do not determine the fuzzy output of the ATL model as the corresponding
adapted output membership functions are identical to the universal set.

The fourth group of rules is derived from rules containing the linguistic value
B1

j1+1 for X1 and a linguistic value smaller thanB2
j2

for X2 in their antecedent,i.e.

S4 = {s ∈ S | j1,s = j1 + 1 ∨ j2,s < j2} . (7.48)

These rules are fired to the same fulfilment degree as the rule

IF X1 IS ATL(B1
j1+1) AND X2 IS ATL(B2

j2
) THEN Y IS ATL(Ai+p1)

namely, to the degreeγ1

αATL,i+p1
= T (ATL(B1

j1+1)(x1),ATL(B2
j2

)(x2)) = T (γ1, 1) = γ1 . (7.49)

As the rule base from which the rule base of the ATL model is derived is monotone,
i.e.

(∀s ∈ S4)(is ≤ i + p1) , (7.50)

it follows from Eq. (7.25) that all output values have a smaller or equal membership
degree to the adapted linguistic value(ATL(Ai+p1

))′ than to the adapted linguistic
output value of a rule of the fourth group of rules,i.e.

(∀s ∈ S4)(∀y ∈ Y)((ATL(Ais
))′(y) ≥ (ATL(Ai+p1

))′(y)) . (7.51)

Thus, the discussion above can be summarized in the following four equations

min(min
s∈S1

(ATL(Ais
))′(y), (ATL(Ai))

′(y)) = (ATL(Ai))
′(y) , (7.52)

min(min
s∈S2

(ATL(Ais
))′(y), (ATL(Ai+p1+p2

))′(y)) = (ATL(Ai+p1+p2
))′(y) , (7.53)

min(min
s∈S3

(ATL(Ais
))′(y), (ATL(Ai+p1+p2+p3

))′(y)) = (ATL(Ai+p1+p2+p3
))′(y) ,

(7.54)

min(min
s∈S4

(ATL(Ais
))′(y), (ATL(Ai+p1

))′(y)) = (ATL(Ai+p1
))′(y) , (7.55)
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Figure 7.6: Fulfilment degrees obtained for the rules of an ATM model for an input
vectorx belonging to the indicated membership degrees to the linguistic
values ofX1 andX2.

and the general expression for the fuzzy output of the ATL model

AATL(y) =
r

min
s=1

(ATL(Ais
))′(y) , (7.56)

can be simplified to the expression given in Eq. (7.35). The expression for the fuzzy
output of the ATM model in Eq. (7.36) is obtained analogously. The fulfilment de-
grees of rules for an input vectorx in an ATM model are schematically represented in
Fig. 7.6.

7.3.2.3 Models with three or more input variables

The rule base of an ATL model, respectively ATM model, corresponding to a linguistic
fuzzy model with three input variables containsr rules of the form

Rs: IF X1 IS ATL(B1
j1,s

) AND X2 IS ATL(B2
j2,s

) AND X3 IS ATL(B3
j3,s

)

THENY IS ATL(Ais
)

respectively,

Rs: IF X1 IS ATM(B1
j1,s

) AND X2 IS ATM(B2
j2,s

) AND X3 IS ATM(B3
j3,s

)

THENY IS ATM(Ais
)

For an input vectorx = (x1, x2, x3) there always existj1, j2 andj3 such that

γ1 = 1−B1
j1

(x1) = B1
j1+1(x1) , (7.57)

γ2 = 1−B2
j2

(x2) = B2
j2+1(x2) , (7.58)

γ3 = 1−B3
j3

(x3) = B3
j3+1(x3) . (7.59)
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Figure 7.7: Fulfilment degrees obtained in an ATL model with three input variables for
the rules containing the linguistic valueB3

j3+1 and for an input vectorx
belonging to the indicated membership degrees to the linguistic values of
X1 andX2 and to a degreeγ3 to ATL(B3

j3+1) .

The rules in the rule base of the ATL model can be divided in three groups. A
first group of rules is derived from rules containing a linguistic value smaller than or
equal toB3

j3
in their antecedent. Since

(∀j ≤ j3)(ATL(B3
j )(x3) = 1) , (7.60)

for a givenATL(B1
j1,s) andATL(B2

j2,s), the same fulfilment degree is obtained for
these rules as the fulfilment degrees shown in Fig. 7.5 for therules of a model with two
input variables. Following a similar reasoning as in Section 7.3.2.2, one can show that
the intersection of individual contributions of this first group of rules is given by the
intersection of the individual contributions of the four rules

IF X1 IS ATL(B1
j1

) AND X2 IS ATL(B2
j2

) AND X3 IS ATL(B3
j3

)
THEN Y IS ATL(Ai)
IF X1 IS ATL(B1

j1
) AND X2 IS ATL(B2

j2+1) AND X3 IS ATL(B3
j3

)
THEN Y IS ATL(Ai+p1+p2

)
IF X1 IS ATL(B1

j1+1) AND X2 IS ATL(B2
j2

) AND X3 IS ATL(B3
j3

)
THEN Y IS ATL(Ai+p1

)
IF X1 IS ATL(B1

j1+1) AND X2 IS ATL(B2
j2+1) AND X3 IS ATL(B3

j3
)

THEN Y IS ATL(Ai+p1+p2+p4
)

A second group of rules contains the linguistic valueATL(B3
j3+1) in their an-

tecedent. The fulfilment degrees obtained for these rules asfunction ofATL(B1
j1,s) and

ATL(B2
j2,s) are shown in Fig. 7.7. Following a similar reasoning as in Section 7.3.2.2,

one can show that the intersection of individual contributions of this second group of
rules is given by the intersection of the individual contributions of the four rules
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IF X1 IS ATL(B1
j1

) AND X2 IS ATL(B2
j2

) AND X3 IS ATL(B3
j3+1)

THEN Y IS ATL(Ai+p1+p2+p3
)

IF X1 IS ATL(B1
j1

) AND X2 IS ATL(B2
j2+1) AND X3 IS ATL(B3

j3+1)
THEN Y IS ATL(Ai+p1+p2+p3+p5

)
IF X1 IS ATL(B1

j1+1) AND X2 IS ATL(B2
j2

) AND X3 IS ATL(B3
j3+1)

THEN Y IS ATL(Ai+p1+p2+p3+p6
)

IF X1 IS ATL(B1
j1+1) AND X2 IS ATL(B2

j2+1) AND X3 IS ATL(B3
j3+1)

THEN Y IS ATL(Ai+p′

7
)

with p1, p2, p3, p4, p5, p6, p7 ∈ N andp′7 = p1 + p2 + max(p4, p3 + p5, p3 + p6) + p7.
A third, and last, group of rules is derived from rules containing a linguistic

value larger thanB3
j3+1 in their antecedent. Since

(∀j > j3 + 1)(ATL(B3
j )(x3) = 0) , (7.61)

these rules are not fired and their individual contributionsto the global fuzzy output are
identical to the universal set.

An analogous reasoning can be made for the ATM model. Summarizing, the
fuzzy output obtained for an input vectorx of an ATL and ATM model corresponding
to a linguistic fuzzy model with three input variables is determined by the adapted
membership functions in the consequents of the rules corresponding to the eight rules
fired by the input vectorx in the linguistic fuzzy model when Mamdani–Assilian or
plain implicator-based inference is applied

AATL(y) = min(ATL(Ai)(y), IT (γ3,ATL(Ai+p1+p2+p3
)(y)),

IT (γ2,ATL(Ai+p1+p2
)(y)),

IT (T (γ2, γ3),ATL(Ai+p1+p2+p3+p5
)(y)), IT (γ1,ATL(Ai+p1

)(y)),

IT (T (γ1, γ3),ATL(Ai+p1+p2+p3+p6
)(y)),

IT (T (γ1, γ2),ATL(Ai+p1+p2+p4
)(y)),

IT (T (γ1, γ2, γ3),ATL(Ai+p′

7
)(y))) , (7.62)

AATM(y) = min(IT (T (1− γ1, 1− γ2, 1− γ3),ATM(Ai)(y)),

IT (T (1− γ1, 1− γ2),ATM(Ai+p1+p2+p3
)(y)),

IT (T (1− γ1, 1− γ3),ATM(Ai+p1+p2
)(y)),

IT (1− γ1,ATM(Ai+p1+p2+p3+p5
)(y)),

IT (T (1− γ2, 1− γ3),ATM(Ai+p1
)(y)),

IT (1− γ2,ATM(Ai+p1+p2+p3+p6
)(y)),

IT (1− γ3,ATM(Ai+p1+p2+p4
)(y)),ATM(Ai+p′

7
)(y)) . (7.63)

Following a similar reasoning as above, one can easily verify that also for mod-
els with more than three input variables the fuzzy outputs ofthe corresponding ATL and
ATM models obtained for an input vectorx are determined by the rules corresponding
to the rules fired by the given input vectorx when applying Mamdani–Assilian or plain
implicator-based inference.
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7.4 Incomparable fuzzy model outputs

7.4.1 Circumventing incomparability by defuzzification

Investigating the monotonicity of a model requires the existence of an order on the
(fuzzy) model outputs of, on the one hand, any input vectorxi, and, on the other
hand, all input vectorsxj differing in only one input value fromxi. Since no order
can be defined between the empty set or the universal set and any non-empty non-
universal fuzzy set, nor can a defuzzification procedure be proposed to circumvent this
incomparability, a prerequisite for a monotone model is to return a non-empty non-
universal fuzzy output for any input vectorx.

The empty set could be consistently defuzzified by mapping iteither to the ex-
pressionunknownor to a certain crisp value. It is clear that the first procedure does not
resolve the incomparability present on the level of the fuzzy model outputs. The sec-
ond procedure only results in a global monotone input-output behaviour if a monotone
input-output behaviour is obtained in those regions of the input space where only non-
empty fuzzy sets are obtained as fuzzy model outputs and if the crisp valuey∗

emptyset

to which the empty set is mapped, satisfies

(∀x ∈ Xemptyset)(∀l ∈ L)(y∗
lb,l(x) ≤ y∗

emptyset ≤ y∗
ub,l(x)) , (7.64)

with

Xemptyset = {x | (∀y ∈ Y)(A(x)(y) = 0)} ,

y∗
lb,l(x) = sup{y∗(x′) | x′ /∈ Xemptyset ∧ xl > x′

l ∧ (∀l′ ∈ L \ {l})(xl′ = x′
l′)} ,

y∗
ub,l(x) = inf{y∗(x′) | x′ /∈ Xemptyset ∧ xl < x′

l ∧ (∀l′ ∈ L \ {l})(xl′ = x′
l′)} .

Note that a slightly different notation is used in Eq. (7.64)for the fuzzy outputA(y)
and the crisp outputy∗ in order to be able to indicate for which input vectorx the fuzzy
outputA(y)(x) and the crisp outputy∗(x) was obtained.

As shown in Fig. 7.8(a) a monotone input-output behaviour isobtained for a
Mamdani–Assilian model applying the t-normTP combined with the COG defuzzifi-
cation method, using the same membership functions for bothinput variablesX1 and
X2 and the output variableY and containing 25 rules of the following form in its
complete rule base

Rs: IF X1 IS B1
j1,s

AND X2 IS B2
j2,s

THEN Y IS Ais

with is = min{i | i ∈ N0, i ≥
1
5j1,sj2,s}. When the rule

IF X1 IS B1
3 AND X2 IS B2

2 THEN Y IS A2

is removed from the rule base, the empty set is returned for inputs belonging to the
kernels of the linguistic valuesB1

3 and B2
2 and a monotone input-output behaviour

is obtained provided the empty set is mapped to a crisp value larger than 0.104 and
smaller than 0.300. When the rule

IF X1 IS B1
4 AND X2 IS B2

4 THEN Y IS A4
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Figure 7.8: Model outputs of (a) a Mamdani–Assilian model returning a non-empty
fuzzy set for any input vector and (b) a Mamdani–Assilian model returning
the empty set in two regions of the input space.

is removed from the rule base, the empty set is returned for inputs belonging to the
kernels of the linguistic valuesB1

4 and B2
4 and a monotone input-output behaviour

is obtained provided the empty set is mapped to a crisp value larger than 0.500 and
smaller than 0.700. When both rules are removed from the rule base (Fig. 7.8(b)), the
empty set is returned as fuzzy output for inputs belonging tothe kernels of the linguistic
valuesB1

3 andB2
2 as well as for inputs belonging to the kernels of the linguistic values

B1
4 and B2

4 and there exists no valuey∗
emptyset satisfying Eq. (7.64) . The second

defuzzification procedure might therefore seem valuable from a theoretical point of
view, but it is hardly applicable in practice asy∗

emptyset has to be redefined every time
a model property is altered, if, at all, a value satisfying Eq. (7.64) exists. Therefore,
to return a non-empty fuzzy output for any input vectorx remains a prerequisite for a
monotone model.

Analogously it can be illustrated by considering a model applying plain im-
plicator-based inference instead of Mamdani–Assilian inference in the above example
that the incomparability between the universal set and any non-universal set cannot be
circumvented by a defuzzification procedure.

7.4.2 Mamdani–Assilian models

Given the model properties assumed in this work (Section 7.2), the fuzzy output of a
Mamdani–Assilian model is equal to the empty set if

(∀y ∈ Y)(A(y) =
n

max
i=1

A′
i(y) = 0) , (7.65)
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or, explicitly,

(∀y ∈ Y)(∀i ∈ I)(T (αi, Ai(y)) = 0) . (7.66)

As all output membership functions have a non-empty kernel,it holds that

(∀i ∈ I)(∃yi
kern ∈ Y)(Ai(y

i
kernel) = 1) . (7.67)

It then follows in particular that

(∀i ∈ I)(T (αi, Ai(y
i
kern)) = 0) , (7.68)

or, in view of Eqs. (2.18–2.19), that

(∀i ∈ I)(αi = 0) . (7.69)

With Eq. (2.46) it then follows that

βmax =
r

max
s=1

βs = 0 . (7.70)

In other words, a non-empty fuzzy set is obtained as model output for all input
vectorsx of a Mamdani–Assilian model if the maximum fulfilment degreeβmax is
strictly positive for all input vectorsx. In Mamdani–Assilian models with a single
input variableX1, the fulfilment degreesβs are identical to the membership degrees of
the input valuex1 to the linguistic values ofX1. Models with a single input variable,
holding the properties defined in Section 7.2, never return the empty set as fuzzy output
since the maximum fulfilment degreeβmax,1 is at least 0.5

βmax,1 = max(1− γ1, γ1) ≥ 0.5 . (7.71)

In Mamdani–Assilian models with two or more input variables, the fulfilment
degreesβs are calculated from the membership degrees to the linguistic values of the
input variables by means of a t-norm. LetBT,m be the set of all fulfilment degreesβs

corresponding to an input vectorx defined as

BT,m = {βs(x) =
m

T
l=1

Bl
jl,s

(xl) | (j1,s, . . . , jm,s) ∈
m∏

l=1

{jl, jl+1}} , (7.72)

with the indicesjl determined by Eq. (7.8). Note that for the input vectorx under
consideration all fulfilment degrees not belonging toBT,m are equal to zero.

When applying the t-normTM the maximum fulfilment degreeβmax,TM,m ob-
tained for a model withm input variables is at least 0.5 as is shown below by induction,
i.e.

βmax,TM,m = max(BTM,m) ≥ 0.5 . (7.73)
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Form = 2, Eq. (7.73) holds as

βmax,TM,2 = max(BTM,2)

= max(min(1− γ1, 1− γ2),min(1− γ1, γ2),min(γ1, 1− γ2),

min(γ1, γ2))

= max(max(min(1− γ1, 1− γ2),min(1− γ1, γ2)),

max(min(γ1, 1− γ2),min(γ1, γ2)))

= max(min(1− γ1,max(1− γ2, γ2)),min(γ1,max(1− γ2, γ2)))

= min(max(1− γ1, γ1),max(1− γ2, γ2))

≥ 0.5 . (7.74)

Assuming that Eq. (7.73) holds form∗,

βmax,TM,m∗ = max(BTM,m∗) ≥ 0.5 , (7.75)

it also holds form∗ + 1 as

βmax,TM,m∗+1 = max(BTM,m∗+1)

= max( max
β∈BTM,m∗

min(β, 1− γm∗+1), max
β∈BTM,m∗

min(β, γm∗+1))

= max(min(max(BTM,m∗), 1− γm∗+1),

min(max(BTM,m∗), γm∗+1))

= min(βmax,TM,m∗ ,max(1− γm∗+1, γm∗+1))

≥ 0.5 . (7.76)

When applying the t-normTP the maximum fulfilment degreeβmax,TP,m ob-
tained for a model withm input variables is at least2−m as shown below by induction,
i.e.

βmax,TP,m = max(BTP,m) ≥ 2−m . (7.77)

Form = 2, Eq. (7.77) holds as

βmax,TP,2 = max(BTP,2)

= max((1− γ1)(1− γ2), (1− γ1)γ2, γ1(1− γ2), γ1γ2)

= max(max((1− γ1)(1− γ2), (1− γ1)γ2,max(γ1(1− γ2), γ1γ2))

= max((1− γ1)max(1− γ2, γ2), γ1 max(1− γ2, γ2))

= (max(1− γ1, γ1))(max(1− γ2, γ2))

≥ 0.25 . (7.78)

Assuming that Eq. (7.77) holds form∗,

βmax,TP,m∗ = max(BTP,m∗) ≥ 2−m∗

, (7.79)
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it also holds form∗ + 1 as

βmax,TP,m∗+1 = max(BTP,m∗+1)

= max( max
β∈BTP,m∗

(β · (1− γm∗+1)), max
β∈BTP,m∗

(β · γm∗+1))

= max((1− γm∗+1) ·max(BTP,m∗), γm∗+1 ·max(BTP,m∗))

= βmax,TP,m∗ max(1− γm∗+1, γm∗+1)

≥ 2−(m∗+1) . (7.80)

For Mamdani–Assilian models with two or more input variables, the t-normTL

is not appropriate as the empty set is obtained as fuzzy output when an input vector
has two input values with equal membership degree to two linguistic values in their
corresponding input domain (Γm = (γ1, . . . , γm)), i.e.

min
Γm∈[0,1]m

βmax,TL,m = min
Γm∈[0,1]m

max(BTL,m) = 0 . (7.81)

Form = 2 the maximum fulfilment degreeβmax,TL,2 is obtained by

βmax,TL,2 = max(BTL,2)

= max(max(1− γ1 + 1− γ2 − 1, 0),max(1− γ1 + γ2 − 1, 0),

max(γ1 + 1− γ2 − 1, 0),max(γ1 + γ2 − 1, 0))

= max(1− γ1 + 1− γ2 − 1, 1− γ1 + γ2 − 1,

γ1 + 1− γ2 − 1, γ1 + γ2 − 1, 0)

= max(1− γ1 + max(1− γ2, γ2)− 1, γ1 + max(1− γ2, γ2)− 1, 0)

= max(max(1− γ1, γ1) + max(1− γ2, γ2)− 1, 0) . (7.82)

If γ1 andγ2 are both equal to 0.5,βmax,TL,2 is equal to zero

βmax,TL,2 = max(max(1− 0.5, 0.5) + max(1− 0.5, 0.5)− 1, 0) = 0 . (7.83)

Therefore Eq. (7.81) holds form = 2

min
Γ2∈[0,1]2

βmax,TL,2 = 0 . (7.84)

Assuming that Eq. (7.81) holds form∗,

min
Γm∗∈[0,1]m

∗

βmax,TL,m∗ = max(BTL,m∗) = 0 , (7.85)
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it also holds form∗ + 1

min
Γm∗+1∈[0,1]m

∗+1
βmax,TL,m∗+1

= min
Γm∗+1∈[0,1]m

∗+1
max(BTL,m∗+1)

= min
Γm∗+1∈[0,1]m

∗+1
max( max

β∈BTL,m∗

max(β + 1− γm∗+1 − 1, 0),

max
β∈BTL,m∗

max(β + γm∗+1 − 1, 0))

= min
Γm∗+1∈[0,1]m

∗+1
max( max

β∈BTL,m∗

(β + 1− γm∗+1 − 1),

max
β∈BTL,m∗

(β + γm∗+1 − 1), 0)

= min
Γm∗+1∈[0,1]m

∗+1
max( max

β∈BTL,m∗

max(β + 1− γm∗+1 − 1, β + γm∗+1 − 1), 0)

= min
Γm∗+1∈[0,1]m

∗+1
max( max

β∈BTL,m∗

(β + max(1− γm∗+1, γm∗+1)− 1), 0)

= min
Γm∗+1∈[0,1]m

∗+1
max(βmax,TL,m∗ + max(1− γm∗+1, γm∗+1)− 1, 0)

= 0 , (7.86)

as0.5 ≤ max(1− γl, γl) ≤ 1.
In Chapters 8–9 Mamdani–Assilian models with one or more input variables

will be considered forTM and TP, while for TL, only models with a single input
variable will be investigated.

7.4.3 Models applying implicator-based inference

For the three considered implicatorsIT it holds that

(∀x ∈ [0, 1])(IT (0, x) = 1) . (7.87)

Thus, if for a given input vectorx none of the rules of a model applying implicator-
based inference is fired,i.e.

βmax =
r

max
s=1

βs = 0 , (7.88)

the model returns the universal set for this input vectorx, i.e.

(∀y ∈ Y)(A(y) =
r

min
s=1

I(βs, Ais
(y)) = 1) . (7.89)

Since for a given input vectorx the same fulfilment degreesβs are obtained when
applying Mamdani–Assilian or plain implicator-based inference, it follows from Sec-
tion 7.4.2 that a model with two or more input variables applying plain implicator-
based inference and usingTL as t-norm will always return the universal set for some
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input vectorsx. Therefore, models with two or more variables applyingTL will not
be considered in Section 10.2 discussing the monotonicity of models applying plain
implicator-based inference.

From the discussion regarding the representation of rules in ATL–ATM models
in Section 7.3.2 it follows that the fuzzy output of an ATL (resp. ATM model) is
never identical to the empty set or the universal set since atleast one linguistic output
valueATL(Ai) (resp.ATM(Ai)) has a fulfilment degreeαATL,i (resp.αATM,i) equal
to 1. The fuzzy output of the ATL–ATM model, which is the intersection, based on
the minimum, of the fuzzy outputs of a corresponding ATL and ATM model might,
however, be the empty set. The issue of incomparable model outputs of ATL–ATM
models is discussed in more detail in Chapter 10.

7.5 Monotone models in bioscience engineering

7.5.1 Land management

Soil erosion is one of the leading environmental problems ofthe world. In many ar-
eas, loss of this valuable natural resource takes place almost imperceptibly, and slowly
affects the long-term productivity of the land. Soil erosion also contributes to the
degradation of the quality of surface and ground waters by adding transported sedi-
ments, nutrients, pesticides and increased turbidity. Areas of erosion therefore need to
be identified and appropriate conservation measures implemented (Mitra et al., 1998).
Two linguistic fuzzy models describing the relationship between the soil erosion po-
tential, i.e. the susceptibility of an area to erosion, and soil properties and landscape
elements were developed by Mitra et al. (1998). The models were used to generate
maps showing the location and distribution of soil erosion potential, which are very
useful tools for policymakers.

The first model has two input variables: land use and slope angle class. For land
use 11 classes are defined as described in Table 7.2, whereas slope angles were reor-
ganized in 15 classes. To the variables land use and slope angle class respectively two
and five ordered linguistic values were assigned, defined by the membership functions
shown in Fig. 7.9(a–b). The values of both input variables can be derived from (hard
copy) topographic maps. To the output variable, soil erosion potential, five linguis-
tic values were assigned: low, moderately low, moderate, moderately high and high
(Fig. 7.9(c)). The rule base is complete,i.e. it contains one rule for each combination
of a linguistic value of land use class and a linguistic valueof slope angle class. The
rule base is represented in Fig. 7.9(d). The bottom left cellof the matrix corresponds
to the rule ‘IF land use class IS forest AND slope angle class IS very small THEN
soil erosion potential IS low’. The rule base is monotone: the soil erosion potential
is increasing in the land use class and the slope angle class.However, the rule base
is not smooth since the following rules contain non-consecutive output values in their
consequents
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Table 7.2: Classes assigned to the variables land use and slope angle.
class land use slope angle (◦)

1 deciduous forest 1–5
2 mixed forest 6–10
3 evergreen forest 11–15
4 good pasture 16–20
5 fair pasture 21–25
6 poor pasture 26–30
7 woodland pasture 31–35
8 over grazed 36–41
9 double cropped 42–47

10 row cropped 48–54
11 55–61
12 62–68
13 69–75
14 bare soil 76–81
15 82–87

IF land use class IS forest AND slope angle class IS small
THEN soil erosion potential IS low,
IF land use class IS pasture AND slope angle class IS small
THEN soil erosion potential IS moderate.

The second model has three input variables: soil erodibility factorK, cover fac-
tor and slope length. To these input variables respectivelythree, two and three ordered
linguistic values are assigned. To the output value, soil erosion potential, the same lin-
guistic values and membership functions are assigned as in the first model. This second
model also has a monotone non-smooth rule base. The membership functions and rule
base of the second model can be found in the work by Mitra et al.(1998).

7.5.2 Food technology

With consumers’ demand for high-quality products, qualityassurance has become a
major concern in all manufacturing environments, including the food industry. In food
manufacturing, a substantial amount of product grading andquality assurance is per-
formed by human inspectors. However, manual inspection tends to be laborious, te-
dious, and prone to inconsistency. To solve these difficulties, food manufacturers are
interested in automated visual inspection for quality assessment. At a low level of
information processing, there are many advantages to automated inspection. Feature
extraction (e.g.physical aspects such as size, area and colour) is consistent, unbiased,
and quantitative. However, many food inspection operations also require a higher level
of information processing. It is often necessary to integrate a number of physical fea-
tures to make an inference about overall quality that is consistent with expert graders’
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Figure 7.9: Membership functions defining the linguistic values assigned to (a) land
use class , (b) slope angle class and (c) soil erosion potential, as well as (d)
the rule base of the first model developed by Mitra et al. (1998).

or consumers’ judgements (Davidson et al., 2001).
The work by Davidson et al. (2001) discusses the developmentof fuzzy models

applied in an automated inspection system for chocolate chip cookies. The models
assign a global quality score to a biscuit based on its size, baked dough colour and
fraction of the top surface area that is chocolate chips. In this section one of the four
models with a similar model structure discussed in the article is described. The model
has three input variables,i.e. lightness, size and chips, and one output variable,i.e.
consumer rating. The linguistic values assigned to the input variables are defined by
trapezial membership functions forming a fuzzy partition as shown in Fig. 7.10(a–c),
while the linguistic values assigned to the output variableare defined by the singletons
in Fig. 7.10(d). The monotone non-smooth rule base contains12 rules. In Fig. 7.11 the
bottom left cell of the left matrix represents the rule ‘IF size IS small AND lightness
IS dark AND chips IS few THEN consumer rating IS unacceptable’. The crisp model
outputy∗ is given by

y∗ =

r∑

s=1
βsys

r∑

s=1
βs

, (7.90)

with βs the fulfilment degree andys the value of the singleton in the consequent of rule

137



Chapter 7. Monotonicity of linguistic fuzzy models

size (cm)
5 5.2 5.4 5.6 5.8 6

0

1

small large

lightness (L∗)
42 44 46 48 50 52

0

1

dark medium light

(a) (b)

chips (% total surface area)
0 4 8 12 16 20

0

1

few lots

consumer rating (-)
22 34 47 68 81

0

1

un
ac

ce
pt

ab
le

al
m

os
tu

na
cc

ep
ta

bl
e

m
ar

gi
na

l

ac
ce

pt
ab

le

al
m

os
to

ut
st

an
di

ng

(c) (d)

Figure 7.10: Membership functions defining the classes assigned to (a) size, (b) light-
ness, (c) chips and (d) consumer rating.
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Figure 7.11: Rule base of the model developed by Davidson et al. (2001).

Rs (s ∈ {1, . . . , r}). So this model can also be regarded as a zero-order Takagi–Sugeno
model.

7.5.3 Dairy farming

Replacing a conventional milking machine by an automatic milking system (milking
robot) leads to more flexible working hours and a considerable time gain of 30 to 40 %
for the herd manager. Furthermore, the cows can decide themselves when and how
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Figure 7.12: Membership functions defining the linguistic values assigned to (a) devi-
ation and (b) value.

often they are milked, which — as is observed in practice — increases the milk pro-
duction. However, with a conventional milking machine the herd manager can check
twice a day the general condition of each cow, and more specific the udder (tempera-
ture, hardness, sensitivity) and the milk (flocks, viscosity). These quick examinations
allow the herd manager to identify clinical udder infections, such as clinical mastitis,
at an early stage and hereby restrict economical loss. With the introduction of an auto-
matic milking system, these daily visual examinations of udder and milk are not longer
carried out and it would be desirable if this task is also taken over by the milking robot.
Nowadays sensors can be integrated in milking robots and most robots are equipped
with a mastitis detection system based on the variation of the milk parameters accom-
panying udder infections. However, the currently commercialized mastitis detection
systems suffer from a high rate of false negatives and false positives. In case of a false
negative an infected cow is not registered by the system, resulting in economical loss
due to inferior milk quality, while in case of a false positive the herd manager is urged
by the system to conduct needless bacteriological examinations or to treat an uninfected
cow (Piepers, 2005).

de Mol and Woldt (2001) developed a fuzzy model to reclassifythe mastitis
alerts generated by a statistical model developed in an earlier research (de Mol and
Ouweltjes, 2000). The statistical model is based on sensor measurements of the elec-
trical conductivity of milk and returns a high number of false positives. The fuzzy
model has a hierarchical structure. For each quarter a fuzzymodel was developed with
deviation and value of the conductivity as input variables and adjusted deviation as
output variable. Deviation is the difference between the expected and the measured
conductivity divided by the variance of these differences.To deviation the four lin-
guistic values were assigned,i.e.not increased, increased, high and very high, whereas
value is granulated in three linguistic values,i.e. not increased, increased and high.
The membership functions used for the right hind quarter areshown in Fig. 7.12. The
membership functions applied in the models of the other quarters are similar.

For each quarter the fulfilment degrees of the four linguistic values of adjusted
deviation were obtained with Mamdani–Assilian inference applying TM and the rules
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Figure 7.13: Rule base of the model developed by de Mol and Woldt (2001).

represented in Fig. 7.13. The bottom left cell corresponds to the rule ‘IF deviation IS
not increased AND value IS not increased THEN adjusted deviation IS not increased’.
Note that this rule base is monotone but non-smooth as it contains following two rules
with non-consecutive linguistic output values in their consequents

IF deviation IS high AND value IS increased THEN adj. deviation IS not increased,
IF deviation IS high AND value IS high THEN adj. deviation IS high.

Next, the fulfilment degrees of each linguistic value of adjusted deviation are
given by the maximum fulfilment degree obtained for the linguistic output value under
consideration in the four models. These fulfilment degrees are used to obtained the
fulfilment degrees of the linguistic values of alert,i.e. false and true, using the following
rules

IF adjusted deviation IS not increased THEN alert IS false,
IF adjusted deviation IS increased THEN alert IS false,
IF adjusted deviation IS high THEN alert IS true,
IF adjusted deviation IS very high THEN alert IS true.

Finally, the model output is defuzzified by selecting the linguistic value of alert with

the highest fulfilment degree.
The fuzzy model developed by Piepers (2005) can be used directly as mastitis

detection system. The model has three input variables,i.e. somatic cell number, milk
production decrease and electrical conductivity increaseand one output variable,i.e.
need of a bacteriological examination. For all variables fuzzy partitions of trapezial
membership functions were applied to define the linguistic values. The linguistic val-
ues assigned to the variables are given in the representation of the rule base in Fig. 7.14.
The bottom left cell corresponds to the rule ‘IF somatic cellnumber IS low AND pro-
duction decrease IS low AND electrical conductivity IS low THEN need of a bacterio-
logical examination IS low’. The rule base is monotone and smooth.
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Figure 7.14: Rule base of the model developed by Piepers (2005).

7.5.4 Ecological quality assessment

For years, the quality of stream sediments in Flanders (Belgium) has been influenced
in a negative way by the poor quality of the surface water. Dueto a decrease in the
amount of waste water discharged untreated in water bodies,the water quality steadily
improves. At some locations where the water quality has improved, a reversed problem
arises. The contaminated sediment makes a further improvement of the water quality
and the ecological recovery of the stream impossible, as pollutants migrate back from
the sediment to the surface water. In order to further improve the quality of the sur-
face waters, not only should actions be taken to reduce the effect of discharges, but
also should efforts be made in the field of sediment sanitation. Since the sediment is
an important component of the aquatic ecosystem and dredging and cleaning opera-
tions result in mud that should be disposed, it is important to monitor the quality of
sediments. The Department of Environment, Nature and Energy of the Flemish gov-
ernment uses the TRIADE method to assess the ecological equality of sediments in
Flanders (De Cooman and Detemmerman, 2004; Ministerie van de Vlaamse Gemeen-
schap, 2000). No elements from the fuzzy modelling field are incorporated in the TRI-
ADE method, but the current procedure can easily be fuzzifiedas will be illustrated
below. First, however, the current procedure is described.

The TRIADE method classifies a sediment into one of four ecological quality
classes based on the outcome of three specific classifications reflecting respectively the
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physical-chemical, ecotoxicological and biological quality of the sediment.

Physical-chemical quality The physical-chemical quality is derived from the con-
centrations of 13 (groups of) components in the sediment: arsenic, cadmium, chro-
mium, copper, mercury, lead, nickel, zinc, apolar hydrocarbons, extractable organo-
halogens, the sum of a group of pesticides, the sum of 7 polychlorobifenyls, the sum
of the six polyaromatic hydrocarbons of Borneff. For each component the ratio of
the measured concentrationCmeasured,i to the concentrationCreference,i in a reference
sediment,i.e. a sediment that is (almost) unaffected by human activity, iscalculated
(i ∈ {1, . . . , 13})

VTRi =
Cmeasured,i

Creference,i
, (7.91)

and converted in a variable logindexi given by

logindexi = min(2, log10(max(1, VTRi))) , (7.92)

with 0 ≤ logindexi ≤ 2.
Next, each component is assigned to one of four classes basedon logindexi

Cchem,i =







C1 , if 0 ≤ logindexi < 0.4 ,

C2 , if 0.4 ≤ logindexi < 0.8 ,

C3 , if 0.8 ≤ logindexi < 1.2 ,

C4 , if 1.2 ≤ logindexi ≤ 2 .

(7.93)

The smaller the assigned class is, the better is the physical-chemical quality of the
sediment.

Finally, the sediment is assigned to one of four physical-chemical quality class-
es. This classCchem is equal to the highest class obtained for the 13 components,
except if the number of components assigned to this highest class is smaller than or
equal to two and the logindexi values obtained for these components are furthermore
smaller than the midpoint of the interval defining this highest class. In the latter case,
the rank of the global physical-chemical class assigned to the sediment is equal to the
rank of the highest class obtained for the 13 components reduced by 1.

Ecotoxicological quality An ecotoxicological assessment gives an indication of the
potential effects on organisms. Lab-bred organisms are exposed to pore water or sedi-
ment for a certain time (hours or days). The three test organisms used in the TRIADE
method, the algaeRaphidocelis subcapitata(pore water test), the fairy shrimpTham-
nocephalus platyurus(pore water test) and the amphipodHyalella azteca(sediment
test), strongly differ in susceptibility to specific toxic components. Furthermore, the
biological availability of components in the sediment can vary strongly among the or-
ganisms.

The obtained results are again compared to those obtained for a reference sedi-
ment. The results obtained forRaphidocelis subcapitataandThamnocephalus platyu-
rus are expressed by the variable VTR, while results obtained for Hyalella aztecaare
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represented by the variable mortality. The sediment is onceclassified in one of four
classes based on VTR

Ctoxi,1 =







C1 , if VTR = 1 ,

C2 , if 1 < VTR ≤ 150 ,

C3 , if 150 < VTR ≤ 300 ,

C4 , if 300 < VTR ,

(7.94)

and once based on mortality

Ctoxi,2 =







C1 , if 0 ≤ mortality < 20 ,

C2 , if 20 ≤ mortality < 50 ,

C3 , if 50 ≤ mortality < 75 ,

C4 , if 75 ≤ mortality≤ 100 .

(7.95)

The global ecotoxicological quality classCtoxi is the highest of the classes obtained
for Ctoxi,1 andCtoxi,2.

Biological quality Benthic macroinvertebrates are used as indicator species for the
biological quality of sediments. The Biotic Sediment Index(BWI) gives an indication
of the biological quality based on the occurrence of certainindicator species and the
taxonomic diversity of the (epi)benthic macroinvertebrate community. Sediments are
assigned to one of four biological quality classes based on BWI

Cbiol =







C1 , if BWI ∈ {7, 8, 9, 10} ,

C2 , if BWI ∈ {5, 6} ,

C3 , if BWI ∈ {3, 4} ,

C4 , if BWI ∈ {0, 1, 2} .

(7.96)

Ecological quality In a last step of the TRIADE method, the sediment is assigned to
one of four ecological quality classes following the procedure described by the eight
rules below. Hereby,C1−2, C2−4 andC3−4 respectively represent ‘C1 to C2’, ‘ C2 to
C4’ and ‘C3 to C4’.

R1: IF Cchem IS C1−2 AND Ctoxi IS C1 AND Cbiol IS C1 THEN Cecol IS C1

R2: IF Cchem IS C1−2 AND Ctoxi IS C1 AND Cbiol IS C2−4 THEN Cecol IS C2

R3: IF Cchem IS C1−2 AND Ctoxi IS C2−4 AND Cbiol IS C1 THEN Cecol IS C2

R4: IF Cchem IS C1−2 AND Ctoxi IS C2−4 AND Cbiol IS C2−4 THEN Cecol IS C3

R5: IF Cchem IS C3−4 AND Ctoxi IS C1 AND Cbiol IS C1 THEN Cecol IS C2

R6: IF Cchem IS C3−4 AND Ctoxi IS C1 AND Cbiol IS C2−4 THEN Cecol IS C3

R7: IF Cchem IS C3−4 AND Ctoxi IS C2−4 AND Cbiol IS C1 THEN Cecol IS C3

R8: IF Cchem IS C3−4 AND Ctoxi IS C2−4 AND Cbiol IS C2−4 THEN Cecol IS C4
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Fuzzified TRIADE method The definition ofCchem,i, Ctoxi,1, Ctoxi,2 andCbiol can
easily be fuzzified by replacing the crisp sets defined in Eqs.(7.93–7.96) by fuzzy
sets as shown in Fig. 7.15. The fuzzified TRIADE method is illustrated on an exam-
ple in Table 7.3. The original TRIADE method classifies a sediment characterized by
the values in the second column in the ecological quality classC3. In the fuzzified
TRIADE method, the variables logindexi, VTR, mortality and BWI are first classi-
fied in the four corresponding fuzzy classes described by themembership functions
in Fig. 7.15, which results in a vector with four values between zero and one, sum-
ming up to one. The 13 fuzzy classificationsCchem,i for the physical-chemical quality
and the two fuzzy classificationsCtoxi,1 andCtoxi,2 for the ecotoxicological quality
are aggregated in the example by taking the classification corresponding to the highest
class. There exists a wide range of aggregation operators, such as Ordered Weighted
Average operators, whereCchem is given by a weighted sum of the 13Cchem,i with the
weights being a function of the order of the 13Cchem,i (Calvo et al., 2002). In the ex-
ample the fuzzy classifications obtained for the sediment areCchem = (0, 0.1, 0.9, 0),
Ctoxi = (0, 0.6, 0.4, 0) andCbiol = (0.25, 0.75, 0, 0). When applying the t-normTP

the fulfilment degrees of the eight if-then rules above are given by

β1 = 0.1× 0× 0.25 = 0 , (7.97)

β2 = 0.1× 0× 0.75 = 0 , (7.98)

β3 = 0.1× 1× 0.25 = 0.025 , (7.99)

β4 = 0.1× 1× 0.75 = 0.075 , (7.100)

β5 = 0.9× 0× 0.25 = 0 , (7.101)

β6 = 0.9× 0× 0.75 = 0 , (7.102)

β7 = 0.9× 1× 0.25 = 0.225 , (7.103)

β8 = 0.9× 1× 0.75 = 0.675 . (7.104)

The fulfilment degrees of the output classesC1, C2, C3 andC4 are obtained by

α1 = β1 = 0 , (7.105)

α2 = max(β2, β3, β5) = max(0, 0.025, 0) = 0.025 , (7.106)

α3 = max(β4, β6, β7) = max(0.075, 0, 0.225) = 0.225 , (7.107)

α4 = β8 = 0.675 , (7.108)

or, after normalization, by

Cecol = (0, 0.027, 0.243, 0.730) . (7.109)

If needed, the obtained fuzzy output can be defuzzified, for instance by assigning the
sediment to the ecological quality class with the highest membership degree,i.e. C4

in the example. Note that the membership functions were chosen arbitrarily. The
behaviour of the fuzzified TRIADE method can be tuned by adapting the membership
functions defining the classes assigned to the variables logindexi, VTR, mortality and
BWI or by changing the procedure to obtainCchem andCtoxi.
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Figure 7.15: Membership functions defining the classes assigned to (a) logindexi, (b)
VTR, (c) mortality and (d) BWI.
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Table 7.3: Classification with the original and fuzzified TRIADE method.

classification
variable value original fuzzy

logindex1 0.00 Cchem,1 = 1 Cchem,1 = (1, 0, 0, 0)
logindex2 0.00 Cchem,2 = 1 Cchem,2 = (1, 0, 0, 0)
logindex3 0.20 Cchem,3 = 1 Cchem,3 = (1, 0, 0, 0)
logindex4 0.24 Cchem,4 = 1 Cchem,4 = (0.9, 0.1, 0, 0)
logindex5 0.00 Cchem,5 = 1 Cchem,5 = (1, 0, 0, 0)
logindex6 0.40 Cchem,6 = 2 Cchem,6 = (0.5, 0.5, 0, 0)
logindex7 0.96 Cchem,7 = 3 Cchem,7 = (0, 0.1, 0.9, 0)
logindex8 0.84 Cchem,8 = 3 Cchem,8 = (0, 0.4, 0.6, 0)
logindex9 0.36 Cchem,9 = 1 Cchem,9 = (0.6, 0.4, 0, 0)
logindex10 0.00 Cchem,10 = 1 Cchem,10 = (1, 0, 0, 0)
logindex11 0.52 Cchem,11 = 2 Cchem,11 = (0.2, 0.8, 0, 0)
logindex12 0.00 Cchem,12 = 1 Cchem,12 = (1, 0, 0, 0)
logindex13 0.10 Cchem,13 = 1 Cchem,13 = (1, 0, 0, 0)

Cchem = 2 Cchem = (0, 0.1, 0.9, 0)
VTR 140 Ctoxi,1 = 2 Ctoxi,1 = (0, 0.6, 0.4, 0)
mortality 30 Ctoxi,2 = 2 Ctoxi,2 = (0, 1, 0, 0)

Ctoxi = 2 Ctoxi = (0, 0.6, 0.4, 0)
BWI 6 Cbiol = 2 Cbiol = (0.25, 0.75, 0, 0)
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7.6 Conclusion

Part III of this dissertation, consisting of Chapters 7–10,is dedicated to my work on
the monotonicity of linguistic fuzzy models. In this first chapter, some general as-
pects were discussed, such as the model properties assumed in this work, the applied
representation of if-then rules, the issue of incomparablefuzzy model outputs and the
applicability of monotone linguistic fuzzy models in bioscience engineering.

In Chapters 8–10 the monotonicity of linguistic fuzzy models under different
inference procedures is discussed. Chapters 8–9 deal with Mamdani–Assilian mod-
els applying the t-normsTM, TP andTL combined with respectively the COG and
MOM defuzzification method. Chapter 10 focusses on models applying either plain
implicator-based inference or ATL–ATM inference, one of the three basic t-normsTM,
TP or TL, one of the three R-implicatorsIM, IP or IL and the MOM defuzzification
method. The objective of this study was to select, for each inference procedure, combi-
nations of t-norm, implicator or defuzzification method resulting in a monotone input-
output behaviour for any monotone rule base, or at least for any monotone smooth rule
base.

Assuming the model properties in Section 7.2, the input-output behaviour of
models withm input variables reduces to the input-output behaviour of models with
m∗ (m∗ < m) input variables in those regions of the input space where the inputs
belong to the kernel of the same linguistic value in all butm∗ input domains. Thus,
if certain model properties are necessary to guarantee monotonicity for models with
m∗ input variables, these model properties are also required to guarantee a monotone
input-output behaviour for models with more thanm∗ input variables. Therefore, in
Chapters 8–10 the monotonicity of models with a single inputvariable is studied first
and throughout the discussion, the number of input variables considered, is gradually
increased. For Mamdani–Assilian models applying the COG defuzzification method,
models with up to three input variables are considered. For Mamdani–Assilian models
applying the MOM defuzzification method, models with up to two input variables are
considered in case of a monotone rule base, whereas the number of input variables is
not restricted for models with a monotone smooth rule base. In Section 10.2 it will
be shown that monotonicity cannot be guaranteed for models with two input variables
applying plain implicator-based inference for the nine considered combinations of the
t-normsTM, TP or TL and the three R-implicatorsIM, IP or IL, no models with a
higher number of input variables are considered for plain implicator-based inference.
Finally, for ATL–ATM models, only models with a single or twoinput variables are
considered. The purpose of Chapter 10 is to illustrate the new inference method, rather
than to give an extensive description of the monotonicity ofthese models as is done for
Mamdani–Assilian models in Chapters 8–9.
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CHAPTER 8

Mamdani–Assilian models: COG defuzzification

Turning points always seem so sudden and absolute, as if
they have come bolt out of the blue. That is not true, of
course. A whole slow process goes into their making.
(Reading Lolita in Teheran, Azar Hafisi, 2003)

8.1 Introduction

In this chapter the monotonicity is investigated of Mamdani–Assilian models hold-
ing the properties described in Section 7.2 and applying theCenter of Gravity de-
fuzzification method. It is verified for the three t-normsTM, TP andTL whether a
monotone input-output behaviour is obtained for any monotone rule base, or at least
for any monotone smooth rule base.

First, in Section 8.2, the general definition of the crisp outputy∗
COG (Eq. (2.44))

is reformulated for models holding the properties described in Section 7.2, using the
variables introduced in the same section to characterize the output membership func-
tions. In Section 8.3 the monotonicity of models with a single input variable is studied
for the t-normsTM, TP andTL. As discussed in Section 7.4, obtaining the empty set
as fuzzy output cannot be avoided when using of the t-normTL in models with two
or more input variables and holding the assumed properties,which makesTL an inap-
propriate t-norm for these models. Therefore, Section 8.4 deals with the monotonicity
of models with two input variables for the t-normsTM andTP only. As the research
pointed out that a monotone input-output behaviour cannot be guaranteed for mod-
els with two input variables and any monotone (smooth) rule base when applying the
t-norm TM, only the t-normTP is considered in Section 8.5 when investigating the
monotonicity of models with three input variables. The chapter concludes with a sum-
mary of the obtained results in Section 8.6.
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8.2 Tailoring the definition of y∗COG

The general definition of the crisp outputy∗
COG has been reformulated for models ap-

plying TM, TP andTL and trapezial membership functions forming a fuzzy partition
in Chapter 3. To facilitate the reading, the formulae are recapitulated in this section
using the parameters introduced in Chapter 7 (Eq. (7.1)) andused throughout Part III.

The center of gravityy∗
COG of the surface defined by the global fuzzy output

can be computed from the centers of gravityy∗
i andy∗

op,i and areasSi and Sop,i of the
n adapted membership functions and then-1 overlapping parts,

y∗
COG =

∑n
i=1(y

∗
i · Si)−

∑n-1
i=1(y

∗
op,i · Sop,i)

∑n
i=1 Si −

∑n-1
i=1 Sop,i

. (8.1)

The formulae listed in Table 8.1 for the termsy∗
i , y∗

op,i, Si andSop,i in Eq. (8.1)
are applicable to models using trapezial membership functions forming a fuzzy parti-
tion as shown in Fig. 7.1. When the linguistic output values used in the consequents of
the rules are all described by membership functions with intervals of changing mem-
bership degree of equal length

(∀s ∈ {1, . . . , r})(is /∈ {1, n}) , (∃l > 0)(∀i ∈ I \ {n})(li = l) ,

the formulae in Table 8.2 can be used. If, furthermore, the kernels of the output mem-
bership functions are of equal length

(∃k ≥ 0)(∀i ∈ I)(ki = k) ,

the formula forSi can even further be simplified.

8.3 Models with a single input variable

In a model with a single input variable at most two rules are fired: the rule correspond-
ing to some linguistic valueB1

j is fired to a degree (1− γ1) and the rule corresponding
to the linguistic input valueB1

j+1 to a degreeγ1 (Eq. (7.8)). In case of a monotone rule
base,B1

j andB1
j+1 can either be mapped to

1. the same linguistic output valueAi: theconstantcase,

2. two consecutive output valuesAi andAi+1: thesmoothcase, or

3. two non-consecutive output valuesAi andAi+p (p ∈ N, p > 1, i + p ≤ n): the
non-smoothcase.

Theconstantcase is meaningless for models with a single input variable,as it
indicates the presence of redundant linguistic input values. If two adjacent linguistic
input values of a model with a single input variable are mapped to the same linguistic
output value they should be merged into a single linguistic input value defined by their
convex hull in order to reduce the complexity and improve theinterpretability of the
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Table 8.1: Formulae for the centers of gravityy∗
i andy∗

op,i and areasSi andSop,i of the adapted membership functions and overlapping
parts in Eq. (8.1)

TM TP TL

y∗
i ci +

(li−li-1)(3(2−αi)ki+2(3−3αi+α2
i )(li-1+li))

6(2ki+(2−αi)(li-1+li))
ci + (li−li-1)(3ki+2li-1+2li)

6(2ki+li-1+li)
ci + (li−li-1)(3ki+2αi(li-1+li))αi

6(2ki+αi(li-1+li))

Si
1
2αi(2ki + (2− αi)(li-1 + li))

1
2αi(2ki + li-1 + li)

1
2αi(2ki + αi(li-1 + li))

y∗
op,i oi oi + αi−αi+1

6(αi+αi+1)
li oi + 1

2 (αi − αi+1)li

Sop,i (1−min(αi, αi+1, 0.5))min(αi, αi+1, 0.5)li
αiαi+1li

2(αi+αi+1)
1
4 li(max(αi + αi+1 − 1, 0))2

Table 8.2: Formulae for the centers of gravityy∗
i andy∗

op,i and areasSi andSop,i of the adapted membership functions and overlapping
parts in Eq. (8.1) for models holding specific properties

TM TP TL

(∀s ∈ {1, . . . , r})(is /∈ {1, n}) , (∃l > 0)(∀i ∈ I \ {n})(li = l)

y∗
i ci ci ci

Si αi(ki + (2− αi)l) αi(ki + l) αi(ki + αil)

y∗
op,i oi oi + αi−αi+1

6(αi+αi+1)
l oi + 1

2 (αi − αi+1)l

Sop,i (1−min(αi, αi+1, 0.5))min(αi, αi+1, 0.5)l αiαi+1l
2(αi+αi+1)

1
4 l(max(αi + αi+1 − 1, 0))2

(∀s ∈ {1, . . . , r})(is /∈ {1, n}) , (∃l > 0)(∀i ∈ I \ {n})(li = l) , (∃k ≥ 0)(∀i ∈ I)(ki = k)

Si αi(k + (2− αi)l) αi(k + l) αi(k + αil)
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Figure 8.1: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped tothe same
linguistic output valueAi for T = TM.

model. A rule base of a model with more than one input variable, however, might
contain a pair of non-redundant rulesRs1

and Rs2
with the same linguistic values

for all but one input variableXl1 in their antecedents, adjacent linguistic valuesBl1
jl1

andBl1
jl1

+1 for the input variableXl1 , and the same linguistic output value in their

consequents. For input values belonging to the kernels of the linguistic valuesBl
jl

(l 6=

l1) and partially belonging toBl1
jl1

andBl1
jl1

+1, the model behaviour then corresponds
to the aboveconstantcase.

When monotonicity should be guaranteed for any monotone smooth rule base,
the first two cases should be considered, while for any monotone rule base, all three
cases should be considered.

8.3.1 Models applyingTM

WhenB1
j andB1

j+1 (j ∈ J1 \ {n1}) are mapped to a same linguistic output valueAi

(Fig. 8.1), the crisp outputy∗
COG is computed with Eq. (8.1) using the formulae in

Table 8.1. Sinceαi is equal to (1−γ1) for γ1 ∈ [0, 0.5] and equal toγ1 for γ1 ∈ [0.5, 1],
monotonicity holds if
(

∀γ1 ∈ [0, 0.5]

)(
dy∗

COG,1M,11

dγ1
≥ 0

)

∧

(

∀γ1 ∈ [0.5, 1]

)(
dy∗

COG,1M,12

dγ1
≥ 0

)

,

(8.2)
with

y∗
COG,1M,11 = ci +

(li − li-1)(3(1 + γ1)ki + 2(1 + γ1 + γ2
1)(li-1 + li))

6(2ki + (1 + γ1)(li-1 + li))
, (8.3)

y∗
COG,1M,12 = ci +

(li − li-1)(3(2− γ1)ki + 2(3− 3γ1 + γ2
1)(li-1 + li))

6(2ki + (2− γ1)(li-1 + li))
. (8.4)

One easily verifies by substitutingγ1 = 0.5 in Eqs. (8.3–8.4) that
y∗
COG,1M,11(γ1 = 0.5) = y∗

COG,1M,12(γ1 = 0.5), and as the derivatives of
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y∗
COG,1M,11 andy∗

COG,1M,12 are given by

dy∗
COG,1M,11

dγ1
=

(li − li-1)(ki + (li-1 + li)γ1)(3ki + (li-1 + li)(2 + γ1))

3(2ki + (1 + γ1)(li-1 + li))2
, (8.5)

dy∗
COG,1M,12

dγ1
=

(li-1 − li)(ki + (li-1 + li)(1− γ1))(3ki + (li-1 + li)(3− γ1))

3(2ki + (2− γ1)(li-1 + li))2
,

(8.6)

that Eq. (8.2) is satisfied if and only if

li-1 = li . (8.7)

As the extreme linguistic output valuesA1 and An are both described by a
trapezium with one vertical side, monotonicity can only be guaranteed for a model
with a single input variable applyingTM if the following constraints are satisfied

(∀s ∈ {1, . . . , r})(is /∈ {1, n}) , (8.8)

(∃l > 0)(∀i ∈ I \ {n})(li = l) . (8.9)

From here on, Eqs. (8.8–8.9) are assumed to hold and the formulae in Table 8.2
can be used for the termsy∗

i , y∗
op,i, Si andSop,i in Eq. (8.1) when proving the monoto-

nicity in thesmoothandnon-smoothcase.
WhenB1

j andB1
j+1 (j ∈ J1 \ {n1}) are mapped to the linguistic output values

Ai andAi+1 respectively (Fig. 8.2), monotonicity holds if
(

∀γ1 ∈ [0, 1]

)(
dy∗

COG

dγ1
=

d

dγ1

(
y∗

i Si + y∗
i+1Si+1 − y∗

op,iSop,i

Si + Si+1 − Sop,i

)

≥ 0

)

. (8.10)

Although, the value of the termmin(αi, αi+1, 0.5) in the formula ofS∗
op,i differs

for γ1 ∈ [0, 0.5] andγ1 ∈ [0.5, 1],

min(αi, αi+1, 0.5) =

{

αi+1 = γ1 , if γ1 ∈ [0, 0.5] ,

αi = 1− γ1 , if γ1 ∈ [0.5, 1] ,
(8.11)

the same equation can be used for the areaSop,i for γ1 ∈ [0, 1]:

Sop,i = (1−min(αi, αi+1, 0.5))min(αi, αi+1, 0.5)l = (1− γ1)γ1l . (8.12)

Thus forγ1 ∈ [0, 1], using

ci = oi −
1

2
ki −

1

2
l , (8.13)

ci+1 = oi +
1

2
ki+1 +

1

2
l , (8.14)

the crisp outputy∗
COG is given by

y∗
COG = oi +

l(ki − ki+1)γ
2
1 + ((l + ki)ki + (l + ki+1)(2l + ki+1))γ1 − (l + ki)

2

2(−lγ2
1 + (l − ki + ki+1)γ1 + l + ki)

,

(8.15)
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(a)γ1 < 0.5

Ai Ai+1

Y

A(y)

1
1-γ1

γ1

0

a2i-2

a2i-1 − γ1li-1

a2i

a2i + γ1li

a2i+1 − γ1li

a2i+1

a2i+3 − γ1li+1

a2i+3

(b) γ1 > 0.5

Ai Ai+1

Y

A(y)

1
γ1

1-γ1

0

a2i-2

a2i-1 − γ1li-1

a2i

a2i+1 − γ1li

a2i + γ1li

a2i+1

a2i+3 − γ1li+1

a2i+3

Figure 8.2: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped totwo consecu-
tive linguistic output valuesAi andAi+1 for T = TM.

and monotonicity is guaranteed as

dy∗
COG

dγ1
=

(l + ki)(l + ki+1)(2γ1(1− γ1)l + 3l + ki + ki+1)

2((γ1(1− γ1) + 1)l + (1− γ1)ki + ki+1γ1)2
≥ 0 . (8.16)

WhenB1
j andB1

j+1 (j ∈ J1 \ {n1}) are mapped to two non-consecutive output
valuesAi andAi+p (p ∈ N, p > 1, i + p ≤ n) respectively (Fig. 8.3), monotonicity
holds if (

∀γ1 ∈ [0, 1]

)(
dy∗

COG

dγ1
=

d

dγ1

(
y∗

i Si + y∗
i+pSi+p

Si + Si+p

)

≥ 0

)

. (8.17)

The crisp outputy∗
COG is given by

y∗
COG =

(1− γ1)((1 + γ1)l + ki)ci + γ1((2− γ1)l + ki+p)ci+p

(1− γ1)((1 + γ1)l + ki) + γ1((2− γ1)l + ki+p)
(8.18)

or, with ci+p = ci + p l + 1
2ki +

i+p−1∑

j=i+1

kj + 1
2ki+p,

y∗
COG = ci +

(

p l + 1
2ki +

i+p−1∑

j=i+1

kj + 1
2ki+p

)

γ1

(

(2− γ1)l + ki+p

)

(2(1− γ1)γ1 + 1)l + (1− γ1)ki + γ1ki+p

, (8.19)
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Ai Ai+p

Y

A(y)

1
1-γ1

γ1

0

a2i-2

a2i-1 − γ1li-1 a2i + γ1li

a2i+1 a2i+2p-2

a2i+2p-2 + γ1li+p-1 a2i+2p+1 − γ1li+p

a2i+2p+1

Figure 8.3: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped totwo non-
consecutive linguistic output valuesAi andAi+p for T = TM.

and monotonicity is guaranteed as its derivative is positive for all l ∈ R
+
0 , ki, ki+p ∈

R
+,

dy∗
COG

dγ1
=
(

p l +
1

2
ki +

i+p−1
∑

j=i+1

kj +
1

2
ki+p

)

×

(2l + ki + ki+p)lγ
2
1 + (l + ki)(2(1− γ1)l + ki+p)

2((2(1− γ1)γ1 + 1)l + (1− γ1)ki + γ1ki+p)2
≥ 0 . (8.20)

8.3.2 Models applyingTP

WhenB1
j andB1

j+1 (j ∈ J1\{n1}) are mapped to a same linguistic output valueAi, the
crisp outputy∗

COG is constant for all inputs larger than the lower bound of the kernel
of B1

j and smaller than the upper bound of the kernel ofB1
j+1 as the abscissa of the

vertices of the adapted membership function coincide with the abscissa of the original
output membership function as shown in Fig. 8.4. Thus, as thecrisp outputy∗

COG is
independent ofγ1 (Table 8.1)

y∗
COG = ci +

(li − li-1)(3ki + 2li-1 + 2li)

6(2ki + li-1 + li)
, (8.21)

monotonicity is guaranteed for any fuzzy output partition

dy∗
COG

dγ1
= 0 . (8.22)

WhenB1
j andB1

j+1 (j ∈ J1 \ {n1}) are mapped to the linguistic output values
Ai andAi+1 respectively (Fig. 8.5), monotonicity holds if

(

∀γ1 ∈ [0, 1]

)(
dy∗

COG

dγ1
=

d

dγ1

(
y∗

i Si + y∗
i+1Si+1 − y∗

op,iSop,i

Si + Si+1 − Sop,i

)

≥ 0

)

. (8.23)
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Ai

Y

A(y)

1
1-γ1

γ1

0
a2i-2

a2i-1
a2i a2i+1

Ai

Y

A(y)

1
γ1

1-γ1

0
a2i-2

a2i-1
a2i a2i+1

(a)γ1 ≤ 0.5 (b) γ1 ≥ 0.5

Figure 8.4: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped toa same lin-
guistic output valueAi for T = TP.

γ1(1 − γ1)

Ai Ai+1

Y

A(y)

1

1-γ1

γ1

0
a2i-2

a2i-1

a2i

a2i+1 − γ1li

a2i+1 a2i+2

a2i+3

Figure 8.5: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped totwo consecu-
tive linguistic output valuesAi andAi+1 for T = TP.

By expressing the midpointsci andci+1 of the kernel of the membership func-
tionsAi andAi+1 as a function ofoi

ci = oi −
1

2
ki −

1

2
li , (8.24)

ci+1 = oi +
1

2
ki+1 +

1

2
li , (8.25)

the following expression is obtained for the crisp outputy∗
COG

y∗
COG = oi +

[

l2i (3− 2γ1)γ
2
1 +

(
3lili+1 + 6liki+1 + 2l2i+1 + 6li+1ki+1 + 6k2

i+1

)
γ1

− (2l2i-1 + 3li-1li + 6li-1ki + l2i + 6liki + 6k2
i )(1− γ1)

]

×

[

6(liγ
2
1 + (li+1 + 2ki+1)γ1 + (li-1 + li + 2ki)(1− γ1))

]−1

, (8.26)
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Ai Ai+p

Y

A(y)

1

1-γ1

γ1

0
a2i-2

a2i-1
a2i a2i+1

a2i+2p-2
a2i+2p-1

a2i+2p

a2i+2p+1

Figure 8.6: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped totwo non-
consecutive linguistic output valuesAi andAi+p for T = TP.

and monotonicity is guaranteed as the derivative ofy∗
COG is positive for alll ∈ R

+
0 ,

ki, ki+1 ∈ R
+,

dy∗
COG

dγ1
=

[

(2− γ1)γ1l
2
i-1li + l2i-1li+1 + 2l2i-1ki+1 + 2(γ2

1 + 3(1− γ1))γ1li-1l
2
i

+ 3li-1lili+1 + 3(2− γ1)γ1li-1liki + 6li-1liki+1 + li-1l
2
i+1

+ 3li-1li+1ki + 3li-1li+1ki+1 + 6li-1kiki+1 + 3li-1k
2
i+1

+ (γ2
1 − γ1 + 4)(1− γ1)γ1l

3
i + 2(1− γ3

1)l2i li+1

+ 4(γ2
1 + 3(1− γ1))γ1l

2
i ki + 4(1− γ3

1)l2i ki+1 + (1− γ2
1)lil

2
i+1

+ 6lili+1ki + 3(1− γ2
1)lili+1ki+1 + 3(2− γ1)γ1lik

2
i + 12likiki+1

+ 3(1− γ2
1)lik

2
i+1 + 2l2i+1ki + 3li+1k

2
i + 6li+1kiki+1 + 6k2

i ki+1

+ 6kik
2
i+1

]

×

[

6(liγ
2
1 + (li+1 + 2ki+1)γ1 + (li-1 + li + 2ki)(1− γ1))

2

]−1

≥ 0 . (8.27)

WhenB1
j andB1

j+1 (j ∈ J1 \ {n1}) are mapped to two non-consecutive output
valuesAi andAi+p (p ∈ N, p > 1, i + p ≤ n) respectively (Fig. 8.6), monotonicity
holds if (

∀γ1 ∈ [0, 1]

)(
dy∗

COG

dγ1
=

d

dγ1

(
y∗

i Si + y∗
i+pSi+p

Si + Si+p

)

≥ 0

)

. (8.28)

The centers of gravityy∗
i and y∗

i+p of the adapted membership functionsA′
i

andA′
i+p are respectively equal to the abscissa of the center of gravity of the trapezia

definingAi andAi+p, i.e. the centers of gravityy∗
i andy∗

i+p are independent ofγ1. The
abscissa of the center of gravity of a trapezium is always an element of its base, thus the
center of gravityy∗

i of the adapted membership functionA′
i is smaller than the center
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of gravityy∗
i+p of the adapted membership functionA′

i+p

a2i-2 < y∗
i < a2i+1 ≤ a2i+2p-2 < y∗

i+p < a2i+2p+1 , (8.29)

andy∗
i+p in the equation of the crisp outputy∗

COG can be substituted by a function ofy∗
i

y∗
i+p = y∗

i + C (C ∈ R
+
0 ) . (8.30)

The crisp model outputy∗
COG is given by

y∗
COG = y∗

i + C
Si+p

Si + Si+p

= y∗
i + C

(li+p-1 + li+p + 2ki+p)γ1

(li-1 + li + 2ki)(1− γ1) + (li+p-1 + li+p + 2ki+p)γ1
, (8.31)

and monotonicity is guaranteed as its derivative is positive for all l ∈ R
+
0 , ki, ki+p ∈

R
+,

dy∗
COG

dγ1
=

C(li-1 + li + 2ki)(li+p-1 + li+p + 2ki+p)

((li-1 + li + 2ki)(1− γ1) + (li+p-1 + li+p + 2ki+p)γ1)2
≥ 0 . (8.32)

8.3.3 Models applyingTL

WhenB1
j andB1

j+1 (j ∈ J1 \ {n1}) are mapped to a same linguistic output valueAi

(Fig. 8.7), the crisp outputy∗
COG is computed with Eq. (8.1) using the formulae in

Table 8.1. Sinceαi is equal to (1−γ1) for γ1 ∈ [0, 0.5] and equal toγ1 for γ1 ∈ [0.5, 1],
monotonicity holds if
(

∀γ1 ∈ [0, 0.5]

)(
dy∗

COG,1L,11

dγ1
≥ 0

)

∧

(

∀γ1 ∈ [0.5, 1]

)(
dy∗

COG,1L,12

dγ1
≥ 0

)

,

(8.33)
with

y∗
COG,1L,11 = ci +

(li − li-1)(3ki + 2(1− γ1)(li-1 + li))(1− γ1)

6(2ki + (1− γ1)(li-1 + li))
, (8.34)

y∗
COG,1L,12 = ci +

(li − li-1)(3ki + 2γ1(li-1 + li))γ1

6(2ki + γ1(li-1 + li))
. (8.35)

One easily verifies by substitutingγ1 = 0.5 in Eqs. (8.34–8.35) that
y∗
COG,1L,11(γ1 = 0.5) = y∗

COG,1L,12(γ1 = 0.5), and as the derivatives ofy∗
COG,1L,11

andy∗
COG,1L,12 are given by

d(y∗
COG,1L,11)

dγ1
=

(li-1 − li)((li-1 + li)(1− γ1) + ki)((li-1 + li)(1− γ1) + 3ki)

3((li-1 + li)(1− γ1) + 2ki)2
,

(8.36)

d(y∗
COG,1L,12)

dγ1
=

(li − li-1)((li-1 + li)γ1 + ki)((li-1 + li)γ1 + 3ki)

3((li-1 + li)γ1 + 2ki)2
, (8.37)
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Ai

Y

A(y)

1
1-γ1

γ1

0

a2i-2 + γ1li-1

a2i-1
a2i a2i+1 − γ1li

Ai

Y

A(y)

1
γ1

1-γ1

0

a2i-1 − γ1li-1

a2i-1
a2i a2i + γ1li

(a)γ1 ≤ 0.5 (b) γ1 ≥ 0.5

Figure 8.7: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped toa same lin-
guistic output valueAi for T = TL.

that Eq. (8.33) is satisfied if and only if

li-1 = li . (8.38)

As the extreme linguistic output valuesA1 and An are both described by a
trapezium with one vertical side, monotonicity can only be guaranteed for a model
with a single input variable applyingTL if the following constraints are satisfied

(∀s ∈ {1, . . . , r})(is /∈ {1, n}) , (8.39)

(∃l > 0)(∀i ∈ I \ {n})(li = l) . (8.40)

From here on, Eqs. (8.39–8.40) are assumed to hold and the formulae in Ta-
ble 8.2 can be used for the termsy∗

i , y∗
op,i, Si andSop,i in Eq. (8.1) when proving the

monotonicity in thesmoothandnon-smoothcase.
WhenB1

j andB1
j+1 (j ∈ J1\{n1}) are mapped to the linguistic output valuesAi

andAi+1 respectively, monotonicity holds if
(

∀γ1 ∈ [0, 1]

)(
dy∗

COG

dγ1
=

d

dγ1

(
y∗

i Si + y∗
i+1Si+1 − y∗

op,iSop,i

Si + Si+1 − Sop,i

)

≥ 0

)

. (8.41)

As illustrated by Fig. 8.8, the adapted membership functions A′
i andA′

i+1 do
not overlap

Sop,i =
1

4
l(max(αi +αi+1− 1, 0))2 =

1

4
l(max((1−γ1)+γ1− 1, 0))2 = 0 . (8.42)

and thesmoothcase can be treated as a special case of thenon-smoothcase.
WhenB1

j andB1
j+1 (j ∈ J1 \ {n1}) are mapped to two non-consecutive output

valuesAi andAi+p (p ∈ N0, i + p ≤ n) respectively (Fig. 8.9), monotonicity holds if
(

∀γ1 ∈ [0, 1]

)(
dy∗

COG

dγ1
=

d

dγ1

(
y∗

i Si + y∗
i+pSi+p

Si + Si+p

)

≥ 0

)

. (8.43)

159



Chapter 8. Mamdani–Assilian models: COG defuzzification

Ai Ai+1

Y

A(y)

1

1-γ1

γ1

0

a2i-2 + γ1li-1 a2i-1
a2i

a2i+1 − γ1li

a2i+1 a2i+2

a2i+2 + γ1li+1

Figure 8.8: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped totwo consecu-
tive linguistic output valuesAi andAi+1 for T = TL.

Ai Ai+p

Y

A(y)

1

1-γ1

γ1

0

a2i-2 + γ1li-1

a2i-1
a2i

a2i+1 − γ1li
a2i+2p-1 − γ1li+p-1

a2i+2p-1
a2i+2p

a2i+2p + γ1li+p

Figure 8.9: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped totwo non-
consecutive linguistic output valuesAi andAi+p for T = TL.

The crisp outputy∗
COG is given by

y∗
COG =

(1− γ1)((1− γ1)l + ki)ci + γ1(γ1l + ki+p)ci+p

(1− γ1)((1− γ1)l + ki) + γ1(γ1l + ki+p)
, (8.44)

or, with ci+p = ci + p l − 1
2ki +

i+p∑

j=i

kj −
1
2ki+p

y∗
COG = ci +

(

p l − 1
2ki +

i+p∑

j=i

kj −
1
2ki+p

)

γ1

(

γ1l + ki+p

)

(2γ2
1 − 2γ1 + 1)l + (1− γ1)ki + γ1ki+p

, (8.45)

and monotonicity is guaranteed as its derivative is positive for all l ∈ R
+
0 , ki, ki+p ∈
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R
+,

dy∗
COG

dγ1
=
(

p l −
1

2
ki +

i+p
∑

j=i

kj −
1

2
ki+p

)

2l2(1− γ1)γ1 + lki(2− γ1)γ1 + lki+p(1− γ2
1) + kiki+p

((2γ2
1 − 2γ1 + 1)l + (1− γ1)ki + γ1ki+p)2

≥ 0 . (8.46)

8.4 Models with two input variables

In this section the monotonicity of models with two input variables applying eitherTM

or TP is discussed. Models with more than one input variable applying TL are not
considered since they return the empty set as fuzzy model output for some inputs as
discussed in detail in Section 7.4. The results obtained formodels with a single input
variable also apply to models with two input variables, as the latter behave as a ‘single
input model’ in parts of their input space. Therefore, for models applyingTM the
output membership functions used in the consequents of the rules are assumed to have
intervals of changing membership degree of equal length. For models applyingTP

no additional model properties were required to guarantee the monotonicity of models
with a single input variable.

8.4.1 Models applyingTM

As shown by the counterexample below, monotonicity cannot be guaranteed for any
monotone rule base, nor for any monotone smooth rule base, ifcombining the t-norm
TM with the COG defuzzification method in models with two input variables.

The set of four rules represented in Fig. 8.10

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+1

can occur in a monotone smooth rule base as well as in a monotone rule base. For
inputsx = (x1, x2) not firing any other rule than the four rules above

γ1 = 1−B1
j1

(x1) = B1
j1+1(x1) , (8.47)

γ2 = 1−B2
j2

(x2) = B2
j2+1(x2) , (8.48)

the crisp outputy∗
COG (Eq. (8.1) with Table 8.1) is given by

y∗
COG =

ci((2− αi)l + ki)αi + ci+1((2− αi+1)l + ki+1)αi+1 − oi(1− α′)α′l

((2− αi)l + ki)αi + ((2− αi+1)l + ki+1)αi+1 − (1− α′)α′l
,
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Figure 8.10: Schematic representation of the rules for which a non-monotone input-
output behaviour is obtained when applyingTM combined with the COG
defuzzification method.

Table 8.3: Values taken by the fulfilment degreesαi andαi+1 andmin(αi, αi+1, 0.5)
in different regions of the input space

αi αi+1 min(αi, αi+1, 0.5)
a 1− γ2 γ1 γ1

b γ2 γ1 γ1

c 1− γ1 γ1 γ1

d 1− γ1 γ1 1− γ1

e 1− γ2 γ2 1− γ2

f 1− γ2 γ2 γ2

g γ1 γ2 γ2

h 1− γ1 γ2 γ2
0 0.5 1 γ1

0

0.5

1

γ2

a

b

c d
e

f
gh

with

αi = max(min(1− γ1, 1− γ2),min(1− γ1, γ2),min(γ1, 1− γ2)) , (8.49)

αi+1 = min(γ1, γ2) , (8.50)

α′ = min(αi, αi+1, 0.5) . (8.51)

In Table 8.3 an overview is given of the values taken by the fulfilment degrees
αi andαi+1 and the termmin(αi, αi+1, 0.5) in different regions of the input space.

For inputsx having the following membership degrees to the linguistic values
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in the antecedents of the rules (Case b in Table 8.3)

γ1 < 1− γ2 ∧ γ2 > 0.5 ,

the fulfilment degreesαi andαi+1 of the linguistic output valuesAi andAi+1 are

αi = γ2 , αi+1 = γ1 , and min(αi, αi+1, 0.5)= γ1 .

In this case, the crisp outputy∗
COG is given by

y∗
COG =

ci((2− γ2)l + ki)γ2 + ci+1((2− γ1)l + ki+1)γ1 − oil(1− γ1)γ1

((2− γ2)l + ki)γ2 + ((2− γ1)l + ki+1)γ1 − l(1− γ1)γ1
, (8.52)

or, after substitutingci andci+1

ci = oi −
1

2
ki −

1

2
l , (8.53)

ci+1 = oi +
1

2
ki+1 +

1

2
l , (8.54)

by

y∗
COG = oi +

(l + ki+1)((2− γ1)l + ki+1)γ1 − (l + ki)((2− γ2)l + ki)γ2

2(((2− γ2)l + ki)γ2 + (l + ki+1)γ1)
. (8.55)

A non-monotone input-output behaviour is obtained for any fuzzy output parti-
tion as the derivative ofy∗

COG to γ2 is negative for alll ∈ R
+
0 , ki, ki+1 ∈ R

+,

dy∗
COG

dγ1
=

l + ki+1

2(((2− γ2)l + ki)γ2 + (l + ki+1)γ1)2
[
l2((γ2 − γ2

1) + 2γ2(1− γ1)(2− γ2) + γ2(1− γ2))

+ lki(5− 2γ1 − γ2) + lki+1(γ2(1− γ2) + (γ2 − γ2
1)) + k2

i γ2

]

> 0 , (8.56)

dy∗
COG

dγ2
= −

(l + ki+1)(2l(1− γ2) + ki)(l(3− γ1) + ki + ki+1)γ1

2(((2− γ2)l + ki)γ2 + (l + ki+1)γ1)2

< 0 . (8.57)

In Fig. 8.11 one can see that non-monotone input-output behaviour is also ob-
tained for inputsx having the following membership degrees to the linguistic values in
the antecedents of the rules (Case g in Table 8.3)

γ1 < 1− γ2 ∧ γ1 > 0.5 .

One can easily verify that in this case the derivative ofy∗
COG to γ1 is negative for all

l ∈ R
+
0 , ki, ki+1 ∈ R

+.
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Figure 8.11: Crisp outputy∗
COG as a function ofγ1 for the rules used in the coun-

terexample when discussing the monotonicity of models withtwo input
variables applyingTM combined with the COG defuzzification method.

8.4.2 Models with a monotone smooth rule base applyingTP

It is shown in this section that one will always obtain a monotone input-output be-
haviour for a model with two input variables and a monotone smooth rule base when
applyingTP combined with the COG defuzzification method.

The general representation of a set of four rules that can be fired simultaneously
in a model with two input variablesX1 andX2 is

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+p1+p2

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+p1

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+p1+p2+p3

When the rule base of a model is smooth, the values ofp1, p2 andp3 in the rules
above are restricted to

(p1, p2, p3) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1)} . (8.58)

Case I If (p1, p2, p3) = (0, 0, 0), the four rules

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai
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contain a same linguistic output valueAi in their consequent. As a result, for all inputs
x not firing any other rule than the four rules above (Eqs. (8.47)–(8.48)), only the
linguistic output valueAi is fired

(αi > 0) , (∀j ∈ I \ {i})(αj = 0) (8.59)

and the crisp outputy∗
COG (Eq. (8.1) with Table 8.1) is equal to the abscissa of the

center of gravity ofAi

y∗
COG = ci +

(li − li-1)(3ki + 2li-1 + 2li)

6(2ki + li-1 + li)
. (8.60)

As the crisp outputy∗
COG is independent ofαi, it holds that

dy∗
COG

dγ1
= 0 and

dy∗
COG

dγ2
= 0 , (8.61)

and monotonicity is guaranteed for any fuzzy output partition.

Case II The four rules obtained if(p1, p2, p3) = (0, 0, 1)

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+1

are represented schematically in Fig. 8.12. For all inputsx not firing any other rule
than these four rules (Eqs. (8.47)–(8.48)), the fulfilment degrees of the linguistic output
valuesAi andAi+1 are obtained by

αi = max((1− γ1)(1− γ2), (1− γ1)γ2, γ1(1− γ2)) , (8.62)

αi+1 = γ1γ2 . (8.63)

In Fig. 8.12 the different regions of the input space are indicated in which the fulfilment
degreeαi is computed by a different function ofγ1 andγ2.

For Case IIa, the crisp outputy∗
COG is given by

y∗
COG = oi −

[
[
(1− γ1)(1− γ2)(γ1γ2 + (1− γ1)(1− γ2))(2l

2
i-1 + 3li-1li + 6li-1ki

+ 6liki + 6k2
i )
]
+
[
(1− γ1 − γ2)(5γ1γ2(1− γ1)(1− γ2) + γ2

1

+ γ2
2 + 2(1− γ1)(1− γ2)− 1)l2i

]
−
[
(γ1γ2 + (1− γ1)(1− γ2))

γ1γ2(3lili+1 + 6liki+1 + 2l2i+1 + 6li+1ki+1 + 6k2
i+1)
]
]

×
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Figure 8.12: Schematic representation of the rules considered in Case II of the discus-
sion about models with two input variables applyingTP combined with
the COG defuzzification method.

[

6
[
γ1γ2 + (1− γ1)(1− γ2)

][
(1− γ1)(1− γ2)(γ1γ2 + (1− γ1)

(1− γ2))(li-1 + 2ki) + (γ1γ2 + (1− γ1)(1− γ2))γ1γ2

(li+1 + 2ki+1) + (3γ1γ2(1− γ1)(1− γ2) + γ2
1 + γ2

2 + 2(1− γ1)

(1− γ2)− 1)li
]
]−1

. (8.64)

As the crisp outputy∗
COG is a rather complex function ofγ1 andγ2, the chain

rule will be used to prove that the derivative ofy∗
COG to γ1 andγ2 is positive

∂y∗
COG

∂γ
=

∂y∗
COG

∂αi

∂αi

∂γ
+

∂y∗
COG

∂αi+1

∂αi+1

∂γ
. (8.65)

Expressed as a function ofαi andαi+1, the crisp outputy∗
COG is given by

y∗
COG = oi −

[

(C1αi − C2αi+1)(αi + αi+1)
2 + (αi − αi+1)(α

2
i + 3αiαi+1 + α2

i+1)

l2i

]

×

[

6(αi + αi+1)((αi + αi+1)(C3αi + C4αi+1)

+ (α2
i + αiαi+1 + α2

i+1)li)

]−1

, (8.66)
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with

C1 = 2l2i-1 + 3li-1li + 6li-1ki + 6liki + 6k2
i ,

C2 = 3lili+1 + 6liki+1 + 2l2i+1 + 6li+1ki+1 + 6k2
i+1 ,

C3 = li-1 + 2ki ,

C4 = li+1 + 2ki+1 ,

and its derivatives toαi andαi+1 are

∂y∗
COG

∂αi

= −αi+1
C5

C6
, (8.67)

∂y∗
COG

∂αi+1
= αi

C5

C6
, (8.68)

with C5, C6 ∈ R
+
0

C5 = (αi + αi+1)
4(l2i-1li+1 + 2l2i-1ki+1 + 3li-1lili+1 + 6li-1liki+1 + li-1l

2
i+1

+ 3li-1li+1ki + 3li-1li+1ki+1 + 6li-1kiki+1 + 3li-1k
2
i+1 + 6lili+1ki

+ 12likiki+1 + 2l2i+1ki + 3li+1k
2
i + 6li+1kiki+1 + 6k2

i ki+1 + 6kik
2
i+1)

+ (αi + αi+1)
2((αi + 2αi+1)(l

2
i+1 + 3li+1ki+1 + 3k2

i+1)αi + (2αi + αi+1)

(l2i-1 + 3li-1ki + 3k2
i )αi+1)li + (αi + αi+1)(2(α2

i + 3αiαi+1 + 3α2
i+1)

(li+1 + 2ki+1)αi + 2(3α2
i + 3αiαi+1 + α2

i+1)(li-1 + 2ki)αi+1)l
2
i

+ (4α2
i + 7αiαi+1 + 4α2

i+1)αiαi+1l
3
i ,

C6 = (αi + αi+1)(αi(li-1 + 2ki) + αi+1(li+1 + 2ki+1))

+ (α2
i + αiαi+1 + α2

i+1)li .

Thus, the positivity of the derivatives ofy∗
COG to γ1 andγ2 can be restated as

∂y∗
COG

∂γ1
≥ 0 ⇔ −αi+1

∂αi

∂γ1
+ αi

∂αi+1

∂γ1
≥ 0 , (8.69)

∂y∗
COG

∂γ2
≥ 0 ⇔ −αi+1

∂αi

∂γ2
+ αi

∂αi+1

∂γ2
≥ 0 . (8.70)

For Case IIa (Fig. 8.12) monotonicity is obtained since

−αi+1
∂αi

∂γ1
+ αi

∂αi+1

∂γ1
= γ1γ2(1− γ2) + (1− γ1)(1− γ2)γ2 = γ2(1− γ2) ≥ 0 ,

(8.71)

−αi+1
∂αi

∂γ2
+ αi

∂αi+1

∂γ2
= γ1γ2(1− γ1) + (1− γ1)(1− γ2)γ1 = γ1(1− γ1) ≥ 0 .

(8.72)

The equations Eqs. (8.67)–(8.68) of the derivatives ofy∗
COG to αi and αi+1

hold for all inputsx only firing rules containingAi andAi+1 in their consequent, if of
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course, the t-normTP is applied. Monotonicity is guaranteed for Case IIb and CaseIIc
since, if(αi, αi+1) = ((1− γ1)γ2, γ1γ2)

−αi+1
∂αi

∂γ1
+ αi

∂αi+1

∂γ1
= γ1γ2γ2 + (1− γ1)γ2γ2 = γ2

2 ≥ 0 , (8.73)

−αi+1
∂αi

∂γ2
+ αi

∂αi+1

∂γ2
= −γ1γ2(1− γ1) + (1− γ1)γ2γ1 = 0 , (8.74)

and, if(αi, αi+1) = (γ1(1− γ2), γ1γ2)

−αi+1
∂αi

∂γ1
+ αi

∂αi+1

∂γ1
= −γ1γ2(1− γ2) + γ1(1− γ2)γ2 = 0 , (8.75)

−αi+1
∂αi

∂γ2
+ αi

∂αi+1

∂γ2
= γ1γ2γ1 + γ1(1− γ2)γ1 = γ2

1 ≥ 0 . (8.76)

Note that if the fulfilment degreesαi andαi+1 can be written as

αi = (1− a)b αi+1 = a b , (8.77)

as for instance in Case IIb and Case IIc, the crisp outputy∗
COG is independent ofb

(C1, C2, C3, C4 ∈ R
+
0 are defined in Eq. (8.66))

y∗
COG = oi +

(C1(1− a)b− C2ab)b2 + (1− 2a)b(1 + a− a2)b2l2i
6b(b(C3(1− a)b + C4ab) + (1− a + a2)b2li)

= oi +
C1(1− a)− C2a + (1− 2a)(1 + a− a2)l2i

6(C3(1− a) + C4a + (1− a + a2)li)
. (8.78)

Case III The four rules obtained if(p1, p2, p3) = (0, 1, 0)

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+1

are represented schematically in Fig. 8.13. For all inputsx not firing any other rule
than these four rules (Eqs. (8.47)–(8.48)), the fulfilment degrees of the linguistic output
valuesAi andAi+1 are obtained by

αi = max((1− γ1)(1− γ2), γ1(1− γ2)) , (8.79)

αi+1 = max((1− γ1)γ2, γ1γ2) . (8.80)

In both regions of the input space indicated in Fig. 8.13 monotonicity is guaran-
teed. As the linguistic output valuesAi andAi+1 are the only linguistic output values
with a non-zero fulfilment degree, Eqs. (8.69)–(8.70) can beapplied. If(αi, αi+1) =
((1− γ1)(1− γ2), (1− γ1)γ2) (Case IIIa) the derivatives of the crisp outputy∗

COG to
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Figure 8.13: Schematic representation of the rules considered in Case III of the discus-
sion about models with two input variables applyingTP combined with
the COG defuzzification method.

γ1 andγ2 are positive, since

−αi+1
∂αi

∂γ1
+ αi

∂αi+1

∂γ1
= (1− γ1)γ2(1− γ2)− (1− γ1)(1− γ2)γ2 = 0 , (8.81)

−αi+1
∂αi

∂γ2
+ αi

∂αi+1

∂γ2
= (1− γ1)

2γ2 + (1− γ1)
2(1− γ2) = (1− γ1)

2 ≥ 0 .

(8.82)

For Case IIIb monotonicity is also guaranteed, as in this case the fulfilment degrees
αi andαi+1 are described by the same functions ofγ1 andγ2 as in Case IIc discussed
earlier in this section.

Case IV The four rules obtained if(p1, p2, p3) = (1, 0, 0)

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+1

are represented schematically in Fig. 8.14. For all inputsx not firing any other rule
than these four rules (Eqs. (8.47)–(8.48)), the fulfilment degrees of the linguistic output
valuesAi andAi+1 are obtained by

αi = (1− γ1)(1− γ2) , (8.83)

αi+1 = max(γ1(1− γ2), (1− γ1)γ2, γ1γ2) . (8.84)
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Figure 8.14: Schematic representation of the rules considered in Case IV of the discus-
sion about models with two input variables applyingTP combined with
the COG defuzzification method.

As Case IVa and Case IVb correspond to Case IIIa and Case IIa respectively,
only Case IVc still needs to be discussed. As all fulfilment degrees, other thanαi and
αi+1 are equal to zero, Eqs. (8.69)–(8.70) can be used to prove that if (αi, αi+1) =
((1 − γ1)(1 − γ2), γ1(1 − γ2)) the derivatives of the crisp outputy∗

COG to γ1 andγ2

are positive, since

−αi+1
∂αi

∂γ1
+ αi

∂αi+1

∂γ1
= γ1(1− γ2)

2 + (1− γ1)(1− γ2)
2 = (1− γ2)

2 ≥ 0 ,

(8.85)

−αi+1
∂αi

∂γ2
+ αi

∂αi+1

∂γ2
= γ1(1− γ2)(1− γ1)− (1− γ1)(1− γ2)γ1 = 0 . (8.86)

Case V The four rules obtained if(p1, p2, p3) = (1, 0, 1)

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+2

are represented schematically in Fig. 8.15. For all inputsx not firing any other rule
than these four rules (Eqs. (8.47)–(8.48)), the fulfilment degrees of the linguistic output
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Figure 8.15: Schematic representation of the rules considered in Case V of the discus-
sion about models with two input variables applyingTP combined with
the COG defuzzification method.

valuesAi, Ai+1 andAi+2 are obtained by

αi = (1− γ1)(1− γ2) , (8.87)

αi+1 = max(γ1(1− γ2), (1− γ1)γ2) , (8.88)

αi+2 = γ1γ2 . (8.89)

For Case Va, the crisp outputy∗
COG, as a function ofγ1 andγ2, is given by

y∗
COG = ci+1 −

[

(1− γ1)(1− γ2)(2l
2
i-1 + 6li-1li + 6li-1ki + 3li-1ki+1 + 12liki

+ 6k2
i + 6kiki+1) + 2(1− γ1)(γ

3
2 − 2γ2 + 2)l2i + 3(γ2

2 − γ2 + 1)

(1− γ1)liki+1 − 2(−γ3
1 + 3γ2

1 − γ1 + 1)γ2l
2
i+1

− 3γ2(γ
2
1 − γ1 + 1)li+1ki+1 − (6li+1li+2 + 12li+1ki+2 + 2l2i+2

+ 3li+2ki+1 + 6li+2ki+2 + 6ki+1ki+2 + 6k2
i+2)γ1γ2

]

×

[

6((1− γ1)(1− γ2)(li-1 + 2ki) + γ1γ2(li+2 + 2ki+2) + (1− γ1)

(γ2
2 − γ2 + 1)li + γ2(γ

2
1 − γ1 + 1)li+1 + 2(1− γ1)γ2ki+1)

]−1

.

(8.90)

As the equation obtained ify∗
COG is written as a function ofαi, αi+1 andαi+2 is

more complex, the chain rule will not be applied. The derivatives ofy∗
COG to γ1 andγ2
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are both positive for allli-1, li, li+1, li+2 ∈ R
+
0 , kiki+1, ki+2 ∈ R

+ and(γ1, γ2) ∈ ]0, 1[
2

∂y∗
COG

∂γ1
=

C1

C2
, (8.91)

∂y∗
COG

∂γ2
=

C3

C2
, (8.92)

with

C1 = ((6li+1li+2 + 12li+1ki+2 + 2l2i+2 + 3li+2ki+1 + 6li+2ki+2 + 6ki+1ki+2 + 6k2
i+2)

ki+1γ2 + (1− γ2)(l
2
i-1li+2 + 2l2i-1ki+2 + 3li-1lili+2 + 6li-1liki+2 + 3li-1li+1li+2

+ 6li-1li+1ki+2 + li-1l
2
i+2 + 3li-1li+2ki + 3li-1li+2ki+1 + 3li-1li+2ki+2

+ 6li-1kiki+2 + 6li-1ki+1ki+2 + 3li-1k
2
i+2 + 6lili+2ki + 12likiki+2 + 6li+1li+2ki

+ 12li+1kiki+2 + 2l2i+2ki + 3li+2k
2
i + 6li+2kiki+1 + 6li+2kiki+2 + 6k2

i ki+2

+ 12kiki+1ki+2 + 6kik
2
i+2) + (2− γ1)(1− γ2)γ1li+1(l

2
i-1 + 3li-1li + 3li-1ki

+ 3li-1ki+1 + 6liki + 3k2
i + 6kiki+1) + 2γ1(γ

2
1 − 3γ1 + 3)(1− γ2)l

2
i+1

(li-1 + 2ki) + γ1(γ
3
2 − 2γ2 + 2)(2− γ1)(l

2
i li+1) + (γ2

2 − γ2 + 1)li(3li+1li+2

+ 6li+1ki+2 + l2i+2 + 3li+2ki+1 + 3li+2ki+2 + 6ki+1ki+2 + 3k2
i+2)

+ 2γ1(γ
2
1 − 3γ1 + 3)((γ2

2 − γ2 + 1)li + 2γ2ki+1)l
2
i+1 + 3γ1(2− γ1)

((γ2
2 − γ2 + 1)li + γ2ki+1)li+1ki+1 + (γ3

2 − 2γ2 + 2)l2i (li+2 + 2ki+2)

+ γ1γ2(1− γ1)(γ
2
1 − γ1 + 4)l3i+1 + (1− γ1)(1 + γ1)γ2li+1(l

2
i+2 + 3li+2ki+2

+ 3k2
i+2) + 2(1− γ1)(1 + γ1 + γ2

1)γ2(li+2 + 2ki+2)l
2
i+1)γ2 ,

C2 = 3((1− γ1)(1− γ2)(li-1 + 2ki) + γ1γ2(li+2 + 2ki+2)

+ (1− γ1)(γ
2
2 − γ2 + 1)li + (γ2

1 − γ1 + 1)γ2li+1 + 2(1− γ1)γ2ki+1)
2 ,

C3 = ((6lili-1 + 12liki + 2l2i-1 + 3li-1ki+1 + 6li-1ki + 6ki+1ki + 6k2
i )ki+1(1− γ1)

+ γ1(l
2
i+2li-1 + 2l2i+2ki + 3li+2li+1li-1 + 6li+2li+1ki + 3li+2lili-1 + 6li+2liki

+ li+2l
2
i-1 + 3li+2li-1ki+2 + 3li+2li-1ki+1 + 3li+2li-1ki + 6li+2ki+2ki

+ 6li+2ki+1ki + 3li+2k
2
i + 6li+1li-1ki+2 + 12li+1ki+2ki + 6lili-1ki+2

+ 12liki+2ki + 2l2i-1ki+2 + 3li-1k
2
i+2 + 6li-1ki+2ki+1 + 6li-1ki+2ki + 6k2

i+2ki

+ 12ki+2ki+1ki + 6ki+2k
2
i ) + γ1(1 + γ2)(1− γ2)li(l

2
i+2 + 3li+2li+1 + 3li+2ki+2

+ 3li+2ki+1 + 6li+1ki+2 + 3k2
i+2 + 6ki+2ki+1) + 2γ1(γ

2
2 + γ2 + 1)(1− γ2)

(li+2 + 2ki+2)l
2
i + (−γ3

1 + 3γ2
1 − γ1 + 1)(1− γ2)(1 + γ2)l

2
i+1li

+ (γ2
1 − γ1 + 1)li+1(3lili-1 + 6liki + l2i-1 + 3li-1ki+1 + 3li-1ki + 6ki+1ki

+ 3k2
i ) + 2(1− γ2)(γ

2
2 + γ2 + 1)((γ2

1 − γ1 + 1)li+1 + 2(1− γ1)ki+1)l
2
i
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+ 3(1− γ2)(1 + γ2)((γ
2
1 − γ1 + 1)li+1 + (1− γ1)ki+1)liki+1 + (−γ3

1 + 3γ2
1

− γ1 + 1)l2i+1(li-1 + 2ki) + (1− γ2)γ2(1− γ1)(γ
2
2 − γ2 + 4)l3i + (1− γ1)

(2− γ2)γ2li(l
2
i-1 + 3li-1ki + 3k2

i ) + 2(1− γ1)(γ
2
2 − 3γ2 + 3)γ2(li-1 + 2ki)l

2
i )

(1− γ1) .

As by interchangingγ1 andγ2 in the equations of the fulfilment degreesαi, αi+1

andαi+2 for Case Va, the equations for Case Vb are obtained, one only needs to inter-
changeγ1 andγ2 in Eqs. (8.90)–(8.92) to prove that monotonicity is also guaranteed
for Case Vb.

8.4.3 Models with a monotone rule base applyingTP

As shown by the counterexample below, monotonicity cannot be guaranteed for any
monotone rule base, if combining the t-normTP with the COG defuzzification method
in models with two input variables.

The set of four rules represented in Fig. 8.16

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+2

can occur in a monotone, but non-smooth rule base. For all inputsx not firing any other
rule than these four rules (Eqs. (8.47)–(8.48)), the fulfilment degrees of the linguistic
output valuesAi andAi+1 are obtained by

αi = max((1− γ1)(1− γ2), γ1(1− γ2)) , (8.93)

αi+1 = (1− γ1)γ2 , (8.94)

αi+2 = γ1γ2 . (8.95)

If γ1 is smaller than 0.5 (Case a) the fulfilment degreesαi, αi+1 andαi+2 are
described by the same functions ofγ1 and γ2 as in Case Va in Section 8.4.2. As
the proof given in Section 8.4.2 holds for all(γ1, γ2) ∈ ]0, 1[

2, it also proves that
monotonicity is guaranteed in Case a.

Numerical experiments revealed that whenγ1 is larger than 0.5 (Case b), the
crisp outputy∗

COG decreases with increasingγ1 whenγ2 is larger than 0 but smaller
than a critical valueγ2,zero and increases whenγ2 is larger than that critical value and
smaller than 1. The criticalγ2-value is a complex function of all parameters defining
the three membership functionsAi, Ai+1 andAi+2, as illustrated in Fig. 8.17 for a fuzzy
output partition with intervals of changing membership degree of equal lengthl, and is
equal to 0.5 if the three membership functions are identicaltrapezia as in Fig. 8.18.

For Case b, the crisp outputy∗
COG is given by

y∗
COG =

y∗
i Si + y∗

i+1Si+1 + y∗
i+2Si+2 − y∗

op,iSop,i − y∗
op,i+1Sop,i+1

Si + Si+1 + Si+2 − Sop,i − Sop,i+1
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X1B1
j1

B1
j1+1

Ai

Ai+1

Ai

Ai+2

X2

B2
j2

B2
j2+1

0 0.5 1 γ1

0

0.5

1

γ2

a b

αi αi+1 αi+2

a (1-γ1)(1-γ2) (1-γ1)γ2 γ1γ2

b γ1(1-γ2) (1-γ1)γ2 γ1γ2

Figure 8.16: Schematic representation of the rules for which a non-monotone input-
output behaviour is obtained when applyingTP combined with the COG
defuzzification method.
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A(y)

0

1
Ai Ai+1 Ai+2
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γ 2,
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Figure 8.17: The upper boundγ2,zero of the interval ofγ2-values for which a non-
monotone input-output behaviour is obtained in Case b as a function of
ki+2 − ki.
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Figure 8.18: Crisp outputy∗
COG as a function ofγ1 for the rules used in the counterex-

ample when discussing the monotonicity of models with two input vari-
ables and a non-smooth rule base applyingTP combined with the COG
defuzzification method.

= ci+1 +

[

γ1(1− γ2)(2γ1γ2 − γ1 − γ2)
2(2l2i-1 + 6li-1li + 6li-1ki + 3li-1ki+1

+ 12liki + 6k2
i + 6kiki+1)− γ1γ2(2γ1γ2 − γ1 − γ2)

2(6li+1li+2

+ 12li+1ki+2 + 2l2i+2 + 3li+2ki+1 + 6li+2ki+2 + 6ki+1ki+2 + 6k2
i+2)

+ (−18γ3
1γ3

2 + 32γ3
1γ2

2 − 20γ3
1γ2 + 4γ3

1 + 22γ2
1γ3

2 − 24γ2
1γ2

2

+ 8γ2
1γ2 − 10γ1γ

3
2 + 4γ1γ

2
2 + 2γ3

2)l2i − 3(2γ1γ2 − γ1 − γ2)

(3γ2
1γ2

2 − 3γ2
1γ2 + γ2

1 − 3γ1γ
2
2 + γ1γ2 + γ2

2)liki+1

+ (2γ1γ2 − γ1 − γ2)
2γ2li+1(2(γ3

1 − 3γ2
1 + γ1 − 1)li+1

− 3(γ2
1 − γ1 + 1)ki+1)

]

×

[

6(2γ1γ2 − γ1 − γ2)(−(1− γ2)(2γ1γ2 − γ1 − γ2)γ1(li-1 + 2ki)

+ (3γ2
1γ2

2 − 3γ2
1γ2 + γ2

1 − 3γ1γ
2
2 + γ1γ2 + γ2

2)li

− (2γ1γ2 − γ1 − γ2)γ2((γ
2
1 − γ1 + 1)li+1 + 2(1− γ1)ki+1)

− (2γ1γ2 − γ1 − γ2)γ1γ2(li+2 + 2ki+2))

]−1

, (8.96)
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and its derivative toγ1 is

∂y∗
COG

∂γ1
=

γ2(C1γ
5
2 + C2γ

4
2 + C3γ

3
2 + C4γ

2
2 + C5γ2 + C6)

(C7)2
. (8.97)

The coefficientsC1, C2, C3, C4, C5, C6 of the polynomial function ofγ2 and the term
C7 in the denominator are functions ofγ1 ∈ [0.5, 1], li-1, li, li+1, li+2 ∈ R

+
0 andkiki+1,

ki+2 ∈ R
+ and are given in Eqs. (C.1–C.7) in Appendix C. Eq. (8.97) shows that

the derivative ofy∗
COG to γ1 is equal to zero forγ2 = 0. Instead of proving that the

derivative ofy∗
COG to γ1 is negative for some valuesγ2 ∈ [0, 1] regardless of the fuzzy

output partition applied by determining the roots of the polynomial function of degree
five in γ2, it is shown that the derivative of the crisp outputy∗

COG to γ1 is strictly
negative for anyAi, Ai+1 andAi+2 whenγ2 approaches 0

lim
γ2

>
→0

dy∗
COG

dγ1
= −γ4

1 lim
γ2

>
→0

γ2

[

3(li-1 + li + 2ki)
2γ6

1

]−1[(
li-1 + li + 2ki

)

(
(1− γ1)

2(2γ1 + 1)l2i+1 + 3(1− γ2
1)li+1ki+1 + 3k2

i+1

)

+
(
3ki(li-1 + 2li + ki) + (li-1 + li)(li-1 + 2li)

)

(
(1− γ2

1)li+1 + 2ki+1

)]

< 0 (8.98)

8.5 Models with three input variables

Only models with a monotone smooth rule base applying the t-norm TP are consid-
ered in this section, since models with two input variables applying TM show a non-
monotone input-output behaviour for some monotone smooth rule bases
(Section 8.4.1), models with two input variables applyingTP show a non-monotone
input-output behaviour for some monotone, but non-smooth rule bases (Section 8.4.3)
and models applyingTL return the empty set as fuzzy model output for some inputs if
the number of input variables is larger than two (Section 7.4).

8.5.1 Numerical experiments

To get more insight in the behaviour of models with three input variables applyingTP

and the COG defuzzification method, numerical experiments were carried out. In all
models used during the experiments two linguistic valuesBl

1 andBl
2, defined by the

membership functions shown in Fig. 8.19, were assigned to the three input variables
X1, X2 andX3. By combining each of the 18 monotone smooth rule bases obtained by
applying the 18 combinations of the parameterspi listed in Table 7.1 to the following
set of eight rules
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Xl
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Figure 8.19: Membership functions assigned to the three input variablesX1, X2 and
X3 during the numerical experiments.

Table 8.4: Output membership functions used in the numerical experiments, character-
ized by lengthsl of the intervals of changing membership degree and lengths
k of the kernels, as well as the parameterd defining the size of the region of
the input space where a non-monotone input-output behaviour is obtained
for models with rule base ‘Case XI’ and rule base ‘Case XVI’.

li-1 ki li ki+1 li+1 ki+2 li+2 ki+3 li+3 d - Case XI d - Case XVI
± 0.005 ± 0.005

1 0.150 0.017 0.150 0.017 0.150 0.017 0.150 0.017 0.150 0.005 0.005
2 0.118 0.177 0.053 0.005 0.328 0.075 0.081 0.023 0.019 0.005 0.005
3 0.183 0.216 0.047 0.059 0.147 0.009 0.157 0.008 0.086 0.255 0.005
4 0.228 0.118 0.045 0.052 0.104 0.124 0.032 0.006 0.040 0.115 0.005
5 0.134 0.085 0.014 0.125 0.046 0.046 0.067 0.079 0.327 0.155 0.005
6 0.050 0.126 0.050 0.239 0.050 0.257 0.050 0.073 0.050 0.005 0.175
7 0.050 0.042 0.050 0.114 0.050 0.170 0.050 0.117 0.050 0.005 0.275
8 0.050 0.034 0.050 0.203 0.050 0.107 0.050 0.221 0.050 0.005 0.185
9 0.050 0.132 0.050 0.063 0.050 0.059 0.050 0.073 0.050 0.185 0.005
10 0.050 0.104 0.050 0.173 0.050 0.098 0.050 0.097 0.050 0.015 0.005

IF X1 IS B1
1 AND X2 IS B2

1 AND X3 IS B3
1 THEN Y IS Ai

IF X1 IS B1
1 AND X2 IS B2

1 AND X3 IS B3
2 THEN Y IS Ai+p1+p2+p3

IF X1 IS B1
1 AND X2 IS B2

2 AND X3 IS B3
1 THEN Y IS Ai+p1+p2

IF X1 IS B1
1 AND X2 IS B2

2 AND X3 IS B3
2 THEN Y IS Ai+p1+p2+p3+p5

IF X1 IS B1
2 AND X2 IS B2

1 AND X3 IS B3
1 THEN Y IS Ai+p1

IF X1 IS B1
2 AND X2 IS B2

1 AND X3 IS B3
2 THEN Y IS Ai+p1+p2+p3+p6

IF X1 IS B1
2 AND X2 IS B2

2 AND X3 IS B3
1 THEN Y IS Ai+p1+p2+p4

IF X1 IS B1
2 AND X2 IS B2

2 AND X3 IS B3
2 THEN Y IS Ai+p′

7

with p1, p2, p3, p4, p5, p6, p7 ∈ N andp′7 = p1 + p2 + max(p4, p3 + p5, p3 + p6) + p7,
with each of the ten fuzzy output partitions characterized in Table 8.4, 180 models were
obtained. Note that in partition 1 the membership functionsAi, Ai+1, Ai+2 andAi+3

have an identical shape and that in partitions 6-10 the intervals of changing membership
degree are of equal length.

The model outputy∗
COG of all models was determined for1033 inputs

(X1,X2,X3) ∈ [0.245 : 0.005 : 0.755]
3. A monotone input-output behaviour was

recorded for almost all models. Only the models applying fuzzy output partitions 3,
4, 5, 9 and 10 combined with rule base ‘Case XI’
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IF X1 IS B1
1 AND X2 IS B2

1 AND X3 IS B3
1 THEN Y IS Ai

IF X1 IS B1
1 AND X2 IS B2

1 AND X3 IS B3
2 THEN Y IS Ai+1

IF X1 IS B1
1 AND X2 IS B2

2 AND X3 IS B3
1 THEN Y IS Ai+1

IF X1 IS B1
1 AND X2 IS B2

2 AND X3 IS B3
2 THEN Y IS Ai+1

IF X1 IS B1
2 AND X2 IS B2

1 AND X3 IS B3
1 THEN Y IS Ai

IF X1 IS B1
2 AND X2 IS B2

1 AND X3 IS B3
2 THEN Y IS Ai+1

IF X1 IS B1
2 AND X2 IS B2

2 AND X3 IS B3
1 THEN Y IS Ai+1

IF X1 IS B1
2 AND X2 IS B2

2 AND X3 IS B3
2 THEN Y IS Ai+2

and the models applying fuzzy output partitions 6, 7, and 8 combined with rule base
‘Case XVI’

IF X1 IS B1
1 AND X2 IS B2

1 AND X3 IS B3
1 THEN Y IS Ai

IF X1 IS B1
1 AND X2 IS B2

1 AND X3 IS B3
2 THEN Y IS Ai+1

IF X1 IS B1
1 AND X2 IS B2

2 AND X3 IS B3
1 THEN Y IS Ai+1

IF X1 IS B1
1 AND X2 IS B2

2 AND X3 IS B3
2 THEN Y IS Ai+1

IF X1 IS B1
2 AND X2 IS B2

1 AND X3 IS B3
1 THEN Y IS Ai+1

IF X1 IS B1
2 AND X2 IS B2

1 AND X3 IS B3
2 THEN Y IS Ai+1

IF X1 IS B1
2 AND X2 IS B2

2 AND X3 IS B3
1 THEN Y IS Ai+2

IF X1 IS B1
2 AND X2 IS B2

2 AND X3 IS B3
2 THEN Y IS Ai+2

show a non-monotone input-output behaviour in a region of the 3-dimensional input
space.

For models with rule base ‘Case XI’ the derivative ofy∗
COG to γ1 is negative

for inputsx within the region of the input space defined by the projections onto the
(γ1,γ2)-, (γ1,γ3)- and (γ2,γ3)-planes coloured gray in Fig. 8.20. Additional numeri-
cal experiments with models using rule base ‘Case XI’ and 10000 randomly generated
fuzzy output partitions, showed that the size of the region of the input space, charac-
terized by the parameterd, is a complex function of the parametersli-1, ki, li, ki+1,
li+1 , ki+2 andli+2 defining the output membership functionsAi, Ai+1 andAi+2. The
values ofd obtained for the ten partitions used in the numerical experiments are given
in Table 8.4. Ifd = 0.005 ± 0.005 is mentioned,d is an element of the interval
[0, 0.01], i.e. either no non-monotone behaviour occurs for the given fuzzypartition or
non-monotone behaviour is obtained in a very small region ofthe input space charac-
terized by ad-value smaller than the discretization step 0.01 used when determining
d.

For models with rule base ‘Case XI’ the crisp model outputy∗
COG

y∗
COG =

y∗
i Si + y∗

i+1Si+1 + y∗
i+2Si+2 − y∗

op,iSop,i − y∗
op,i+1Sop,i+1

Si + Si+1 + Si+2 − Sop,i − Sop,i+1
, (8.99)

is obtained using the formulae in Table 8.1 with the fulfilment degreesαi, αi+1 and
αi+2 being given by

αi = max((1− γ1)(1− γ2)(1− γ3), γ1(1− γ2)(1− γ3)) , (8.100)

αi+1 = max((1− γ1)γ2(1− γ3), γ1γ2(1− γ3), (1− γ1)(1− γ2)γ3, γ1(1− γ2)γ3,

(1− γ1)γ2γ3) , (8.101)

αi+2 = γ1γ2γ3 . (8.102)
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Figure 8.20: Region of the input space where a non-monotone input-output behaviour
is recorded for some fuzzy output partitions in Case XI.

In the region of the input space where non-monotonicity is recorded for some
fuzzy output partitions, the membership degreesγ1, γ2 andγ3 satisfy

γ2 > γ1 > 0.5 ∧ γ3 > γ1 > 0.5 , (8.103)

and the fulfilment degreesαi, αi+1 andαi+2 are given by

αi = γ1(1− γ2)(1− γ3) , (8.104)

αi+1 = (1− γ1)γ2γ3 , (8.105)

αi+2 = γ1γ2γ3 , (8.106)

The derivative ofy∗
COG to γ1 is an even more complex function ofγ1, γ2, γ3,

li-1, li, li+1, li+2, ki, ki+1 andki+2, than Eq. (8.97). However, it is known from the
experiments that if the derivative ofy∗

COG to γ1 is negative for some inputsx, it is
negative forγ1, γ2 and γ3 approaching 0.5 (from the right). Whenγ1, γ2 and γ3
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Table 8.5: Derivative ofy∗
COG to γ1 in models with rule base ‘Case XI’ forγ1, γ2 and

γ3 approaching 0.5 (Eq. (8.107)) for the fuzzy output partitions in Table 8.4.

1 2 3 4 5 6 7 8 9 10
∂y∗

COG
∂γ1

0.000 0.006 -0.081 -0.029 -0.045 0.100 0.091 0.079 -0.041 -0.006

approach 0.5 the derivative ofy∗
COG to γ1 is given by

lim
Case XI
γ1→0.5
γ2→0.5
γ3→0.5

∂y∗
COG

∂γ1
=

[

4(li+2 − li-1)((li-1 + li+2)(3li + 3li+1 + 8ki+1) + 9lili+1

+ 12k2
i+1) + 12(ki+2 − ki)((ki + ki+2)(3li + 3li+1 + 8ki+1)

+ 6lili+1 + 8k2
i+1) + (li+1 − li)((li + li+1)(15li + 15li+1

+ 56ki+1) + 36k2
i+1) + 8(l2i li+2 − li-1l

2
i+1) + 36ki+1(lili+2

− li-1li+1) + 16(l2i ki+2 − l2i+1ki) + 72ki+1(liki+2 − li+1ki)

+ 28(l2i+1li+2 − li-1l
2
i ) + 96ki+1(li+1li+2 − li-1li) + 56(l2i+1ki+2

− l2i ki) + 192ki+1(li+1ki+2 − liki) + 12(li+2ki+2 − li-1ki)

(3li + 3li+1 + 8ki+1)

]

×

[

3(2li-1 + 3li + 3li+1 + 2li+2 + 4ki

+ 4ki+1 + 4ki+2)
2

]−1

. (8.107)

The values obtained for∂y∗

COG

∂γ1
in Eq. (8.107) for the ten fuzzy partitions used

in the experiments are given in Table 8.5. One sees that, on the one hand, if a nega-
tive derivative is recorded for some inputs(X1,X2,X3) ∈ [0.245 : 0.005 : 0.755]

3, a
negative value is obtained (partitions 3, 4, 5, 9 and 10) and on the other hand, if a posi-
tive value is obtained, no negative derivatives are recorded for any input(X1,X2,X3)

∈ [0.245 : 0.005 : 0.755]
3. Eq. (8.107) also shows that the membership functionsAi,

Ai+1 andAi+2 for which a positive value is obtained for∂y∗

COG

∂γ1
in Eq. (8.107),i.e. for

which a monotone input-output behaviour is obtained in casethe rule base contains
a set of rules corresponding to Case XI, cannot be defined in a straightforward way.
However, one can easily verify that if the membership functionsAi, Ai+1 andAi+2

have an identical shape,

(∃l > 0)(∀j ∈ {i− 1, . . . , i + 2})(lj = l) , (8.108)

(∃k ≥ 0)(∀j ∈ {i, . . . , i + 2})(kj = k) , (8.109)

the derivative∂y∗

COG

∂γ1
in Eq. (8.107) is equal to zero. This analytical observationis

supported by the results obtained for partition 1.
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Figure 8.21: Region of the input space where a non-monotone input-output behaviour
is recorded for some fuzzy output partitions in Case XVI.

For models with rule base ‘Case XVI’ the derivative ofy∗
COG to γ3 is nega-

tive for inputsx within the region of the input space defined by the projections onto
the (γ1,γ2)-, (γ1,γ3)- and (γ2,γ3)-planes coloured gray in Fig. 8.21. The values ofd
obtained for the ten fuzzy partitions used in the numerical experiments are given in
Table 8.4. Ifd = 0.005±0.005 is mentioned,d is either smaller than the discretization
step 0.01 used when determiningd or no non-monotone behaviour occurs for the given
fuzzy partition. For a certain fuzzy partition, non-monotonicity is never observed for
rule base ‘Case XI’ and for rule base ‘Case XVI’. Note furthermore the analogy be-
tween the regions shown in Figs. 8.20–8.21. If in Fig. 8.20γ1 is substituted by1− γ3,
γ2 by 1− γ2 andγ3 by 1− γ1, Fig. 8.21 is obtained.

For models with rule base ‘Case XVI’ the crisp model outputy∗
COG

y∗
COG =

y∗
i Si + y∗

i+1Si+1 + y∗
i+2Si+2 − y∗

op,iSop,i − y∗
op,i+1Sop,i+1

Si + Si+1 + Si+2 − Sop,i − Sop,i+1
, (8.110)

is obtained using the formulae in Table 8.1 with the fulfilment degreesαi, αi+1 and
αi+2 being given by

αi = (1− γ1)(1− γ2)(1− γ3) , (8.111)

αi+1 = max(γ1(1− γ2)(1− γ3), (1− γ1)γ2(1− γ3), (1− γ1)(1− γ2)γ3,

γ1(1− γ2)γ3, (1− γ1)γ2γ3) , (8.112)

αi+2 = max(γ1γ2(1− γ3), γ1γ2γ3) . (8.113)

In the region of the input space where non-monotonicity is recorded for some
fuzzy output partitions, the membership degreesγ1, γ2 andγ3 satisfy

0.5 > γ3 > γ1 ∧ 0.5 > γ3 > γ2 , (8.114)

and the fulfilment degreesαi, αi+1 andαi+2 are given by

αi = (1− γ1)(1− γ2)(1− γ3) , (8.115)

αi+1 = (1− γ1)(1− γ2)γ3 , (8.116)

αi+2 = γ1γ2(1− γ3) . (8.117)
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The derivative ofy∗
COG to γ3 is a complex function ofγ1, γ2, γ3, li-1, li, li+1,

li+2, ki, ki+1 andki+2. Again, the characterization of the class of fuzzy output partitions
resulting in a positive derivative ofy∗

COG to γ3 for all inputsx will not be derived from
this complex function, but from the equation obtained for the derivative ifγ1, γ2 and
γ3 approach 0.5. We learned from the experiments that if the derivative ofy∗

COG to γ3

is negative for some inputsx, it is negative forγ1, γ2 andγ3 approaching 0.5 (from the
left). Whenγ1, γ2 andγ3 approach 0.5 the derivative ofy∗

COG to γ3 is given by

lim
Case XVI
γ1→0.5
γ2→0.5
γ3→0.5

∂y∗
COG

∂γ3
= − lim

Case XI
γ1→0.5
γ2→0.5
γ3→0.5

∂y∗
COG

∂γ1
. (8.118)

Thus, models with fuzzy partitions for which a strictly positive value was ob-
tained for ∂y∗

COG

∂γ1
in Eq. (8.107), being partitions 2, 6, 7 and 8 (Table 8.5), arenot

monotone if their rule base contains rules corresponding toCase XVI. For models ap-
plying partitions 6, 7 and 8 non-monotonicity was indeed reported for some inputs
(X1,X2,X3) ∈ [0.245 : 0.005 : 0.755]

3. Experiments with a smaller discretization
step revealed that also for models applying partition 2 non-monotonicity is obtained
(inputs(X1,X2,X3) ∈ [0.45 : 0.001 : 0.55]

3 andd = 0.009± 0.002).
In order to guarantee monotonicity for models with a rule base containing rules

corresponding to Case XI, as well as for models with a rule base containing rules
corresponding to Case XVI, a fuzzy partition should be used satisfying

lim
Case XI
γ1→0.5
γ2→0.5
γ3→0.5

∂y∗
COG

∂γ1
= lim

Case XVI
γ1→0.5
γ2→0.5
γ3→0.5

∂y∗
COG

∂γ3
= 0 . (8.119)

As the two derivatives are equal to zero if the membership functionsAi, Ai+1

andAi+2 have an identical shape,

(∃l > 0)(∀j ∈ {i− 1, . . . , i + 2})(lj = l) , (8.120)

(∃k ≥ 0)(∀j ∈ {i, . . . , i + 2})(kj = k) , (8.121)

and Eq. (8.107) does not allow a straightforward, user friendly formulation of the class
of membership functionsAi, Ai+1 andAi+2 for which both derivatives are zero, only
fuzzy models with linguistic output values described by identically shaped membership
functions in the consequents of their rules (The linguisticoutput valuesA1 andAn are
excluded as they are described by a trapezium with a verticalside (l0 = ln = 0).)

(∀s ∈ {1, . . . , r})(is /∈ {1, n}) , (8.122)

(∃l > 0)(∀i ∈ I \ {n})(li = l) , (8.123)

(∃k ≤ 0)(∀i ∈ I)(ki = k) , (8.124)

are considered in the theoretical analysis of the monotonicity of models with three input
variables applyingTP combined with the COG defuzzification method.
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8.5.2 Theoretical analysis

In this section it is shown that when applyingTP combined with the COG defuzzifi-
cation method, one will always obtain a monotone input-output behaviour for a model
with three input variables, a monotone smooth rule base and linguistic values in its rule
consequents satisfying Eqs. (8.122)–(8.124).

The general representation of the set of eight rules that canbe fired simultane-
ously in a model with three input variablesX1, X2 andX3 is

IF X1 IS B1
1 AND X2 IS B2

1 AND X3 IS B3
1 THEN Y IS Ai

IF X1 IS B1
1 AND X2 IS B2

1 AND X3 IS B3
2 THEN Y IS Ai+p1+p2+p3

IF X1 IS B1
1 AND X2 IS B2

2 AND X3 IS B3
1 THEN Y IS Ai+p1+p2

IF X1 IS B1
1 AND X2 IS B2

2 AND X3 IS B3
2 THEN Y IS Ai+p1+p2+p3+p5

IF X1 IS B1
2 AND X2 IS B2

1 AND X3 IS B3
1 THEN Y IS Ai+p1

IF X1 IS B1
2 AND X2 IS B2

1 AND X3 IS B3
2 THEN Y IS Ai+p1+p2+p3+p6

IF X1 IS B1
2 AND X2 IS B2

2 AND X3 IS B3
1 THEN Y IS Ai+p1+p2+p4

IF X1 IS B1
2 AND X2 IS B2

2 AND X3 IS B3
2 THEN Y IS Ai+p′

7

with p′7 = p1 + p2 + max(p4, p3 + p5, p3 + p6) + p7 andp1, p2, p3, p4, p5, p6, p7 ∈ N.
When the rule base of a model is smooth, one of the 18 combinations listed

in Table 7.1 should be used for the parameterspi. In the following paragraphs the
monotonicity for Cases I to XVIII will be investigated for inputsx for which member-
ship degreesγ1, γ2 andγ3 can be defined as follows

γ1 = 1−B1
j1

(x1) = B1
j1+1(x1) , (8.125)

γ2 = 1−B2
j2

(x2) = B2
j2+1(x2) , (8.126)

γ3 = 1−B3
j3

(x3) = B3
j3+1(x3) , (8.127)

or in other words, for inputsx not firing any other rule than the eight rules above.

Non-zero αi If (p1, p2, p3, p4, p5, p6, p7) = (0, 0, 0, 0, 0, 0, 0) (Case I), the eight
rules contain a same linguistic output valueAi in their consequent. As a result, for
all inputsx not firing any other rule than these eight rules (Eqs. (8.125)–(8.127)), only
the linguistic output valueAi is fired

(αi > 0) , (∀j ∈ I \ {i})(αj = 0) , (8.128)

and the crisp outputy∗
COG (Eq. (8.1) with Table 8.2) is equal to the midpoint of the

kernel ofAi

y∗
COG = ci . (8.129)

As the crisp outputy∗
COG is independent ofαi, it holds that

dy∗
COG

dγ1
= 0

dy∗
COG

dγ2
= 0

dy∗
COG

dγ3
= 0 , (8.130)

and monotonicity is guaranteed.
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Figure 8.22: Cases considered in the discussion about models with three input vari-
ables and a monotone smooth rule base withAi andAi+1 in the rule con-
sequents.
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Non-zeroαi and αi+1 The eight rules obtained for Cases II-V, VII-VIII, X and XIII
are represented in Fig. 8.22. In these cases the linguistic valuesAi andAi+1 appear
in the consequents. For all inputsx not firing any other rule than these eight rules
(Eqs. (8.125)–(8.127)), the crisp outputy∗

COG , expressed as a function ofαi andαi+1,
is given by

y∗
COG = oi +

(αi+1 − αi)(6(l + k)2(α2
i + α2

i+1) + (13l2 + 24lk + 12k2)αiαi+1)

6(αi + αi+1)(2(l + k)(α2
i + α2

i+1) + (3l + 4k)αiαi+1)
,

(8.131)
and its derivatives toαi andαi+1 are

∂y∗
COG

∂αi

= −αi+1
C1

C2
, (8.132)

∂y∗
COG

∂αi+1
= αi

C1

C2
, (8.133)

with C1, C2 ∈ R
+
0

C1 = (8l3 + 29l2k + 33lk2 + 12k3)(αi + αi+1)
4

+ (11l2 + 18lk + 6k2)lαiαi+1(αi + αi+1)
2

+ l3αi+1αi(α
2
i + αi+1αi + α2

i+1) ,

C2 = 3(αi + αi+1)
2(2(l + k)(α2

i + α2
i+1) + (3l + 4k)αiαi+1)

2 .

Thus, the positivity of the derivatives ofy∗
COG to γ1, γ2 andγ3 can be restated

as

∂y∗
COG

∂γ1
≥ 0 ⇔ −αi+1

∂αi

∂γ1
+ αi

∂αi+1

∂γ1
≥ 0 , (8.134)

∂y∗
COG

∂γ2
≥ 0 ⇔ −αi+1

∂αi

∂γ2
+ αi

∂αi+1

∂γ2
≥ 0 , (8.135)

∂y∗
COG

∂γ3
≥ 0 ⇔ −αi+1

∂αi

∂γ3
+ αi

∂αi+1

∂γ3
≥ 0 . (8.136)

For models with three input variables, it is hard to graphically represent the
regions of the input space where the fulfilment degrees are described by a different
function of γ1, γ2 andγ3. Therefore the regions are defined by the equations in Ta-
ble 8.6. One easily verifies that for all(γ1, γ2, γ3) belonging to a boundary plane
between different regions of the input space and thus satisfying equations defining
different subcases of a case, the functions for the fulfilment degrees holding in the cor-
responding subcases coincide. Monotonicity is guaranteedin Cases II-V, VII-VIII, X
and XIII as for all(αi, αi+1)-pairs the expressions on the right hand side of the arrows
in Eqs. (8.134)–(8.136) are satisfied for(γ1, γ2, γ3) ∈ ]0, 1[

3. The values obtained for
−αi+1

∂αi

∂γl
+ αi

∂αi+1
∂γl

are given in Table 8.7 for all(αi, αi+1)-pairs.
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Table 8.6: Definition of the regions of the input space whereαi andαi+1

are described by different functions ofγ1, γ2 andγ3 for Cases II-V, VII-
VIII, X and XIII. The functions are given in Table 8.7.

conditions on(γ1, γ2, γ3) (αi, αi+1)

II a 0.5 ≥ γ1, 0.5 ≥ γ2, 0.5 ≥ γ3 1
b γ1 ≥ 0.5, 0.5 ≥ γ2, 0.5 ≥ γ3 2
c 0.5 ≥ γ1, γ2 ≥ 0.5, 0.5 ≥ γ3 3
d γ1 ≥ 0.5, γ2 ≥ 0.5, γ1 ≥ γ3, γ2 ≥ γ3 4
e 0.5 ≥ γ1, 0.5 ≥ γ2, γ3 ≥ 0.5 5
f γ1 ≥ 0.5, γ1 ≥ γ2, γ3 ≥ γ2, γ3 ≥ 0.5 6
g γ2 ≥ γ1, γ3 ≥ γ1, γ2 ≥ 0.5, γ3 ≥ 0.5 7

III a 0.5 ≥ γ1, 0.5 ≥ γ2, 0.5 ≥ γ3, γ1 ≥ γ2 8
b 0.5 ≥ γ1, 0.5 ≥ γ2, 0.5 ≥ γ3, γ2 ≥ γ1 9
c γ1 ≥ 0.5, 0.5 ≥ γ2, γ1 ≥ γ3 10
d γ3 ≥ 0.5 ≥ γ2, γ3 ≥ γ1 ≥ γ2 11
e γ3 ≥ 0.5 ≥ γ1, γ3 ≥ γ2 ≥ γ1 12
f 0.5 ≥ γ1, γ2 ≥ 0.5, γ2 ≥ γ3 13
g γ1 ≥ 0.5, γ2 ≥ 0.5, γ1γ2(1− γ3) ≥ (1− γ1)(1− γ2)γ3 4
h γ1 ≥ 0.5, γ2 ≥ 0.5, (1− γ1)(1− γ2)γ3 ≥ γ1γ2(1− γ3) 5

IV a 0.5 ≥ γ1, 0.5 ≥ γ2, 0.5 ≥ γ3 14
b γ1 ≥ 0.5, γ1 ≥ γ2, 0.5 ≥ γ3 15
c γ2 ≥ γ1, γ2 ≥ 0.5, 0.5 ≥ γ3 16
d 0.5 ≥ γ1, 0.5 ≥ γ2, γ3 ≥ 0.5 5
e γ1 ≥ 0.5, γ1 ≥ γ2, γ3 ≥ 0.5 6
f γ2 ≥ γ1, γ2 ≥ 0.5, γ3 ≥ 0.5 7

V a 0.5 ≥ γ2 ≥ γ1, 0.5 ≥ γ3 ≥ γ1 9
b 0.5 ≥ γ1 ≥ γ2, 0.5 ≥ γ3 ≥ γ2 8
c 0.5 ≥ γ1 ≥ γ3, 0.5 ≥ γ2 ≥ γ3 14
d γ1 ≥ γ2 ≥ 0.5, γ1 ≥ γ3 ≥ 0.5 2
e γ2 ≥ γ1 ≥ 0.5, γ2 ≥ γ3 ≥ 0.5 3
f γ3 ≥ γ2 ≥ 0.5, γ3 ≥ γ1 ≥ 0.5 5
g γ1 ≥ γ3 ≥ γ2, γ1 ≥ 0.5 ≥ γ2 10
h γ1 ≥ γ2 ≥ γ3, γ1 ≥ 0.5 ≥ γ3 15
i γ2 ≥ γ3 ≥ γ1, γ2 ≥ 0.5 ≥ γ1 13
j γ2 ≥ γ1 ≥ γ3, γ2 ≥ 0.5 ≥ γ3 16
k γ3 ≥ γ1 ≥ γ2, γ3 ≥ 0.5 ≥ γ2 11
l γ3 ≥ γ2 ≥ γ1, γ3 ≥ 0.5 ≥ γ1 12

VII a 0.5 ≥ γ1, 0.5 ≥ γ2 17
b γ1 ≥ 0.5, 0.5 ≥ γ2 10
c 0.5 ≥ γ1, γ2 ≥ 0.5 13
d γ1 ≥ 0.5, γ2 ≥ 0.5 4

VIII a 0.5 ≥ γ1, 0.5 ≥ γ2, γ1γ2(1− γ3) ≥ (1− γ1)(1− γ2)γ3 14
continued on next page
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continued from previous page

conditions on(γ1, γ2, γ3) (αi, αi+1)

b 0.5 ≥ γ1, 0.5 ≥ γ2, (1− γ1)(1− γ2)γ3 ≥ γ1γ2(1− γ3) 17
c γ1 ≥ 0.5 ≥ γ3, γ1 ≥ γ2 ≥ γ3 15
d γ1 ≥ 0.5 ≥ γ2, γ1 ≥ γ2, γ3 ≥ γ2 10
e γ1 ≥ γ2 ≥ 0.5, γ3 ≥ 0.5 2
f γ2 ≥ γ1 ≥ γ3, γ2 ≥ 0.5 ≥ γ3 16
g γ2 ≥ 0.5 ≥ γ1, γ3 ≥ γ1 13
h γ2 ≥ γ1 ≥ 0.5, γ3 ≥ 0.5 3

X a 0.5 ≥ γ1, γ2 ≥ 0.5, γ3 ≥ 0.5 9
b 0.5 ≥ γ1, 0.5 ≥ γ3, γ2 ≥ γ3 18
c 0.5 ≥ γ1, 0.5 ≥ γ2, γ3 ≥ γ2 17
d γ1 ≥ 0.5, γ2 ≥ 0.5, γ3 ≥ 0.5 2
e γ1 ≥ 0.5, 0.5 ≥ γ3, γ2 ≥ γ3 15
f γ1 ≥ 0.5, 0.5 ≥ γ2, γ3 ≥ γ2 10

XIII a γ1 ≥ γ2, γ1 ≥ γ3, 0.5 ≥ γ2, 0.5 ≥ γ3 19
b γ2 ≥ γ1, γ2 ≥ γ3, 0.5 ≥ γ1, 0.5 ≥ γ3 18
c γ1 ≥ 0.5, γ2 ≥ 0.5, 0.5 ≥ γ3 14
d γ3 ≥ γ1, γ3 ≥ γ2, 0.5 ≥ γ1, 0.5 ≥ γ2 17
e γ1 ≥ 0.5, 0.5 ≥ γ2, γ3 ≥ 0.5 8
f 0.5 ≥ γ1, γ2 ≥ 0.5, γ3 ≥ 0.5 9
g γ1 ≥ 0.5, γ2 ≥ 0.5, γ3 ≥ 0.5 1

Non-zeroαi, αi+1 and αi+2 The eight rules obtained for Cases VI, IX, XI-XII and
XIV-XVII are represented in Fig. 8.23. In these cases the linguistic valuesAi, Ai+1

andAi+2 appear in the consequents. For all inputsx not firing any other rule than these
eight rules (Eqs. (8.125)–(8.127)), the crisp outputy∗

COG , expressed as a function of
αi, αi+1 andαi+2, is given by

y∗
COG = ci+1 +

[

(αi+2 − αi)(12(k + l)2(αiαi+2 + αi+1(αi + αi+2))
2 + 3(8(l + k)2

− lk)αiα
2
i+1αi+2 + (22(l + k)2 + (l + 2k)k)(αi + αi+2)α

3
i+1

+ (8(l + k)2 + (5l + 4k)k)α4
i+1)

]

×

[

6(αi + αi+1)(αi+1 + αi+2)

((l + k)(2αiαi+2(αi + αi+2) + 2(αi + αi+2)
2αi+1 + 3(αi + αi+2)

α2
i+1 + 2α3

i+1) + kαi+1(2αiαi+2 + (αi + αi+2)αi+1))

]−1

. (8.137)
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Table 8.7: Values obtained for−αi+1
∂αi

∂γl
+αi

∂αi+1
∂γl

in Eqs. (8.134)–(8.136) for(αi, αi+1) occurring in Cases II-V, VII-VIII, X and XIII.

αi αi+1 −αi+1
∂αi

∂γ1
+ αi

∂αi+1
∂γ1

−αi+1
∂αi

∂γ2
+ αi

∂αi+1
∂γ2

−αi+1
∂αi

∂γ3
+ αi

∂αi+1
∂γ3

1 (1− γ1)(1− γ2)(1− γ3) γ1γ2γ3 γ2(1− γ2)γ3(1− γ3) γ1(1− γ1)γ3(1− γ3) γ1(1− γ1)γ2(1− γ2)
2 γ1(1− γ2)(1− γ3) γ1γ2γ3 0 γ2

1γ3(1− γ3) γ2
1γ2(1− γ2)

3 (1− γ1)γ2(1− γ3) γ1γ2γ3 γ2
2γ3(1− γ3) 0 γ1(1− γ1)γ

2
2

4 γ1γ2(1− γ3) γ1γ2γ3 0 0 γ2
1γ2

2

5 (1− γ1)(1− γ2)γ3 γ1γ2γ3 γ2(1− γ2)γ
2
3 γ1(1− γ1)γ

2
3 0

6 γ1(1− γ2)γ3 γ1γ2γ3 0 γ2
1γ2

3 0
7 (1− γ1)γ2γ3 γ1γ2γ3 γ2

2γ2
3 0 0

8 (1− γ1)(1− γ2)(1− γ3) γ1(1− γ2)γ3 (1− γ2)
2γ3(1− γ3) 0 γ1(1− γ1)(1− γ2)

2

9 (1− γ1)(1− γ2)(1− γ3) (1− γ1)γ2γ3 0 (1− γ1)
2γ3(1− γ3) (1− γ1)

2γ2(1− γ2)
10 γ1(1− γ2)(1− γ3) γ1(1− γ2)γ3 0 0 γ2

1(1− γ2)
2

11 (1− γ1)(1− γ2)γ3 γ1(1− γ2)γ3 (1− γ2)
2γ2

3 0 0
12 (1− γ1)(1− γ2)γ3 (1− γ1)γ2γ3 0 (1− γ1)

2γ2
3 0

13 (1− γ1)γ2(1− γ3) (1− γ1)γ2γ3 0 0 (1− γ1)
2γ2

2

14 (1− γ1)(1− γ2)(1− γ3) γ1γ2(1− γ3) γ2(1− γ2)(1− γ3)
2 γ1(1− γ1)(1− γ3)

2 0
15 γ1(1− γ2)(1− γ3) γ1γ2(1− γ3) 0 γ2

1(1− γ3)
2 0

16 (1− γ1)γ2(1− γ3) γ1γ2(1− γ3) γ2
2(1− γ3)

2 0 0
17 (1− γ1)(1− γ2)(1− γ3) (1− γ1)(1− γ2)γ3 0 0 (1− γ1)

2(1− γ2)
2

18 (1− γ1)(1− γ2)(1− γ3) (1− γ1)γ2(1− γ3) 0 (1− γ1)
2(1− γ3)

2 0
19 (1− γ1)(1− γ2)(1− γ3) γ1(1− γ2)(1− γ3) (1− γ2)

2(1− γ3)
2 0 0

18
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Figure 8.23: Cases considered in the discussion about models with three input vari-
ables and a monotone smooth rule base withAi, Ai+1 andAi+2 in the rule
consequents.
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and its derivatives toαi, αi+1 andαi+2 are

∂y∗
COG

∂αi

= −C1(αi, αi+1, αi+2) , (8.138)

∂y∗
COG

∂αi+1
= (αi+2 − αi)C2(αi, αi+1, αi+2) , (8.139)

∂y∗
COG

∂αi+2
= C1(αi+2, αi+1, αi) . (8.140)

The functionsC1 andC2 of αi, αi+1 andαi+2 are given in Eqs. (D.1)–(D.2) in
Appendix D and satisfy following properties

(∀l ∈ R
+
0 )(∀k ∈ R

+)(∀(αi, αi+1, αi+2) ∈ ]0, 1[
3
)(C1(αi, αi+1, αi+2) ≥ 0) , (8.141)

(∀l ∈ R
+
0 )(∀k ∈ R

+)(∀(αi, αi+1, αi+2) ∈ ]0, 1[
3
)(C2(αi, αi+1, αi+2) ≥ 0) , (8.142)

C2(αi, αi+1, αi+2) = C2(αi+2, αi+1, αi) . (8.143)

Thus, the derivative ofy∗
COG to γ1 (resp.γ2 andγ3) is given by

∂y∗
COG

∂γ1
= −C1(αi, αi+1, αi+2)

∂αi

∂γ1
+ (αi+2 − αi)C2(αi, αi+1, αi+2)

∂αi+1

∂γ1

+ C1(αi+2, αi+1, αi)
∂αi+2

∂γ1
. (8.144)

One easily verifies that if monotonicity is guaranteed for fulfilment degreesαi,
αi+1 andαi+2 described by certain functions ofγ1, γ2 andγ3, monotonicity is also
guaranteed for fulfilment degreesαi, αi+1 andαi+2 obtained by permutation of the
membership degreesγ1, γ2 and γ3 in these functions. Furthermore it is shown in
the following paragraphs that if monotonicity is obtained for (γ1, γ2, γ3) ∈

]
γ1, γ1

[

×
]
γ2, γ2

[
×
]
γ3, γ3

[
and a certain set of fulfilment degreesαi, αi+1 andαi+2

αi = C3(γ1, γ2, γ3) , αi+1 = C4(γ1, γ2, γ3) , αi+2 = C5(γ1, γ2, γ3) , (8.145)

monotonicity is also obtained for(γ1, γ2, γ3) ∈
]
1− γ1, 1− γ1

[
×
]
1− γ2, 1− γ2

[

×
]
1− γ3, 1− γ3

[
and the fulfilment degreesαi, αi+1, andαi+2

αi = C5(1− γ1, 1− γ2, 1− γ3) , αi+1 = C4(1− γ1, 1− γ2, 1− γ3) ,

αi+2 = C3(1− γ1, 1− γ2, 1− γ3) . (8.146)

If monotonicity is guaranteed for the fulfilment degrees in Eq. (8.145), the fol-
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lowing inequality holds for all(γ1, γ2, γ3) ∈
]
γ1, γ1

[
×
]
γ2, γ2

[
×
]
γ3, γ3

[
:

− C1(C3(γ1, γ2, γ3), C4(γ1, γ2, γ3), C5(γ1, γ2, γ3))
∂C3(γ1, γ2, γ3)

∂γ1

+ (C5(γ1, γ2, γ3)− C3(γ1, γ2, γ3))

C2(C3(γ1, γ2, γ3), C4(γ1, γ2, γ3), C5(γ1, γ2, γ3))
∂C4(γ1, γ2, γ3)

∂γ1

+ C1(C5(γ1, γ2, γ3), C4(γ1, γ2, γ3), C3(γ1, γ2, γ3))
∂C5(γ1, γ2, γ3)

∂γ1
≥ 0 ,

(8.147)

as well as for all(1 − γ1, 1 − γ2, 1 − γ3) with (γ1, γ2, γ3) ∈
]
1− γ1, 1− γ1

[
×

]
1− γ2, 1− γ2

[
×
]
1− γ3, 1− γ3

[
:

− C1(C3(1 − γ1, 1 − γ2, 1 − γ3), C4(1 − γ1, 1 − γ2, 1 − γ3), C5(1 − γ1, 1 − γ2, 1 − γ3))

∂C3(1 − γ1, 1 − γ2, 1 − γ3)

∂(1 − γ1)

+ (C5(1 − γ1, 1 − γ2, 1 − γ3) − C3(1 − γ1, 1 − γ2, 1 − γ3))

C2(C3(1 − γ1, 1 − γ2, 1 − γ3), C4(1 − γ1, 1 − γ2, 1 − γ3), C5(1 − γ1, 1 − γ2, 1 − γ3))

∂C4(1 − γ1, 1 − γ2, 1 − γ3)

∂(1 − γ1)

+ C1(C5(1 − γ1, 1 − γ2, 1 − γ3), C4(1 − γ1, 1 − γ2, 1 − γ3), C3(1 − γ1, 1 − γ2, 1 − γ3))

∂C5(1 − γ1, 1 − γ2, 1 − γ3)

∂(1 − γ1)

≥ 0 . (8.148)

Applying

∂f(x)

∂x
=

∂f(x)

∂(1− x)

∂(1− x)

∂x
= −

∂f(x)

∂(1− x)
, (8.149)

and Eq. (8.143) the expression Eq. (8.148) converts to the derivative of y∗
COG to γ1

(resp.γ2 andγ3) for the fulfilment degrees in Eq. (8.146)

− C1(C5(1 − γ1, 1 − γ2, 1 − γ3), C4(1 − γ1, 1 − γ2, 1 − γ3), C3(1 − γ1, 1 − γ2, 1 − γ3))

∂C5(1 − γ1, 1 − γ2, 1 − γ3)

∂γ1

+ (C3(1 − γ1, 1 − γ2, 1 − γ3) − C5(1 − γ1, 1 − γ2, 1 − γ3))

C2(C5(1 − γ1, 1 − γ2, 1 − γ3), C4(1 − γ1, 1 − γ2, 1 − γ3), C3(1 − γ1, 1 − γ2, 1 − γ3))

∂C4(1 − γ1, 1 − γ2, 1 − γ3)

∂γ1

+ C1(C3(1 − γ1, 1 − γ2, 1 − γ3), C4(1 − γ1, 1 − γ2, 1 − γ3), C5(1 − γ1, 1 − γ2, 1 − γ3))

∂C3(1 − γ1, 1 − γ2, 1 − γ3)

∂γ1

≥ 0 , (8.150)
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which proves that monotonicity is also obtained for the fulfilment degrees in
Eq. (8.146).

In Table 8.8 the regions are defined where the fulfilment degrees are described
by a different function ofγ1, γ2 andγ3 for Cases VI, IX, XI-XII and XIV-XVII. In
Table 8.9 an overview is given of the 20 types of(αi, αi+1, αi+2)-triplets that occur in
these eight cases. Note that for all(γ1, γ2, γ3) belonging to a boundary plane between
different regions of the input space and thus satisfying equalities defining different sub-
cases of a case, the functions for the fulfilment degrees in the corresponding subcases
coincide.

Table 8.8: Definition of the regions of the input space whereαi, αi+1 and
αi+2 are described by different functions ofγ1, γ2 andγ3 for Cases VI,
IX, XI-XII and XIV-XVII. The functions are given in Table 8.9.

conditions on(γ1, γ2, γ3) (αi, αi+1, αi+2)

VI a 0.5 ≥ γ2 ≥ γ1, 0.5 ≥ γ3 ≥ γ1 1
b 0.5 ≥ γ1 ≥ γ2, 0.5 ≥ γ3 ≥ γ2 2
c 0.5 ≥ γ1 ≥ γ3, 0.5 ≥ γ2 ≥ γ3 3
d γ1 ≥ γ3 ≥ γ2, γ1 ≥ 0.5 4
e γ1 ≥ γ2 ≥ γ3, γ1 ≥ 0.5 5
f γ2 ≥ γ3 ≥ γ1, γ2 ≥ 0.5 6
g γ2 ≥ γ1 ≥ γ3, γ2 ≥ 0.5 7
h γ3 ≥ γ2 ≥ γ1, γ3 ≥ 0.5 8
i γ3 ≥ γ1 ≥ γ2, γ3 ≥ 0.5 9

IX a 0.5 ≥ γ1, 0.5 ≥ γ2, γ1γ2(1− γ3) ≥ (1− γ1)(1− γ2)γ3 3
b 0.5 ≥ γ1, 0.5 ≥ γ2, (1− γ1)(1− γ2)γ3 ≥ γ1γ2(1− γ3) 10
c γ1 ≥ 0.5, γ1 ≥ γ2 ≥ γ3 5
d γ1 ≥ 0.5, γ1 ≥ γ2, γ3 ≥ γ2 4
e γ2 ≥ 0.5, γ2 ≥ γ1 ≥ γ3 7
f γ2 ≥ 0.5, γ2 ≥ γ1, γ3 ≥ γ1 6

XI a 0.5 ≥ γ1, γ2 ≥ 0.5, γ3 ≥ 0.5 1
b 0.5 ≥ γ1, 0.5 ≥ γ3, γ2 ≥ γ3 11
c 0.5 ≥ γ1, 0.5 ≥ γ2, γ3 ≥ γ2 10
d γ1 ≥ 0.5, γ2 ≥ γ1, γ3 ≥ γ1 12
e γ1 ≥ 0.5, γ1 ≥ γ3, γ2 ≥ γ3 5
f γ1 ≥ 0.5, γ1 ≥ γ2, γ3 ≥ γ2 4

XII a 0.5 ≥ γ1, γ3 ≥ γ2 13
b 0.5 ≥ γ1, γ2 ≥ γ3 14
c γ1 ≥ 0.5, γ3 ≥ γ2 4
d γ1 ≥ 0.5, γ2 ≥ γ3 5

XIV a γ1 ≥ γ2, γ1 ≥ γ3, 0.5 ≥ γ2, 0.5 ≥ γ3 15
b 0.5 ≥ γ1, γ2 ≥ γ1, γ2 ≥ γ3, 0.5 ≥ γ3 11
c γ1 ≥ 0.5, γ2 ≥ 0.5, γ1 ≥ γ3, γ2 ≥ γ3 3
d 0.5 ≥ γ1, 0.5 ≥ γ2, γ3 ≥ γ1, γ3 ≥ γ2 10

continued on next page
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continued from previous page

conditions on(γ1, γ2, γ3) (αi, αi+1, αi+2)

e γ1 ≥ 0.5, γ3 ≥ 0.5, γ1 ≥ γ2, γ3 ≥ γ2 2
f γ2 ≥ 0.5, γ3 ≥ 0.5, γ2 ≥ γ1, γ3 ≥ γ1 1

XV a γ1 ≥ 0.5, γ2 ≥ 0.5, γ1γ2(1− γ3) ≥ (1− γ1)(1− γ2)γ3 3
b γ1 ≥ 0.5, γ2 ≥ 0.5, (1− γ1)(1− γ2)γ3 ≥ γ1γ2(1− γ3) 10
c γ1 ≥ γ2, 0.5 ≥ γ2, γ1 ≥ γ3 16
d γ3 ≥ γ1 ≥ γ2, 0.5 ≥ γ2 17
e γ2 ≥ γ1, 0.5 ≥ γ1, γ2 ≥ γ3 14
f γ3 ≥ γ2 ≥ γ1, 0.5 ≥ γ1 13

XVI a γ1 ≥ γ2, γ1 ≥ γ3, 0.5 ≥ γ3 18
b γ2 ≥ γ1, γ2 ≥ γ3, 0.5 ≥ γ3 19
c 0.5 ≥ γ3 ≥ γ1, 0.5 ≥ γ3 ≥ γ2 20
d 0.5 ≥ γ1, 0.5 ≥ γ2, γ3 ≥ 0.5 10
e γ1 ≥ γ2, γ1 ≥ 0.5, γ3 ≥ 0.5 2
f γ2 ≥ γ1, γ2 ≥ 0.5, γ3 ≥ 0.5 1

XVII a γ1 ≥ γ2 ≥ γ3, 0.5 ≥ γ3 18
b γ1 ≥ γ3 ≥ γ2, 0.5 ≥ γ2 16
c γ1 ≥ γ2 ≥ 0.5, γ1 ≥ γ3 ≥ 0.5 15
d γ2 ≥ γ1 ≥ γ3, 0.5 ≥ γ3 19
e γ2 ≥ γ3 ≥ γ1, 0.5 ≥ γ1 14
f γ2 ≥ γ1 ≥ 0.5, γ2 ≥ γ3 ≥ 0.5 11
g γ3 ≥ γ1 ≥ γ2, 0.5 ≥ γ2 17
h γ3 ≥ γ2 ≥ γ1, 0.5 ≥ γ1 13
i γ3 ≥ γ1 ≥ 0.5, γ3 ≥ γ2 ≥ 0.5 10

The expressions of the derivatives ofy∗
COG to γ1 andγ2 for (αi, αi+1, αi+2)-

triplet 1 in Table 8.9, with

αi = (1− γ1)(1− γ2)(1− γ3) ,

αi+1 = (1− γ1)γ2γ3 ,

αi+2 = γ1γ2γ3 ,

are given in Eqs. (D.3)–(D.4) in Appendix D. Both derivatives are positive for all
l ∈ R

+
0 , k ∈ R

+ andγ1, γ2, γ3 ∈ ]0, 1[. The derivative ofy∗
COG to γ3 is obtained

by substitutingγ2 by γ3 in Eq. (D.4) and is therefore also positive for alll ∈ R
+
0 ,

k ∈ R
+ andγ1, γ2, γ3 ∈ ]0, 1[. This not only proves that monotonicity is guaran-

teed for(αi, αi+1, αi+2)-triplet 1 in Table 8.9, but also for the(αi, αi+1, αi+2)-triplets
corresponding to the first triplet,i.e. triplets 2-3, 10-11 and 15.

Also for (αi, αi+1, αi+2)-triplet 4, with

αi = γ1(1− γ2)(1− γ3) ,

αi+1 = γ1(1− γ2)γ3 ,

αi+2 = γ1γ2γ3 ,
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Table 8.9: Triplets of fulfilment degreesαi, αi+1 andαi+2 occurring in Cases VI, IX, XI-XII and XIV-XVII with their relationship to
either triplet 1, 4 or 12.

after substitution of and inter-
αi αi+1 αi+2 equal to γ1 γ2 γ3 changingαi

by andαi+2

1 (1− γ1)(1− γ2)(1− γ3) (1− γ1)γ2γ3 γ1γ2γ3 –
2 (1− γ1)(1− γ2)(1− γ3) γ1(1− γ2)γ3 γ1γ2γ3 1 γ2 γ1 –
3 (1− γ1)(1− γ2)(1− γ3) γ1γ2(1− γ3) γ1γ2γ3 1 γ3 – γ1

4 γ1(1− γ2)(1− γ3) γ1(1− γ2)γ3 γ1γ2γ3 –
5 γ1(1− γ2)(1− γ3) γ1γ2(1− γ3) γ1γ2γ3 4 – γ3 γ2

6 (1− γ1)γ2(1− γ3) (1− γ1)γ2γ3 γ1γ2γ3 4 γ2 γ1 –
7 (1− γ1)γ2(1− γ3) γ1γ2(1− γ3) γ1γ2γ3 4 γ2 γ3 γ1

8 (1− γ1)(1− γ2)γ3 (1− γ1)γ2γ3 γ1γ2γ3 4 γ3 γ1 γ2

9 (1− γ1)(1− γ2)γ3 γ1(1− γ2)γ3 γ1γ2γ3 4 γ3 – γ1

10 (1− γ1)(1− γ2)(1− γ3) (1− γ1)(1− γ2)γ3 γ1γ2γ3 1 1− γ3 1− γ2 1− γ1 yes
11 (1− γ1)(1− γ2)(1− γ3) (1− γ1)γ2(1− γ3) γ1γ2γ3 1 1− γ2 1− γ1 1− γ3 yes
12 γ1(1− γ2)(1− γ3) (1− γ1)γ2γ3 γ1γ2γ3 –
13 (1− γ1)(1− γ2)(1− γ3) (1− γ1)(1− γ2)γ3 (1− γ1)γ2γ3 4 1− γ1 1− γ3 1− γ2 yes
14 (1− γ1)(1− γ2)(1− γ3) (1− γ1)γ2(1− γ3) (1− γ1)γ2γ3 4 1− γ1 1− γ2 1− γ3 yes
15 (1− γ1)(1− γ2)(1− γ3) γ1(1− γ2)(1− γ3) γ1γ2γ3 1 1− γ1 1− γ2 1− γ3 yes
16 (1− γ1)(1− γ2)(1− γ3) γ1(1− γ2)(1− γ3) γ1(1− γ2)γ3 4 1− γ2 1− γ1 1− γ3 yes
17 (1− γ1)(1− γ2)(1− γ3) (1− γ1)(1− γ2)γ3 γ1(1− γ2)γ3 4 1− γ2 1− γ3 1− γ1 yes
18 (1− γ1)(1− γ2)(1− γ3) γ1(1− γ2)(1− γ3) γ1γ2(1− γ3) 4 1− γ3 1− γ1 1− γ2 yes
19 (1− γ1)(1− γ2)(1− γ3) (1− γ1)γ2(1− γ3) γ1γ2(1− γ3) 4 1− γ3 1− γ2 1− γ1 yes
20 (1− γ1)(1− γ2)(1− γ3) (1− γ1)(1− γ2)γ3 γ1γ2(1− γ3) 12 1− γ3 1− γ2 1− γ1 yes
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the derivatives ofy∗
COG to γ1, γ2 andγ3, given in Eqs. (D.5)–(D.7) in Appendix D,

are positive for alll ∈ R
+
0 , k ∈ R

+ andγ1, γ2, γ3 ∈ ]0, 1[. Thus, monotonicity is
guaranteed for(αi, αi+1, αi+2)-triplets 4-9, 13-14 and 16-19.

Finally, the derivatives ofy∗
COG to γ1, γ2 and γ3 show to be positive for

(αi, αi+1, αi+2)-triplet 12, with

αi = γ1(1− γ2)(1− γ3) ,

αi+1 = (1− γ1)γ2γ3 ,

αi+2 = γ1γ2γ3 ,

for all l ∈ R
+
0 , k ∈ R

+ andγ1, γ2, γ3 ∈ ]0.5, 1[. The derivatives toγ1 andγ2 are given
in Eqs. (D.8)–(D.9) in Appendix D, and the derivative toγ3 is obtained by exchanging
γ2 andγ3 in Eq. (D.9). As(αi, αi+1, αi+2)-triplet 12 only occurs for Case XId

γ2 ≥ γ1 ≥ 0.5 ∧ γ3 ≥ γ1 ≥ 0.5 , (8.151)

monotonicity is always guaranteed even if the derivatives are positive forγ1, γ2, γ3 ∈
]0.5, 1[ only. If monotonicity is guaranteed for(αi, αi+1, αi+2)-triplet 12, it is also
guaranteed for(αi, αi+1, αi+2)-triplet 20 only occurring for Case XVIc

0.5 ≥ γ3 ≥ γ2 ∧ 0.5 ≥ γ3 ≥ γ1 , (8.152)

since in this case the derivatives ofy∗
COG to γ1, γ2 andγ3 are positive forγ1, γ2, γ3 ∈

]0, 0.5[.

Non-zeroαi, αi+1, αi+2 and αi+3 Only for Case XVIII, represented in Fig. 8.24, the
linguistic valuesAi, Ai+1, Ai+2 andAi+3 appear in the consequents of the eight rules.
The functions ofγ1, γ2 andγ3 describing the fulfilment degreesαi, αi+1, αi+2 andαi+3

in the different regions of the input space are given in Table8.10. Only Case XVIIIa
will be discussed, as both the functions describing the region of the input space as the
functions describing the fulfilment degrees for Cases XVIIIb-f can be obtained from the
corresponding functions for Case XVIIIa by permutingγ1, γ2 andγ3. This also implies
that for(γ1, γ2, γ3) satisfying the inequalities describing the regions of the input space
for different subcases of Case XVIII, the functions for the fulfilment degrees for the
corresponding subcases coincide.

For all inputsx with

αi = (1− γ1)(1− γ2)(1− γ3) ,

αi+1 = γ1(1− γ2)(1− γ3) ,

αi+2 = γ1γ2(1− γ3) ,

αi+3 = γ1γ2γ3 ,
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Figure 8.24: Case considered in the discussion about modelswith three input variables
and a monotone smooth rule base withAi, Ai+1, Ai+2 andAi+3 in the rule
consequents.

Table 8.10: Fulfilment degreesαi+1 andαi+2 in different parts of the input space for
Case XVIII (withαi = (1− γ1)(1− γ2)(1− γ3) andαi+3 = γ1γ2γ3).
conditions on(γ1, γ2, γ3) αi+1 αi+2

a γ1 ≥ γ2 ≥ γ3 γ1(1− γ2)(1− γ3) γ1γ2(1− γ3)
b γ1 ≥ γ3 ≥ γ2 γ1(1− γ2)(1− γ3) γ1(1− γ2)γ3

c γ2 ≥ γ1 ≥ γ3 (1− γ1)γ2(1− γ3) γ1γ2(1− γ3)
d γ2 ≥ γ3 ≥ γ1 (1− γ1)γ2(1− γ3) (1− γ1)γ2γ3

e γ3 ≥ γ1 ≥ γ2 (1− γ1)(1− γ2)γ3 γ1(1− γ2)γ3

f γ3 ≥ γ2 ≥ γ1 (1− γ1)(1− γ2)γ3 (1− γ1)γ2γ3

the crisp outputy∗
COG is given by

y∗
COG = oi+1 +

[

l2((γ2
2 − 12γ2 + 17)γ1(1− γ3)− (2γ3

1 + 3γ2
1 + 18)(1− γ2)

(1− γ3) + 2γ1γ
2
2(1− γ2)(1− γ3) + γ1γ2γ3(γ3 + 1)(11− 2γ3))

+ 6lk(−(γ2
1 + 6)(1− γ2)(1− γ3) + 5γ1(1− γ3) + (γ2

3 + 8γ3

− 3)γ1γ2) + 6k2(−3(1− γ2)(1− γ3) + 2γ1(1− γ3) + γ1γ2

(4γ3 − 1))

]

×

[

6(l((γ2
1 − γ1 + 2)(1− γ2)(1− γ3) + γ1γ2(γ2(1

− γ3) + γ2
3 + 1)) + 2k((1− γ2)(1− γ3) + γ1γ2))

]−1

, (8.153)

and its derivatives, given in Eqs. (D.10)–(D.12) in Appendix D, are positive for all
l ∈ R

+
0 , k ∈ R

+ and γ1, γ2, γ3 satisfying1 > γ1 ≥ γ2 ≥ γ3 > 0, i.e. for the
(γ1, γ2, γ3) defining Case XVIIIa.
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Table 8.11: Mamdani–Assilian models for which monotonicity is guaranteed when ap-
plying the COG defuzzification method characterized by a number of input
variablesm, a t-normT , an either monotone or monotone smooth rule base
and additional properties of the membership functions appearing in the rule
consequents.

m T rule base additional propertiesAis

1 1 TM monotone
(∀s ∈ {1, . . . , r})(is /∈ {1, n})
(∃l > 0)(∀i ∈ I \ {n})(li = l)

2 1 TP monotone

3 1 TL monotone
(∀s ∈ {1, . . . , r})(is /∈ {1, n})
(∃l > 0)(∀i ∈ I \ {n})(li = l)

4 2 TP monotone and smooth
(∀s ∈ {1, . . . , r})(is /∈ {1, n})

5 3 TP monotone and smooth (∃l > 0)(∀i ∈ I \ {n})(li = l)
(∃k ≥ 0)(∀i ∈ I \ {1, n})(ki = k)

8.6 Conclusion

In this chapter, it was proved that a Mamdani–Assilian modelapplying the COG de-
fuzzification method is monotone if it corresponds to one of the five model types listed
in Table 8.11, characterized by a number of input variablesm, a t-normT , an either
monotone or monotone smooth rule base and additional properties of the membership
functions appearing in the rule consequents. For the t-normsTM andTL, models with
a single input variable show a monotone input-output behaviour for any monotone rule
base when the linguistic output values in the consequents ofthe rules are defined by
trapezial or triangular membership functions with intervals of changing membership
degree of equal length, whereas for the t-normTP, models with a single input variable
show a monotone input-output behaviour for any monotone rule base and any fuzzy
output partition. When designing a monotone model with more than one input vari-
able, one should opt for the t-normTP and use a monotone smooth rule base. It was
shown that monotonicity of models with two input variables applyingTP is guaranteed
for any monotone smooth rule base and any fuzzy partition. Finally, it was proved
that a monotone input-output behaviour is always obtained for models with three input
variables applyingTP and a monotone smooth rule base when the linguistic output val-
ues in the consequents of the rules are defined by trapezial ortriangular membership
functions of identical shape.

For models with three input variables and applyingTP, apart from an analytic
investigation revealing that monotonicity is guaranteed for all models with a monotone
smooth rule base with linguistic output values defined by membership functions of
identical shape in the rule consequents, numerical experiments were carried out. These
numerical experiments leads one to suspect that monotonicity is not only guaranteed
for models with membership functions of identical shape in the rule consequents, but
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more generally for all models with a fuzzy output partition satisfying Eq. (8.119), in
other words for all models with a fuzzy output partition for which the numerator of the
expression in Eq. (8.107) is equal to zero for alli ∈ I \ {n-1, n}

4(li+2 − li-1)((li-1 + li+2)(3li + 3li+1 + 8ki+1) + 9lili+1 + 12k2
i+1)

+ 12(ki+2 − ki)((ki + ki+2)(3li + 3li+1 + 8ki+1) + 6lili+1 + 8k2
i+1)

+ (li+1 − li)((li + li+1)(15li + 15li+1 + 56ki+1) + 36k2
i+1)

+ 8(l2i li+2 − li-1l
2
i+1) + 36ki+1(lili+2 − li-1li+1) + 16(l2i ki+2 − l2i+1ki)

+ 72ki+1(liki+2 − li+1ki) + 28(l2i+1li+2 − li-1l
2
i ) + 96ki+1(li+1li+2 − li-1li)

+ 56(l2i+1ki+2 − l2i ki) + 192ki+1(li+1ki+2 − liki) + 12(li+2ki+2 − li-1ki)

(3li + 3li+1 + 8ki+1) = 0 . (8.154)

However, the fact that monotonicity might be guaranteed fora larger class of fuzzy
output partitions than those for which monotonicity was proved, is in practice of minor
relevance, since a straightforward interpolation procedure allows the use of any fuzzy
output partition for all five combinations ofm, T and monotone (and smooth) rule
base mentioned in Table 8.11, while guaranteeing a monotoneinput-output behaviour.
In this interpolation procedure the crisp model outputy′∗ of a second model is mapped
to a valuey∗ in the output domain of the model defined by the user. The second model
applies the same fuzzy partitions as the user-defined model in the input domain(s). In-
stead of the user-defined fuzzy output partition ofn membership functions, however,
the second model uses a fuzzy output partition of2n+2 trapezial membership func-
tions as illustrated in Fig. 8.25, satisfying the additional model properties needed to
guarantee monotonicity for the applied number of input variables, t-norm and type of
rule base

(∃l > 0)(∀i ∈ {1, . . . n-1})(li = l) , (8.155)

and, if required,
(∃k > 0)(∀i ∈ {2, . . . n-1})(ki = k) . (8.156)

Note thatk should be strictly positive,i.e. the identically shaped membership functions
in the second fuzzy partition should not be triangular, in order to allow for an interpo-
lation to all elements belonging to kernels of trapezial membership functions in the
user-defined fuzzy partition. The user-defined fuzzy outputpartition is characterized
by (a1, . . . , an) and the second fuzzy output partition by(a′

1, . . . , a
′
2n+4). Furthermore,

the rule base applied in the second model is slightly different from the user-defined rule
base. The rule base of the second model is obtained by augmenting the indices of the
output membership functions in the consequents of the user-defined rules by 1

i′s = is + 1 , (8.157)

while keeping the antecedents of the rules unaltered.
The crisp model outputy′∗ obtained for the second model is never smaller than

the midpoint of the kernel of the second membership functionnor larger than the mid-
point of the kernel of the next-to-last membership functionof the second fuzzy output
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Figure 8.25: Interpolation procedure between the user defined fuzzy output partition
(top) and the fuzzy output partition used in the second model(bottom).

partition,i.e.
1

2
(a′

3 + a′
4) ≤ y′∗ ≤

1

2
(a′

2n+1 + a′
2n+2) . (8.158)

The minimum and maximum values ofy′∗ are respectively mapped to the lower and
upper bound of the output domain defined by the user. Crisp outputsy′∗ belonging to
the kernel of the second membership function of the second fuzzy output partition, are
mapped to a valuey∗ belonging to the kernel of the first membership function of the
user-defined fuzzy partition, explicitly

y∗ =
1

2
(a1 + a2) + (a2 − a1)

y′∗ − 1
4 (a′

3 + 3a′
4)

1
2 (a′

4 − a′
3)

. (8.159)

Crisp outputsy′∗ belonging to the kernel of the next-to-last membership function of
the second fuzzy output partition, are mapped to a valuey∗ belonging to the kernel of
the last membership function of the user-defined fuzzy partition, explicitly

y∗ =
1

2
(a2n-1 + a2n) + (a2n − a2n-1)

y′∗ − 1
4 (3a′

2n+1 + a′
2n+2)

1
2 (a′

2n+2 − a′
2n+1)

. (8.160)

Intermediate valuesy′∗ ≤ a′
iright

with ileft = max{i | a′
i < y′∗} andiright = min{i |

a′
i ≥ y′∗}, are mapped to a valuey∗ in the corresponding interval

[
aileft-2, airight-2

]

using the expression

y∗ =
1

2
(aileft-2 + airight-2) + (airight-2 − aileft-2)

y′∗ − 1
2 (a′

ileft
+ a′

iright
)

a′
iright

− a′
ileft

. (8.161)
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The three equations Eqs. (8.159–8.161), can be written in a more compact way.
To map anyy′∗ to a valuey∗ in the user-defined output domain the following general
expression can be used:

y∗ =
1

2
(aileft-2 + airight-2) + (airight-2 − aileft-2)×

y′∗ −min(max(1
2 (a′

ileft
+ a′

iright
), 1

4 (a′
3 + 3a′

4)),
1
4 (3a′

2n+1 + a′
2n+2))

min(a′
iright

, 1
2 (a′

2n+1 + a′
2n+2))−max(a′

ileft
, 1

2 (a′
3 + a′

4))
.

(8.162)

Monotonicity of models with more than three input variableswas not investi-
gated in this study, but the obtained results show that for models with more than three
input variables only models should be considered with a monotone smooth rule base
with membership functions of identical shape in the rule consequents applyingTP.
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CHAPTER 9

Mamdani–Assilian models: MOM defuzzification

Jamais je n’ai tant penśe, tant exist́e, tant v́ecu, tant́et́e moi,
si j’ose ainsi dire, que dans les voyages que j’ai faits seul et
à pied.
(Confessions, Jean-Jacques Rousseau, 1782)

9.1 Introduction

In this chapter the monotonicity is investigated of Mamdani–Assilian models holding
the properties described in Section 7.2 and applying the Mean of Maxima defuzzifica-
tion method. It is verified for the three t-normsTM, TP andTL whether a monotone
input-output behaviour is obtained for any monotone rule base, or at least for any
monotone smooth rule base.

First, in Section 9.2, the general definition of the crisp outputy∗
MOM (Eq. (2.45))

is reformulated for models holding the properties described in Section 7.2, using the
variables introduced in the same section to characterize the output membership func-
tions. In Section 9.3 the monotonicity of models with a single input variable is studied
for the t-normsTM, TP andTL. As discussed in Section 7.4, obtaining the empty set
as fuzzy output cannot be avoided when using the t-normTL in models with two or
more input variables and holding the assumed properties, which makesTL an inappro-
priate t-norm for these models. Therefore, Sections 9.4–9.5 deal with the monotonicity
of models with two (or more) input variables for the t-normsTM andTP only. In
Section 9.4 the monotonicity of models with a monotone smooth rule base and two or
more input variables is discussed. In Section 9.5 it is shownthat monotonicity cannot
be guaranteed for models with two input variables and any monotone rule base when
applying the t-normTM, nor for models with two input variables and any monotone
rule base using six or more linguistic output values when applying the t-normTP. The
chapter concludes with a summary of the obtained results in Section 9.6.
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9.2 Tailoring the definition of y∗MOM

In this section, the general definition of the crisp outputy∗
MOM is reformulated to fa-

cilitate the investigation of the monotonicity of Mamdani–Assilian models holding the
properties described in Section 7.2. The crisp outputy∗

MOM only depends on the end-
points of the intervals forming the core of the fuzzy outputA. As in Mamdani–Assilian
models the membership degree of any output valuey to the fuzzy outputA is equal to
the maximum membership degree obtained for then adapted output membership func-
tionsA′

i, an output valuey can only be an element of the core of the global fuzzy out-
put A if it belongs to the core of at least one adapted output membership functionsA′

i

fired to the maximum fulfilment degreeαmax

core(A) =
⋃

i∈Imax

core(A′
i) , (9.1)

with

αmax =
n

max
i=1

αi = βmax =
r

max
s=1

βs , (9.2)

Imax = {i ∈ I | αi = αmax} . (9.3)

When applying the t-normTM, the core of the adapted membership function
coincides with theα-cut of the original membership function

(∀α ∈ [0, 1])(core(TM(α,A)) = Aα) , (9.4)

whereas, when applying the t-normsTP andTL, the core of the adapted membership
function is nothing else but the kernel of the original membership function

(∀α ∈ ]0, 1])(core(TP(α,A)) = core(TL(α,A)) = kern(A)) . (9.5)

9.2.1 Linguistic output values fired to the maximum fulfilmentde-
gree

In the following paragraphs it is shown that if none of the componentsxl of the input
vectorx has a membership degree 0.5 to a linguistic value of the variableXl, only one
rule is fired to the maximum fulfilment degreeαmax and, as a result, the core of the
fuzzy output coincides with the core of one of then adapted membership functions

(∀l ∈ L)(γl 6= 0.5)⇒ |Imax| = 1 . (9.6)

Given the expressions for the maximum fulfilment degreeβmax,TM,m for mod-
els withm input variables applyingTM in Eqs. (7.71–7.76) and considering that for
anyγ ∈ [0, 1]

γ 6= 0.5⇔ max(1− γ, γ) > 0.5 , (9.7)
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it follows that the maximum fulfilment degreeβmax,TM,m is greater than 0.5 if and
only if none of the componentsxl of the input vectorx has a membership degree 0.5
to a linguistic value of the variableXl

(l ∈ L)(γl 6= 0.5)⇔ βmax,TM,m > 0.5 . (9.8)

Thus, if and only if none of the componentsxl of the input vectorx has a membership
degree 0.5 to a linguistic value of the variableXl there exists a ruleRsmax

which is
fired to a degree greater than 0.5, where the fulfilment degreeis obtained usingTM

(l ∈ L)(γl 6= 0.5)⇔ (∃smax ∈ S)(
m

min
l=1

Bl
smax

(xl) > 0.5) , (9.9)

or, in other words, there exists a ruleRsmax
for which each componentxl of the input

vectorx has a membership degree greater than 0.5 to the corresponding linguistic value
in its antecedent

(l ∈ L)(γl 6= 0.5)⇔ (∃smax ∈ S)((∀l ∈ L)(Bl
smax

(xl) > 0.5)) . (9.10)

Note that the equivalence in Eq. (9.10) also holds for modelsapplying a t-norm differ-
ent fromTM, in this models the indexsmax however does not necessarily correspond
to the index of a rule fired to the maximum fulfilment degree.

Since fuzzy partitions as described in Section 7.2 are used in all input domains
and as the rule base is complete and consistent, it holds thatif the membership degree
to all linguistic values in the antecedent of the ruleRs1

are greater than 0.5, the other
rules contain at least one linguistic value in their antecedent to which the input vector
x has a membership degree smaller than 0.5, or, expressed mathematically, for any
s1 6= s2

(∀l ∈ L)(Bl
s1

(xl) > 0.5)

⇒(∀l ∈ L)(Bl
s1

(xl) ≥ Bl
s2

(xl)) ∧ (∃l∗ ∈ L)(0.5 > Bl∗

s2
(xl)) . (9.11)

Thus, there can only exist one rule to which all componentsxl of the input vectorx
have a membership degree greater than 0.5 to the corresponding linguistic value in its
antecedent

(∃smax ∈ S)((∀l ∈ L)(Bl
smax

(xl) > 0.5))

⇒(∃!smax ∈ S)((∀l ∈ L)(Bl
smax

(xl) > 0.5)) , (9.12)

and this rule is furthermore the only rule fired to the maximumfulfilment degree since
for anys 6= smax

((∀l ∈ L)(Bl
smax

(xl) ≥ Bl
s(xl)) ∧ (∃l∗ ∈ L)(Bl∗

smax
(xl) > 0.5 > Bl∗

s (xl)))

(9.13)

⇒(∀T ∈ {TM, TP})(
m

T
l=1

Bl
smax

(xl) >
m

T
l=1

Bl
smax

(xl)) (9.14)

⇒(∀T ∈ {TM, TP})(βsmax
> βs) . (9.15)
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When only one rule is fired to the maximum fulfilment degree, only one linguistic
output value can be fired to the maximum fulfilment degree, or

|Imax| = 1 (9.16)

In models with a single input variable the fulfilment degreesare equal to the
membership degrees to the linguistic values of the input variable and no t-norm is
applied to determine them. Therefore, Eq. (9.6) is also satisfied for models with a
single input variable applyingTL, since it was shown above that Eq. (9.6) is satisfied
for models with one or more input variables applyingTM or TP.

Note thatImax is always a singleton if allγl differ from 0.5, but might also be
a singleton if not allγl differ from 0.5 when all rules fired to the maximum fulfilment
degree contain the same linguistic output value in their consequent. By contraposition,
it then follows that if two or more linguistic output values are fired to the maximum
fulfilment degree, at least oneγl is equal to 0.5

|Imax| ≥ 2⇒ (∃l ∈ L)(γl = 0.5) . (9.17)

9.2.2 Generally applicable expressions fory∗
MOM

For models applyingTM the maximum fulfilment degreeαmax (= βmax,TM,m)
(Eqs. (7.71–7.76)) is given by

αmax =
m

min
l=1

max(1− γl, γl) ≥ 0.5 . (9.18)

By formulating Eq. (9.17) slightly differently,

|Imax| ≥ 2⇒ (∃l ∈ L)(max(1− γl, γl) = 0.5) , (9.19)

one can easily see that in models applyingTM the maximum fulfilment degreeαmax

is always equal to 0.5 if two or more linguistic output valuesare fired to the maximum
fulfilment degree,i.e.

(|Imax| ≥ 2 ∧ T = TM)⇒ αmax = 0.5 . (9.20)

ForT = TM the core of an adapted membership function coincides with anα-
cut of the original membership function (Eq. (9.4)). Given the properties of the output
membership functions (Section 7.2) and the fact thatαmax is equal to 0.5 for|Imax| ≥ 2
and greater than 0.5 for|Imax| = 1, the cores of two adapted output membership
functions fired to the maximum fulfilment degreeαmax share at most a boundary point.
When applying the t-normsTP andTL, the core of the adapted membership function
coincides with the kernel of the original membership function (Eq. (9.5)). As the output
membership functions form a fuzzy partition, the intersection of the cores of the two
adapted output membership functions fired to the maximum fulfilment degreeαmax is
always empty. Summarizing, it holds for anyi, j ∈ Imax, i < j, that

core(T (αmax, Ai)) ∩ core(T (αmax, Aj))

=

{

{ 1
2 (a2i + a2i+1)} , if T = TM andj = i + 1 ,

∅ , otherwise.
(9.21)
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For models applyingTM, the crisp outputy∗
MOM is a function of the maximum

fulfilment degreeαmax if only one linguistic output value is fired to the degreeαmax.
Explicitly, if Imax = {imax}, then

y∗
MOM = cimax

+
1

2
(limax

− limax-1)(1− αmax) . (9.22)

If more than one linguistic output value is fired to this maximum fulfilment degree
αmax, i.e. if |Imax| ≥ 2, thenαmax = 0.5 and

y∗
MOM =

∑

i∈Imax

((2a2i + li)
2 − (2a2i-1 − li-1)

2)

4
∑

i∈Imax

(li-1 + li + 2ki)
. (9.23)

For models applyingTP, the expression ofy∗
MOM can be reformulated as

y∗
MOM =

∑

i∈Imax

wici

∑

i∈Imax

wi

, (9.24)

with

wi =







ki , if
∑

j∈Imax

kj > 0 ,

1 , if
∑

j∈Imax

kj = 0 .

As the crisp outputy∗
MOM only depends on the endpoints of the intervals form-

ing the core of the fuzzy outputA, which is the union of the cores of the adapted
membership functions fired to the maximum fulfilment degreeαmax, and as for a given
membership functionA the core of the adapted membership function obtained with
TP is equal to the core of the adapted membership function obtained withTL, for mod-
els with a single input variable applyingTL as t-norm, Eq. (9.24) is also applied to
calculate the crisp outputy∗

MOM.

9.2.3 Expressions fory∗
MOM

valid in special cases for models apply-
ing TM

First, if all linguistic output values between the smallestlinguistic output valueAileft

(ileft = min Imax) and the largest linguistic output valueAiright
(iright = max Imax)

fired to the degreeαmax are also fired to this degree,i.e.

(∀i1, i2 ∈ Imax)(∀j ∈ I)(i1 < j < i2 ⇒ j ∈ Imax) , (9.25)

Eq. (9.23) can be further simplified. In this case for models applyingTM and|Imax| ≥
2, y∗

MOM is given by

y∗
MOM =

1

4
(2a2ileft-1 − lileft-1 + 2a2iright

+ liright
) . (9.26)
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Second, if|Imax| ≥ 2 but none of the extreme linguistic valuesA1 andAn

is fired to the degreeαmax, i.e. Imax ∩ {1, n} = ∅, and if the intervals where the
membership functions overlap are of equal length,i.e. (∃l > 0)(∀i ∈ I \ {n})(li = l),
theny∗

MOM can be computed using Eq. (9.24), but with

wi = l + ki . (9.27)

Third, when combining the above two cases, Eq. (9.26) can be further simplified
to

y∗
MOM =

1

2
(a2ileft-1 + a2iright

) . (9.28)

9.3 Models with a single input variable

In a model with a single input variable at most two rules are fired: the rule corre-
sponding to some linguistic input valueB1

j is fired to a degree (1 − γ1) and the rule
corresponding to the linguistic valueB1

j+1 to a degreeγ1. In case of a monotone rule
base,B1

j andB1
j+1 can either be mapped to

1. the same linguistic output valueAi: theconstantcase,

2. two consecutive output valuesAi andAi+1: thesmoothcase, or

3. two non-consecutive output valuesAi andAi+p (p ∈ N, p > 1, i + p ≤ n): the
non-smoothcase.

As discussed in Section 8.3, considering theconstantcase for a model with
a single input variable might seem in disaccord with the aim to safeguard the model
interpretability, but is nevertheless meaningful as interpretable models with more than
one input variable might behave as a model with a single inputvariable in theconstant
case in some parts of the input space.

9.3.1 Models applyingTM

WhenB1
j andB1

j+1 (j ∈ J1 \ {n1}) are both mapped to a same linguistic output value
Ai (Fig. 8.1), the crisp outputy∗

MOM is computed with Eq. (9.22). Sinceαmax is equal
to (1− γ1) for γ1 ∈ [0, 0.5] and equal toγ1 for γ1 ∈ [0.5, 1], monotonicity holds if
(

∀γ1 ∈ [0, 0.5]

)(
dy∗

MOM,1M,11

dγ1
≥ 0

)

∧

(

∀γ1 ∈ [0.5, 1]

)(
dy∗

MOM,1M,12

dγ1
≥ 0

)

,

(9.29)
with

with

y∗
MOM,1M,11 = ci +

1

2
(li − li-1)γ1 , (9.30)

y∗
MOM,1M,12 = ci +

1

2
(li − li-1)(1− γ1) . (9.31)
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One easily verifies thaty∗
MOM,1M,11(γ1 = 0.5) = y∗

MOM,1M,12(γ1 = 0.5) and
that Eq. (9.29) is satisfied if and only if

li-1 = li . (9.32)

As the extreme linguistic output valuesA1 and An are both described by a
trapezium with one vertical side, monotonicity can only be guaranteed for a model
with a single input variable applyingTM if the following constraints are satisfied

(∀s ∈ {1, . . . , r})(is /∈ {1, n}) , (9.33)

(∃l > 0)(∀i ∈ I \ {n})(li = l) . (9.34)

From here on, Eqs. (9.33–9.34) are assumed to hold. WhenB1
j andB1

j+1 (j ∈
J1 \{n1}) are mapped to two consecutive output valuesAi andAi+1, Eq. (9.28) is used
to compute the crisp outputy∗

MOM. The crisp output coincides with the midpoint of the
interval with as lower bound, the lower bound of the kernel ofthe smallest linguistic
output valueAileft fired to the maximum fulfilment degreeαmax, and as upper bound,
the upper bound of the kernel of the largest linguistic output valueAiright

fired to the
maximum fulfilment degreeαmax. The setImax and the corresponding indicesileft
andiright are given by

1. if γ1 ∈ ]0, 0.5[, thenImax = {i}, henceileft = i andiright = i,

2. if γ1 = 0.5, thenImax = {i, i+1}, henceileft = i andiright = i+1,

3. if γ1 ∈ ]0.5, 1[, thenImax = {i+1}, henceileft = i+1 andiright = i+1.

The desired monotonicity trivially holds since

midpoint([a2i-1, a2i]) ≤ midpoint([a2i-1, a2i+2]) ≤ midpoint([a2i+1, a2i+2]) , (9.35)

and it is know from interval calculus that

(lb1 ≤ lb2) ∧ (ub1 ≤ ub2)⇒ midpoint([lb1, ub1]) ≤ midpoint([lb2, ub2]) . (9.36)

WhenB1
j andB1

j+1 (j ∈ J1 \ {n1}) are mapped to two non-consecutive output
valuesAi andAi+p (p ∈ N, p > 1, i + p ≤ n), monotonicity holds if

y∗
MOM,1M,31 ≤ y∗

MOM,1M,32 ≤ y∗
MOM,1M,33 , (9.37)

with

y∗
MOM,1M,31 = ci , (9.38)

y∗
MOM,1M,32 =

(l + ki)ci + (l + ki+p)ci+p

2l + ki + ki+p

, (9.39)

y∗
MOM,1M,33 = ci+p . (9.40)
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The above chain of inequalities always holds since

y∗
MOM,1M,31 = y∗

MOM,1M,32 −
(l + ki)(ci+p − ci)

2l + ki + ki+p

< y∗
MOM,1M,32 , (9.41)

y∗
MOM,1M,33 = y∗

MOM,1M,32 +
(l + ki+p)(ci+p − ci)

2l + ki + ki+p

> y∗
MOM,1M,32 , (9.42)

and thus monotonicity is guaranteed.
From this section, it can be concluded that models with a single input variable

applying the t-normTM show a monotone input-output behaviour for any monotone
rule base when the linguistic output values in the consequents of the rules are defined
by trapezial or triangular membership functions with intervals of changing membership
degree of equal length.

9.3.2 Models applyingTP or TL

In models applyingTP orTL the crisp model outputy∗
MOM depends on which linguistic

output values are fired to the maximum fulfilment degreeαmax, but does not depend
on the value as such, of the maximum fulfilment degree as shownby Eq. (9.24). When
B1

j andB1
j+1 (j ∈ J1 \ {n1}) are both mapped to a same linguistic output valueAi,

y∗
MOM is constant and equal toci for all γ1 ∈ [0, 1]. Thesmoothandnon-smoothcases,

whenB1
j andB1

j+1 (j ∈ J1 \ {n1}) are mapped to different output valuesAi andAi+p

(p ∈ N0, i + p ≤ n), can be considered simultaneously. In these cases monotonicity
holds if

y∗
MOM,1P,31 ≤ y∗

MOM,1P,32 ≤ y∗
MOM,1P,33 , (9.43)

with

y∗
MOM,1P,31 = ci , (9.44)

y∗
MOM,1P,32 =







kici+ki+pci+p

ki+ki+p
, if ki > 0 andki+p > 0 ,

ci+p , if ki = 0 andki+p > 0 ,

ci , if ki > 0 andki+p = 0 ,
1
2 (ci + ci+p) , if ki = 0 andki+p = 0 ,

(9.45)

y∗
MOM,1P,33 = ci+p , (9.46)

which is always satisfied.
From this section, it can be concluded that models with a single input vari-

able applying the t-normTP or TL show a monotone input-output behaviour for any
monotone rule base.

9.4 Models with a monotone smooth rule base and two
or more input variables

In this section it is shown that for models with two or more input variables and a
monotone smooth rule base monotonicity is guaranteed when applying TM or TP.
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X1B1
j1-2 B1

j1-1 B1
j1

B1
j1+1 B1

j1+2

Xj

j = (j1, j2)

X2

B2
j2-1

B2
j2

B2
j2+1

B2
j2+2

Figure 9.1: Example of a subspaceXj for a model with two input variables

Models with more than one input variable applyingTL are not considered since they
return the empty set as fuzzy model output for some input vectors as discussed in
Section 7.4. The results obtained for models with a single input variable also apply
to models with two input variables, as the latter behave as a ‘single input model’ in
parts of their input space. Therefore, for models applyingTM the output membership
functions used in the consequents of the rules are assumed tohave intervals of changing
membership degree of equal length (Eqs. (9.33–9.34)). For models applyingTP no
additional model properties were required to guarantee themonotonicity of models
with a single input variable.

The input space of a model withm input variables can be seen as the union
of severalm-dimensional subspaces whose projections onto them one-dimensional
input domains coincide with the interval bounded by the lower bound of the kernel of
a linguistic valueBl

jl
and the upper bound of the kernel of the linguistic valueBl

jl+1

(jl ∈ Jl \ {nl}), as illustrated in Fig. 9.1. In such a subspaceXj all input vectorsx
have a non-zero membership degree to at least one of the two linguistic valuesBl

jl
and

Bl
jl+1

Xj = {x | (∀l ∈ L)(Bl
jl

(xl) = 1−Bl
jl+1(xl))} , (9.47)

with j = (j1, . . . , jm) ∈ (J1 \ {n1}) × . . . × (Jm \ {nm}). An input vectorx with
an input valuexl belonging to the kernel of someBl

jl
always belongs to two or more

‘adjacent’ subspaces. This observation allows us to extendthe results, shown in Sec-
tions 9.4.1–9.4.2 for a single subspace, to the whole input space.

For any input vectorx ∈ Xj three groups of input domains can be distinguished:

209



Chapter 9. Mamdani–Assilian models: MOM defuzzification

those for whichxl is greater than or equal to the lower bound of the kernel ofBl
jl

and smaller than the crisp value corresponding to the intersection of the membership
functions ofBl

jl
andBl

jl+1, i.e.

L1(x) = {l ∈ L | Bl
jl

(xl) > 0.5} , (9.48)

those for whichxl corresponds to the intersection of the membership functionsBl
jl

and
Bl

jl+1, i.e.

L2(x) = {l ∈ L | Bl
jl

(xl) = 0.5} , (9.49)

and finally, those for whichxl is larger than the crisp value corresponding to the in-
tersection of the membership functionsBl

jl
andBl

jl+1 and smaller than or equal to the
upper bound of the kernel ofBl

jl+1, i.e.

L3(x) = {l ∈ L | Bl
jl

(xl) < 0.5} . (9.50)

9.4.1 Models applyingTM

When none of the input valuesxl of an input vectorx ∈ Xj coincides with the inter-
section of the membership functionsBl

jl
andBl

jl+1, the setL2(x) is empty and only
one ruleRs is fired to the maximum fulfilment degreeαmax, with

jl,s =

{

jl , if l ∈ L1(x) ,

jl + 1 , if l ∈ L3(x) .
(9.51)

Furthermore, for these input vectors,αmax is larger than 0.5

βs = min

(

min
l∈L1(x)

Bl
jl

(xl), min
l∈L3(x)

Bl
jl+1(xl)

)

> 0.5 . (9.52)

For an input vectorx ∈ Xj with a single input valuexl1 coinciding with the
intersection of the corresponding membership functionsBl1

jl1
andBl1

jl1
+1, two rulesRs1

andRs2
are fired to the degreeαmax, with

jl,s1
=

{

jl , if l ∈ L1(x) ∪ {l1} ,

jl + 1 , if l ∈ L3(x) ,
(9.53)

jl,s2
=

{

jl , if l ∈ L1(x) ,

jl + 1 , if l ∈ L3(x) ∪ {l1} ,
(9.54)

andαmax is equal to 0.5 since

βs1
= min(min( min

l∈L1(x)
Bl

jl
(xl), min

l∈L3(x)
Bl

jl+1(xl))

︸ ︷︷ ︸

, Bl1
jl1

(xl1)
︸ ︷︷ ︸

) = 0.5 , (9.55)

> 0.5 = 0.5

βs2
= min(

︷ ︸︸ ︷

min( min
l∈L1(x)

Bl
jl

(xl), min
l∈L3(x)

Bl
jl+1(xl)),

︷ ︸︸ ︷

Bl1
jl1

+1(xl1)) = 0.5 . (9.56)
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In general, for an input vectorx ∈ Xj, 2|L2(x)| rulesRs are fired to the maxi-
mum fulfilment degreeαmax, with

jl,s =







jl , if l ∈ L1(x) ,

∈ {jl, jl + 1} , if l ∈ L2(x) ,

jl + 1 , if l ∈ L3(x) .

(9.57)

To investigate the monotonicity of a model in a variableXl1 , two input vectors
x1 andx2 are considered, such thatx1,l = x2,l for anyl ∈ L \ {l1} andx1,l1 < x2,l1 ,
with

L1\l1(x1) = {l ∈ L \ {l1} | B
l
jl

(x1,l) = Bl
jl

(x2,l) > 0.5} , (9.58)

L2\l1(x1) = {l ∈ L \ {l1} | B
l
jl

(x1,l) = Bl
jl

(x2,l) = 0.5} , (9.59)

L3\l1(x1) = {l ∈ L \ {l1} | B
l
jl

(x1,l) = Bl
jl

(x2,l) < 0.5} . (9.60)

Case a If Bl1
jl1

(x1,l1) > 0.5 andBl1
jl1

(x2,l1) > 0.5, the same rules are fired to the
maximum fulfilment degreeαmax(x1) for x1 and to the maximum fulfilment degree
αmax(x2) for x2, since

L1(x1) = L1(x2) =L1\l1(x1) ∪ {l1} , (9.61)

L2(x1) = L2(x2) =L2\l1(x1) , (9.62)

L3(x1) = L3(x2) =L3\l1(x1) , (9.63)

thus
y∗
MOM(x1) = y∗

MOM(x2) , (9.64)

and monotonicity is guaranteed.

Case b If Bl1
jl1

(x1,l1) > 0.5 andBl1
jl1

(x2,l1) = 0.5, the setR1 of rulesRs1
fired to

the maximum fulfilment degreeαmax(x1) for x1, with

jl,s1
=







jl , if l ∈ L1\l1(x1) ∪ {l1} ,

∈ {jl, jl + 1} , if l ∈ L2\l1(x1) ,

jl + 1 , if l ∈ L3\l1(x1) ,

(9.65)

is a subset of the setR2 of rulesRs2
fired to the maximum fulfilment degreeαmax(x2)

for x2, with

jl,s2
=







jl , if l ∈ L1\l1(x1) ,

∈ {jl, jl + 1} , if l ∈ L2\l1(x1) ∪ {l1} ,

jl + 1 , if l ∈ L3\l1(x1) .

(9.66)

LetR3 = R2 \ R1, then the indices in the antecedent of a ruleRs3
∈ R3 are

given by

jl,s3
=







jl , if l ∈ L1\l1(x1) ,

∈ {jl, jl + 1} , if l ∈ L2\l1(x1) ,

jl + 1 , if l ∈ L3\l1(x1) ∪ {l1} ,

(9.67)
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and there exists a bijection betweenR1 andR3 as for any rule inR1 containing the
linguistic valueBl1

jl1
in its antecedent, there exists a rule inR3 containing the same lin-

guistic values for all input variables different fromXl1 and the linguistic valueBl1
jl1

+1

in its antecedent and, as the rule base is monotone and smooth(Corollary 7.1), the
same or next linguistic output value in its consequent. Thus, with S1 (resp.S3) the set
of indices of the rules inR1 (resp.R3), it follows that

min
s∈S1

is ≤ min
s∈S3

is , (9.68)

max
s∈S1

is ≤ max
s∈S3

is , (9.69)

and as the setS2 of indices of the rules inR2 is the union of the setsS1 and S3

(S2 = S1 ∪ S3), it follows that

min
s∈S1

is = min
s∈S2

is≤ min
s∈S3

is , (9.70)

max
s∈S1

is ≤ max
s∈S2

is= max
s∈S3

is . (9.71)

Since the rule base is assumed to be monotone and smooth, it follows from the above
reasoning that all linguistic values betweenAileft andAiright

are fired to the maximum
fulfilment degree. Moreover, as the output membership functions are assumed to sat-
isfy (Eqs. (9.33–9.34)), Eq. (9.28) may be used to calculatethe crisp outputsy∗

MOM(x1)
andy∗

MOM(x2), given by

y∗
MOM(x1) =

1

2
(a2ileft(x1)-1 + a2iright(x1)) (9.72)

with ileft(x1) = min
s∈S1

is iright(x1) = max
s∈S1

is ,

y∗
MOM(x2) =

1

2
(a2ileft(x2)-1 + a2iright(x2)) (9.73)

with ileft(x2) = min
s∈S2

is iright(x2) = max
s∈S2

is .

Obviously,y∗
MOM(x1) ≤ y∗

MOM(x2) and monotonicity is guaranteed.

Case c If Bl1
jl1

(x1,l1) > 0.5 andBl1
jl1

(x2,l1) < 0.5, all rulesRs1
belonging to the

setR1 defined by Eq. (9.65) are fired to the degreeαmax(x1) and all rulesRs3
be-

longing to the setR3 defined by Eq. (9.67) are fired to the degreeαmax(x2). Given
Eqs. (9.70–9.71), the crisp outputsy∗

MOM(x1) andy∗
MOM(x2) are obtained by substi-

tuting ileft(x1), iright(x1), ileft(x2) andiright(x2) in Eqs. (9.72–9.73) by

ileft(x1) = min
s∈S1

is iright(x1) = max
s∈S1

is , (9.74)

ileft(x2) = min
s∈S3

is iright(x2) = max
s∈S3

is . (9.75)

Thus,y∗
MOM(x1) ≤ y∗

MOM(x2) and monotonicity is guaranteed.
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Case d If Bl1
jl1

(x1,l1) = 0.5 andBl1
jl1

(x2,l1) < 0.5, all rulesRs2
belonging to the

setR2 defined by Eq. (9.66) are fired to the degreeαmax(x1) and all rulesRs3
be-

longing to the setR3 defined by Eq. (9.67) are fired to the degreeαmax(x2). Given
Eqs. (9.70–9.71), the crisp outputsy∗

MOM(x1) andy∗
MOM(x2) are obtained by substi-

tuting ileft(x1), iright(x1), ileft(x2) andiright(x2) in Eqs. (9.72–9.73) by

ileft(x1) = min
s∈S2

is iright(x1) = max
s∈S2

is (9.76)

ileft(x2) = min
s∈S3

is iright(x2) = max
s∈S3

is . (9.77)

Thus,y∗
MOM(x1) ≤ y∗

MOM(x2) and monotonicity is guaranteed.

Case e If Bl1
jl1

(x1,l1) < 0.5 andBl1
jl1

(x2,l1) < 0.5, the same setR3 (Eq. (9.67)) of
rules is fired to the degreeαmax(x1) and the degreeαmax(x2), since

L1(x1) = L1(x2) =L1\l1(x1) , (9.78)

L2(x1) = L2(x2) =L2\l1(x1) , (9.79)

L3(x1) = L3(x2) =L3\l1(x1) ∪ {l1} , (9.80)

thusy∗
MOM(x1) = y∗

MOM(x2) and monotonicity is guaranteed.
Hence, a monotone input-output behaviour is obtained for each subspaceXj,

and, by construction, for the whole input space of a Mamdani–Assilian model with a
smooth rule base, output membership functions satisfying Eqs. (9.33–9.34) and apply-
ing TM.

9.4.2 Models applyingTP

When none of the input valuesxl of an input vectorx ∈ Xj coincides with the inter-
section of the membership functionsBl

jl
andBl

jl+1, the setL2(x) is empty and only
one ruleRs is fired to the degreeαmax, with

jl,s =

{

jl , if l ∈ L1(x) ,

jl + 1 , if l ∈ L3(x) .
(9.81)

For an input vectorx ∈ Xj with one single input valuexl1 coinciding with
the intersection of the corresponding membership functionsBl1

jl1
andBl1

jl1
+1, two rules

Rs1
andRs2

, with

jl,s1
=

{

jl , if l ∈ L1(x) ∪ {l1} ,

jl + 1 , if l ∈ L3(x) ,

jl,s2
=

{

jl , if l ∈ L1(x) ,

jl + 1 , if l ∈ L3(x) ∪ {l1} ,
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are fired to the maximum fulfilment degreeαmax

βs1
=

∏

l∈L1(x)

Bl
jl

(xl) ×
∏

l∈L3(x)

Bl
jl+1(xl)

︸ ︷︷ ︸

×Bl1
jl1

(xl1)
︸ ︷︷ ︸

= αmax ,

βs2
=

=
︷ ︸︸ ︷
∏

l∈L1(x)

Bl
jl

(xl) ×
∏

l∈L3(x)

Bl
jl+1(xl)×

= 0.5
︷ ︸︸ ︷

Bl1
jl1

+1(xl1) = αmax .

All other rulesRs ∈ R\{Rs1
, Rs2

} contain at least one linguistic input value to
whichx has a membership degree smaller than 0.5, withL1(x) = L1,1(x) ∪ L1,2(x),
L3(x) = L3,1(x) ∪ L3,2(x) andL1,2(x) ∪ L3,2(x) 6= ∅, with

jl,s =







jl , if l ∈ L1,1(x) ∪ L3,2(x) ,

∈ {jl, jl + 1} , if l = l1,

jl + 1 , if l ∈ L3,1(x) ∪ L1,2(x) ,

(9.82)

and have a fulfilment degreeβs, given by

βs =
∏

l∈L1,1(x)
∪L3,2(x)

Bl
jl

(xl)×
∏

l∈L3,1(x)
∪L1,2(x)

Bl
jl+1(xl)× 0.5 , (9.83)

smaller thanαmax, since

(∀l ∈ L1(x))(Bl
jl

(xl) > Bl
jl+1(xl)) , (9.84)

(∀l ∈ L3(x))(Bl
jl

(xl) < Bl
jl+1(xl)) . (9.85)

In general, when applyingTP, for an input vectorx ∈ Xj, 2|L2(x)| rulesRs are
fired to the degreeαmax, with

jl,s =







jl , if l ∈ L1(x) ,

∈ {jl, jl + 1} , if l ∈ L2(x) ,

jl + 1 , if l ∈ L3(x) .

(9.86)

The expression above is identical to Eq. (9.57) obtained formodels applyingTM. Thus,
for a given model with a monotone smooth rule base and for a given input vectorx,
the setImax of indices of linguistic output values fired to the degreeαmax is the same
for a model applyingTM as for a model applyingTP. Thus, for two input vectors
x1,x2 ∈ Xj, such thatx1,l = x2,l for anyl ∈ L \ {l1} andx1,l1 ≤ x2,l1 ,

ileft(x1) ≤ ileft(x2) ileft = min
i∈Imax

i , (9.87)

iright(x1) ≤ iright(x2) iright = max
i∈Imax

i , (9.88)
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Iileft(x1) iright(x1) ileft(x2) iright(x2)
Case a

Iileft(x1) = iright(x1) ileft(x2) iright(x2)
Case a

Iileft(x1) iright(x1) ileft(x2) = iright(x2)
Case a

Iileft(x1) = iright(x1) ileft(x2) = iright(x2)
Case a

Iileft(x1) iright(x1) = ileft(x2) iright(x2)
Case a

Iileft(x1) = iright(x1) = ileft(x2) iright(x2)
Case a

Iileft(x1) iright(x1) = ileft(x2) = iright(x2)
Case a

Iileft(x1) = iright(x1) = ileft(x2) = iright(x2)
Case a

Iileft(x1) ileft(x2) iright(x1) iright(x2)
Case e

Iileft(x1) = ileft(x2) iright(x1) iright(x2)
Case c

Iileft(x1) ileft(x2) iright(x1) = iright(x2)
Case d

Iileft(x1) = ileft(x2) iright(x1) = iright(x2)
Case b

Figure 9.2: Cases to be considered forileft(x1), iright(x1), ileft(x2) and iright(x2)
when investigating models with a monotone smooth rule base applyingTP.

also hold when the t-normTP is used (Section 9.4.1 and in particular Eqs. (9.70–9.71)).
Furthermore, also for models with a monotone smooth rule base applyingTP, all lin-
guistic output values betweenAileft andAiright

are fired to the degreeαmax. Therefore,
Imax in Eq. (9.24) can be replaced by[ileft, iright] when calculatingy∗

MOM(x) for all x
in the subspaceXj.

To investigate the monotonicity of a model in a variableXl1 , two input vectors
x1 andx2 are considered, such thatx1,l = x2,l for anyl ∈ L \ {l1} andx1,l1 ≤ x2,l1 .
In Fig. 9.2 the 12 cases are represented that should be considered for the four integers
ileft(x1), iright(x1), ileft(x2) and iright(x2). In the discussion below, the first eight
cases are combined in Case a. Before focussing on the model behaviour in Cases a–e,
a useful property is stated:

ci′left
≤

iright∑

j=ileft

kjcj

iright∑

j=ileft

kj

≤ ci′right
, (9.89)

with

(∀j ∈ [ileft, i
′
left-1] ∪

[
i′right+1, iright

]
)(kj = 0) , (9.90)

(∃j ∈
[
i′left, i

′
right

]
)(kj > 0) . (9.91)
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From Eqs. (9.90–9.91) it follows that

iright∑

j=ileft

kjcj

iright∑

j=ileft

kj

=

i′right∑

j=i′left

kjcj

i′right∑

j=i′left

kj

. (9.92)

As furthermore, fori′left < i′right, it holds that

i′right∑

j=i′left

kjcj

i′right∑

j=i′left

kj

− ci′left
=

ki′left
ci′left

+
i′right∑

j=i′left+1

kjcj − ki′left
ci′left

−
i′right∑

j=i′left+1

kjci′left

i′right∑

j=i′left

kj

=

( i′right∑

j=i′left

kj

)−1( i′right∑

j=i′left+1

kj(cj − ci′left
)

)

≥ 0 , (9.93)

ci′right
−

i′right∑

j=i′left

kjcj

i′right∑

j=i′left

kj

=

i′right-1
∑

j=i′left

kjci′right
+ ki′right

ci′right
−

i′right-1
∑

j=i′left

kjcj − ki′right
ci′right

i′right∑

j=i′left

kj

=

( i′right∑

j=i′left

kj

)−1(i′right-1
∑

j=i′left

kj(ci′left
− cj)

)

≥ 0 , (9.94)

and fori′left = i′right, it holds that

i′right∑

j=i′left

kjcj

i′right∑

j=i′left

kj

= ci′left
= ci′right

, (9.95)

it follows that Eq. (9.89) holds.

Case a When the largest linguistic output value fired to the maximum fulfilment de-
gree forx1 is smaller than or equal to the smallest linguistic output value fired to the
maximum fulfilment degree forx2, i.e.

ileft(x1) ≤ iright(x1) ≤ ileft(x2) ≤ iright(x2) , (9.96)
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the following chain of inequalities holds

cileft(x1) ≤ y∗
MOM(x1) ≤ ciright(x1) ≤ cileft(x2) ≤ y∗

MOM(x2) ≤ ciright(x2) , (9.97)

and it follows that the crisp outputy∗
MOM(x1) obtained forx1 is smaller than or equal

to the crisp outputy∗
MOM(x2) obtained forx2

y∗
MOM(x1) ≤ y∗

MOM(x2) . (9.98)

Case b When the smallest linguistic output value fired to the maximumfulfilment
degree forx1 is equal to the smallest linguistic output value fired to the maximum
fulfilment degree forx2, the largest linguistic output value fired to the maximum fulfil-
ment degree forx1 is equal to the largest linguistic output value fired to the maximum
fulfilment degree forx2 and this smallest linguistic output value differs from thislargest
linguistic output value,i.e.

ileft(x1) = ileft(x2) < iright(x1) = iright(x2) , (9.99)

the crisp outputy∗
MOM(x1) obtained forx1 is equal to the crisp outputy∗

MOM(x2)
obtained forx2

y∗
MOM(x1) = y∗

MOM(x2) . (9.100)

This can easily be verified by substitutingileft(x2) by ileft(x1) and iright(x2) by
iright(x1) in the expression fory∗

MOM(x2).

Case c When the smallest linguistic output value fired to the maximumfulfilment
degree forx1 is equal to the smallest linguistic output value fired to the maximum
fulfilment degree forx2, the largest linguistic output value fired to the maximum ful-
filment degree forx1 is smaller than the largest linguistic output value fired to the
maximum fulfilment degree forx2 and the smallest linguistic output value differs from
the two ‘largest linguistic output values’,i.e.

ileft(x1) = ileft(x2) < iright(x1) < iright(x2) , (9.101)

three subcases can be distinguished.

Case c1 If
iright(x1)∑

j=ileft(x2)

kj > 0, then the difference between the crisp outputs

y∗
MOM(x2) andy∗

MOM(x1) is given by

y∗
MOM(x2)− y∗

MOM(x1) =

iright(x2)∑

j1=ileft(x2)

kj1cj1

iright(x2)∑

j2=ileft(x2)

kj2

−

iright(x1)∑

j3=ileft(x1)

kj3cj3

iright(x1)∑

j4=ileft(x1)

kj4

, (9.102)
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or, after substitution ofileft(x1) by ileft(x2), by

y∗
MOM(x2)− y∗

MOM(x1)

=

iright(x2)∑

j1=ileft(x2)

kj1cj1

iright(x2)∑

j2=ileft(x2)

kj2

−

iright(x1)∑

j3=ileft(x2)

kj3cj3

iright(x1)∑

j4=ileft(x2)

kj4

=

(
iright(x2)∑

j2=ileft(x2)

kj2

iright(x1)∑

j4=ileft(x2)

kj4

)−1

×

(
iright(x1)∑

j4=ileft(x2)

kj4

(
iright(x1)∑

j1=ileft(x2)

kj1cj1 +

iright(x2)∑

j1=iright(x1)+1

kj1cj1

)

−

(
iright(x1)∑

j2=ileft(x2)

kj2 +

iright(x2)∑

j2=iright(x1)+1

kj2

)
iright(x1)∑

j3=ileft(x2)

kj3cj3

)

=

iright(x1)∑

j4=ileft(x2)

kj4

iright(x2)∑

j1=iright(x1)+1

kj1cj1 −
iright(x2)∑

j2=iright(x1)+1

kj2

iright(x1)∑

j3=ileft(x2)

kj3cj3

iright(x2)∑

j2=ileft(x2)

kj2

iright(x1)∑

j4=ileft(x2)

kj4

(9.103)

If
iright(x2)∑

j=iright(x1)+1

kj = 0, then the difference betweeny∗
MOM(x2) andy∗

MOM(x1) is zero.

If
iright(x2)∑

j=iright(x1)+1

kj > 0, then the difference betweeny∗
MOM(x2) and y∗

MOM(x1) is

strictly positive since for the assumed fuzzy output partitionsciright(x1) < ciright(x1)+1

and it follows with Eq. (9.89) that

ciright(x1)+1 ≤

iright(x2)∑

j=iright(x1)+1

kjcj

iright(x2)∑

j=iright(x1)+1

kj

≤ ciright(x2) , (9.104)

cileft(x2) ≤

iright(x1)∑

j=ileft(x2)

kjcj

iright(x1)∑

j=ileft(x2)

kj

≤ ciright(x1) . (9.105)
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Case c2 If (∀j ∈ [ileft(x2), iright(x1)])(kj = 0) and
iright(x2)∑

j=iright(x1)+1

kj > 0, then the following chain of inequalities holds

cileft(x1) ≤ y∗
MOM(x1) ≤ ciright(x1) < ciright(x1)+1 ≤ y∗

MOM(x2) ≤ ciright(x2) ,
(9.106)

and it follows that the crisp outputy∗
MOM(x1) is smaller than or equal to the crisp

outputy∗
MOM(x2)

y∗
MOM(x1) ≤ y∗

MOM(x2) . (9.107)

Case c3 Finally, when all linguistic output values fired to the maximum fulfil-
ment degree are described by triangular membership functions,
(∀j ∈ [ileft(x2), iright(x2)])(kj = 0), the difference betweeny∗

MOM(x2) and
y∗
MOM(x1) is given by a special case of Eq. (9.103)

y∗
MOM(x2)− y∗

MOM(x1)

=

(
iright(x2)∑

j2=ileft(x2)

1

)−1( iright(x2)∑

j1=ileft(x2)

cj1

)

−

(
iright(x1)∑

j4=ileft(x2)

1

)−1( iright(x1)∑

j3=ileft(x2)

cj3

)

,

(9.108)

which was shown to be positive.

Case d When the smallest linguistic output value fired to the maximumfulfilment
degree forx1 is smaller than the smallest linguistic output value fired tothe maxi-
mum fulfilment degree forx2, the largest linguistic output value fired to the maximum
fulfilment degree forx1 is equal to the largest linguistic output value fired to the max-
imum fulfilment degree forx2 and two ‘smallest linguistic output values’ differ from
the largest linguistic output value,i.e.

ileft(x1) < ileft(x2) < iright(x1) = iright(x2) , (9.109)

three subcases can be distinguished.

Case d1 If
iright(x2)∑

j=ileft(x2)

kj > 0, the difference between the crisp outputs

y∗
MOM(x2) andy∗

MOM(x1) is given by Eq. (9.102), or, after substitution ofiright(x1)
by iright(x2), by

y∗
MOM(x2)− y∗

MOM(x1)

=

iright(x2)∑

j1=ileft(x2)

kj1cj1

iright(x2)∑

j2=ileft(x2)

kj2

−

iright(x2)∑

j3=ileft(x1)

kj3cj3

iright(x2)∑

j4=ileft(x1)

kj4
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=

(
iright(x2)∑

j2=ileft(x2)

kj2

iright(x2)∑

j4=ileft(x1)

kj4

)−1

×

((
ileft(x2)-1
∑

j4=ileft(x1)

kj4 +

iright(x2)∑

j4=ileft(x2)

kj4

)
iright(x2)∑

j1=ileft(x2)

kj1cj1

−

iright(x2)∑

j2=ileft(x2)

kj2

(
ileft(x2)-1
∑

j3=ileft(x1)

kj3cj3 +

iright(x2)∑

j3=ileft(x2)

kj3cj3

))

=

ileft(x2)-1∑

j4=ileft(x1)

kj4

iright(x2)∑

j1=ileft(x2)

kj1cj1 −
iright(x2)∑

j2=ileft(x2)

kj2

ileft(x2)-1∑

j3=ileft(x1)

kj3cj3

iright(x2)∑

j2=ileft(x2)

kj2

iright(x2)∑

j4=ileft(x1)

kj4

(9.110)

One can easily verify following a similar procedure as described in Case c1 that this
difference betweeny∗

MOM(x2) andy∗
MOM(x1) is positive.

Case d2 If (∀j ∈ [ileft(x2), iright(x2)])(kj = 0) and
ileft(x2)-1∑

j=ileft(x1)

kj > 0, the following chain of inequalities holds

cileft(x1) ≤ y∗
MOM(x1) ≤ cileft(x2)-1 < cileft(x2) ≤ y∗

MOM(x2) ≤ ciright(x2) , (9.111)

and it follows that the crisp outputy∗
MOM(x1) is smaller than or equal to the crisp

outputy∗
MOM(x2)

y∗
MOM(x1) ≤ y∗

MOM(x2) . (9.112)

Case d3 Finally, when all linguistic output values fired to the maximum fulfil-
ment degree are described by triangular membership functions,
(∀j ∈ [ileft(x1), iright(x2)])(kj = 0), the difference betweeny∗

MOM(x2) and
y∗
MOM(x1) is given by a special case of Eq. (9.110)

y∗
MOM(x2)− y∗

MOM(x1)

=

(
iright(x2)∑

j2=ileft(x2)

1

)−1( iright(x2)∑

j1=ileft(x2)

cj1

)

−

(
iright(x2)∑

j4=ileft(x1)

1

)−1( iright(x2)∑

j3=ileft(x1)

cj3

)

,

(9.113)

which was shown to be positive.

Case e When the smallest linguistic output value fired to the maximumfulfilment
degree forx1 is smaller than the smallest linguistic output value fired tothe maximum
fulfilment degree forx2, which on its turn is smaller than the largest linguistic output
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value fired to the maximum fulfilment degree forx1, which on its turn is smaller than
the largest linguistic output value fired to the maximum fulfilment degree forx2, i.e.

ileft(x1) < ileft(x2) < iright(x1) < iright(x2) , (9.114)

four subcases can be distinguished.

Case e1 If
iright(x1)∑

j=ileft(x1)

kj > 0 and
iright(x2)∑

j=ileft(x2)

kj > 0, then the difference be-

tween the crisp outputsy∗
MOM(x2) andy∗

MOM(x1) is given by Eq. (9.102)

y∗
MOM(x2)− y∗

MOM(x1)

=

iright(x2)∑

j1=ileft(x2)

kj1cj1

iright(x2)∑

j2=ileft(x2)

kj2

−

iright(x1)∑

j3=ileft(x1)

kj3cj3

iright(x1)∑

j4=ileft(x1)

kj4

=

(
iright(x2)∑

j2=ileft(x2)

kj2

iright(x1)∑

j4=ileft(x1)

kj4

)−1

×

(
iright(x1)∑

j4=ileft(x1)

kj4

(
iright(x1)∑

j1=ileft(x2)

kj1cj1 +

iright(x2)∑

j1=iright(x1)+1

kj1cj1

)

−

(
iright(x1)∑

j2=ileft(x2)

kj2 +

iright(x2)∑

j2=iright(x1)+1

kj2

)
iright(x1)∑

j3=ileft(x1)

kj3cj3

)

=

(
iright(x2)∑

j2=ileft(x2)

kj2

iright(x1)∑

j4=ileft(x1)

kj4

)−1

×

((
ileft(x2)-1
∑

j4=ileft(x1)

kj4 +

iright(x1)∑

j4=ileft(x2)

kj4

)
iright(x1)∑

j1=ileft(x2)

kj1cj1

−

iright(x1)∑

j2=ileft(x2)

kj2

(
ileft(x2)-1
∑

j3=ileft(x1)

kj3cj3 +

iright(x1)∑

j3=ileft(x2)

kj3cj3

)

+

iright(x1)∑

j4=ileft(x1)

kj4

iright(x2)∑

j1=iright(x1)+1

kj1cj1 −

iright(x2)∑

j2=iright(x1)+1

kj2

iright(x1)∑

j3=ileft(x1)

kj3cj3

)
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=

(
iright(x2)∑

j2=ileft(x2)

kj2

iright(x1)∑

j4=ileft(x1)

kj4

)−1

×

(
ileft(x2)-1
∑

j4=ileft(x1)

kj4

iright(x1)∑

j1=ileft(x2)

kj1cj1 −

iright(x1)∑

j2=ileft(x2)

kj2

ileft(x2)-1
∑

j3=ileft(x1)

kj3cj3

+

iright(x1)∑

j4=ileft(x1)

kj4

iright(x2)∑

j1=iright(x1)+1

kj1cj1 −

iright(x2)∑

j2=iright(x1)+1

kj2

iright(x1)∑

j3=ileft(x1)

kj3cj3

)

(9.115)

One can easily verify following a similar procedure as described in Case c1 that this
difference betweeny∗

MOM(x2) andy∗
MOM(x1) is positive.

Case e2 If (∀j ∈ [ileft(x1), iright(x1)])(kj = 0) and
iright(x2)∑

j=iright(x1)+1

kj > 0, then the following chain of inequalities holds

cileft(x1) ≤ y∗
MOM(x1) ≤ ciright(x1) < ciright(x1)+1 ≤ y∗

MOM(x2) ≤ ciright(x2) ,
(9.116)

and it follows that the crisp outputy∗
MOM(x1) is smaller than the crisp outputy∗

MOM(x2)

y∗
MOM(x1) < y∗

MOM(x2) . (9.117)

Case e3 If (∀j ∈ [ileft(x2), iright(x2)])(kj = 0) and
ileft(x2)-1∑

j=ileft(x1)

kj > 0, then the following chain of inequalities holds

cileft(x1) ≤ y∗
MOM(x1) ≤ cileft(x2)-1 < cileft(x2) ≤ y∗

MOM(x2) ≤ ciright(x2) (9.118)

and it follows that the crisp outputy∗
MOM(x1) is smaller than the crisp outputy∗

MOM(x2)

y∗
MOM(x1) < y∗

MOM(x2) . (9.119)

Case e4 Finally, when all linguistic output values fired to the maximum fulfil-
ment degree are described by triangular membership functions,
(∀j ∈ [ileft(x1), iright(x2)])(kj = 0), the difference betweeny∗

MOM(x2) and
y∗
MOM(x1) is given by a special case of Eq. (9.115)

y∗
MOM(x2)− y∗

MOM(x1)

=

(
iright(x2)∑

j2=ileft(x2)

1

)−1( iright(x2)∑

j1=ileft(x2)

cj1

)

−

(
iright(x1)∑

j4=ileft(x1)

1

)−1( iright(x1)∑

j3=ileft(x1)

cj3

)

,

(9.120)
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which was shown to be positive.
Based on the results obtained for Cases a–e it can be concluded that a monotone

input-output behaviour is obtained for each subspaceXj, and, by construction, for the
whole input space of a Mamdani–Assilian model with a smooth rule base and applying
TP.

9.5 Models with a monotone rule base and two input
variables

In this section the monotonicity of models with a monotone rule base and two input
variables is investigated for models applyingTM or TP. Models with more than one
input variable applyingTL are again not considered. For models applyingTM the
output membership functions are again assumed to satisfy Eqs. (9.33–9.34).

9.5.1 Models applyingTM

In this section it is shown that there exist models with two input variables and a
monotone non-smooth rule base, for which a non-monotone input-output behaviour is
obtained for any fuzzy output partition as described in Section 7.2. As the goal of this
study was to select combinations of t-norm and defuzzification method resulting in a
monotone input-output behaviour for any monotone rule baseor any monotone smooth
rule base, the combination ofTM and MOM defuzzification is hereby abandoned as
appropriate combination in case of a monotone non-smooth rule bases.

When a model with two input variablesX1 andX2 contains the following rules,
represented in Fig. 9.3, in its monotone but non-smooth rulebase (q1, q2 ∈ N0, q1 <
q2)

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+q2

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+q1+q2

IF X1 IS B1
j1+2 AND X2 IS B2

j2
THEN Y IS Ai+q1

IF X1 IS B1
j1+2 AND X2 IS B2

j2+1 THEN Y IS Ai+q1+q2

the following chain of inequalities should be satisfied whenthe model has a monotone
input-output behaviour

y∗
MOM,2M,1 ≤ y∗

MOM,2M,2 ≤ y∗
MOM,2M,3 , (9.121)
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X1B1
j1

B1
j1+1 B1

j1+2

Ai

Ai+q2

Ai

Ai+q1+q2

Ai+q1

Ai+q1+q2

q1, q2 ∈ N0, q1 < q2
X2

B2
j2

B2
j2+1

Figure 9.3: Example of a monotone non-smooth rule base for which no monotone
input-output behaviour can be obtained when applyingTM combined with
the MOM defuzzification method.

with

y∗
MOM =







y∗
MOM,2M,1 , if B1

j1
(x1) = B1

j1+1(x1) = 0.5,

B2
j2

(x2) = B2
j2+1(x2) = 0.5 ,

y∗
MOM,2M,2 , if B1

j1
(x1) < 0.5, B1

j1+1(x1) > 0.5,

B2
j2

(x2) = B2
j2+1(x2) = 0.5 ,

y∗
MOM,2M,3 , if B1

j1+1(x1) = B1
j1+2(x1) = 0.5,

B2
j2

(x2) = B2
j2+1(x2) = 0.5 .

The crisp outputsy∗
MOM,2M,i are derived from fuzzy outputs with correspond-

ing setsImax,i,

• Imax,1 = {i, i+q2, i+q1+q2},

• Imax,2 = {i, i+q1+q2}, and

• Imax,3 = {i, i+q1, i+q1+q2} .

Since the weightswi, wi+q1
, wi+q2

, wi+q1+q2
in Eq. (9.27) are strictly positive,

the difference between the outputs is given by

y∗
MOM,2M,2 − y∗

MOM,2M,1 =
wi+q2

(wi+q1+q2
(ci+q1+q2

− ci+q2
)− wi(ci+q2

− ci))

(wi + wi+q2
+ wi+q1+q2

)(wi + wi+q1+q2
)

(9.122)

y∗
MOM,2M,3 − y∗

MOM,2M,2 =
wi+q1

(wi(ci+q1
− ci)− wi+q1+q2

(ci+q1+q2
− ci+q1

))

(wi + wi+q1
+ wi+q1+q2

)(wi + wi+q1+q2
)

(9.123)
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X1B1
j1

B1
j1+1 B1

j1+2

Y

Ai

Ai+1

Ai+2

Ai+3

Figure 9.4: Crisp outputy∗
MOM obtained for the rules represented in Fig. 9.3 forT =

TM, q1 = 1, q2 = 2 andB2
j2

(x2) = B2
j2+1(x2) = 0.5.

and, sinceci < ci+q1
< ci+q2

< ci+q1+q2
, it follows that

y∗
MOM,2M,1 ≤ y∗

MOM,2M,2 ≤ y∗
MOM,2M,3

⇔ (wi(ci+q2
− ci) ≤ wi+q1+q2

(ci+q1+q2
− ci+q2

))

∧ (wi+q1+q2
(ci+q1+q2

− ci+q1
) ≤ wi(ci+q1

− ci))

⇔
ci+q1+q2

− ci+q1

ci+q1
− ci

≤
wi

wi+q1+q2

≤
ci+q1+q2

− ci+q2

ci+q2
− ci

⇒ (ci+q2
− ci)(ci+q1+q2

− ci+q1
) ≤ (ci+q1

− ci)(ci+q1+q2
− ci+q2

)

⇔ 0 ≤ (ci+q1+q2
− ci)(ci+q1

− ci+q2
) . (9.124)

However, asci+q1+q2
> ci andci+q1

< ci+q2
, the latter expression can never be positive,

and therefore Eq. (9.121) does not hold. This is illustratedin Fig. 9.4 for the rule base
in Fig. 9.3.

9.5.2 Models applyingTP

We show in this section that also when applyingTP, opting for a monotone smooth
rule base is recommended when designing a monotone model, since monotonicity is
not obtained for any monotone, but non-smooth rule base if the model uses more than
five linguistic output values.

A monotone input-output behaviour should be obtained for a monotone, but
non-smooth rule base containing the following rules, represented in Fig. 9.5, with the
three linguistic output valuesAi, Ai+q1

andAi+q1+q2
in their consequents (q1, q2 ∈ N0)
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X1B1
j1

B1
j1+1 B1

j1+2

Ai

Ai+q1

Ai

Ai+q1+q2

Ai+q1

Ai+q1+q2

X2

B2
j2

B2
j2+1

Figure 9.5: Representation of the monotone non-smooth rulebase discussed in Sec-
tion 9.5.2.

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+q1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+q1+q2

IF X1 IS B1
j1+2 AND X2 IS B2

j2
THEN Y IS Ai+q1

IF X1 IS B1
j1+2 AND X2 IS B2

j2+1 THEN Y IS Ai+q1+q2

in order to withhold the combination of the t-normTP and the MOM defuzzification
method for the design of monotone models with a non-smooth rule base.

To that end, the following chain of inequalities should hold

y∗
MOM,2P,1 ≤ y∗

MOM,2P,2 ≤ y∗
MOM,2P,3 , (9.125)

with

y∗
MOM =







y∗
MOM,2P,1 , if B1

j1
(x1) = B1

j1+1(x1) = 0.5,

B2
j2

(x2) = B2
j2+1(x2) = 0.5 ,

y∗
MOM,2P,2 , if B1

j1
(x1) < 0.5, B1

j1+1(x1) > 0.5,

B2
j2

(x2) = B2
j2+1(x2) = 0.5 ,

y∗
MOM,2P,3 , if B1

j1+1(x1) = B1
j1+2(x1) = 0.5,

B2
j2

(x2) = B2
j2+1(x2) = 0.5 .

The crisp outputsy∗
MOM,2P,i are derived from fuzzy outputs with corresponding

setsImax,i,

• Imax,1 = {i, i+q1, i+q1+q2},

• Imax,2 = {i, i+q1+q2}, and
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• Imax,3 = {i, i+q1, i+q1+q2} .

In models applyingTP the crisp model outputy∗
MOM depends on which linguistic

output values are fired to the maximum fulfilment degreeαmax, but does not depend
on the value as such, of the maximum fulfilment degree as shownby Eq. (9.24). Thus
for the rules represented in Fig. 9.5 it holds that

y∗
MOM,2P,1 = y∗

MOM,2P,3 , (9.126)

and Eq. (9.125)can only hold if

y∗
MOM,2P,1 = y∗

MOM,2P,2 . (9.127)

Case a If ki, ki+q1
andki+q1+q2

are all strictly positive, Eq. (9.127) is equivalent with

kici + ki+q1
ci+q1

+ ki+q1+q2
ci+q1+q2

ki + ki+q1
+ ki+q1+q2

=
kici + ki+q1+q2

ci+q1+q2

ki + ki+q1+q2

⇔ kiki+q1
ci+q1

+ ki+q1
ki+q1+q2

ci+q1
= kiki+q1

ci + ki+q1
ki+q1+q2

ci+q1+q2

⇔ ki(ci+q1
− ci) = ki+q1+q2

(ci+q1+q2
− ci+q1

) . (9.128)

Case b If ki andki+q1
are strictly positive andki+q1+q2

is equal to zero, Eq. (9.127)
doesnot hold asci < ci+q1

y∗
MOM,2P,1 =

kici + ki+q1
ci+q1

ki + ki+q1

,

y∗
MOM,2P,2 = ci . (9.129)

Case c If ki andki+q1+q2
are strictly positive andki+q1

is equal to zero, Eq. (9.127)
holds as

y∗
MOM,2P,1 =

kici + ki+q1+q2
ci+q1+q2

ki + ki+q1+q2

= y∗
MOM,2P,2 . (9.130)

Case d If ki is strictly positive andki+q1
andki+q1+q2

are equal to zero, Eq. (9.127)
holds as

y∗
MOM,2P,1 = ci = y∗

MOM,2P,2 . (9.131)

Case e If ki+q1
andki+q1+q2

are strictly positive andki is equal to zero, Eq. (9.127)
doesnot hold asci+q1

< ci+q1+q2

y∗
MOM,2P,1 =

ki+q1
ci+q1

+ ki+q1+q2
ci+q1+q2

ki+q1
+ ki+q1+q2

,

y∗
MOM,2P,2 = ci+q1+q2

. (9.132)
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Case f If ki+q1
is strictly positive andki andki+q1+q2

are equal to zero, Eq. (9.127) is
equivalent with

ci+q1
=

1

2
(ci + ci+q1+q2

)

⇔ ci+q1
− ci = ci+q1+q2

− ci+q1
. (9.133)

Case g If ki+q1+q2
is strictly positive andki andki+q1

are equal to zero, Eq. (9.127)
holds as

y∗
MOM,2P,1 = ci+q1+q2

= y∗
MOM,2P,2 . (9.134)

Case h If ki, ki+q1
andki+q1+q2

are all equal to zero, Eq. (9.127) is equivalent with

1

3
(ci + ci+q1

+ ci+q1+q2
) =

1

2
(ci + ci+q1+q2

)

⇔ ci+q1
− ci = ci+q1+q2

− ci+q1
. (9.135)

As the model designer should have the freedom to apply the above set of six
rules to any combination of three different linguistic output valuesAi, Ai+q1

and
Ai+q1+q2

, fuzzy output partitions that contain a triangular membership function pre-
ceded by two or more trapezial membership functions as well as fuzzy output parti-
tions that contain a triangular membership function followed by two or more trapezial
membership functions should be discarded when monotonicity is required, as a non-
monotone input-output behaviour is obtained for Cases b ande. These findings restrict
the output membership functions to fuzzy partitions that satisfy one of the following
conditions:

1. n trapezial membership functions,

2. n triangular membership functions,

3. trapezial membership functionsA1 andAn andn-2 triangular membership func-
tionsAi for i ∈ {2, . . . , n-1}, or

4. one trapezial membership function andn-1 triangular membership functions.

In order to withhold the combination of the t-normTP and the MOM defuzzi-
fication method for the design of monotone models with a monotone non-smooth rule
base, monotonicity should also be obtained for the set of rules used in Section 9.5.1
to support the recommendation to use a monotone smooth rule base whenT = TM

and presented in a schematic way in Fig. 9.3. In the followingparagraphs the chain of
inequalities in Eq. (9.125) is investigated for the seven cases listed in Table 9.1.

Cases a and g If ki, ki+q1
, ki+q2

andki+q1+q2
are all strictly positive or all equal to

zero, all weightswi, wi+q1
, wi+q2

andwi+q1+q2
in Eq. (9.24) are strictly positive. In

this case, the differences between the crisp outputsy∗
MOM,2P,i are identical to those

in Eqs. (9.122–9.123) and Eq. (9.124) proves that non-monotonicity is obtained in this
situation.
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Table 9.1: Cases to be considered when investigating the chain of inequalities in
Eq. (9.125) for the rules represented in Fig. 9.3 and models applyingTP.
ki ki+q1

ki+q2
ki+q1+q2

ki ki+q1
ki+q2

ki+q1+q2

a > 0 > 0 > 0 > 0 e = 0 = 0 > 0 = 0
b > 0 = 0 = 0 > 0 f = 0 = 0 = 0 > 0
c > 0 = 0 = 0 = 0 g = 0 = 0 = 0 = 0
d = 0 > 0 = 0 = 0

Case b If ki andki+q1+q2
are strictly positive andki+q1

andki+q2
are equal to zero,

Eq. (9.125) holds since

y∗
MOM,2P,1 = y∗

MOM,2P,2 = y∗
MOM,2P,3 =

kici + ki+q1+q2
ci+q1+q2

ki + ki+q1+q2

. (9.136)

Case c If ki is strictly positive andki+q1
, ki+q2

and ki+q1+q2
are equal to zero,

Eq. (9.125) holds since

y∗
MOM,2P,1 = y∗

MOM,2P,2 = y∗
MOM,2P,3 = ci . (9.137)

Case d If ki+q1
is strictly positive andki, ki+q2

and ki+q1+q2
are equal to zero,

Eq. (9.125) doesnot hold. Indeed,

y∗
MOM,2P,1 ≤ y∗

MOM,2P,2

⇔
1

3
(ci + ci+q2

+ ci+q1+q2
) ≤

1

2
(ci + ci+q1+q2

)

⇔ 2ci+q2
≤ ci + ci+q1+q2

, (9.138)

and

y∗
MOM,2P,2 ≤ y∗

MOM,2P,3

⇔
1

2
(ci + ci+q1+q2

) ≤ ci+q1

⇔ ci + ci+q1+q2
≤ 2ci+q1

, (9.139)

together withci+q1
< ci+q2

, imply that Eq. (9.125) does not hold.

Case e If ki+q2
is strictly positive andki, ki+q1

and ki+q1+q2
are equal to zero,

Eq. (9.125) doesnot hold. Indeed,

y∗
MOM,2P,1 ≤ y∗

MOM,2P,2

⇔ ci+q2
≤

1

2
(ci + ci+q1+q2

)

⇔ 2ci+q2
≤ ci + ci+q1+q2

, (9.140)
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and

y∗
MOM,2P,2 ≤ y∗

MOM,2P,3

⇔
1

2
(ci + ci+q1+q2

) ≤
1

3
(ci + ci+q1

+ ci+q1+q2
)

⇔ ci + ci+q1+q2
≤ 2ci+q1

, (9.141)

together withci+q1
< ci+q2

, imply that Eq. (9.125) does not hold.

Case f If ki+q1+q2
is strictly positive andki, ki+q1

and ki+q2
are equal to zero,

Eq. (9.125) holds since

y∗
MOM,2P,1 = y∗

MOM,2P,2 = y∗
MOM,2P,3 = ci+q1+q2

. (9.142)

If all output membership functions are trapezial, the number of linguistic out-
put values should be smaller than or equal to three, since forq1 = 1 and q2 = 2
non-monotonicity is obtained if the rule base contains six rules as in Fig. 9.3 and there
are four consecutive trapezial membership functions (Casea). If the number of out-
put membership functions is three, they should satisfyk1(c2 − c1) = k3(c3 − c2)
(Eq. (9.128)). If the number of output membership functionsis smaller than three, no
monotone, but non-smooth rule base can be constructed. Analogously, if all output
membership functions are triangular, the number of linguistic output values should be
smaller than or equal to three (Case g) and if the number of linguistic output values is
equal to three, the membership functions should satisfyc2−c1 = c3−c2 (Eq. (9.135)).
The results obtained for Cases a and g also restrict the number of linguistic output val-
ues for fuzzy output partitions with trapezial membership functions for the first and last
membership function and triangular membership functions for the intermediate mem-
bership functions. In this case the number of linguistic output values should be at most
five and if the number of linguistic output values is five the conditionc3− c2 = c4− c3

(Eq. (9.135)) should be satisfied. Using the results obtained for Cases d and e, among
the fuzzy output partitions consisting of only one trapezial membership function com-
bined with triangular membership functions, only four types could be withheld: two
types of fuzzy partitions with four membership functions, once with the first member-
ship function and once with the fourth membership function being trapezial, and two
types of fuzzy partitions with three membership functions with the trapezial member-
ship function being either the first or the second membershipfunctions. Summarizing,
it can be concluded that monotonicity is obtained for the twosets of rules represented
in Figs. 9.3 and 9.5 that might occur in a monotone, but non-smooth rule base, for
fuzzy output partitions with five membership functions if the order of triangular and
trapezial membership functions is

{trapezial, triangular, triangular, triangular, trapezial} with c3 − c2 = c4 − c3
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with four membership functions if

{trapezial, triangular, triangular, trapezial}

{trapezial, triangular, triangular, triangular} with c3 − c2 = c4 − c3

{triangular, triangular, triangular, trapezial} with c2 − c1 = c3 − c2

and three membership functions if

{trapezial, trapezial, trapezial} with k1(c2 − c1) = k3(c3 − c2)

{triangular, triangular, triangular} with c2 − c1 = c3 − c2

{trapezial, triangular, trapezial}

{trapezial, triangular, triangular}

{triangular, trapezial, triangular} with c2 − c1 = c3 − c2

Moreover, it can be proved that for these types of fuzzy partitions a monotone input-
output behaviour is obtained for any monotone rule base.

9.6 Conclusion

In this chapter, it was proved that a Mamdani–Assilian modelapplying the MOM de-
fuzzification method is monotone if it corresponds to one of the six model types listed
in Table 9.2, characterized by a number of input variablesm, a t-normT , an either
monotone or monotone smooth rule base and additional properties of the membership
functions appearing in the rule consequents. For the t-normTM, models with a sin-
gle input variable show a monotone input-output behaviour for any monotone rule base
when the linguistic output values in the consequents of the rules are defined by trapezial
or triangular membership functions with intervals of changing membership degree of
equal length, whereas for the t-normsTP andTL, models with a single input variable
show a monotone input-output behaviour for any monotone rule base and any fuzzy
output partition. The monotonicity of models with two inputvariables applyingTP is
only guaranteed for any monotone rule base when using one of the nine types of fuzzy
output partitions defined in Table 9.3. Finally, it is provedthat a monotone input-output
behaviour is always obtained for models with a monotone smooth rule base applying
TM when the linguistic output values in the consequents of the rules are defined by
trapezial or triangular membership functions with intervals of changing membership
degree of equal length and for models with a monotone smooth rule base applyingTP

for any fuzzy output partition.
The interpolation procedure presented in Section 8.6 between a user-defined

fuzzy output partition and a second fuzzy partition satisfying the constraints required
to guarantee monotonicity, can also be incorporated in models applying the MOM
defuzzification method. Therefore, monotonicity can be guaranteed for all models with
a monotone rule base, one input variable and applying eitherTM, TP or TL, as well
as for all models with a monotone smooth rule base, an unrestricted number of input
variables and applying eitherTM or TP, regardless of the fuzzy output partition.
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Table 9.2: Mamdani–Assilian models for which monotonicityis guaranteed if apply-
ing the MOM defuzzification method characterized by a numberof input
variablesm, a t-normT , an either monotone or monotone smooth rule base
and additional properties of the membership functions appearing in the rule
consequents.

m T rule base additional propertiesAis

1 1 TM monotone
(∀s ∈ {1, . . . , r})(is /∈ {1, n})
(∃l > 0)(∀i ∈ I \ {n})(li = l)

2 1 TP monotone
3 1 TL monotone

4 2 TP monotone
restricted class of nine types of

fuzzy partitions given in Table 9.3

5 TM monotone and smooth
(∀s ∈ {1, . . . , r})(is /∈ {1, n})
(∃l > 0)(∀i ∈ I \ {n})(li = l)

6 TP monotone and smooth

Table 9.3: Characteristics of the nine partitions for whichmonotonicity can be guaran-
teed for models with two input variables and a monotone rule base, applying
TP and the MOM defuzzification method.
n k1 k2 k3 k4 k5 additional propertiesAis

5 > 0 0 0 0 > 0 l2 = l3
4 > 0 0 0 > 0
4 > 0 0 0 0 l2 = l3
4 0 0 0 > 0 l1 = l2
3 > 0 > 0 > 0 k1l1 = k3l2
3 0 0 0 l1 = l2
3 > 0 0 > 0
3 > 0 0 0
3 0 > 0 0 l1 = l2
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However, for models with two input variables and a monotone non-smooth rule
base applyingTP, the interpolation procedure does not allow the user to use any fuzzy
output partition. The nine types of fuzzy partitions in Table 9.3 for which monotonicity
is guaranteed cannot be extended to all fuzzy partitions as in the nine types of fuzzy
partitions

1. the maximum number of output membership functions is five and,

2. the second to second last membership functions in all partitions with four or five
membership functions are triangular.

The relationship between the crisp outputy′∗ returned by the inference procedure using
the second fuzzy partition and the crisp outputy∗ in the output domain defined by the
model designer is functional,i.e. it maps each crisp outputy′∗ to one crisp outputy∗. If
a trapezial membership function in the user-defined fuzzy partition is represented by a
triangular membership function in the second partition, only one value within its kernel
can be returned as model outputy∗ rendering the other elements of the kernel of this
trapezial membership function redundant and leading to an (additional) discontinuity
in the model output.

Thus, if the monotonicity of a model with two input variables, a monotone
rule base and applyingTP should be guaranteed and one wants to use four or five
linguistic output values, one is only free to choose the shape, either triangular or
trapezial, of the extreme membership functions, and shoulddefine the intermediate
linguistic values by triangular membership functions. If one wants to use only three
linguistic output values, the shape of all output membership functions can be cho-
sen freely as a fuzzy partition of three trapezial membership functions guarantee-
ing monotonicity can be used to determiney′∗. One easily verifies that when the
second fuzzy partition is chosen such that all trapezial membership functions have
kernels of equal length, and that all membership functions have intervals of chang-
ing membership degree of equal length as well, then the classof user-defined fuzzy
output partitions for which monotonicity is guaranteed, for models with a monotone
rule base, two input variables and applying the t-normTP can be summarized as
{ *, triangular, triangular, triangular, *}, { *, triangular, triangular, * }
or { *, *, * } with * a membership function that might be either triangularor trapezial.
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CHAPTER 10

ATL–ATM models

Le seul v́eritable voyage n’est pas d’aller vers d’autres
paysages, mais d’avoir d’autres yeux.
(Marcel Proust)

10.1 Introduction

In this chapter the monotonicity is investigated of linguistic fuzzy models applying
plain implicator-based inference or ATL–ATM inference. Itis verified for the three t-
normsTM, TP andTL and the three R-implicatorsIM, IP andIL whether a monotone
input-output behaviour is obtained for any monotone rule base, or at least for any
monotone smooth rule base. The models are assumed to hold additional properties
apart from the properties described in Section 7.2: the linguistic output values in the
rule consequents are assumed to be defined by trapezial or triangular membership func-
tions of identical shape,i.e.

(∀s ∈ {1, . . . , r})(is /∈ {1, n}) , (10.1)

(∃l > 0)(∀i ∈ I \ {n})(li = l) , (10.2)

(∃k ≥ 0)(∀i ∈ I \ {1, n})(ki = k) . (10.3)

However, the auxiliary interpolation procedure describedin Section 8.6 allows to ex-
tend the results obtained in this chapter to any fuzzy outputpartition as defined in
Section 7.2.1.

In Section 10.2 the monotonicity of linguistic fuzzy modelswith a monotone
rule base applying implicator-based inference without using the ATL and ATM modi-
fiers is described. As for thisplain implicator-based inference procedure monotonicity
cannot be guaranteed for models with two or more input variables, but only for models
with a single input variable and a smooth monotone rule base,this section justifies the
introduction of the new implicator-based inference procedure.

Since the ATL–ATM inference procedure has not been described in literature,
Section 10.3 is dedicated to some general remarks on the new inference procedure.
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Sections 10.4–10.6 discuss ATL–ATM models with up to two input variables, applying
the t-normTM, TP or TL, the R-implicatorIM, IP or IL and the Mean of Maxima
(MOM) defuzzification method. In Section 10.4, the monotonicity of models with a
single input variable is studied for the R-implicatorsIM, IP andIL. In Section 10.5,
the monotonicity of models with two input variables and a monotone smooth rule base
is discussed for the nine combinations of the t-normsTM, TP andTL and the three im-
plicatorsIM, IP andIL. As the research pointed out that when applying the implicator
IM or IP monotonicity cannot be guaranteed for models with a single input variable
and any monotone rule base, Section 10.6 deals with the monotonicity of models with
two input variables and a monotone rule base for the implicator IL only. The chapter
concludes with a summary of the obtained results in Section 10.7.

10.2 Motivation for the use of ATL and ATM modifiers

As discussed in Section 7.4 a prerequisite for a monotone model is to return a non-
empty fuzzy output different from the universal set for any input vectorx. In the coun-
terexample below it is shown that obtaining a meaningful fuzzy output for any input
vectorx cannot be guaranteed for models with two input variables andany monotone
(smooth) rule base when applying plain implicator-based inference.

The set of four rules

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+2

can occur in a monotone smooth rule base as well as in a monotone non-smooth rule
base. For an input vectorx = (x1, x2) not firing any other rule than the four rules
above

γ1 = 1−B1
j1

(x1) = B1
j1+1(x1) , (10.4)

γ2 = 1−B2
j2

(x2) = B2
j2+1(x2) , (10.5)

the fulfilment degrees of the linguistic output valuesAi, Ai+1 andAi+2 are obtained by

αi = T (1− γ1, 1− γ2) , (10.6)

αi+1 = max(T (1− γ1, γ2), T (γ1, 1− γ2)) , (10.7)

αi+2 = T (γ1, γ2) , (10.8)

with the t-normT eitherTM or TP. The t-normTL is not taken into consideration as
for γ1 = γ2 = 0.5, the fulfilment degrees of all linguistic output values are equal to
zero and the universal set is obtained as fuzzy model output (see Section 7.4.2).

In the following paragraphs the model behaviour for input vectorsx satisfying
Eqs. (10.4)–(10.5) is first discussed for the implicatorsIM and IP and then for the
implicatorIL. Before starting the discussion, the reader is reminded that in this study,

236



Chapter 10. ATL–ATM models

a linguistic output valueAi originates from a fuzzy partition of trapezial membership
functions as shown in Fig. 7.1 and its support and kernel are given by (note thati ∈
I \ {1, n})

supp(Ai) = ]a2i-2, a2i+1[ kern(Ai) = [a2i-1, a2i] . (10.9)

Models applying IM or IP When a linguistic output valueAi is fired, i.e. if its
fulfilment degreeαi is strictly positive, only output valuesy belonging to the support
of Ai have a non-zero membership degree to the adapted membershipfunction A′

i

when using the implicatorIM or IP

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y ≤ a2i-2 ⇒ IT (αi, Ai(y)) = 0) , (10.10)

(∀y ∈ Y)(∀IT ∈ {IM, IP})(a2i-2 < y < a2i+1 ⇒ IT (αi, Ai(y)) > 0) , (10.11)

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y ≥ a2i+1 ⇒ IT (αi, Ai(y)) = 0) . (10.12)

Thus, when the adapted output membership functions are obtained with IM or IP,
the minimum of the membership degrees to the adapted membership functions of two
fired, non-consecutive linguistic output valuesAi andAi+p (p > 1) is equal to zero for
all output valuesy

(∀y ∈ Y)(∀IT ∈ {IM, IP})(p > 1⇒ min(IT (αi, Ai(y)), IT (αi+p, Ai+p(y))) = 0) ,
(10.13)

since
a2i+1 ≤ a2i+2p-2 , (10.14)

and

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y ≤ a2i+2p-2 ⇒ IT (αi+p, Ai+p(y)) = 0) , (10.15)

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y ≥ a2i+1 ⇒ IT (αi, Ai(y)) = 0) . (10.16)

When applying plain implicator-based inference, adapted membership functions of lin-
guistic output values that are not fired are identical to the universal set and the mem-
bership degree to the global fuzzy outputA is the minimum of the membership degrees
to then adapted membership functionsA′

i. Therefore, for input vectorsx firing two
non-consecutive linguistic output values, as for example the input vectorsx firing the
four rules above, the empty set is obtained as fuzzy output. In Fig. 10.1(a) the adapted
membership functionsA′

i, A′
i+1 andA′

i+2 as well as the fuzzy outputA are shown for
a model applying the t-normTP and the implicatorIP, andγ1 = γ2 = 0.5.

Models applying IL When a linguistic output valueAi is fired, i.e. if its fulfilment
degreeαi is strictly positive, the membership degree of an output valuey not belonging
to the support ofAi is equal to1−αi, while the membership degree of an output value
y belonging to the support ofAi is greater than1− αi when using the implicatorIL

(∀y ∈ Y)(y ≤ a2i-2 ⇒ IL(αi, Ai(y)) = 1− αi) , (10.17)

(∀y ∈ Y)(a2i-2 < y < a2i+1 ⇒ IL(αi, Ai(y)) > 1− αi) , (10.18)

(∀y ∈ Y)(y ≥ a2i+1 ⇒ IL(αi, Ai(y)) = 1− αi) . (10.19)
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Figure 10.1: Fuzzy outputs obtained for input vectorsx (γ1 = γ2 = 0.5) firing the four
rules considered in the discussion about models applying plain implicator-
based inference. The t-normTP and implicators (a)IP and (b)IL were
applied.

Thus, when the adapted output membership functions are obtained with IL, the min-
imum of the membership degrees to the adapted membership functions of two non-
consecutive linguistic output valuesAi andAi+p (p > 1) which are fired to a same
non-zero membership degreeαi is equal to1− αi for all output valuesy

(∀y ∈ Y)(p > 1⇒ min(IL(αi, Ai(y)), IL(αi, Ai+p(y))) = 1− αi) , (10.20)

since

a2i+1 ≤ a2i+2p-2 , (10.21)
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and

(∀y ∈ Y)(y ≤ a2i+2p-2 ⇒ (IL(αi, Ai(y)) ≥ 1− αi ∧ IL(αi, Ai+p(y)) = 1− αi)) ,
(10.22)

(∀y ∈ Y)(y ≥ a2i+1 ⇒ (IL(αi, Ai+p(y)) ≥ 1− αi ∧ IL(αi, Ai(y)) = 1− αi)) .
(10.23)

As for input vectorsx firing the four rules above, the same fulfilment degrees are
obtained for the linguistic output valuesAi, Ai+1 andAi+2 whenγ1 = γ2 = 0.5

αi = αi+1 = αi+2 = T (0.5, 0.5) , (10.24)

the fuzzy output obtained in this case is as meaningless as the empty set or the universal
set since all linguistic output valuesy have a same membership degree1− T (0.5, 0.5)
(0.5 forTM and 0.75 forTP) to the fuzzy outputA. In Fig. 10.1(b) the adapted mem-
bership functionsA′

i, A′
i+1 andA′

i+2 as well as the fuzzy outputA are shown for a
model applying the t-normTP and the implicatorIL, andγ1 = γ2 = 0.5.

Conclusion From the discussion above, summarized in Eqs. (10.13) and (10.20), it
follows that for models with a single input variable and a monotone non-smooth rule
base a constant fuzzy set is obtained for some input vectorsx, either the empty set for
models applyingIM or IP or a fuzzy set to which all linguistic output values have a
same membership degree for models applyingIL, since these models contain a set of
rules corresponding to

IF X1 IS B1
j THEN Y IS Ai

IF X1 IS B1
j+1 THEN Y IS Ai+p

with p > 1. One can easily verify that models with a single input variable and a
monotone smooth rule base always return a non-empty fuzzy output for the three con-
sidered implicatorsIM, IP andIL. As in practice, models with a single input variable
are of minor importance, monotonicity aspects of models applying plain implicator-
based inference were not investigated in more detail in thisstudy.

10.3 Some general remarks on ATL–ATM models

10.3.1 Adapted output membership functions

From the definition of the modifiersATL andATM

ATL(A)(x) = sup{A(t) | t ≤ x} , (10.25)

ATM(A)(x) = sup{A(t) | t ≥ x} , (10.26)

it follows that the original membership functionsATL(Ai) andATM(Ai) in the conse-
quents of the rules of ATL and ATM models are defined by respectively increasing and
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decreasing membership functions. In ATL and ATM models implicator-based infer-
ence is applied: the adapted output membership functions(ATL(Ai))

′ and
(ATM(Ai))

′ are given by

(ATL(Ai))
′(y) = IT (αATL,i,ATL(Ai)(y)) , (10.27)

(ATM(Ai))
′(y) = IT (αATM,i,ATM(Ai)(y)) . (10.28)

As the three implicatorsIM, IP andIL considered in this dissertation satisfy

(∀x, y, z ∈ [0, 1])(y ≤ z ⇒ IT (x, y) ≤ IT (x, z)) , (10.29)

the adapted output membership functions(ATL(Ai))
′ and (ATM(Ai))

′ are respec-
tively increasing and decreasing functions.

When a linguistic output valueATL(Ai) (resp. ATM(Ai)) is not fired,i.e. if
its fulfilment degreeαATL,i (resp.αATM,i) is equal to zero, the corresponding adapted
membership function(ATL(Ai))

′ (resp.(ATM(Ai))
′) obtained withIM, IP or IL is

the universal set

IT (0,ATL(Ai)(y)) = 1 , (10.30)

IT (0,ATM(Ai)(y)) = 1 , (10.31)

whereas, when a linguistic output valueATL(Ai) (resp. ATM(Ai)) has a fulfilment
degreeαATL,i (resp. αATM,i) equal to one, the corresponding adapted membership
function (ATL(Ai))

′ (resp. (ATM(Ai))
′) obtained withIM, IP or IL is identical to

the original membership function

IT (1,ATL(Ai)(y)) = ATL(Ai)(y) , (10.32)

IT (1,ATM(Ai)(y)) = ATM(Ai)(y) . (10.33)

In this study, a linguistic output valueAi originates from a fuzzy partition of
trapezial membership functions as shown in Fig. 7.1 and the supports and kernels of
the corresponding linguistic valuesATL(Ai) andATM(Ai) are given by

supp(ATL(Ai)) = ]a2i-2,+∞[ kern(ATL(Ai)) = [a2i-1,+∞[ , (10.34)

supp(ATM(Ai)) = ]−∞, a2i+1[ kern(ATM(Ai)) = ]−∞, a2i] . (10.35)

When a linguistic output valueATL(Ai) (resp.ATM(Ai)) is fired,i.e. if its fulfilment
degreeαATL,i (resp. αATM,i) is strictly positive, only output valuesy belonging to
the support ofATL(Ai) (resp.ATM(Ai)) have a non-zero membership degree to the
adapted membership function(ATL(Ai))

′ (resp.(ATM(Ai))
′) when usingIM or IP

as implicator

(∀y ∈ Y)(∀IT ∈ {IM, IP})(∀αATL,i > 0)

(y ≤ a2i-2 ⇒ IT (αATL,i,ATL(Ai)(y)) = 0) , (10.36)

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y > a2i-2 ⇒ IT (αATL,i,ATL(Ai)(y)) > 0) , (10.37)
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respectively,

(∀y ∈ Y)(∀IT ∈ {IM, IP})(∀αATM,i > 0)

(y ≥ a2i+1 ⇒ IT (αATM,i,ATM(Ai)(y)) = 0) , (10.38)

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y < a2i+1 ⇒ IT (αATM,i,ATM(Ai)(y)) > 0) .
(10.39)

When applying the implicatorIL, the membership degree to the adapted member-
ship function(ATL(Ai))

′ (resp. (ATM(Ai))
′) with αATL,i (resp. αATM,i) being

strictly positive, of an output valuey not belonging to the support ofATL(Ai) (resp.
ATM(Ai)) is given by1 − αATL,i (resp.1 − αATM,i), while the membership degree
of an output valuey belonging to the support ofATL(Ai) (resp.ATM(Ai)) is greater
than1− αATL,i (resp.1− αATM,i)

(∀y ∈ Y)(y ≤ a2i-2 ⇒ IL(αATL,i,ATL(Ai)(y)) = 1− αATL,i) , (10.40)

(∀y ∈ Y)(∀αATL,i > 0)(y > a2i-2 ⇒ IL(αATL,i,ATL(Ai)(y)) > 1− αATL,i) ,
(10.41)

respectively,

(∀y ∈ Y)(y ≥ a2i+1 ⇒ IL(αATM,i,ATM(Ai)(y)) = 1− αATM,i) , (10.42)

(∀y ∈ Y)(∀αATM,i > 0)(y < a2i+1 ⇒ IL(αATM,i,ATM(Ai)(y)) > 1− αATM,i) .
(10.43)

Finally, since it holds for the three considered implicators IT that

(∀x ∈ [0, 1])(IT (x, 1) = 1) , (10.44)

output values belonging to the kernel ofATL(Ai) (resp.ATM(Ai)) also belong to the
kernel of the adapted membership function(ATL(Ai))

′ (resp.(ATM(Ai))
′)

(∀y ∈ Y)(∀IT ∈ {IM, IP, IL})(y ≥ a2i-1 ⇒ IT (αATL,i,ATL(Ai)(y)) = 1) ,
(10.45)

(∀y ∈ Y)(∀IT ∈ {IM, IP, IL})(y ≤ a2i ⇒ IT (αATM,i,ATM(Ai)(y)) = 1) .
(10.46)

10.3.2 Fuzzy output of the ATL and ATM model

The fuzzy output of ATL and ATM models is the intersection of the individual adapted
membership functions(ATL(Ai))

′ and(ATM(Ai))
′, i.e.

AATL(y) =
n

min
i=1

(ATL(Ai))
′(y) , (10.47)

AATM(y) =
n

min
i=1

(ATM(Ai))
′(y) . (10.48)

As (ATL(Ai))
′ and(ATM(Ai))

′ are respectively increasing and decreasing functions,
it follows from their definition thatAATL andAATM are respectively increasing and
decreasing functions.
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Figure 10.2: Illustration of the property defined in Eq. (10.49) of adapted membership
functions in an ATL model obtained withIM (or IP).

10.3.2.1 Models applyingIM or IP

In the following paragraphs it is shown that for a strictly positive fulfilment degree
αATL,i+p and the implicatorsIM andIP, the membership degree of any output value
y to an adapted linguistic value(ATL(Ai))

′ is greater than or equal to its membership
degree to an adapted linguistic value(ATL(Ai+p))

′, i.e.

(∀y ∈ Y)(∀IT ∈ {IM, IP})(∀αATL,i+p > 0)

(p ≥ 1⇒ IT (αATL,i,ATL(Ai)(y)) ≥ IT (αATL,i+p,ATL(Ai+p)(y))) . (10.49)

This property is illustrated in Fig. 10.2.
As Ai andAi+p originate from a same fuzzy partition as shown in Fig. 7.1 the

parameters defining the corresponding membership functions satisfy

a2i-1 ≤ a2i+2p-2 . (10.50)

From Eq. (10.36) it follows that for all values smaller than or equal to the lower bound
of the support ofATL(Ai+p), Eq. (10.49) holds. Since

(∀y ∈ Y)(∀IT ∈ {IM, IP})(∀αATL,i+p > 0)

(y ≤ a2i+2p-2 ⇒ IT (αATL,i+p,ATL(Ai+p)(y)) = 0) , (10.51)

it also holds that

(∀y ∈ Y)(∀IT ∈ {IM, IP})(∀αATL,i+p > 0)

(y ≤ a2i+2p-2 ⇒ IT (αATL,i,ATL(Ai)(y)) ≥ IT (αATL,i+p,ATL(Ai+p)(y))) .
(10.52)

From Eq. (10.45) it follows that for all values larger than orequal to the lower bound
of the kernel ofATL(Ai), Eq. (10.49) holds. Since

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y ≥ a2i-1 ⇒ IT (αATL,i,ATL(Ai)(y)) = 1) , (10.53)
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it also holds that

(∀y ∈ Y)(∀IT ∈ {IM, IP})

(y ≥ a2i-1 ⇒ IT (αATL,i,ATL(Ai)(y)) ≥ IT (αATL,i+p,ATL(Ai+p)(y))) .
(10.54)

Since the lower bounda2i-1 of the kernel ofATL(Ai) is smaller than or equal to
the lower bounda2i+2p-2 of the support ofATL(Ai+p) it follows from Eqs. (10.52)
and (10.54) that Eq. (10.49) holds.

Analogously, for a strictly positive fulfilment degreeαATM,i, p ≥ 1 and the
implicatorsIM andIP, the membership degree of any output valuey to an adapted
linguistic value(ATM(Ai))

′ is smaller than or equal to its membership degree to an
adapted linguistic value(ATM(Ai+p))

′, i.e.

(∀y ∈ Y)(∀IT ∈ {IM, IP})(∀αATM,i > 0)

(p ≥ 1⇒ IT (αATM,i,ATM(Ai)(y)) ≤ IT (αATM,i+p,ATM(Ai+p)(y))) .
(10.55)

Since the ATL–ATM inference procedure is an implicator-based inference pro-
cedure, the adapted membership functions of linguistic output values that are not fired
are identical to the universal set and do not contribute to the global fuzzy output if
there exists an adapted membership function which is different from the universal set.
In Section 7.3.2 it is shown that for any input vectorx at least one rule of an ATL (resp.
ATM) model is fired to a fulfilment degree equal to one and from Eqs. (10.32–10.33) it
follows that the adapted linguistic output value corresponding to this rule is not defined
by the universal set. From Eq. (10.49) it then follows that, when applyingIM or IP,
the fuzzy outputAATL of the ATL model is given by the adapted membership func-
tion (ATL(Aimax,zero

))′ of the linguistic output value with the largest indeximax,zero

among all fired linguistic output values,i.e.

(∀IT ∈ {IM, IP})(AATL(y) = IT (αATL,imax,zero
,ATL(Amax,zero)(y))) , (10.56)

with
imax,zero = max{i ∈ I | αATL,i > 0} . (10.57)

Analogously, it follows from Eq. (10.55) that the fuzzy output AATM of the ATM
model is given by the adapted membership function(ATM(Aimin,zero

))′ of the lin-
guistic output value with the smallest indeximin,zero among all fired linguistic output
values,i.e.

(∀IT ∈ {IM, IP})(AATM(y) = IT (αATM,imin,zero
,ATM(Amin,zero)(y))) , (10.58)

with
imin,zero = min{i ∈ I | αATM,i > 0} . (10.59)

Thus, given Eqs. (10.36–10.39), only output values smallerthan or equal to the
lower bound of the support ofATL(Aimax,zero

) do not belong to the fuzzy outputAATL

243



Chapter 10. ATL–ATM models

IL(αATL,i, ATL(Ai))

IL(αATL,i+p, ATL(Ai+p))

Y

A(y)

1

1 − αATL,i

1 − αATL,i+p

0
a2i-2

a2i-1 a2i+2p-2

a2i+2p-1

Figure 10.3: Illustration of the property defined in Eq. (10.64) of adapted membership
functions in an ATL model obtained withIL.

of the ATL model,i.e.

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y ≤ a2imax,zero-2 ⇒ AATL(y) = 0) , (10.60)

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y > a2imax,zero-2 ⇒ AATL(y) > 0) , (10.61)

and only output values greater than or equal to the upper bound of the support of
ATM(Aimin,zero

) do not belong to the fuzzy outputAATM of the ATM model,i.e.

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y ≥ a2imin,zero+1 ⇒ AATM(y) = 0) , (10.62)

(∀y ∈ Y)(∀IT ∈ {IM, IP})(y > a2imin,zero+1 ⇒ AATM(y) > 0) . (10.63)

10.3.2.2 Models applyingIL

In the following paragraphs it is shown that when applyingIL the membership degree
of any output valuey to an adapted linguistic value(ATL(Ai))

′ is greater than or equal
to its membership degree to an adapted linguistic value(ATL(Ai+p))

′ if the linguistic
value(ATL(Ai)) is fired to a smaller or the same fulfilment degree as the linguistic
value(ATL(Ai+p)), i.e.

(∀y ∈ Y)((αATL,i ≤ αATL,i+p ∧ p ≥ 1)

⇒ IL(αATL,i,ATL(Ai)(y)) ≥ IL(αATL,i+p,ATL(Ai+p)(y))) . (10.64)

This property is illustrated in Fig. 10.3.
As Ai andAi+p originate from a same fuzzy partition as shown in Fig. 7.1 the

parameters defining the corresponding membership functions satisfy the inequality in
Eq. (10.50). From Eqs. (10.40–10.41) it follows that for allvalues smaller than or equal
to the lower bound of the support ofATL(Ai+p), Eq. (10.64) holds. Since

(∀y ∈ Y)(y ≤ a2i+2p-2 ⇒ IL(αATL,i+p,ATL(Ai+p)(y)) = 1− αATL,i+p) , (10.65)

(∀y ∈ Y)(IL(αATL,i,ATL(Ai)(y)) ≥ 1− αATL,i) , (10.66)

with αATL,i ≤ αATL,i+p, it also holds that

(∀y ∈ Y)(y ≤ a2i+2p-2

⇒ IL(αATL,i,ATL(Ai)(y)) ≥ IL(αATL,i+p,ATL(Ai+p)(y))) . (10.67)
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From Eq. (10.45) it follows that for all values larger than orequal to the lower
bound of the kernel ofATL(Ai), Eq. (10.64) holds. Since

(∀y ∈ Y)(y ≥ a2i-1 ⇒ IL(αATL,i,ATL(Ai)(y)) = 1) , (10.68)

it also holds that

(∀y ∈ Y)(y ≥ a2i-1

⇒ IL(αATL,i,ATL(Ai)(y)) ≥ IL(αATL,i+p,ATL(Ai+p)(y))) . (10.69)

Since the lower bounda2i-1 of the kernel ofATL(Ai) is smaller than or equal to
the lower bounda2i+2p-2 of the support ofATL(Ai+p) it follows from Eqs. (10.67)
and (10.69) that Eq. (10.64) holds.

Analogously, the membership degree of any output valuey to an adapted lin-
guistic value(ATM(Ai))

′ is smaller than or equal to its membership degree to an
adapted linguistic value(ATM(Ai+p))

′ if the linguistic value(ATM(Ai)) is fired to a
greater or the same fulfilment degree as the linguistic value(ATM(Ai+p)), i.e.

(∀y ∈ Y)((αATM,i ≥ αATM,i+p ∧ p ≥ 1)

⇒ IL(αATM,i,ATM(Ai)(y)) ≤ IL(αATM,i+p,ATM(Ai+p)(y))) . (10.70)

In Section 7.3.2 it is shown that for any input vectorx at least one rule of the
ATL (resp. ATM) model is fired to a fulfilment degree equal to one. As the membership
function defining an adapted linguistic value with a corresponding fulfilment degree
equal to one is identical to the membership function definingthe original linguistic
value and given the property described in Eq. (10.64), only output values smaller than
or equal to the lower bound of the support ofATL(Aimax,one

) do not belong to the
fuzzy outputAATL of the ATL model withimax,one the greatest index for which the
corresponding fulfilment degree is equal to one,i.e.

(∀y ∈ Y)((IT = IL ∧ y ≤ a2imax,one-2)⇒ AATL(y) = 0) , (10.71)

(∀y ∈ Y)((IT = IL ∧ y > a2imax,one-2)⇒ AATL(y) > 0) , (10.72)

with

imax,one = max{i ∈ I | αATL,i = 1} . (10.73)

and only output values greater than or equal to the upper bound of the support of
ATM(Aimin,one

) do not belong to the fuzzy outputAATM of the ATM model with
imin,one the smallest index for which the corresponding fulfilment degree is equal to
one,i.e.

(∀y ∈ Y)((IT = IL ∧ y ≥ a2imin,one+1)⇒ AATM(y) = 0) , (10.74)

(∀y ∈ Y)((IT = IL ∧ y > a2imin,one+1)⇒ AATM(y) > 0) . (10.75)

with

imin,one = min{i ∈ I | αATM,i = 1} . (10.76)
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10.3.3 Fuzzy output of the ATL–ATM model

Thus, both for models applyingIM or IP and for models applyingIL there exist indices
imax andimin, i.e.

imax =

{

imax,zero , if IT ∈ {IM, IP} ,

imax,one , if IT = IL ,
(10.77)

imin =

{

imin,zero , if IT ∈ {IM, IP} ,

imin,one , if IT = IL .
(10.78)

with imax,zero, imin,zero, imax,one and imin,one respectively defined in Eqs. (10.57),
(10.59), (10.73) and (10.76). The supports ofATL(Aimax

) andATM(Aimin
) coincide

with the support of the fuzzy output of the ATL and ATM model respectively, given by

supp(AATL) = ]a2imax-2,+∞[ , (10.79)

supp(AATM) = ]−∞, a2imin+1[ . (10.80)

The fuzzy outputA of an ATL–ATM model is given by the intersection of the fuzzy
output of the ATL and ATM model,i.e.

A(y) = min(AATL(y), AATM(y)) . (10.81)

WhenAimin
is smaller thanAimax

, andAimin
andAimax

are non-consecutive
linguistic output values,i.e.

imin < imax − 1 , (10.82)

the lower bound of the support ofAATL is greater than or equal to the upper bound of
the support ofAATM, i.e.

a2imin+1 ≤ a2imax-2 , (10.83)

and the fuzzy outputA is the empty set,i.e.

(∀y ∈ Y)(A(y) = 0) , (10.84)

as illustrated in Fig. 10.4(a).
WhenAimin

is smaller thanAimax
andAimin

andAimax
are consecutive linguis-

tic output values, or whenAimin
is larger thanAimax

i.e.

imin ≥ imax − 1 , (10.85)

the lower bound of the support ofAATL is smaller than the upper bound of the support
of AATM, i.e.

a2imin+1 > a2imax-2 , (10.86)

and the support of the fuzzy outputA is given by,

supp(A) = ]a2imax-2, a2imin+1[ , (10.87)
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Figure 10.4: Fuzzy outputA (crosshatched) of an ATL–ATM model.

as illustrated in Fig. 10.4(b–d). Since the endpoints of thesupport ofA are finite, the
defuzzification method introduced by Dvořák and Jedelsḱy (1999) coincides with the
COG defuzzification method defined in Eq. (2.44). As furthermore,AATL andAATM

are respectively increasing and decreasing functions iny, the core ofA is a single
interval which is a very attractive property when applying the MOM defuzzification
method.

10.4 Models with a single input variable

In Section 7.3.2 it is shown that the fuzzy output of an ATL–ATM model is deter-
mined by exactly those rules that are fired when applying Mamdani–Assilian or plain
implicator-based inference. Thus, two rules should be considered when determining
the fuzzy output of an ATL–ATM model with a single input variable: the rule corre-
sponding to some linguistic valueB1

j to which the inputx1 has a membership degree
1− γ1 and the rule corresponding to the linguistic input valueB1

j+1 to which the input
x1 has a membership degreeγ1. In case of a monotone rule base,B1

j andB1
j+1 can

either be mapped to

1. a same linguistic output valueAi: theconstantcase,

2. two consecutive output valuesAi andAi+1: thesmoothcase, or
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3. two non-consecutive output valuesAi andAi+p (p ∈ N, p > 1, i + p ≤ n): the
non-smoothcase.

In the ATL model, the fulfilment degrees of the two rules considered

R1: IF X1 IS ATL(B1
j ) THEN Y IS ATL(Ai)

R2: IF X1 IS ATL(B1
j+1) THEN Y IS ATL(Ai+p)

are given by

βATL,1 = 1 , (10.88)

βATL,2 = γ1 . (10.89)

In the ATM model, the fulfilment degrees of the two rules considered

R1: IF X1 IS ATM(B1
j ) THEN Y IS ATM(Ai)

R2: IF X1 IS ATM(B1
j+1) THEN Y IS ATM(Ai+p)

are given by

βATM,1 = 1− γ1 , (10.90)

βATM,2 = 1 . (10.91)

10.4.1 Theconstant case

As discussed in Section 8.3, considering theconstantcase for a model with a single in-
put variable might seem in disaccord with the aim to safeguard the model interpretabil-
ity, but is nevertheless meaningful as interpretable models with more than one input
variable might behave as a model with a single input variablein the constantcase in
some parts of the input space. WhenB1

j andB1
j+1 are mapped to a same linguistic

output valueAi, the fulfilment degreeαATL,i of the linguistic output valueATL(Ai)
is the maximum of the fulfilment degreesβATL,1 andβATL,2

αATL,i = max(βATL,1, βATL,2) = max(1, γ1) = 1 , (10.92)

and the fulfilment degreeαATM,i of the linguistic output valueATM(Ai) is the maxi-
mum of the fulfilment degreesβATM,1 andβATM,2

αATM,i = max(βATM,1, βATM,2) = max(1− γ1, 1) = 1 . (10.93)

The fuzzy outputs of the ATL and ATM model are thus respectively given byATL(Ai)
andATM(Ai) and the fuzzy output of the ATL–ATM model, obtained as the intersec-
tion of the fuzzy outputs of the ATL and ATM model, is the linguistic output valueAi

A(y) = min(IT (1,ATL(Ai)(y)), IT (1,ATM(Ai)(y))) (10.94)

= min(ATL(Ai)(y),ATM(Ai)(y)) (10.95)

= Ai(y) . (10.96)
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Figure 10.5: Inference procedure applied in an ATL–ATM model with a single input
variable when two adjacent linguistic input values are mapped to a same
linguistic output valueAi.

The inference procedure is illustrated in Fig. 10.5. Thus, for all three implicators con-
sidered, the linguistic output valueAi is obtained as fuzzy output of the ATL–ATM
model in case of a constant model output in a model with a single input variable. As
the obtained fuzzy output is independent ofγ1, monotonicity is guaranteed for any
defuzzification method. When applying the MOM defuzzification method, the crisp
outputy∗

MOM is given by
y∗
MOM = ci . (10.97)

10.4.2 Thesmooth case

WhenB1
j andB1

j+1 are mapped to the linguistic output valuesAi andAi+1 respectively,
the fulfilment degreesαATL,i andαATL,i+1 of the linguistic output valuesATL(Ai)
andATL(Ai+1) are given by

αATL,i = βATL,1 = 1 , (10.98)

αATL,i+1 = βATL,2 = γ1 , (10.99)

and the fulfilment degreesαATM,i and αATM,i+1 of the linguistic output values
ATM(Ai) andATM(Ai+1) by

αATM,i = βATM,1 = 1− γ1 , (10.100)

αATM,i+1 = βATM,2 = 1 . (10.101)
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The fuzzy output of the ATL–ATM model (Eqs. (7.31–7.32)) is given by

A(y) = min(ATL(Ai)(y), IT (γ1,ATL(Ai+1))(y), IT (1− γ1,ATM(Ai)(y)),

ATM(Ai+1)(y)) . (10.102)

For the boundary values ofγ1, the fuzzy outputA is equal toAi or Ai+1

A =

{

Ai , if γ1 = 0 ,

Ai+1 , if γ1 = 1 ,
(10.103)

with corresponding crisp outputsy∗
MOM given by

y∗
MOM =

{

ci , if γ1 = 0 ,

ci+1 = ci + k + l , if γ1 = 1 .
(10.104)

In Figs. 10.6–10.7 the inference procedure is illustrated for the implicatorsIM
and IL respectively. Fig. 10.6 clearly illustrates that when applying IM the fuzzy
outputAATL (resp.AATM) of the ATL (resp. ATM) model is given by the adapted
membership function(ATL(Aimax,zero

))′ (resp. (ATM(Aimin,zero
))′) of the linguistic

output value with the largest (resp. smallest) index among all fired linguistic output
values, as was expressed earlier in Eqs. (10.56) and (10.58). The same observation was
made for the implicatorIP. Thus, for models applyingIM or IP the expression for the
fuzzy outputA in Eq. (10.102) can be simplified to

A(y) = min(IT (γ1,ATL(Ai+1)(y)), IT (1− γ1,ATM(Ai)(y))) . (10.105)

In Fig. 10.7 one can see thatATL(Ai), IT (γ1,ATL(Ai+1)),
IT (1 − γ1,ATM(Ai)) andATM(Ai+1) all contribute to the shape of the fuzzy out-
put A. Moreover, asATL(Ai) andATM(Ai+1) are fired to a fulfilment degree equal
to one, the support of the fuzzy outputA is bounded even if the adaptation of member-
ship functions usingIL results in membership functions with an unbounded support.
This property of the fuzzy outputA of an ATL–ATM model applyingIL was discussed
earlier in Sections 10.3.2–10.3.3.

In Fig. 10.8 a schematic representation is given of the fuzzyoutputA obtained
for the three considered implicatorsIM, IP andIL. The crisp outputy∗

MOM is given
by the same expression for the three implicators,i.e.

y∗
MOM = ci +

1

2
k + γ1l . (10.106)

As the derivative ofy∗
MOM to γ1 is positive,i.e. l > 0, and the crisp output obtained

for γ1 ∈ ]0, 1[ is greater than the crisp output obtained forγ1 = 0 and smaller than the
crisp output obtained forγ1 = 1, monotonicity is guaranteed.

Approximating the functionY = X is a quite frequently addressed issue in
fuzzy modelling articles, for instance in the works by Park et al. (1992) and Cord́on
et al. (1997). From the expressions fory∗

MOM in Eqs. (10.104) and (10.106), it follows
that the functionY = X can be easily obtained by applying ATL–ATM inference to a
model with in its rule baser rules
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Figure 10.6: Inference procedure applied in an ATL–ATM model with a single input
variable when two adjacent linguistic input values are mapped to two con-
secutive linguistic output valuesAi andAi+1 with IT = IM.
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Figure 10.7: Inference procedure applied in an ATL–ATM model with a single input
variable when two adjacent linguistic input values are mapped to two con-
secutive linguistic output valuesAi andAi+1 with IT = IL.
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Figure 10.8: Schematic representation of the output of a model with a single input vari-
able when two adjacent linguistic input values are mapped totwo consec-
utive linguistic output valuesAi andAi+1 for (a) IT = IM, (b) IT = IP
and (c)IT = IL.
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XB1 B2 B3

Y

A1

A2

A3

Figure 10.9: The functionY = X can be obtained with ATL–ATM inference.

Rs: IF X IS Bs THEN Y IS As

and using the same fuzzy partition in the input domainX and the output domainY

(∀x ∈ X)(∀y ∈ Y)(∀s ∈ {1, . . . , r})(x = y ⇒ Bs(x) = As(y)) (10.107)

This is illustrated in Fig. 10.9.

10.4.3 Thenon-smooth case

WhenB1
j andB1

j+1 are mapped to two non-consecutive output valuesAi andAi+p

(p ∈ N, p > 1, i + p ≤ n) respectively, the fulfilment degreesαATL,i andαATL,i+p of
the linguistic output valuesATL(Ai) andATL(Ai+p) are given by

αATL,i = βATL,1 = 1 , (10.108)

αATL,i+p = βATL,2 = γ1 , (10.109)

and the fulfilment degreesαATM,i and αATM,i+p of the linguistic output values
ATM(Ai) andATM(Ai+p) by

αATM,i = βATM,1 = 1− γ1 , (10.110)

αATM,i+p = βATM,2 = 1 . (10.111)

The fuzzy output of the ATL–ATM model (Eqs. (7.31–7.32)) is given by

A(y) = min(ATL(Ai)(y), IT (γ1,ATL(Ai+p)(y)), IT (1− γ1,ATM(Ai)(y)),

ATM(Ai+p)(y)) . (10.112)
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For the boundary values ofγ1, the fuzzy outputA is equal toAi or Ai+p

A =

{

Ai , if γ1 = 0 ,

Ai+p , if γ1 = 1 ,
(10.113)

with corresponding crisp outputsy∗
MOM given by

y∗
MOM =

{

ci , if γ1 = 0 ,

ci+p = ci + p k + p l , if γ1 = 1 .
(10.114)

Given Eqs. (10.57), (10.59) and (10.77–10.78), for models applying IM or IP,
the indeximax of the linguistic valueATL(Aimax

)) of which the support coincides with
the support ofAATL is given by

imax = max(i, i + p) = i + p , (10.115)

and the indeximin of the linguistic valueATM(Aimin
)) of which the support coincides

with the support ofAATM is given by

imin = min(i, i + p) = i . (10.116)

Since Eqs. (10.82–10.83) are satisfied,i.e. the lower bound of the support ofAATL is
greater than or equal to the upper bound of the support ofAATM, the fuzzy outputA is
the empty set. Thus, monotonicity cannot be guaranteed for models with a single input
variable and any monotone rule base when applyingIM or IP.

For models applyingIL the indices imax and imin are given by (with
Eqs. (10.73) and (10.76–10.78))

imax = i , (10.117)

imin = i + p . (10.118)

Since Eqs. (10.85–10.86) are satisfied,i.e. the lower bound of the support ofAATL is
smaller than the upper bound of the support ofAATM, the fuzzy outputA is a non-
empty set. In Fig. 10.10 the fuzzy outputA is represented forγ1 ∈ ]0, 0.5[, γ1 = 0.5
andγ1 ∈ ]0.5, 1[, respectively. The corresponding crisp outputs are given by

y∗
MOM =







ci + 1
2γ1l , if γ1 ∈ ]0, 0.5[ ,

1
2 (ci + ci+p) = ci + 1

2p k + 1
2p l , if γ1 = 0.5 ,

ci+p −
1
2 (1− γ1)l = ci + p k + 1

2 (γ1 + 2p− 1)l , if γ1 ∈ ]0.5, 1[ .
(10.119)

Since the expressions fory∗
MOM in Eqs. (10.114) and (10.119) satisfy the fol-

lowing chain of inequalities

y∗
MOM(γ1 = 0) ≤ y∗

MOM(γ1 ∈ ]0, 0.5[) ≤ y∗
MOM(γ1 = 0.5)

≤ y∗
MOM(γ1 ∈ ]0.5, 1[) ≤ y∗

MOM(γ1 = 1) , (10.120)

and as the derivatives toγ1 of the expressions in Eq. (10.119) are all positive, monoto-
nicity is guaranteed for models with a single input variableand any monotone rule base
when applyingIL.
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Figure 10.10: Schematic representation of the output of a model with a single input
variable when two adjacent linguistic input values are mapped to two
non-consecutive linguistic output valuesAi andAi+p for IT = IL.
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10.5 Models with two input variables and a monotone
smooth rule base

For an input vectorx = (x1, x2) satisfying

γ1 = 1−B1
j1

(x1) = B1
j1+1(x1) , (10.121)

γ2 = 1−B2
j2

(x2) = B2
j2+1(x2) , (10.122)

the four rules that need to be considered when determining the model output of an
ATL–ATM model with two input variables can be represented as

R1: IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

R2: IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+p1+p2

R3: IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai+p1

R4: IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+p1+p2+p3

When the rule base is smooth, the values ofp1, p2 andp3 in the rules above are re-
stricted to

(p1, p2, p3) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1)} . (10.123)

In the following these triplets will respectively be referred to as Case I, II, III, IV and V.
The fulfilment degrees of the four corresponding rules in theATL model

R1: IF X1 IS ATL(B1
j1

) AND X2 IS ATL(B2
j2

) THEN Y IS ATL(Ai)
R2: IF X1 IS ATL(B1

j1
) AND X2 IS ATL(B2

j2+1) THEN Y IS ATL(Ai+p1+p2)
R3: IF X1 IS ATL(B1

j1+1) AND X2 IS ATL(B2
j2

) THEN Y IS ATL(Ai+p1)
R4: IF X1 IS ATL(B1

j1+1) AND X2 IS ATL(B2
j2+1) THEN Y IS ATL(Ai+p1+p2+p3)

are given by

βATL,1 = 1 , (10.124)

βATL,2 = γ2 , (10.125)

βATL,3 = γ1 , (10.126)

βATL,4 = T (γ1, γ2) . (10.127)

The fulfilment degrees of the four corresponding rules in theATM model

R1: IF X1 IS ATM(B1
j1

) AND X2 IS ATM(B2
j2

) THEN Y IS ATM(Ai)
R2: IF X1 IS ATM(B1

j1
) AND X2 IS ATM(B2

j2+1) THEN Y IS ATM(Ai+p1+p2)
R3: IF X1 IS ATM(B1

j1+1) AND X2 IS ATM(B2
j2

) THEN Y IS ATM(Ai+p1)
R4: IF X1 IS ATM(B1

j1+1) AND X2 IS ATM(B2
j2+1) THEN Y IS ATM(Ai+p1+p2+p3)

are given by

βATM,1 = T (1− γ1, 1− γ2) , (10.128)

βATM,2 = 1− γ1 , (10.129)

βATM,3 = 1− γ2 , (10.130)

βATM,4 = 1 . (10.131)
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10.5.1 General discussion of Case I

For Case I, with(p1, p2, p3) = (0, 0, 0), all four considered rules contain a same lin-
guistic outputAi value in their consequent. For input vectors correspondingto any
(γ1, γ2) ∈ ]0, 1[

2, the fulfilment degreeαATL,i is given by

αATL,i = max(βATL,1, βATL,2, βATL,3, βATL,4)

= max(1, γ2, γ1, T (γ1, γ2)) = 1 , (10.132)

and the fulfilment degreeαATM,i is given by

αATM,i = max(βATM,1, βATM,2, βATM,3, βATM,4)

= max(T (1− γ1, 1− γ2), 1− γ1, 1− γ2, 1) = 1 . (10.133)

The same fulfilment degrees are obtained for the linguistic output values ifγ1 or γ2

are equal to zero or one. For Case I the same fulfilment degreesare obtained for the
linguistic output values of the ATL and ATM model as for a model with a single input
variable in the constant case (Section 10.4.1). Therefore the crisp outputy∗

MOM is given
by the expression obtained in the latter case,i.e.

y∗
MOM = ci , (10.134)

and thus, monotonicity is guaranteed.

10.5.2 General discussion of Case III

For Case III, with(p1, p2, p3) = (0, 1, 0), the four considered rules contain linguistic
output values derived fromAi andAi+1 in their consequent. The fulfilment degrees
αATL,i andαATL,i+1 are given by

αATL,i = max(βATL,1, βATL,3) = max(1, γ1) = 1 , (10.135)

αATL,i+1 = max(βATL,2, βATL,4) = max(γ2, T (γ1, γ2)) = γ2 , (10.136)

and the fulfilment degreesαATM,i andαATM,i+1 are given by

αATM,i = max(βATM,1, βATM,3) = max(T (1− γ1, 1− γ2), 1− γ2) = 1− γ2 ,
(10.137)

αATM,i+1 = max(βATM,2, βATM,4) = max(1− γ1, 1) = 1 . (10.138)

The fulfilment degrees obtained for the boundary conditionsare shown in Table 10.1.
The fulfilment degrees obtained for(γ1, γ2) ∈ [0, 1]× ]0, 1[ correspond to those

obtained for a model with a single input variable in the smooth case (Section 10.4.2).
Thus, for these input vectors the crisp outputy∗

MOM is given by

y∗
MOM = ci +

1

2
k + γ2l , if (γ1, γ2) ∈ [0, 1]× ]0, 1[ . (10.139)
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Table 10.1: Fulfilment degreesαATL,i, αATL,i+1, αATM,i andαATM,i+1 for the bound-
ary conditions of Case III.

γ1 γ2 αATL,i αATL,i+1 αATM,i αATM,i+1

0 ]0, 1[ 1 γ2 1− γ2 1
1 ]0, 1[ 1 γ2 1− γ2 1

]0, 1[ 0 1 (0) 1 (1)
]0, 1[ 1 (1) 1 (0) 1

It follows from the discussion in Section 10.3 that forγ1 ∈ ]0, 1[ andγ2 = 0 (resp.
γ2 = 1) the fuzzy output of the ATM model (resp. ATL model) is identical to
ATM(Ai) (resp.ATL(Ai+1)) and the fuzzy outputA of the ATL–ATM model is given
by Ai (resp.Ai+1). In Table 10.1 fulfilment degrees corresponding to an adapted mem-
bership function that do not influence the fuzzy outputAATL or AATM are put in round
brackets. Thus, for these input vectors the crisp outputy∗

MOM is given by

y∗
MOM =

{

ci , if γ1 ∈ ]0, 1[ andγ2 = 0 ,

ci + k + l , if γ1 ∈ ]0, 1[ andγ2 = 1 .
(10.140)

In Case III, monotonicity is guaranteed, since the derivatives toγ1 or γ2 of all expres-
sions fory∗

MOM are positive and since the following chains of inequalitiesholds for any
γ∗
2 ∈ ]0, 1[ andγ∗

1 ∈ ]0, 1[

y∗
MOM(γ1 = 0, γ2 = γ∗

2) ≤ y∗
MOM(γ1 = γ∗

1 , γ2 = γ∗
2 ) ≤ y∗

MOM(γ1 = 1, γ2 = γ∗
2) ,

(10.141)

y∗
MOM(γ1 = γ∗

1 , γ2 = 0) ≤ y∗
MOM(γ1 = γ∗

1 , γ2 = γ∗
2 ) ≤ y∗

MOM(γ1 = γ∗
1 , γ2 = 1) ,

(10.142)

as

ci +
1

2
k + γ∗

2 l = ci +
1

2
k + γ∗

2 l = ci +
1

2
k + γ∗

2 l , (10.143)

ci < ci +
1

2
k + γ∗

2 l < ci + k + l . (10.144)

10.5.3 Models applyingTM or TP combined with IM or IP

For Case V, with(p1, p2, p3) = (1, 0, 1), the four considered rules contain linguistic
output values derived fromAi, Ai+1 and Ai+2 in their consequent. The fulfilment
degreesαATL,i, αATL,i+1 andαATL,i+2 are given by

αATL,i = βATL,1 = 1 , (10.145)

αATL,i+1 = max(βATL,2, βATL,3) = max(γ2, γ1) , (10.146)

αATL,i+2 = βATL,4 = T (γ1, γ2) , (10.147)
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and the fulfilment degreesαATM,i, αATM,i+1 andαATM,i+2 are given by

αATM,i = βATM,1 = T (1− γ1, 1− γ2) , (10.148)

αATM,i+1 = max(βATM,2, βATM,3) = max(1− γ1, 1− γ2) , (10.149)

αATM,i+2 = βATM,4 = 1 . (10.150)

When applying the t-normTM or TP, the fulfilment degreesαATL,i+2 and
αATM,i are strictly positive for any(γ1, γ2) ∈ ]0, 1[

2, i.e.

(∀(γ1, γ2) ∈ ]0, 1[
2
)(∀T ∈ {TM, TP})(T (γ1, γ2) > 0) (10.151)

(∀(γ1, γ2) ∈ ]0, 1[
2
)(∀T ∈ {TM, TP})(T (1− γ1, 1− γ2) > 0) (10.152)

Thus, for models applyingTM or TP and input vectors characterized by(γ1, γ2) ∈

]0, 1[
2, the indeximax (defined in Eqs. (10.57) and (10.77)) of the linguistic value

ATL(Aimax
) of which the support coincides with the support ofAATL is given by

imax = max(i, i + 1, i + 2) = i + 2 , (10.153)

and the indeximin (defined in Eqs. (10.59) and (10.78)) of the linguistic value
ATM(Aimin

) of which the support coincides with the support ofAATM is given by

imin = min(i, i + 1, i + 2) = i . (10.154)

Since Eqs. (10.82–10.83) are satisfied,i.e. the lower bound of the support ofAATL is
greater than or equal to the upper bound of the support ofAATM, the fuzzy outputA
is the empty set. Thus, monotonicity cannot be guaranteed for models with two input
variables and any monotone rule base when applyingTM or TP combined withIM
or IP.

10.5.4 Models applyingTM combined with IL

For Case V, with(p1, p2, p3) = (1, 0, 1), the four considered rules contain linguistic
output values derived fromAi, Ai+1 andAi+2 in their consequent. The corresponding
fulfilment degrees are given in Eqs. (10.145–10.150). For the t-normTM they are
obtained by

αATL,i = 1 αATM,i = min(1− γ1, 1− γ2) ,

αATL,i+1 = max(γ1, γ2) αATM,i+1 = max(1− γ1, 1− γ2) ,

αATL,i+2 = min(γ1, γ2) αATM,i+2 = 1 . (10.155)

For two input vectorsx1 and x2 characterized by(γ1, γ2) = (η1, η2) and
(γ1, γ2) = (η2, η2) respectively with

0 < η1 < η2 < 0.5 , (10.156)
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0 η1 η2 0.5 1 γ1

0

η2

0.5

1

γ2

x1 x2

Figure 10.11: Indication of the two input vectorsx1 and x2 considered in the dis-
cussion about models with two input variables applyingTM combined
with IL.

as indicated in the(γ1, γ2)-plane in Fig. 10.11, the following inequality should hold in
order to obtain a monotone input-output behaviour

y∗
MOM(x1) ≤ y∗

MOM(x2) . (10.157)

Forx1, the fulfilment degrees are given by

αATL,i = 1 αATM,i = 1− η2 ,

αATL,i+1 = η2 αATM,i+1 = 1− η1 ,

αATL,i+2 = η1 αATM,i+2 = 1 , (10.158)

and a fuzzy outputA as illustrated in Fig. 10.12(a) is obtained. The crisp output
y∗
MOM(x1) is given by

y∗
MOM(x1) = ci +

1

2
k + η2l . (10.159)

Forx2, the fulfilment degrees are given by

αATL,i = 1 αATM,i = 1− η2 ,

(αATL,i+1 = η2) (αATM,i+1 = 1− η2) ,

αATL,i+2 = η2 αATM,i+2 = 1 . (10.160)

The fulfilment degreesαATL,i+1 andαATM,i+1 are put in round brackets as it follows
from Eqs. (10.64) and (10.70) that the corresponding adapted membership functions do
not determine the fuzzy outputsAATL andAATM. Thus, the fuzzy output obtained for
x2 corresponds to the fuzzy output obtained for a model with a single input variable
in the non-smooth case (Section 10.4.3) and, as illustratedin Fig. 10.12(b) the crisp
outputy∗

MOM(x2) is given by

y∗
MOM(x2) = ci +

1

2
η2l . (10.161)
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(a)

Ai Ai+1 Ai+2

Y

A(y)

1
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0
ci + 1

2 k + η2l

(b)

Ai Ai+1 Ai+2

Y

A(y)

1

1-η2

η2

0
ci − 1

2 k − η2l ci + 1
2 k + 2η2l

Figure 10.12: Schematic representation of the output obtained for the input vectors (a)
x1 and (b)x2 considered in the discussion about models with two input
variables applyingTM combined withIL.

γ1

y∗

COG

ci+2

ci+1

ci

0 0.2 0.4 0.6 0.8 1

Figure 10.13: Crisp outputy∗
MOM as a function ofγ1 for input vectors firing the four

rules ‘Case V’ withγ2 = 0.4, k = 0.1, l = 1, T = TM andIT = IL.

Sincel andη2 are strictly positive andk is positive, it holds that

ci +
1

2
k + η2l > ci +

1

2
η2l . (10.162)

Thus, Eq. (10.157) does not hold and a non-monotone input-output behaviour is ob-
tained for Case V when applyingTM combined withIL. In Fig. 10.13 the crisp output
y∗
MOM is shown as a function ofγ1 for input vectors firing the four rules ‘Case V’.

Thus, monotonicity cannot be guaranteed for models with twoinput variables and any
monotone rule base when applyingTM combined withIL.

262



Chapter 10. ATL–ATM models

Ai Ai+1

Y

A(y)

1
1-η1

η2

1-η2

0
ci + 1

2 k + η2l

ci + 1
2 k + (1 − η1)l

Figure 10.14: Schematic representation of the model outputtype ‘2input-IL-1’ for
models applyingIL.

10.5.5 Models applyingTP combined with IL

In order to prove that monotonicity is guaranteed for modelswith any monotone
smooth rule base applyingTP combined withIL it still needs to be proved that mon-
otonicity is guaranteed in Cases II, IV and V. Before starting the discussion about the
model behaviour is these cases, first the crisp model outputy∗

MOM is determined of a
model applyingIL in case the fuzzy output is the intersection of adapted membership
functions corresponding to the following fulfilment degrees

αATL,i = 1 αATM,i = η1 ,

αATL,i+1 = η2 αATM,i+1 = 1 . (10.163)

with 0 < η2 < 1− η1 < 1. In the following, this type of model output will be referred
to as ‘2input-IL-1’. The corresponding fuzzy outputA is shown in Fig. 10.14. The
core of the fuzzy outputA is given by

core(A) =

[

ci +
1

2
k + η2l, ci +

1

2
k + (1− η1)l

]

, (10.164)

and the crisp outputy∗
MOM is given by

y∗
MOM = ci +

1

2
k +

1

2
(1− η1 + η2)l . (10.165)

For Cases II and IV, with(p1, p2, p3) = (0, 0, 1) and(p1, p2, p3) = (1, 0, 0)
respectively, the four considered rules contain linguistic output values derived fromAi

andAi+1 in their consequent. For Case II, the fulfilment degreesαATL,i andαATL,i+1

are given by

αATL,i = max(βATL,1, βATL,2, βATL,3) = max(1, γ2, γ1) = 1 , (10.166)

αATL,i+1 = βATL,4 = T (γ1, γ2) , (10.167)
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and the fulfilment degreesαATM,i andαATM,i+1 are given by

αATM,i = max(βATM,1, βATM,2, βATM,3)

= max(T (1− γ1, 1− γ2), 1− γ1, 1− γ2)

= max(1− γ1, 1− γ2) , (10.168)

αATM,i+1 = βATM,4 = 1 . (10.169)

For Case IV, the fulfilment degreesαATL,i andαATL,i+1 are given by

αATL,i = βATL,1 = 1 , (10.170)

αATL,i+1 = max(βATL,2, βATL,3, βATL,4) = max(γ2, γ1, T (γ1, γ2)) = max(γ2, γ1) ,
(10.171)

and the fulfilment degreesαATM,i andαATM,i+1 are given by

αATM,i = βATM,1 = T (1− γ1, 1− γ2) , (10.172)

αATM,i+1 = max(βATM,2, βATM,3, βATM,4) = max(1− γ1, 1− γ2, 1) = 1 .
(10.173)

The fulfilment degreesαATL,i, αATL,i+1, αATM,i andαATM,i+1 obtained in the
different parts of the input space for Cases II and IV are listed in Table 10.2. The deriv-
atives toγ1 or γ2 of all expressions fory∗

MOM in Table 10.2 are positive. Furthermore,
y∗
MOM increases for anyγ2 ∈ ]0, 1[ (resp.γ1 ∈ ]0, 1[) whenγ1 (resp.γ2) is increased

from 0 to 1, as illustrated in Fig. 10.15. Thus, monotonicityis guaranteed for Cases II
and IV.

For Case V, with(p1, p2, p3) = (1, 0, 1), the four considered rules contain lin-
guistic output values derived fromAi, Ai+1 andAi+2 in their consequent. The corre-
sponding fulfilment degrees are given in Eqs. (10.145–10.150). For the t-normTP they
are given by

αATL,i = 1 αATM,i = (1− γ1)(1− γ2) ,

αATL,i+1 = max(γ1, γ2) αATM,i+1 = max(1− γ1, 1− γ2) ,

αATL,i+2 = γ1γ2 αATM,i+2 = 1 . (10.174)

In Fig. 10.16 the fuzzy outputA is shown for input vectorsx characterized byγ1 < γ2

and

(a) γ1 + γ2 < 1,

(b) γ1 + γ2 = 1, or,

(c) γ1 + γ2 > 1.

Similar fuzzy outputs are obtained for input vectorsx for which γ1 = γ2 or γ1 > γ2.
An overview of the obtained expressions fory∗

MOM in the different parts of the input
space is given in Fig. 10.17. The derivatives toγ1 or γ2 of all expressions fory∗

MOM
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Table 10.2: Fulfilment degreesαATL,i, αATL,i+1, αATM,i andαATM,i+1 and crisp outputy∗
MOM obtained in the different parts of the

input space for Cases II and IV with a model applyingTP combined withIL.
Case conditions on(γ1, γ2) αATL,i αATL,i+1 αATM,i αATM,i+1 corresponds to y∗

MOM

II a γ1 = 0, γ2 ∈ ]0, 1[ 1 (0) 1 (1) 1input-constant ci

II b γ1 ∈ ]0, 1[, γ2 = 1 1 γ1 1 − γ1 1 1input-smooth ci + 1
2
k + γ1l

II c γ1 = 1, γ2 ∈ ]0, 1[ 1 γ2 1 − γ2 1 1input-smooth ci + 1
2
k + γ2l

II d γ1 ∈ ]0, 1[, γ2 = 0 1 (0) 1 (1) 1input-constant ci

II e γ1, γ2 ∈ ]0, 1[, γ1 ≤ γ2 1 γ1γ2 1 − γ1 1 2input-IL-1 ci + 1
2
k + 1

2
γ1(1 + γ2)l

II f γ1, γ2 ∈ ]0, 1[, γ1 ≥ γ2 1 γ1γ2 1 − γ2 1 2input-IL-1 ci + 1
2
k + 1

2
(1 + γ1)γ2l

IV a γ1 = 0, γ2 ∈ ]0, 1[ 1 γ2 1 − γ2 1 1input-smooth ci + 1
2
k + γ2l

IV b γ1 ∈ ]0, 1[, γ2 = 1 (1) 1 (0) 1 1input-constant ci + k + l

IV c γ1 = 1, γ2 ∈ ]0, 1[ (1) 1 (0) 1 1input-constant ci + k + l

IV d γ1 ∈ ]0, 1[, γ2 = 0 1 γ1 1 − γ1 1 1input-smooth ci + 1
2
k + γ1l

IV e γ1, γ2 ∈ ]0, 1[, γ1 ≤ γ2 1 γ2 (1 − γ1)(1 − γ2) 1 2input-IL-1 ci + 1
2
k + 1

2
(γ1 + 2γ2 − γ1γ2)l

IV f γ1, γ2 ∈ ]0, 1[, γ1 ≥ γ2 1 γ1 (1 − γ1)(1 − γ2) 1 2input-IL-1 ci + 1
2
k + 1

2
(2γ1 + γ2 − γ1γ2)l
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(a) ‘Case II’ (b) ‘Case IV’

Figure 10.15: Overview of the expressions obtained fory∗
MOM with a model applying

TP combined withIL and input vectors firing the four rules (a) ‘Case II’
and (b) ‘Case IV’.

are positive. Furthermore,y∗
MOM increases for anyγ2 ∈ ]0, 1[ (resp.γ1 ∈ ]0, 1[) when

γ1 (resp.γ2) is increased from 0 to 1, as illustrated in Fig. 10.17. Thus,monotonicity
is guaranteed for Case V.

Summarizing, the results in Sections 10.5.1–10.5.2 and in this section show
that monotonicity is guaranteed for models with any monotone smooth rule base when
applyingTP combined withIL.

10.5.6 Models applyingTL combined with IM or IP

In order to prove that monotonicity is guaranteed for modelswith any monotone
smooth rule base applyingTL combined withIM or IP it still needs to be proved that
monotonicity is guaranteed in Cases II, IV and V. Before starting the discussion about
the model behaviour is these cases, first the crisp model output y∗

MOM is determined
of a model applyingIM or IP for four model output types. For all four model output
types the same expression is obtained fory∗

MOM regardless of the implicator applied,
i.e. eitherIM or IP.

The first type are fuzzy outputs that are the intersection of adapted membership
functions corresponding to the following fulfilment degrees

αATL,i = 1 αATM,i = η1 . (10.175)

with 0 < η1 < 1. In the following, this type of model output will be referredto as
‘2input-IM/IP-1’. The corresponding fuzzy outputA is shown in Fig. 10.18(a). The
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Figure 10.16: Schematic representation of the output obtained with a model applying
TP combined withIL for input vectors firing the four rules ‘Case V’ and
characterized byγ1 < γ2 and (a)γ1 + γ2 < 1, (b) γ1 + γ2 = 1 or (c)
γ1 + γ2 > 1.

crisp outputy∗
MOM is given by

y∗
MOM = ci +

1

2
(1− η1)l . (10.176)

The second type are fuzzy outputs that are the intersection of adapted member-
ship functions corresponding to the following fulfilment degrees

αATL,i = η1 αATM,i = 1 . (10.177)

with 0 < η1 < 1. In the following, this type of model output will be referredto as
‘2input-IM/IP-2’. The corresponding fuzzy outputA is shown in Fig. 10.18(b). The
crisp outputy∗

MOM is given by

y∗
MOM = ci −

1

2
(1− η1)l . (10.178)
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Figure 10.17: Overview of the expressions obtained fory∗
MOM with a model applying

TP combined withIL and input vectors firing the four rules ‘Case V’.

The third type are fuzzy outputs that are the intersection ofadapted membership
functions corresponding to the following fulfilment degrees

αATL,i = η1 αATM,i = η1 . (10.179)

with 0 < η1 < 1. In the following, this type of model output will be referredto as
‘2input-IM/IP-3’. The corresponding fuzzy outputA is shown in Fig. 10.18(c). The
crisp outputy∗

MOM is given by
y∗
MOM = ci . (10.180)

The fourth type are fuzzy outputs that are the intersection of adapted member-
ship functions corresponding to the following fulfilment degrees

αATL,i+1 = η2 αATM,i = η1 . (10.181)

with 0 < η2 < 1− η1 < 1. In the following, this type of model output will be referred
to as ‘2input-IM/IP-4’. The corresponding fuzzy outputA is shown in Fig. 10.18(d).
The crisp outputy∗

MOM is given by

y∗
MOM = ci +

1

2
k +

1

2
(1− η1 + η2)l . (10.182)

For Cases II and IV, with(p1, p2, p3) = (0, 0, 1) and(p1, p2, p3) = (1, 0, 0)
respectively, the four considered rules contain linguistic output values derived from
Ai andAi+1 in their consequent. The corresponding fulfilment degrees obtained for
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Figure 10.18: Schematic representation of the three types of model outputs (a) ‘2input-
IM/IP-1’, (b) ‘2input-IM/IP-2’, (c) ‘2input-IM/IP-3’ and (d) ‘2input-
IM/IP-4’ for models applyingIM (crosshatched) orIP (in gray).
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Table 10.3: Definitions of the regions of the input space where fulfilment degrees are
described by different functions ofγ1 andγ2.

Case conditions on(γ1, γ2)
a γ1 = 0, γ2 ∈ ]0, 1[
b γ1 ∈ ]0, 1[, γ2 = 1
c γ1 = 1, γ2 ∈ ]0, 1[
d γ1 ∈ ]0, 1[, γ2 = 0
e γ1 ∈ ]0, 0.5[, γ2 ∈ ]0, 1[, γ1 ≤ γ2, γ1 + γ2 < 1
f γ1 ∈ ]0, 0.5], γ2 ∈ [0.5, 1[, γ1 ≤ γ2, γ1 + γ2 = 1
g γ1 ∈ ]0, 1[, γ2 ∈ ]0.5, 1[, γ1 ≤ γ2, γ1 + γ2 > 1
h γ1 ∈ ]0.5, 1[, γ2 ∈ ]0, 1[, γ1 ≥ γ2, γ1 + γ2 > 1
i γ1 ∈ [0.5, 1[, γ2 ∈ ]0, 0.5], γ1 ≥ γ2, γ1 + γ2 = 1
j γ1 ∈ ]0, 1[, γ2 ∈ ]0, 0.5[, γ1 ≥ γ2, γ1 + γ2 < 1

Case II are given in Eqs. (10.166–10.169). For the t-normTL the fulfilment degrees
are given by

αATL,i = 1 αATM,i = max(1− γ1, 1− γ2) ,

αATL,i+1 = max(γ1 + γ2 − 1, 0) αATM,i+1 = 1 . (10.183)

The corresponding fulfilment degrees obtained for Case IV are given in Eqs. (10.170–
10.173). For the t-normTL the fulfilment degrees are given by

αATL,i = 1 αATM,i = max(1− γ1 − γ2, 0) ,

αATL,i+1 = max(γ1, γ2) αATM,i+1 = 1 . (10.184)

The fulfilment degreesαATL,i, αATL,i+1, αATM,i andαATM,i+1 obtained for
Cases II and IV in the different parts of the input space defined in Table 10.3 are listed in
Table 10.4. The fulfilment degrees corresponding to an adapted membership function
that does not determine the fuzzy outputAATL or AATM of models applyingIM or IP
are put inround or squarebrackets. In all subcases the same expressions are obtained
for y∗

MOM regardless ifIM, IP or IL is applied as implicator. Models applyingTL

combined withIL are discussed in Section 10.5.7. The derivatives toγ1 or γ2 of all
expressions fory∗

MOM in Table 10.4 are positive. Furthermore,y∗
MOM increases for any

γ2 ∈ ]0, 1[ (resp.γ1 ∈ ]0, 1[) whenγ1 (resp.γ2) is increased from 0 to 1, as illustrated
in Fig. 10.19. Thus, monotonicity is guaranteed for Cases IIand IV.

For Case V, with(p1, p2, p3) = (1, 0, 1), the four considered rules contain lin-
guistic output values derived fromAi, Ai+1 andAi+2 in their consequent. The corre-
sponding fulfilment degrees are given in Eqs. (10.145–10.150). For the t-normTL they
are given by

αATL,i = 1 αATM,i = max(1− γ1 − γ2, 0) ,

αATL,i+1 = max(γ1, γ2) αATM,i+1 = max(1− γ1, 1− γ2) ,

αATL,i+2 = max(γ1 + γ2 − 1, 0) αATM,i+2 = 1 . (10.185)
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Table 10.4: Fulfilment degreesαATL,i, αATL,i+1, αATM,i andαATM,i+1 and crisp outputy∗
MOM obtained in the different parts of the

input space defined in Table 10.3 for Cases II and IV with a model applyingTL combined withIM, IP or IL.

Case αATL,i αATL,i+1 αATM,i αATM,i+1 IM or IP IL y∗
MOM

corresponds to corresponds to

II a 1 [0] 1 [1] 1input-constant 1input-constant ci

II b (1) γ1 1− γ1 (1) 1input-smooth 1input-smooth ci + 1
2k + γ1l

II c (1) γ2 1− γ2 (1) 1input-smooth 1input-smooth ci + 1
2k + γ2l

II d 1 [0] 1 [1] 1input-constant 1input-constant ci

II e–f 1 [0] 1− γ1 (1) 2input-IM/IP-1 2input-IL-2 ci + 1
2γ1l

II g (1) γ1 + γ2 − 1 1− γ1 (1) 2input-IM/IP-4 2input-IL-1 ci + 1
2k + 1

2 (2γ1 + γ2 − 1)l

II h (1) γ1 + γ2 − 1 1− γ2 (1) 2input-IM/IP-4 2input-IL-1 ci + 1
2k + 1

2 (γ1 + 2γ2 − 1)l

II i–j 1 [0] 1− γ2 (1) 2input-IM/IP-1 2input-IL-2 ci + 1
2γ2l

IV a (1) γ2 1− γ2 (1) 1input-smooth 1input-smooth ci + 1
2k + γ2l

IV b [1] 1 [0] 1 1input-constant 1input-constant ci + k + l

IV c [1] 1 [0] 1 1input-constant 1input-constant ci + k + l

IV d (1) γ1 1− γ1 (1) 1input-smooth 1input-smooth ci + 1
2k + γ1l

IV e (1) γ2 1− γ1 − γ2 (1) 2input-IM/IP-4 2input-IL-1 ci + 1
2k + 1

2 (γ1 + 2γ2)l

IV f–g (1) γ2 [0] 1 2input-IM/IP-2 2input-IL-3 ci + k + 1
2 (1 + γ2)l

IV h–i (1) γ1 [0] 1 2input-IM/IP-2 2input-IL-3 ci + k + 1
2 (1 + γ1)l

IV j (1) γ1 1− γ1 − γ2 (1) 2input-IM/IP-4 2input-IL-1 ci + 1
2k + 1

2 (2γ1 + γ2)l271
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Figure 10.19: Overview of the expressions obtained fory∗
MOM with a model applying

TL combined withIM, IP or IL and input vectors firing the four rules
(a) ‘Case II’ and (b) ‘Case IV’.
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Figure 10.20: Overview of the expressions obtained fory∗
MOM with a model applying

TL combined withIM, IP or IL and input vectors firing the four rules
‘Case V’.

The fulfilment degreesαATL,i, αATL,i+1, αATL,i+2, αATM,i, αATM,i+1 andαATM,i+2

obtained for Case V in the different parts of the input space defined in Table 10.3 are
listed in Table 10.5. The fulfilment degrees corresponding to an adapted membership
function that does not determine the fuzzy outputAATL or AATM of models applying
IM or IP are put in round brackets. The derivatives toγ1 or γ2 of all expressions for
y∗
MOM are positive. Furthermore,y∗

MOM increases for anyγ2 ∈ ]0, 1[ (resp. γ1 ∈
]0, 1[) whenγ1 (resp.γ2) is increased from 0 to 1, as illustrated in Fig. 10.20. Thus,
monotonicity is guaranteed for Case V.

Summarizing, the results in Sections 10.5.1–10.5.2 and in this section show
that monotonicity is guaranteed for models with any monotone smooth rule base when
applyingTL combined withIM or IP.

10.5.7 Models applyingTL combined with IL

In order to prove that monotonicity is guaranteed for modelswith any monotone
smooth rule base applyingTL combined withIL it still needs to be proved that mon-
otonicity is guaranteed in Cases II, IV and V. Before starting the discussion about the
model behaviour is these cases, first the crisp model outputy∗

MOM is determined of a
model applyingIL for two model output types.

The first type are fuzzy outputs that are the intersection of adapted membership
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Table 10.5: Fulfilment degreesαATL,i, αATL,i+1, αATL,i+2, αATM,i, αATM,i+1 andαATM,i+2 and crisp outputy∗
MOM in the different

parts of the input space defined in Table 10.3 for Case V with a model applyingTL combined withIM or IP.
Case αATL,i αATL,i+1 αATL,i+2 αATM,i αATM,i+1 αATM,i+2 corresponds to y∗

MOM

V a (1) γ2 (0) 1 − γ2 (1) (1) 1input-smooth ci + 1
2
k + γ2l

V b (1) (1) γ1 (0) 1 − γ1 (1) 1input-smooth ci + 3
2
k + (1 + γ1)l

V c (1) (1) γ2 (0) 1 − γ2 (1) 1input-smooth ci + 3
2
k + (1 + γ2)l

V d (1) γ1 (0) 1 − γ1 (1) (1) 1input-smooth ci + 1
2
k + γ1l

V e (1) γ2 (0) 1 − γ1 − γ2 (1 − γ1) (1) 2input-IM/IP-4 ci + 1
2
k + 1

2
(γ1 + 2γ2)l

V f (1) γ2 (0) (0) γ2 (1) 2input-IM/IP-3 ci + k + l

V g (1) (γ2) γ1 + γ2 − 1 (0) 1 − γ1 (1) 2input-IM/IP-4 ci + 3
2
k + 1

2
(1 + 2γ1 + γ2)l

V h (1) (γ1) γ1 + γ2 − 1 (0) 1 − γ2 (1) 2input-IM/IP-4 ci + 3
2
k + 1

2
(1 + γ1 + 2γ2)l

V i (1) γ1 (0) (0) γ1 (1) 2input-IM/IP-3 ci + k + l

V j (1) γ1 (0) 1 − γ1 − γ2 (1 − γ2) (1) 2input-IM/IP-4 ci + 1
2
k + 1

2
(2γ1 + γ2)l
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ci+1 + 1
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Figure 10.21: Schematic representation of the two types of model outputs (a) ‘2input-
IL-2’ and (b) ‘2input-IL-3’ for models applyingIL.

functions corresponding to the following fulfilment degrees

αATL,i = 1 αATM,i = η1 ,

αATL,i+1 = 0 αATM,i+1 = 1 . (10.186)

In the following, this type of model output will be referred to as ‘2input-IL-2’. The
corresponding fuzzy outputA is shown in Fig. 10.21(a). The crisp outputy∗

MOM is
given by

y∗
MOM = ci +

1

2
(1− η1)l . (10.187)

The second type are fuzzy outputs that are the intersection of adapted member-
ship functions corresponding to the following fulfilment degrees

αATL,i = 1 αATM,i = 0 ,

αATL,i+1 = η1 αATM,i+1 = 1 . (10.188)

In the following, this type of model output will be referred to as ‘2input-IL-3’. The
corresponding fuzzy outputA is shown in Fig. 10.21(b). The crisp outputy∗

MOM is
given by

y∗
MOM = ci + k +

1

2
(1 + η1)l . (10.189)

For Cases II and IV, with(p1, p2, p3) = (0, 0, 1) and(p1, p2, p3) = (1, 0, 0)
respectively, the four considered rules contain linguistic output values derived from
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Ai andAi+1 in their consequent. The corresponding fulfilment degrees obtained in
the different parts of the input space defined in Table 10.3 are listed in Table 10.4.
The fulfilment degrees corresponding to an adapted membership function that does not
determine the fuzzy outputAATL or AATM of models applyingIL are put inround
brackets. The derivatives toγ1 or γ2 of all expressions fory∗

MOM in Table 10.4 are
positive. Furthermore,y∗

MOM increases for anyγ2 ∈ ]0, 1[ (resp.γ1 ∈ ]0, 1[) whenγ1

(resp.γ2) is increased from 0 to 1, as illustrated in Fig. 10.19. Thus,monotonicity is
guaranteed for Cases II and IV.

For Case V, with(p1, p2, p3) = (1, 0, 1), the four considered rules contain lin-
guistic output values derived fromAi, Ai+1 andAi+2 in their consequent. The corre-
sponding fulfilment degrees are given in Eqs. (10.145–10.150). For the t-normTL they
are given by

αATL,i = 1 αATM,i = max(1− γ1 − γ2, 0) ,

αATL,i+1 = max(γ1, γ2) αATM,i+1 = max(1− γ1, 1− γ2) ,

αATL,i+2 = max(γ1 + γ2 − 1, 0) αATM,i+2 = 1 . (10.190)

In Fig. 10.22 the fuzzy outputA is shown for input vectorsx characterized byγ1 < γ2

and

(a) γ1 + γ2 < 1,

(b) γ1 + γ2 = 1, or,

(c) γ1 + γ2 > 1.

Similar fuzzy outputs are obtained for input vectorsx for which γ1 = γ2 or γ1 > γ2.
An overview of the obtained expressions fory∗

MOM in the different parts of the input
space is given in Fig. 10.20. The derivatives toγ1 or γ2 of all expressions fory∗

MOM

are positive. Furthermore,y∗
MOM increases for anyγ2 ∈ ]0, 1[ (resp.γ1 ∈ ]0, 1[) when

γ1 (resp.γ2) is increased from 0 to 1, as illustrated in Fig. 10.20. Thus,monotonicity
is guaranteed for Case V.

Summarizing, the results in Sections 10.5.1–10.5.2 and in this section show
that monotonicity is guaranteed for models with any monotone smooth rule base when
applyingTL combined withIL.

10.5.8 Overview

Below an overview is given of the results obtained in Section10.5. Combinations
of t-norm and implicator for which monotonicity can be guaranteed for models with
two input variables and any monotone smooth rule base are indicated with a ‘yes’.
Combinations for which monotonicity cannot be guaranteed for any monotone smooth
rule base are indicated with a ‘no’.

TM TP TL

IM no no yes
IP no no yes
IL no yes yes
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Figure 10.22: Schematic representation of the output obtained with a model applying
TL combined withIL for input vectors firing the four rules ‘Case V’ and
characterized byγ1 < γ2 and (a)γ1 + γ2 < 1, (b) γ1 + γ2 = 1 or (c)
γ1 + γ2 > 1.
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10.6 Models with two input variables and a monotone
smooth rule base

As shown by the counterexample below, monotonicity cannot be guaranteed for any
monotone rule base when applying ATL–ATM inference to models with two input
variables using one of the nine considered combinations of t-norm and implicator. For
the nine combinations of the t-normsTM, TP andTL and implicatorsIM, IP and
IL only two combinations should be considered when studying the monotonicity of
models with two input variables and a monotone (non-smooth)rule base,i.e. TP or TL

combined withIL. Since, firstly, in Section 10.4.3 models with a single inputvariable
are shown to return the empty set as fuzzy output in the non-smooth case when applying
IM or IP, and, secondly, in Section 10.5.4 it is shown that monotonicity cannot be
guaranteed for models with two input variables and any monotone smooth rule base
when applyingTM combined withIL.

The set of four rules

IF X1 IS B1
j1

AND X2 IS B2
j2

THEN Y IS Ai

IF X1 IS B1
j1

AND X2 IS B2
j2+1 THEN Y IS Ai+1

IF X1 IS B1
j1+1 AND X2 IS B2

j2
THEN Y IS Ai

IF X1 IS B1
j1+1 AND X2 IS B2

j2+1 THEN Y IS Ai+2

can occur in a monotone non-smooth rule base. For all inputsx = (x1, x2) satisfying

γ1 = 1−B1
j1

(x1) = B1
j1+1(x1) , (10.191)

γ2 = 1−B2
j2

(x2) = B2
j2+1(x2) , (10.192)

with (γ1, γ2) ∈ [0, 1]2, the fulfilment degreesαATL,i, αATL,i+1 andαATL,i+2 are given
by

αATL,i = max(βATL,1, βATL,3) = max(1, γ1) = 1 , (10.193)

αATL,i+1 = βATL,2 = γ2 , (10.194)

αATL,i+2 = βATL,4 = T (γ1, γ2) , (10.195)

and the fulfilment degreesαATM,i, αATM,i+1 andαATM,i+2 are given by

αATM,i = max(βATM,1, βATM,3) = max(T (1− γ1, 1− γ2), 1− γ2) = 1− γ2 ,
(10.196)

αATM,i+1 = βATM,2 = 1− γ1 , (10.197)

αATM,i+2 = βATM,4 = 1 , (10.198)

For two input vectorsx1 andx2 defined by(γ1, γ2) = (η1, η2) and(γ1, γ2) =
(1, η2) respectively with

η2 < 0.5 < η1 , (10.199)

2η1 + η2 > 2 , (10.200)
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Figure 10.23: Indication of the two input vectorsx1 andx2 considered in the discus-
sion about models with two input variables and a monotone non-smooth
rule base.

as indicated in the(γ1, γ2)-plane in Fig. 10.23, the following inequality should hold in
order to obtain a monotone input-output behaviour

y∗
MOM(x1) ≤ y∗

MOM(x2) . (10.201)

Forx1, the fulfilment degrees are given by

αATL,i = 1 αATM,i = 1− η2 , (10.202)

αATL,i+1 = η2 (αATM,i+1 = 1− η1) , (10.203)

αATL,i+2 = T (η1, η2) αATM,i+2 = 1 . (10.204)

with TP(η1, η2) = η1η2 andTL(η1, η2) = η1 + η2− 1. Both forT = TP andT = TL,
the following chain of inequalities holds forx1

η2 < 0.5 < 1− η2 < 1− T (η1, η2) , (10.205)

and a fuzzy outputA as illustrated in Fig. 10.24 is obtained, with corresponding crisp
outputy∗

MOM(x1) given by

y∗
MOM(x1) = ci +

1

2
k + η2l . (10.206)

Forx2 the fulfilment degrees are given by

αATL,i = 1 αATM,i = 1− η2 , (10.207)

(αATL,i+1 = η2) (αATM,i+1 = 0) , (10.208)

αATL,i+2 = η2 αATM,i+2 = 1 . (10.209)

From Eq. (10.64) it follows that the adapted membership function (ATL(Ai+1))
′ will

not determine the fuzzy outputAATL. Furthermore, from Eq. (10.31) it follows that
the adapted membership function(ATM(Ai+1))

′ is the universal set and will therefore
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Figure 10.24: Schematic representation of the output obtained for the input vectorx1

considered in the discussion about models with two input variables and
a monotone non-smooth rule base.

not determine the fuzzy outputAATM. Thus, the fuzzy outputA obtained forx2 cor-
responds to the fuzzy output obtained for models with a single input variable in the
non-smooth case (Section 10.4.3). The crisp outputy∗

MOM(x2) is therefore given by

y∗
MOM(x2) = ci +

1

2
η2l . (10.210)

Sincel andη2 are strictly positive andk is positive, it holds that

ci +
1

2
k + η2l > ci +

1

2
η2l . (10.211)

Thus, Eq. (10.201) does not hold and a non-monotone input-output behaviour is ob-
tained for inputs firing the four rules mentioned at the beginning of this section. Thus,
monotonicity cannot be guaranteed for models with two inputvariables and any mono-
tone rule base when applying one of the three t-normsTM, TP andTL combined with
one of the three implicatorsIM, IP andIL.

10.7 Conclusion

In this chapter, it was proved that an ATL–ATM model applyingthe MOM defuzzifi-
cation method is monotone when the linguistic output valuesin the consequents of the
rules are defined by trapezial or triangular membership functions of identical shape if
it corresponds to one of the seven model types listed in Table10.6, characterized by
a number of input variablesm, a t-normT , an implicatorIT and an either monotone
or monotone smooth rule base. For the implicatorsIM and IP, models with a sin-
gle input variable show a monotone input-output behaviour for any monotonesmooth
rule base, whereas for the implicatorIL, models with a single input variable show
a monotone input-output behaviour for any monotone rule base. When designing a
monotone model with two input variables, one should opt for amonotone smooth rule
base and apply the t-normTP combined with the implicatorIL or the t-normTL com-
bined with one of the three considered implicatorsIM, IP andIL.
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Table 10.6: ATL–ATM models for which monotonicity is guaranteed when applying
the MOM defuzzification method characterized by a number of input vari-
ablesm, a t-normT , an implicatorIT and an either monotone or monotone
smooth rule base.

m T IT rule base
1 1 IM monotone and smooth
2 1 IP monotone and smooth
3 1 IL monotone
4 2 TP IL monotone and smooth
5 2 TL IM monotone and smooth
6 2 TL IP monotone and smooth
7 2 TL IL monotone and smooth

The fact that the model behaviour of ATL–ATM models was studied for models
with linguistic output values in the rule consequents defined by trapezial or triangular
membership functions of identical shape, does not restrictthe practical implementation
of the results obtained in this chapter to models satisfyingEqs. (10.1–10.3). With the
auxiliary interpolation procedure described in Section 8.6 a model designer can apply
any fuzzy output partition in a monotone model when the modelcorresponds to one of
the seven model types defined in Table 10.6.

Monotonicity of models with more than two input variables was not investi-
gated in this study, but the obtained results show that for models with more than two
input variables and one of the nine considered combinationsof t-norm and implica-
tor, only models should be considered with a monotone smoothrule base applying
TP combined with the implicatorIL or the t-normTL combined with eitherIM, IP
or IL. Furthermore, monotonicity of ATL–ATM models applying COGdefuzzification
and ATL–ATM models applying other implicators such as the S-implicators defined in
Eq. (2.37), could be the subject of further investigation.
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CHAPTER 11

Conclusions and future research

Alles Wissen und alle Vermehrung unseres Wissens endet
nicht mit einem Schlusspunkt, sondern mit Fragezeichen.
(Herman Hesse)

11.1 General Conclusions

This section gives an overview of the main conclusions of theresearch concerning the
computational aspects of the Center of Gravity defuzzification method in Mamdani–
Assilian models, the ecological case study and the researchon monotone linguistic
fuzzy models.

11.1.1 Computational aspects of Center of Gravity defuzzification

The Center of Gravity defuzzification method results in a crisp model output that
changes continuously when the input values change continuously, a desirable property
in modelling and control applications. However, the Centerof Gravity defuzzification
method has a high computational burden. In this dissertation two computational meth-
ods, the slope-based method and the modified transformationfunction method, were
introduced to determine the crisp output of Mamdani–Assilian models using a fuzzy
output partition of trapezial membership functions and applying the Center of Gravity
defuzzification method. The accuracy, computational cost and implementational com-
plexity of these two methods and the commonly applied discretization method were
discussed for the basic t-normsTM, TP andTL. Its easy implementation appears to be
the only advantage of the discretization method. The two other methods to compute the
Center of Gravity defuzzification method are not as straightforward to implement but
allow both a quicker and more accurate computation. Of the three methods presented,
the modified transformation function method has the smallest computational cost while
being as accurate as the slope-based method.
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11.1.2 Ecological case study

Fuzzy classifiers were applied to a modelling problem concerning the habitat suitability
of river sites along springs to small rivers in the Central and Western Plains of Europe
for 86 macroinvertebrate species. For each species, four models were developed, an
A-, N-, P-, and C-model. The fuzzy classifiers take a certain width, velocity and either
ammonium (A), nitrate (N) or phosphate (P) concentration orelectrical conductivity
(C) as input and return four values between 0 and 1 as output, indicating the degree
to which the river site is considered ‘not suitable’ respectively ‘lowly’, ‘moderately’
and ‘highly suitable’ for the species to establish a population. With the developed
models the influence on the habitat suitability can be assessed for the stream width
and stream velocity, two variables determining the river type and reflecting the water
quantity conditions at a river site, as well as for one aspectof the impact of human
activities,i.e. the nutrient and organic load.

Field data collected at 445 sites in the Province of Overijssel (the Netherlands),
referred to as the EKOO data set, allowed for an objective evaluation of the four devel-
oped models for 12 selected species. The fact that among themonly one is an indicator
for reference conditions, indicates that given the presentenvironmental conditions of
rivers in EU Member States, shifts in abundance levels of more common species are
more suitable to detect gradual changes in water quality. With an improving water
quality, the follow-up of indicator species with more narrow niches will gain impor-
tance. Of these 48 models, 16 models turned out to have a good model performance
expressed by the performance measure % CFCI. These 16 good performing and objec-
tively evaluated models are all, except one model, N- or P-models.

For the four models of the 12 selected species an optimization of the member-
ship function parameters of the input variables was carriedout. One type of interpreta-
bility-preserving data-driven optimization, as well as anaccuracy-oriented optimiza-
tion, were applied using both a binary-coded and a real-coded genetic algorithm. As
fitness function the average deviation (AD), a new performance measure for fuzzy or-
dered classification, was used. For four models the binary-coded genetic algorithms
returned less accurate solutions for the accuracy-oriented optimization than for the con-
strained optimization, due to the fact that the optimized membership function parame-
ters only take values from a limited set of values. A shortcoming which, as shown by
the experiments, can be remedied by applying a real-valued representation instead of
a binary representation. The real-coded genetic algorithms applied in this study, how-
ever, showed maladjusted to eight of the 96 addressed membership function optimiza-
tion problems, as an exhaustive investigation of the control structures of the genetic
algorithms was outside the scope of this study. A purely accuracy-oriented optimiza-
tion is no option when one wants to preserve the interpretability of the habitat suitability
models under study with the EKOO data set. In this case, expert knowledge is a prereq-
uisite to build interpretable models in order to define the rule bases and determine the
optimization intervals of the membership function parameters. The accuracy-oriented
optimization, however, gives a better insight in the driving force during the bounded
optimization,i.e. the tendency to classify as much data points as possible in the abun-
dance classabsent by increasing the regions where the input is mapped toabsent,
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and stresses the importance of uniformly distributed and unambiguous training data
for model optimization.

Fuzzy rule-based modelling showed to be of great value as a knowledge-based
habitat suitability modelling technique in river management. The fuzzy sets allow
working with vague information which makes them very suitable for the variables and
criteria used in this application field. Moreover, the labels attached to the fuzzy sets
are relevant for river management as they were inspired by the existing classifications
used nowadays in bio-assessment and river typologies required by the Water Frame-
work Directive. The structure of a fuzzy rule base allows forthe incorporation of the
information summarized in the knowledge base into an inference system for habitat
suitability modelling, by expressing non-linear relations in terms of if-then rules. The
degrees of membership to the different output classes provide the end-user with a quan-
tification of the uncertainty associated with the model output. This information has an
added value in decision support.

11.1.3 Monotone linguistic fuzzy models

A fuzzy model can be identified by combining quantitative with qualitative knowledge.
First of all, qualitative knowledge allows us to obtain meaningful, interpretable models.
Moreover, it permits a reduction of the search space of the data-driven model identi-
fication which renders the model identification process lessvulnerable to noise and
inconsistencies in the data and suppresses overfitting. This dissertation focussed on a
common property of evaluation and selection procedures, namely on the monotonicity
of the model output with respect to an input variable,i.e. the fact that the model output
is either increasing or decreasing in the variable for all combinations of values of other
input variables. More specifically, monotone models were studied in this work,i.e.
models that are monotone in all input variables.

Models were assumed to apply a fuzzy partition of trapezial membership func-
tions in all input domains as well as in the output domain, which imposes a natural
order on the linguistic values of all variables, and to have amonotone rule base,i.e.
to use a set of if-then rules describing a monotone relation between the input variables
and the output variable. The monotonicity of linguistic fuzzy models under different
inference procedures was discussed: Mamdani–Assilian inference,plain implicator-
based inference and ATL–ATM inference. Mamdani–Assilian models applying one of
the three basic t-normsTM, TP or TL combined with either the Center of Gravity or
the Mean of Maxima defuzzification method were considered. Furthermore, models
applying plain implicator-based inference or ATL–ATM inference, one of the three ba-
sic t-normsTM, TP or TL, one of the three R-implicatorsIM, IP or IL and the Mean
of Maxima defuzzification method, were studied. The objective of this study was to
select, for each inference procedure, combinations of t-norm, implicator or defuzzifi-
cation method resulting in a monotone input-output behaviour for any monotone rule
base, or at least for any monotone smooth rule base.

For the assumed model properties, the input-output behaviour of models with
m input variables reduces to the input-output behaviour of models withm∗ (m∗ < m)
input variables in those regions of the input space where theinputs belong to the kernel
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of the same linguistic value in all butm∗ input domains. Thus, if certain model proper-
ties are necessary to guarantee monotonicity for models with m∗ input variables, these
model properties are also required to guarantee a monotone input-output behaviour for
models with more thanm∗ input variables. Furthermore, an auxiliary interpolation
procedure was presented which allows for the extension of results obtained for models
for which all linguistic output values in the rule consequents are defined by trapezial
membership functions of identical shape to models with any fuzzy output partition of
trapezial or triangular membership functions.

For a model with two input variables and a monotone rule base monotonic-
ity cannot be guaranteed for the considered combinations ofinference procedures, t-
norms, implicators and defuzzification methods, except forMamdani–Assilian infer-
ence combined with the t-normTP and the Mean of Maxima defuzzification method
if, at least, the model satisfies additional constraints. For Mamdani–Assilian models
with two input variables and any monotone rule base applyingthe Mean of Maxima
defuzzification method, a monotone input-output behaviourcan be guaranteed when
using a fuzzy output partition corresponding to one of the following schemata{ *, tri-
angular, triangular, triangular, *}, { *, triangular, triangular, *} or { *, *, * } with * a
membership function that might be either triangular or trapezial. When a system with
two input variables is described by a monotone smooth rule base a wider range of infer-
ence procedures can be applied: Mamdani–Assilian inference with the t-normTP and
the Center of Gravity or Mean of Maxima defuzzification method, Mamdani–Assilian
inference with the t-normTM and the Mean of Maxima defuzzification method, ATL–
ATM inference with the t-normTP, the implicatorIL and the Mean of Maxima de-
fuzzification method or ATL–ATM inference with the t-normTL, the implicatorIM,
IP or IL and the Mean of Maxima defuzzification method.

The monotonicity of ATL–ATM models with three or more input variables was
not studied in this dissertation. For Mamdani–Assilian models applying the Center
of Gravity defuzzification method, models with up to three input variables were in-
vestigated. It was proved that a monotone input-output behaviour is always obtained
for Mamdani–Assilian models with three input variables anda monotone smooth rule
base applying the t-normTP and the Center of Gravity defuzzification method when
the linguistic output values in the consequents of the rulesare defined by trapezial
or triangular membership functions of identical shape. Furthermore, for Mamdani–
Assilian models applying the Mean of Maxima defuzzificationmethod, it was shown
that monotonicity is guaranteed for models with a monotone smooth rule base apply-
ing TM when the linguistic output values in the consequents of the rules are defined by
trapezial or triangular membership functions with intervals of changing membership
degree of equal length and for models with a monotone smooth rule base applyingTP

for any fuzzy output partition.

11.2 Indications for future research

Monotone models in habitat suitability modelling Univariate preferences func-
tions are commonly applied in habitat suitability modelling (Schneider, 2001). They
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describe the preference of a species for the values taken by aphysical or chemical vari-
able by mapping them to values between 0 (for completely unsuitable conditions) and
1 (for perfectly suitable conditions). The suitability of asite as a habitat for a certain
species is then obtained by the product, arithmetic or geometric mean or minimum
of the univariate preferences of the considered variables characterizing the site. In the
fuzzy models developed in the ecological case study, if-then rules describe the relation-
ship between a site’s suitability and the variables characterizing the site. The habitat
suitability of a site for a species can however also be expressed as a function of the
univariate preferences of the species for the different variables characterizing the site,
which results in a model with a monotone rule base.

Performance measures for fuzzy ordered classifiers The newly introduced perfor-
mance measure for fuzzy ordered classifiers, average deviation, takes the order of the
output classes into account by returning the average deviation between the position of
the class obtained with the model and the position of the class stored in the data set.
However, average deviation does not differentiate betweendeviations resulting from
an over-classification,i.e. a classification in a too high class by the model compared
to the data, and those resulting from an under-classification, i.e. a classification in a
too low class by the model compared to the data. In the ecological case study over-
and under-classification are however, in fact, not considered to be of equal importance
when determining the global model performance since over-classifications could be the
result of lower abundances for individual species due to competition between several
species having similar habitat requirements and do therefore not necessarily indicate
that the model badly describes the habitat suitability of a certain species.

ATL–ATM models with other implicators Apart from Mamdani–Assilian models
applying the t-normTP and the Mean of Maxima defuzzification method and using a
fuzzy output partition belonging to a restricted class of nine types of fuzzy partitions,
monotonicity cannot be guaranteed for models with two or more input variables and
any monotone non-smooth rule base. Most systems, however, are described by a set of
if-then rules forming a monotone non-smooth rule base as wasillustrated by the cited
applications from the bioscience engineering field. It would therefore be interesting
to investigate if monotonicity is guaranteed for ATL–ATM models with two or more
input variables and any monotone rule base when applying other implicators, such as
the S-implicators defined in Eq. (2.37), or the Center of Gravity defuzzification method.

Computational aspects of defuzzification in ATL–ATM models The modified
transformation function method, allowing for an accurate computation of the crisp
output of Mamdani–Assilian models applying the Center of Gravity defuzzification
method, showed to be an essential tool when studying the monotonicity of these mod-
els. An accurate determination of the model output makes useful numerical exper-
iments guiding the analytical analysis possible and herebyfacilitates the analytical
analysis of the model behaviour. Therefore, I recommend thedevelopment of a proce-
dure to accurately determine the model output of ATL–ATM models before continuing
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(resp. starting) the study on the monotonicity of ATL–ATM models applying the Mean
of Maxima defuzzification method (resp. Center of Gravity defuzzification method).

Identification of monotone linguistic fuzzy models The selection made in this dis-
sertation of combinations of Mamdani–Assilian and ATL–ATMinference, t-norms
TM, TP and TL, implicatorsIM, IP and IL and the Mean of Maxima and Center
of Gravity defuzzification method which guarantee monotonicity of models with a
monotone rule base, could be used when developing a data-driven identification method
for monotone linguistic fuzzy models.

11.3 Main contributions of this dissertation

This dissertation has tried to make contributions to both the ecological modelling as
well as to the fuzzy modelling domain. These contributions are listed below.

To the ecological modelling community

• a fuzzy ordered classifier was applied for habitat suitability modelling

• the need of a data set including a similar number of examples for the different
phenomena described by the model was illustrated

To the fuzzy modelling community

• an accurate and fast computational method was introduced for determining the
crisp output of Mamdani–Assilian models applying the Center of Gravity de-
fuzzification method and using fuzzy output partitions of trapezial membership
functions

• a new performance measure for fuzzy ordered classifiers was presented taking
the ordering of the output classes into account

• guidelines were formulated for designers of monotone linguistic fuzzy models

• a new inference procedure, called ATL–ATM inference, was introduced for lin-
guistic fuzzy models with a monotone rule base
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APPENDIX A

List of macroinvertebrate taxa

In Table A.1 all 86 macroinvertebrate taxa considered in this study are listed. In the first
column the index is given as used in this manuscript, followed by the full taxon name
and the abbreviation used in this study in the second and third column. The twelve taxa
selected for optimization of the membership functions are indicated in bold.

Table A.1: Macroinvertebrate taxa

Taxon name Taxon code Taxon name Taxon code

Indicator species

1 Agabus didymus agabdidy 2 Agabus guttatus agabgutt

3 Agabus paludosus agabpalu 4 Amphinemura sulcicolis amphsulc

5 Anacaena globulus anacglob 6 Ancyclus fluviatilus ancyfluv

7 Baetis rhodani baetrhod 8 Brillia longifurca brillong

9 Crunoecia irrorata crunirro 10 Dugesia gonocephala dugegono

11 Elmis aenea elmiaena 12 Elodes minuta elodminu

13 Ephemera vulgata epravulg 14 Gammarus roesellii gammroes

15 Halesus radiatus haledira 16 Hydroporus nigrita hyponigr

17 Hydropsyche pellucidula hypspell 18 Ironoquia dubia irondubi

19 Limnephilus extricates liluextr 20 Limnephilus fuscifornis lilufusc

21 Limnephilus lunatus liluluna 22 Notidobia ciliaris nodocili

23 Odontomesa fulva odmefulv 24 Orectochillus villosus orecvill

25 Physa fontinalis physfont 26 Platambus maculatus pltamacu

27 Plectrocnemia conspersa pltrcons 28 Nebrioporus depressus ponedepr

29 Rheocricotopus group fuscipes rhcrgfus 30 Sericostoma personatum setopers

Non-indicator species

31 Acroloxus lacustris aclolacu 32 Agabus affinis agabaffi

33 Agabus bipustulatus agabbipu 34 Anabolia nervosa anabnerv

continued on next page
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continued from previous page
Taxon name Taxon code Taxon name Taxon code

35 Anacaena bipustulatus anacbipu 36 Anisus vortex ansuvote

37 Asellus aquaticus aselaqua 38 Corixa punctata coripunc

39 Dugesia lugubris/polychroa dugelupo 40 Erpobdella octoculata erpoocto

41 Galba trunculata galbtrun 42 Gammarus pulex gammpule

43 Gerris lacustris gerrlacu 44 Glossiphonia complanata glsicomp

45 Glossiphonia heteroclita glsihete 46 Glyphotaelius pellucidus glphpell

47 Haliplus flavicollis haliflav 48 Haliplus fluviatilis halifluv

49 Haliplus lineatocollis halilito 50 Haementaria costata hamecost

51 Helobdella stagnalis hebdstag 52 Hemiclepsis marginata heclmarg

53 Helophorus aquaticus/grandis heruaqgr 54 Helophorus brevipalpis herubrev

55 Hydroporus palustris hypopalu 56 Hydropsyche angustipennis hypsangu

57 Hygrotus inaequalis hytuinae 58 Ilybius fenestratus ilybfene

59 Ilybius fuliginosus ilybfuli 60 Limnephilus rhombicus lilurhom

61 Lype reducta lyperedu 62 Notonecta glauca notoglau

63 Physa acuta physacut 64 Piscicola geometra piscgeom

65 Planorbis carinatus plbicari 66 Planorbis planorbis plbiplan

67 Plectrocnemia geniculata pltrgeni 68 Proasellus meridianus proameri

69 Radix peregra radipere 70 Sialis fuliginosa sialfuli

71 Sialis lutaria sialluta 72 Sigara falleni sigafall

73 Sigara lateralis sigalate 74 Sigara semistriata sigasemi

75 Sigara striata sigastri 76 Stagnicola palustris stagpalu

77 Valvata piscinalis valvpisc 78 Velia caprai velicapr

79 Brillia modesta brilmode 80 Aspectrotanypus trifascipennis apsetrif

81 Dicrotendipes group notatus ditegnot 82 Polypedilum laetum agg. popelaea

83 Parametriocnemus stylatus paocstyl 84 Aplexa hypnorum aplehypn

85 Prodiamesa olivacea prodoliv 86 Rhantus suturalis rhansura
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m
odels

Acroloxus
lacustris

(aclolacu,31)

Absent Absent Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Low Moderate Moderate
Absent Absent Low Low
Absent Absent Absent Absent

Low Moderate High High

Absent Low Moderate Moderate
Absent Absent Low Low

Absent Absent Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Agabus affinis

(agabaffi,32)

Absent Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Low Moderate Low Absent
Absent Low Absent Absent
Absent Absent Absent Absent

Moderate High Moderate Low
Low Moderate Low Absent

Absent Low Absent Absent

Absent Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Agabus
bipustulatus

(agabbipu,33)

Low Low Low Low
Moderate Moderate Moderate Moderate

Low Low Low Low

Moderate Moderate Moderate Moderate
High High High High

Moderate Moderate Moderate Moderate

Absent Absent Absent Absent
Low Low Low Low
Low Low Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Agabus didymus

(agabdidy, 1)

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Low

Low Low Low Low
Low Low Low Low

Moderate Moderate Moderate Moderate

Moderate Moderate Moderate Moderate
Moderate Moderate Moderate Moderate

High High High High

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Agabus guttatus

(agabgutt, 2)

Low Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent

Low Absent Absent Absent
Low Low Absent Absent
Low Low Absent Absent

Moderate Low Absent Absent
Moderate Moderate Low Absent
Moderate Moderate Low Absent

High Moderate Low Absent
High High Moderate Low
High High Moderate Low

Low Absent Absent Absent
Low Low Absent Absent

Moderate Moderate Low Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Agabus paludosus

(agabpalu, 3)

Low Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent

Low Absent Absent Absent
Low Low Absent Absent

Absent Low Low Absent

Moderate Low Absent Absent
Moderate Moderate Low Absent

Low Moderate Moderate Low

High Moderate Low Absent
High High Moderate Low

Moderate High High Moderate

Low Absent Absent Absent
Low Low Absent Absent
Low Moderate Moderate Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Amphinemura
sulcicolis

(amphsulc, 4)

Low Moderate Moderate Moderate
Moderate Moderate Moderate Moderate
Moderate High High High

Low Moderate Moderate Moderate
Moderate Moderate Moderate Moderate
Moderate High High High

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Moderate Moderate Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Anabolia nervosa

(anabnerv,34)

Absent Absent Absent Absent
Absent Low Low Absent
Absent Absent Absent Absent

Absent Low Low Absent
Low Moderate Moderate Low

Absent Low Low Absent

Low Moderate Moderate Low
Moderate High High Moderate

Low Moderate Moderate Low

Absent Absent Absent Absent
Low Moderate Moderate Low
Low Moderate Moderate Low

Absent Absent Absent Absent
Absent Low Low Absent
Absent Low Low Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Anacaena
bipustulatus

(anacbipu,35)

Absent Absent Low Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Low Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate High Moderate
Low Low Moderate Low

Absent Absent Low Absent

Low Low Moderate Low
Absent Absent Low Absent
Absent Absent Low Absent

Absent Absent Low Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Anacaena globulus

(anacglob, 5)

Absent Absent Absent Absent
Absent Absent Low Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Low Absent
Absent Low Low Low

Absent Low Moderate Low
Low Moderate High Moderate

Absent Low Moderate Low

Absent Absent Low Absent
Absent Low Moderate Low
Absent Absent Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Ancyclus fluviatilus

(ancyfluv, 6)

Absent Absent Low Low
Absent Absent Low Low
Absent Low Moderate Moderate

Low Low Moderate Moderate
Low Low Moderate Moderate
Low Moderate High High

Absent Absent Low Low
Absent Absent Low Low
Low Moderate High High

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Moderate Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Anisus vortex

(ansuvote,36)

Absent Low Low Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Low Moderate Moderate Low
Absent Low Low Absent
Absent Absent Absent Absent

Moderate High High Moderate
Low Moderate Moderate Low

Absent Low Low Absent

Absent Low Low Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Aplexa hypnorum

(aplehypn,84)

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

Moderate Moderate Low Absent
Low Low Absent Absent
Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Asellus aquaticus

(aselaqua,37)

Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent

Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent

Low Low Low Low
Moderate Moderate Moderate Moderate

Low Low Low Low

Moderate Moderate Moderate Moderate
High High High High

Moderate Moderate Moderate Moderate

Absent Absent Absent Absent
Low Low Low Low
Low Low Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Aspectrotanypus
trifascipennis

(apsetrif,80)

High Moderate Low Absent
High Moderate Low Absent
High Moderate Low Absent

High Moderate Low Absent
High Moderate Low Absent
High Moderate Low Absent

Moderate Low Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Low Absent Absent Absent
Low Absent Absent Absent

Moderate Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Baetis rhodani

(baetrhod, 7)

Low Low Low Low
Low Low Low Low
Low Moderate Moderate Moderate

Moderate Moderate Moderate Moderate
Moderate Moderate Moderate Moderate
Moderate High High High

Low Low Low Low
Low Low Low Low

Moderate High High High

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Moderate Moderate Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Brillia longifurca

(brillong, 8)

Low Moderate Moderate Moderate
Low Moderate Moderate Moderate

Moderate High High High

Absent Low Low Low
Absent Low Low Low

Moderate High High High

Absent Low Low Low
Absent Low Low Low
Low High High High

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Moderate Moderate Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Brillia modesta

(brilmode,79)

Moderate Low Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Moderate Low Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Corixa punctata

(coripunc,38)

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Crunoecia irrorata

(crunirro, 9)

Absent Absent Absent Absent
Low Absent Absent Absent

Moderate Low Absent Absent

Low Absent Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Absent Absent Absent Absent
Low Absent Absent Absent
High Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Dicrotendipes gr.
notatus

(ditegnot,81)

Absent Low Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Low Moderate Moderate Moderate
Absent Low Low Low
Absent Absent Absent Absent

Moderate High High High

Low Moderate Moderate Moderate
Absent Low Low Low

Low Moderate Moderate Moderate
Absent Low Low Low
Absent Absent Absent Absent

Absent Low Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Dugesia
gonocephala

(dugegono,10)

Absent Absent Absent Absent
Absent Low Absent Absent
Low Moderate Low Low

Absent Low Absent Absent
Low Moderate Low Absent

Moderate High Moderate Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Dugesia
lugubris/polychroa
(dugelupo,39)

Absent Absent Low Absent
Absent Low Moderate Low
Absent Absent Low Absent

Absent Low Moderate Low
Low Moderate High Moderate

Absent Low Moderate Low

Absent Low Moderate Low
Low Moderate High Moderate

Absent Low Moderate Low

Absent Absent Absent Absent
Absent Absent Low Absent
Absent Absent Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Elmis aenea

(elmiaena,11)

Moderate Moderate Moderate Moderate
Moderate Moderate Moderate Moderate

High High High High

Low Low Low Low
Low Low Low Low
High High High High

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Moderate Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Elodes minuta

(elodminu,12)

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Absent Absent Absent

Absent Absent Absent Absent
Low Absent Absent Absent

Moderate Low Absent Absent

Low Absent Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Absent Absent Absent Absent
Low Absent Absent Absent

Moderate Low Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Ephemera vulgata

(epravulg,13)

Absent Absent Low Low
Absent Low Low Low
Low Moderate High High

Low Low Moderate Moderate
Low Moderate Moderate Moderate
Low Moderate High High

Low Low Moderate Moderate
Low Moderate Moderate Moderate
Low Moderate High High

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Moderate Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Erpobdella
octoculata

(erpoocto,40)

Absent Absent Absent Absent
Absent Absent Absent Low
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Low
Absent Absent Absent Absent

Absent Absent Absent Low
Absent Low Low Moderate
Absent Absent Absent Low

Absent Low Low Moderate
Low Moderate Moderate High

Absent Low Low Moderate

Absent Absent Absent Absent
Absent Absent Absent Low
Absent Absent Absent Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Galba trunculata

(galbtrun,41)

Low Low Absent Absent
Moderate Moderate Low Absent

Low Low Absent Absent

Low Low Absent Absent
Moderate Moderate Low Absent

Low Low Absent Absent

Moderate Moderate Low Absent
High High Moderate Low

Moderate Moderate Low Absent

Absent Absent Absent Absent
Low Low Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Gammarus pulex

(gammpule,42)

Absent Absent Absent Absent
Low Low Absent Absent

Moderate Moderate Low Absent

Low Low Absent Absent
Moderate Moderate Low Absent

High High Moderate Low

Low Low Absent Absent
Moderate Moderate Low Absent

High High Moderate Low

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Gammarus
roesellii

(gammroes,14)

Absent Absent Absent Low
Absent Absent Absent Low
Absent Absent Absent Absent

Absent Absent Absent Low
Absent Absent Absent Low
Low Low Low Low

Low Low Moderate High

Moderate Moderate Moderate High
High High High High

Absent Absent Low Moderate
Low Low Low Moderate

Moderate Moderate Moderate Moderate

Absent Absent Absent Low
Absent Absent Absent Low
Low Low Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Gerris lacustris

(gerrlacu,43)

Absent Absent Low Low
Absent Low Moderate Moderate
Absent Absent Low Low

Absent Low Moderate Moderate
Low Moderate High High

Absent Low Moderate Moderate

Absent Absent Low Low
Absent Low Moderate Moderate
Absent Low Moderate Moderate

Absent Absent Absent Absent
Absent Absent Low Low
Absent Absent Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Glossiphonia
complanata

(glsicomp,44)

Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent

Low Low Absent Absent
Moderate Moderate Low Low

Low Low Absent Absent

Moderate Moderate Low Low
High High Moderate Moderate

Moderate Moderate Low Low

Absent Absent Absent Absent
Low Low Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Glossiphonia
heteroclita

(glsihete,45)

Low Low Absent Absent
Moderate Moderate Low Low

Low Low Absent Absent

Low Low Absent Absent
Moderate Moderate Low Low

Low Low Absent Absent

Moderate Moderate Low Low
High High Moderate Moderate

Moderate Moderate Low Low

Absent Absent Absent Absent
Low Low Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Glyphotaelius
pellucidus

(glphpell,46)

Moderate Low Low Absent
High Moderate Moderate Low

Moderate Low Low Absent

Moderate Low Low Absent
High Moderate Moderate Low

Moderate Low Low Absent

Moderate Low Low Absent
High Moderate Moderate Low

Moderate Low Low Absent

Absent Absent Absent Absent
Low Absent Absent Absent
Low Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Haementaria
costata

(hamecost,50)

Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent

Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent

Low Absent Absent Absent
Moderate Low Absent Absent

Low Absent Absent Absent

Moderate Low Absent Absent
High Moderate Low Absent

Moderate Low Absent Absent

Absent Absent Absent Absent
Low Absent Absent Absent
Low Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Halesus radiatus

(haledira,15)

Low Low Low Absent
Moderate Moderate Moderate Low

High High High Moderate

Absent Absent Absent Absent
Low Low Low Absent
High High High Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Moderate Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Haliplus flavicollis

(haliflav,47)

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Haliplus fluviatilis

(halifluv,48)

Absent Absent Low Low
Low Low Moderate Moderate

Absent Absent Low Low

Absent Absent Low Low
Low Low Moderate Moderate

Absent Absent Low Low

Low Low Moderate Moderate
Moderate Moderate High High

Low Low Moderate Moderate

Absent Absent Absent Absent
Absent Absent Low Low
Absent Absent Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Haliplus
lineatocollis

(halilito,49)

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

High High Moderate Moderate
Moderate Moderate Low Low

Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Helobdella
stagnalis

(hebdstag,51)

Absent Absent Absent Absent
Absent Low Low Low
Absent Absent Absent Absent

Absent Low Low Low
Low Moderate Moderate Moderate

Absent Low Low Low

Low Moderate Moderate Moderate
Moderate High High High

Low Moderate Moderate Moderate

Absent Low Low Low
Low Moderate Moderate Moderate
Low Moderate Moderate Moderate

Absent Absent Absent Absent
Absent Low Low Low
Absent Low Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Helophorus
aquaticus/grandis
(heruaqgr,53)

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Low Absent
Low Low Absent Absent

Absent Absent Absent Absent

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

Moderate Moderate Low Absent
Low Low Absent Absent
Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Helophorus
brevipalpis

(herubrev,54)

Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent

Low Low Absent Absent
Moderate Moderate Low Absent

Low Low Absent Absent

Moderate Moderate Low Absent
High High Moderate Low

Moderate Moderate Low Absent

Low Low Absent Absent
Moderate Moderate Low Absent
Moderate Moderate Low Absent

Absent Absent Absent Absent
Low Low Absent Absent
Low Low Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Hemiclepsis
marginata

(heclmarg,52)

Low Low Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Moderate Moderate
Low Low Low Low

Absent Absent Absent Absent

High High High High

Moderate Moderate Moderate Moderate
Low Low Low Low

Low Low Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Hydroporus
nigrita

(hyponigr,16)

High Moderate Low Absent
Moderate Low Absent Absent

Low Absent Absent Absent

Moderate Low Absent Absent
Low Absent Absent Absent
Low Absent Absent Absent

Low Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Hydroporus
palustris

(hypopalu,55)

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

Moderate Moderate Low Absent
Low Low Absent Absent
Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Hydropsyche
angustipennis

(hypsangu,56)

Absent Absent Absent Absent
Absent Absent Low Low
Low Low Moderate Moderate

Absent Absent Absent Absent
Absent Absent Low Low
Low Low Moderate Moderate

Absent Absent Low Low
Low Low Moderate Moderate

Moderate Moderate High High

Absent Absent Absent Absent
Absent Absent Low Low

Moderate Moderate High High

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Moderate Moderate

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Hydropsyche
pellucidula

(hypspell,17)

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Low Absent

Absent Absent Low Absent
Absent Low Low Absent
Low Moderate Moderate Low

Absent Low Moderate Low
Low Moderate Moderate Low

Moderate High High Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Moderate Moderate Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Low Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Hygrotus
inaequalis

(hytuinae,57)

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

High High Moderate Moderate
Moderate Moderate Low Low

Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Ilybius fenestratus

(ilybfene,58)

Low Low Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

High High High High

Moderate Moderate Moderate Moderate
Low Low Low Low

Moderate Moderate Moderate Moderate
Low Low Low Low
Low Low Low Low

Low Low Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Ilybius fuliginosus

(ilybfuli,59)

Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent

Moderate Moderate Moderate Moderate
High High High High

Moderate Moderate Moderate Moderate

Low Low Low Low
Moderate Moderate Moderate Moderate
Moderate Moderate Moderate Moderate

Absent Absent Absent Absent
Low Low Low Low
Low Low Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Ironoquia dubia

(irondubi,18)

Low Low Absent Absent
Moderate Moderate Low Absent

Low Low Absent Absent

Moderate Moderate Low Absent
High High Moderate Low

Moderate Moderate Low Absent

Absent Absent Absent Absent
Low Low Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Limnephilus
extricates

(liluextr,19)

Absent Absent Absent Absent
Absent Low Low Low
Absent Absent Absent Absent

Absent Low Low Low
Low Moderate Moderate Moderate

Absent Low Low Low

Low Moderate Moderate Moderate
Moderate High High High

Low Moderate Moderate Moderate

Absent Absent Absent Absent
Absent Low Low Low
Absent Low Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Limnephilus
fuscifornis

(lilufusc,20)

Absent Low Low Low
Absent Low Low Low
Absent Absent Absent Absent

Low Moderate Moderate Moderate
Low Moderate Moderate Moderate

Absent Low Low Low

Moderate High High High

Moderate High High High

Low Moderate Moderate Moderate

Absent Low Low Low
Absent Low Low Low
Absent Low Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Limnephilus
lunatus

(liluluna,21)

Absent Absent Absent Absent
Absent Absent Low Absent
Absent Absent Low Absent

Absent Absent Low Absent
Absent Low Moderate Low
Absent Absent Low Absent

Absent Low Moderate Low
Low Moderate High Moderate

Absent Low Moderate Low

Absent Absent Absent Absent
Absent Absent Low Absent
Absent Absent Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Limnephilus
rhombicus

(lilurhom,60)

Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent

Moderate Moderate Low Low
High High Moderate Moderate

Moderate Moderate Low Low

Absent Absent Absent Absent
Low Low Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Lype reducta

(lyperedu,61)

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Absent Absent

Low Low Absent Absent
Moderate Moderate Low Absent

High High Moderate Low

Absent Absent Absent Absent
Low Low Absent Absent

Moderate Moderate Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Nebrioporus
depressus

(ponedepr,28)

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Low Absent

Absent Absent Low Absent
Absent Absent Low Absent
Absent Low Moderate Low

Absent Low Moderate Low
Absent Low Moderate Low
Low Moderate High Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Moderate Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Low Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Notidobia ciliaris

(nodocili,22)

Moderate Moderate Low Absent
Moderate Moderate Low Absent

High High Moderate Low

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Notonecta glauca

(notoglau,62)

Absent Absent Low Low
Low Low Moderate Moderate

Absent Absent Low Low

Low Low Moderate Moderate
Moderate Moderate High High

Low Low Moderate Moderate

Low Low Moderate Moderate
Moderate Moderate High High

Low Low Moderate Moderate

Absent Absent Absent Absent
Absent Absent Low Low
Absent Absent Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Odontomesa fulva

(odmefulv,23)

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Absent

Low Low Low Absent
Moderate Moderate Moderate Low

High High High Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Moderate Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Orectochillus
villosus

(orecvill,24)

Moderate Moderate Moderate Moderate
High High High High
High High High High

Moderate Moderate Moderate Moderate
High High High High
High High High High

Low Low Low Low
Moderate Moderate Moderate Moderate

High High High High

Absent Absent Absent Absent
Low Low Low Low

Moderate Moderate Moderate Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Parametriocnemus
stylatus

(paocstyl,83)

Moderate Low Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Moderate Low Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Physa acuta

(physacut,63)

Moderate Moderate High High

Low Low Moderate Moderate
Absent Absent Low Low

Moderate Moderate High High

Low Low Moderate Moderate
Absent Absent Low Low

Moderate Moderate High High

Low Low Moderate Moderate
Absent Absent Low Low

Low Low Moderate Moderate
Absent Absent Low Low
Absent Absent Low Low

Absent Absent Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Physa fontinalis

(physfont,25)

Low Moderate Low Absent
Absent Low Absent Absent
Absent Low Absent Absent

Low Moderate Low Absent
Absent Low Absent Absent
Absent Low Absent Absent

Moderate High Moderate Low
Low Moderate Low Absent

Absent Low Absent Absent

Absent Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Piscicola geometra

(piscgeom,64)

Absent Absent Absent Absent
Absent Absent Absent Low
Absent Absent Absent Absent

Absent Absent Absent Low
Absent Low Low Moderate
Absent Absent Absent Low

Absent Low Low Moderate
Low Moderate Moderate High

Absent Low Low Moderate

Absent Absent Absent Absent
Absent Absent Absent Low
Absent Absent Absent Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Planorbis
carinatus

(plbicari,65)

Moderate Moderate High High

Low Low Moderate Moderate
Absent Absent Low Low

Absent Absent Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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R
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m
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Planorbis
planorbis

(plbiplan,66)

High High High High

Moderate Moderate Moderate Moderate
Low Low Low Low

High High High High

Moderate Moderate Moderate Moderate
Low Low Low Low

Moderate Moderate Moderate Moderate
Low Low Low Low
Low Low Low Low

Low Low Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Platambus
maculatus

(pltamacu,26)

Moderate Moderate Moderate Moderate
High High High High

Moderate Moderate Moderate Moderate

Moderate Moderate Moderate Moderate
High High High High

Moderate Moderate Moderate Moderate

Low Low Low Low
Moderate Moderate Moderate Moderate
Moderate Moderate Moderate Moderate

Absent Absent Absent Absent
Low Low Low Low
Low Low Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Plectrocnemia
conspersa

(pltrcons,27)

Absent Low Moderate Low
Absent Low Moderate Low
Low Moderate High Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Low Moderate Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Plectrocnemia
geniculata

(pltrgeni,67)

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Absent Absent Absent

Low Absent Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Polypedilum
laetum agg.

(popelaea,82)

Moderate Low Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Moderate Low Absent Absent
Moderate Low Absent Absent

High Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Proasellus
meridianus

(proameri,68)

Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent

Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent

Low Low Low Low
Moderate Moderate Moderate Moderate

Low Low Low Low

Moderate Moderate Moderate Moderate
High High High High

Moderate Moderate Moderate Moderate

Absent Absent Absent Absent
Low Low Low Low
Low Low Low Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Prodiamesa
olivacea

(prodoliv,85)

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Absent

Absent Absent Absent Absent
Low Low Low Absent

Moderate Moderate Moderate Low

Low Low Low Absent
Moderate Moderate Moderate Low

High High High Moderate

Absent Absent Absent Absent
Low Low Low Absent
High High High Moderate

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Moderate Low

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Radix peregra

(radipere,69)

Absent Absent Absent Absent
Absent Low Low Absent
Absent Absent Absent Absent

Low Low Low Absent
Low Moderate Moderate Low
Low Low Low Absent

Moderate Moderate Moderate Low
Moderate High High Moderate
Moderate Moderate Moderate Low

Absent Absent Absent Absent
Absent Low Low Absent
Low Low Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Rhantus suturalis

(rhansura,86)

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Low Absent
Low Low Absent Absent

Absent Absent Absent Absent

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

Moderate Moderate Low Absent
Low Low Absent Absent
Low Low Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Rheocricotopus
(gr) fuscipes

(rhcrgfus,29)

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent
Low Low Low Low

Moderate Moderate Moderate Moderate

Low Low Low Low
Moderate Moderate Moderate Moderate

High High High High

Absent Absent Absent Absent
Low Low Low Low
High High High High

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Moderate Moderate

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Sericostoma
personatum

(setopers,30)

Moderate Moderate Moderate Low
Moderate Moderate Moderate Low

High High Moderate Low

Low Low Low Absent
Low Low Low Absent
High High Moderate Low

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Sialis fuliginosa

(sialfuli,70)

Low Low Absent Absent
Moderate Moderate Low Absent

High High Moderate Low

Low Low Absent Absent
Moderate Moderate Low Absent

High High Moderate Low

Absent Absent Absent Absent
Low Low Absent Absent
High High Moderate Absent

Absent Absent Absent Absent
Absent Absent Absent Absent

Moderate Moderate Low Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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Sialis lutaria

(sialluta,71)

Moderate Moderate Moderate Moderate
Low Low Low Low

Absent Absent Absent Absent

High High High High

Moderate Moderate Moderate Moderate
Low Low Low Low

High High High High

Moderate Moderate Moderate Moderate
Low Low Low Low

Moderate Moderate Moderate Moderate
Low Low Low Low
Low Low Low Low

Low Low Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Sigara falleni

(sigafall,72)

Moderate Moderate High High

Low Low Moderate Moderate
Absent Absent Low Low

Moderate Moderate High High

Low Low Moderate Moderate
Absent Absent Low Low

Absent Absent Low Low
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Sigara lateralis

(sigalate,73)

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Sigara semistriata

(sigasemi,74)

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

High High Moderate Low
Moderate Moderate Low Absent

Low Low Absent Absent

Low Low Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

315



A
ppendix

B
.

R
ule
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Sigara striata

(sigastri,75)

Moderate Moderate Moderate Moderate
High High High High

Moderate Moderate Moderate Moderate

Moderate Moderate Moderate Moderate
High High High High

Moderate Moderate Moderate Moderate

Absent Absent Absent Absent
Low Low Low Low
Low Low Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Stagnicola
palustris

(stagpalu,76)

Absent Low Moderate Moderate
Low Moderate High High

Absent Low Moderate Moderate

Absent Low Moderate Moderate
Low Moderate High High

Absent Low Moderate Moderate

Absent Absent Low Low
Absent Low Moderate Moderate
Absent Low Moderate Moderate

Absent Absent Absent Absent
Absent Absent Low Low
Absent Absent Low Low

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Valvata piscinalis

(valvpisc,77)

Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent

Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent

High High High High

Moderate Moderate Moderate Moderate
Low Low Low Low

Absent Absent Absent Absent
Low Low Low Low

Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high

Velia caprai

(velicapr,78)

Moderate Moderate Low Absent
High High Moderate Low

Moderate Moderate Low Absent

Moderate Moderate Low Absent
High High Moderate Low

Moderate Moderate Low Absent

Absent Absent Absent Absent
Low Low Absent Absent
Low Low Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

Absent Absent Absent Absent
Absent Absent Absent Absent
Absent Absent Absent Absent

stream width

spring / small

stream

upper course

stream
middle course

stream

lower course
stream / small

river

st
re

am
ve

lo
ci

ty

oligosaprobic / oligotrophic / oligoionic

low
moderate
high

β,α-oligosaprobic /β-mesotrophic /β-mesoionic

low
moderate
high

mesosaprobic /α-mesotrophic / mesoionic

low
moderate
high

α-mesosaprobic / eutrophic /α-mesoionic

low
moderate
high

polysaprobic / hypertrophic / polyionic

low
moderate
high
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APPENDIX C

Appendix to Section 8.4.3

The termsC1, C2, C3, C4, C5, C6, C7 in Eq. (8.97) are functions ofγ1 ∈ [0.5, 1],
li-1, li, li+1, li+2 ∈ R

+
0 andki, ki+1, ki+2 ∈ R

+.

C1 = −(3γ1 − 1)(1− γ1)(2γ1 − 1)2li(l
2
i-1 + 3li-1ki + l2i+2 + 3li+2ki+1 + 3li+2ki+2

+ 3k2
i + 6ki+1ki+2 + 3k2

i+2) + (1− γ1)(1 + γ1)(2γ1 − 1)4li+1(l
2
i-1 + 3li-1li

+ 3li-1ki + 3li-1ki+1 + 6liki + l2i+2 + 3li+2ki+2 + 3k2
i + 6kiki+1 + 3k2

i+2)

+ (2γ1 − 1)4ki+1(2l
2
i-1 + 6li-1li + 6li-1ki + 3li-1ki+1 + 12liki + 6li+1li+2

+ 12li+1ki+2 + 2l2i+2 + 3li+2ki+1 + 6li+2ki+2 + 6k2
i + 6kiki+1 + 6ki+1ki+2

+ 6k2
i+2)− 2(1− γ1)(2γ1 − 1)(7γ2

1 − 5γ1 + 1)li-1l
2
i + (2γ1 + 1)(γ1 − 1)2

(2γ1 − 1)4(li-1 + 2ki)l
2
i+1 − (1− γ1)γ1(15γ2

1 − 15γ1 + 4)l3i + γ1(1− γ1)

(2γ1 − 1)(18γ3
1 − 17γ2

1 − γ1 + 4)l2i li+1 + (4γ1 − 1)(2γ1 − 1)(γ1 − 1)2l2i

(li+2 + 2ki+2)− 4(1− γ1)(2γ1 − 1)(7γ2
1 − 5γ1 + 1)l2i ki + 4γ1(2γ1 − 1)

(7γ2
1 − 9γ1 + 3)l2i ki+1 − γ1(1− γ1)(12γ3

1 − 27γ2
1 + 23γ1 − 4)(2γ1 − 1)2lil

2
i+1

− 3(3γ1 − 1)(1− γ1)(2γ1 − 1)2lili+1(li+2 + 2ki+2)− 18γ2
1(2γ1 − 1)2

(γ1 − 1)2lili+1ki+1 + 3γ1(3γ1 − 2)(2γ1 − 1)2lik
2
i+1 + γ1(1− γ1)

(γ2
1 − γ1 + 4)(2γ1 − 1)4l3i+1 + 2(1− γ1)(γ

2
1 + γ1 + 1)(2γ1 − 1)4l2i+1

(li+2 + 2ki+2) + 4γ1(γ
2
1 − 3γ1 + 3)(2γ1 − 1)4l2i+1ki+1 − 3γ1(γ1 − 2)

(2γ1 − 1)4li+1k
2
i+1 ,

(C.1)
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C2 = (1− γ1)(2γ1 − 1)(16γ2
1 − 9γ1 + 1)(l2i-1 + 3li-1ki + 3k2

i )li − 3(6γ1 − 1)

(2γ1 − 1)3(2li-1liki+1 + 2li-1kiki+1 + li-1k
2
i+1 + 4likiki+1 + 2k2

i ki+1 + 2kik
2
i+1)

− (1− γ1)(6γ1 − 1)(γ1 + 1)(2γ1 − 1)3li+1(l
2
i-1 + 3li-1li + 3li-1ki + 3li-1ki+1

+ 6liki + 3k2
i + 6kiki+1)− 2(6γ1 − 1)(2γ1 − 1)3l2i-1ki+1 − 2(γ1 − 1)

(3γ1 − 1)(13γ2
1 − 8γ1 + 1)(li-1 + 2ki)l

2
i − (2γ1 + 1)(6γ1 − 1)(γ1 − 1)2

(2γ1 − 1)3(li-1 + 2ki)l
2
i+1 + (1− γ1)(45γ2

1 − 37γ1 + 8)γ1l
3
i − 4γ1(1− γ1)

(25γ4
1 − 21γ3

1 − 9γ2
1 + 13γ1 − 3)l2i li+1 − 2γ1(5γ1 − 2)(γ1 − 1)2(li+2 + 2ki+2)

l2i − 4(45γ3
1 − 70γ2

1 + 36γ1 − 6)l2i ki+1γ1 + γ1(1− γ1)(2γ1 − 1)(60γ4
1

− 126γ3
1 + 91γ2

1 − 9γ1 − 4)lil
2
i+1 + γ1(1− γ1)(2γ1 − 1)(5γ1 − 2)2li

(3li+1li+2 + 6li+1ki+2 + l2i+2 + 3li+2ki+1 + 3li+2ki+2 + 6ki+1ki+2 + 3k2
i+2)

− 3γ1(1− γ1)(2γ1 − 1)(30γ3
1 − 23γ2

1 − 7γ1 + 4)lili+1ki+1 − 3γ1(2γ1 − 1)

(20γ2
1 − 19γ1 + 4)lik

2
i+1 − 4(1− γ1)(γ

2
1 − γ1 + 4)(2γ1 − 1)3γ2

1 l3i+1 − 8γ1

(1− γ1)(γ
2
1 + γ1 + 1)(2γ1 − 1)3l2i+1(li+2 + 2ki+2)− 16(γ2

1 − 3γ1 + 3)

(2γ1 − 1)3γ2
1 l2i+1ki+1 − 4γ1(1− γ1)(1 + γ1)(2γ1 − 1)3li+1(l

2
i+2 + 3li+2ki+2

+ 3k2
i+2)− (2γ1 − 1)3γ1(24li+1li+2ki+1 + 48li+1ki+1ki+2 + 8l2i+2ki+1

+ 12li+2k
2
i+1 + 24li+2ki+1ki+2 + 24k2

i+1ki+2 + 24ki+1k
2
i+2)− 12γ2

1(2− γ1)

(2γ1 − 1)3li+1k
2
i+1 ,

(C.2)

C3 = −γ1(1− γ1)(31γ2
1 − 23γ1 + 4)(l2i-1 + 3li-1ki + 3k2

i )li + γ1(1− γ1)

(7γ1 − 2)(1 + γ1)(2γ1 − 1)2(2l2i-1li+1 + 6li-1lili+1 + 6li-1li+1ki + 6li-1li+1ki+1

+ 12lili+1ki + 6li+1k
2
i + 12li+1kiki+1) + γ1(7γ1 − 2)(2γ1 − 1)2(4l2i-1ki+1

+ 12li-1liki+1 + 12li-1kiki+1 + 6li-1k
2
i+1 + 24likiki+1 + 12k2

i ki+1 + 12kik
2
i+1)

− 4γ1(1− γ1)(4γ1 − 1)(5γ1 − 2)(li-1 + 2ki)l
2
i + 2γ1(2γ1 + 1)(7γ1 − 2)

(2γ1 − 1)2(γ1 − 1)2(li-1 + 2ki)l
2
i+1 − (1− γ1)γ1(49γ2

1 − 29γ1 + 4)l3i + γ1

(1− γ1)(113γ4
1 − 37γ3

1 − 78γ2
1 + 48γ1 − 6)l2i li+1 + γ2

1(γ1 − 1)23l2i

(li+2 + 2ki+2) + 4γ1(55γ3
1 − 69γ2

1 + 27γ1 − 3)l2i ki+1 − γ1(1− γ1)(124γ5
1

− 247γ4
1 + 147γ3

1 + 5γ2
1 − 19γ1 + 2)lil

2
i+1 − γ2

1(11γ1 − 5)(1− γ1)li

(3li+1li+2 + 6li+1ki+2 + l2i+2 + 3li+2ki+1 + 3li+2ki+2 + 6ki+1ki+2 + 3k2
i+2)

+ 3γ1(1− γ1)(62γ4
1 − 36γ3

1 − 29γ2
1 + 19γ1 − 2)lili+1ki+1 + 3γ1(51γ3

1

− 60γ2
1 + 21γ1 − 2)lik

2
i+1 + 6(1− γ1)(γ

2
1 − γ1 + 4)(2γ1 − 1)2l3i+1γ

3
1 + 12γ2

1

(1− γ1)(γ
2
1 + γ1 + 1)(2γ1 − 1)2l2i+1(li+2 + 2ki+2) + 24γ3

1(γ2
1 − 3γ1 + 3)
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(2γ1 − 1)2l2i+1ki+1 + 6γ2
1(1− γ1)(γ1 + 1)(2γ1 − 1)2li+1(l

2
i+2 + 3li+2ki+2

+ 3k2
i+2) + 6γ2

1(2γ1 − 1)2ki+1(6li+1li+2 + 12li+1ki+2 + 2l2i+2 + 3li+2ki+1

+ 6li+2ki+2 + 6ki+1ki+2 + 6k2
i+2) + 18(2− γ1)(2γ1 − 1)2li+1k

2
i+1γ

3
1 ,

(C.3)

C4 = γ2
1(13γ1 − 5)(1− γ1)(l

2
i-1 + 3li-1ki + 3k2

i )li − γ2
1(1− γ1)(2γ1 − 1)(8γ1 − 3)

(1 + γ1)2li+1(l
2
i-1 + 6li-1ki+1 + 3li-1ki + 2l2i + 6liki + 3k2

i + 6kiki+1)− 2γ2
1

(8γ1 − 3)(2γ1 − 1)ki+1(2l
2
i-1 + 6li-1li + 6li-1ki + 3li-1ki+1 + 4l2i + 12liki

+ 6k2
i + 6kiki+1)− 12γ2

1(3γ1 − 1)(γ1 − 1)(li-1 + 2ki)l
2
i − 6γ2

1(1− γ1)

(2γ1 − 1)(8γ1 − 3)(1 + γ1)li-1li+1(li − ki+1)− 2γ2
1(8γ1 − 3)(2γ1 + 1)

(2γ1 − 1)(γ1 − 1)2li-1l
2
i+1 + (23γ1 − 7)(1− γ1)γ

2
1 l3i + γ2

1(1− γ1)(66γ4
1

− 95γ3
1 + 17γ2

1 + 21γ1 − 5)lil
2
i+1 + 2γ3

1(1− γ1)li(3li+1li+2 + 6li+1ki+2 + l2i+2

+ 3li+2ki+1 + 3li+2ki+2 + 6ki+1ki+2 + 3k2
i+2)− 3γ2

1(1− γ1)(33γ3
1 + γ2

1

− 21γ1 + 5)lili+1ki+1 − 3γ2
1(31γ2

1 − 26γ1 + 5)lik
2
i+1 − 4γ4

1(1− γ1)(2γ1 − 1)

(γ2
1 − γ1 + 4)l3i+1 − 8γ3

1(1− γ1)(2γ1 − 1)(γ2
1 + γ1 + 1)l2i+1(li+2 + 2ki+2)

− 4γ2
1(8γ1 − 3)(2γ1 + 1)(2γ1 − 1)(γ1 − 1)2l2i+1ki − 16γ4

1(2γ1 − 1)

(γ2
1 − 3γ1 + 3)l2i+1ki+1 − 4γ3

1(1− γ1)(2γ1 − 1)(γ1 + 1)li+1(l
2
i+2 + 3li+2ki+2

+ 3k2
i+2)− 4γ3

1(2γ1 − 1)ki+1(6li+1li+2 + 12li+1ki+2 + 2l2i+2 + 3li+2ki+1

+ 6li+2ki+2 + 6ki+1ki+2 + 6k2
i+2) + 12γ4

1(2γ1 − 1)(γ1 − 2)li+1k
2
i+1 ,

(C.4)

C5 = −2γ3
1(1− γ1)li(l

2
i-1 + 3li-1li + 3li-1ki + 2l2i + 6liki + 3k2

i ) + γ3
1(1− γ1)

(9γ1 − 4)(γ1 + 1)li+1(l
2
i-1 + 3li-1li + 3li-1ki + 3li-1ki+1 + 2l2i + 6liki

+ 3ki+1li + 3k2
i + 6kiki+1) + γ3

1(9γ1 − 4)ki+1(3li-1ki+1 + 3ki+1li + 2l2i-1

+ 6li-1li + 6li-1ki + 4l2i + 12liki) + γ3
1(2γ1 + 1)(9γ1 − 4)(γ1 − 1)2l2i+1

(2ki + li-1 + li) + γ5
1(1− γ1)(γ

2
1 − γ1 + 4)l3i+1 + 2γ4

1(1− γ1)(γ
2
1 + γ1 + 1)

l2i+1(li+2 + 2ki+2) + 4γ5
1(γ2

1 − 3γ1 + 3)l2i+1ki+1 + γ4
1(1− γ1)(1 + γ1)li+1

(l2i+2 + 3li+2ki+2 + 3k2
i+2) + γ4

1ki+1(6li+1li+2 + 12li+1ki+2 + 2l2i+2 + 3li+2ki+1

+ 6li+2ki+2 + 6ki+1ki+2 + 6k2
i+2) + 3γ5

1(2− γ1)li+1k
2
i+1 + 6γ3

1(9γ1 − 4)

(ki + ki+1)ki+1ki ,

(C.5)
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C6 = γ4
1(1− γ1)(1 + γ1)li+1(l

2
i-1 + 3li-1li + 3li-1ki + 3li-1ki+1 + 2l2i + 6liki

+ 3ki+1li + 3k2
i + 6kiki+1)− γ4

1ki+1(2l
2
i-1 + 6li-1li + 6li-1ki + 3li-1ki+1 + 4l2i

+ 12liki + 3ki+1li + 6k2
i + 6kiki+1)− γ4

1(2γ1 + 1)(γ1 − 1)2(li-1 + li + 2ki)

l2i+1 ,

(C.6)

C7 = 6(2γ1γ2 − γ1 − γ2)(−(1− γ2)(2γ1γ2 − γ1 − γ2)γ1(li-1 + 2ki) + (3γ2
1γ2

2

− 3γ2
1γ2 + γ2

1 − 3γ1γ
2
2 + γ1γ2 + γ2

2)li − (2γ1γ2 − γ1 − γ2)γ2((γ
2
1 − γ1 + 1)

li+1 + 2(1− γ1)ki+1)− (2γ1γ2 − γ1 − γ2)γ1γ2(li+2 + 2ki+2)) .

(C.7)
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Appendix to Section 8.5.2

The termsC1 andC2, functions ofαi, αi+1 andαi+2, in Eqs. (8.138)-(8.140) are given
by

C1(αi, αi+1, αi+2) =

[

(8α7
i+1 + 44α6

i+1αi + 24α6
i+1αi+2 + 71α5

i+1α
2
i + 134α5

i+1αi

αi+2 + 31α5
i+1α

2
i+2 + 44α4

i+1α
3
i + 222α4

i+1α
2
i αi+2 + 176α4

i+1

αiα
2
i+2 + 14α4

i+1α
3
i+2 + 8α3

i+1α
4
i + 144α3

i+1α
3
i αi+2 + 300α3

i+1

α2
i α

2
i+2 + 80α3

i+1αiα
3
i+2 + 30α2

i+1α
4
i αi+2 + 204α2

i+1α
3
i α

2
i+2

+ 138α2
i+1α

2
i α

3
i+2 + 48αi+1α

4
i α

2
i+2 + 96αi+1α

3
i α

3
i+2 + 24α4

i

α3
i+2)l

3 + (αi+1 + αi)(29α6
i+1 + 105α5

i+1αi + 95α5
i+1αi+2

+ 105α4
i+1α

2
i + 357α4

i+1αiαi+2 + 121α4
i+1α

2
i+2 + 29α3

i+1α
3
i

+ 369α3
i+1α

2
i αi+2 + 459α3

i+1αiα
2
i+2 + 53α3

i+1α
3
i+2 + 111α2

i+1

α3
i αi+2 + 486α2

i+1α
2
i α

2
i+2 + 201α2

i+1αiα
3
i+2 + 156αi+1α

3
i α

2
i+2

+ 216αi+1α
2
i α

3
i+2 + 72α3

i α
3
i+2)l

2k + 3(αi+1 + αi+2)(αi+1

+ αi)
2(11α4

i+1 + 24α3
i+1αi + 29α3

i+1αi+2 + 11α2
i+1α

2
i

+ 66α2
i+1αiαi+2 + 21α2

i+1α
2
i+2 + 32αi+1α

2
i αi+2 + 48αi+1αi

α2
i+2 + 24α2

i α
2
i+2)lk

2 + 12(αi+1 + 2αi+2)(αi+1 + αi+2)
2(αi+1

+ αi)
4k3

]

×

[

3(αi + αi+1)
2((2α3

i+1 + 3α2
i+1(αi + αi+2)

+ 2αi+1(αi + αi+2)
2 + 2αiαi+2(αi + αi+2))l + 2(αi+1

+ αi+2)(αi+1 + αi)(αi+1 + αi + αi+2)k)2
]−1

, (D.1)
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C2(αi, αi+1, αi+2) =

[

(8α7
i+1 + 44α6

i+1(αi + αi+2) + 71α5
i+1(α

2
i + α2

i+2) + 206α5
i+1

αiαi+2 + 44α4
i+1α

3
i + 308α4

i+1αiαi+2(αi + αi+2) + 44α4
i+1

α3
i+2 + 8α3

i+1α
4
i + 181α3

i+1αiαi+2(α
2
i + α2

i+2) + 430α3
i+1α

2
i

α2
i+2 + 8α3

i+1α
4
i+2 + 32α2

i+1α
4
i αi+2 + 232α2

i+1α
2
i α

2
i+2(αi

+ αi+2) + 32α2
i+1αiα

4
i+2 + 36αi+1α

2
i α

2
i+2(α

2
i + α2

i+2) + 108

αi+1α
3
i α

3
i+2 + 12α3

i α
3
i+2(αi + αi+2))αi+1l

3 + (αi+1 + αi)

(αi+1 + αi+2)(29α6
i+1 + 105α5

i+1(αi + αi+2) + 105α4
i+1(α

2
i

+ α2
i+2) + 351α4

i+1αiαi+2 + 29α3
i+1(α

3
i + α3

i+2) + 329α3
i+1αi

αi+2(αi + αi+2) + 87α2
i+1αiαi+2(α

2
i + α2

i+2) + 282α2
i+1α

2
i

α2
i+2 + 66αi+1α

2
i α

2
i+2(αi + αi+2) + 12α3

i α
3
i+2)l

2k + 3(αi+1

+ αi)
2(αi+1 + αi+2)

2(11α4
i+1 + 24α3

i+1(αi + αi+2) + 11α2
i+1

(α2
i + α2

i+2) + 51α2
i+1αiαi+2 + 22αi+1αiαi+2(αi + αi+2) + 8

α2
i α

2
i+2)lk

2 + 12(αi+1 + αi)
4(αi+1 + αi+2)

4k3

]

×

[

3(αi

+ αi+1)
2(αi+1 + αi+2)

2((2α3
i+1 + 3α2

i+1(αi + αi+2) + 2αi+1

(αi + αi+2)
2 + 2αiαi+2(αi + αi+2))l + 2(αi+1 + αi+2)(αi+1

+ αi)(αi+1 + αi + αi+2)k)2
]−1

. (D.2)

For the first(αi, αi+1, αi+2)-triplet in Table 8.9 the derivative ofy∗
COG to γ1 is

given by

∂y∗
COG

∂γ1
=

[

(l3(γ3
1(γ3γ2 + (1− γ3)(1− γ2))(γ

2
2γ2

3(2− γ1) + (1− γ3)(1− γ2)(3γ3

γ2 + 4(1− γ3)(1− γ2) + γ3γ2(1− γ1))) + 2γ1(γ3γ2 + (1− γ3)(1

− γ2))(1− γ3)(1− γ2)(9(1− γ2)(1− γ3)(1− γ1) + 3(1− γ3)(1

− γ2) + 12γ3γ2(1− γ1) + 2γ3γ2) + γ1γ
2
2γ2

3(12(1− γ3)(1− γ2)(1

− γ1) + 4(1− γ3)(1− γ2) + 13γ3γ2(1− γ1) + 5γ3γ2) + 14(1− γ2)

(1− γ3)(γ3γ2 + (1− γ3)(1− γ2))
2 + 3γ2γ3(1− γ2)(1− γ3)(γ3γ2

+ (1− γ3)(1− γ2)) + γ2
2γ2

3(6(1− γ3)(1− γ2)(1− γ1) + (1− γ3)

(1− γ2) + 6γ3γ2(1− γ1) + 2γ3γ2)) + l2k(4γ3
1(1− γ2)(1− γ3)(γ3γ2

+ (1− γ3)(1− γ2))
2 + 27(γ3γ2 + (1− γ3)(1− γ2))

2(1− γ3)(1

− γ2)γ1(1− γ1) + 6(γ3γ2 + (1− γ3)(1− γ2))(3γ3γ2 + 2(1− γ3)

(1− γ2))γ3γ2γ1(1− γ1) + 15(γ3γ2 + (1− γ3)(1− γ2))(1− γ3)
2(1−
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γ2)
2γ1 + 3(γ3γ2 + (1− γ3)(1− γ2))γ3(1− γ3)γ2(1− γ2)γ1(5− γ1)

+ 53(1− γ2)(1− γ3)(γ3γ2 + (1− γ3)(1− γ2))
2 + 15γ2γ3(1− γ2)

(1− γ3)(γ3γ2 + (1− γ3)(1− γ2)) + γ2
2γ2

3(29γ3γ2 + 27(1− γ3)(1

− γ2))) + 3lk2(γ3γ2 + (1− γ3)(1− γ2))(((2γ3γ2 + 3(1− γ3)(1

− γ2))γ1(1− γ1) + 3(1− γ3)(1− γ2)(γ1 + 7))(γ3γ2 + (1− γ3)(1

− γ2)) + γ2γ3(11γ3γ2 + 8(1− γ3)(1− γ2))) + k312(γ3γ2 + 2(1

− γ3)(1− γ2))(γ3γ2 + (1− γ3)(1− γ2))
2)γ2γ3

]

×

[

3(l(2(1− γ2)(1

− γ3)(1− γ1)− 2(1− γ1)γ3(1− γ3)− 2(1− γ1)γ2(1− γ2)− (6(1

− γ1) + 1 + γ2
1)γ2γ3(γ2 + γ3) + (5(1− γ1) + 2(1 + γ2

1))γ2
2γ2

3

+ (8(1− γ1) + 1 + γ2
1)γ2γ3) + 2k(γ2γ3 + (1− γ2)(1− γ3))(γ2γ3

+ (1− γ1)(1− γ2)(1− γ3)))
2

]−1

, (D.3)

while the derivative ofy∗
COG to γ2 is given by

∂y∗
COG

∂γ2
=

[

(1− γ1)(1− γ3)γ3(l
3(((1− γ2)(1− γ3) + γ2γ3)

4(−1γ3
1 + 7γ2

1 + 8)

+ (1− γ2)
4(1− γ3)

4(−1γ2
1 + 5γ1 + 6)γ1 + 4(1− γ2)

3(1− γ3)
3γ2γ3

(−1γ3
1 + 5γ2

1 + 3γ1 + 3) + (1− γ2)
2(1− γ3)

2γ2
2γ2

3(−5γ3
1 + 27γ2

1

+ 9γ1 + 23) + 2(1− γ2)(1− γ3)γ
3
2γ3

3(−1γ3
1 + 6γ2

1 + 1γ1 + 6))

+ l2k(γ2γ3 + (1− γ2)(1− γ3))(((1− γ2)(1− γ3) + γ2γ3)
3(−2γ3

1

+ 18γ2
1 + 8γ1 + 29) + (1− γ2)

3(1− γ3)
3(3γ2

1 + 16γ1) + (1− γ2)
2

(1− γ3)
2γ2γ3(9γ

2
1 + 30γ1 + 18) + 6(1− γ2)(1− γ3)γ

2
2γ2

3(γ2
1 + 3γ1

+ 3)) + lk23((1− γ2)(1− γ3) + γ2γ3)
2((1− γ2 − γ3)

2(3γ2
1 + 7γ1

+ 11) + 3γ1(1− γ3)
2(1− γ2)

2 + 2γ2γ3(1− γ2)(1− γ3)(6γ
2
1 + 16γ1

+ 23)) + k312(γ2γ3 + (1− γ3)(1− γ2))
4(1 + γ1))

]

×

[

3(γ2γ3 + (1

− γ2)(1− γ3))
2(l(2(1− γ2)(1− γ3)(1− γ1)− 2(1− γ1)γ3(1− γ3)

− 2(1− γ1)γ2(1− γ2)− (6(1− γ1) + 1 + γ2
1)γ2γ3(γ2 + γ3)

+ (5(1− γ1) + 2(1 + γ2
1))γ2

2γ2
3 + (8(1− γ1) + 1 + γ2

1)γ2γ3) + 2k

(γ2γ3 + (1− γ2)(1− γ3))(γ2γ3 + (1− γ1)(1− γ2)(1− γ3)))
2

]−1

.

(D.4)
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For the fourth(αi, αi+1, αi+2)-triplet in Table 8.9 the derivative ofy∗
COG to γ1

is equal to zero

∂y∗
COG

∂γ1
= 0 , (D.5)

while the derivative ofy∗
COG to γ2 is given by

∂y∗
COG

∂γ2
=

[

γ3(l
3(γ2

2γ3(1− γ2)(1 + γ2) + 4γ3
2(1− γ3) + γ2γ

3
3(2− γ2) + 6γ2γ

2
3

(1− γ2) + 11(1− γ3) + 3(1− γ2
2) + 9γ2(1− γ3) + 11γ2(1− γ2)(1

− γ3) + 4γ2(1− γ2) + 2γ3
2γ2

3 + γ3
3 + 4γ2

3) + l2k(2γ3
3 + 3γ2

3γ2(2

− γ2) + 12γ2
3 + 4γ3γ

2
2(3− γ2) + 30γ2(1− γ3) + 38(1− γ3) + 4γ3

2

+ 12γ2(1− γ2) + 15(1− γ2
2)) + lk2(9γ2

3 + 3γ3γ
2
2 + 12γ2(1− γ3)

+ 39(1− γ3) + 9(1− γ2
2) + 6γ2 + 15) + 12k3(2− γ3))

]

×

[

3(l(γ2
2γ3

+ γ2γ3 + (2− γ3 + γ2
3)(1− γ2)) + 2k(γ2γ3 + (1− γ2)))

2

]−1

,

(D.6)

and the derivative ofy∗
COG to γ3 is given by

∂y∗
COG

∂γ3
=

[

(1− γ2)(l
3((1− γ3)

2(1− γ2)γ3(2− γ3) + 4(1− γ3)
3γ2 + (1− γ3)

(1− γ2)
3(1 + γ3) + 6(1− γ3)(1− γ2)

2γ3 + 11γ2 + 3(2− γ3)γ3

+ 9(1− γ3)γ2 + 11(1− γ3)γ3γ2 + 4(1− γ3)γ3 + 2(1− γ3)
3(1

− γ2)
2 + (1− γ2)

3 + 4(1− γ2)
2) + l2k(2(1− γ2)

3 + 3(1− γ2)
2

(1− γ2
3) + 12(1− γ2)

2 + 4(1− γ2)(1− γ3)
2(2 + γ3) + 30(1− γ3)γ2

+ 38γ2 + 4(1− γ3)
3 + 12(1− γ3)γ3 + 15(2− γ3)γ3) + lk2(9(1

− γ2)
2 + 3(1− γ2)(1− γ3)

2 + 12(1− γ3)γ2 + 39γ2 + 9(2− γ3)γ3

+ 6(2− γ3)γ3 + 6(1− γ3) + 15) + 12k3(1 + γ2))

]

×

[

3(l((2− γ3)

(1− γ3)(1− γ2) + (2− γ2 + γ2
2)γ3) + 2k((1− γ2) + γ2γ3))

2

]−1

.

(D.7)
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For the twelfth(αi, αi+1, αi+2)-triplet in Table 8.9 the derivative ofy∗
COG to γ1

is given by

∂y∗
COG

∂γ1
=

[

γ2γ3(γ2 + γ3 − 1)(l3(1− γ1)(12γ1(γ2γ3 − γ1(γ2 + γ3 − 1))4 + (γ2
1

− 2γ1 + 6)(2− γ1)γ1(1− γ2)(1− γ3)(γ2γ3 − γ1(γ2 + γ3 − 1))3

+ (−3γ3
1 + 9γ2

1 − 16γ1 + 17)γ1(1− γ2)
2(1− γ3)

2(γ2γ3 − γ1(γ2

+ γ3 − 1))2 + (−γ4
1 + 2γ3

1 − γ2
1 + 8)(1− γ1)

3(γ2 + γ3 − 1)4 + 32(1

− γ1)
2(1− γ2)(1− γ3)(γ2 + γ3 − 1)3 + (10γ4

1 − 31γ3
1 + 26γ2

1 − 17

γ1 + 48)(1− γ1)(1− γ2)
2(1− γ3)

2(γ2 + γ3 − 1)2 + (3γ5
1 + 15γ4

1

− 52γ3
1 + 48γ2

1 − 34γ1 + 32)(1− γ2)
3(1− γ3)

3(γ2 + γ3 − 1) + (4γ3
1

+ 13γ2
1 − γ1 + 8)(1− γ1)(1− γ2)

4(1− γ3)
4) + l2k(γ2γ3 − γ1(γ2

+ γ3 − 1))(12(γ2γ3 − γ1(γ2 + γ3 − 1))3 + 18(1− γ1)γ1(γ2γ3 − γ1

(γ2 + γ3 − 1))3 + 2(−2γ3
1 + 7γ1 + 2)(1− γ1)(1− γ2)(1− γ3)(γ2γ3

− γ1(γ2 + γ3 − 1))2 + 17(1− γ1)(γ2 + γ3 − 1)(γ2γ3 − γ1(γ2 + γ3

− 1))2 + (−4γ2
1 + 8γ1 + 13)(1− γ1)

2(1− γ2)(1− γ3)(γ2 + γ3 − 1)2

+ (γ4
1 − 4γ3

1 − 26γ2
1 + 16γ1 + 26)(1− γ1)(1− γ2)

2(1− γ3)
2(γ2

+ γ3 − 1) + (−5γ3
1 − γ2

1 + 21γ1 + 13)(1− γ1)(1− γ2)
3(1− γ3)

3)

+ 3lk2(γ2γ3 − γ1(γ2 + γ3 − 1))2(2(−γ2
1 + γ1 + 4)(γ2γ3 − γ1(γ2

+ γ3 − 1))2 + 3((1− γ2)(1− γ3) + γ2γ3 − γ1(γ2 + γ3 − 1))(1− γ1)

(γ2 + γ3 − 1) + (2 + γ1)γ1(1− γ1)(1− γ2)(1− γ3)((1− γ2)(1− γ3)

+ γ2γ3 − γ1(γ2 + γ3 − 1)) + (1− γ2)
2(1− γ3)

2(3 + γ1)(1− γ1))

+ 12k3(γ2γ3 − γ1(γ2 + γ3 − 1))4)

]

×

[

3(γ2γ3 − γ1(γ2 + γ3 − 1))2

(l((γ2
1 − γ1 + 2)(1− γ1)(γ2 + γ3 − 1)2 + (−γ3

1 + 2γ2
1 − 3γ1 + 4)(1

− γ2)(1− γ3)(γ2 + γ3 − 1) + 2(γ2
1 + 1)(1− γ2)

2(1− γ3)
2) + k(2(1

− γ1)(γ2 + γ3 − 1)2 + 2(−γ2
1 + 2)(1− γ2)(1− γ3)(γ2 + γ3 − 1)

+ 2(1 + γ1)(1− γ2)
2(1− γ3)

2))2
]−1

, (D.8)

while the derivative ofy∗
COG to γ2 is given by

∂y∗
COG

∂γ2
=

[

γ1γ3(1− γ3)(l
3((−γ3

1 + 7γ2
1 + 8)(1− γ1)

4(γ2 + γ3 − 1)4 + 2(−γ4
1

+ 4γ3
1 + 15γ2

1 + 6γ1 + 16)(1− γ1)
3(1− γ2)(1− γ3)(γ2 + γ3 − 1)3

+ (γ5
1 − 15γ4

1 + 33γ3
1 + 35γ2

1 + 36γ1 + 48)(1− γ1)
2(1− γ2)

2(1

− γ3)
2(γ2 + γ3 − 1)2 + 4(γ5

1 − 6γ4
1 + 10γ3

1 + 2γ2
1 + 9γ1 + 8)(1− γ1)
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(1− γ2)
3(1− γ3)

3(γ2 + γ3 − 1) + 4(γ2
1 + 1)(γ3

1 − 3γ2
1 + 3γ1 + 2)(1

− γ2)
4(1− γ3)

4) + l2k(γ3γ2 − γ1(γ2 + γ3 − 1))((−2γ3
1 + 18γ2

1

+ 8γ1 + 29)(1− γ1)
3(γ2 + γ3 − 1)3 + 3(1− γ2)(1− γ3)(24γ2

1 + 14

γ1 + 29)(1− γ1)
2(γ2 + γ3 − 1)2 + 3(1− γ2)

2(1− γ3)
2(−γ4

1 + 24γ2
1

+ 20γ1 + 29)(1− γ1)(γ2 + γ3 − 1) + (1− γ2)
3(1− γ3)

3(γ4
1 − 2γ3

1

+ 18γ2
1 + 26γ1 + 29)) + 3lk2(γ3γ2 − γ1(γ2 + γ3 − 1))2((3γ2

1 + 7γ1

+ 11)(1− γ1)
2(γ2 + γ3 − 1)2 + 2(1− γ1)(1− γ2)(1− γ3)(5γ

2
1 + 8

γ1 + 11)(γ2 + γ3 − 1) + (1− γ2)
2(1− γ3)

2(−γ3
1 + 5γ2

1 + 9γ1 + 11))

+ 12k3(1 + γ1)(γ3γ2 − γ1(γ2 + γ3 − 1))4)

]

×

[

3(γ3γ2 − γ1(γ2 + γ3

− 1))2(l((γ2
1 − γ1 + 2)(1− γ1)(γ2 + γ3 − 1)2 + (−γ3

1 + 2γ2
1 − 3γ1

+ 4)(1− γ2)(1− γ3)(γ2 + γ3 − 1) + 2(γ2
1 + 1)(1− γ2)

2(1− γ3)
2)

+ k(2(1− γ1)(γ2 + γ3 − 1)2 + 2(−γ2
1 + 2)(1− γ2)(1− γ3)(γ2 + γ3

− 1) + 2(1 + γ1)(1− γ2)
2(1− γ3)

2))2
]−1

. (D.9)

For the first(αi+1, αi+2)-pair in Table 8.10 the derivative ofy∗
COG to γ1 is given

by

∂y∗
COG

∂γ1
=

[

(1− γ2)(1− γ3)(l
3(((−γ3

1 − 5γ1 + 12)γ1 + 2γ3
1(1 + γ2) + 3γ2

1γ2

+ 2γ2
2)(1− γ2)(1− γ3) + (2γ3

1γ2γ3 + 8(1− γ2
1) + 1γ2

1γ3
2 + 6γ2

1γ2γ3

+ 10γ2
2 + 2γ2γ

2
3)(1− γ3) + (−4γ3

1 + γ2
1 + 6)γ2 + 14(1− γ2

1)γ2γ3

+ γ2
1γ2γ

3
3 + 16γ2γ

2
3) + l2k(γ2(4(6− γ3

1) + γ3(−27γ2
1 + 31γ3 + 53))

+ (1− γ3)(3γ
2
1γ2(2− γ2 + 2γ3) + 18(1− γ2

1) + 2(9γ1 + γ2
2)(1− γ2)

+ 19γ2
2 + 2γ2γ

2
3 + 11)) + 3lk2((2(1− γ1)(1 + γ1) + 2γ1(1− γ2)

+ 3γ2
2 + 9)(1− γ3) + γ2(1− γ1)(1 + γ1)(1 + 4γ3) + γ2(5γ

2
3 + 17γ3

+ 9)) + 12k3(γ2(1 + 2γ3) + 1(1− γ3)))

]

×

[

3(l((γ2
1 − γ1 + 2)

(1− γ2)(1− γ3) + 1γ1γ2(γ
2
3 + γ2(1− γ3) + 1)) + 2k(γ1γ2

+ (1− γ2)(1− γ3)))
2

]−1

, (D.10)

326



Appendix D. Appendix to Section 8.5.2

while the derivative ofy∗
COG to γ2 is given by

∂y∗
COG

∂γ2
=

[

γ1(1− γ3)(l
3((11γ2

2γ3 + 3γ3 + 13γ2
3 + 3γ2

2γ3)(1− γ1) + 11(γ2 + 1)

(1− γ1)(1− γ2) + (2γ1γ
3
2γ3 + 4γ3

2 + 20γ2)(1− γ1)(1− γ3) + 3(γ2

+ 1)(1− γ2) + (γ3
1γ2 + 6γ2

1γ2 + γ1γ
3
2 + γ1γ

2
2 + 4γ2)(1− γ2)(1− γ3)

+ (γ3
1γ2 + 2γ2

1γ3
2γ3 + 2γ2

1γ3
2 + γ2

1γ2
3 + 2γ2

3)(1− γ3) + (3γ3 + 1)γ3

(1− γ1γ
2
2) + 4γ1(γ1 − γ3

2γ3) + γ3
1γ2

3 + γ3
1 + 5γ2

1γ2
3 + 3γ2

1γ3 + γ1γ
2
2

γ3
3 + γ1γ

3
3 + 2γ3) + l2k((−12γ1 + 4γ3

2 + 18γ2
3 + 9γ3 + 53)(1− γ1)

+ 4(6γ1 + 6γ1γ2γ3 + γ2
2γ3 + γ2γ3 + γ3)(1− γ2) + 3γ1(1− γ2)

2

+ (3γ2
1γ2 + 15γ2 + 3γ1γ

2
2 + 3γ1γ

2
2γ3 + 2γ2

3)(1− γ3) + 3(γ2
1 + 9)γ2

(1− γ2)(1− γ3) + 2γ3
1 + 6γ2

1γ2
3 + 9γ2

1γ3 + 6γ1γ
2
2 + 6γ1γ2γ3 + 13γ2

3

+ 11γ3) + 3lk2((3γ2 + 2γ2
3 + 2γ3 + 13)(1− γ1) + (4γ1γ2γ3 + 2γ2

+ 6γ3)(1− γ2) + γ2(1− γ1)(1− γ2) + 2γ2
1γ3 + 3γ2

1 + 3γ2
2γ3 + 3γ2

3

+ 2γ3 + 8) + 12k3(2− γ1 + γ3))

]

×

[

3(l((γ2
1 − γ1 + 2)(1− γ2)

(1− γ3) + γ1γ
2
2(1− γ3) + γ1γ2(1 + γ2

3)) + 2k(γ1γ2 + (1− γ2)

(1− γ3)))
2

]−1

, (D.11)

and the derivative ofy∗
COG to γ3 is given by

∂y∗
COG

∂γ3
=

[

γ1γ2(l
3((9γ3 + 14)(1− γ1)(1− γ2) + 14γ3(1− γ1)(1− γ2)(1− γ3)

+ (γ3
1γ3 + γ3

1 + 2γ2
1γ3

3 + 3γ2
1γ3 + 7γ2

1 + 4γ3
3 + 1γ3 + 6)(1− γ2)

+ (1− γ1γ2)(1− γ2)γ3 + (1− γ1γ
2
2)(1− γ2)γ3 + (γ3

1γ3 + 9γ2
1γ3

+ 10γ3)(1− γ2)(1− γ3) + (γ1γ
3
2γ3 + 6γ1γ

2
2γ3 + γ1γ2γ

3
3 + 8γ1γ2γ3

+ 2γ1γ
2
3)(1− γ3) + 3γ1(γ2 − γ3) + 2γ3

3γ1γ
2
2 + γ3

3γ1γ2 + γ1γ
3
2

+ 4γ1γ
2
2) + l2k((47 + 15γ3)(1− γ1)(1− γ2) + (2γ3

1 + 6γ2
1γ3 + 21γ2

1

+ 4γ3
3 + 12γ3 + 24)(1− γ2) + 6(1− γ1γ3)(1− γ2) + (6γ2

1γ3 + 39γ3)

(1− γ2)(1− γ3) + 3γ1γ3γ2(11 + γ2)(1− γ3) + 3(2γ2 + 5)γ1

(γ2 − γ3) + 18γ1γ
2
3 + 3γ1γ3γ

2
2 + 2γ1γ

3
2 + 6γ1γ

2
2) + 3lk2(15(1− γ1)

(1− γ2) + (5γ2
1 + 5γ3 + 16)(1− γ2) + 5γ3(1− γ2)(1− γ3) + 4γ1γ2
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γ3(1− γ3) + 4γ1(2γ2 − γ3) + 3γ1γ
2
2 + 2γ1γ3γ2 + 2γ1γ

2
3) + 12k3(γ1

γ2 + (3− γ1)(1− γ2)))

]

×

[

3(l((γ2
1 − γ1 + 2)(1− γ2)(1− γ3) + γ1

γ2
2(1− γ3) + γ1γ2(1 + γ2

3)) + 2k(γ1γ2 + (1− γ2)(1− γ3)))
2

]−1

.

(D.12)
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Vol. 21 of Courier Forschungsinstitut Senckenberg. E. Schweizerbart Verlag, Stutt-
gart, Germany, 844 p.

Meesters, E., Bak, R., Westmacott, S., Ridgley, M., Dollar,S., 1998. A fuzzy logic
model to predict coral reef development under nutrient and sediment stress. Conserv.
Biol. 12, 957–965.

Mencar, C., Castellano, G., Fanelli, A., 2005. Some fundamental interpretability issues
in fuzzy modeling. In: Proceedings of Joint Fourth Conference of the European
Society for Fuzzy Logic and Technology and the 11th Recontres Francophones sur
la Logique Flou et ses Applications (EUSFLAT-LFA 2005). Barcelona, Spain, pp.
100–105.

Metcalfe, J., 1989. Biological water quality assessment ofrunning waters based on
macroinvertebrates communities: History and present status in Europe. Environ.
Pollut. 60, 101–139.

Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = Evolution Programs,
3rd Edition. Springer, Berlin.

Michalewicz, Z., Fogel, D., 2000. How to Solve It: Modern Heuristics. Springer Ver-
lag, Berlin.

Miller, G., 1956. The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychol. Rev. 63, 81–97.

336



Bibliography

Ministerie van de Vlaamse Gemeenschap, 2000. Handboek voorde karakterisatie
van de bodems van de Vlaamse waterlopen volgens TRIADE. Ministerie van de
Vlaamse Gemeenschap, Departement leefmilieu en infrastructuur, Administratie
Milieu-, Land- en Waterbeheer, Brussel, Belgium, 2nd Edition, in Dutch.

Mitra, B., Scott, H., Dixon, J., McKimmey, J., 1998. Applications of fuzzy logic to the
prediction of soil erosion in a large watershed. Geoderma 86, 183–209.

Moller Pillot, H., Buskens, R., 1990. Larvae of the Dutch Chironomidae. Auto-ecology
and distribution. Dutch faunal announcements. FoundationEuropean Invertebrate
Survey-the Netherlands. National Natural Historical Museum, Leiden, the Nether-
lands, 87p., in Dutch.

Mühlenbein, H., Schlierkamp-Voosen, D., 1993. Predictive models for the breeder ge-
netic algorithm I: continuous parameter optimization. Evol. Comput. 1, 25–49.

Nauck, D., Kruse, R., 1997. A neuro-fuzzy method to learn fuzzy classification rules
from data. Fuzzy Sets Syst. 89, 377–388.

Omlin, M., Reichert, P., 1999. A comparison of techniques for the estimation of model
uncertainty. Ecol. Model. 115, 45–59.

Osyczka, A., 2002. Evolutionary Algorithms for Single and Multicriteria Design Op-
timization. Vol. 79 of Studies in Fuzziness and Soft Computing. Physica Verlag,
Heidelberg.

Paiva, R., Dourado, A., 2004. Interpretability and learning in neuro-fuzzy systems.
Fuzzy Sets Syst. 147, 17–38.

Park, D., Cao, Z., Kandel, A., 1992. Investigations on the applicability of fuzzy infer-
ence. Fuzzy Sets Syst. 49, 151–169.

Parsons, M., Norris, R., 1996. The effect of habitat-specific sampling on biological
assessment of water quality using a predictive model. Freshw. Biol. 36, 419–434.

Patel, A., 2004. Transformation functions for trapezoidalmembership functions. Inter-
national Journal of Computational Cognition 2 (3), 115–135.

Patel, A., Mohan, B., 2002. Some numerical aspects of centerof area defuzzification
method. Fuzzy Sets Syst. 132, 401–409.

Pedrycz, W., 1994. Why triangular membership functions. Fuzzy Sets Syst. 64 (1),
21–30.

Pedrycz, W., Gomide, F., 1998. An Introduction to Fuzzy Sets: Analysis and Design.
The MIT Press, Cambridge, USA.

Perfilieva, I., Kreinovich, V., 2002. A new universal approximation result for fuzzy
systems, which reflects CNF-DNF duality. Int. J. Intell. Syst. 17, 1121–1130.

337



Bibliography

Piepers, S., 2005. Detectie van subklinische mastitis bij gebruik van een melkrobot:
beschrijving van een vaag model. M.Sc. thesis, Ghent University, Gent, Belgium.

Poff, N., Allan, J., 1995. Functional organization of stream fish assemblages in relation
to hydrological variability. Ecology 76, 606–627.

Radcliffe, N., 1991. Equivalence class analysis of geneticalgorithms. Complex Syst.
5, 183–205.

Rademaker, M., 2004. Gebruik van genetische algoritmen voor experimenteel ontwerp.
M.Sc. thesis, Ghent University, Gent, Belgium.

Rechenberg, I., 1973. Evolutionstrategie: Optimierung technisher Systeme nach
Prinzipien des biologischen Evolution. Fromman-HolzboogVerlag, Stuttgart, Ger-
many.

Regan, H., Colyvan, M., Burgman, M., 2002. A taxonomy and treatment of uncertainty
for ecology and conservation biology. Ecol. Appl. 12, 618–628.

RIZA, 2000. Database disposed by the Institute for Inland Water Management and
Waste Water Treatment. RIZA, the Netherlands, in Dutch.

Rojas, I., Gonzalez, J., Pomares, H., Rojas, F., Fernández, F., Prieto, A., 2001. Multidi-
mensional and multideme genetic algorithms for the construction of fuzzy systems.
Int. J. Approx. Reasoning 26, 179–210.

Rosenberg, R., Resh, V. (Eds.), 1993. Freshwater Biomonitoring and Benthic Macroin-
vertebrates. Chapman and Hall, New York, NY, USA.

Roychowdhury, S., Pedrycz, W., 2001. A survey of defuzzification strategies. Int. J.
Intell. Syst. 16, 679–695.

Roychowdhury, S., Wang, B.-H., 1996. Cooperative neighbors in defuzzification.
Fuzzy Sets Syst. 78, 37–49.

Ruspini, E., 1969. A new approach to clustering. Information and Control 15, 22–32.

Rykiel, E., 1996. Testing ecological models: the meaning ofvalidation. Ecol. Model.
90, 239–244.

Sakly, A., Benrejeb, M., 2003. Activation of trapezoidal fuzzy subsets with different
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Summary

In linguistic fuzzy models the knowledge about the system isexpressed in words, more
specifically in if-then rules such as ’IF the slope is very large AND the coverage by
vegetation is low THEN the expected soil loss by erosion is high’. Hence the term
linguistic fuzzy models. They are referred to as linguisticfuzzymodels since fuzzy sets
are used to incorporate the uncertainty in the definition of the linguistic values ‘very
large’, ‘low’ and ‘high’ of the linguistic variables ‘slope’, ‘coverage by vegetation’ and
‘expected soil loss by erosion’ in the model. In contrast to classical set theory where
one or zero is assigned to an object (e.g.a real value) depending on whether the object
is in or not in a set, a fuzzy set is characterized by a membership function which assigns
a grade ranging between zero and one to each object to reflect the degree to which an
object is ‘a member’ of the fuzzy set.

The components of a linguistic fuzzy model,i.e. the if-then rules, membership
functions and mathematical operations used to obtain a model output from an input, can
all be based on knowledge from an expert familiar with the system, or can — either
partially or completely — be derived from data. In general, other modelling techniques
allow for a higher accuracy than linguistic fuzzy models,i.e. other types of models re-
turn an output that resembles the output in the data set to a higher degree. Linguistic
fuzzy models, however, have an interpretable model structure: a simple reading of the
if-then rules gives insight in the system’s behaviour and a meaning can be assigned to
the fuzzy sets. This property, setting linguistic fuzzy models apart from other modelling
techniques, is considered their greatest asset. Therefore, in the identification process
of a linguistic fuzzy model, the interpretability of the model should be safeguarded or
at least be balanced against its accuracy. A good trade-off between accuracy and in-
terpretability can be obtained by including as much qualitative knowledge as possible,
how little this may be, in the data-driven model identification process. Monotonicity is
the type of qualitative knowledge that plays a central role in this dissertation. Monotone
is hereby interpreted as order-preserving.

First, however, this dissertation shortly addresses a topic from the fuzzy mod-
elling domain which is not related with monotonicity: the computational aspects of
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the Center of Gravity defuzzification method, a defuzzification method which has a
high computational burden. Two computational methods, theslope-based method and
the modified transformation function method, were introduced to determine the crisp
output of Mamdani–Assilian models using a fuzzy output partition of trapezial mem-
bership functions. The accuracy, computational cost and implementational complexity
of these two methods and the commonly applied discretization method were discussed
for the basic t-normsTM, TP andTL. Its easy implementation appears to be the only
advantage of the discretization method. The two other methods to compute the Center
of Gravity defuzzification method are not as straightforward to implement but allow
both a quicker and more accurate computation. Of the three methods presented, the
modified transformation function method has the smallest computational cost while
being as accurate as the slope-based method.

In the ecological case study described in the second part of this dissertation habi-
tat suitability models were developed. Fuzzy ordered classifiers were applied to a mod-
elling problem concerning the habitat suitability of riversites along springs to small
rivers in the Central and Western Plains of Europe for 86 macroinvertebrate species.
For each species, four models were developed, an A-, N-, P-, and C-model. The fuzzy
classifiers take a certain width, velocity and either ammonium (A), nitrate (N) or phos-
phate (P) concentration or electrical conductivity (C) as input and return four values
between 0 and 1 as output, indicating the degree to which the river site is considered
‘not suitable’ respectively ‘lowly’, ‘moderately’ and ‘highly suitable’ for the species
to establish a population. Ordered linguistic values were assigned to both input and
output variables, but the output variable,i.e. the habitat suitability, was not necessarily
monotone in the input variables. The models were built usingexpert knowledge and
evaluated on the EKOO data set collected in the Province of Overijssel in the Nether-
lands. The data allowed for an objective evaluation of the four developed models for 12
species. The fact that among them only one is an indicator forreference conditions, in-
dicates that given the present environmental conditions ofrivers in EU Member States,
shifts in abundance levels of more common species are more suitable to detect gradual
changes in water quality. With an improving water quality, the follow-up of indicator
species with more narrow niches will gain importance. Of these 48 objectively evalu-
ated models, 16 models turned out to have a good model performance expressed by the
performance measure % CFCI. These 16 good performing and objectively evaluated
models are all, except one model, N- or P-models. For the 48 models for which the
EKOO data set allowed for an objective evaluation, an interpretability-preserving as
well as an accuracy-oriented genetic optimization of the membership functions in the
input domains, applying once binary-coded and once real-coded genetic algorithms,
was carried out. As fitness function, a new performance measure for fuzzy ordered
classifiers was applied, referred to as the average deviation (AD) as it takes the order of
the output classes into account by returning the average deviation between the position
of the class obtained with the model and the position of the class stored in the data
set. A purely accuracy-oriented optimization showed to be no option when one wants
to preserve the interpretability of the habitat suitability models under study with the
EKOO data set. In this case, expert knowledge is a prerequisite to build interpretable
models in order to define the rule bases and determine the optimization intervals of
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the membership function parameters. Furthermore, the optimization results stress the
importance of uniformly distributed and unambiguous training data for model opti-
mization.

The third, more methodological issue discussed in this dissertation is the mono-
tonicity of linguistic fuzzy models. In monotone models, ordered linguistic values are
assigned to both input and output variables and the model output is monotone in all
input variables. Models were assumed to apply a fuzzy partition of trapezial member-
ship functions in all input domains as well as in the output domain, which imposes
a natural order on the linguistic values of all variables, and to have a monotone rule
base,i.e. to use a set of if-then rules describing a monotone relation between the input
variables and the output variable. The monotonicity of linguistic fuzzy models un-
der different inference procedures was discussed: two existing inference procedures,
Mamdani–Assilian inference andplain implicator-based inference, and a new infer-
ence procedure, ATL–ATM inference. Mamdani–Assilian models applying one of the
three basic t-normsTM, TP andTL combined with either the Center of Gravity or the
Mean of Maxima defuzzification method were considered. Furthermore, models ap-
plying plain implicator-based inference or ATL–ATM inference, one of the three basic
t-normsTM, TP or TL, one of the three R-implicatorsIM, IP or IL and the Mean of
Maxima defuzzification method, were studied. The objectiveof this study was to select,
for each inference procedure, combinations of t-norm, implicator and defuzzification
method resulting in a monotone input-output behaviour for any monotone rule base,
or at least for any monotone smooth rule base. A rule base is called smooth if every
set of two rules differing in only one input variable in theirantecedent and containing
adjacent values for this variable, have equal or adjacent values in their consequent.

For the assumed model properties, the input-output behaviour of models with
m input variables reduces to the input-output behaviour of models withm∗ (m∗ < m)
input variables in those regions of the input space where theinputs belong to the kernel
of the same linguistic value in all butm∗ input domains. Thus, if certain model proper-
ties are necessary to guarantee monotonicity for models with m∗ input variables, these
model properties are also required to guarantee a monotone input-output behaviour for
models with more thanm∗ input variables. Furthermore, an auxiliary interpolation
procedure was presented which allows for the extension of results obtained for models
for which all linguistic output values in the rule consequents are defined by trapezial
membership functions of identical shape to models with any fuzzy output partition of
trapezial or triangular membership functions.

For a model with two input variables and a monotone rule base monotonic-
ity cannot be guaranteed for the considered combinations ofinference procedures, t-
norms, implicators and defuzzification methods, except forMamdani–Assilian infer-
ence combined with the t-normTP and the Mean of Maxima defuzzification method
if, at least, the model satisfies additional constraints. For Mamdani–Assilian models
with two input variables and any monotone rule base applyingthe Mean of Maxima
defuzzification method, a monotone input-output behaviourcan be guaranteed when
using a fuzzy output partition corresponding to one of the following schemata{ *, tri-
angular, triangular, triangular, *}, { *, triangular, triangular, *} or { *, *, * } with
* a membership function that might be either triangular or trapezial. When a sys-
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tem with two input variables is described by a monotone smooth rule base a wider
range of inference procedures can be applied: Mamdani–Assilian inference with the
t-norm TP and the Center of Gravity or Mean of Maxima defuzzification method,
Mamdani–Assilian inference with the t-normTM and the Mean of Maxima defuzzi-
fication method, ATL–ATM inference with the t-normTP, the implicatorIL and the
Mean of Maxima defuzzification method or ATL–ATM inference with the t-normTL,
the implicatorIM, IP or IL and the Mean of Maxima defuzzification method. The
monotonicity of ATL–ATM models with three or more input variables was not stud-
ied in this dissertation. For Mamdani–Assilian models applying the Center of Gravity
defuzzification method, models with up to three input variables were investigated. It
was proved that with the auxiliary interpolation procedure, a monotone input-output
behaviour is always obtained for Mamdani–Assilian models with three input variables
and a monotone smooth rule base applying the t-normTP and the Center of Gravity de-
fuzzification method. Furthermore, for Mamdani–Assilian models applying the Mean
of Maxima defuzzification method, it was shown that when applying the auxiliary in-
terpolation procedure, monotonicity can be guaranteed formodels with a monotone
smooth rule base applyingTM or TP and any fuzzy output partition.
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In lingüıstische vage modellen wordt de kennis over het gemodelleerde systeem in
woorden uitgedrukt, meer bepaald in als-dan regels zoals ‘ALS de helling heel groot
is EN de bedekking door vegetatie laag is DAN is het verwachteverlies aan bodem
hoog’. Vandaar de termlingüıstischevage modellen. Ze worden linguı̈stischevage
modellen genoemd daar vage verzamelingen gebruikt worden om de onzekerheid in de
definitie van de lingüıstische waarden ‘zeer hoog’, ‘laag’ en ‘hoog’ van de linguı̈stische
variabelen ‘helling’, ‘bedekking door vegetatie’ en ‘verwacht verlies aan bodem’ te in-
corporeren in het model. In tegenstelling tot de klassieke verzamelingenleer waar een
of nul wordt toegekend aan een object (bv. een reëel getal) afhankelijk of het tot de ver-
zameling behoort of er niet toe behoort, wordt een vage verzameling gekarakteriseerd
door een lidmaatschapsfunctie die een graad tussen nul en een toekent aan een object
afhankelijk van de mate waarin het object ‘lid’ is van de vageverzameling.

De componenten van een linguı̈stisch vaag model, d.w.z. de als-dan regels, lid-
maatschapsfuncties en wiskundige bewerkingen waarmee voor een modelingang een
corresponderende modeluitgang bekomen wordt, kunnen allemaal gebaseerd zijn op
kennis van een expert die vertrouwd is met het systeem, of kunnen — gedeeltelijk of
volledig — afgeleid worden uit data. Meestal zal met een andere modelleringstechniek
een nauwkeuriger model kunnen bekomen worden dan met linguı̈stische vage model-
lering, d.w.z. een ander soort model kan modeluitgangen opleveren die de uitgangen
in de data set beter benaderen. Linguı̈stische vage modellen hebben echter een inter-
preteerbare modelstructuur: het eenvoudigweg lezen van deals-dan regels verschaft
inzicht in het gedrag van het systeem en er kan een betekenis toegekend worden aan
de vage verzamelingen. Deze eigenschap onderscheidt linguı̈stisch vage modellen van
andere modelleringstechnieken en vormt hun grootste troef. Vandaar dat bij de iden-
tificatie van een lingüıstisch vaag model, de interpreteerbaarheid van het model dient
gevrijwaard te worden of op zijn minst dient afgewogen te worden tegen de nauwkeu-
righeid van het model. Een goed evenwicht tussen nauwkeurigheid en interpreteer-
baarheid kan bereikt worden door zoveel mogelijk kwalitatieve kennis, hoe weinig dit
ook mag zijn, te incorporeren in het data-gedreven optimalisatieproces. Monotoniteit
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is het soort kwalitatieve kennis dat een centrale rol speeltin dit proefschrift. Monotoon
wordt hierbij gëınterpreteerd als rangorde-bewarend.

In het eerste deel van dit proefschrift wordt een onderwerp uit het domein
van de lingüıstische vage modellering behandeld dat geen verband houdtmet mono-
toniteit: de rekenkundige aspecten van de zwaartepuntontvagingsmethode, een ont-
vagingsmethode met een hoge rekenkundige last. Twee berekeningsmethoden, de
‘helling-gebaseerde’ methode en de ‘aangepaste transformatiefunctie’ methode wer-
den gëıntroduceerd om de scherpe uitgang te bepalen van Mamdani–Assilian modellen
die gebruik maken van een vage uitgangspartitie van trapeziumvormige lidmaatschaps-
functies. De nauwkeurigheid, rekenkundige last en complexiteit van de implementatie
van deze twee methoden en de gebruikelijke discretisatiemethode werden besproken
voor de drie meest toegepaste driehoeksnormenTM, TP enTL. Haar eenvoudige im-
plementatie blijkt het enige voordeel te zijn van de discretisatiemethode. De twee an-
dere methoden voor de zwaartepuntsontvaging zijn niet zo eenvoudig te implementeren
maar resulteren beide in een snellere en meer nauwkeurige berekening. De ‘aangepas-
te transformatiefunctie’ methode heeft de kleinste rekenlast van de drie beschouwde
methoden terwijl ze zo nauwkeurig is als de ‘helling-gebaseerde’ methode.

In de ecologische casestudy, beschreven in het tweede deel van dit proefschrift,
werden habitatgeschiktheidsmodellen ontwikkeld. Vage geordende klassificatie werd
toegepast op een modelleringsprobleem over de habitatgeschiktheid van rivierlokaties
langs bronbeken tot kleine rivieren in de centrale en westelijke vlakten van Europa voor
86 macro-invertebratenspecies. Voor elk species werden vier modellen ontwikkeld, een
A-, N-, P- en C-model. De vage klassificaties hebben een bepaalde breedte, snelheid
en hetzij ammonium- (A), nitraat- (N) of fosfaat- (P) concentratie of elektrisch gelei-
dingsvermogen (C) als ingang en kennen vier waarden tussen 0en 1 toe als uitgang die
aangeven in welke mate een rivierlokatie verondersteld wordt ‘niet geschikt’, respectie-
velijk ‘laag’, ‘matig’ en ‘uitermate geschikt’ te zijn voorhet species om een populatie te
ontwikkelen. Geordende linguı̈stische waarden werden toegekend aan zowel ingangs-
als uitgangsvariabelen, maar de uitgangsvariabele, nl. dehabitatgeschiktheid, is niet
noodzakelijk monotoon in de ingangsvariabelen. De modellen werden ontwikkeld op
basis van expertkennis en geëvalueerd op de EKOO data set verzameld in de provincie
Overijssel in Nederland. De data lieten een objectieve evaluatie toe van de vier ont-
wikkelde modellen voor 12 species. Het feit dat onder hen slechtséén indicatorspecies
is voor referentieomstandigheden, geeft aan dat, gezien dehuidige milieukwaliteit van
rivieren in lidstaten van de Europese Unie, verschuivingenin de abundantie van meer
algemene species geschikter zijn om geleidelijke veranderingen van de waterkwaliteit
te detecteren. Bij een verbeterde waterkwaliteit zal de opvolging van indicatorspecies
met een beperktere niche aan belang winnen. Van de 48 objectief gëevalueerde model-
len, bleken 16 modellen goed te presteren op basis van de performantiemaat % CFCI.
Deze 16 goed presenterende en objectief geëvalueerde modellen zijn alle, behalve een
model, N- of P-modellen. Voor de 48 modellen waarvoor de EKOOdata set een ob-
jectieve evaluatie toeliet, werd een interpreteerbaarheidsbewarende alsook een nauw-
keurigheidsgeoriënteerde genetisch optimalisatie van de lidmaatschapsfuncties in de
ingangsdomeinen uitgevoerd, waarbij eens binairgecodeerde en eens rëeelgecodeerde
genetische algoritmen werden toegepast. Als fitnessfunctie werd een nieuwe perfor-
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matiemaat voor vage geordende klassificatie toegepast, average deviation (gemiddelde
afwijking) genoemd daar het de rangorde van de uitgangsklassen in rekening brengt
door de gemiddelde afwijking te geven tussen de rang van de klasse bekomen met het
model en de rang van de klasse opgeslagen in de data set. De resultaten tonen aan dat
een volledig nauwkeurigheidsgeoriënteerde optimalisatie niet kan toegepast worden
wanneer men de interpreteerbaarheid van de bestudeerde habitatgeschiktheidsmodel-
len wil bewaren met de EKOO data set. Wil men in dit geval interpreteerbare modellen
bekomen, dan is expertkennis vereist om enerzijds de regelbanken op te stellen en an-
derzijds de optimalisatieintervallen van de parameters van de lidmaatschapsfuncties te
definïeren. Verder benadrukken de resultaten ook het belang van uniform verdeelde en
ondubbelzinnige trainingsdata voor modeloptimalisatie.

Het derde, meer methodologisch deel van dit proefschrift handelt over de mo-
notoniteit van lingüıstische vage modellen. In monotone modellen worden geordende
lingüıstische waarden toegekend aan zowel ingangsvariabelen als aan de uitgangsva-
riabele en is de modeluitgang monotoon in alle ingangsvariabelen. Modellen werden
verondersteld, ten eerste, gebruik te maken van een vage partitie van trapeziumvormi-
ge lidmaatschapsfuncties in alle ingangsdomeinen en in hetuitgangsdomein, waardoor
een natuurlijke rangorde wordt opgelegd aan de linguı̈stische waarden van alle varia-
belen, en ten tweede, over een monotone regelbank te beschikken, d.w.z. een set van
als-dan regels te gebruiken die een monotone relatie beschrijven tussen de ingangs-
variabelen en de uitgangsvariabele. De monotoniteit van lingüıstische vage modellen
werd onderzocht voor verschillende inferentieprocedures: twee bestaande inferentie-
procedures, Mamdani–Assilian inferentie engewoneimplicator-gebaseerde inferen-
tie, en een nieuwe inferentie procedure, ATL–ATM inferentie. Mamdani–Assilian
modellen die gebruik maken van een van de drie meest toegepaste driehoeksnormen
TM, TP enTL gecombineerd met ofwel de zwaartepunt- ofwel de ‘gemiddelde-van-
de-maxima’-ontvagingsmethode werden beschouwd. Verder werden modellen bestu-
deerd diegewoneimplicator-gebaseerde inferentie of ATL–ATM inferentie,de drie-
hoeksnormTM, TP of TL, de R-implicatorIM, IP of IL en de ‘gemiddelde-van-de-
maxima’-ontvagingsmethode toepassen. Het doel van de studie was het selecteren,
voor elke inferentie procedure, van combinaties van driehoeksnorm, implicator en ont-
vagingsmethode waarvoor voor elke monotone regelbank of opzijn minst voor elke
monotone gladde regelbank, een monotoon ingangs-uitgangsgedrag bekomen wordt.
Een regelbank wordt glad genoemd indien elk paar van twee regels die slechts ińeén
ingangsvariabele verschillen en aangrenzende waarden bevatten voor deze variabele,
gelijke of aangrenzende waarden bevatten in hun consequent.

Voor modellen met de vooropgestelde eigenschappen, herleidt het ingangs-uit-
gangsgedrag van modellen metm ingangsvariabelen zich tot het ingangs-uitgangsge-
drag van modellen metm∗ (m∗ < m) ingangsvariabelen in de delen van de ingangs-
ruimte waarm−m∗ reële ingangswaarden tot de kern van dezelfde linguı̈stische waar-
den behoren. Dus, als bepaalde modeleigenschappen noodzakelijk zijn om de mono-
toniteit van modellen metm∗ ingangsvariabelen te garanderen, dan zijn deze model-
eigenschappen ook vereist om een monotoon ingangs-uitgangsgedrag te waarborgen
voor modellen met meer danm∗ ingangsvariabelen. Er wordt in dit proefschrift ook
een interpolatieprocedure beschreven die toelaat de resultaten bekomen voor modellen
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waarbij alle lingüıstische uitgangswaarden in de consequenten van de regels gedefini-
eerd zijn door gelijkvormige trapeziumvormige lidmaatschapsfuncties uit te breiden tot
modellen met om het even welke vage uitgangspartitie van driehoekige of trapezium-
vormige lidmaatschapsfuncties.

Voor een model met twee ingangsvariabelen en een monotone regelbank is
monotoniteit niet gegarandeerd voor de beschouwde combinaties van inferentiepro-
cedures, driehoeksnormen, implicatoren en ontvagingsmethoden, uitgezonderd voor
Mamdani–Assilian inferentie gecombineerd met de driehoeksnormTP en de ‘gemid-
delde-van-de-maxima’-ontvagingsmethode als het model aan bijkomende voorwaarden
voldoet. Voor Mamdani–Assilian modellen met twee ingangsvariabelen en om het even
welke monotone regelbank die de ‘gemiddelde-van-de-maxima’-ontvagingsmethode
toepast, is een monotoon ingangs-uitgangsgedrag gegarandeerd wanneer het model ge-
bruik maakt van een vage uitgangspartitie die overeenkomt met een van volgende sche-
ma’s{ *, driehoekig, driehoekig, driehoekig, *}, { *, driehoekig, driehoekig, *} or{ *,
*, * } met * een driehoekige of trapeziumvormige lidmaatschapsfunctie. Wanneer een
systeem van twee ingangsvariabelen wordt beschreven aan dehand van een monotone
gladde regelbank kan, eventueel door gebruik te maken van deinterpolatieprocedure,
een breder scala aan inferentieprocedures worden toegepast: Mamdani–Assilian infe-
rentie met de driehoeksnormTP en de zwaartepunt- of ‘gemiddelde-van-de-maxima’-
ontvagingsmethode, Mamdani–Assilian inferentie met de driehoeksnormTM en de
‘gemiddelde-van-de-maxima’-ontvagingsmethode, ATL–ATM inferentie met de drie-
hoeksnormTP, de implicatorIL en de ‘gemiddelde-van-de-maxima’-ontvagingsme-
thode of ATL–ATM inferentie met de driehoeksnormTL, de implicatorIM, IP of IL en
de ‘gemiddelde-van-de-maxima’-ontvagingsmethode. De monotoniteit van ATL–ATM
modellen met drie of meer ingangsvariabelen werd niet bestudeerd in dit proefschrift.
Voor Mamdani–Assilian modellen die de zwaartepuntontvagingsmethode toepassen,
werden modellen met tot drie ingangsvariabelen bestudeerd. Er werd aangetoond dat
met de interpolatieprocedure altijd een monotoon ingangs-uitgangsgedrag bekomen
wordt voor Mamdani–Assilian modellen met drie ingangsvariabelen en een monoto-
ne gladde regelbank die de driehoeksnormTP en de zwaartepuntontvagingsmethode
toepassen. Verder werd voor Mamdani–Assilian modellen diede ‘gemiddelde-van-
de-maxima’-ontvagingsmethode toepassen, aangetoond datwanneer gebruikt gemaakt
wordt van de interpolatieprocedure, monotoniteit gewaarborgd is voor modellen met
een monotone gladde regelbank die gebruik maken vanTM of TP en om het even
welke vage uitgangspartitie.
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• IEEE International Joint Conference on Neural Networks andFuzzy
Systems (FUZZ-IEEE), 25–29 juli, Budapest, Hongarije

2005 • First International Workshop on Genetic Fuzzy Systems, 17–19 maart,
Granada, Spanje
• Joint Fourth Conference of the European Society for Fuzzy Logic and
Technology and the 11th Recontres Francophones sur la Logique Flou
et ses Applications (EUSFLAT-LFA 2005), 7–9 september, Barcelona,
Spanje
• Symposium ‘Computational intelligence in water and environment’,
UNESCO-IHE Institute for Water Education, 15 december, Delft, Ned-
erland

2006 • Annual Machine Learning Conference of Belgium and the Netherlands
(BENELEARN), 11–12 mei, Gent, België
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2006, 6 pagina’s, CD.

354


