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LEGENDE VON DERENTSTEHUNG DESBUCHES TAOTEKING
AUF DEM WEG DESLAOTSE IN DIE EMIGRATION

1

Als er siebzig war und war gebrechlich

Dréangte es den Lehrer doch nach Ruh

Denn die Gite war im Lande wieder einmal schehlich
Und die Bosheit nahm an Eften wieder einmal zu.
Und er dirtete den Schuh.

2

Und er packte ein, was er so brauchte:

Wenig. Doch es wurde dies und das.

So die Pfeife, die er immer abends rauchte

Und das Bichlein, das er immer las.

Weil3brot nach dem Augenmali.

3

Freute sich des Tals noch einmal und vergal} es

Als er ins Gebirg den Weg einschlug.

Und sein Ochse freute sich des frischen Grases
Kauend, vithrend er den Alten trug.

Denn dem ging es schnell genug.

4

Doch am vierten Tag im Felsgesteine

Hat ein 2liner ihm den Weg verwehrt:
“Kostbarkeiten zu verzollen ?” — “Keine.”

Und der Knabe, der den Ochsdihfte, sprach: “Er hat gelehrt”
Und so war auch das eréit.

5

Doch der Mann in einer heitren Regung

Fragte noch: “Hat er was rausgekriegt ?”

Sprach der Knabe: “Daf3 das weiche Wasser in Bewegung
Mit der Zeit den rachtigen Stein besiegt.

Du verstehst, das Harte unterliegt”

6

DaR er nicht das letzte Tageslicht \ine

Trieb der Knabe nun den Ochsen an.

Und die drei verschwanden schon um eine schwaided-
Da kam pbtzlich Fahrt in unsern Mann

Und er schrie: “He, du ! Haltan !

7

Was ist das mit diesem Wasser, Alter ?”

Hielt der Alte: “Intressiert es dich ?™

Sprach der Mann: “Ich bin nur Zollverwalter

Doch wer wen besiegt, das intressiert auch mich.
Wenn du’s weil3t, dann sprich !




8

Schreib mir's auf! Diktier es diesem Kinde !

So was nimmt man doch nicht mit sich fort.

Da gibt’s doch Papier bei uns und Tinte

Und ein Nachtmabhl gibt es auch: ich wohne dort.
Nun, ist das ein Wort ? ”

9

Uber seine Schulter sah der Alte

Auf den Mann: Flickjoppe. Keine Schuh.

Und die Stirne ein einzige Falte.

Ach, kein Sieger trat da auf ihn zu.

Und er murmelte: “Auch du ?”

10

Eine tbfliche Bitte abzuschlagen

War der Alte, wie es schien, zu alt.

Den er sagte laut:“Die etwas fragen

Die verdienen Antword.” Sprach der Knabe:“Es wird auch soha@lt”
“Gut, ein kleiner Aufenthalt”

11

Und von seinem Ochsen stieg der Weise

Sieben Tage schrieben sie zu zweit.

Und der dliner brachte Essen (und er fluchte nur noch leise
Mit den Schmugglern in der ganzen Zeit).

Und dann war’s soweit.

12

Und dem Bliner handigte der Knabe

Eines Morgens einundachtzig $ighe ein

Und mit Dank @ir eine kleine Reisegabe

Bogen sie um jenedhre ins Gestein.

Sagt jetzt: kann mandiflicher sein ?

13

Aber ruihmen wir nicht nur den Weisen

Dessen Name auf dem Buche prangt !

Denn man muf3 dem Weisen seine Weisheit erst entreiRen.
Darum sei der Bliner auch bedankt:

Er hat sie ihm abverlangt.

(Bertolt Brecht, 1938)




LEGENDE VAN HET ONTSTAAN VAN HET BOEK TAOTEKING
TIJDENS DE EMIGRATIETOCHT VANLAOTSE

1

Toen hij zeventig was en zwak op zijn benen

Wou de leraar op rust, hij was moe,

Want het goede in het land was haast weer eens verdwenen
En het kwaad nam gaandeweg weer eens in krachten toe.
En hij bond zijn schoenen toe.

2

En hij pakte in wat hij nodig vond:

Weinig. Wat toch een en ander was.

Ook het pijpje dat hij rookte elke avond

En het boekje dat hij telkens las.

Ook wat witbrood, net van pas.

3

Blij keek hij nog eens het dal in en vergat het

Nu hij de weg naar de bergen insloeg.

Zijn os genoot van het frisse gras, hij at het

Traag terwijl hij de oude man droeg.

Want hem ging het snel genoeg.

4

In het gebergte echter verscheen,

Op de vierde dag, een tollenaar.

“Kostbaarheden aan te geven ?” — “Geen”

En de jongen die de os geleidde, zei: “Hij is leraar”
Dat was dan verklaard zowaar.

5

Maar de man, in opgewekte stemming,

Vroeg toen nog: “ Vond hij wel al iets uit ?”

De jongen zei:"Het zachte water in beweging
Haalt de sterkste steen ooit onderuit.

Je begrijpt dat hardheid niets beduidt”

6

Omdat de zon al zwak begon te schijnen

Spoorde de jongen de 0s nu aan.

Toen het drietal achter een zwarte den zou verdwijnen
Liep onze man plots achter hen aan

En hij riep:“H & jij! Blijf staan!

7

Hoe zit dat met dat water nou ?”

De oude stopte:“Heb j'er oren naar ?”

De man zei:*Wie van wie wint wil ik wel van jou
Vernemen, al ben ik slechts een tollenaar.

Als jij het weet, verklaar !




8

Schrijf het op, dicteer het aan dit kind hier !

Zoiets neem je toch niet met je mee.

Daar woon ik: je vindt er inkt en papier

En een maaltijd ook, is dat geen goed idee ?

Jij zegt toch niet nee ?”

9

De oude keek om en zag een simpele

Stakker: blootsvoets. Verstelde kledij.

En zijn voorhoofd was een en al rimpel.

Ach, geen winnaar kwam hier naderbij.

En hij mompelde:“Ook jij ? ”

10

Om wie iets hoffelijks vraagt te mishagen

Was de oude, naar het leek, te oud.

En toen sprak hij luid: “Zij die iets vragen

Verdienen een antwoord.” De jongen zei:“Het wordt ook al &6u
“Goed, een luttel oponthoud.”

11

En de wijze stapte af. Zij schreven

Samen zeven dagen na elkaar.

En de tollenaar bracht eten (en hij vioekte amper even
In die dagen op een smokkelaar.)

En toen was het klaar.

12

En de jongen gaf dan op een morgen

Eenentachtig spreuken aan de tollenaar weg.

En met dank voor wat reisgeld en de goede zorgen
Trokken zij omheen die zwarte den op weg.

Kan het echt nog hoffelijker, zeg ?

13

Maar, laten wij niet slechts de wijze prijzen

Wiens naam op het titelblad mocht !

Wijsheid moet men eerst afhandig maken van de wijze.
Danken wij dus ook de tollenaar nog:

Hij vroeg ernaar, zo is het toch.

(Bertolt Brecht, 1938, vertaling: Koen Stassijns en Ivo &rijten, 1998)
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CHAPTER 1

Introduction

"Would you tell me, please, which way | ought to go from
here?”

"That depends a good deal on where you want to get to,”
said the Cat.

"I don’t much care where—" said Alice.

"Then it doesn’t matter which way you go,’ said the Cat.
"—so0 long as | getsomewhere,” Alice added as an explana-
tion.

"Oh, you're sure to do that,” said the Cat, "if you only walk
long enough’”

(Alice’s Adventures in Wonderlandewis Carroll, 1865)

1.1 Setting

Linguistic fuzzy modelling is an attractive mathematical framework to formally repre-
sent systems for which qualitative knowledge, a linguistic description, is available.
In linguistic fuzzy models the knowledge about the systeaxj@essed in words, more
specifically in if-then rules such as 'IF the slope is verygaAND the coverage by
vegetation is low THEN the expected soil loss by erosion ghhi Hence the term
linguisticfuzzy models. They are referred to as linguistizzymodels since fuzzy sets
are used to incorporate the uncertainty in the definitiorheflinguistic values ‘very
large’, ‘low’ and ‘high’ of the linguistic variables ‘slopgcoverage by vegetation’ and
‘expected soil loss by erosion’ in the model. In contrastléssical set theory where
one or zero is assigned to an objeziya real value) depending on whether the object
isinornotin a set, a fuzzy setis characterized by a memigefishction which assigns
a grade ranging between zero and one to each object to réfeedegree to which an
object is ‘a member’ of the fuzzy set.

The components of a linguistic fuzzy modeg. the if-then rules, membership
functions and mathematical operations used to obtain a hoadput from an input,
can all be based on knowledge from an expert familiar withsiygtem, or can — ei-
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ther partially or completely — be derived from data. The fiirgguistic fuzzy models,
reported in the 1970’s and mainly applied as controllerefdace manual control by
human operators, were completely designed based on expesiddge. Later, data-
driven model identification of linguistic fuzzy models gathimportance. With this
shift from knowledge-based to data-driven model identificg the model accuracy,
i.e. the degree to which the output returned by the model resentbéeoutput in the
data set, became the principal model performance meashile,the underlying mean-
ing of the different model components was neglected. Most@de early data-driven
identification methods resulted for instance in models ypglfuzzy sets with such
strange shapes that no meaningful labels as ‘very low’, iomator ‘rather high’ could
be assigned to them. However, in the last decade their netatge model structuree.
the fact that a simple reading of the if-then rules givesghsin the system’s behaviour
and that a meaning can be assigned to the fuzzy sets, is nerlsolgly regarded as the
property that sets linguistic fuzzy models apart from othedelling techniques, but is
also considered their greatest asset. Awareness has dnaihé interpretability of a
model should be safeguarded or at least be balanced adsnsiodel accuracy in the
model identification process. A good trade-off between emmuand interpretability
can be obtained by including as much qualitative knowledgeossible, how little this
may be, in the data-driven model identification process. Wéhedata-driven identifi-
cation method results in interpretable linguistic fuzzydais, this method can be used
for data mining purposes since the obtained if-then rulelsfazzy sets give insight in
the system’s behaviour.

Monotonicity is the type of qualitative knowledge that plays a centrag iial
this dissertation. Monotone is hereby interpreted as epdeserving. Man often uses
ordered linguistic values when describing a system and hueaision making fre-
guently involves monotonicity. A garden is for instanceatdsed as ‘small’, ‘medium’
or ‘large’ and a location is considered ‘very easy’, ‘faigdgsy’ or ‘difficult’ to reach
by public transporti.e. the linguistic values assigned to variables such as ‘gasthen
and ‘accessibility by public transport’ are ordered. Capusntly, an environmentally
conscious person with a green thumb shall be willing to payenfior a house with a
large garden in easy reach of a main train station than foloaséwith a small patio
two blocks away from a bus stop. Or, expressed more matheaiigitithe price this
person is willing to pay for a house increases with increagarden size and increas-
ing accessibility by public transport. Formulated moreegaily, it is said that the price
is monotone in the garden size and the accessibility by ptiaihsport.

In the ecological case studydescribed in this dissertation habitat suitability
models were developed. Fuzzy ordered classifiers were osesbign fuzzy labels to
river sites expressing their suitability as a habitat foegan macroinvertebrate taxon,
given up to three abiotic properties of the considered rsitr. Ordered linguistic
values were assigned to both input and output variablesthieubutput variablei.e.
the habitat suitability, was not necessarily monotone @itiput variables. The mod-
els were built using expert knowledge and evaluated on ddlacted in the Province
of Overijssel in the Netherlands. In literature only penfi@ance measures for (fuzzy)
classifiers were found that indicate to which degree objamsassigned to a same
class or a different class by the model and in the data seh Witse measures a same
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performance is assigned to models assigning ‘small’ objecthe class of ‘medium’
objects and to models assigning ‘small’ objects to the abdSeery large’ objectsij.e.
these measures do not incorporate the available quatdititiowledge that the output
classes are ordered. Therefore, a new performance measutzfy ordered classi-
fiers was introduced, referred to as the average deviatity) &8 it takeghe order of
the output classednto account by returning the average deviation betweemptse
tion of the class obtained with the model and the positiomefdass stored in the data
set. Furthermore an interpretability-preserving genegitmization of the member-
ship functions in the input domains, applying once binasged and once real-coded
genetic algorithms, was carried out.

The second, more methodological halbf this dissertation discusses the mono-
tonicity of linguistic fuzzy models. In monotone modelsgdered linguistic values are
assigned to both input and output variables &mel model output is monotone in
all input variables. Linguistic fuzzy models applying different inference pedures,
i.e. different procedures to determine the model output cooeding to a given in-
put, were considered. Apart from two existing inferencecptures, the Mamdani—
Assilian and the implicator-based inference, that can legl lsit are not specifically
designed for monotone models, a new inference procedurmaddels with a monotone
rule base, called ATL-ATM inference, is introduced. Thisvriaference procedure is
based on a cumulative interpretation of the rule base. Far mderence procedure the
model behaviour was investigated for the most commonlyiagphathematical oper-
ators. Combinations of inference procedures and operatens selected that result in
a monotone input-output behaviour for all sets of if-theleswlescribing a monotone
relation between the input variables and the output vagiabhis selection could be
used as a guideline by designers of interpretable monotogeistic fuzzy models.

1.2 Aroad map to this dissertation

This dissertation consists of three main parts as showrgit i The first part includes
introductions to fuzzy rule-based models and genetic dlgos. In the second part the
identification and optimization of a fuzzy ordered classifiie an ecological modelling
problem is described. The final part discusses the mondtprat linguistic fuzzy
models.

Part | consists of three chapters. Chapter 2 starts withtaodinction to fuzzy
sets, one of the main components of fuzzy models. This ievi@t by the description
of the two main types of fuzzy rule-based models: the linguisizzy models, includ-
ing the Mamdani-Assilian models and the models applyindicamr-based inference,
on the one hand and the Takagi—Sugeno models, on the other fiae goal of this
chapter is twofold: to familiarize fuzzy modellers with thetation used in this dis-
sertation and to provide other readers with a sufficientkstodrade concerning fuzzy
modelling. Note that reading the tough Section 2.3.1 is egtired to comprehend the
inference procedures applied in linguistic fuzzy modefsChapter 3 a computation-
ally attractive and accurate implementation of the Cent&ravity (COG) defuzzifi-
cation method, applied in the final step of the Mamdani—Aesiinference procedure,
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Figure 1.1: A road map to this dissertation.

is introduced and compared to two other implementationenkfthe results described
in Chapter 3 were essential for the research written dowrhap&r 8, reading Chap-
ter 3 is not essential to comprehend Chapter 8. Chapter dsiiss the fundamentals of
both binary-coded and real-coded genetic algorithms. §logsimization algorithms
were applied in the ecological case study to optimize the bezahip functions in the
input domains of the habitat suitability models.

Part 1l deals with the ecological case study carried out énftamework of this
dissertation. In Chapter 5 the habitat suitability modeislt using expert knowledge
described in literature, are described and the data on vihemodels were evaluated
are discussed. Next, the measures used to evaluate thesnagdeetll as the results of
the model evaluation are presented. Chapter 6 starts widserigtion of the genetic
algorithm applied to optimize the membership functions®gdlected habitat suitabil-
ity models, with special attention to the applied represion of candidate solutions
and fitness function. Futhermore, the optimization resarésdiscussed.

Part 11l of this dissertation, consisting of Chapters 7-+4@edicated to my work
on the monotonicity of linguistic fuzzy models. In Chaptesaime general aspects are
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discussed, as the applicability of monotone linguistizfumodels, the model prop-
erties assumed in this work, the applied representatiofitben rules and the issue
of incomparable fuzzy model outputs. In Chapters 8-10 theatmicity of linguis-
tic fuzzy models under different inference proceduresssutised. Chapters 8-9 deal
with Mamdani—Assilian models applying the t-norffigr, 7p and7y, combined with
respectively the COG and MOM defuzzification method. Chapdgfocusses on mod-
els applying either plain implicator-based inference oL ARTM inference, one of the
three basic t-norm&y,, Tp or 11, one of the three residual implicatofgg, Ip or
I, and the MOM defuzzification method. For each inference piome combinations
of t-norm, implicator or defuzzification method were sedettresulting in a monotone
input-output behaviour for any monotone rule base, or &t les any smooth rule base.

The dissertation concludes with general conclusions agdestions for future
research in Chapter 11.




Chapter 1. Introduction




Part |

Basics






CHAPTER 2

Fuzzy rule-based models

Associer le mot flou avec le mot logique est choquant. La
logique, au sens vulgaire du mot, est une conception des
mécanismes de la peas qui ne devraittre jamais floue,
mais toujours rigoureuse et formelle. [...] La pé&eshu-
maine, superposition d’intuition et de rigueur, c’'ésdire
d’'une prise en compte globale ou paklé (recessairement
floue) et d'une prise en compte logique o&gsentielle
(nécessairement formelle), est udeanisme flou. Les lois de

la pen®e que nous pouvons faire entrer dans les programmes
des ordinateurs sont obligatoirement formelles, les |@isad
penge dans le dialogue homme-homme sont floues.
(Introduction a la Theorie des Sous-Ensembles Flous -
Vol. 1. Elements Teoriques de BaseArnold Kaufmann,
1973)

2.1 Introduction

Modelling the behaviour of a system can be done in variouswakie most traditional
approach is white-box modelling, which assumes that theesys behaviour is fully
known, and there exists a suitable mathematical schemmdiance a set of differen-
tial equations, to represent this behaviour. The requirgrfte a good understanding
of the system shows to be a severe limiting factor in practideen complex and poorly
understood systems are considered. In white-box modadiifigulties can arise from,
for instance, poorly understanding the underlying phem@anmaccurate values of var-
ious system parameters, or from the complexity of the rigguihodel (Casillas et al.,

2003a).

In black-box modelling the system under study is represtioyea mathematical
structure that is sufficiently general to correctly captilme dynamics and the nonlin-
earity of the system. In this modelling approach, the modehtification consists of
the selection of an appropriate mathematical structuteveld by the estimation of its
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parameters. If representative data are available, blagkaiodels usually can be de-
veloped quite easily, without requiring system-specifioktedge. A severe drawback
of this approach is that the structure and parameters oé timexlels usually do not
have any physical significance, in other words that theseefsate not interpretable
(Babuska, 1998).

A third, intermediate approach, called grey-box mode|lamitempts to combine
the advantages of the white-box and black-box approacheh,that the known parts
of the system are modelled using a priori knowledge, and theawn or partially
known parts are identified with black-box procedures. A camrdrawback of most
standard modelling approaches is that they cannot maketigéfeuse of extra infor-
mation, such as knowledge of persons who are familiar wighsiystem, information
which is often imprecise and qualitative in its nature (Bstay 1998). The type of
grey-box models used in this dissertation, the fuzzy ralseld models, can be identi-
fied using quantitative as well as qualitative informati@agillas et al., 2003a).

The main component of fuzzy rule-based models is the fuzley lvase, con-
taining rules of the form

IF antecedent part THEN consequent part

These if-then rules describe relations between the vasabt the system. A fuzzy
controller of a heater could for instance contain the folfayrule: IF temperature
is low AND change in temperature is negative THEN stronglyréase the power of
the heater. The antecedent defines when the rule holds amdrisequent describes
the corresponding conclusion (in fuzzy models) or desirgiba (in fuzzy control).
The if-then rule of the heat controller contains the lingjaisariables ‘temperature’,
‘temperature change’ and ‘power change’. These linguigitables take linguistic
values such as ‘low’, ‘OK’, ‘zero’ and ‘strong increase’. §hule-based nature of
the model allows for a linguistic description of the knowded which is captured in
the model (Sousa and Kaymak, 2002). Studies have beencauieto prove that
fuzzy systems are universal approximatars, they can uniformly approximate any
continuous real function on a compact domain to any degrescadiracy (Buckley,
1993; Campello and do Amaral, 2006; Perfilieva and KreinovR002; Ying et al.,
1999).

Depending on the structure of the rules, two main types ofyfuzle-based
models can be distinguished:

e linguistic fuzzy models, where both the antecedent andexpnent contain lin-
guistic values, and

e Takagi—Sugeno models, where the antecedent containgdiigualues and the
consequent contains a crisp function of the antecederghlas.

The linguistic values in the rules are defined by fuzzy setspracept which is in-
troduced in Section 2.2. The fuzzy sets serve as an intelfatveeen the linguistic
variables in the model, and the input and output numericélkes.

The rules and fuzzy sets can be identified from data usingwariechniques
such as fuzzy clustering, neural learning methods or gemdgiorithms (see (Guil-
laume, 2001) for an overview). Takagi—Sugeno models aretlynobtained by a

10
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1 11
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() (b)

Figure 2.1: Definition of the three linguistic values assidito temperature by means
of (a) crisp and (b) fuzzy sets.

purely data-driven identification, whereas when develgpimguistic fuzzy models a
knowledge-based identification approach is generally tabpData-driven identifica-
tion methods for fuzzy models used to be focussed on inargdise model’s accuracy,
paying little attention to the interpretability of the finalodel. Recently, however,
obtaining a good balance between the interpretability adirmacy is gaining impor-
tance in fuzzy modelling. Several mechanisms have beeropegito either guarantee
the interpretability of a model obtained by purely datareini identification (Espinosa
and Vandewalle, 2000), improve the interpretability ofaate fuzzy models (Casillas
et al., 2003a) or improve the accuracy of linguistic fuzzydels with a good inter-
pretability (Casillas et al., 2003b). Linguistic fuzzy netsland Takagi—-Sugeno models
are respectively discussed in more detail in Sections 2Pah

2.2 Fuzzy sets

2.2.1 Crisp sets versus fuzzy sets

In classical set theory, an element either belongs to a tshagi membership degree
one to the set) or it does not (it has membership degree zeheteet). In the fuzzy
modelling field, the sets used in classical set theory aegned to agrisp sets in order
to avoid confusion with théuzzysets used in fuzzy models. To the three linguistic
values, ‘low’, ‘OK’ and ‘high’ of the linguistic variable fperature, for instance, crisp
sets can be assigned as in Fig. 2.1(a). In words, tempesdtatew 18C are consid-
ered ‘low’, temperatures between®IBand 22C ‘OK’ and temperatures higher than
21°C ‘high’.

Such assignment does not correspond to the way temperatespérienced.
When applying crisp sets a temperature of 2Z.% considered completely ‘low’. If
the temperature increases with 0C2t becomes completely ‘OK’ and a different set of
rules in the rule base would be fired if temperature would bi@put variable of model
controlling a heater. When manually adjusting the power dfatér, however, one will

11
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never change ones behaviour in such an abrupt way as oneowdider a temperature
around 18C to a certain extent ‘low’ as well as ‘OK’. Note that, the righone’s
vocabulary is, the more precise one will be able to lingoédly describe a situation or
value. In general, however, man seldom assigns more thanlinguistic values to a
variable (Miller, 1956).

The terms ‘low’, ‘OK’ and ‘high’ temperature are fuzzy comts. Describing
them by means of crisp sets is therefore an arduous tasKaltisore straightforward
to define them by fuzzy sets (Zadeh, 1965), as fuzzy sets algnadual transition
between not belonging and completely belonging to a seth&fastically speaking, a
fuzzy set is defined as a function from the doniXito the unit interval0, 1] that maps
an element: to A(x)

A: X —1[0,1]: z+— A(z). (2.1)

If the value of the membership functiofiin z, called the membership degreeaofo
A, is onex completely belongs to the fuzzy set. Ifitis equal to zerdpes not belong
to the fuzzy set. If the membership degree is between 0 andoartially belongs to
the fuzzy set. A crisp set is a particular fuzzy set with mership degrees restricted to
{0,1}. In Fig. 2.1(b) the three linguistic values ‘low’, ‘OK’ anthigh’ of the linguistic
variable temperature are defined by membership functiotigeidomainT =[10,30].

2.2.2 Characteristics of fuzzy sets

In principle any function of the formdl : X — [0, 1] describes a membership function
associated with a fuzzy sdt In most applications, however, fuzzy sets are represented
by a parameterized function. Popular types of membershigtions, commonly used

in fuzzy models determined based upon expert knowledgdtapezial and triangular
fuzzy sets. A trapezial fuzzy set (Fig. 2.2(a)) can be charesed by four parameters
(a1, as, a3, ay) and be defined as

0 ifr<ap,
itz €lar, a9,
Alz) =11 if z € [ag,as], (2.2)
er L ifz € as, a4,
0 ifz>ay.

A triangular membership function is obtaineddf is equal toas (Fig. 2.2(b)). In

this dissertation, membership functions defining the listizivalues of a certain input

or output variable of a model are assumed to be trapezidufimg triangular) and to
form a fuzzy partition in the sense of Ruspini (1969), whiclaugantees an interpretable
description of the linguistic values (Bodenhofer and Ba@é05; Jin, 2003). A family
(A;), of membership functions forms a fuzzy partition of a domirif for each
elementz the sum of itsn membership degrees to all membership functions equals

one "
(vx € X) (; Ai(z) = 1) : (2.3)

12



Chapter 2. Fuzzy rule-based models

T t T T
ay a2 as aq X a1 az2=as aq4

(a) (b)

Figure 2.2: Representation of a (a) trapezial, (b) triaagahd (c) symmetric Gaussian
membership function.

The membership functions defining the three linguistic galliow’, ‘OK’ and ‘high’
of the linguistic variable temperature in Fig. 2.1(b) forrfuazy partition.

Other commonly used types of membership functions are Gaussgmbership
functions, as for instance the symmetric Gaussian fungii@sented in Fig. 2.2(c),
determined by two parametersando

_(w=w)?

Az) =e 27 | (2.4)

as well as, (piece-wise) exponential and polynomial fundi(Pedrycz and Gomide,
1998). In contrast to trapezial membership functions,gtgges of membership func-
tions have the advantage that they are differentiable imti@de domain on which they
are defined, which can be of importance in data-driven ifleation procedures.
Fuzzy sets can be characterized in more detail by referarthe features of
the membership functions that describe them. Below theamsmormality, support,
kernel, core, (weaky-cut and strictu-cut of a fuzzy set are defined (Fig. 2.3).

Definition 2.1 A fuzzy setl is normal if there exists an elemenbf X that completely
belongs ta4
(Fz e X)(A(z) =1).

Fuzzy setsA which are not normal, are called subnormal.

Definition 2.2 By the support of a fuzzy sdt denoted by sugp!), all elements oX
are meant that belong td to a nonzero degree

supgA) = {z € X | A(z) > 0}.

Definition 2.3 The set of elements that completely belong to a fuzzy} setalled the
kernel ofA, denoted by kerH)

kern(A) = {z € X | A(z) = 1} .

13
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A(x) A(x)
1 A 1 A
- . 0 —
supg(A) X kern(A) = corg(A) X

Figure 2.3: Support, kernel andcut of a trapezial membership function.

Definition 2.4 The set of elements having the largest degree of membershifuizzy
setA is called the core ofA

core(A) = {z1 € X | (Vg € X)(A(z2) < A(x1))} -

Definition 2.5 The (weakn-cut (o € [0, 1]) of a fuzzy seti, denoted by4,,, is a set
consisting of those elements of the don®iwvhose membership degrees exceed or are
equal to the threshold level

Aoy ={r e X | A(z) > a}.

Definition 2.6 The stricta-cut (« € [0, 1[) of a fuzzy setd, denoted by4,,+, is a set
consisting of those elements of the domXinvhose membership degrees exceed the
threshold levety

Ao ={z € X | A(z) > a}.

In this dissertation there will be referred to two specialdysets: the empty set
and the universal set. The empty set is defined as the fuzzy etvhich all elements
x of a domainX have membership degree zero

(Vx € X)(A(z) =0), (2.5)

whereas the universal set is defined as the fuzzyAstet which all elements: of a
domainX have membership degree one

(Vo € X)(A(z) =1). (2.6)

2.2.3 Operations on fuzzy sets

In the following paragraphs the basic operationduzizyset theory — intersection,
union and complement — are introduced. These operatiorexéeasions of the oper-
ations used in classical set theory. For fuzzy setnd B defined in a domaiiX, the
intersection ofd and B is defined by

AN B(z) =T(A(z), B(z)), (2.7)

14
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whereT is a triangular norm, t-norm for short. The unionAfandB is defined by
AUB(z) = S(A(z), B(x)), (2.8)

whereS is a triangular co-norm, t-conorm for short, and the comgletof A is de-
fined by
CoA(z) =1— A(z). (2.9)

Dozens of definitions have been suggested for t-norms anddrms. In this
dissertation the three most commonly applied t-norms acwhtrms, illustrated in
Fig. 2.4, are considered: the minimum t-noffy;, the product t-nornip and the
tukasiewicz t-normify,

Twm(a,b) = min(a, d) , (2.10)
Tp(a,b) =a-b, (2.11)
Tr(a,b) = max(0,a +b—1), (2.12)

and the corresponding t-conorms, the maximéig, the algebraic sun$p and the
tukasiewicz t-conornbr,

Sm(a, b) = max(a,b), (2.13)
Sp(a,b) =a+b—a-b, (2.14)
Sr(a,b) = min(1,a + b) . (2.15)

Formally, a t-norm is defined as a binary operationn the unit interval [0,1],
i.e.a functionT: [0, 1]> — [0, 1], satisfying the following requirements

e commutativity: T(z,y) =T(y,x), (2.16)
e associativity: T(x,T(y,2)) =T(T(x,y), 2), (2.17)
e monotonicity: T(x,y) <T(x,z) whenevey < z, (2.18)
e neutralelementli T(z,1)==. (2.19)

From Egs. (2.18-2.19) is follows that O is the absorbing eleyT’(z, 0) = 0.

To fuzzy sets defining linguistic values, such as ‘low’, ‘O&nd ‘high’, apart
from the intersection, union and complement, a group ofatpes can be applied that
do not have a counterpart in classical set theory. Theseatsrare referred to as
linguistic hedges or linguistic modifiers. Examples of liiggic hedges are ‘very’, ‘ex-
tremely’, ‘greatly’ and ‘at least’. The application of a ¢jnistic hedge modifies the
shape of the membership function of a fuzzy set, transfagroime fuzzy set into an-
other. The meaning of the transformed sety(‘very high’) can easily be interpreted
from the meaning of the original set.@.‘high’) and that embedded in the hedge ap-
plied (e.g.‘very’). The definition of hedges has more to do with commamsseknowl-
edge in a domain than with mathematical theory. For a fuzzgeined by a trapezial
membership function characterized by four parametersd, as, a4) (EQ. (2.2)) the
hedgevery can for instance either be defined by

veryA(z) = A(z)?, (2.20)

15
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(d) Sm (e)Sp (f) Su

Figure 2.4: Intersection and union of two fuzzy sdtand B.

or by
1 1/1
ap = 5(612 +as) — 5 (2((12 +az) — a2> (2.22)
, 1 1 1
az = (a2 +az) + 5 | a3 — 5 (az +az) (2.22)
2 2 2
1
aj = ay — §(a2 —ap) (2.23)
1
ay = a3 + 5 (as — as) (2.24)

where the fuzzy setvery A’ is defined by a trapezial membership function character-
ized by four parameters{, a}, a}, a}) (Marin-Blazquez and Shen, 2002).

In Chapter 10 the modifiers ‘at least’ (ATL) and ‘at most’ (AJlntroduced by
Bodenhofer (1999) and illustrated in Fig. 2.5 are applied

ATL(A)(x) = sup{A(t) | t < x}, (2.25)
ATM(A)(x) = sup{A(t) | t > x}. (2.26)

2.3 Linguistic fuzzy models

The main component of linguistic fuzzy models is a rule bamesisting of rules in
which both the antecedent and the consequent part contain $ets. The rule base and

16
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A(z) A(z)

0 0

Figure 2.5: lllustration of the modifiers ‘at least’ (ATL) drat most’ (ATM).

the fuzzy sets are generally determined by expert knowledlge rules of a linguistic
fuzzy model withm input variablesX; (I € L = {1,...,m}) and one output variable
Y are of the form

Ry IF X, ISB. AND ... AND X,, ISB}" THEN Y IS A4;,

Wherij-l‘S (resp.A4;,) are linguistic values of variabl&; (resp.Y’) in the domainX;
(resp.Y) (s € S = {1,...,r}). The input vector is denoted by = (x1, ..., Zm).

In this dissertation two kinds of linguistic fuzzy modelg alistinguished: models ap-
plying t-norm-based inference and models applying implichased inference. These
two inference methods correspond to two fundamentallyréffit interpretations of if-
then rules, which are discussed in Section 2.3.1. Next, ati®@es 2.3.2 and 2.3.3, the
inference methods are described.

2.3.1 Interpretation of if-then rules

Crisp inputs Let us consider an if-then rule ‘IK is B THEN Y is A’ with X
(resp.Y) a variable in the domaiX (resp.Y) and B (resp. A) a fuzzy set inX
(resp.Y). Regardless of the interpretation given to this if-thele rit is modelled as a
fuzzy relationR from X to Y. The direct imaged’(y) of a fuzzy setB’ in X under a
fuzzy relationR from X to Y is the fuzzy set irlY’ defined by

A(y) = sup T(B'(z), R(z,y)) - (2.27)

As only crisp inputsB’(x) are considered in this study, for which the following
equation holds

Blr=|! M= (2.28)
0 , otherwise

17
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Y Y
A3_ ............. .........................
Al L A | TS
A1 5 :
B X By B B3 By X
(a) (b)

Figure 2.6: lllustration of the interpretation given toggrif-then rules when applying a
t-norm-based inference procedure. The shaded regionkapairs(z, y)
for which the rule ‘IFX is B THEN Y is A’, respectively the four rules
‘IF X is B THENY is A’ hold.

and, asl'(0,z) = 0 andT'(1,z) = x (EqQ. (2.19)), EqQ. (2.27) can be simplified to

Allly) = max( iy T(B'(x), R(z,y)), T(B'(«"), R(z",y)))

- maX(xe)S(li?x*} T(0, R(z,y)), T(1, R(z*,y))) (2.29)
= max(0, R(z*,y))

T-norm-based inference For the sake of simplicity, let us first consider a crisp if-
thenrule ‘IFX is B THEN Y is A’ to illustrate the first interpretation given to fuzzy
if-then rules, withX (resp.Y’) a variable in the domaiX (resp.Y) and B (resp.A)

a subset oKX (resp.Y). When applying t-norm-based inference the crisp rule is-mod
elled as

(z,y) € R with R=B x A,

i.e.the expression ‘IEX is B THEN Y is A’ is said to hold only for thoséx, y) for
which z is a member oB andy is a member ofdA. These pairgz,y) are indicated
in gray in Fig. 2.6(a). Note that strictly mathematicallyegging, it is incorrect to
interpret if-then rules in this way. Whe# and B are fuzzy sets, the rule is modelled
as

(X,Y) € R with R(z,y) = T(B(x), A(y)) ,

with T being a t-norm. The fuzzy output’, given a crisp input*, is obtained by

Rule bases of fuzzy linguistic models do not consist of alsingle, but are a
collection ofr if-then rules ‘IFX is Bs THEN Y is A,’. When applying t-norm-based
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inference the global fuzzy model outpit(y) is derived from the individual outputs
AL(y) by
A'(y) = max A (y) with AL(y) = T(B(z"), Au(y)), (2.30)

or, alternatively, by
A'ly) = R(a",y) with R(z,y) = maxT(Bs(z), As(y)) , (2.31)

as illustrated in Fig. 2.6(b) for the four rules ‘I is B; THEN Y is A", ‘IF X is B,
THENY is Ay, ‘IF X is B3 THENY is A3’ and ‘IF X is By THEN Y is A5’

In literature, if-then rules interpreted and fuzzy modgiglging if-then rules
according to the interpretation above, are referred to asipiity rules (‘the moreX
is B, the more possiblel is a range forY”) (Dubois and Prade, 1996), pessimistic
modelling (De Baets, 1996) or Mamdani-type constructivguiistic models (Yager
and Filev, 1994).

Implicator-based inference  When applying an implicator-based inference proce-
dure, a crisp if-then rule ‘IEX is B THEN Y is A’ is modelled as

(x,y) € R with R= (B x A)U(coBxY),

i.e.the expression ‘IEX is B THEN Y is A’ is implemented as a logical implication:
if zis amember o3, y is a member of4, but if 2 is not a member oB, y can take any
value in the domaifY'. These pairs are indicated in gray in Fig. 2.7(a). Mathera#yi
speaking, this is the only correct interpretation of arhé rule. Wherd and B are
fuzzy sets, the above rule is modelled as

(X,Y) € R with R(z,y) = I(B(z), A(y)),

with I being an implicatorj.e. a functionl : |0, 1]2 — [0, 1] coinciding with the
Boolean implication o{0,1}? (i.e. (0,0) = I(1,1) = I1(0,1) = 1 andI(1,0) = 0)
and having decreasing first and increasing second partiatitns

Va,y,z€[0,1])(x <y=I(x,2) > I(y,2)), (2.32)
(Va,y,2€[0,1))(y <z = I(z,y) < I(z,2)). (2.33)

In the work by De Baets and Kerre (1993) two other represemtsbf the crisp
rule ‘IF X is BTHENY is A’ are derived

(x,y)e{C|CisasubsetoX x Yand(BxY)NC CX x A} ,and (2.34)
(z,y) € (coBxY)U (X x A4), (2.35)

corresponding to the following implicators

Ir(x,y) =sup{z | T'(z, 2) <y}, (2.36)
Irn(z,y) =S(1—x,y). (2.37)
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Y Y
A3_ ............. .........................
A | Azl L __J.
A1 5 :
B X By B B3 By X
(a) (b)

Figure 2.7: lllustration of the interpretation given togriif-then rules when applying
a implicator-based inference procedure. The shaded regimnthe pairs
(z,y) for which the rule ‘IFX is B THEN Y is A’, respectively the four
rules ‘IF X is B THEN Y is A, hold.

The implicators defined in Eq. (2.36) are called R-implicatdhe implicatordyg, Ip
and Iy, are obtained by replacing by Ty, Tp andTy, respectively. The implicators
defined in Eq. (2.37) are called S-implicators: the impbestn s, Ip A- and Iy, v
are obtained by replacing by Sm, Sp andSy, respectively (note thafy, - = I1,).

For a crisp input:*, the fuzzy outputd’ (y) is obtained as

A'ly) = I(B(z"), Aly)), (2.38)
or in case of fuzzy rules
A'(y) = min Al (y) with AL(y) = I(By(x"), As(y), (2.39)
or N
Aly) = R(z",y) with R(z,y) = min I(B,(x), As(y)) (2.40)

illustrated in Fig. 2.7(b) for the same four rules used tgsiliate t-norm-based inference
procedures in Fig. 2.6(b). If the rule base of a model costaire rule for eacl; of a
set of crisp sets forming a partition of the input domainhdoterpretations resultin the
same global relatio®. Applying if-then rules according to the first interpretatiin
fuzzy models can therefore be considemeathematically defensibléfuzzy partitions

are assigned to the linguistic values of all input variable¢! € L = {1,...,m}) and
if the rule base contains one rule for each combination oi)fuzats(A}l, cee A;"m)
with Aél (ji € J; ={1,...,n;}) membership functions of an input variabtg.

In the work by Dubois and Prade (1996), fuzzy if-then ruledeiled by R-
implicators are called gradual rules as they corresponthtersents of the form 'the
more X is B, the moreY is A’, whereas the term certainty rules is used in case of
S-implicators, modelling statements as 'the mafds B, the more certairy” is A’.
Modelling applications defining if-then rules as implicais are referred to as opti-
mistic modelling (De Baets, 1996) or logical-type destiectinguistic models (Yager
and Filev, 1994).
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BJQ-2 (1’2)

0674 Y,
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Figure 2.8: Determining the membership degrees of the mogelt vectorx =
(z1,x2) to the linguistic values of the input variablés and Xs.

2.3.2 Mamdani—Assilian inference

Linguistic fuzzy models applying t-norm-based infereneecalled Mamdani—Assilian
models (Assilian, 1974; Mamdani, 1974). When determinirg iodel output via
Mamdani—Assilian inference, first the membership deg&%(wl) of the model in-
put vectorx to the linguistic values in the antecedents of the rules aterchined. In
Fig. 2.8 the membership degrees of the input valueandzs (x = (z1,22)) to the
corresponding linguistic values of the input variabhésand X, are

Bi(x1) =0 By(x1) =0.75  Bi(z;) =0.25
Bi(xy) =033 Bj(z2) = 0.67

In the following step, the fulfilment degrees of ther rules 6 € S =
{1,...,r}) are computed from the membership degrBélgs (z;) of the model input
vectorx to the linguistic values in the antecedents of the rules .tR®it-normsiy,
Tp andTy, this results in

wmin B, (@) T =T,
B = 1L B () AT =Te,  (241)

max(i Bél (x) = (m — 1),0> ST =Ty, .
=1 "

Next, the adapted membership functidslq y) are computed using the same t-ndfim
as for the fulfilment degreegs (see Fig. 2.9)

min(ﬂsa Ais (y)) T = T ;
A (y) = Bs - Ai(y) T =Tp, (2.42)
max(8s + 4;,(y) — 1,0) ,if T =Ty,

and the global fuzzy output(y) is determined as follows

Ay) = m%x A;S (y). (2.43)

s=1
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N TN TN

(@) Twm (b) Tp (c) 1L

Figure 2.9: Adapted membership functions (in black) otgdiby applying Eg. (2.42)
with Ty, Tp andTy, to the membership function in grey.

Finally, the crisp model output* is obtained by defuzzifying the fuzzy output. In this
dissertation the Center of Gravity (COG) defuzzificatiosuléng in the crisp model
outputyé.oo and the Mean of Maxima (MOM) defuzzification resulting in ttrésp
model outputyy;on (Kruse et al., 1994) are considered

JyA(y) dy

* _Y
Y

[ ydy
% core(A)
Ynmom = T ay (2.45)

core(A)

When the core of the fuzzy model outpdtis a set of discrete values, the integrals in
the expression for the crisp outpyf;,, in Eq. (2.45) vanish. In this case the crisp
outputyyion is defined as the average of these discrete values.

In practice Eqgs. (2.42-2.43) are implemented in a slighffeiknt way. From
the fulfilment degreeg, of the r rules, a fulfilment degree; is computed for each
linguistic output valued,,

o; = max{fs | is =i}. (2.46)

For each linguistic output value an adapted membershigifumd’, is determined with
the corresponding fulfilment degreg

min(a;, 4;(y)) VT =Twm,
Ay) = i - Ai(y) fT =Tp (2.47)
max(a; + A;(y) — 1,0) ,if T =Ty,

and the global fuzzy output(y) is determined as follows

Aly) = max Aj(y). (2.48)

In Fig. 2.10 the Mamdani—Assilian inference procedurdusitated for a model
with two input variablesX; and X, and one output variablE. The linguistic values
of all three variables are described by membership funstiorming a fuzzy partition.
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The linguistic values are ‘low’, ‘medium’ and ‘high’ foX; andY’, and ‘low’ and
‘high’ for X,. The fulfilment degre&, of each of the six rules is the minimum of the
membership degree of andz; to the corresponding linguistic value in the antecedent
of the rule and the membership functions in the consequehbpéhe rules are trun-
cated according to this fulfiiment degrge (T' = 7). The global fuzzy output is
the union, based on the maximum, of all these truncated feets; Finally, the crisp
model outputyé. is obtained by the COG defuzzification method.

2.3.3 Implicator-based inference

When applying implicator-based inference, the fulfimengréess; and «; are cal-
culated as described in Egs. (2.41) and (2.46), but the edapémbership functions
A/, are computed using an implicator instead of a t-norm. IndfEsertation the three
R-implicatorslyg, Ip andly, are considered. Note that the adapted membership func-
tions A} do not necessarily have to be computed with the correspgniplicator I
of the t-normT" used for the conjunction when computing the fulfilment degre

For Is the adapted membership functions are obtained by

TS
W) — 1 Jif oy < .Az(y), (2.49)
A;(y) ,otherwise
for Ip by
1 Jif o < Ai(y),
W — 2.50
i(y) {Ai_w , otherwise ( )
and forIy, by
Ay) = min(1 — a; + A,(5), 1) 250

Figs. 2.9 and 2.11 show how membership functions are changed applying
respectively a t-norm or an implicator, given a fulfilmengd=ea. It nicely illustrates
the two different interpretations of fuzzy if-then rulesietbetter rule corresponds to
the current situationi,e. the higher the fulfilment degree, the more the adapted mem-
bership function is restricted when applying an implicatart the more the adapted
membership function is extended when applying a t-norm. &hj} is less restrictive
thanTp, which on his turn is less restrictive thdh,, the reverse order applies for the
implicator operators. The implicatdy, is the least restrictive implicator, followed by
Ip andIy;.

The global fuzzy outputl is the intersection, based on the minimum, of the
adapted membership functior$

A(y) = min Al(y). (2.52)

i=1

The only specific defuzzification method for models applyjimglicator-based
inference known to the author is the defuzzification metmbaduced by Dviak and
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Ry IF X, IS low AND X5 IS low THEN Y IS low
1

N N

X1 X2 Y
Ry IF X,ISlow  AND  X,IShigh THEN YIS low
T T2

ST

X1 Xo Y
R3: IFX; IS medium AND X, IS low THEN Y IS low
T T2

Xo
X5 IS high THEN Y IS medium
T2

Rs: IF X1 IS high AND X5 IS low THEN Y IS medium
1

z2

Re:IF X11Shigh  AND  X,IShigh THEN YIS high

Y

*
Ycoa

Figure 2.10: lllustration of Mamdani—Assilian inferen@ £ Tyg, COG defuzzifica-
tion) applied to a model with six rules.
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Figure 2.11: Adapted membership functions (solid black)linbtained by applying
Egs. (2.49-2.51) to the membership function representethdylotted
black line.

Jedelsl (1999) for models applyindy, resulting in the crisp outpuii.oapy (Y =
[Y0; Yend])

%(y() + yend> , if H%ﬂA(y) _ m‘f(}XA(y>7
YCcoaps = ‘f('y'(A(y)fm‘}n A(y)) dy . (253)
JAW) —min AW)) dy , Otherwise

If the smallest membership degragn A(y) obtained in the output domain to the

fuzzy outputA is equal to zero, the defuzzification method introduced bgrBk and
Jedelsk (1999) coincides with the COG defuzzification method defimeEq. (2.44).
In models applying implicator-based inference also the M@#flizzification method
defined in Eq. (2.45) can be applied.

In Fig. 2.12 implicator-based inference is illustrated &omodel with two in-
put variablesX; and X, and one output variablg. The linguistic values of all three
variables are described by membership functions formingzayf partition. The lin-
guistic values are ‘low’, ‘medium’ and ‘high’ foX; andY’, and ‘low’ and *high’ for
X5. The fulfilment degreg, of each of the six rules is the minimum of the member-
ship degrees of; andx, to the corresponding linguistic value in the antecedent of
the rule " = 1) and the membership functions in the consequent part ofulles r
are adapted according to this fulfilment degfgeaising the implicatody,. The global
fuzzy output is the intersection of all these adapted fuztg.g=inally, the crisp model
outputyy;oy IS Obtained by the MOM defuzzification method.

2.4 Takagi—Sugeno models

A different type of fuzzy models is the Takagi—Sugeno modgtoduced by Takagi
and Sugeno (Takagi and Sugeno, 1985). The Takagi—Sugenel wiiffdrs from the
linguistic model on this point that its consequent partszam-, first- or higher-order
polynomial functions of the input variables. Rules in Tak&wgeno models witin
input variablesX; (I € L = {1,...,m}) and one output variablE can be expressed
in following general form

Ry IF X1 ISB!, AND ... AND X,, ISBJ" THENY = f(X1,..., Xu)
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Ry IF Xy 1S low AND X5 IS low THEN Y IS low
T T2

X1 X2 Y
R, IF X,ISlow  AND  X»IShigh THEN YIS low
] xr

TI ......... EX | -Y

R3: IFX; IS medium  AND X2 IS low THEN Y IS low
T T2

X1 X2
R4 IFX; IS medium AND X5 IS high THEN Y IS medium
1 T2

Rs: IF X1 IS high AND X5 IS low THEN Y IS medium
T

z2

Xo Y
Rg: IF X1 1S high AND X IS high THEN Y IS high

Y

*
Ymom

Figure 2.12: lllustration of implicator-based inferen@@ £ T\, I = Ir,, MOM de-
fuzzification) applied to a model with six rules.
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whereBél.S are linguistic values of variabl; (s € S = {1,...,r}). The input vector
is denoted bk = (x4, ..., 2m).
The model outpuy is obtained as

3" Be(x) fu(x)
y="= (2.54)
Z Bs(x)
s=1
with 5,(x) the fulfilment degree of rul&,
B,(x) = T B, (w1). (2.55)

The most commonly used Takagi—Sugeno models are first-datt@gi—Sugeno
models, where the functiofy is a linear function of the input variables (Cérdet al.,
2001; Jin, 2003; Sousa and Kaymak, 2002)

R, IF XyISBj,, AND ... AND X, IS BY |
THEN Y = a1, X1 + a2, X0 + .. + @ s Xon + by

The first-order Takagi—Sugeno model approximates a namificnction by means

of local linear models, represented in the consequent peam By computing a
weighted average of the individual rule outplits, the linear functions, the nonlinear
function can be approximated, and a smooth transition Exivlee consequent func-
tions is established, which is different from an ordinarggawise linear approxima-
tion method (Takagi and Sugeno, 1985). The structure of adider Takagi—Sugeno
model with one input variabl& and one output variablg is illustrated in Figure 2.13.
Three fuzzy setsl;, A, and A3, the antecedent fuzzy sets, are assigned to the input
variable. This results in three fuzzy rules of the form

R,:IFXisA;, THENY = a,X + b, (2.56)

with a; andb, the parameters of the consequent part of e

By using functions instead of linguistic values in the cansat parts of the
rules, the human interpretation of the phenomenon desthie rule is garbled, but
on the other hand this rule structure significantly incredke approximation capabil-
ity of the model (Casillas et al., 2003b). Mostly, the idénstion of Takagi—Sugeno
models consists of the determination of the number of rubelsthe parameters of the
antecedent and the consequent parts of these rules and tiy carsied out using a
data-driven approach (Sousa and Kaymak, 2002). The amtecpdrt of the rules are
generally identified by means of clustering algorithms (@a and Verbruggen, 1997)
and neural networks (Jang, 1993) and the consequent patanist a least squares
method (Babgka, 1998).
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Y
x %
— OJ(‘QL
Y 1
by = a2 X + by
Aq(z) As(z) As(z)
Ai(z)

Figure 2.13: Schematic representation of a Takagi—Sugezin
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CHAPTER 3

| Computational aspects of COG defuzzification

Good, Fast, Cheap: Pick any two.
(Sign in Print Shop)

3.1 Introduction

As most modelling and control applications require crisfpats, when applying fuzzy
inference systems, the fuzzy system outdutsually has to be defuzzifiede. to be
converted into a crisp outpyt. The most popular defuzzification methods for linguis-
tic fuzzy models applying t-norm-based inference are@eater Of Gravity(COG)
and theMean Of MaximgMOM) methods. More general frameworks have been pro-
posed, in which the COG and MOM defuzzification methods hhe# place, such as
the parametric BADD (BAsic Defuzzification Distributionh@ SLIDE (Semi-LInear
DEfuzzification) methods of Yager and Filev (Filev and Yageéd91; Yager and Filev,
1993). They are essentially based on the transformatiopo$sibility distribution into

a probability distribution based on Klir's principle of usrtainty invariance. The main
emphasis is on the learning of the parameters involved,wikiteated as an optimiza-
tion problem (Jiang and Li, 1996; Roychowdhury and Wang,61®bng and Leland,
1996). This issue falls outside the scope of this dissertatNote that in literature the
terms for describing different defuzzification methodsnaom source to source. The
terms Center of Gravity defuzzification, Center of Area deffication and Center of
Sum defuzzification, for instance, refer to different methan some sources and are
used as synonyms in other sources. Therefore one shouldteati@ to the formal
definitions of the defuzzification methods rather than tarthemes. In (Roychowd-
hury and Pedrycz, 2001; Van Leekwijck and Kerre, 1999) cahensive overviews
are given on defuzzification methods. In this dissertatiensame terminology is used
as by Van Leekwijck and Kerre (1999).

This chapter deals with the computational aspects of the @€fGzzification
method. When applying the COG defuzzification method, thepooutputy™ of the
system will change continuously when the input values chaamtinuously, a desir-
able property in modelling and control applications. Hoerthe COG defuzzifica-
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tion method has a high computational burden (Driankov e1.8R3; Patel and Mohan,
2002), which is a considerable disadvantage in control andiiidentification, and in
tuning applications. This high cost is often circumventgdriroducing new defuzzi-
fication methods that intend to approximate the center ofityrgPatel and Mohan,
2002; Sakly and Benrejeb, 2003). In this study, howeverd#faition of the center of
gravity is sticked to and other ways are introduced to comhg crisp output in case
the membership functions of the output variable are trapeaid form a fuzzy parti-
tion (Eq. (2.3)). Two computational methods, thlepe-based methaahd themodi-
fied transformation function methpdre introduced and compared to the well-known
discretization methadThe accuracy, straightforwardness of implementationcama-
putational burden of the three mentioned techniques ammieea for the three most
commonly applied t-norms: the minimuify;, the productl’s and the Lukasiewicz
t-norm71xy,.

In this work the linguistic output values are assumed to Iseideed by trapezial
membership functions forming a fuzzy partition. A fuzzy fiteon guarantees that a
value in the domain characterized by a full membership torgaicelinguistic value
is completely excluded from all other linguistic valuesapezial fuzzy partitions are
used in many applications of fuzzy set theory, including eilily and control, pat-
tern recognition and classification. Although they are Hase intuitively plausible
grounds and have become popular due to their striking siityplbf the membership
functions, there exist deeper motivations for using theedrizcz (1994), for instance,
showed that, based on a specific linear notion of entropy zéyfisets, suitably de-
signed trapezial fuzzy partitions can guarantee uniforexigited fuzzy rule bases, in
accordance with the distribution of the input variablesic8ithe work described in this
chapter is about defuzzification, it essentially only regsia trapezial fuzzy partition of
the domain of the output variable. In the same work (Pedri@24), Pedrycz provides
an additional argument, based on a specific defuzzificatioogalure involving modal
values, that the use of trapezial fuzzy partitions can guagaan error-free inversion
of the defuzzification strategy considered. The influencthefform of membership
functions on the accuracy of fuzzy rule-based systems vgassalidied by Chang et al.
(1991), although Delgado et al. (1998) enunciated thaetziabmembership functions
might adequately approximate othery.Gaussian or exponential-shaped, membership
functions, presenting the advantage of their simplicityva#i (Cordbn et al., 2001).

This chapter is organized as follows. After a short intraducon the COG
defuzzification method, the three computational methodpeesented in Section 3.2.
Experimental results showing that the newly introducedhoes$ exhibit excellent ac-
curacy at an extremely low computational cost compared eowttdely applied dis-
cretization method, are described in Section 3.3. Cormhssand further work are
summarized in Section 3.4.
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Figure 3.1: Center of gravity defuzzification method.

3.2 Computational methods for the COG defuzzifica-
tion

3.2.1 COG defuzzification and related methods

The procedure applied in Mamdani—Assilian models to detezrthe model output is
described in detail in Section 2.3.2. First the fulfilmenge®ess; (s € {1,...,r}) of
ther rules R, in the rule base are computed. In a next step the fulfilmentedsg;

(¢ € {1,...,n}) of then linguistic output valuesi; are determined and used to define
the membership functions of the adapted membership furetg. The global fuzzy
output A is the union of the: adapted membership functiont. Finally, the crisp
model outputy* is obtained by defuzzifying the fuzzy outpdt for instance with the
COG defuzzification method. As illustrated in Fig. 3.1, thisg outputy™ obtained
with the COG defuzzification method is the abscissa of theecesf gravity of the
surfaceF” described by the fuzzy output. The crisp outpuy’, is defined by

J[ydudy

* _F
F

In case the fuzzy output is the empty set, the midpoint of treain (fixed beforehand)

is returned as crisp output. Some authors (Garét al., 2001; Sakly and Benrejeb,
2003) refer to the above strategy d®de A(aggregation first, defuzzification after)
and propose converse procedures that consist of defuzgifyie individual adapted

membership functions, and averaging the resulting crifyegain one way or another.

The latter approach could be callétbde B(defuzzification first, aggregation after),
but is not based on a solid theoretical basis.

In practice,yé& o is approximated by means of numerical methods. Although
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Aly) Aly)
B

1

(b)

Figure 3.2: In this chapter representation (a) is used tordmstrapezial membership
functions, except in Section 3.2.4 where representatipis @pplied.

Eqg. (3.1) is formally identical to the problem of determigithe expected value of an
unnormalized probability density functiot, the functionsA considered here are atyp-
ical for probability theory, and no results from that fieldhdae drawn upon. Through-
out this chapter, except in Section 3.2.4 (for reasons tiHb@come clear), a trapezial
membership function with suppdtt, d] and kernel[b, ] is represented by the four pa-
rameters, b, ¢ andd. As the modified transformation function method described i
Section 3.2.4 is inspired by the transformation functiorthrod by Patel and Mohan
(2002), their membership function representation by meétise parameters’, v’, ¢’
andh’ is used. Both ways to represent trapezial membership fumetire illustrated
in Fig. 3.2.

3.2.2 Discretization method

The discretization method is the most straightforward anpgntation of the COG de-
fuzzification strategy. The fuzzy output in the interval.[,.,ymq.] iS approximated by

k rectangles of equal Width=( (¢maz — Ymin)/k) and heightd(y;). Eq. (3.1) is then
converted into Eq. (3.2), in which(y;) is the membership degree gf to the global
fuzzy output and4;(y,) its membership degree to the adapted membership function of
the*" linguistic output value

S oy - Aly;)
> Aly;)
ymam - ymzn
- = 3.3
; : (3.3)

Ycoa & (3.2)

with Yji = Ymin +7J-
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or, explicitly

k—1
) 32520 vy - max Af(y;)
Ycog =~ k—1_ n :
2 =0 max A(y;)
The greatef: is, the narrower the rectangles are in which the fuzzy output
divided and the closer the exagl, is approximated. However, Eq. (3.4) shows that
not only the accuracy, but also the computational cost asae with increasing values
of k.

(3.4)

When applying the discretization method to defuzzify a fuamyput, the fol-
lowing calculations are executed:

1. construction of a vector with discretization point vaye (Eq. (3.3)),

2. calculation of membership degreds(y,) of all discretization pointg; in the
vector for then original membership functions,

3. calculation of membership degred$(y,) using theA, (y;)-values, the fulfil-
ment degreeg; and the appropriate t-norm (Eq. (2.47)),

4. determination of the maximum of teemembership degrees for each discretiza-
tion pointy; (EQ. (2.48)) and

5. calculation oy (EQ. (3.2)).

3.2.3 Slope-based method
3.2.3.1 Introduction

Like the other techniques presented in this work, the slmgeed method is based on
the fact that the moment of a surface about an axis equalsithetthe moments about
the same axis of the surfaces obtainedpbytitioning this surface. The moment/,,

of a surface about an axis equals the product of its @ead the distancé,, of its
center of gravity to the axis

=

k
Mo =doy - O =doy - Y 0; = daj-Oj =Y My (3.5)
j=1 J

=1 Jj=1

In the slope-based method, the surfatdescribed by the fuzzy output is parti-
tioned such that the slope of the fuzzy output is constartimiach part and different
in two adjacent parts. When the output values are describéxhpgzial membership
functions, as assumed in this work, linguistic fuzzy modeith t-norm-based infer-
ence using the t-normiBy;, 7» andTy, always result in piecewise linear fuzzy outputs.
A general representation of the partitioning of the fuzztpaitiis given in Fig. 3.3.

Note that the intersection of two parts obtained with thevabdescribed method
is always empty. This implies that the centers of grayjtyand area®); of thek parts
(G = {1,...,k}) allow an exact computation of the crisp outpil,, as shown in
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Aly)

1 -

0.5
4 Fy
i Fy,

0
Yo Y1 Yr—1 Yk

Y
Figure 3.3: Partitioning of the fuzzy output obtained wheplging the slope-based
method.

Eq. (3.6). Furthermore, the centers of grayjfyand area®); of the obtained parts are
easy to compute

- Z?:l Y5 - 0,
Yooc =" =k ~ (3.6)
Ej:l 0j
[ ydudy
F.
ith = 3.7
Fj
and O; :// dudy. (3.8)
Fj

In the following lines, Egs. (3.7) and (3.8) of the center od\dty and area of
the parts are derived for a surface as depicted in Fig. 3.&hdnnterval f;.1,y,] the
fuzzy output is computed as follows

Aly;) — Alyj1)

Aly) =
( ) Yj — Y51

(y — yj1) + A(yja) - (3.9)

First the numerator and denominator in Eq. (3.7) are workedeparately

// y du dy
FJ
v AW)
= / / ydudy
yj-1 70
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g [A(yj) — A(y;1)
Yj — Yj-1

_ Aly;) — Alyia) yj’ Y v; " & i Ay;1) g2 — 2
Yi — Y1 3 2 6 2 J 71

(y — yj1) + A(yj-l)} ydy

= %(yj = y;-0)[(2A(y5) + A(yj1)) v + (Alys) + 2A(y5-1)) yja] (3.10)

// du dy
yi AW)
/ / du dy
Yj-1

- /yj_l {(%)A(yﬂ)(y — Y1)+ A(yj_l)] dy

Yi — Yj-1

_Alyy) — Alyja) [Y5 vl
Ty |2 Ty +A(yj1) |5 — Y
1

5 Wi = y5-1)(Aly;) + Alyj)) - (3.11)

This results in Egs. (3.12) and (3.13) for the center of gyayj and area); of
the parts

and

ffydudy

Yi = ff dudy

*

1 1A + A
(yj Fyi) + = (y;) yj (Yj-1) Yj1

3 A(yy) + Alyja)
Oj=/ dudy

yi — y5-1) (A(y;) + Ay;1)) - (3.13)

(3.12)

2(
3.2.3.2 Transition points

In order to apply this new method, apart from the formulaetlfigr centers of gravity
and areas of the parts, also a method is needed to partitofutizy output. When
determining thdransition points as the points defining the parts will be called in the
following, it is assumed that the membership functions ferfozzy partition. As the
shape of the fuzzy output depends on the t-norm used to ddaptiginal membership
functions (Eq. (2.47)), the procedure to determine thesitemm points is different for
Twm, Tp andTy,. In the formulae of the slope-based method, parametédrsc andd
are used to characterize the trapezial membership furscéisillustrated in Fig. 3.2a.
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Table 3.1: Co-ordinates of the potential transition pointSig. 3.5.

point co-ordinates
Dints (@ =i (d; — ), @)
ptM,Q (07 + o ( 3 ); a1)
PtM,S (d Qi+l ( Cz)a CV1+1)
ptMA (Cz + Q41 ( Cz)a az+1)
ptvs_ (z(ci+di),05)
ptp 1 (¢i,04)
ptp.2 (€i + gran (di = <o), g5 a0)
ptey o (diaw)
ptra (Cia al)
piL2 (¢i + a; (di — ¢;),0)
ptrs (¢ + 5( — apr + 1) (ds — ), 5 (i + isg — 1))
Dly 4 (d; — a1 (di — ¢;),0)
L5 (di, i)

The case ofi\v;  In Fig. 3.4 all possible configurations are depicted that megur
for two adjacent membership functiorts and A;+; whenT' = Ty;. At each overlap
of the two membership functiond; and 4,+,, the following five points, whose co-
ordinates are listed in Table 3.1, should be taken in coreitd® as potential transition
points:

e ptm.1, the intersection oft = «; with the line through;,1) and ¢;,0),

ptm.2, the intersection oft = «; with the line through¢;,0) and ¢;,1),

ptm,s, the intersection oft = a4 with the line through4;,1) and ¢;,0),

ptm 4, the intersection oft = a4 with the line through;,0) and ¢;,1),

ptm 5, the point of intersection afl; and A;+4.

The five points are indicated in Fig. 3.4. Note that in somdiganations some
of the points coincide. Actual transition points are colxliblack. One can see that at
each overlap up to three of the five points are added to theflisansition points. As
a consequence, whdn= Tj the total number of transition points farmembership
functions is at least two (namely the first poipg 1) and the last pointy,«.,,)) and at
most3n—1 (= 2+3(n—1)). The rules used for the selection of transition points &re v
sualized in Fig. 3.5a. If both degrees of fulfilment are lathan 0.5, the pointstas 1,
ptm 4 andptng 5 are selected as transition points (Fig. 3.4a). If this isthetcase and
o is larger thano;41, the transition points argtyg,; andpta s (Fig. 3.4b,c,fk); if
a; anda;4+ are equal no transition points are selected (Fig. 3.4edj)fiaally, if «; is
smaller thany;;, the transition points argtng 2 andptm 4 (Fig. 3.4d,g-i).
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Figure 3.4: Different configurations at the intersectionvwd membership functions
whenT = Th.

The case offp The selection of transition points f@ is more straightforward. The
four typical configurations occurring at the intersectidrivao membership functions
are shown in Fig. 3.6.

As long as both degrees of fulfilmenf and«;+; are strictly positive (Fig. 3.6a),
the following three points are added to the list of transitints (see Table 3.1 for
their co-ordinates):

e ptp 1, the point with the maximum of the kernel df, as abscissa and the mem-
bership degree in this point t&, as ordinate,

e ptp 2, the point of intersection of the two adapted membershiptions A} and
A

e ptp 3, the point with the minimum of the kernel of;;; as abscissa and the
membership degree in this point#j,, as ordinate.

If one of the degrees of fulfilment is zero, ondyp ; andptp 3 are selected
(Fig. 3.6b—c). No transition points are added to the listiftbdegrees of fulfilment are
zero (Fig. 3.6d). Fig. 3.5b summarizes which points arecseteas transition points
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Figure 3.5: Selection of the transition points as a functibn; anda;+ in the slope-
based method for the three t-norms.
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Figure 3.6: Different configurations at the intersectionvwd membership functions
whenT = Tp.

given the degrees of fulfilment; anda;+1. As for T\, the total number of transition
points is at least two and at mast — 1 for n membership functions.

The case ofl, When usindly,, the following five points are the potential transition
points (see Table 3.1 for their co-ordinates):

o pt1, 1, the point with the maximum of the kernel df; as abscissa and the mem-
bership degree in this point t&; as ordinate,

e piy, 2, the intersection of the right non-parallel side of the addpnembership
function A with A = 0,

e ptrL 3, the point of intersection of the adapted membership fonsti; and A, ,

e pty, 4, the intersection of the left non-parallel side of the addpnembership
function A7,, with A =0,

e pt1, 5, the point with the minimum of the kernel of;;; as abscissa and the
membership degree in this point#j,, as ordinate.
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Figure 3.7: Different configurations at the intersectiortwb membership functions
whenT = Ty,.

If the sum of the fulfilment degrees; anda;+; is larger than or equal to one,
as shown in Fig. 3.7a, the transition points ptg 1, pt1, 3 andpty, 5. If the sum of the
fulfilment degreesy; anday.; is strictly positive and smaller than 1: all points except
ptr 3 are selected if both fulfilment degrees are strictly posifivig. 3.7b)ptr, ; and
ptr o are selected ity is zero (Fig. 3.7c) anghtr, 4 and pty, 5 are selected ify;
is zero (Fig. 3.7d). Finally no points are selected if botliilfaent degrees are zero
(Fig. 3.7€). The selection of transition points f6r= Ty, is summarized in Fig. 3.5c.
The total number of transition points farmembership functions is at least two and at
mostdn — 2 (= 2 + 4(n — 1)) for T..

3.2.3.3 Implementation

The practical implementation of the slope-based methogistmof the following
steps:

1. the transition points are determined (according to thesnisualized in Fig. 3.5),
2. yf andO; are calculated for each part with Egs. (3.12-3.13),

3. y&oq is obtained with Eq. (3.6).

3.2.4 Modified transformation function method

The modified transformation function method is based onrtrestormation function
method presented by Patel and Mohan. In their joint artiekt€l and Mohan, 2002),
they claim their method to be a computationally attracteehhique to compute the
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Table 3.2: Formulae for the transformation functiofig:;, ;) and areasS; of the
adapted membership functions in Egs. (3.15) and (3.16).

t-norm f(hi, a) Si
T 3h7—3a:hitaf (i by)-ci- (2 — o)
M hT- (2R, —oz) 2h]
P R}-(2h;—1) 2h]
T ai+3aih;—3ai+3h;>—6hi+3  (aj+b])-ai-(2h]+ai—2)
L R -(a;+2h7—2) 2hj

center of area defuzzification, which they use as a synonyrthéocenter of gravity
defuzzification defined in Eq. (3.1), for triangular memibgsfunctions. In a more
recent article, Patel (2004) correctly states that thethoekis not valid for the COG
defuzzification, but for the computationally less demagdDriankov et al., 1993, Sec-
tion 3.6)Center Of SungCOS) defuzzification, and extends the transformationtfanc
method to trapezial membership functions. The definitiothefCOS defuzzification

is given by
y :Jy-ZiﬂAﬂwdy
o8 T TEL Ally) dy
Y

The crisp outpuy¢.g is computed from the centers of gravify and areas;
of the adapted membership functions

(3.14)

* 27'11 y;k : Si
Y = Z_n - ’ (315)
COS Zi=1 S’L
al — b
with =+ B p () a). (3.16)

Given a trapezial fuzzy partition, the functignappearing in Eq. (3.16) only depends
on the t-norm used to adapt the original membership funst{gq. (2.47)). This func-
tion is called ‘transformation function’ by Patel and Moharhence the name of this
method. In (Patel, 2004) the formulae for the transformmefictionsf (h, ;) and
areasS; of the adapted membership functioA$ are derived for 12 t-norms. In Ta-
ble 3.2 the formulae are shown for the basic t-nofiigg 7p and7y,. The parameters
al, b, ¢ andh! characterize the shape of the membership function of‘thénguis-
tic output valueA,;. The parametet; is the corresponding fulfilment degree. The
meaning of the parameters used in Eq. (3.16) and Table 3l@ssated in Fig. 3.2b.
However, the center of sum defuzzification method is rarglpliad. Based
on the transformation function method, a new computatiomathod is presented for
the commonly used COG defuzzification method. The COS and @€ zification
methods differ in the number of times overlapping parts ef ddapted membership
functions are taken into account; only once with the COG =gfication method
and more than once (twice in case of a fuzzy partition) with @OS defuzzifica-
tion method. The difference between both defuzzificatiorthwds is illustrated in
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Aly) Aly)
1 4 1 4
taken once taken twice
0 0
Yycoa v Y&os v
(a) COG defuzzification (b) COS defuzzification

Figure 3.8: Center of gravity and center of sum defuzziftwatnethods (after (Dri-
ankov et al., 1993, Section 3.6)).

Fig. 3.8. Sakly and Benrejeb (2003) have suggested yet andéfiuzzification method
that amounts to the replacement of the ar€as Eq. (3.15) by the respective fulfil-
ment degreesy;. This approach fits into thlode Bstrategy mentioned before, but
does obviously not result in the true COG defuzzification.

The center of gravityéo of the surface defined by the global fuzzy output
is obtained by taking not only the centers of gravjfyand areasS; of then adapted
membership functions into account, but also the centersanity y;, , and areas,, ;
of then — 1 overlapping parts, which results in the following formula

S Si) = S (Wi Sopi)
S S = S Sopui

This expression is formally similar to that of Wang and Lu@0@0) who also treat
the COG defuzzification problem as a COS defuzzification lprabaccounting for
overlapping parts. However, their approach requires thicxcomputation of the
co-ordinates of the vertices of the adapted membershipinias well as of their
overlapping parts (both viewed as 2D-objects), and is thezecomputationally not at
all attractive.

When trapezial membership functions forming a fuzzy partitare adapted
according tol'yg, Tp or 11, the overlapping areas are always trapezial or triangular.
The formula fory;, ; andS,,, ; are given in Table 3.3. In case B4, the bases of the
trapezial overlapping parts coincide with the projectibthe non-parallel sides of the
membership functions on thé-axis as illustrated in Fig. 3.9. The heigh,, ; of the
trapezium varies between 0 and 0.5 and depends on the fulfildegrees of the two
adjacent linguistic output values

Ycoa = (3.17)

hop,i = min(ay, ai+1,0.5) . (3.18)

As the membership functions form a fuzzy partition, the ¢ézAap always have a vertical
axis of symmetry through the intersection of the two adjaceembership functions.
The center of gravity,, ; of the overlapping areas therefore has the same abscissa as
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the intersection of the two adjacent membership functions

N 1
yop,i = C; + a’g <1 - 2}12) . (319)

The formula for the are&,, ; can easily be derived given the co-ordinates of the over-
lapping parts in Fig. 3.9

hop.i 1 1—hop,i
Sop,i = 2p’ (c;a;(lm)c;a;;(lh;p’>+c;

hoi
+a§<1— hr’)’ >+c§+ag)

/‘ho 7 1- ho [
_ @ilop, ( pi) ) (3.20)

ForTp the centers of gravity;, ; and areas,,, ; of the triangular overlapping
parts are given by (Fig. 3.10)

* 1 ’ / 1 ’ / Qi+l ’ /
= 11— — f 11— — . .
s = 5 (4 h;) AT Wla o)) T
,'+20é‘+1
S AT A (e B e N I 3.21
i A 3h;(ai+ai+1) ( )

1 ;o441 1
Sop = il (cé—ka;—cé—ag(l—h;

aj; o sy
= 3.22
2h; (Oéi + 047;+1) ( )
For Ty, overlapping parts are only obtained if the sum of the fuliithdegrees

«; anda;+ Of the two consecutive membership functiohsand A;+; is larger than 1.
In this case, the formulae for the centers of grayily ; and areas,, ; are given by

(Fig. 3.11)

1 ) 1— )
s =g (et (1- %) e ar(1- 20 )

1—q
(- 5)

1—a;+a;
=d +da (1 - C;J“) ’ .23
1 I —a i
Sop,z‘ = 1 (Ch‘ + Qi+ — 1> (C; + a; <1 N h/a ) _ Cg B ag (1 ~ ah71)>
al ’ ¢
= Té,(ai + a1 — 1)2. (3.24)

The practical implementation of the modified transformationction method
consists of the following steps:
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Table 3.3: Formulae for the centers of gravity, ; and areasS,,, ; of the overlapping
parts in Eq. (3.17).

*
t-norm Yop.i Sop,i
/ ’ 1 al-min(a;,041,0.5)-(1—min(ay,+1,0.5))
Tm ¢ +ai- (1= 57) : h;
/ - _ ait+2a41 a:’,'ai'ahl
Te  cG+a-(1-mratam) TR (@ Foien)
/ /. _ l—aitain a,’i-(max(a¢+ai+1—1,0))2
T ¢ +a;- (1 oh ) an/
Ay)
h; ........................ ~
[N
/: \\
1 Ai,1 ,I : N AZ Ai+1

Qi+l

¢ Fal(1—

1—h :
¢+ aj(1 — Lhopdd)
;
T a1 - )

i

Figure 3.9: Co-ordinates of the trapezial membership fanstand the triangular over-
lapping parts fofly;.
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Figure 3.10: Co-ordinates of the trapezial membership tfans and the triangular
overlapping parts fof p.
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1. the transformation function valug;, «;), the center of gravity? ; and the
areasS; andS,;, ; are calculated for all linguistic values (Tables 3.2 and,3.3

2. y} is calculated for all linguistic values (Eq. (3.16)),

3. Y&og is computed using Eq. (3.17).

3.3 Experiments and results

3.3.1 Implementation

As the defuzzification function was meant to be called by thiedive function of a
model optimization algorithm, requiring, at once, the aétion of the corresponding
crisp outputs ofV (typically a few hundreds) training examples, the numéricath-
ods were implemented as functions takiNg: fulfilment degrees definingv fuzzy
outputs,4n membership function parameters definintinguistic values, a label indi-
cating the t-norm and, in case of the discretization metti@mnumber of discretization
stepsk as input and returningy crisp outputs. Note that, when defuzzifyingfuzzy
outputs of a same model, or more generallyfuzzy outputs defined on the same fuzzy
partition of trapezial output membership functions, sorakeation steps should be
carried out only once. This concerns for instance the cafiar of the discretization
point valuesy; and membership degreds(y;) in the first and second step of the dis-
cretization method and the calculation of thgindependent factors for each of the
linguistic values in Tables 3.2 and 3.3 when applying theiffextitransformation func-
tion method. For the discretization method, the time comipjes O(Nnk) and the
space complexity i€ (nk). For the two other methods to execute the COG defuzzi-
fication and the transformation function method by PateD@0the time complexity
is O(Nn) and the space complexity @(n). All programs were written in MATLAB
and executed on a 1,8 GHz AMD Athlon with 512 Mb RAM.

3.3.2 Experimental setup

To illustrate the differences in accuracy and computatiopnat of the methods pre-
sented in Section 3.2, the centers of gravity of 1000 fuzzpus were calculated
for Ty, Tp andTy, via the three computational methods for the COG defuzziinat
method and via the transformation function method presdoyePatel (2004). For the
discretization method the number of discretization stegs varied: 50, 100, 250, 500,
1000, 2500 and 5000 discretization steps were used. Thefsameembership func-
tions shown in Fig. 3.12 and the same randomly generated $@00 times 5 fulfilment
degrees were used during all computations. Note that sortteeafsed membership
functions have a particular shape which often occurs imupétion processes. When
for instance two parameter values coincide, a triangulstead of the more general
trapezial membership function is obtained or small diffees between successive pa-
rameters result in membership functions with a very narnoppsrt. This particularly

45



Chapter 3. Computational aspects of COG defuzzification
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Figure 3.12: Membership functions of the output variabllesed in the experiment.

shaped output membership functions often give rise to lam@cy when carrying out
the defuzzification with the discretization method.
The RMSE was used as a measure for the accuracy

N _ 2
RMSE = \/Zz—l(yzNyZvMTF) . (3.25)

We considered the results obtained with the modified tramsftion function (MTF)

method as reference values. When applying the modified tramation function

method, apart from round-off errors by the computer, no @xprations are made.
The computational burden of a method was assumed to be pi@garto the time

needed to compute the crisp outputs for the 1000 fuzzy ositput

3.3.3 Results

The results obtained during 50 repetitions of the expertraea shown in Table 3.4.
In the first column the RMSE-values are listed. Further, #iet contains the average
absolute calculation timeg as well as the relative average calculation tiegry to
the calculation time needed with the modified transfornmatismction method.

As expected, the accuracy and computational cost of theddiization method
increases with increasing discretization steps (Fig.)3.\0Mhen examining the results
in Table 3.4, its easy implementation appears to be the avgrdage of the discretiza-
tion method. The two other methods to compute the COG ddfocation method are
not as straightforward to implement but allow for both a §aicand more accurate
computation. The same accuracies are obtained with the-dlaped and modified
transformation function method, but due to the fact thatrandition points have to be
determined in the modified transformation function methbd latter is faster. Finally,
the results obtained with the transformation function rodtfPatel, 2004) show that
taking the overlapping areas twice into account insteadnoeaesults in an error of
more than respectively 3%, 2% and 0.5%1q), T andTy,, reflecting the decreasing
amount of overlapping.
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Table 3.4: RMSE-values and average computation times &euns) for the different methods and t-norms.

T ="Tm T="1Tp T="1y,
Method RMSE (-) ta(S) temrr () RMSE(-) ta(s) timrr () RMSE() ta(s) trmrr ()
discret. (50) 1.03 0.13 2 1.21 0.11 1 1.43 0.13 0.7
discret. (100) 0.51 0.16 3 0.58 0.14 2 0.67 0.17 0.9
discret. (250) 0.20 0.29 5 0.23 0.24 3 0.26 0.32 2
discret. (500) 0.10 0.51 9 0.11 0.39 5 0.13 0.52 3
discret. (1000) 0.05 1.02 20 0.06 0.79 10 0.06 1.07 6
discret. (2500) 0.02 2.64 40 0.02 2.31 30 0.03 2.90 20
discret. (5000) 0.01 5.09 90 0.01 4.64 60 0.01 5.67 30
slope-based 0.00 0.15 3 0.00 0.15 2 0.00 0.16 0.8
transf. funct. 3.51 0.03 0.5 2.53 0.02 0.2 0.79 0.14 0.7
m. transf. funct. — 0.06 — — 0.08 — — 0.19 —

uonealizznjap 90I Jo spoadse jeuoneindwo) -g iaydeyd
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Deviation of outputs of the discretization method compared to the slope—based method
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Figure 3.13: RMSE as a function of the number of discretirasiteps.

3.4 Conclusion

In this chapter two computational methods, the slope-bassttiod and the modified
transformation function method, were introduced for theteeof gravity defuzzifica-
tion method for trapezial membership functions forming zzfupartition. The accu-
racy, computational cost and implementational complesftthese two methods and
the commonly applied discretization method were discuseithe basic t-norm&y,
Tp andTy,. Its easy implementation appears to be the only advantathe ofiscretiza-
tion method. The two other methods to compute the COG ddfaation method are
not as straightforward to implement but allow both a quicked more accurate com-
putation. Of the three methods presented, the modifiedftanation function method
has the smallest computational cost while being as accasdtee slope-based method.
Note that in this study the linguistic output values wereuassd to be described by
trapezial membership functions forming a fuzzy partition.

Future investigations could imply attractive computasibmethods for the de-
fuzzification of fuzzy rule-based models applying implarabased inference. Fur-
thermore, it should be checked whether the computationéhads could be further
simplified if not only the membership functions of the outpatiable, but also those
of the input variables are assumed to form a fuzzy partitioif the rule base is as-
sumed to be smooth. A rule base is called smooth if every setafules differing
in only one input variable in their antecedent and contgradjacent values for this
variable, have equal or adjacent values in their conseqgedéfined in Definition 7.3
in Section 7.2.2.
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cHAPTER 4

Genetic algorithms

Once upon a time a fire broke out in a hotel, where just then
a scientific conference was held. It was night and all guests
were sound asleep. As it happened, the conference was at-
tended by researchers from a variety of disciplines. The firs
to be awakened by the smoke was a mathematician. His first
reaction was to run immediately to the bathroom, where, see-
ing that there was still water running from the tap, he ex-
claimed: “There is a solution!”. At the same time, however,
the physicist went to see the fire, took a good look and went
back to his room to get an amount of water, which would be
just sufficient to extinguish the fire. The engineer was not so
choosy and started to throw buckets and buckets of water on
the fire. Finally, when the biologist awoke, he said to him-
self: “The fittest will survive” and went back to sleep.
(Anecdote originally told by C.L. Liu)

4.1 Introduction

Genetic algorithms (Goldberg, 1989; Holland, 1975) are ohthe four main types
of evolutionary algorithms, as the general class of seanchagtimization methods
which imitate the principles of natural evolution is call&the three other main groups
of evolutionary algorithms are (Cadd et al., 2001; Eiben and Smith, 2003): evolu-
tionary programming (Fogel et al., 1966), evolution sigate (Rechenberg, 1973) and
genetic programming (Koza, 1993). The computer science €lebling with evolu-
tionary algorithms is referred to as evolutionary compatat That some computer
scientists have chosen natural evolution as a source oiratism is not surprising.
The power of evolution in nature is evident in the diversecggeon earth, all being
well-adjusted to survive in their specific niche (Eiben amait§, 2003).

The adaptation of species to a specific niche has occurretbdigdective pres-
sure from the environment. Species that are more succedsfubiding death have the
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opportunity to produce more offspring than those that digngp This offspring inher-
its some of the beneficial features from the parents, allgutito survive even better
under the environmental conditions. On average, the salrfitness of a generation
increases due to this selective pressure. Furthermoraubeof the recombination of
the genetic material of the parents, the offspring devefaps features that were not
present in one of the parents. Mutation once in a while thriomes wild card. This
wild card is sometimes bad causing early death, but occaldyahcreates a somewhat
different feature that allows an individual to be even marecgssful than would have
been the case after simple recombination of the parent&tgematerial. In fact mu-
tation increases the diversity in a population. As the emriment (the predators for
example) is dynamic, there is a constant struggle of allispdo stay at the edge of
the current ‘genetic’ technology. Species that adapt toalglto new environmental
conditions, will get extinct some time or another (Duche\2@03).

In evolutionary algorithms a population of candidate sohs of the optimiza-
tion problem (individuals) is evolved. The fitness of theiwduals is obtained by an
objective function. Operators mimicking natural selectisurvival of the fittest) cause
arise in the fitness of the population. The general scheme e¥alutionary algorithm
is given in pseudocode in Alg. 1. The optimization procesststwith a population
of either randomly generated or previously known candidatations. Based on their
fithess, some of the better candidates are chosen to seeexthgemeration by apply-
ing recombination and/or mutation to them. Recombinatari operator applied to
two or more selected candidates (the so-called parentgkeantts in one or more new
candidates (the children). Mutation is applied to one cdaiéi and results in one new
candidate. Executing recombination and mutation leadsti af new candidates (the
offspring) that compete — based on their fitness (and possite) — with the old
ones for a place in the next generation. This process carefadt until a candidate
with sufficient quality (a solution) is found or a previousgt computational limit is
reached (Eiben and Smith, 2003).

Algorithm 1: The general scheme of an evolutionary algorithm in pseuti®co
t—0
Initialize PopulationP; at random
EvaluateP;
while stopping criterion not medo
Select parents fron®;
Recombine parents
Mutate the resulting offspring
Evaluate new candidatd , ;
Select individuals for the next generation
t—t+1
end

The four variants of evolutionary algorithms differ in thatd structure used
to represent a candidate solution, the relative importaficecombination and muta-
tion as variation operator as well as in the procedures eghpti select individuals as
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parents or as individuals of the next generation. Typic#itig candidate solutions are
represented by strings over a finite alphabet in genetiaidihgas, real-valued vectors
in evolution strategies, finite state machines in evoltigmprogramming, and trees in
genetic programming. In genetic algorithms and genetigmmming, recombination

and mutation are respectively the primary and secondaigti@r operators, whereas
in evolution strategies the reverse order applies (EibenSaith, 2003).

In this chapter, genetic algorithms, the type of evolutigralgorithms applied
in Chapter 6 for the optimization of membership functionsadMamdani—Assilian
model, are described. First, the different elements andatmes of a genetic algo-
rithm and the biologically inspired terminology used toerefo them, are introduced
by means of a simple example. Then, following issues thatlshoe addressed when
setting up a genetic algorithm, are discussed:

o the representation of a candidate solution,
e the parent selection procedure,

¢ the variation operators,

¢ the replacement procedure, and

e the parameter setting

A sixth important component that should be specified in otdatefine a genetic al-
gorithm is the fitness function. This issue is highly relai@the optimization problem
under consideration. It is therefore not addressed in thieel chapter on genetic
algorithms, but discussed in detail in Section 6.2.2.

4.2 Terminology

In the example below, after Eiben and Smith (2003), one 8eleceproduction cy-
cle of a genetic algorithm is illustrated. The objective lvd tonsidered optimization
problem is to find the integer valug € {0, ..., 15} for which the fitness function is

maximum x 3
fitnes§.X) = 2 + sin(% -3 (4.1)
The fitness of the 16 candidate solutidiis. . ., 15} is shown in Fig. 4.1.

The data structure used in a genetic algorithm to represesmbdidate solution
is referred to as ahromosome In the example, the chromosonié = (cy,...,¢,)
is a binary string of four bits and the corresponding integeue z is obtained by
(xmin =0,Tmax = 157 n= 4)

T — Tmi -
T = Tin + g YTC 2i-1, (4.2)
iz

The binary string is called thgenotypeand the corresponding integer value geeno-
typeof a candidate solution. All candidate solutions are hergipyesented: chromo-
some0000 for instance represenis= 0 and chromosomel111 represents = 15. In
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fitness(),

3_

Figure 4.1: Fitness of the 16 candidate solutions in the tiakgyorithm example.

Table 4.1: lllustration of a genetic algorithm: initiatioavaluation and parent selec-

tion.
string initial selection| times string 1
no. population | x | fithess prob. selected
1 1 1 0 1| 13| 1.07 0.13 0 '
2 0 00 1| 1 1.70 0.20 1 y
3 0 1 0 0| 4 2.87 0.34 2 @
4 01 1 1 7 2.68 0.32 1

this case the string represent only one variable, but a yistaing or a string of reals
x = (x1,...,%,) Can represent variables orgeneswith each gene taking several
values oralleles

In the first step of a genetic algorithmpapulationof individualsis initialized,
either generated randomly or seeded by previously knowrtisak. Here the popu-
lation size is equal to four. The four genotypes of the ihpi@pulation are shown in
Table 4.1 with the corresponding phenotypes and fithesgsalthe genetic algorithm
applies fitness proportionate selection as parent seteptiocedure. The probability
that an individual is selected as a parent is given in theraoltselection prob.” and
is given by the quotient of its fitness and the average fitnésdl individuals in the
population. The population is mapped to a roulette whedl st the slot size of each
individual corresponds to its selection probability. Theesl is spun four times and
the number of copies of an individual in timeating poolcorresponds to the number
of times the pointer pointed to the segment correspondinbeandividual when the
wheel stopped. Note that in the column ‘times selectaw® possible outcome of the
parent selection procedure is shown.

As crossoverandmutationprocedures respectively one-point crossover and bit
flip are applied. The selected individuals are paired at@amdand for each pair a
random point along the string is chosen. The children aratedeby splitting both
parents at this point and exchanging the tails. In Table He2résults of crossover
on the given mating pool are given for crossover points dfterfirst and third bit
respectively. Next, a random number (from a distributioiiarm over the range [0,1])
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Table 4.2: lllustration of a genetic algorithm: recombioat

string crossover offspring mutation offspring
no. parents point after xove mask after mutation
1 0/0 0 1 1 0100 0O0O0OQQ O10 O
2 0/1 0 O 1 0 001 0 00Q O0O0OO0O 1
3 0 1 00 3 0101 0 0 00 010 1
4 0 1 11 3 01 10/212000 11210

Table 4.3: lllustration of a genetic algorithm: replacety@ocedure and evaluation of
the next generation.

string worst
no. offspring x | fitness| offspring| generation Lz | fithess
1 01 0 0| 4 2.87 01 0 0 4 287
2 0 00 1| 1 1.70 0 00 1 1 1.70
3 01 0 1| 5 3.00 01 01 5 3.00
4 1 1 1 0| 14| 132 X 0 1 0 0| 4| 287

is generated for each bit position. Positions for which thisdom number is smaller
than a fixed low €.9.0.001) value, thenutation probability are indicated by a one in
themutation masland the corresponding bits are flipped.

In Table 4.3 the genotypes, phenotypes and fitness valué afffspring ob-
tained after crossover and mutation are shown. In the exarti@ nexgenerationis
obtained bygenerational replacememntith elitism Generational replacement means
that the whole population is replaced by the offspring.i&fit guarantees that the best
individual of a generation is never worse that the best idd&l of the preceding gener-
ation, for instance by replacing the worst offspring by tlesethindividual of the current
population. Although manually engineered, this examptansha typical progress: the
average fitness increases from 2.08 to 2.61, and the bestfitméhe population from
2.87 to 3.00 after crossover and mutation.

A genetic algorithm as the one applied in the example usirigaryprepresenta-
tion, fitness proportionate selection, a low probabilityraftation, and an emphasis on
genetically inspired recombination as a means of gengratinv candidate solutions,
is referred to as a canonical or simple genetic algorithme ffieoretical foundation
why genetic algorithms work, is usually illustrated usingimple genetic algorithm
and can be found in the textbooks by Goldberg (1989) and Nkgtiez (1996).

4.3 Binary and real-valued representation

The way a candidate solution is represented might be drficahe success or failure
of the optimization process (Eiben and Smith, 2003; Miclale, 1996). The success

53



Chapter 4. Genetic algorithms

of a representation can be evaluated by the best fithess obtaemed after running
the genetic algorithm with the different representatianChapter 6 the performances
of a binary-coded and a real-coded genetic algorithm arepaoed for a membership
function optimization problem.

Fixed-length and binary-coded strings for the represemtaif candidate so-
lutions, as used in the simple genetic algorithm in Sectid) tend to dominate in
research and applications of genetic algorithms. The uselhary representation
is mainly inspired by the outcome of the theoretical analydi genetic algorithms
by Holland (1975) and Goldberg (1989), recommending thedfisgphabets of low
cardinality. In a binary representation the alphabet withlowest possible cardinality
is applied, as bits only take values from the alphgloet } with cardinality two. More
recently, however, the use of genetic algorithms applyiriggs of real valued,e. with
large alphabets, is rising. Real-coded genetic algorittamgenetic algorithms apply-
ing strings of real values are called, showed to outperfamarly-coded genetic algo-
rithms in the optimization problems presented by Wright @98ichalewicz (1996);
Herrera et al. (1998). Furthermore theoretical foundatiiere established on the
reason why and the way in which real-coded genetic algostara suitable optimiza-
tion algorithms (Antonisse (1989) and Eshelman and Schéff#3) in Herrera et al.
(1998) as well as Goldberg (1991) and Radcliffe (1991)).

The binary representation allows the use of straightfodwaariation opera-
tors, but has some drawbacks as illustrated below with tveorgstes from the fuzzy
model optimization field. A first disadvantage of binary-eddyenetic algorithms is
the difficulties they meet when dealing with continuous skapaces where a great
numerical precision is required, for instance when seatctiie set of variablea =
(as, . ..,as,-1) definingn membership functions as shown in Fig. 4.2, which maximize
a certain fitness. If a binary representation is used, eatlibl@ay, € [amin k, Gmax, k]

(k € {2,...,2n-1}) is represented by a binary strigg, of ny; , bits

Ck = (Ck,h Ceey Ckanbit,‘k) with Ck,i € {0, 1} s (43)

and a candidate solution is represented by a chromogbme

C=(Cy...,C0m1). (4.4)
The phenotype of a chromosomé’ is obtained by
a= (a27...,a2n_1), (45)
Nbit,k
WIth  ap = Qi+ Pt mRE S o 2t (4.6)
=1

A variablea; encoded by a 2-bit string, can take one of the values of the fou
element set

2 1 1 2

{amin,lm gamin,k + §amax,k7 gamin,k + gamax,lm amax,k} .

If the variable should be defined by a higher precision, themer of bits used to
encode it should be increased, resulting in a larger se@ates For example, for 100
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Figure 4.2: Optimization of membership functions used inz§ model.

variables with domains in the range [-500,500] where a pieciof six digits after the
decimal point is required

Gmax,k — Gmin,k o 1076
IMbit,k — ] B ’

the length of the binary solution vector is 3000. This, imtugenerates a search space
of about10%%° (= 23099), For such problems genetic algorithms perform poorly.-Dur
ing the first generations, the algorithm wastes effortsuatalg the less significant
digits of the binary coded variables. However, their optimualues depend on the
most significant digits. As long as the most significant digite not converged, the
manipulation of less significant digits is useless. When eagence of the most sig-
nificant digits is achieved, it is not necessary to waste raffeets on them. However,
this ideal behaviour is not achieved by the genetic algorgince all digits are handled
in a similar way (Herrera et al., 1998).

Both Michalewicz (1996) and Eiben and Smith (2003) call agtof real val-
ues the most sensible way to represent variables origgnfrttm a continuous distribu-
tion. Real-coded genetic algorithms offer the advantagedbntinuous parameters can
gradually adapt to the fithess landscape over the entirelsspace whereas parameter
values in binary implementations are limited to a certaterival and resolution. The
real-valued representation is sometimes referred to afoing-point representation
as the precision of these real values are actually limitedhly of the computer on
which the algorithm is executed. By using a real-valuedesgntation the distinction
between genotype and phenotype is blurred, since in marlgms the real-number
vector already embodies a solution in a natural way. Thissis the case in the mem-
bership function optimization problem considered abovengithe chromosomé and
phenotypea are obtained by

C=(c1y - sCnyy) with ¢i € [Cmini, Cmax,i] C R, 4.7)
a— (G,Q, . 7(12”_1) with a; = C;i-1 - (48)
The straightforward variation operators for binary repreation cannot be applied in

case of real-valued representation, which forces, butallsws, the designer of the
genetic algorithm to design operators that are more prolsigetific. Furthermore,
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Table 4.4; Two coding strategies applied to binary repregiems: binary and Gray
coding.
integer O 1 2 3 4 5 6 7
binary 000 001 010 011 100 101 110 111
Gray 000 001 011 010 110 111 101 100

IF  X;ISLOW AND X, ISHIGH THEN Y ISas
IF  X;ISMEDIUM AND X, ISLOW THEN Y ISay
IF X;ISMEDIUM AND X,ISMEDIUM THEN Y ISas

with a;, € { NEGATIVE LARGE, NEGATIVE SMALL, ZERO, POSITIVE
SMALL, POSITIVE LARGE }

Figure 4.3: Identification of the rule consequents of a liaficifuzzy model.

real-valued representation has the property that two paiaise to each other in the
representation space are also close in the problem spatejanversa. This is not
generally true in the binary approach, where the distanag@presentation is normally
defined by the number of different bit positions. This dipemecy can however be
omitted by using a binary representation with Gray coding.ilustrated in Table 4.4
for integer values in the interval [0,7] two points next takather in the problem space
differ by one bit only when using Gray coding. Proceduresdovert binary coding
into Gray coding and vice versa are described in Michale\{@€86, p. 98).

Another shortcoming of binary representation is the pnobtef redundancy.
When a binary alphabet is used to represent variables belptgia discrete set with
a cardinality different from a power of two, some codes maydshindantj.e. their
phenotypes correspond to values that do not belong to tleeetiésset. When for in-
stance identifying the consequents of the rules of a Mamdesilian model, where
the consequents can contain one of the five linguistic vadiglse set{ NEGATIVE
LARGE, NEGATIVE SMALL, ZERO, POSITIVE SMALL, POSITIVE LAR& } as
illustrated in Fig. 4.3, a binary string of two bits cannopmesent all possible candi-
date solutions. When using a binary string of three bits hewethree of the eight
binary strings are redundant as they do not correspond tagaifitic value. When
applying crossover or mutation to genotypes that correspgora linguistic value, a
redundant binary string can be obtained. One can eitheicore this problem by
replacing redundant binary strings by valid binary striragsigning a very low fithess
value to redundant binary strings or remapping the redunbiaary strings to valid
binary strings. A more straightforward solution howevethis application of integer
representation. Eiben and Smith (2003) give an overviewadftion operators suited
to evolve integer representations, as well as a fourth typepresentation, the permu-
tation representation.

56



Chapter 4. Genetic algorithms

string 1 tring 1
e
CY (b)

Figure 4.4: Fitness proportional and rank-based seleetitin(a) roulette wheel sam-
pling or (b) stochastic universal sampling.

4.4 Parent selection

The role of parent selection or mating selection is to digtish among individuals
based on their fitness, in particular, to allow the betteividdals to become parents
of the next generation. Highly fit individuals get a higheaohe to become parents
than those with a low fithess. Nevertheless, also unfit iddizis can be selected as
parent in order to prevent the search of becoming too greadygetting stuck in a
local optimum. Three main selection schemes can be disshgd: fithess propor-
tional (Holland, 1975), rank-based (Baker, 1985) and taorent selection (Blickle
and Thiele, 1995).

Both fitness proportional and rank-based selection can aphgrally repre-
sented by a biased roulette wheel on which each slot comesgo an individual. The
roulette wheel is biased as the slot size is proportionah¢oselection probability of
the corresponding individual. Th¥ parents are either obtained by spinning the wheel
N times and including as many copies of an individual in theimggpool as the num-
ber of times the point pointed to the corresponding segnuerty spinning the wheel
once and including as many copies of an individual in the mgggiool as the number
of the N equally spaced points pointing to the corresponding segmiean the wheel
comes to a halt. These two selection procedures are regggcetferred to as roulette
wheel sampling and stochastic universal sampling and lstriited in Fig. 4.4. As
the roulette wheel is calledy independent times in roulette wheel sampling, this may
result in a high variance in the number of copies made fronm éadividual. Baker
(1987) developed stochastic universal sampling to reduegdriance. In this case the
number of copies of an individual is bounded by the integesrfind ceiling of the
expected number of copies, which is the producoand the selection probability of
the individual (Note that the sum of the selection probébdiof all individuals of a
population is equal to one).

In fitness proportional selection the selection probabikita function of the
fithess. In the original procedure proposed by Holland (J9Fe selection probability
is given by the quotient of the fitness of the individual to then of the fithesses of
all individuals of the population. In this case, if one indwal has a much better
fitness that the others, that individual will tend to be seddenuch more often than the
others. If thissuperindividualrepresents a local optimum, there will be a premature
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convergence for that suboptimal solution. If on the otherchanost individuals have

about the same fitness, those individuals will have abousdinge probability of being

selected, so that the selection will be almost random. Tslesgcomings can partially
be compensated by scaling the fitness (Goldberg, 1989) oipplyiag rank-based

selection (Baker, 1985). In rank-based selection the djoul is sorted on the basis
of fitness, and the selection probabilities of the individuae a (linear or exponential)
function of their rank. Drawback of rank-based selectiothé information about the

magnitude of fitness differences between individuals igaken into account.

In tournament selection (Blickle and Thiele, 1995)ndividuals are randomly
selected with replacement from the population and the elividual of this group
is selected as parent. This procedure is repeatéiines in order to obtain a mating
pool of N parents. Usually tournaments are held between two indisd@& = 2)
(Freitas, 2002). The larger the valuelgfthe more the selection procedure will be in
favour of highly fit individuals. Tournament selection igpaps the most widely used
selection operator in modern applications of genetic dlgars, due to its simplicity of
implementation and its time complexity 6f(\V) because no sorting of the population
is required (Eiben and Smith, 2003).

4.5 Variation operators

Variation operators are applied to create new individuadefthe parents in the mat-
ing pool, leading to exploration of new regions of the seaphce and exploitation
of the knowledge available in the current population abbatdptimization problem.
Two groups of variation operators can be distinguishedomdgination (or crossover),
merging information of two (or more) parent genotypes ime or two offspring geno-
types and mutation, altering the genotype of a parent inleeraandom way to create
one child. In this section a selection is given of recombarmeand mutation procedures
applied to binary and real-valued representations. Therpaenotypes will be repre-
sented byC; = (ci,...,cl )andCy = (c3,...,c2 ) and the offspring genotypes

) “Npig ) “Nbit

by Hy = (h!,...,h} )yandH, = (h2,...,h2 ).

? T Mbit 7 T Mbit

451 Recombination

Recombination operators are usually applied stochalstiaatording to a crossover
rate P.. For each pair of parents, selected (without replacemeat) the mating pool,

a value is uniformly drawn from [0,1]. If the value is lowerathP,, two children are

created via recombination of the two parents. Otherwise,dwildren are obtained by
copying the parents. By many genetic algorithm theoristspaactitioners recombina-
tion is considered the most important feature of genetiordlyns, whereas mutation
is regarded as a background search operator. Regardldesrogtits (or otherwise) of
this viewpoint, recombination is certainly one of the featuthat most distinguishes
genetic algorithms from other global optimization algoniis (Eiben and Smith, 2003).
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Binary representation Three forms of recombination are generally applied to lyinar
representations. One-point crossover, proposed by Hb{B®175), is illustrated in the
introductory example. In this case, the genotypes of th&den H; and H, are
obtained by

1 1 2 2
Hy = (C1y5CisCiatr s Cnp ) s (4.9
2 2 1 1
Hy = (ci, -,y Cixtr ooy Cp) s (4.10)
with ¢ a random number frorfil, ..., ny;x — 1}. A generalization of one-point cross-

over isn-point crossover (Spears and De Jong, 1991), where the tpstrérgs are
broken in more than two segments of contiguous genes andfipeing are created by
taking alternative segments from the two parents. This si#zatn random numbers

have to be selected frofd, ..., nyiy — 1}. Forn = 2 the genotypes of the children
are

H, = (c%7 o ,cgl,ciﬂ, R c?z,cllzﬂ, . ,C}Lbit) , (4.112)

Hy; = (c%7 . ,012170}1“, ce c}z,cf2+17 e mim) , (4.12)
with i1,i2 € {1,...,npx — 1}. Syswerda (1989) introduced uniform crossover. It

is implemented by generating a mask, a (random) binarygstiimy,;; bits. The first
offspring inherits the genes of the first parent in the posgiwhere the mask contains
a zero and the genes of the second parent in the positiongwhemask contains a
one. The second offspring is created using the inverse mgpg@iven a mask/

M= (my,...,mn,), (4.13)

the genotypes of the childrel; = (hi,...,h}, )andH, = (hi,... h3 ), are
obtained by

¢t Lifm; =0 2 ifm, =
pl=¢" T p2=7¢"0 . 4.14
! {cf Jifm; =1 {} i (4.19)

As it tends to keep together genes that are located closectoather in the
representatiom-point crossover (including one-point crossover) is saiduffer from
positional bias. The third crossover, uniform crossoveesinot exhibit any positional
bias, but does have a strong tendency towards transmittifigophthe genes of each
parent. This is known as distributional bias. It is howewepossible to state that one
of these operators performs better than the others on aey gikoblem (Eiben and
Smith, 2003).

Real-valued representation Real-valued strings can be recombined using the same
procedures as those described above for binary repreiseistalhe real counterparts
of one-point crossover and uniform crossover are respygtoalled simple crossover
(Wright, 1991; Michalewicz, 1996) and discrete crossoveiilidnbein and Schlier-
kamp-Voosen, 1993). These recombination procedures reswe not lead to explo-
ration of the search space in the neighbourhood of the g@rainte the allele value for
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genei is equal to the allele value of one of the parenes)h; € {c},c?}. In literature a
wide range of recombination procedures is available wheallele values of the off-
spring lies between or within a certain distance from thdg¢beparents. An extensive
literature review is given by Rademaker (2004). Below ohlg two recombination
procedures applied in this dissertation are described.

In arithmetic recombination (Michalewicz, 1996) the gemats of the children
Hy = (hi,...,hl )andH, = (h?,...,h2 ), are obtained by

7 Mg 7 Mg

hi=Xel + (1= N7, (4.15)
hi = (1—Nef + Acr . (4.16)

The parameteA can be constant (uniform arithmetic recombination) or ¢gieaas a
function of the generation of the genetic algorithm (noifarm arithmetic recombi-
nation).

Heuristic crossover, introduced by Wright (1991), is a urigtossover since it
uses values of the objective function in determining thedion of the search and it
produces only one offspring. The operator generates thetges of a single offspring
H; = (hi,...,hl ) according to the following rule

7 Mbit

hl=cl4r(c —c2), (4.17)

7

with C; the genotype of the best performing parent ardrandom value from [0,1].

45.2 Mutation

The most common mutation operator used in binary encodbigiip mutation (Gold-
berg, 1989), isillustrated in the introductory exampledbsiders each gene separately
and allows each bit to change with a probabilRy,, called the mutation probability.
In its real counterpart, uniform mutation (Michalewicz,98), allele values; of the
offspring are uniformly drawn from the intervidin i, cmax,i]- Each allele value is
replaced by a random value with a probabiliy, .

Real-coded genetic algorithms also commonly apply nofeumi mutation
with a fixed distribution (Eiben and Smith, 2003). This operaadds to the allele
of all genes of a parent chromosome a value sampled from gbdibdn that is sym-
metric about zero, and is more likely to generate small charat large ones. The
distribution is for instance normal with mean zero and a-gpecified standard devi-
ation. If necessary, the obtained allélgof the offspring is curtailed to the interval
[emin,i, cmax,i]- 1t iS normal practice to apply this operator with probajpilone per
gene, and use the paramei&y as standard deviation of the distribution instead.

4.6 Replacement procedure

Replacement can be regarded as the complementary opergiardnt selection. It
determines which individuals among the current populatind the offspring will be
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included in the next generation. The simple genetic algoripresented in the introduc-
tory example applies the most common replacement procedanerational replace-
ment, in which the entire population is replaced by the offgp A steady-state GA
operates on overlapping populations in which only a subfseccurrent population is
replaced in each generation. In fithess-based replaceeimtdividuals of the current
generation and the offspring compete for a place in the rexé¢ation using one of the
procedures mentioned earlier when discussing parenttegldSection 4.4). Finally,
elitism can be applied in conjunction with any of the replaeat procedures above in
order to prevent the loss of the current fittest member of dpufation. Elitism is for
instance obtained if the worst offspring is discarded aptheed by the best individual
of the current population.

4.7 Parameter setting

Apart from choosing a representation of the candidate isolsit a parent selection
procedure, variation operators and a replacement proecdae also has to set the
values of the various parameters: the population size,tiesover probability?, and
the mutation probability?,,. Furthermore a stopping criterion needs to be defined.

The values of the population size, the crossover probghilitand the muta-
tion probability P, greatly determine whether the algorithm will find an optiroal
near-optimal solution, and whether it will find such a salatefficiently (Eiben and
Smith, 2003). If the population size is for instance too $nthke genetic algorithm
may converge to a local minimum because the diversity in tpufation is too low.
On the other hand, if the population size is too large, theeiemlgorithm may waste
computational resources, which means that the waiting fiman improvement is too
long. The crossover probabilit). is also a very important parameter and its influence
on the results is similar to that of the population size. Ahleigcrossover probability
allows more exploration in the search space and reducetrees of converging to
a local minimum. On the other hand, a crossover probabilktictvis too high, results
in wastage of computation time in exploring unpromisingaeag of the search space.
The mutation probability?,,, on its turn controls the rate at which new genes are intro-
duced into the population. If the mutation probability is tow, many genes that might
be useful are never tried out. On the other hand, if the mangtirobability is too high,
there will be much random perturbation and the offsprind lw#e their resemblance
to the parents. This means that the genetic algorithm wgk liss ability to learn from
the history of the search (Osyczka, 2002).

Unfortunately, even though genetic algorithms have quiteng history, few
heuristics are available for determining the values of theameters of genetic algo-
rithms (Michalewicz, 1996). Several researchers (De J&8@R), Grefenstette (1986)
and Schaffer et al. (1989) in Michalewicz and Fogel (2000)nid parameters values
that were good for a number of test problems, but as theimnesendations are based
solely on experimental evidence, their generalizabisitirited. At the time when that
research was carried out, genetic algorithms used to beaseatust problem solvers
that exhibit approximately the same performance over a veidge of problems (Gold-
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berg, 1989, p. 6). The contemporary view on evolutionarpilgms, however, ac-
knowledges that specific problems require specific evatatip algorithm setups for
satisfactory performance &8k et al. (1997) in Eiben and Smith (2003)). Thus, the
scope of ‘optimal’ parameter settings is necessarily marithere are also theoretical
arguments that any quest for generally good evolutionaggrdhms, thus generally
good parameter settings, is lost a priori (Wolpert and Madye1997). For real-world
applications the parameter values are mostly sought thrana and error (Osyczka,
2002), a hard task which is considered more ‘an art than axceig€Michalewicz,
1996). In most genetic algorithm applications, the popoasize stays between 50
and 100, the probability of crossover between 0.65 and 1n@Dtlae probability of
mutation between 0.001 and 0.01.

Eiben and Smith (2003) remark that as the search carriedyoaih levolution-
ary algorithm is a dynamic, adaptive process, differentealof parameters might be
optimal at different stages of the evolutionary processt iRstance, large mutation
steps can be good in the early generations, helping the retjalo of the search space,
and small mutation steps might be needed in the late geaeratihelp fine-tune the
suboptimal chromosomes. Therefore, they argue that theHat the values of the
parameters of the genetic algorithm remain fixed during thelgvsearch process, can
itself be a cause of inferior algorithm performance. An @i@w of procedures to adapt
the parameters of genetic algorithms during the evolutippaocess is given in the
textbooks by Michalewicz (1996, Section 4.4, dealing with population size only),
Michalewicz and Fogel (2000, Section 10.4) and Eiben andts(@003, Chapter 8).

Stopping at a predefined number of generations or functialuations is a quite
common stopping criteria and has the advantage that oneskhow long it will take
to achieve a solution. The genetic algorithm can also stapcheng when there is
no significant improvement of the fitness of the populatiohe Search can either be
terminated if the number of converged chromosomes in thalptipn is greater than
some predefined percentage of the population or if the inggmant in the average or
best fithess in the lasgt generations is smaller than an preset value (Osyczka, 2002)

A fifth but implicit parameter that can largely influence thtehaviour of a ge-
netic algorithm is the initial seed for the random populat{®syczka, 2002). Run-
ning any genetic algorithm with a different random startissgd might produce very
different results and this should be kept in mind when makiogiparisons between
algorithms. For real-world applications this means thpetitions of experiments are
needed in order to remove the random effect.
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CHAPTER D

| Fuzzy ordered classification

Knowledge is indivisible. When people grow wise in one di-
rection, they are sure to make it easier for themselves tavgro
wise in other directions as well. On the other hand, when
they split up knowledge, concentrate on their own field, and
scorn and ignore other fields, they grow less wise — even in
their own field.

(The Roving MindIsaac Asimov, 1983)

5.1 Introduction

According to European Union (EU) standards and objectieslogical water quality
in EU Member States is still far from satisfactory, both imte of nutrient management
and habitat degradation (Chave, 2001). Within the lastdksdhe industrial pollution
load has significantly decreased, but household and agniatipollution still causes a
high load of organic substances and nutrients (Hering £2@04). New requirements
at the EU level, mainly covered by the Water Framework DivedtEU, 2000) in which
Member States are hold to reach good ecological qualityHeir tsurface waters by
2015 (Chave, 2001), urge the Member States to extend tlegEisament methodologies
to implement the desired river management. A methodologdgtefest in this context
is the modelling of habitat suitability. Habitat suitabilimodels describe which abi-
otic conditions are appropriate for a certain taxon or et establish a population
(Guisan and Zimmerman, 2000).

Ecological models that are meant to be used in river managtecaa differ in
biological endpoint. The choice of the endpoint can depenthe conservation value
of a specific group of organisms as well as on the functionalita biological indicator
of river conditions. The biological endpoints for riversses by the Water Framework
Directive (EU, 2000) include phytoplankton, phytobenthod macrophytes, macroin-
vertebrates and fish. In this study benthic macroinvertebrare considered. Benthic
macroinvertebrates are invertebrate organisms that inhmainly bottom substrates of
freshwater habitats (Rosenberg and Resh, 1993). The teatrdhassumes that they
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are large enough to be seen without magnification and thgtareeretained in a net
with mesh size of 500m. Macroinvertebrate communities are made up of speci¢s tha
constitute a broad range of trophic levels and pollutioerahces. Furthermore, they
show limited migration patterns and are therefore wellesiifor assessing site-specific
impacts, they are abundant in most streams and they arg easilpled. Because of
their central role in aquatic ecosystems, macroinvertebrare widely used as indica-
tors for assessing the quality of freshwater (De Pauw andh&fren, 1983; Wieder-

holm, 1980; Shdecek et al., 1982; Metcalfe, 1989; Rosenberg and ResB).199

The development of habitat suitability models is not an ¢asl. When devel-
oping ecological models to support decisions in river managnt, one should compro-
mise between the policy relevance of the variables, theogaml processes incorpo-
rated in the model and the accuracy of the model. Furthertifue@vailable knowledge
is usually only verbally described, with terminology andanimg differing from source
to source. On the other hand, data available are not onlgechnt insufficiently rep-
resentative for all river conditions, and can thereforey giemost a role in model opti-
mization, but not in model identification (Casillas et aDp3a,b). Taking into account
these limitations and the ultimate use of these models irsid&csupport, requiring
understandability to the end user (Ehrlich and Daily, 1998jwig et al., 1993; Par-
sons and Norris, 1996; Omlin and Reichert, 1999; Elith e28l02; Holling and Allen,
2002; Regan et al., 2002; Borsuk, 2003; Poff and Allan, 199%)as opted for linguis-
tic fuzzy models and a knowledge-based design approachrilded in this chapter,
followed by an interpretability-preserving data-drivgstimization of the membership
functions, discussed in Chapter 6.

The models developed in this study describe the habitattslity for macroin-
vertebrates in springs up to small rivers in the eco-regiothe Central and Western
Plains of Europe (lllies, 1978). As will be explained funttom, this modelling prob-
lem asks for a model that gives a shaded indication of a ceritar site’s suitability
as habitat for a certain macroinvertebrate species. Theeizzy classifiers were ap-
plied, instead of classical models with crisp outputs asprdlassifiers. A more detailed
description of the habitat suitability models, built usegpert knowledge described in
literature, is given in Section 5.2. In Section 5.3, the datilected in the Province of
Overijssel in the Netherlands (Verdonschot, 1990) on witiehmodels were evalu-
ated, referred to in this work as the EKOO data set, are digclisThe measures used
to evaluate the models, percentage of correctly classifistmces (% CCI) and the
percentage of correctly fuzzy classified instances (% CREWvell as the results of
the model evaluation are presented in Section 5.4. The ehaphcludes with some
remarks on the use of knowledge-based model identificatidnfazzy modelling for
habitat suitability modelling in Section 5.5.
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5.2 Habitat suitability models

5.2.1 Knowledge base

The knowledge base, used during the model design procedssésibed in detail in
Adriaenssens (2004). It summarizes observations of dexesbogical studies (Mauch,
1976; Moller Pillot and Buskens, 1990; Verdonschot, 1998ségjlio-Polatera, 1994;
De Loose et al.,, 1995; Bayerisches Landesaiint\Wasserwirtschaft, 1996; RIZA,
2000; Verdonschot, 2000a,b; Tachet et al., 2000) regandiivigpriate preferences as
well as tolerances of 86 macroinvertebrate species for ielihset of environmental
variables. In Appendix A the names of the 86 macroinvertebspecies are listed.
Among them, 30 species are regarded as characteristicgetbrence conditions of
the river types included in this study (high ecological iftyabased on (Verdonschot,
2000a,b)) and will be referred to as indicator species. Ther®d6 species are so-called
common species, observed at river sites of diverse ecealbgiality. The information
in the knowledge base applies to springs up to small rivetBinvthe limnological
eco-regions Central and Western Plains of Europe as definiliels (1978). The eco-
logical variables addressed in the knowledge base are:direension (stream width),
stream velocity, saprobic conditions, habi&ahsu strictand habitat diversity.

5.2.2 Input and output variables

As discussed in detail by Adriaenssens (2004), the selécped variables should be
of high ecological importance to the macroinvertebrategseunder study as well as
to the whole macroinvertebrate community and should be pbitance to river man-
agement. Furthermore, knowledge about their prefererareseftain environmental
conditions needs to be available and the variables need tochaled in the EKOO
data set. Physical variables do provide effective assassiriteria when rivers are not
affected by physical-chemical degradation (Karr et al3&)9 However, in the Central
and Western Plains of Europe, the main threats for bioldgicenmunities in rivers
are the deteriorated physical-chemical water quality @@ws. This is mainly due
to increased nutrient and organic loading mainly causedgbigatural activities and
pollution originating from households.

Therefore, apart from stream width and stream velocity,uariables determin-
ing the river type and reflecting the water quantity condiican additional input vari-
able is used, expressing the physical-chemical condiibasiver site. The knowledge
base contains preferences and tolerances for the saptahis at a river site, which
can be represented by the ammonium concentration. Durengntidel design process,
the information in the knowledge base concerning the peefes and tolerances for
the saprobic condition is interpreted in a more general Wayeach macroinvertebrate
species, four different models were built: apart from an Adel including the stream
width, stream velocity and ammonium concentration as inptigibles, also an N- and
a P-model were constructed including respectively nitaatdk phosphate concentration
(trophic status) and a C-model in which electrical conduitsti(ionic status) was se-
lected as third input variable. This allowed us to evaluates/hiich extent knowledge
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concerning the saprobic status of the water column is alls fiea its trophic and ionic
status. The occurrence of some of the 86 considered maerteéwate species is in-
dependent of the stream width. In these models stream wddtbtiincluded and only
two input variables are used.

Due to the different context of the studies described in igatepublications
used as a source of expert knowledge, meanings given to ¢uelinguistic terms are
not identical in all eight publications. However, in all sidered studies, a similar
number of linguistic values is assigned to variables asstrevidth, stream velocity
and nutrient and organic loading and in most cases similaressions are applied to
refer to the different situations distinguished. The liisjo values assigned to the
variables in the developed models are listed in Table 5.1e fitmber of linguistic
values distinguished for a certain variable ranges frometito five. All values are de-
fined by membership functions forming a fuzzy partition, lasstrated in Fig. 5.1(a)
for the five linguistic values for ammonium concentratiom ¢rder of increasing or-
ganic load):oligosaprobic, 5, a-oligosaprobic, B-mesosaprobic, a-mesosaprobic
andpolysaprobic conditions. All membership functions are of the trapezipkt, char-
acterized by four parameters,( a2, as, a4): the membership degree linearly increases
from 0 to 1 for values betweeny andas, remains constant for values betweenand
az and linearly decreases from 1 to O for values betwegmand ay. A triangular
membership function is obtaineddf, is equal toaz. The values of the membership
function parameters of all variables, given in Table 5.&, zased on crisp boundaries
found in literature. The kernel of each of the membershigfions is the intersection
of the crisp intervals used in the different literature s@srto define the corresponding
linguistic term. As fuzzy partitions were opted for, the paps of the membership
functions are determined by the kernels of the membershiptions of the adjacent
linguistic values and the lower and upper bounds of the uyidgrdomain.

A site’s suitability as a habitat for macroinvertebratesroat be measured di-
rectly. As output variable of the developed habitat suliigtrinodels, the abundance of
a macroinvertebrate species at a river site is used. Thaelabae is a measure for habi-
tat suitability: the higher the abundance of a species, itjieeh the site’s suitability as
a habitat. Furthermore the EKOO data set contains the nuaflsampled individuals
of the 86 species considered at all investigated river.sitaghe developed models
four linguistic values were assigned to the variallisent, low, moderate andhigh.
They are defined by the membership functions shown in Figbbwith the help of
the same experts assigning the membership functions ofithe variables. In order
to take into account the non-linear response of macroiebeste species to environ-
mental conditions (Statzner et al., 1988), the abundanicesavere log-transformed.
When comparing abundance values, relative differencegrditan absolute differ-
ences should be considered, since the difference betweed 2 andividuals found
at a river site is more significant than the difference betw#@l and 102 recorded
individuals. We also want to stress that these abundancewsare not equal to the
exact number of individuals present at a site, but are ptapwl to the number of
individuals present at a site (see the sampling procednr8edtion 5.3).
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Table 5.1: Linguistic values assigned to the input and dutpriables of the habi-
tat suitability models. The values between brackets cleriae the cor-
responding trapezial membership functions.

stream width (m) stream velocity (m/s)
1 spring / small stream (0,0,0,2) 1 low (0,0,0,0.25)
2 upper course stream (0,2,2,4) 2 moderate (0,0.25,0.25,0.5)
3 middle course stream (2,4,4,6) 3 high (0.25,0.5,1.2,1.2)
4 lower course stream / small river (4,6,201,201)
ammonium concentration (mg NHN/L) nitrate concentration (mg NON/L)
1 oligosaprobic (0,0,0,0.1) 1 oligotrophic (0,0,0,0.15)
2 (,a-oligosaprobic (0,0.1,0.1,0.15) 2-mesotrophic (0,0.15,0.15,0.30)
3 B-mesosaprobic (0,0.15,0.15,4.5) admesotrophic (0.15,0.3,0.3,0.4)
4 «-mesosaprobic (4,5,8,10) 4 eutrophic (0.30,0.4,0.4,0.45)
5 polysaprobic (8,10,30,30) 5 hypertrophic (0.40,0.45,112,11
phosphate concentration (mg PeP/L) conductivity («S/cm)
1 oligotrophic (0,0,0,0.0080) 1 oligoionic (0,0,150,250)
2 (-mesotrophic (0,0.0080,0.0080,0.0150) B2mesoionic (150,250,450,550)
3 a-mesotrophic (0.0080,0.0150,0.0150,0.0250) 3 mesoionic$860750,850)

4 eutrophic (0.0150,0.0250,0.0250,0.0450) a4mesoionic (750,850,1050,1150)
5 hypertrophic (0.0250,0.0450,5.45,5.45) 5 polyionic (1058012880,2880)
log,,(abundance + 1) (-) corresponding abundance (-)

1 absent (0,0,0,0.477121) 1 absent (0,0,0,2)
2 low (0,0.477121,0.477121,0.778151) 2 low (0,2,2,5)
3 moderate (0.477121,0.778151,1.041393, 3 moderate (28)10
1.322219)
4 high (1.041393,1.322219,3.602169, 4 high (10,20,4000/400
3.602169)
A(I) oligosaprobic A(l’)
1 B, a-oligosaprobic 1
B-meso- a-meso- poly- | ab- low Y moderate high
saprobic saprobic saprobic sent,
0+ T f T { ) 0 T T r T T
0 2 4 6 8 10 0 0.3 06 09 12 15
ammonium conc. (mg NEFN/L) log,(abundance + 1) (-)
(a) (b)

Figure 5.1: Definition of the five linguistic values assign@dmmonium concentration
and the four fuzzy abundance classes through membershipdos.
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5.2.3 Rule bases

Based on the knowledge base, rule bases were built desgriben preferences of
macroinvertebrates with regard to the environmental éetastream width and stream
velocity in combination with the saprobic status represeériy the ammonium con-
centration. The rule bases of the 86 species can be consulfgubendix B. As the
preferences for habitat structure and habitat diversiéyfar too complex to be repre-
sented in such a compact way, these variables were not ettindhe rule bases. The
four linguistic values of stream width, the three linguistialues of stream velocity
and the five linguistic values of the variables describirgrhtrient and organic con-
centration, define 60 environmental situations. The falhgaprocedure was followed
during the rule base developmein, the assignment of a linguistic abundance value to
this 60 environmental situations. First of all, a two-dirsiemal rule base with stream
width and stream velocity as input variables and abundasioeiput variable was con-
structed, based on the univariate preferences for stredthand stream velocity. The
development of the three-dimensional rule base was iediaty assigning the corre-
sponding abundance values for the 12 combinations of stvédth and stream veloc-
ity in the two-dimensional rule base to all situations withagtimal saprobic condition
according to the univariate preference in the knowledge.blhsa next step, the rule
base was completed for situations with suboptimal comuiitineing less saprobic than
the optimal saprobic condition(s). For all combinationsstBam width and stream
velocity, a lower abundance value than the correspondingddnce value in the two-
dimensional rule base was assigned, the difference beth@&bnclasses being equal
to the difference between the univariate preference forsprobic condition under
consideration and the abundance value ‘high’. Note thaabumdance value ‘absent’
is the smallest linguistic abundance value and can thexefot be further decreased.
Finally, abundance values were assigned in case of suinajgaprobic conditions be-
ing more saprobic than the optimal saprobic conditions.l&erand moderate stream
velocities, the same procedure was followed as for lesoobapconditions. For fast
running waters the abundance values were lowered lessdasfuanction of the uni-
variate preference for the saprobic condition, reflectimg lbwer effect on the water
chemistry and the related lower uptake of toxic substanoegal the lower residence
time of organic components in the water.

The rule base development is illustrated by means of thebades of the crus-
taceanProasellus meridianusind the molluscStagnicola palustrifFig. 5.2). The
univariate preference dProasellus meridianusoncerning the saprobic status of its
habitat varies from low, low, moderate, high and low for obgprobic to polysaprobic
conditions (Adriaenssens, 2004). As such, the most optioradition for this species is
a-mesosaprobic. In this situatioRfoasellus meridianuwill have its optimal distribu-
tion that is completely determined by (stream width andastr velocity. At the other
saprobic levels, this macroinvertebrate will have a distieid distribution based on its
univariate preference for the saprobic status. For exarp@@igosaprobic conditions,
the univariate preference Bfroasellus meridianus low. As such, the resulting abun-
dance level will be two classes lower than the optimal leagl only river sites with
moderate stream velocities will have a low abundance |I&at methodology of rule
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(@)

(b)

stream width

stream velocity

Proasellus
meridianus spring /small | upper course | - middle course | [FASTEPUTSE,
stream stream stream river
oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent
moderate Low Low Low Low
high Absent Absent Absent Absent
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Absent Absent
moderate Low Low Low Low
high Absent Absent Absent Absent
mesosaprobic ¢&-mesotrophic / mesoionic

low Low Low Low Low

moderate
high

Low

Low.

Low.

Low

«-mesosaprobic / eutrophic¥-mesoionic

polysaprobic / hypertrophic / polyionic

low Absent Absent Absent Absent
moderate Low Low Low Low
high Low Low Low Low
) stream width
Stagnicola
palustris spring / small upper course middle course ;fr"ej/:r'ncf;':ae"
stream stream stream river
oligosaprobic / oligotrophic / oligoionic
low Absent
moderate Low
high Absent
low Absent
2 |_moderate Low
‘o |_high Absent
% mesosaprobic &-mesotrophic / mesoionic
> low Absent Absent Low
€ [ _moderate Absent Low
& [high Absent Low
ﬁ «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent
moderate Absent Absent Low Low
high Absent Absent Low Low
polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent
moderate Absent Absent Absent Absent
high Absent Absent Absent Absent

Figure 5.2: Rule base of the four models describing the &bsititability forProasel-
lus meridianusandStagnicola palustris
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base development is applied in a similar way for higher daiprievels, although tol-
erance and subsequent abundance are lowered more graduddgt running rivers,
because of the smaller chance of negative effects at higientibr organic loading
and high current velocity. This can be seen in the rule basgtagnicola palustris
(Fig. 5.2(b)) which univariate preference concerning thersbic status of its habitat
varies from high, high, moderate, low and absent for oligoshic to polysaprobic
conditions. At mesosaprobic conditions, for whigstagnicola palustrifias a moderate
univariate preference, lower abundance values are askthaa at3,«a-oligosaprobic
conditions in case of low and moderate stream velocitiegreds equal abundances
are used for high velocities for both saprobic levels. Thenalances at high veloci-
ties are however not maintained for all sub-optimal, moprdaic conditions. In the
saprobic level ¢-mesosaprobic in case &tagnicola palustrispreceding a saprobic
level for which the univariate preference of the speciebseat (polysaprobic in case
of Stagnicola palustris the abundances at high velocities are lowered with orgscla
compared to the abundances assigned in the preceding Eapoaldition (mesosapro-
bic in case ofStagnicola palustris

5.2.4 Fuzzy classifiers

In the A-, N-, P- and C-models of the 86 macroinvertebrateiggse including respec-
tively ammonium concentration, nitrate concentrationpg@hate concentration and
electrical conductivity as input variables, the same masibp functions are used.
The rule bases of the models of the different species diffdérare identical for the four
models of a certain species (Appendix B) as the informatiothe knowledge base
concerning the preferences and tolerances for the saprobitition are interpreted in

a more general way and extended towards trophic and ionitoms. All constructed
rule bases are compleies. each rule base contains a rule for each combination of lin-
guistic values of then input variables. The 60 rules are of the following type

IF width |S upper course stream
AND wvelocity IS low
AND nitrate concentration |S eutrophic
THEN abundance |S moderate

The if-part of the rule (the antecedent) describes in whittkaons the then-part of
the rule (the consequent) holds.

The rule bases show that the abundance of some of the cogdideacroin-
vertebrate species is independent of the stream width ati@ for two consecutive
linguistic values of an input variable. The rule bases, riivdgthe abundance of these
species, were simplified by removing redundant input véegbr redundant linguistic
values, as these would slightly distort the model output.

The occurrence dProasellus meridianydor instance, is independent of stream
width, as one can see from the rule base in Fig. 5.2(a). Funtbre, according to the
rules derived from the eight consulted knowledge sour¢egkiundance is the same
in oligosaprobic (resp. oligotrophic and oligoionic) cdiwhs as inj,«-oligosaprobic
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Figure 5.3: Membership functions of (a) the original streaidth values and (b) the
three width values used in the modelsSifgnicola palustri®btained by
combining the third and fourth original linguistic value.

(resp. B-mesotrophic ang-mesoionic) conditions. If two consecutive linguistic val
ues of a variable yield the same model output for all comimnatof linguistic values
of the other input variables, then the corresponding rutest@erged and a new lin-
guistic value is introduced defined as the convex hull of tremimership functions
of the original linguistic values. Therefore, in the reddiceodel the variables am-
monium, nitrate and phosphate concentration and condiyctteke four values in-
stead of five, for ammonium concentration these linguissilues are ‘oligosaprobic
to 3,«-oligosaprobic, 5-mesosaprobic’,¢-mesosaprobic’ and ‘polysaprobic’ condi-
tions. The linguistic value ‘oligosaprobic 1®,a-oligosaprobic’ conditions is defined
as the convex hull of the membership function of ‘oligos#gprbconditions and the
membership function of8,«-oligosaprobic’ conditions.

The creation of new linguistic values and their correspogdnembership func-
tions is illustrated in Fig. 5.3 for the variable stream widt the models oftagnicola
palustris (Fig. 5.2(b)). For this species, the same abundance vaheeasaigned to
middle course and lower course streams and small riverdlfoombinations of stream
velocity and saprobic (respectively trophic and ionicjiséa The two linguistic values
‘middle course stream’ and ‘lower course stream / smalktriwere therefore replaced
by one linguistic value ‘middle course stream to small ridexfined by the convex hull
of the fuzzy sets describing the two original linguisticues.

As a result of the reduction of input variables and lingeistilues, the number
of rules in the rule base decreases. The rule base of theingstililly reduced model
for Proasellus meridianuss shown in Fig. 5.4. This model reduction procedure is
carried out for the models of all 86 species, resulting in ei®avith different numbers
of input variables, membership functions and number ofstule

Given the available qualitative expert knowledge and uwag®y in the defini-
tions of the used linguistic expressions, linguistic fumzgdels are the most appropri-
ate model types for the modelling problem. Given crisp inltiesz,,, =, andz,, for
the three input variables width, velocity and for instano@r@nium concentration in
case of an A-model, the fuzzy model output is obtained byalewing procedure. In

73



Chapter 5. Fuzzy ordered classification

Proasellus

stream velocity

meridianus low moderate

high

oligosaprobic to
3,cc-oligosaprobic /
oligotrophic to
B-mesotrophic /
oligoionic to
B-mesoionic

Absent Low

saprobic / trophic / ionic status

mesosaprobic /
«a-mesotrophic /
mesoionic

Low

«a-mesosaprobic /
eutrophic /
«a-mesoionic

polysaprobic /
hypertrophic /
polyionic

Absent Low

Absent

Low

Low

Figure 5.4: Reduced rule base of the four models describi@dnabitat suitability for
Proasellus meridianus

a first step, the membership degrees of the input values tintigstic values of the
input variables are determined. The membership degrees of2.4 m,x, = 0.25 m/s
andz, =4.7 NI—Q-N mg/l to the linguistic values in the antecedents of thesulf the
A-model of Gammarus pulexmodel index = 42) are

width:

velocity:

ammonium conc.:

spring/small stream to upper course stre@&Masn,1 (Zw

middle course stream
lower course stream/small river
low
moderate
high
oligosaprobic
(B,a-oligosaprobic tg3-mesosaprobic
«a-mesosaprobic
polysaprobic

)=0.8,
Awidth,2(Tw) = 0.2,
Awiath,3(®w) =0,
Avclocity,l(xv) = 0,
Avelocity,2($v) = 1:
Avelocity,S(mv) = 01

Next, the degree of fulfilment is calculated for each rulehgsrminimum of the fulfil-
ment degrees in its antecedent. For the example above,llbwifgg four rules have a
non-zero fulfilment degree

IFW = Ayidath,1 AND V = Ayelocity,2 AND @ = Aammon,2 THEN abundance = moderate

(0.3 =min(0.8,1,0.3))

IF W= Ayidgth,1 AND V = Aqelocity,2 AND @ = Aammon,3 THEN abundance = absent

(0.7 =min(0.8,1,0.7))

IFw= Awidth,Z AND Vv = Avelocity,2 AND a = Aammon,Z THEN abundance = low

(0.2 =min(0.2,1,0.3))

IF W = Ayidgth,2 AND V = Aqelocity,2 AND @ = Aammon,3 THEN abundance = absent

(0.2 =min(0.2,1,0.7))

Finally, to each linguistic output value a fulfilment degie@ssigned given by
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the maximum fulfilment degree obtained for all rules coritagrthe linguistic output

value under consideration in their consequent. In the gaxample the following

fulfilment degrees are obtained: 0.7 for absent, 0.2 for @®&for moderate and O for
high.

Up to this point, the procedure is the same as the one applidamdani—
Assilian models (see Section 2.3.2). In Mamdani—Assiliarets the procedure con-
tinues by adapting the membership functions of the outpritlbke according to the
corresponding fulfilment degree, constructing the unioralbfadapted membership
functions and deriving the model output, a crisp value, byn#fying this union, for
instance, by computing its center of gravity. It is, howewvert the purpose of a habi-
tat suitability model to predict a precise numerical valaethe occurrence of a given
species. No ecologist is interested in or would even trusbdetstating an occurrence
of, e.g.37 individuals. It is rather the magnitude of the abundanbikwis of interest.
Therefore, a different kind of fuzzy model was applied: azfuzlassifier. The model
output of the developed models is fuzzy. The model ouspigqel is a set of four
values between zero and one and summing up to oa&sdft, A1(ymodel), (low,
Az(Ymodel), (moderate, A3(ymodel), (high, A4(¥ymodel)], €xpressing the degree to
which the considered river site is respectively regarde¢datmindance value ‘absent’),
lowly, moderately or highly suitable as a habitat for theciee. The output is obtained
by normalizing the fulfilment degrees of the abundance (@)tdasses, which results
iN Ymodel = [7/12,1/6,1/4,0] for the numerical example. Note thatdbendance val-
ues included in the validation data set are crisp valuesdars). When comparing the
fuzzy model outputs with the information in the validatioata set, the membership
degrees of the crisp abundance values to the four lingubtindance values are used
(Table 5.1).

5.3 EKOO data set

5.3.1 Data collection

The data used in this study to evaluate and optimize thedtahittability models were
collected in running waters in the Province of Overijssethia Netherlands. They are
part of a larger data set described by Verdonschot (1990)hwdpart from the 445
data points collected along running waters and used in thidysalso includes data
collected in pools and lakes, canals and large standingsvate

The sampling dates were spread over the four seasons assamleaseveral
years (from 1981 to 1985). The objective was to capture thHeniyaof species present
at a given site, and assess their relative abundances. Atséag¢ 70 abiotic variables
were measured, as stream width, depth, temperature, &iemsyy of the water column,
bank shape, substratum, dissolved oxygen concentratigmipate concentration and
phosphate concentration, and samples were taken of the hadjats, the water body
and the bottom habitat to collect macroinvertebrates. hilel sites, habitats with
vegetation were sampled by sweeping a hand net{ZD cm, mesh size 500m)
several times over a length of 0.5 to 1 m through each vegetgtpe. Bottom habitats
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were sampled by vigorously pushing the hand net through piperufew centimeters
of each type of substratum over a length of 0.5 to 1 m. All teitsamples collected at
a site were combined in a single sample with a standard ark& of? (1.2 n? of veg-
etation and 0.3 fof bottom). At sites lacking vegetation, the standard samgphas
confined to the bottom habitats. In deeper sites, five sanfigesthe bottom habitats
were taken with an Ekman-Birge sampler. These five grab-Esmmpere equivalent to
one hand net bottom sample. Habitats with vegetation wengleal with a hand net as
described above. Again the total sampling area was staizédrtb 1.5 M. Macroin-
vertebrate samples were taken to the laboratory, sorteg¢dyyceunted and identified
to species level, except for chironomids.

In this work the term ‘EKOO data set’ (Ecologische Karalgering van Opper-
vlaktewateren in Overijssegcological characterisation of surface waters in Overijs-
sel) does not refer to the complete data set described by Vectioh§1990), but only
to those data used in this study: the values of the six abiati@bles, stream width,
stream velocity, ammonium concentration, nitrate coredion, phosphate concen-
tration and electrical conductivity, and the number of skapndividuals of the 86
macroinvertebrate species listed in Appendix A at 445 sitesg running waters.

5.3.2 Data distribution over input and output space

When applying a model to data, one should examine the data eedér to be able to
interpret the scores obtained by performance measurddi(f§@nd Bell, 1997; Boone
and Krohn, 1999; Cowley et al., 2000; Manel et al., 2001). Waelata set contains
examples of all situations covered by the model, the wholdehwill be assessed. If,
however, some if-then rules in the rule base of a model agphohe of the examples
in the data set, one cannot draw any conclusion about theatoass of these rules.
Therefore, the distribution of the validation data set diaerinput and output space has
to be taken into account.

As a measure for the uniformity of this distribution, the 8han entropy mea-
sure was used (Shannon and Weaver, 1963). The fuzzy setsomrerted into crisp
ones to calculate this measure. The boundaries of thegesais are the points having
membership degree 0.5 to the corresponding adjacent fetgy Bhe entropy is given
by (conventiorD - log, 0 = 0)

1 n
entropy= =13 pi-lomapi. 5.0
27 =1

wheren is the number of classed/ is the number of data points apgis the proportion
of data points belonging to classThe entropy is 1 for a uniform distribution and O if
all data points are assigned to the same abundance claghas#se foOdontomesa
fulva. Note that entropy is a non-linear concept. In Table 5.2omytvalues for some
species are given. When a distribution is highly non-unifasforAgabus affinisthe
shift of 1 data point from the most frequent class to a lesgufeat class results in an
entropy increase of at least 0.009. Given a more unifornmirdgiistribution, a larger
shift towards a more uniform distribution, gives a smallgrepy increase, for instance
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Table 5.2: Distributions of data points over four crisp atamce classes and the corre-
sponding entropy.

number of data points classified as
Species absent low moderate high entropy
Odontomesa fulva 445 0 0 0 0.000
Agabus affinis 444 1 0 0 0.012
Elmis aenea 443 2 0 0 0.021
Plectronemia conspersa 399 15 15 16 0.322
Proasellus meridianus 247 78 80 40 0.835
Erpobdella octoculata 237 106 64 38 0.841

an entropy increase with 0.006 ferpobdella octoculat@ompared to the entropy for
Proasellus meridianus

The EKOO data set is characterized by a highly non-uniforstrihution of the
data points in the input space. As the same input values arshthe membership func-
tions are used in respectively all A-, N-, P- and C-models,distribution of the input
values over the different regions of the input space is theedar all models of a given
type. By replacing the fuzzy sets describing the linguigtilues of the input variables
by crisp sets, each data point can be assigned to one emnértahtondition. The
crisp sets are bounded by the points having membershipe@dsdo the correspond-
ing fuzzy sets. The distribution of the data points over tAedisp’ environmental
conditions considered by the habitat suitability modelgiven in Fig. 5.5 for the four
model types. This table gives an indication of the usefidredsthe data set for the
validation of the developed habitat suitability models romerange of environmental
conditions that can be found in the Province of Overijssel.

When only considering ‘stream width’, the distribution oéthites is relatively
balanced over the four linguistic values used in the halsittability models. For
‘stream velocity’, fast running streams are underrepresem the data set. For the
saprobic status characterised by the ammonium concemrgdi-model), most sites
are classified into thg-mesosaprobic class, although other saprobic classedsare a
present at the sampling sites. For nitrate and phosphateentation (N- and P-
models), dominance of polytrophic conditions is obvious. eéWliocussing on con-
ductivity (C-model), most of the sites are/&mesoionic conditions.

The sampling sites included in the EKOO data set were chaseudh a way
that a rather uniform geographical distribution was olgdinwhile trying to include
a similar number of examples of the different environmeantaiditions present in the
region. In other words, during the selection of the sampsitgs, a maximal input
entropy was strived for. However, due to the fact that theeeganditions at the sites
are unknown before the sampling, that some environmentalitons described by
the model are underrepresented in the considered regioto dugnan impactd.g.ref-
erence conditions) and that the four model types includerdift input variables, no
perfectly uniform distribution among the 60 environmersialiations described by the
models is obtained. As shown in Table 5.3, input entropiagirey between 0.63 and

77



Chapter 5. Fuzzy ordered classification

width
spring / small stream upper course stream | middle course stream lower course stream/
small river
Q Q Q Q
z s | . s | . i A
S| 2|2 |8 |s|2|8|s|2|28|3|¢2
> £ £ £ £
1
2
A-model| 3
4
5
1
2
N-model| 3
4
5
1
2
P-model| 3
4
5
1
2
C-model| 3
4
5

Legend: O sites. ), 1 to 5 sites[[Z7]), 6 to 10 sites[__1]), 11 to 20 sites[m),
21 to 60 sitesRRRR) and more than 50 site| ).

Figure 5.5: Distribution of the sites included in the EKOGadaet over the 60 envi-
ronmental situations considered in the habitat suitghifiodels. The lin-
guistic values assigned to the variables ‘ammonium conagon’, ‘nitrate
concentration’, ‘phosphate concentration’ and ‘elealfrconductivity’ cor-
responding to the numbers 1 to 5 are given in Table 5.1.

Table 5.3: Entropy of the distribution of the data pointstef EKOO data set over the
input space over the crisp classes derived from the fuzzycfethe non-
simplified A-, N-, P- and C-models.

A-model N-model P-model C-model
0.6311 0.6622 0.7189 0.7044

0.72 were obtained for the four model types. As the sampliieg svere selected with
great care, distributions with entropy values larger thaaqual to the ones obtained
for the distributions of the data points over the input spaidkbe regarded as suffi-
ciently uniform to allow for an objective validation. Théoee an entropy threshold of
0.7 was adopted in this study to distinguish not-sufficieaotiiform from sufficiently
uniform distributions.

In Fig. 5.6, the entropy of the distribution of the data psioter the crisp abun-
dance values as well as the mean presence of the speciesairtpkng sites is plotted.
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Figure 5.6: Entropy of the distribution of the abundancesgalin the EKOO data set
over the four crisp abundance classes, as well as the mesengeefor the
86 species. The names corresponding to the model index imotfieontal
axis are given in Appendix A.

Mean presenca,e. the relative number of data points with a non-zero abundasce
expressed on a scale from 0 to 1, the extreme values indicegpectively ‘absent
from all sites’ (0) and ‘present at all sites’ (1). This medhat for N data points,
presence can be formulated as follows

N
1 .
presence= E min(abundancgl), (5.2)

i=1

where abundangés the number of individuals collected at siteAs shown by the low
abundance entropy values in Fig. 5.6 the observed abunslaftee species are dis-
tributed in a highly non-uniform way over the different ablance classes. Moreover,
the indicator species considered are absent from a larg®ewof sites, as indicated
by their low presence value. The entropy and presence védudise majority of the
indicator species indicate that the correctness of the meees hardly tested for sites
at which the species occur quite abundantly. On the othet,Hana significant part of
the non-indicator species a more uniform distribution dherfour abundance values
is recorded. Moreover, these species are observed at nbesdrsicomparison to the
indicator species, making a more relevant evaluation cfemeodels possible.

Only the models of the 12 species for which the abundancemnire. the en-
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Table 5.4: Distributions of 445 abundances over four abnoés classes for the 12
species, for which an abundance entropy larger than 0.7 btagmed.

model number of data points classified jas

index species name absent low moderate high entropy
25 Physa fontinalis 279 67 47 52 0.77
36 Anisus vortex 226 53 61 105 0.87
37 Asellus aquaticus 139 49 66 191 0.90
40 Erpobdella octoculata 237 106 64 38 0.84
42 Gammarus pulex 259 53 43 90 0.81
45 Glossiphonia heteroclitga 282 85 56 22 0.73
51 Helobdella stagnalis 194 108 82 61 0.93
66 Planorbis planorbis 283 62 52 48 0.76
68 Proasellus meridianus 247 78 80 40 0.83
69 Radix peregra 187 101 82 75 0.95
75 Sigara striata 259 84 60 42 0.81
77 Valvata piscinalis 263 82 56 44 0.80

tropy of the distribution of the abundances over the foumalamce classes, is larger
than 0.7 were considered to be evaluated in an objective walebEKOO data set:
one indicator species and 11 non-indicator species. Theteel species ardhysa
fontinalis Anisus vortexAsellus aquaticusErpobdella octoculataGammarus pulex
Glossiphonia heteroclitaHelobdella stagnalisPlanorbis planorbisProasellus merid-
ianus Radix peregraSigara striataand Valvate piscinalis For these 12 species, the
distributions of the abundance values over the four aburelalasses are given in Ta-
ble 5.4. Moreover in Fig. 5.7 for one of the 12 selected speciamely folProasellus
meridianus the distribution of the data belonging to the four crispradance classes
over the input space of the corresponding A-model is givdre reduced habitat suit-
ability models forProasellus meridianubave only two input variables, stream velocity
and ammonium concentration in case of the A-model, and the#beuof linguistic val-
ues assigned to ammonium concentration is reduced fromdifeur, as mentioned
earlier when discussing the reduced rule basePioasellus meridianug Fig. 5.4.
Thus, the 0.5-cuts of the membership functions definingineet velocity values and
the four ammonium concentration values divide the 2-dinoerad input space in 12
parts. Fig. 5.7 clearly illustrates that the data belondmthe crisp abundance class
absence, coloured in black, largely outnumber the datangeig to the three other
abundance classes and that data holding similar valuesdaansidered environmen-
tal variables show highly variable registered abundantiesrefore, the EKOO data set
cannot be expected to reveal an unambiguous relationstigebe the selected abiotic
variables and macroinvertebrate abundance.
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Figure 5.7: Data points in the different parts of the inputc defined by the 0.5-
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tion. The points are coloured according to the crisp (seq%§) for the
defuzzification procedure) abundance classes to which #zesuared abun-
dance ofProasellus meridianubelongs.
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5.4 Model evaluation

5.4.1 Performance measures

In order to compare the output obtained with the fuzzy ordietassifiers to the infor-

mation in the EKOO data set, model and reference output dhave the same format.
In this study the membership degrees of the crisp abundaaluessin the data set to
the linguistic abundance values, defined by membershigifumsecshown in Fig. 5.1(b),

are used as reference output. Two measures were used tatevidle performance of
the models: the percentage of correctly fuzzy classifiethiees (% CFCI) and the
percentage of correctly classified instances (% CCI).

In ecology, % CClI is frequently used to compare the perfoceanf species
distribution models (Manel et al., 2001). Note that the gkiton of % CCI, a perfor-
mance measure for crisp classifiers, requires the defuatzificof the output of a fuzzy
classifierj.e. the output of the fuzzy classifier has to be turned into a @@mterpart.
In this study the fuzzy classifiers are defuzzified by assigiain objecy to the small-
est linguistic output value for which the maximum membeyaegree was obtained.
As fuzzy classifiers are dealt with, a new performance measpired by the % CCI
and similar to the measure presented by Bodenhofer and Kief@@01), was defined:
the percentage of correctly fuzzy classified instances (%ICFor N data points and
a classification inta fuzzy classes, the % CFCI and % CCI are calculated as follows

100 1 —
% CFCl= N Z(l D) Z | Ai(Ydataj) - Ai(}’modelj) |) ) (5.3)
= i=1

j=1
N
100
% CCl = W Z (1 -5 Z | Acrmp z(YdataJ) Acrisp,i()’modelj) |) ) (54)

Jj=1 =1
with

Acrisp.i(y) = {1 i =min{k | Ax(y) = max Ai(y)} (5.5)

0 , otherwise

whereA;(ydata;) is the membership degree of tjfé output to the*” linguistic output
value andA;(ymodel;) is the membership degree to thé linguistic output value
obtained as model output for th€" input of the data set.

The two performance measures % CFCI and % CCI are illusttatesdassifi-
cation examples in Table 5.5. In case of a crisp classifioa#ie in example 1, the two
performance measures coincide. If an instance is clasgifite correct class, it has
a contribution of 100 to the global percentage of corredtly4y) classified instances.
If an instance is classified in a wrong class it has a coniohutf zero to the global
percentage of correctly (fuzzy) classified instances. Eptam?2 to 4 in Table 5.5 are
examples of fuzzy classifications, where the output is a fsdegrees between 0 and
1 summing up to one. As long as there are classes to which botlelnoutput and
reference output have a non-zero membership degree, tfesponding data point has
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Table 5.5:; Percentage of correctly classified instances @ &nd percentage of cor-
rectly fuzzy classified instances (% CFCI) for a crisp andetfuzzy classi-
fication examples given the measured outypugia and the modelled output

Ymodek
Ydata Ymodel
A1 Ay As Ay | Ay Ay A3 Ay | % CCl| % CFCI
1| 0 1 0 0 0 0 1 0 0 0
21 0 02 08 0] 08 02 O 0 0 20
3 0O 02 08 O 0O 04 06 O 100 80
41 0 02 08 O 0 02 08 O 100 100

80

60

% CCI

401

20+ EH

100

% CFCI

Figure 5.8: Comparison of the two performance measures %@@€Po CFCI for the
344 models (4 models for 86 species) validated on the EKO® skt

a positive contribution to the global percentage of colyetizzy classified instances.
Only if there exists no class to which both model output aridremce output have a
non-zero membership degree, the corresponding data pesre: ksontribution of zero
to the global percentage of correctly fuzzy classified imsts. When determining the
% CCI for fuzzy classifications, both reference and modepoauare first converted
into crisp classifications and the % CCl is derived from thagp classifications.

Similar values are obtained for % CCI as for its fuzzy altéiuee?o CFCI, when
evaluating the 344 models on the EKOO data set (Fig. 5.8 BoCFCIl and % CCI
values obtained in this study can therefore be used fortdi@oparison with % CCI
values found in literature for other applications. As thedels designed in this study
are fuzzy models, only the measure % CFCI was considerdukiirt this study.
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Figure 5.9: Percentage correctly fuzzy classified instarioe the A-model [0), N-
model 7), P-model {\) and C-model (0) for the 86 macroinvertebrate
species. The names corresponding to the model index in theohéal
axis are given in Appendix A.

5.4.2 Results

The performances of the four models are given in Fig. 5.9. Nhand P-models have
a relative high % CFCI% 50%) for most of the macroinvertebrate species in contrast
to the A- and C-models, which have a low to moderate perfooador a significant
number of species. The obtained performances (% CFCI) dhbaivever, be inter-
preted in the light of the EKOO data set on which the modelswealuated. Only the
models of the 12 species listed in Table 5.4, with an aburelantropy larger than 0.7,
were considered to be evaluated in an objective way by the @ki@a set. Among
these 12 species, only one is an indicator species. Onedstiwmrefore not conclude
from the relatively high model performances obtained foshad the indicator species
(Fig. 5.9) that these models really resemble the situatiothe field to such a large
extent.
When comparing the performances (% CFCI) of the four modetgyior the

12 selected species by means of box-whisker plots (Fig.)5die can see that in
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Figure 5.10: Box-whisker plots of the % CFCI obtained for ther model types for
the 12 species for which a validation by the EKOO data set wasid-
ered objective. The box stretches from thé"2percentile to the 7%
percentile. The median is shown as a line across the box. Adiyidual
observation that is more than 1.5 interquartile range from the box is
identified separately with a horizontal line. The whiskexsead to the
maximal and minimal observations that are not potentidlerst

general, the A- and C-models perform worse than the N- and&efs, even though
the latter models still have some extremely low performaratees for some species.
This difference in performance over the different modektys due to the high number
of sites having high N- and P-concentrations combined withtlaer low presence.

In Table 5.6 those models are listed which have a good pedioca (% CFCI
> 50) and which are evaluated in an objective way as the cayreipg abundance
entropy,i.e. the entropy of the distribution of the abundance values thefour abun-
dances classes, was larger than 0.7. Note that for thos@éespéar which an abun-
dance entropy larger than 0.7 was obtained, a presence thege25% was recorded.
Some species with a presence larger than 25%, however, haaleuadance entropy
smaller than 0.7. The corresponding species belong to Xeatenic groups Mollusca
(Physa fontinalis Anisus vortexPlanorbis planorbis Valvata piscinali$, Hirudinea
(Erpobdella octoculataGlossiphonia heteroclifa CrustaceaGammarus puléxand
Hemiptera Sigara striatg, none of them, except fd*hysa fontinalisbeing character-
istic for reference conditions. Most of these species adelyidistributed ubiquitous
species found in eutrophied very slow flowing and stagnatémzodies. The optimal
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Table 5.6: Models selected based on a % CFCl larger than 5@realdundance entropy
larger than 0.7.

model model
index  species name type % CFCl  presence entropy
L N 61
25 Physa fontinalis P 58 0.37 0.77
36 Anisus vortex N 53 0.49 0.87
N 57
40 Erpobdella octoculata P 53 0.47 0.84
C 56
N 54
42 Gammarus pulex P 54 0.42 0.81
. . . N 66
45 Glossiphonia heteroclita P 60 0.37 0.73
. . N 63
66 Planorbis planorbis P 56 0.36 0.76
. . N 52
75 Sigara striata P 57 0.42 0.81
Lo N 59
77 Valvata piscinalis P 58 0.41 0.80

environmental conditions for these species are quiterdiffie as shown by the cor-
responding rule bases in Appendix B. This means that thetsmleresults from an
objective evaluation of the respective habitat suitabititodels. These 16 good per-
forming and objectively evaluated models are all, exceptmoodel, N- or P-models.
Model performance comparison with other macroinvertebinabitat suitability

models remains difficult because most of the models devdlbpge different output
variables, for example a presence/absence proportion m-askessment index such
as the prediction of river health in (Walley and Dzeroski93p Few studies even
use validation measures (Rykiel, 1996; Fielding and B&B7;, Manel et al., 2001).
However, due to the high correlation of the model perforneameasures % CFCI and
% CCI in this study (Fig. 5.8), the obtained results can bepamed with % CCI ex-
pressed results from more common presence-absence lsalii¢ditility models. Habi-
tat suitability models based on an Artificial Neural Netwarkdel structure predicting
macroinvertebrate taxa in the Zwalm river basin in Belgiubedecker et al., 2002,
2004), obtained CCl-values of 60% for Gammaridae and 85%Agallidae, taking
into account a set of 15 variables and based on a data settedllie the Zwalm river
basin. Although the predictive success was relative highlarge number of input vari-
ables needed (15) and the fact that these presence/absedetso not distinguish
between different abundance levels, makes them less Useftlle aim of river man-
agement. Moreover a certain degree of overfitting of norsabelationships (Vaughan
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and Ormerod, 2005) is expected from the very small data et fias model validation
(60 sites in (Dedecker et al., 2002); 60 sites measuredyyeaer 2 years in (Dedecker
etal., 2004)).

Sometimes, knowledge-based models do not have quardgitatipressions as
outputs, but are qualitative models returning a certaimekegf suitability that cannot
be evaluated by means of exact monitoring data. For exankade( et al., 2001),
(Schneider, 2001) and (Baptist et al., 2002) developed fdtitdt suitability models
(CASIMIR) based on a fuzzy rule base taking the vegetatiahhasmraulic river con-
ditions as input and returning a degree of habitat suitshiitir the considered fish
species. This output is not further translated into any mnede indicator such as
abundance, diversity or presence/absence, which makieiatiah more difficult. In
the present study, the suitability levels were translateabundance levels to facilitate
validation, but the translation itself can form a source méertainty and the reliability
of this translation requires further research.

5.5 Conclusion

Fuzzy classifiers were applied to a modelling problem caringrthe habitat suitability
of river sites along springs to small rivers in the Central 8¥estern Plains of Europe
for 86 macroinvertebrate species. For each species, fodelsmevere developed, an
A-, N-, P-, and C-model. The fuzzy classifiers take a certadthyvelocity and either
ammonium (A), nitrate (N) or phosphate (P) concentratioelectrical conductivity
(C) as input and return four values between 0 and 1 as outmlitating the degree
to which the river site is concerned ‘not suitable’ respetyi ‘lowly’, ‘moderately’
and ‘highly suitable’ for the species to establish a popoilat With the developed
models the influence on the habitat suitability can be asgefss the stream width
and stream velocity, two variables determining the rivgxetand reflecting the water
guantity conditions at a river site, as well as for one aspéthe impact of human
activities,i.e. the nutrient and organic load.

Field data collected at 445 sites in the Province of Ovezijéthe Netherlands)
allowed for an objective evaluation of the four developedieis for 12 selected spe-
cies. The fact that among them only one is an indicator fa@reafce conditions, indi-
cates that given the present environmental conditionsvefsiin EU Member States,
shifts in abundance levels of more common species are miabkauto detect gradual
changes in water quality. With an improving water qualibg follow-up of indicator
species with more narrow niches will gain importance. Tbsd is addressed in more
detail in Van Broekhoven et al. (2006). Of these 48 modelsnb@els turned out to
have a good model performance expressed by the performarasine % CFCI. These
16 good performing and objectively evaluated models aresatiept one model, N- or
P-models.

The usefulness of fuzzy rule-based models in ecosystemgearent was con-
firmed earlier by different studies (Adriaenssens et al042Bock and Salski, 1998;
Meesters et al., 1998; Steinhardt, 1998; Kampichler et2800; Mackinson, 2000;
Kerle et al., 2001; Baptist et al., 2002). The gquestion resmaihether the fuzzy rule-
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based model structure, with its fuzzy sets, its if-thengaed its inference method, is
appropriate for habitat suitability modelling in partiaual In this study the requirement
of interpretability was the decisive factor when determinthe number of fuzzy sets
assigned to the input variables and the output variable h®wpe hand, the number of
fuzzy sets is high enough to capture the different influeritiesovariables on the model
output at different values. On the other hand, the numbenzd#yf sets is not too high,
and still allows for the formulation of an if-then rule for@acombination of fuzzy
sets of the different input variables. Moreover, the lalagfached to the fuzzy sets are
relevant for river management as they were inspired by ttatieg classifications used
nowadays in bio-assessment and river typologies requiyetthd Water Framework
Directive. The fuzzy sets allow working with vague inforieat which makes them
very suitable for the variables and criteria used in thidiappon field. The structure
of a fuzzy rule base allows for the incorporation of the infiation summarized in the
knowledge base into an inference system for habitat slittabiodelling, by express-
ing non-linear relations in terms of if-then rules. The dmgyy of membership to the
different output classes provide the end-user with a gfieation of the uncertainty
associated with the model output. This information has aleddalue in decision sup-
port. Hence, fuzzy rule-based modelling can be of greatevahia knowledge-based
habitat suitability modelling technique in river manageme

A disadvantage of fuzzy rule-based models is that the shagh@werlap of the
fuzzy sets, having an important impact on the model outpat,d@termined rather
subjectively (Kompare et al., 1994) and more complex mqdiet®rporating a higher
number of input variables and fuzzy sets, are hard to develtmving a purely knowl-
edge-based design approach. Alternative input variab&sbuld be considered when
developing habitat suitability models, such as specificithtistructures, a specific
habitat diversity level or a parameter reflecting the hyliceavents in a watercourse,
are discussed in Van Broekhoven et al. (2006). Because cfubgectivity involved
in the fuzzy rule-based model development, data-baseditpods are often combined
with knowledge-based models, for either the optimizatibime rule base, the member-
ship functions, or for the total fuzzy system. Likewise, liiststudy, there is certainly
a need for a more rigid basis for model construction and dpétion, mainly for the
construction of membership functions. In Chapter 6 theiapfn is discussed of
genetic algorithms in the optimization of the membershipcfion parameters for the
four models of the 12 selected species.

88



CHAPTER O

| Membership function optimization

Not everything that can be counted counts,
and not everything that counts can be counted.
(Albert Einstein)

6.1 Introduction

Two main approaches to combine genetic algorithms and posé®m fuzzy logic or
fuzzy systems can be distinguished (CGimebt al., 2001). In fuzzy genetic algorithms,
a first type of hybrid approach, the performance of genetorithms is enhanced by
fuzzy tools. Fuzzy models are for instance used to adaptlues of the parameters of
the genetic algorithm, like the crossover probabilityand mutation probability?,,,,
during the search (Herrera and Lozano, 2003) or the gerlgbcthm applies fuzzified
variation operators, as the fuzzy connectives based aresfiderrera et al., 1997). In
the second type of hybrid approach, called genetic fuzziesys, a genetic algorithm
evolves a fuzzy system. The most extended genetic fuzzermsystpe is the genetic
fuzzy rule-based system, where an evolutionary algorithemniployed to optimize or
identify different components of a fuzzy rule-based systebther types of genetic
fuzzy systems include genetic fuzzy clustering systemsetiefuzzy neural systems
and genetic fuzzy decision trees. An overview of the lagtpes of genetic fuzzy sys-
tems, which are not considered in this dissertation, isrgime(Cordn et al., 2001,
Chapter 10). Genetic fuzzy rule-based systems encomp#ssiimization and iden-
tification of membership functions and rules. In optimiaatproblems the objective
is to find optimal values for a set of parameters, for instaneenbership function pa-
rameters, whereas in identification problems model commsnéor instance the rule
base, are designed from scratch. The flexible data struosed in evolutionary al-
gorithms to represent a candidate solution and their ghititexplore a large search
space for suitable solutions only requiring a simple sqadaformance measure, make
evolutionary algorithms suitable search techniques faaréigd optimization or identi-
fication of the model structure (Cdrd et al., 2004). Information about known model
properties, such as the shape of the membership functiomsutes or the number of
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Chapter 6. Membership function optimization

rules, can be easily incorporated in the evolutionary $eprocess.

In this study the accuracy is tried to be improved of the lalsitiitability mod-
els obtained by the knowledge-based design process deddrilChapter 5, for the
region where the EKOO data set was collected, while maiimgitine interpretability,
i.e. the descriptive power of the models (Casillas et al., 2008&ncar et al., 2005).
In the framework of this study, interpretability means ttiet river manager consulting
the models is familiar with all components of the designediet® and is able to get
insight in the models just by looking at the different comenots. Given the unifor-
mity of the qualitative information in the eight consulteddkvledge sources, the rules
in the rule bases of the developed models can be consideredtallg applicable to
the Central and Western Plains of Europe. The knowledgeceswalso clearly reveal
that the definition of linguistic values of environmentatigbles slightly differ from
one river basin to another. Therefore the rule bases werteukehanged, yet only the
membership functions of the input variables were optimiresuch a way that after
optimization all fuzzy sets still represent the meanindgged by experts to the corre-
sponding linguistic values. As no straightforward relatéxists between the member-
ship functions and the output of a linguistic fuzzy modeleaetic algorithm was used
as optimization method as it works on the complete solutfcdh@® optimization prob-
lem, in this case being the whole set of membership functavampeters. In literature
examples can be found of membership function parametemigatiion with genetic
algorithms for all common types of membership functidres for triangular (using bi-
nary encoding in (Arslan and Kaya, 2001; Chiou and Lan, 200&hg real encoding
in (Casillas et al., 2005; Ishigami et al., 1995; Rojas e4l01) and using a special en-
coding in (Kinzel et al., 1994)), trapezial (using binangeding in (Ascia et al., 2006;
Bodenhofer and Klement, 2001; Karr and Gentry, 1993) andgustal encoding in
(Lau et al., 2005; Suzuki et al., 2001)) and Gaussian funst{osing binary encoding
in (Damousis et al., 2002; Shu and Burn, 2004; Surmann e1293) and using real
encoding in (Damousis et al., 2002; Kim and Roschke, 20061 &ial., 2005; Suzuki
etal., 2001)). Other technigues used to optimize memhefshctions are gradient de-
scent (Shi and Mizumoto, 2000; Simon, 2002; Vishnupad and, 3899), algorithms
inspired on those used in the neural networks field (Nauckkande, 1997; Paiva and
Dourado, 2004; Tanaka et al., 1995), the Levenberg-Madjgorithm (Botzheim
et al., 2004), Kalman filters (Simon, 2002; Sun, 1994), gerrbgramming (Bastian,
2000), evolution strategies (Jin et al., 1999), tabu se@efis, 2003) and simulated
annealing (Gély et al., 1999; 8nchez et al., 2001).

The membership function optimization was only carried autthe A-, N-, P-
and C- models of the 12 species whose performance could heats@in an objective
way on the EKOO data set, as defined in Section 5.3.2. The #&2tedlspecies are
Anisus vortexAsellus aquaticysErpobdella octoculataGammarus pulexGlossipho-
nia heteroclita Helobdella stagnalisPhysa fontinalisPlanorbis planorbis Proasel-
lus meridianusRadix peregraSigara striataandValvata piscinalis The membership
functions of the input variables were optimized using asitagenetic algorithm with
binary chromosomes, as well as a real-coded genetic diguoriThe properties of the
genetic algorithm are described in Section 6.2, with spexttantion to the applied
representation of candidate solutions and fitness funcliba optimization results are
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C encoding forn variables
Ch e y e Cm encoding form variables
ot | e | | o encoding fori*” variable ta _to
1,0 | 20,0 | E3g0,t | B encoding forj;** value /
-~ ! ——
ly for bi ool

only for binary
e{o.1} e{o.1} representation

Figure 6.1: Encoding of membership function parameterglwvtibes not ensure inter-
pretability.

discussed in Section 6.3 and conclusions are summarizegtios 6.4.

6.2 Properties of the genetic algorithm

6.2.1 Representation of a candidate solution

In the habitat suitability models obtained by the knowletigsed design described in
Chapter 5 the linguistic values assigned to each individashble are defined in a
meaningful way by membership functions forming a fuzzy igian. In order to main-
tain the interpretability of the definition of the linguistralues during the optimization,
the encoding of the membership function parameters shauddii considered.

In Fig. 6.1 a straightforward encoding of the trapezial mership functions of
m variables is given. To th&”" variablen, linguistic values are assigned and each
linguistic value is characterized by four parametgrg,, t3 andt,. These parameters
are real values in a real-valued representation and fueth@yded in a binary string in a
binary representation. However, if this chromosome is useghningless membership
functions as shown in Fig. 6.2 might be obtained.

To decide if a certain set of membership functions is inetgisle or not is
a difficult and subjective task. Nevertheless, several gntgs ensuring good inter-
pretability of membership functions have been proposede(ia de Oliveira, 1999).
The most important properties in the framework of memberéimction optimization
are (Casillas et al., 2003a)

e theo-completenesproperty, requiring for each pointthe existence of a fuzzy
setA; to whichz has a membership degree larger than

Vo e X)Fie{l,...,n})(Ai(z) >0 > 0),

with A; a fuzzy set defined on the domak of x, ando a given completeness
degree,
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Figure 6.2: Interpretability might be lost when optimizimgmbership functions using
an inappropriate encoding.

o the normality property, satisfied if all linguistic values are defined bymal
fuzzy sets such that each linguistic value exhibits fullchatg with, at least, a
value of the variable’s domain, and

o thedistinguishabilityproperty, asking for membership functions that are distinc
enough from each other such that each linguistic value héesaa meaning and
the corresponding fuzzy set clearly defines a range in thiablais domain.

When optimizing membership functions, one can either remtethe member-
ship functions is such a way that all candidate solutionsfyaisome of) the three
above properties (Ascia et al., 2006; Casillas et al., 2@Bou and Lan, 2005; Shu
and Burn, 2004), or include interpretability measures i abjective functions, thus
guiding the search to good solutions (Jin et al., 1999; Kiml 2005; Surmann et al.,
1993). As fuzzy partitions satisfy all three propertie;ating the membership func-
tions in such a way that all candidate solutions are fuzzitmars, is very common
in membership function optimizations ensuring the sengantegrity of the linguistic
values (Casillas et al., 2003a,b). Also in this study an dimgpwhich always result in
fuzzy partitions was opted for.

Then; membership functions of an input varialbg of the considered models

are characterized by a vector 2, reals (Fig. 6.3)a; = (a1, ..., a2q,,1), satisfying
the following two constraints

(Vief{l,...,m})(azj1, < azjn), (6.1)

(V] € {1, e, Ny — 1})(a2j71 < a2j+17l) . (62)

In this study both a binary-coded as well as a real-codedtgealgorithm is
applied. They evolve chromosomes as presented in Fig. B répresentation of the
membership function parameters by a binary vector (usiray @ncoding), restricts
the values the parameters can take to a limited set of vakf@sed by the upper and
lower bound of the optimization interval and the length o tiinary string, but has
the advantage that it allows the use of very straightforwantsover and mutation
strategies. The real-coded genetic algorithm is direqijyliad to a vector containing
the real values of the optimized parameters, which allowsaffiner tuning of the
parameters.
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Figure 6.3: lllustration of the optimization intervals dsfer the membership function
parameters during the bounded simulation.
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Figure 6.4: Encoding of membership function parameterscivitioes ensure inter-
pretability.

Two optimizations were carried out: a bounded and a frearopdition. Dur-
ing the bounded optimization the kernels of the optimizedninership functions are
always subsets of the 0.5-cuts of the corresponding otigieanbership functions (as
illustrated in Fig. 6.3), whereas during the free optini@abnly the number of mem-
bership functions of the fuzzy partition is fixed for eachuhpariable. The free op-
timization was carried out to investigate how the optini@atprocess evolves if no
constraints are set. The membership function parameteresaoeled as binary strings
of 7 and 10 bits per parameter respectively for the boundddrae optimization re-
spectively.
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Table 6.1:; Four fuzzy classification examples and theiresgronding performances
expressed by % CFCIl and AD.

Ydata Ymodel
Ay Ay A3 Ay | Ay Ay A3 Ay | % CFCI| AD
a|l 0 02 08 0| 08 02 O 0 20 1.6
b 0O 02 08 O 0O 04 06 O 80 0.2
c 0O 02 08 O 0 01 08 0.1 90 0.2
d 0O 02 08 O 0 0 08 0.2 80 0.4
6.2.2 Fitness

The % CFCI, presented in Section 5.4.1, has the advantagé tzan be understood
intuitively. For N data points and a classification intduzzy classes, the % CFCI is
obtained by

N n

100 1

% CFCl= N Z (1 -3 Z)Ai(Ydataj) - Ai(Ymodelj)D ) (6.3)
j i=1

whereA;(ydata;) iS the membership degree of tjfé output to the*” linguistic output
value andA;(ymodel;) is the membership degree to thé linguistic output value
obtained as model output for th&" input of the data set.

However, it is not an appropriate objective function for tyimization of a
fuzzy ordered classifier, as % CFCl is not sensitive to théipof the classes where
the wrong classification occurs. When visually comparingréference output in Ta-
ble 6.1 with the model outputs b and d and given the fact thabtitput classes are
ordered fromA; to A4, one would certainly say that model output b approximates th
reference output better than model output d. However, theega CFCI is assigned
to examples b and d, as the sum of the absolute differencesnmbership degree in
the reference and model output to the four individual clagsédentical, as shown in
Fig. 6.5.

Therefore another performance measure for fuzzy classifiigh an ordered set
of classes is introduced, returning the average deviat\) petween the position of
the class obtained with the model and the position of thesdémred in the reference
data set. The AD varies from 0 to— 1 and is calculated as follows fd¥ data points
and a classification inta fuzzy classes

1 N n—1 1 %
AD = ;

Z‘ZAk(Ydataj) - Z Ak()’modelj) ) (6.4)
i=1 k=1

k= k=1

whereA; (ydata;) iS the membership degree of tjfé output to the®” linguistic output
value andA;(ymodel;) is the membership degree to thfé linguistic output value
obtained as model output for th&" input of the data set. In Fig. 6.6(a) the % CFCI-
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Figure 6.5: lllustration of the performance measures % C&@l AD for the fuzzy
classification examples in Table 6.1. In the figures in thertap illus-
trating % CFCI, the thin and thick lines indicate the refeeand model
output respectively. In the figures in the second row, ithtstg AD, the
thin and thick lines are the cumulative functions of the refiee and model
output respectively.
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Figure 6.6: Comparison of the % CFCl-values to the AD- and wvslues.
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and the AD- values obtained for the four models of the 86 niacestebrate species
are plotted. One sees that AD tends to decrease with inoge&siCFCI.

The measure AD is illustrated in Table 6.1 on the same exargsethe two
other performance measures. At first sight it seems hardttmgight in AD. When
considering the cumulative membership degréesthe sum of the membership de-
grees to a class and its lower classes as in Fig. 6.5, insféhd membership degrees,
one sees that the AD is nothing else but the area between thalative functions of
model and reference output.

The AD is zero if the model output equals the reference owpdtincreases
with increasing distance between the reference outputtedbdel output. The AD
distinguishes between examples b and d, whereas the % CESImd. On the other
hand, the same AD, but a different % CFCI, is obtained for glemb and c. In ex-
ample b the membership degree assigned to class 0.2 too high. This surplus of
membership degree should in fact be assigned to the adjelesstds. In example ¢
the membership degree assigned to clasis 0.1 too high and this surplus of member-
ship degree should in fact have been assigned to elasse. two classes lower. The
distance between the reference output is therefoxe).2 for example b an@ x 0.1
for example c. The % CFCI however is a measure of the sum ofrtieesemade for
each individual class. For example b the error in membemdbgpee is 0.2 for the two
classesd, and A3, whereas in example d the errors are 0.1 for the two cladsesd
A,4. Note that the AD is insensitive to the direction of the wrargssification as the
absolute values of the differences are taken. If clasgifgn instance in a too high
class is worse (or better) than classifying it in a too lowss|ahe formula in Eq. (6.4)
should be slightly altered.

During the search, each candidate solution was evaluatezhcim of the 445
data points, using a weighted average deviation (WAD) ircivitihe weights guarantee
that each region of the input space defined by the 0.5-cuteafhiembership functions
of the non-optimized models has the same contribution tditiness

N n—1 i i
WAD = ij : Z’Z Ak(Ydataj) — ZAk(Ymodelj) ) (6.5)
j=1 i=1 k=1 k=1
with
1
w; =

Nj * Nregions

In the definition of the weighta);, IV; is the number of data points in the same region
of the input space as th&" input of the data set and..g;ons 1S the number of regions
in which the input space is divided.

6.2.3 Algorithm

The structure of the genetic algorithm is shown in AlgoritBm A thorough inves-
tigation of the influence on the genetic algorithm perforoenf different mutation,
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Algorithm 2: Genetic algorithm

t—20
Initialize PopulationP; at random
foreach Individual of P, do

Decode chromosome
if chromosome represents unfeasible solutien
‘ Try to restore chromosome
end
if chromosome represents feasible solutioen
‘ Calculate fitness of the individual
else
‘ Assign very bad fitness value to the individual

end

end
while stop criterion not reachedo

Select individuals by tournament selection
Recombine individuals by crossover and mutation
foreach Child of P; do
Decode chromosome
if chromosome represents unfeasible solutfem

‘ Try to restore chromosome
end
if chromosome represents feasible solutioen

\ Calculate fitness of the individual
else

‘ Assign very bad fitness value to the individual
end
end
Replace worst individual of;1; by best individual ofP;
P — Py
t—1t+1

end

crossover and selection procedures and the optimizatitimeaf parameters was out-
side the scope of this study. We carried out some fragmeimagstigation of the
parameter settings of the selected mutation and crossovegqures with some of the
48 models and applied the best setting obtained to optirhzetembership functions
of all 48 models.

The same procedure was followed by the binary-coded anecoetdd algo-

rithm, except for the recombination and mutation. Eachmoiztition starts with a

population of 100 randomly generated strings, which, ireadagy do not represent a
feasible solution, are tried to be restored by replacingitbg (the binary representa-
tion of) a vector consisting of substrings of sorted realigal of the unfeasible string
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for each variable. Note that this restoration procedure dot¢ always result in a string
satisfying Eq. (6.2).

At each generation step, 100 parents were selected by toemtaselection.
Two by two the parents were recombined and mutated, reguttitwo children. In the
binary-coded algorithm, uniform crossover is applied ¢saver probability = 0.95).
Each bit of the strings obtained after recombination, ogase no crossover was car-
ried out, the strings of the parents, were changed with a tioat@robability being
the reverse of the length of the binary string. In the reaecbalgorithm, one child is
created with heuristic crossover and one with arithmeticassover (crossover prob-
ability = 0.95). The procedure of the heuristic crossovescdbed by Michalewicz
(1996) was slightly adapted to guarantee that each reagvialiyq, ; in the string of
the child derived from the corresponding valug$,cn:,,: andaparent,, .. Of the best
and, respectively, the worst performing parent of the twe@pts, is an element of the
optimization interval §;,5;]. In Eq. (6.7),r; is a random number between 0 and 1 and
identical for all values of a string during a recombination:

Ginterval,l = HlaX(bl, min(317 2aparentb,l - aparentw,l)) 5 (66)
Gchildy,l = min(aparentb,la ainterval,l)+

T1 (max(aparentb,h aintervahl) - min(aparenth,h ainterval,l)) ) (67)

7(aparentb,l + aparentw,l) . (68)

Qchilds,l = 5

The real strings of the children, or, in case no recombinatias carried out, the strings
of the parents, were mutated as described in Eq. (6.9). Ezlde«; is replaced by a
randomly selected (uniform probability distribution) welk:; from an interval around
a; being at most as large as,..% of the interval §;,B;] (prmwt = 3 andp, e = 0.4
for the bounded and, respectively, the free optimizatidm)Eq. (6.9),r, is a random
number between 0 and 1 amg a random binary digit, both being identical for all
values of a string during a recombination:

’ min(al + Wl()TQP'mut(Bl - bl)a Bl) ’ if 3 is 07

= 6.9
K {max(al - Q%Wrgpmut(Bl —b),b) ifrgisl. (6.9)

Children not satisfying Eqgs. (6.1-6.2) are tried to be mestdollowing the same
procedure as during the initialization of the populationrtRermore, elitism is applied
in the algorithm: the worst offspring is replaced by the beslividual of the cur-
rent population. The genetic algorithm was stopped if omhals improvements of
the fithess of the best individual\( fithess< 0.001) were obtained during the last
50 consecutive generations as illustrated in Fig. 6.7 dnef 1000 generation was
reached. Hundred repetitions were carried out for eachmigaiion and the model
with the highest % CFCI among the 100 candidate models wamegt as result of the
optimization.
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Figure 6.7: Average fitness and best fithess as a functiorafdgheration in the genetic
algorithm.

6.3 Optimization results

The results obtained for the four models of the 12 selectedisp are summarized in
Figs. 6.8—6.9. One expects the models obtained with thecagld genetic algorithm
to perform at least as good as the corresponding modelsnebtaiith the binary-
coded genetic algorithm as the search space of the binalgdogenetic algorithm is a
subset of the search space of the real-coded genetic algorfturthermore, the model
obtained through free optimization is expected to outparfthe corresponding model
obtained through bounded optimization, which on its turexpected to score better
than the original model. Strictly speaking, the performeantthe genetic algorithms
can only be compared based on the performance of the origimbbptimized models
according to the performance measure wAD, used as fithesidan In Fig. 6.8 the
wAD of the original models are shown, together with the seslivAD-value obtained
for the best individual of the last population of the 100 téfms of each optimization.
In Fig. 6.9, however, the % CFCI of the original and optimizeddels are given, as
% CFCI can be understood intuitively and resembles the pagoce measure % CCI
commonly used in ecology. When analyzing the results in FR.@e should always
keep in mind the variability of the relationship betweentilve performance measures
wAD and % CFCI . As shown in Fig. 6.6(b) wAD tends to decreasth icreasing
% CFCI, but it also shows that a model, Mcoring better than a modeldvaccording
to the wAD, might score worse according to the % CFCI. Theefthe performance
of the genetic algorithms can only be really judged by thei@alobtained for wAD,

99



Chapter 6. Membership function optimization

the fitness.
When considering the performance measure wAD (Fig. 6.8),

optimized models perform better than the correspondirgjral models,

e models obtained with the real-coded genetic algorithms atgperform worse
than those obtained with the corresponding binary-codedtigalgorithms, ex-
cept for the A- and N-models drpobdella octoculatabtained by free opti-
mization, the A-model oPhysa fontinalisobtained by bounded optimization,
the N-models ofsammarus pulexGlossiphonia heterocliteSigara striataand
Valvata piscinalisobtained by bounded optimization, as well as the N-model of
Sigara striataobtained by free optimization,

e models obtained with free optimizations of the binary-abdenetic algorithm
perform better than the corresponding models obtained byded optimization,
except for the N-models &nisus vortexAsellus aquaticu$?hysa fontinaliend
Radix peregraand,

e models obtained with free optimizations of the real-codexdatic algorithm per-
form better than the corresponding models obtained by bediogtimization.

When comparing the wAD of the models obtained with the cowrdmng bi-
nary and real-coded genetic algorithms, one sees that thelsobtained by bounded
optimization are generally equally good for both types ofag& algorithms. The fact
that eight of the 96 real-coded genetic algorithms do naetrnea better solution than
their binary-coded counterpart, indicates that the imgleted control structures were
maladjusted to these eight membership function optinomgtroblems. The recorded
reversed order of the wAD-values obtained for the four N-eledvith the binary-
coded genetic algorithms might be caused by the binary godastricting the values
taken by the membership function parameters in the optunimedels to a limited
set of values. Thus, when using binary encoding the seawatesyf the binary-coded
genetic algorithm applied during the free optimization migimply not contain a solu-
tion outperforming the solution returned by the boundedhaigation. The fact that all
wAD-values obtained by the real-coded genetic algorithespect the expected order,
supports the above argument.

When considering the % CFCI, the models obtained with thegedéd genetic
algorithms do not perform worse than those obtained wittbthary-coded genetic al-
gorithms, except for the A-model f@rpobdella octoculatabtained through free op-
timization. For this model, the optimized model obtainethwhe real-coded genetic
algorithm shows a negligible worse performance of 0.1% cmexb to the model ob-
tained with the binary-coded genetic algorithm (Fig. 6)R(&or the models obtained
with the binary-coded genetic algorithm, the expected oofi¢he % CFCl-values of
respectively the original model and the models obtaineoiiin bounded and free op-
timization, is not respected by the results recorded forAttreodel of Radix peregra
the N-models ofAnisus vortexErpobdella octoculataGammarus pulexGlossipho-
nia heteroclita Helobdella stagnalisPhysa fontinalisPlanorbis planorbisandRadix
peregra nor for the P-models ofAnisus vortexGlossiphonia heteroclit@nd Physa
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Figure 6.8: Weighted average deviation for the original eis¢>) and the models ob-
tained through bounded optimization with the binary-codedetic algo-
rithm (GA) (m), free optimization with the binary-coded GA{, bounded
optimization with the real-coded GAQf and free optimization with the
real-coded GA {\) for the 12 selected species: (a) A-models, (b) N-
models, (c) P-models and (d) C-models.
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Figure 6.9: Percentage of correctly fuzzy classified instanfor the original mod-
els (O) and the models obtained through bounded optimization with
the binary-coded genetic algorithm (GAm)( free optimization with the
binary-coded GA A), bounded optimization with the real-coded G&) (
and free optimization with the real-coded GA\) for the 12 selected
species: (a) A-models, (b) N-models, (c) P-models and (d)ddels.
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fontinalis When applying the real-coded genetic algorithm only the %€ RFRlues of
the original, bounded and freely optimized N-model&Gammarus puleand Glossi-
phonia heteroclitalo not respect the expected order.

In Figs. 6.10-6.11 the results obtained for the A-modePafasellus meridi-
anusare shown. Note that the membership function describingth@saprobic to
0, a-oligosaprobic conditions (hereafter calledigosaprobic) in the original model
has such a small support that it can hardly be noticed in Fif)(6). For the A-model
of Proasellus meridianysas for most models of the other selected species, the sesult
obtained with the real-coded genetic algorithm are venylaimo the results obtained
with the binary-coded genetic algorithm. This is espegialie in case of the bounded
optimization where the membership function parameters@biptimized models ob-
tained with both algorithms are often equal to the lower grargpound, or the second
or next-to-last value of the corresponding optimizaticieival.

In Fig. 6.10 one sees that the membership functions of thecitglvaluelow
and theoligosaprobic conditions are extended towards higher velocities and ammo
nium concentrations respectively. The membership funstiin Figs. 6.10(c)
and 6.10(e) no longer reflect the meaning given by the expettee linguistic values.
During the bounded optimization the extension is howevaitéid by the constraints
described in Section 6.2, which guarantees the interpitiéyadf the fuzzy partitions of
the optimized models. In Fig. 6.11 the number of data poiatsrging to the four de-
fuzzified abundance classds, s, ; (See Eq. (5.5) for the defuzzification procedure) in
the different regions of the input space are given and visedby means of histograms
for the original models and the two models obtained with timaty-coded genetic al-
gorithm. No histograms are shown for the models obtaineld thi real-coded genetic
algorithm, as similar membership functions were obtainé&t the binary-coded and
real-coded genetic algorithm. One sees that, by exten$ithe support of the velocity
valuelow and theoligosaprobic conditions, more data points and in particular more
data points belonging to the abundance cldssnt, fire the rule

IF vel IS low AND ammon IS oligotrophic ~ THEN abundance IS absent,
instead of the rules

IF vel IS low AND ammon IS B-mesotrophic THEN abundance IS low,
IF vel IS moderate AND ammon IS oligotrophic ~ THEN abundance 1S low,
IF vel IS moderate AND ammon IS 3-mesotrophic THEN abundance 1S moderate,

which results in a better score for the used fitness wAD asasgdibr the other perfor-
mance measures % CCI, % CFCl and AD.

The differences between the results obtained with the bedirehd free opti-
mizations illustrate that one should not only focus on theuaacy of a model when
evaluating its performance, but that the global perforreasfca model implies a bal-
ance between its interpretability and its accuracy. In taenéwork of this study, in-
terpretability means that the river manager consultingntioelels is familiar with all
components of the designed models and is able to get insigiiei models just by
looking at the different components. In order to guaranteerpretability, the defini-
tion of the linguistic values,e. the membership functions, should correspond to those
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A(.T,‘]) A(.Z‘z) - olz‘;q_osaprobzc to ﬂ a-oligosaprobic
rlow B-mesosaprobic

1 moderate high 1 a-mesosaprobic
(a) i i polysaprobic
0 T T T 0 T T T T
0 0.3 0.6 0.9 1.2 0 6 12 18 24 30
A(ml) A(:EQ) — oligosaprobic 10@, a-oligosaprobic
moderate B-mesosaprobic
low high a-mesosaprobic
1 4 1 4
(b) 4 4 polysaprobic
0 T T T 0 T T T T
0 0.3 0.6 0.9 1.2 0 6 12 18 24 30
A(CE]) A(:Cz) oligosaprobicto 3, cy—oltyosapv'u?)w
moderate B-mesosaprobic
low —| high |_ a-mesosaprobic
1 1 L
poly-
(C) T 7 saprobic
0 0
0 03 0.6 0.9 12 0 b [P 18 24 30
A(.T,j) A(.Z‘z) — olzgosaprobzcto{}, a-oligosaprobic
moderate B-mesosaprobic
low high a-mesosaprobic
1 A 1
(d) i 4 polysaprobic
0 T T T 0 T T T T
0 0.3 0.6 0.9 1.2 0 6 12 18 24 30
A(ml) A(Ig) oligosaprobicto 3, a-olzgnsap'ro.bw
moderate B-mesosaprobic
low high |_ C a-mesosaprobic
1 1
poly-
(e) T 7 saprobic
0 T T T 0 T T T T
0 0.3 0.6 0.9 1.2 0 6 12 18 24 30
velocity (m/s) ammonium concentration (mg NHN/L)

Figure 6.10: Membership functions of the A-modeRvbasellus meridianuga) orig-
inal model and models obtained through (b) bounded optimizavith
the binary-coded genetic algorithm (GA), (c) free optintiaa with the
binary-coded GA, (d) bounded optimization with the readled GA and
(e) free optimization with the real-coded GA.

104



0T

AMMONIUM

3-mesosaprobic a-mesosaprobic polysaprobic

oligosaprobic

#pt  ABSENT #pt Low #pt Low 4#pt _ ABSENT #pt Low #pt Low
Pt3™370 1 Pt o 1 Pt o o o 2 Pt27370 1 Plo 372 1 P14 0 0 o
8
=3
100 - 100 - 100 g 100 |- 100 |- 100 |-
S
=
50 50 50 50 50 50
A L M H A L M H A L M H A L M H A L M H A L M H
# pt MODERATE #pt  HIGH # pt MODERATE # pt MODERATE #pt | HIGH # pt MODERATE
Plio71 3 1 Ptas 0 2 o P00 o o g Pls 1 3 1 P12 00 o P00 o o
[
s
100 |- 100 |- 100 g 100 |- 100 |- 100 |-
g
50 50 50 13 50 50 50
= s
- _ S —
A L M H A L M H A L M H E A L M H A L M H A L M H
o
#pt Low # pt MODERATE #pt Low = # pt Low # pt MODERATE #pt Low
Pli45 49 59 24 ) 8 7 Plis 8 3 2 S g Pl9 6 7 5 Pt27270 o Pls 170 o
<
s
100 - 100 - 100 g 100 |- 100 |- 100 |-
2
50 l 50 50 = 50 50 50
S
. || | | - _

A L H A L M H A L M H A L M H A L M H A L M H
#pt__ABSENT #pt Low #pt  ABSENT 4 pt. ABSENT #pt Low 4#pt ABSENT
Pla7727 2 1 Pli2 6 3 3 Pia7 170 o Pl16144 53 20 Plas 11 11 o Plig o 4

o
2

100 |- 100 - 100 g- 100 |- 100 |- 100 |-
8

50 50 50 % 50 50 50
S

A L M H A L M H A L M H A L H A L M H A L M H
Tow moderate high Tow moderate high
VELOCITY VELOCITY

Figure 6.11:

(a) (b)

AMMONIUM

3-mesosaprobic a-mesosaprobic polysaprobic

oligosaprobic

Pt o 7% o o 57% o
100 | 100 | 100 |
50 | 50 | s0 |

A L M H A L M H A L M H

#PLEOREETE #Plo 990 o #PLEORETTS
100 | 100 | 100 |
50 | 50 | s0 |

A L M H A L M H A L M H

ap W, e YOBERNTE  up tow
100 100 | 100
50 | 50 | s0 |

A L M H A L M H A L M H

#Pus0s B0 38 #Po 57% o #pt A5
100 100 | 100
50 50 50

A L M H A L M H

moderate igh
VELOCITY

(©

Distribution of the data points over the abumdeclasses in the different regions of the input space daefigd.5-cuts of
the membership functions of (a) the original model, (b) treei obtained through bounded optimization with the binary
coded genetic algorithm and (c) free optimization with tireaby-coded genetic algorithm of the A-model®foasellus

meridianus

uoneziwndo uonauny diysiaquisyy -9 Jaideyd
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used in the domain of biological water quality assessmehérdfore, the models ob-
tained with bounded optimization are considered to havet@bperformance than
those obtained with free optimization, even if higher aacies are obtained for the
latter.

6.4 Conclusion

In this chapter the optimization of the membership funciof the input variables
of the habitat suitability models obtained by the knowletdgsed design process de-
scribed in Chapter 5, was discussed. One type of intergligggtreserving data-driven
optimization, as well as an accuracy-oriented optimizativere applied using both a
binary-coded and a real-coded genetic algorithm. As fithession the average devi-
ation (AD), a new performance measure for fuzzy orderedsiflaation, was used.

For four models the binary-coded genetic algorithms retdiess accurate so-
lutions for the accuracy-oriented optimization than foe tonstrained optimization,
due to the fact that the optimized membership function patars only take values
from a limited set of values. A shortcoming which, as showrth®yexperiments, can
be remedied by applying a real-valued representationddsiga binary representation.
The real-coded genetic algorithms applied in this studwewer, showed maladjusted
to eight of the 96 addressed membership function optingngproblems, as an ex-
haustive investigation of the control structures of theagienalgorithms was outside
the scope of this study.

A purely accuracy-oriented optimization is no option where avants to pre-
serve the interpretability of the habitat suitability mtsdender study with the EKOO
data set. In this case, expert knowledge is a prerequiditgilinterpretable models in
order to define the rule bases and determine the optimizetiervals of the member-
ship function parameters. The accuracy-oriented optitimzahowever, gives a better
insight in the driving force during the bounded optimizatibe. the tendency to clas-
sify as much data points as possible in the abundance @basst by increasing the
regions where the input is mappeddisent, and stresses the importance of uniformly
distributed and unambiguous training data for model oation.
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CHAPTER [

Monotonicity of linguistic fuzzy models

The worthwhile problems are the ones you can really solve
or help solve, the ones you can really contribute something
to.

(Letter to Koichi MangRichard Feynman, 1966)

7.1 Introduction

When identifying models of real-world systems, one is oftenfronted with a small
number of data points. In such cases it is very important by fxploit the addi-
tional non-quantitative knowledge about the system, ireotd obtain meaningful,
interpretable models (Carmona et al., 2005; Jin, 2003).eldeer, taking the qualita-
tive knowledge about the system into account renders theshidehtification process
less vulnerable to noise and inconsistencies in the datawpputesses overfitting (Sill,
1998). An example of this additional qualitative infornmatis the monotonicity of the
model output with respect to an input variakle, the model output is either increas-
ing or decreasing in the variable for all combinations ofreal of other input variables.
Without loss of generality, in this study only increasingdeboutputs are considered
and a fuzzy model is called monotone if it satisfies the folfmpdefinition.

Definition 7.1

(i) Afuzzy modelis called monotone in an input varialleif for any two input
vectorsx; andx, such thatr, ; = x5 j foranyj € L\ {i} andz,; < zq; it
holds thaty* (x1) < y*(x2).

(i) A fuzzy model is called monotone if it is monotone in eachtinaiable.

Monotonicity is a common property of evaluation and setecprocedures. In
loan acceptance for instance, the decision rule should beotope with respect to
income,i.e.it would be an unacceptable policy that a high-income applics rejected,
whereas a low-income applicant with otherwise equal charatics is accepted. In
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Section 7.5 four (potential) applications of monotone listjc fuzzy models in the
bioscience engineering field are described.

This work focusses on linguistic fuzzy models as their fravork allows for the
design of interpretable models for non-experts. The manioity of Takagi—Sugeno
models is discussed in detail in the work by Koo et al. (2004) ¥on et al. (2002),
while the work by Schott and Whalen (1996) addresses the imflief the height of
the overlap between triangular membership functions omitveotonicity of the input-
output behaviour of Mamdani—Assilian models. The desigmohotone models has
also been investigated for other modelling techniquesh siscneural networks (Sill,
1998), decision trees (Ben-David, 1995; Cao-Van and De B&803; Daniels and
Velikova, 2006) and instance-based classification teclasdLievens et al., in press).

In Chapters 8-10 the monotonicity of linguistic fuzzy madehder different
inference procedures is discussed. The properties asstnierdd for the linguistic
fuzzy models are described in Section 7.2. Section 7.3 dettisthe representation
used in Chapters 8-10 of if-then rules fired by a given inpatare In Section 7.4 the
issue of incomparable fuzzy model outputs is addressedll¥zithis chapter concludes
in Section 7.6 with an overview of the objectives of the woescribed in Chapters 8—
10.

7.2 Assumed model properties

The investigated linguistic fuzzy models hawveinput variablesX; (I € L = {1, ...
,m}) and a single output variablé. Their rule base containsrules of the form

Ry IF X, ISB) AND ... AND X,, ISB}" THEN Y IS A4;,

whereB}l,s (resp.A;,) are linguistic values of variabl&; (resp.Y’) in the domainX;
(resp.Y) (s € S ={1,...,r}). The input vector is denoted by= (x1, ..., Zm).

7.2.1 Linguistic values

The linguistic valuesi;_ in the consequents of therules are selected amongnem-
bership functions4; (: € I = {1,...,n}). These membership functions have a
trapezial shape, form a fuzzy partition (Eqg. (2.3)) and draracterized bypn para-
meters as shown in Fig. 7.1. The extreme membership fursctiane one vertical
side at respectively the lower boutig .. Or the upper boundb,:put, Of the output
domain. The midpoints; ando; and the length&; andi; of the kernel of the mem-
bership function4;, respectively the interval where the membership functiéhand
A;+1 overlap, are given byi{ = [,, = 0),

1 .
Cc; = 5((121'.1 + CLQ,;) kz = a9; — A24-1 7f0|’ all; e I,

1
0; = i(agi + a2i+1) l; = agi+1 — Q2 7for allierl \ {n} . (71)
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Figure 7.1: Parameters used to characterize the output ership functions forming
a fuzzy partition.

The linguistic vaIuesBél‘S of variable X; (I € L) in the antecedents of therules are
selected among; membership functionB}l (i € Ji = {1,...,7}). The member-
ship functions in then input domains are also assumed to be trapezial and to form a
fuzzy partition.

The use of a fuzzy partition of trapezial membership funtiomposes a natural
order on the linguistic values of a variable as the intefseaif the kernels of any pair
of membership functions is empty. A linguistic valde is then said to be smaller than
a linguistic valueA, in the same fuzzy partition if the upper bound of the kernell gf
is smaller than the lower bound of the kernel4f

A, is smaller tham, < max(kern(4,)) < min(kern(A4;)). (7.2)

In the setting of this work, a linguistic valué, (resp.B!) is smaller than a linguistic
value 4, (resp.B}) if and only if the indexa is smaller tharb

Agis smallertham, < a < b, (7.3)
Bl is smaller thaB} < a < b. (7.4)

7.2.2 Rule base

The rule baséR is assumed to be either complete, consistent and monototenor
plete, consistent, smooth and monotone. Completenesasdtency are commonly
required properties of rule bases in fuzzy models (Goret al., 2001). A model has a
completeaule base if for any input vectot at least one rule is fired. When using fuzzy
partitions of trapezial membership functions in all inpatmhins, the rule base is com-
plete if and only if it contains a rule for each combinatign, . . ., j..) € J1 X ... X Jp,

of linguistic values of then input variables. A set of IF-THEN rules eonsistentf it
does not contain contradictory rules. This concept is chdaemn using classical logical
rules but is more difficult to grasp in the case of fuzzy ruledsa Therefore, there are
many different interpretations of this property (Driankeival., 1993). In this disserta-
tion the strictest definition is adopted: a fuzzy rule bassaidl to be inconsistent if it
contains at least two rules with the same antecedent butematit consequent. There-
fore in the models considered in Chapters 8—10 the rule la#eaios exactly one rule
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for each combinatiofyjy, ..., jm) € J1 X ... x J,, and the number of rulesis equal
to the product of the number of linguistic values assigneti¢an input variables

r= Hnl . (7.5)
1=1

In the definitions below a monotone rule base is defined foretsodhose
model output is expected to increase with increasing maogbeiti

Definition 7.2 Arule baseR = {Ry,..., R, } is called monotone if for any two rules
R,, and R, itholds that(ji s,, - - Jm.s1) < (1,505 - - - Jm.sp) IMpliesiy, <ig,.

Proposition 7.1 If a rule baseR is complete and consistent, then it is monotone if and
only if forany(ji,...,jm) € J1 X...x Jy,andanyl € {1,...,m} such thatj, < n;

it holds thatis, < is,, With (j1,s,,---,Jm.s1) = (J15- -5 Jm) @NA(J1,555 - - - Jmse) =
(1,5 Jen, i L Jists - ooy Jim)-

Definition 7.3 A complete consistent rule base is called smooth if for any
(J1,---5Jm) € J1 X ... x Jp, and anyl € {1,...,m} such thatj, < n; it holds
thati,, = is,+p, withp € {-1,0,1} and (j1s,5---,Jm,s,) = (J1,---,Jm) and
(j1,527 e ajm,SQ) = (jla e ajl—lvjl+17jl+1a e 1Jm)

Corollary 7.1 A smooth complete consistent rule base is monotone if aydfpnsing
the notations of Definition 7.3, it always holds that {0,1}.

7.2.3 Inference procedure

In Chapters 8-9 the monotonicity of models applying MamdaAasilian inference is
investigated, whereas in Chapter 10 the monotonicity ofetewdpplying either plain
implicator-based inference or ATL-ATM inference is dissed.

Mamdani—Assilian inference The procedure applied in Mamdani—Assilian models
to determine the model output is described in detail in 8a@i3.2. First the fulfilment
degreegs; of ther rules R; are computed. In a next step the fulfiiment degregef
the n linguistic output valuesd; are determined and used to define the membership
functions of the adapted membership functiofjs The global fuzzy outpu# is the
union, based on the maximum, of theadapted membership functiony. Finally,
the crisp model outpuy™* is obtained by defuzzifying the fuzzy output. In this
study the three most commonly applied t-norms are congidéine minimunily,, the
productTp and the Lukasiewicz t-norfy,. In Chapter 8, models applying the Center
of Gravity (COG) defuzzification method are discussed, wasiChapter 9 deals with
models applying the Mean of Maxima (MOM) defuzzification h.

Plain implicator-based inference In Section 10.2 the monotonicity is discussed of
models applying implicator-based inference as describddtiail in Section 2.3.3. This
inference procedure will be referred to@ain implicator-based inference in order to
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avoid confusion with the second implicator-based infeeepmcedure considered in
this dissertationj.e. the ATL-ATM inference described in the following paragraph
As in the Mamdani—Assilian inference procedure first théilfaent degreeg, of the

r rules R, are computed and afterwards the fulfilment degreesf the n linguistic
output valuesA; are determined. However, in implicator-based inferencegulures,
the adapted membership functiod$ are computed using an implicator instead of a
t-norm. In this study the three R-implicatafg;, [p andly, are considered. The global
fuzzy outputA is the intersection, based on the minimum, ofttedapted membership
functionsA;. In this work no specific defuzzification method is considei@ models
applying plain implicator-based inference.

ATL-ATM inference In this dissertation a new inference procedure for lingaist
fuzzy models with a monotone rule base is introduced. It isrgiicator-based infer-
ence procedure in which the modifiers ‘at least’ (ATL) andrfadst’ (ATM) defined
in Egs. (2.25-2.26) play an important part, hence the nanme-ATM inference. In
ATL-ATM models, as the linguistic fuzzy models applying thewly introduced in-
ference procedure are called, the fuzzy model outpistthe intersection, based on the
minimum, of the fuzzy model output$,r1, and ATy Of an ATL model and an ATM
model

A(y) = min(Aarr(y), Aarm(y)) - (7.6)

The ATL and ATM models are derived from a linguistic fuzzy neba@s defined in
Sections 7.2.1-7.2.2. For each rule in the rule base ofitigsiistic fuzzy model, the
rule base of the ATL model contains a corresponding ruleinbtaby applying the
modifier ATL to all linguistic values in the original rule

R:IF X{ISATL(B! ) AND ... AND X,, ISATL(BJ" )
THEN Y ISATL(4;,)

and the rule base of the ATM model contains a correspondieghitained by applying
the modifier ATM to all linguistic values of the original rule

R:IF X ISATM(B! ) AND ... AND X, IS ATM(B?" )

s

THEN Y IS ATM(4;,)

The linguistic vaIues‘Bj.l and A; are defined by the same membership functions as in
the linguistic fuzzy model. The fuzzy model output of the Adihd ATM model are ob-
tained by implicator-based inference as described in @e&i3.3. In Chapter 10, the
monotonicity of ATL-ATM models applying the Mean of Maxim®QOM) defuzzifi-
cation method is discussed.
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7.3 Rules determining the fuzzy model output

7.3.1 Models applying Mamdani—Assilian inference or plain inpli-
cator-based inference

When defining the linguistic values of a variable by membegréinctions as described
in Fig. 7.1, a given crisp value partially belongs to at mesi tinguistic values. As
these fuzzy partitions are used in all input domains, a drippt x; either completely
belongs to one linguistic valuege.

(B € J)(Bj, (x1) = LA (Vj2 € T\ {1 (Bj, (1) = 0)),
or partially belongs to two adjacent linguistic values,

A1 € T\ G ) (BY, (1) € 10, 1[ A Bj, i (21) = 1 = By, (1)
A (Via € Ji\ {41, 51+1})(Bj, (z1) = 0)) . (7.7)

As a consequence, for a given input vectoat most 2* rules are firedi.e. at
most 2" rules R, have a non-zero fulfilment degrek. All inputs belonging, in all
input domains, to the kernel of the same linguistic vaﬁjg are always mapped to the
same (fuzzy) model output. Therefore, a model always shawsreotone input-output
behaviour within these parts of the input space. In ordetbtaio a monotone input-
output behaviour for all input vectors, a monotone input-output behaviour should
also be obtained in all regions of the input space correspgrid the intersections of
the supports of the respective input membership functiﬁj)sand Bém defined in
Eq. (7.7). In order to avoid an overloaded notation, thealdeiy; is introduced

Yy =1= B () = B} (1) . (7.8)

7.3.1.1 Models with a single input variable

For models with a single input variable, monotonicity is gudeed for any monotone
smoottrule base if in any intervebs;, , baj,+1] (j1 € J1 \ {jn, }) Of the input domain,
with b,;, the upper bound of the kernel of a linguistic vaIB¢1 andby;, +1 the lower
bound of the kernel of the next linguistic vaI|E§1+1, a monotone input-output behav-
iour is obtained not only if the linguistic valueB}1 andB}-1+1 are mapped to a same
linguistic output valued;

IF X,ISB}, THEN YIS4,
IF X,ISB!,, THEN Y IS4,

but also if the linguistic valuef,%jl-1 andB;1+1 are mapped to two consecutive linguistic
output valuesd; and A;4;

IF X:ISB!, THEN YIS4,
IF X;ISBl,, THEN YIS A

j1+1
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For models with a single input variable, monotonicity is gdeed for any monotone
rule base if a monotone input-output behaviour is obtainettié two cases above and
in the case when linguistic valuﬁjlv1 andB}-1+1 are mapped to two non-consecutive
output values4; andA;:, (p € N, p > 1).

Thus, given the general representation of the rules cantamlinguistic value
B}l and the subsequent linguistic vaIB'(é1+1 in their antecedent,e.

IF Xi1SB!, THEN YIS4,
IF X,ISB!,; THEN YISA,,

the values to be considered fprare 0 and 1 when investigating the monotonicity of
models with a monotone smooth rule base. The investigafidgheomonotonicity of
models with a monotone rule base also requires considealgs ofp larger than 1.

7.3.1.2 Models with two input variables

For models with two input variables, the set of four ruleg thaght be fired by a given
input vectorx = (z1,22) and whose consequents might therefore contribute to the
model output can be represented as

IF  X,ISBj AND X, IS B}, THEN Y IS A4;

IF X;IS B}l AND X, IS BJ?2+1 THEN YIS Ajpy
IF XIS le1+1 AND X, IS BJQ-2 THEN Y IS Ay
IF X,ISBj, AND X,ISBj, THEN YISA,
with pY,py,p5 € N and, in order to obtain a monotone rule bag¢, < p4 and
py < p4. As monotonicity of a model requires monotonicity in all & input vari-
ables, if monotonicity is guaranteed fof < p/ it follows by permutation ofX; and
X, that monotonicity is also guaranteed fgf > p4. Thus, the investigation of the
monotonicity of models with two input variables only reasdrthe verification of the
monotonicity of all situations included in the followingmgeral representation

IF X1 1S le-l AND X5 IS B]z2 THEN YIS A;

IF X3 1S le-l AND X5 IS szﬂ THEN YIS Ay sy,
IF X31S le'1+1 AND X5 IS BJZQ THEN YISA
IF XIS le-lﬂ AND X5 IS BJQ»2+1 THEN YIS A

i+p]
i+pl
with p}, p5, p5 € N and, in order to obtain a monotone rule basge;t+ p;, < p4. In

Chapters 8-9 the following, more straightforward représéon will be used, incorpo-
rating all constraints the indices of the output membergimgtions should satisfy

IF X,ISB], AND X,ISB? THEN Y IS4,

IF X1ISB!, AND X5ISB?,; THEN YIS A p,

IF X,ISB!,; AND X,ISB?  THEN Y ISA,

IF XiISB!,; AND X5ISB%,; THEN YIS Ay rpyips

with p1, pa, p3 € N. The four rules are represented schematically in Fig. 7.2.
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A A

A; Aivpy

i+p1+p2 i+tp]+pa+p3

B! B! Xy

J1 J1+l

Figure 7.2: General representation of the rules fired for dehwith two input vari-
ables.

When the rule base is also smooth, the values pf andps in the rules above
are restricted to

(p17p27p3) € {(Oa 070)7 (0’ O’ 1)7 (07 17 0)’ (17070)7 (1’ Ov 1)} . (79)

When investigating the monotonicity of models with a monetonle base, eight sit-
uations wherep;, po and ps are either equal to zero or strictly positive, should be
considered when applying a defuzzification method, likeifistance the MOM de-
fuzzification method, which allows for the application obtekame procedure in the
occurrence and absence of consecutive linguistic valuesigitine fired output values.
When applying a defuzzification method, like for instance @@G defuzzification
method, requiring a different procedure whether or notetage consecutive linguistic
output values among the fired output values, 27 situatioosldibe considered where
p1, p2 andps are either equal to zero, equal to 1 or larger than 1.

7.3.1.3 Models with three or more input variables

For models with three input variables the set of eight rutas might be fired to a non-
zero fulfilment degree and whose consequents might therefmtribute to the model
output can be represented in a general way as
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IF X,ISB}, AND X,ISB? AND X;ISB}  THEN Y IS4,

IF X,ISB! AND X,ISB}, AND X;ISB},, THEN Y ISA.,,
IF X:ISB! AND X,ISB?, AND X;ISBY  THEN Y ISA.,
IF X:ISB! AND X,ISB?, AND X;ISB,, THEN Y ISA.,
IF X,ISB!, AND X,ISB?, AND X;ISB}  THEN Y ISA.,.
IF X;ISB!,, AND X,ISB; AND X;ISB},, THEN YIS A,
IF XiISB!, AND X,ISB?, AND X;ISB} ~ THEN Y ISA.,y
IF X,ISB!, AND X,ISB, AND X;ISB},, THEN Y ISA.,.

with pY, p4, o4, v, p¥, p¢, p% € N and, in order to obtain a monotone rule base<
P3, Py < p3, P < p5, Py < 5. Py < PG, Py < 6. ps < 7, ps < py andpg < p7.

Any set of eight rules originating from a monotone rule batieee satisfies, or
can, by permuting the input variables, be converted inthtaigles satisfying

pl <ph <ph. (7.10)

Therefore, the representation shown in Fig. 7.3 will be uskdn investigating the
monotonicity of models with three input variables

IF X,ISB!, ANDX,ISB? ANDX;ISB? THEN Y IS4,

IF X, ISB!, ANDX,ISB? ANDX;ISB?,; THEN Y IS Ajp spep,
IF X, ISB! ANDX,ISB? , ANDX;ISB} THEN Y IS Asp 1,

IF X, ISB!, ANDX; IS B:,  AND X3 1S BY ., THEN Y IS Ajrpy spyepaeps
IF X, ISB!,,AND X, IS B}, AND X;ISB?, THEN Y IS A,

IF X, IS B!, AND X5 IS B?, AND X3 IS B%,; THEN Y IS Ajup pepsens
IF X1 IS B!, AND X5 IS B ,; AND X3 IS B,  THEN Y IS Arpy spyep,

IF X, 1S B}lﬂ AND X5 IS BJQ-2+1 AND X3 IS B;’BH THEN Y IS Ay

With p1, pa, ps, pa, ps, pe, pr € N andpr = p1 + pa +max(ps, p3 + ps, ps + pe) + pr-
In a smoothrule base the parametess are either zero or one and satisfy the
following inequalities

p1+p2+p3<1, (7.11)

p3s+ps <1, (7.12)

P2 +p3+ps <1, (7.13)

p2+pa<1, (7.14)

max(pa, ps + s, p3 +pe) +pr —p3 —ps < 1, (7.15)
max(ps,p3 + ps,p3 +Ps) + 7 —p3 —ps < 1, (7.16)
max(p4, p3 + ps, p3 +pe) +pr —pa < 1. (7.17)

There exists 26 vectol®y, . . ., p7) satisfying Egs. (7.11-7.17). Among them
four sets of three vectors correspond to rule bases thatlargi¢al after permuting
input variables. Of each of these sets only one vector iswalewhich reduces the
number of rule bases that should be investigated to 18. Thedt8rs(p;, . .., pr) are
listed in Table 7.1.
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X X9
32 A'L'+p1+ Ai+p1+ BZ Ai+p1+ Ai+p1+p2+
Jo2+l P2 P2+P4 g2+l p2+p3* max(pg,P3+P5,
P5 P3+pP6)*PT
Aq‘, Ai+p1 Ai+p1+ Ai+p1+p2+
2 2
sz sz P2+p3 P3*P6

1 1 1 1
B}, B, X D <
3 3

Figure 7.3: General representation of the rules fired for dehwith three input vari-
ables.

General representations of the rules fired for models witketlinput variables
and a monotone, but non-smooth rule base, or models with tharethree input vari-
ables, are not included in this section as these models arexpticitly discussed in
Chapters 8-9.

7.3.2 ATL-ATM models

In this section it is shown that the fuzzy output of an ATL mbftesp. ATM model)

for a given input vectok is determined by the rules derived from the rules fired by the
input vectorx under consideration in case of Mamdani—Assilian or plaiplicator-
based inference, even more rules of the ATL model (resp. ATttlel) are fired
than of the corresponding linguistic model when applyingdani—Assilian or plain
implicator-based inference.

7.3.2.1 Models with a single input variable

As illustrated in Fig 7.4, an input; of a model with a single input variable, with

m =1-Bj (x1) = Bj (1), (7.18)

118



Chapter 7. Monotonicity of linguistic fuzzy models

Table 7.1: Combinations of values that should be considienettie parameterg; (i €
{1,...,7}) in Fig. 7.3 when investigating the monotonicity of modelshwi
three input variables and a monotone smooth rule base.

Case p1 p2 p3s ps ps Pe Pt
| 0 0 0 0 0 0 0
Il 0 0 0 0 0 0 1
1l 0 0 0 0 1 1 0
v 0 0 0 1 0 0 0
\Y 0 0 0 1 1 1 0
Vi 0 0 0 1 1 1 1
VII 0 0 1 0 0 0 0
VIII 0 0 1 1 0 0 0
IX 0 0 1 1 0 0 1
X 0 1 0 0 0 0 0
Xl 0 1 0 0 0 0 1
Xl 0 1 0 0 1 0 0
Xl 1 0 0 0 0 0 0
XIV 1 0 0 0 0 0 1
XV 1 0 0 0 1 1 0
XVI 1 0 0 1 0 0 0
XVII 1 0 0 1 1 1 0
XVIII 1 0 0 1 1 1 1

119



Chapter 7. Monotonicity of linguistic fuzzy models

1 4 BJ1'1'1 BJ1'1 le'ﬁl le'ﬁ? 1 BJll'l Bﬂl'l BJ1'1+1 le1+2
Y1 4
0
X1

1 ATL(B}l) 1 4. ATM(B}l*'l)
0 / 1

T Xl Xl
. ATL(Bj,+1)
VL A
0 1

T Xl Xl
. ATL(Bj,+2)
0 1 0 1

1 X1 1 Xl

Figure 7.4: Membership degrees of an inpytto the linguistic values in the rule an-
tecedents of an ATL and an ATM model.

has the following membership degrees to the linguisticesin the antecedents of the
rules of the ATL and ATM model:

1 !Ifj§]17

ATL(Bj)(x1) = 4w ifj=j1+1, (7.19)
0 ,ifj>j+1,
0 ,ifj<j1,

ATM(B})(z1) = 1—m ,if j =71, (7.20)
1 Jfj >+ 1.

Since in a model with a single input variable the fulfilmenge of a rule is
identical to the membership degree of the inputo the linguistic value in the rule’s
antecedent, an input; fires j; rules in the ATL modelj.e. the rules containing the
linguistic valuesATL(Bj) to ATL(Bj, ) in their antecedent, if; = 0; and firesj; + 1
rules, i.e. the rules containing the linguistic valuad'L(B}) to ATL(B] ,,) in their
antecedent, if; > 0. In the ATM model it firesn; — j; rules,i.e.the rules containing
the linguistic values\TM(B] ,,) to ATM(B,, ) in their antecedent, i, = 1; and
ni—j1+1rules,i.e.the rules containing the linguistic valud&'M(Bj ) to ATM(B,,, )
in their antecedent, if; < 1.

The fuzzy output of the ATL model is the intersection of thdiuidual adapted
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output membership functions of theules,i.e.

At (y) = min(ATL(4;,))’(9)
= min Ir(B,, ATL(4;,) (1))
_ m:u{l Ir(ATL(B}, ,)(21), ATL(A;,)(y)) - (7.21)

In the following paragraphs the linguistic output valuestia consequents of the rules
of the ATL model containing respectively)TL(Bj ) and ATL(Bj ,,) in their an-
tecedent will be noted by{TL(A;) andATL(A;+p), i.€.

IF X, ISATL(B!) THEN Y ISATL(A;)
IF X1 ISATL(B!,;) THEN Y ISATL(A;,)

The fulfilment degrees of the linguistic output valu&$TL(A4;) and ATL(A;+,) are
equal to 1 andy, respectively. Two groups can be distinguished among th& other
rules: rules containing in their antecedent a linguistici@asmaller tharB}1 to which
the modifier ATL is applied and which is fired to a fulfilment deg equal to 1i,.e.

S1 = {S es | jl,s < jl}, (722)

and rules containing in their antecedent a linguistic vadduger thanB}1+1 to which
the modifier ATL is applied and which are not fireg.

Sy ={s€S|jis>5+1}. (7.23)

When describing the linguistic output valuds as defined in Section 7.2.1,
for all output values the membership degreeAfBL(A;/) is larger than or equal the
membership degree tTL(A;) when A, is smaller thar4;, i.e.

(Vy € Y)(Vi',i" € I)(i < i’ = ATL(Ay)(y) > ATL(Ai)(y)).  (7.24)

Furthermore, implicators have increasing second padiattfons (Eq. (2.33)). Thus,
the membership degree to the adapted linguistic VAAEL(A;/))’ is larger than or
equal to the membership degree to the adapted linguistieATL(A;~))’ for all
output values ifA;, is smaller thanA,, and if they are fired to the same fulfilment
degreej.e.

(Vy e Y)(Vi',i" € )i’ <i” = Ir(a, ATL(Ay)(y)) > Ir(a, ATL(A0)(y))) -
(7.25)
As the rule base from which the rule base of the ATL model isvadris
monotone, the linguistic output values in the consequehtheofirst group of rules
are linguistic output values smaller than or equalto to which the modifier ATL is
applied,i.e.
(Vs € S1)(is < i), (7.26)
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and as the fulfilment degrees of the first group of rules arecalbl to 1 and thus equal
to the fulfilment degree of the linguistic output valA&'L(A4;), i.e.

(Vs € S1)(Bs = aaTLi = 1), (7.27)

it follows from Eq. (7.25) that the minimum of the membersHiggree of an output
value to the adapted linguistic output value of a rule fromfirst group and its mem-
bership degree to the adapted linguistic valA&'L(A;+,))" is given by the member-
ship degree to the lattare.

(Vs € 51)(Vy € Y)(Ir(1, ATL(A;, ) (y)) = Ir(1, ATL(A:)(y))) - (7.28)

As the rules of the second group are not fired, their coniohstto the global
fuzzy output are identical to the universal det,

(Vs € S2)(Vy € Y)((ATL(A;,))"(y) = 1) (7.29)

From Egs. (7.28-7.29) and the fact that for the three coresidienplicatorsi
it holds that
Vz e [0,1))(Ir(1,x) = x), (7.30)

a property known as the neutrality principle, it followsthkize fuzzy output of the ATL
model is given by the intersection of the original linguistialue ATL(A;) and the
adapted linguistic valuRATL(A;+,))’, i.€.

Aptr(y) = min(grelgq(ATL(Ais))’(y)a (ATL(A:))"(y), (ATL(Aip)) (),
min (ATL(4;,))' ()
= min(I7(1, ATL(A;)(y)), I7(y1, ATL(Aip) (y)))
= min(ATL(4:)(y), I7(y1, ATL(Aisp) (y))) - (7.31)

Analogously, one can show that the fuzzy output of the ATM siaslgiven by
the intersection of the adapted linguistic valUe['M(A;))’ and the original linguistic
valueATM(A;4,), 1.€.

Axrui(y) = min(ATM(A;,))’(9)
= min(fz(1 = 71, ATM(A) (), ATM(Aze,)(9)) - (7.32)

Thus, the rules that should be considered when determihafuizzy output of
an ATL-ATM model with a single input value are the rules ded¥rom

IF X,ISB}, THEN YIS4,
IF X,ISB!,, THEN YISA,.,

i.e. the same rules that have to be considered when using Man#dssilian or plain
implicator-based inference to obtain the output of the distic fuzzy model from
which the ATL and ATM models are derived.
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7.3.2.2 Models with two input variables

For an input vectok = (x1, z2) there always exist; andjs such that

y=1- le»l (x1) = Bgl‘1+1 (x1), (7.33)
Y2 = 1= B}, (x2) = B}, (22) .- (7.34)

When applying Mamdani—Assilian or plain implicator-baseférence to the linguistic
fuzzy model from which the ATL and ATM models are derived, apLit vectorx fires
at most four rules

IF X,ISB!, AND X,ISB? THEN YIS4,

IF X,ISBL  AND X,ISBZ,, THEN Y ISAup.,
IF XIS Bh+1 AND X,ISB;  THEN YIS A,

IF XiISB!,; AND X5ISB%,; THEN YIS Ay pyips

As is shown below only the rules derived from these four rakssd to be considered in
order to determine the fuzzy output of the corresponding Afd ATM models. The
fuzzy outputsA o1, and A sy Of respectively the ATL and ATM models are obtained

by

Anre(y) = min(ATL(4;)(y), I (2, ATL(Aip, ) (),

I (1, ATL(Aitpy+p) (U)s I (T (715 72)s ATL( Ay 4pa4ps ) (9))) 5
(7.35)
Axrm(y) = min(Ir(T'(1 — 1,1 — y2), ATM(4;)(y)),

Ip(1 =71, ATM(Ajsp, ) (y)), I7(1 = v2, ATM(Aitp, +p,) (9)),

ATM(Aitp,+patps) (Y)) - (7.36)

In the rule base of the ATL model, apart from the rules derifrech the four
2
J

rules above
IF X1ISATL(B},) AND X3ISATL(B;,) THEN Y ISATL(A;)
IF X1 ISATL(Bj,) AND X3 ISATL( ]2+) THEN Y IS ATL(Ajsp,+p,)
IF X ISATL(B}lH) AND X3 ISATL(B:,) THEN Y ISATL(Aip,)
( ( 7+;01+P2+p3)

IF X, ISATL(B..;) AND X,ISATL(B%,) THEN Y ISATL

four types of rules can be distinguished as illustrated g1 Fi5.
The first group of rules is derived from rules containing bfath X; and X,
linguistic values smaller than or equal to respecti\B}y andB?z, ie.

Si={s €S| j1,s <jr1Njas < j2} \{(J1,42)} - (7.37)
These rules are fired to a fulfilment degree equal to 1 forsamysy, i.e.
By = T(ATL(BL, ,)(21), ATL(B?, )(22) = T(1,1) =1.  (7.38)

As the rule

IF X1 ISATL(Bj,) AND X;ISATL(B;,) THEN Y ISATL(A4;)
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Figure 7.5: Fulfilment degrees obtained for the rules of ah Afodel for an input
vectorx belonging to the indicated membership degrees to the kstigui
values ofX; and X5.

is also fired to a fulfilment degree equal ta.&,
anrr,i = T(ATL(Bj, )(x1), ATL(B;, ) (z2)) = T(1,1) = 1, (7.39)

and as the rule base from which the rule base of the ATL modkrised is monotone,

i.e.
(Vs € S1)(is <), (7.40)

it follows from Eq. (7.25) that all output values have a smathr equal membership
degree to the adapted linguistic val€TL(4;))’ than to the adapted linguistic output
value of a rule of the first group of ruleise.

(Vs € S1)(Vy € Y)((ATL(A;,)) (y) > (ATL(A:)) () - (7.41)

The second type of rules is derived from rules containingnguistic value
smaller thanle-1 for X, and the linguistic valuan2+1 for X5 in their antecedent,e.

Sy ={s€ S |j1s <j1Njas=Ja+1}. (7.42)
These rules are fired to the same fulfilment degree as the rule
IF X1 ISATL(B),) AND X2ISATL(BZ%.) THEN Y ISATL(Aisp+p,)
namely, to the degreg,
OATL,i+py+py = T(ATL(Bj, ) (1), ATL(B: 1, )(22)) = T(1,72) =72.  (7.43)
As the rule base from which the rule base of the ATL model isvedris monotone,

i.e.
(Vs € So)(is <i+p1+p2), (7.44)
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it follows from Eq. (7.25) that all output values have a smathr equal membership
degree to the adapted linguistic valW&TL(A;+p,+,,))’ than to the adapted linguistic
output value of a rule of the second group of ruiess,

(Vs € S2)(Vy € Y)((ATL(A:,)) () = (ATL(Airp,4p.)) (1) - (7.45)

The third group of rules is derived from rules containindheitfor X, or for
X, (or for both) a linguistic value larger than respectivély ,, and B3 ,, in their
antecedent,e.

Sz={s€S|j1s>j1+1Vjas>j2+1}. (7.46)

These rules are not fired as the membership degree to at leagifdhe linguistic
values in their antecedent is zere,

(Vs € 55)(8s = 0), (7.47)

and therefore do not determine the fuzzy output of the ATL ehad the corresponding
adapted output membership functions are identical to thetsal set.

The fourth group of rules is derived from rules containing limguistic value
B}lﬂ for X; and a linguistic value smaller thalﬁf2 for X5 in their antecedent.e.

Sy={s€S|jis=51+1Vjos<ja}. (7.48)
These rules are fired to the same fulfilment degree as the rule
IF X1ISATL(Bj,+1) AND X, ISATL(B;,) THEN Y ISATL(Aip,)
namely, to the degreg,
aatL i = T(ATL(Bj 1) (21), ATL(B}, )(22)) = T(n,1) = . (7.49)

As the rule base from which the rule base of the ATL model isvaédris monotone,
i.e.
(VS S S4)(is <z +p1) s (750)

it follows from Eq. (7.25) that all output values have a smathr equal membership
degree to the adapted linguistic valu&TL(A;+,,))’ than to the adapted linguistic
output value of a rule of the fourth group of rulés.

(Vs € Su)(Vy € Y)((ATL(A;,))"(y) = (ATL(Airp, ) (y)) - (7.51)

Thus, the discussion above can be summarized in the foltpfeur equations

min(min (ATL(4s,))'(y), (ATL(4:))'(y)) = (ATL(4:))'(v) , (7.52)

min(min (ATL(A:,))'(y), (ATL(Airpy42))' (4)) = (ATL(Airpip,))' () (7.53)
min(min (ATL(A3,))"(y), (ATL(Aiprpaps)'(4)) = (ATL(Astp,parpa)) ()

(7.54)
min(min(ATL(4;,)) (), (ATL(As+p,)) (y)) = (ATL(Airp,)) (9) (7.55)

SESy
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Figure 7.6: Fulfilment degrees obtained for the rules of aMATfodel for an input
vectorx belonging to the indicated membership degrees to the kstigui
values ofX; and X5.

and the general expression for the fuzzy output of the ATL @hod
AarL(y) = g?(ATL(AiS))’(y) ) (7.56)

can be simplified to the expression given in Eq. (7.35). Theession for the fuzzy
output of the ATM model in Eq. (7.36) is obtained analogousine fulfiiment de-
grees of rules for an input vectarin an ATM model are schematically represented in
Fig. 7.6.

7.3.2.3 Models with three or more input variables

The rule base of an ATL model, respectively ATM model, cqpmexling to a linguistic
fuzzy model with three input variables containaules of the form

R;:IF  XiISATL(B) )AND X, ISATL(B? )AND X;ISATL(B?, )

s )8

THENY IS ATL(4;,)
respectively,

R;:IF X1 ISATM(B) )AND X, ISATM(B?, ) AND X; IS ATM(B?, )

s 8

THENY IS ATM(4;.)

For an input vectok = (x4, 2, x3) there always exist;, j» andj; such that

1 =1-Bj (21) = Bj (1), (7.57)
o =1— Bj (z2) = B}, 41 (22) (7.58)
Y3 =1- B} (x3) = B} 1 (23) . (7.59)

126



Chapter 7. Monotonicity of linguistic fuzzy models

Xo T(v1,72,73)
R o _ : o ...... o
IS L RSN SR o ...... o
BV T(y% 73) .E T(WWB) .E ....................................... =
L amon B T SIS S o
L A B LS IS T =
s s | R S T SEDE S =

ATL(Bj,.,) ATL(Bj},.;) ATL(Bj, ) ATL(Bj .;) ATL(B] .,) ATL(B] .3) X3
1 1 1 71 0 0

Figure 7.7: Fulfilment degrees obtained in an ATL model wlittee input variables for
the rules containing the linguistic valu’é?3+1 and for an input vectok
belonging to the indicated membership degrees to the ktiguralues of
X, and X, and to a degrees to ATL(B? ,,) .

The rules in the rule base of the ATL model can be divided ir¢tgroups. A
first group of rules is derived from rules containing a lirgjig value smaller than or
equal toBJ??3 in their antecedent. Since

(V5 < jS)(ATL(B?)(.ﬁg) =1), (7.60)

for a givenATL(B], ,) and ATL(B7, ,), the same fulfilment degree is obtained for
these rules as the fulfilment degrees shown in Fig. 7.5 forules of a model with two
input variables. Following a similar reasoning as in Set#®.2.2, one can show that
the intersection of individual contributions of this firgiogp of rules is given by the

intersection of the individual contributions of the foutasi

IF X, ISATL(B!) AND X,ISATL(B2) AND X;ISATL(B?)

THEN Y IS ATL(4;)

IF X, ISATL(B!) AND X;ISATL(BZ,;) AND X;ISATL(B?)

THEN Y IS ATL(Aj4p, +p,)

IF X, ISATL(B!,,) AND X,ISATL(BZ) AND X;ISATL(B?)

THEN Y IS ATL(A;4p,)

IF X, ISATL(B!,,) AND X,ISATL(BZ,,) AND X;ISATL(B?)
(

THEN Y IS ATL(Ajsp, 4pyips)

A second group of rules contains the linguistic vamEL(Biﬂ) in their an-
tecedent. The fulfilment degrees obtained for these rulesation of ATL(Bj, ,) and
ATL(B]227S) are shown in Fig. 7.7. Following a similar reasoning as intiac.3.2.2,
one can show that the intersection of individual contriwsi of this second group of
rules is given by the intersection of the individual conttibns of the four rules
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IF X;ISATL(B!) AND X;ISATL(B2) AND X;ISATL(B?,,)
THEN Y ISATL(A
IF X, ISATL
THEN Y ISATL

(

(

¥
IF X118 ATL(B

(A

(B,

(A

i+P1+p2+p3)

) AND X, ISATL(B]2 +1) AND X; IS ATL( BH)

Z+P1+p2+p3+p5)

! 1) AND X,ISATL(B2) AND X;ISATL(B?,,)

+
1+P1+p2+P3+P6)
+

1)) AND X;ISATL(BZ,,) AND X;ISATL(B?,,)

+p)

THEN Y ISATL
IF X1 ISATL
THEN Y ISATL

With p1, pa, ps, pa, ps, pe, pr € N andpr = p1 + p2 + max(ps, ps + ps, ps +pe) + pr-
A third, and last, group of rules is derived from rules conitag a linguistic

value larger thanBj”3+1 in their antecedent. Since
(¥ > Js + 1)(ATL(B])(x3) = 0) , (7.61)

these rules are not fired and their individual contributitanhe global fuzzy output are
identical to the universal set.

An analogous reasoning can be made for the ATM model. Suramgrithe
fuzzy output obtained for an input vecterof an ATL and ATM model corresponding
to a linguistic fuzzy model with three input variables is efetined by the adapted
membership functions in the consequents of the rules quureting to the eight rules
fired by the input vectok in the linguistic fuzzy model when Mamdani—Assilian or
plain implicator-based inference is applied

Aare(y) = min(ATL(A;)(y), I (73, ATL(Aitp, +potps ) (V)
IT(Vz, ATL(Airp,+p,) (),
Ir(T(v2,73), ATL(Aispy spatpsips ) (4), I (71, ATL(Aisp, ) (1)),
(T(71573), ATL(Astp, +patpsps ) (¥):
(T(v1,72)s ATL(Ajip, 4patpa ) ()
(T(v1:72573) ATL(Aspr ) (1)) 5 (7.62)
Aarm(y) = min(Ir(T(1 — 71,1 — 42,1 —73), ATM(A;)(v)),
Ip(T(1 = 71,1 = 72), ATM(Aitp, +pytps ) (1))
Ir(T(1 =1, 1 —73), ATM(Aiip,4p,) (1)),
(L =71, ATM(Ajip, 4pa psps ) (Y)
(T(1 =2, 1 = 73), ATM(Ajsp, ) (9)),
(1-
(1

;¢¢
S

ﬂ“é‘

~

27fxq?h4(147+P1+p2+p3+P0)(y))a
=73, ATM(Ajtp, 4pyp, ) (1)), ATM (A ) (y)) - (7.63)

T
I

Following a similar reasoning as above, one can easilyy#rit also for mod-
els with more than three input variables the fuzzy outpute®torresponding ATL and
ATM models obtained for an input vectarare determined by the rules corresponding
to the rules fired by the given input vectomwhen applying Mamdani—Assilian or plain
implicator-based inference.
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7.4 Incomparable fuzzy model outputs

7.4.1 Circumventing incomparability by defuzzification

Investigating the monotonicity of a model requires the texise of an order on the
(fuzzy) model outputs of, on the one hand, any input vegtgrand, on the other
hand, all input vectors; differing in only one input value fronx;. Since no order
can be defined between the empty set or the universal set gndosmempty non-
universal fuzzy set, nor can a defuzzification procedurerbpgsed to circumvent this
incomparability, a prerequisite for a monotone model isgtum a non-empty non-
universal fuzzy output for any input vectar

The empty set could be consistently defuzzified by mappiegher to the ex-
pressiorunknownor to a certain crisp value. Itis clear that the first procedioses not
resolve the incomparability present on the level of the yjurmdel outputs. The sec-
ond procedure only results in a global monotone input-dutpbaviour if a monotone
input-output behaviour is obtained in those regions of tipeif space where only non-
empty fuzzy sets are obtained as fuzzy model outputs ane iéfisp valuey;,,, ¢y set
to which the empty set is mapped, satisfies

(Vx € Xemptyset) (VL € L) (Y15,1(X) < Yamptyset < Yup,i (X)), (7.64)
with

Xemptyset = {X | (Vy € Y)(A(X)(y) = 0)},
Yiva (%) = sup{y” (x') [ X & Xemptyser A 21 >y A (VI € L\A{I}) (@ = 21)},
Y, () = inf{y" (x) | X" & Xemptyser Aw <@y A (VI € LN\{I}) (@ = 23,)}-

Note that a slightly different notation is used in Eq. (7.62)the fuzzy outputd(y)
and the crisp output* in order to be able to indicate for which input veciothe fuzzy
outputA(y)(x) and the crisp outpuf*(x) was obtained.

As shown in Fig. 7.8(a) a monotone input-output behaviowhtained for a
Mamdani—Assilian model applying the t-noffip combined with the COG defuzzifi-
cation method, using the same membership functions for inptht variablesX; and
X5 and the output variabl® and containing 25 rules of the following form in its
complete rule base

Ry IF X, ISBj AND X,ISB;, THENY IS A;,
with iy = min{i | i € No,i > £j1 5j2,s}. When the rule
IF X, ISBi AND X, IS B? THEN Y IS 4,

is removed from the rule base, the empty set is returned fartinbelonging to the
kernels of the linguistic value®: and B3 and a monotone input-output behaviour
is obtained provided the empty set is mapped to a crisp valged than 0.104 and
smaller than 0.300. When the rule

IF X, 1ISB} AND X, ISB? THEN Y IS A,
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(a) (b)

Figure 7.8: Model outputs of (a) a Mamdani—Assilian modélimgéing a non-empty
fuzzy set for any input vector and (b) a Mamdani—Assilian gladturning
the empty set in two regions of the input space.

is removed from the rule base, the empty set is returned fartinbelonging to the
kernels of the linguistic value®; and B3 and a monotone input-output behaviour
is obtained provided the empty set is mapped to a crisp valged than 0.500 and
smaller than 0.700. When both rules are removed from the ade fFig. 7.8(b)), the
empty setis returned as fuzzy output for inputs belongirtgeédernels of the linguistic
valuesB: and B3 as well as for inputs belonging to the kernels of the lindgaigalues
B} and B} and there exists no valug,, ... satisfying Eq. (7.64) . The second
defuzzification procedure might therefore seem valualdenfa theoretical point of
view, but it is hardly applicable in practice 8§,,,ys.. has to be redefined every time
a model property is altered, if, at all, a value satisfying &464) exists. Therefore,
to return a non-empty fuzzy output for any input vectoremains a prerequisite for a
monotone model.

Analogously it can be illustrated by considering a modellgpg plain im-
plicator-based inference instead of Mamdani—Assiliagneifice in the above example
that the incomparability between the universal set and amyumiversal set cannot be
circumvented by a defuzzification procedure.

7.4.2 Mamdani—Assilian models

Given the model properties assumed in this work (Sectiop T2 fuzzy output of a
Mamdani—Assilian model is equal to the empty set if

(Vy € Y)(A(y) = max Aj(y) = 0), (7.65)

=1
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or, explicitly,
(Vy € Y)(Vi € I)(T(ay, Ai(y)) =0). (7.66)

As all output membership functions have a non-empty keinleglds that
(¥i € 1) (Fkern € Y)(Ai(Yhernet) = 1) - (7.67)
It then follows in particular that
(Vi € I)(T(vi, Ai(Yier)) = 0), (7.68)
or, in view of Egs. (2.18-2.19), that
(VieI)(a; =0). (7.69)
With Eq. (2.46) it then follows that
Binax = max f, = 0. (7.70)

In other words, a non-empty fuzzy set is obtained as mod@ubdior all input
vectorsx of a Mamdani—Assilian model if the maximum fulfilment degrég.. is
strictly positive for all input vectorsk. In Mamdani—Assilian models with a single
input variableX, the fulfilment degrees, are identical to the membership degrees of
the input valuer; to the linguistic values oX;. Models with a single input variable,
holding the properties defined in Section 7.2, never retugretmpty set as fuzzy output
since the maximum fulfilment degrek, .« 1 is at least 0.5

Bma)gl = max(l - 71#1) 2 0.5. (771)

In Mamdani—Assilian models with two or more input variabltéee fulfilment
degreess, are calculated from the membership degrees to the linguiatues of the
input variables by means of a t-norm. L&t ,,, be the set of all fulfilment degreg¢s
corresponding to an input vecterdefined as

BTJR = {ﬁs(x) = ng;'l,s (xl) | (j1,57 s 7jm,s) € H{jl7jl+1}}7 (772)
=1

with the indicesj; determined by Eq. (7.8). Note that for the input vectounder
consideration all fulfilment degrees not belongindte,,, are equal to zero.

When applying the t-norrify; the maximum fulfiiment degreé.,.x 7y, m 0b-
tained for a model withn input variables is at least 0.5 as is shown below by indugction
ie.

Bmax, Tae,m = Max(Bry,m) > 0.5. (7.73)
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Form = 2, EqQ. (7.73) holds as

Brmax, Ta,2 = max(Bry, 2)

= max(min(l —y,1 — 7y2), min(1 — v1,y2), min(y1, 1 — 72),
min(y1,72))

= max(max(min(1 — 1,1 — v2), min(1 — y1,y2)),
max(min(y1, 1 — 72), min(y1,72)))

= max(min(1 — 1, max(1 — y2,72)), min(y1, max(1 — v2,7v2)))

= min(max(1 — v1,71), max(1l — v2,72))

>0.5. (7.74)

Assuming that Eq. (7.73) holds fat*,
6max,TM,m* - maX(BTM,m*) > 05, (775)
it also holds form* + 1 as

ﬁmax,TM m*+l = HlaX(BTM ,m*+1)

- i 1 — * i s
ma(_ax min(5,1 =), min(5.500)

= max(min(max(Bry m=*), 1 — Ym=+1),
min(max(Bry,m+ ), Ym++1))

= min(Bmax, g ,m* > Max(L — Y41, Ymr+1))

- 05, (7.76)

When applying the t-norrfip the maximum fulfilment degre8max, 7 ,m 0b-
tained for a model withn input variables is at leagt""" as shown below by induction,
i.e.

Bmax,Tp,m = maX(BTp,m) Z 27m N (777)

Form = 2, Eq. (7.77) holds as

Bmax,Tp,2 = max(Brg 2)
=max((1 —71)(1 —72), (1 = y1)72, 71 (1 = 72),7172)
= max(max((1 —y1)(1 —72), (1 — y1)7v2, max(y1 (1 — 72), 7172))
= max((1 — 1) max(1 — y2,72), 71 max(l — 72,72))

(1
= (max(1l —v1,71))(max(1 — v2,72))
>0.25. (7.78)

Assuming that Eq. (7.77) holds fat*,

*

Bma)ng,m* - maX(BTp,m*) Z 2—m ) (779)
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it also holds form* + 1 as

6max,Tp ;m*+l = maX(BTP ,m*+1 )

=max( max (f-(1- 'ym*+1)),ﬁemax (B Ym+1))

EBrp m* Tp,m*
=max((1 — Ym=+1) - max(Brp m+ ), Ym++1 - max(Brp m+))
= ﬁmaX,Tp7m* maX(l — Ym*+1, ’7’m*+1)

> o= (m7+1) (7.80)

For Mamdani—Assilian models with two or more input variablie t-normily,
is not appropriate as the empty set is obtained as fuzzy butben an input vector
has two input values with equal membership degree to twauigtig values in their
corresponding input domai', = (v1, ..., %m)), i-€.

i Bur o — mi ) =0. 7.81
b i Bt = 1l (B m) =0 (780

Form = 2 the maximum fulfilment degre@y.x 7y, 2 is obtained by

Prax,Ty,2 = max(Br, 2)
= max(max(l —y; + 1 — v — 1,0), max(l — y1 + 2 — 1,0),
max(y1 + 1 =72 — 1,0), max(y + 72 — 1,0))
=max(l-m+1-9-1L1-m+7n—-1
Nt+l-r-Ln+r-10)
=max(1l — 7y + max(1l — y2,72) — 1,71 + max(1l — v2,72) — 1,0)
= max(max(1l — vy1,71) + max(1l — y2,72) — 1,0). (7.82)

If v1 and~, are both equal to 0.34,.x, 7y, 2 IS €qual to zero
Bmax, 1,2 = max(max(1 — 0.5,0.5) + max(1 — 0.5,0.5) = 1,0) =0.  (7.83)
Therefore Eqg. (7.81) holds fon = 2

min ﬁmax,TLQ =0. (784)
T'»€[0,1]2 ’

Assuming that Eq. (7.81) holds fat*,

min - Bmax1y,m = max(Br, m=) =0, (7.85)
[, €[0,1]™"

133



Chapter 7. Monotonicity of linguistic fuzzy models

it also holds form* + 1
min " ﬁmax,TL,m*+1
[pxsn €[0,1]™7 1

= min  max(Bry me+1)
Dpxs1 €[0,1]™7 4

= min max( max max(8+1—ym+1 — 1,0),
[pprar €[0,1]774 BEBTy m~

max ma + Ym+1 — 1,0
ﬂEBTL)in* X(ﬁ ’ym * ))

= min max( max (B+1—ym1—1),
T, 41 €[0,1]™7 %2 BEBTy m*

max (ﬁ + Ymx+1 — 1)10)

S Ty,,m*

= min max( max max(8+1—yme+1 — 1,8+ Ymr+1 —1),0)
[, 41 €[0,1]™7 41 BEBry m=*

= min max( max (84 max(l — ym=+1, Ym=+1) — 1),0)
[pxe1 €0,1]™7 4 BEBry m=*

= min . maX(ﬂmax,TL,m* + max(l — TYm*+1, '7m*+1) -1, 0)
P €[0,1]7

—o, (7.86)

as0.5 <max(l —v;,v) < 1.

In Chapters 8-9 Mamdani—Assilian models with one or moreitiyariables
will be considered forTy; and Tp, while for T, only models with a single input
variable will be investigated.

7.4.3 Models applying implicator-based inference
For the three considered implicatd¥s it holds that
(Vz € [0,1))(I7(0,z) =1). (7.87)

Thus, if for a given input vectok none of the rules of a model applying implicator-
based inference is firede.

Brmax = r;liafc Bs =0, (7.88)
the model returns the universal set for this input vegtdre.
(Vy € Y)(A(y) = min (3, A, (1) = 1). (7.89)
Since for a given input vectax the same fulfilment degreeg$, are obtained when
applying Mamdani—Assilian or plain implicator-based nefiece, it follows from Sec-

tion 7.4.2 that a model with two or more input variables apmyplain implicator-
based inference and usifig, as t-norm will always return the universal set for some
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input vectorsx. Therefore, models with two or more variables applyifigwill not
be considered in Section 10.2 discussing the monotonidimarlels applying plain
implicator-based inference.

From the discussion regarding the representation of ralé3 L—ATM models
in Section 7.3.2 it follows that the fuzzy output of an ATL ¢ ATM model) is
never identical to the empty set or the universal set sinteaat one linguistic output
valueATL(A;) (resp.ATM(A;)) has a fulfilment degreearr, ; (resp.carm,;) equal
to 1. The fuzzy output of the ATL-ATM model, which is the indection, based on
the minimum, of the fuzzy outputs of a corresponding ATL aridvAmodel might,
however, be the empty set. The issue of incomparable modpltsuof ATL-ATM
models is discussed in more detail in Chapter 10.

7.5 Monotone models in bioscience engineering

7.5.1 Land management

Soil erosion is one of the leading environmental problemthefworld. In many ar-
eas, loss of this valuable natural resource takes placesaimperceptibly, and slowly
affects the long-term productivity of the land. Soil erasialso contributes to the
degradation of the quality of surface and ground waters lgingdtransported sedi-
ments, nutrients, pesticides and increased turbidityasua erosion therefore need to
be identified and appropriate conservation measures ingpited (Mitra et al., 1998).
Two linguistic fuzzy models describing the relationshigvizeen the soil erosion po-
tential, i.e. the susceptibility of an area to erosion, and soil properiied landscape
elements were developed by Mitra et al. (1998). The modele weed to generate
maps showing the location and distribution of soil erosioteptial, which are very
useful tools for policymakers.

The first model has two input variables: land use and slopkatass. For land
use 11 classes are defined as described in Table 7.2, whéypasasgles were reor-
ganized in 15 classes. To the variables land use and slofe @ags respectively two
and five ordered linguistic values were assigned, definetidyntembership functions
shown in Fig. 7.9(a—b). The values of both input variables loa derived from (hard
copy) topographic maps. To the output variable, soil erogiotential, five linguis-
tic values were assigned: low, moderately low, moderatejeraiely high and high
(Fig. 7.9(c)). The rule base is compleie, it contains one rule for each combination
of a linguistic value of land use class and a linguistic vadfislope angle class. The
rule base is represented in Fig. 7.9(d). The bottom leftafethe matrix corresponds
to the rule ‘IF land use class IS forest AND slope angle cl&sdry small THEN
soil erosion potential IS low’. The rule base is monotones $bil erosion potential
is increasing in the land use class and the slope angle diémsever, the rule base
is not smooth since the following rules contain non-conseewutput values in their
consequents
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Table 7.2: Classes assigned to the variables land use grelahgle.

class land use slope angh (
1 deciduous forest 1-5
2 mixed forest 6-10
3 evergreen forest 11-15
4 good pasture 16-20
5 fair pasture 21-25
6 poor pasture 26-30
7 woodland pasture 31-35
8 over grazed 36-41
9  double cropped 42-47
10 row cropped 48-54
11 55-61
12 62-68
13 69-75
14 bare soil 76-81
15 82-87

IF land use class IS forest AND slope angle class IS small
THEN soil erosion potential IS low,

IF land use class IS pasture AND slope angle class IS small
THEN soil erosion potential IS moderate.

The second model has three input variables: soil erodilfdittor /', cover fac-
tor and slope length. To these input variables respectieée, two and three ordered
linguistic values are assigned. To the output value, so#ien potential, the same lin-
guistic values and membership functions are assigned ke first model. This second
model also has a monotone non-smooth rule base. The mengbfensttions and rule
base of the second model can be found in the work by Mitra ¢1888).

7.5.2 Food technology

With consumers’ demand for high-quality products, quadissurance has become a
major concern in all manufacturing environments, inclgdine food industry. In food
manufacturing, a substantial amount of product gradingaarality assurance is per-
formed by human inspectors. However, manual inspectiodsténm be laborious, te-
dious, and prone to inconsistency. To solve these diffesilfiood manufacturers are
interested in automated visual inspection for quality sssent. At a low level of
information processing, there are many advantages to atéshinspection. Feature
extraction é.g.physical aspects such as size, area and colour) is cortsistdrased,
and quantitative. However, many food inspection operatalgo require a higher level
of information processing. It is often necessary to integeanumber of physical fea-
tures to make an inference about overall quality that is isterst with expert graders’
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Figure 7.9: Membership functions defining the linguistidues assigned to (a) land
use class , (b) slope angle class and (c) soil erosion patesatiwell as (d)
the rule base of the first model developed by Mitra et al. (1998

or consumers’ judgements (Davidson et al., 2001).

The work by Davidson et al. (2001) discusses the developofdnzzy models
applied in an automated inspection system for chocolate cbokies. The models
assign a global quality score to a biscuit based on its siaked dough colour and
fraction of the top surface area that is chocolate chipshikgection one of the four
models with a similar model structure discussed in thelariicdescribed. The model
has three input variablegg. lightness, size and chips, and one output variabde,
consumer rating. The linguistic values assigned to thetimpriables are defined by
trapezial membership functions forming a fuzzy partitienshown in Fig. 7.10(a—c),
while the linguistic values assigned to the output variaedefined by the singletons
in Fig. 7.10(d). The monotone non-smooth rule base confdnsles. In Fig. 7.11 the
bottom left cell of the left matrix represents the rule ‘IEe&silS small AND lightness
IS dark AND chips IS few THEN consumer rating IS unacceptafile crisp model
outputy™ is given by

i Bsys
= (7.90)
X s

with 3, the fulfilment degree angl, the value of the singleton in the consequent of rule
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Figure 7.10: Membership functions defining the classegassdito (a) size, (b) light-
ness, (c) chips and (d) consumer rating.
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Figure 7.11: Rule base of the model developed by Davidsoh €G01).

Rs (s € {1,...,r}). Sothis model can also be regarded as a zero-order Takaggns

model.

7.5.3 Dairy farming

Replacing a conventional milking machine by an automatiking system (milking
robot) leads to more flexible working hours and a considertibile gain of 30 to 40 %
for the herd manager. Furthermore, the cows can decide gheesswhen and how
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Figure 7.12: Membership functions defining the linguistidues assigned to (a) devi-
ation and (b) value.
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often they are milked, which — as is observed in practice —+gases the milk pro-
duction. However, with a conventional milking machine tleechmanager can check
twice a day the general condition of each cow, and more spehii udder (tempera-
ture, hardness, sensitivity) and the milk (flocks, visggsiThese quick examinations
allow the herd manager to identify clinical udder infec8psuch as clinical mastitis,
at an early stage and hereby restrict economical loss. Witintroduction of an auto-
matic milking system, these daily visual examinations afercand milk are not longer
carried out and it would be desirable if this task is also tedeer by the milking robot.
Nowadays sensors can be integrated in milking robots and rabets are equipped
with a mastitis detection system based on the variationefrhik parameters accom-
panying udder infections. However, the currently commadized mastitis detection
systems suffer from a high rate of false negatives and falsgiyes. In case of a false
negative an infected cow is not registered by the systemitireg in economical loss
due to inferior milk quality, while in case of a false positithe herd manager is urged
by the system to conduct needless bacteriological examirsatr to treat an uninfected
cow (Piepers, 2005).

de Mol and Woldt (2001) developed a fuzzy model to reclasgigy mastitis
alerts generated by a statistical model developed in ameeagisearch (de Mol and
Ouweltjes, 2000). The statistical model is based on sengasorements of the elec-
trical conductivity of milk and returns a high number of falpositives. The fuzzy
model has a hierarchical structure. For each quarter a fuzmel was developed with
deviation and value of the conductivity as input variablad adjusted deviation as
output variable. Deviation is the difference between thgeeked and the measured
conductivity divided by the variance of these differencés. deviation the four lin-
guistic values were assignddb. not increased, increased, high and very high, whereas
value is granulated in three linguistic valué®. not increased, increased and high.
The membership functions used for the right hind quarteshosvn in Fig. 7.12. The
membership functions applied in the models of the othertqumare similar.

For each quarter the fulfilment degrees of the four lingaigéilues of adjusted
deviation were obtained with Mamdani—Assilian inferenpplging 7y and the rules

139



Chapter 7. Monotonicity of linguistic fuzzy models

high not increased increased high very high
©
< increased notincreased not increaseq not increased increased
S

not . . ) .

increased Notincreased not increased not increase¢d not increalsed
not increased increased high very high
deviation

Figure 7.13: Rule base of the model developed by de Mol andif2001).

represented in Fig. 7.13. The bottom left cell correspondie rule ‘IF deviation IS
not increased AND value IS not increased THEN adjusted tlenidS not increased'.
Note that this rule base is monotone but non-smooth as iagmnfollowing two rules
with non-consecutive linguistic output values in their sequents

IF deviation IS high AND value IS increased THEN adj. dewatlS not increased,
IF deviation IS high AND value IS high THEN adj. deviation I18h.

Next, the fulfilment degrees of each linguistic value of atia deviation are
given by the maximum fulfilment degree obtained for the listja output value under
consideration in the four models. These fulfilment degreesuaed to obtained the
fulfilment degrees of the linguistic values of além, false and true, using the following
rules

IF adjusted deviation IS not increased THEN alert IS false,
IF adjusted deviation IS increased THEN alert IS false,
IF adjusted deviation IS high THEN alert IS true,
IF adjusted deviation IS very high ~ THEN alert IS true.
Finally, the model output is defuzzified by selecting theylirstic value of alert with

the highest fulfilment degree.

The fuzzy model developed by Piepers (2005) can be usedlglisecmastitis
detection system. The model has three input variahkessomatic cell number, milk
production decrease and electrical conductivity increamkone output variablé.e.
need of a bacteriological examination. For all variablexzjupartitions of trapezial
membership functions were applied to define the linguistices. The linguistic val-
ues assigned to the variables are given in the representdtibe rule base in Fig. 7.14.
The bottom left cell corresponds to the rule ‘IF somatic oetinber IS low AND pro-
duction decrease IS low AND electrical conductivity IS loWEN need of a bacterio-
logical examination IS low’. The rule base is monotone andaiim
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electrical conductivity IS high

é % high moderate moderately high high high high
_é % moderatq moderate moderately highh moderately high high high
5° low low moderate moderately highh moderately high high
low moderate moderately high high very high
somatic cell number
electrical conductivity IS moderate
é % high low moderate | moderately high high high
% % moderate low moderate | moderately higl moderately high high
a° low low moderate moderate moderate | moderately high
low moderate moderately high high very high
somatic cell number
electrical conductivity IS low
é % high low moderate moderate | moderately high high
% % moderatg low moderate moderate | moderately high moderately high
o low low low moderate moderate moderate
low moderate moderately high high very high

somatic cell number

Figure 7.14: Rule base of the model developed by Pieper$j200

7.5.4 Ecological quality assessment

For years, the quality of stream sediments in Flanders {@®lghas been influenced
in a negative way by the poor quality of the surface water. Bua decrease in the
amount of waste water discharged untreated in water batliesyater quality steadily
improves. At some locations where the water quality has avgnl, a reversed problem
arises. The contaminated sediment makes a further impravieaf the water quality
and the ecological recovery of the stream impossible, datpats migrate back from
the sediment to the surface water. In order to further imprine quality of the sur-
face waters, not only should actions be taken to reduce feetedf discharges, but
also should efforts be made in the field of sediment sanitat®ince the sediment is
an important component of the aquatic ecosystem and drgagid cleaning opera-
tions result in mud that should be disposed, it is importannbnitor the quality of
sediments. The Department of Environment, Nature and Erafrthe Flemish gov-
ernment uses the TRIADE method to assess the ecologicalityopfasediments in
Flanders (De Cooman and Detemmerman, 2004; Ministerie eaflahmse Gemeen-
schap, 2000). No elements from the fuzzy modelling field aceriporated in the TRI-
ADE method, but the current procedure can easily be fuzzdgedill be illustrated
below. First, however, the current procedure is described.
The TRIADE method classifies a sediment into one of four egiol quality

classes based on the outcome of three specific classifisagfiacting respectively the
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physical-chemical, ecotoxicological and biological diyabf the sediment.

Physical-chemical quality The physical-chemical quality is derived from the con-
centrations of 13 (groups of) components in the sedimergerae, cadmium, chro-
mium, copper, mercury, lead, nickel, zinc, apolar hydrboas, extractable organo-
halogens, the sum of a group of pesticides, the sum of 7 plsatifenyls, the sum
of the six polyaromatic hydrocarbons of Borneff. For eacmponent the ratio of
the measured concentratiGhecasured,; t0 the concentratiolseference,i in a reference
sediment,.e. a sediment that is (almost) unaffected by human activitgaisulated
(Ge{l,...,13})

VTRZ _ Cmeasuredﬂ

7.91
Creference,i ’ ( )

and converted in a variable logindeyiven by
logindex, = min(2, log;,(max(1,VTR;))), (7.92)

with 0 < logindex < 2.
Next, each component is assigned to one of four classes badedindex

C; ,if0 < logindex < 0.4,
Cy ,if 0.4 <logindex < 0.8,
Cs ,if 0.8 <logindex < 1.2,
Cy ,if 1.2 <logindex < 2.

C(Chern,i = (793)

The smaller the assigned class is, the better is the physheshical quality of the
sediment.

Finally, the sediment is assigned to one of four physica&raical quality class-
es. This clas¥..., is equal to the highest class obtained for the 13 components,
except if the number of components assigned to this highass ¢s smaller than or
equal to two and the logindexalues obtained for these components are furthermore
smaller than the midpoint of the interval defining this higheass. In the latter case,
the rank of the global physical-chemical class assigneddséediment is equal to the
rank of the highest class obtained for the 13 componentsestoy 1.

Ecotoxicological quality An ecotoxicological assessment gives an indication of the
potential effects on organisms. Lab-bred organisms aresegto pore water or sedi-
ment for a certain time (hours or days). The three test osgasmiused in the TRIADE
method, the algaRaphidocelis subcapitatgpore water test), the fairy shrimgham-
nocephalus platyuru§pore water test) and the amphipblyalella azteca(sediment
test), strongly differ in susceptibility to specific toxiormponents. Furthermore, the
biological availability of components in the sediment camwstrongly among the or-
ganisms.

The obtained results are again compared to those obtainaedéberence sedi-
ment. The results obtained fRaphidocelis subcapitatand Thamnocephalus platyu-
rus are expressed by the variable VTR, while results obtainedj@lella aztecaare
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represented by the variable mortality. The sediment is ahassified in one of four
classes based on VTR

C, ,ifVIR=1,
o _ )G Lif1<VIR<150, (7.99)
BT Y oL 150 < VTR < 300, '

Cy ,if300 < VTR,
and once based on mortality

C; ,if 0 < mortality < 20,
Csy , if 20 < mortality < 50,

Croxin =4 2 10 20= Y (7.95)
Cz ,if 50 < mortality < 75,

Cy ,if 75 < mortality < 100.

The global ecotoxicological quality clags.y; is the highest of the classes obtained
for Cvtoxi,l andctoxi,2-

Biological quality Benthic macroinvertebrates are used as indicator spemighd
biological quality of sediments. The Biotic Sediment IndBXVI) gives an indication
of the biological quality based on the occurrence of ceriradlicator species and the
taxonomic diversity of the (epi)benthic macroinvertebrabmmunity. Sediments are
assigned to one of four biological quality classes basedwi B

C, L ifBWI € {7,8,9,10},
Co ,ifBWI € {5,6},

Cs ,if BWI € {3,4},

C, L ifBWI € {0,1,2}.

Chiol = (7.96)

Ecological quality In a last step of the TRIADE method, the sediment is assigmed t
one of four ecological quality classes following the praseddescribed by the eight
rules below. Hereby; -, C5_4 andCs_4 respectively represen€’ to Cs', * Cs to

cy and ‘03 toCy'.

Ri: IF Conem 1S C1—2 AND Cioxi ISC1 AND Chiot ISC1 THEN Clcor 1S Oy
Ro: IF Conem 1S C1—2 AND Cioxi ISC1 AND Chior IS Co—g THEN Clco IS O
R3: IF Cupern 1S C—9 AND Choxi IS Co_s AND Ciio 1ISC; THEN Cleoy 1S O
Ry: IF Copern 1S C1—5 AND Choxi 1S Co—s AND Chior 1S Cag THEN Clcor 1S O
Rs: IF Caporn 1S O34 AND Cioxi ISCy AND Ciio ISCy THEN Clor IS Cs
R IF Coporn 1S O34 AND Cioi ISC1 AND Ciion IS Co—g THEN Clcor IS O
R IF Conem 1S O34 AND Croxi IS Co—g AND Chio) ISC1 THEN Clcor IS O
R IF Copern 1S O34 AND Cloxi 1S O s AND Chior 1S Co_y THEN Cluoy 1S O
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Fuzzified TRIADE method The definition 0fCchem i, Ctoxi, 1+ Ctoxi,2 @NdChio CaN
easily be fuzzified by replacing the crisp sets defined in EG€3—7.96) by fuzzy
sets as shown in Fig. 7.15. The fuzzified TRIADE method istiated on an exam-
ple in Table 7.3. The original TRIADE method classifies a setit characterized by
the values in the second column in the ecological qualitgsz. In the fuzzified
TRIADE method, the variables logindexVTR, mortality and BWI are first classi-
fied in the four corresponding fuzzy classes described byrtbmbership functions
in Fig. 7.15, which results in a vector with four values betwezero and one, sum-
ming up to one. The 13 fuzzy classificatio@'s,em ; for the physical-chemical quality
and the two fuzzy classificationS,.; 1 and Ci.yi 2 for the ecotoxicological quality
are aggregated in the example by taking the classificatimesponding to the highest
class. There exists a wide range of aggregation operatahk,as Ordered Weighted
Average operators, whef€.,.rm is given by a weighted sum of the T&y,.p,, ; with the
weights being a function of the order of the €3}, ; (Calvo et al., 2002). In the ex-
ample the fuzzy classifications obtained for the sedimen€af.., = (0,0.1,0.9,0),
Cioxi = (0,0.6,0.4,0) andCy;,1 = (0.25,0.75,0,0). When applying the t-norriip
the fulfilment degrees of the eight if-then rules above averyby

/1 =01x0x025=0, (7.97)
B2=0.1x0x0.75=0, (7.98)
B3 =0.1x1x0.25=0.025, (7.99)
By =0.1x1x0.75=0.075, (7.100)
85 =09x%x0x0.25=0, (7.101)
06 =0.9%x0x0.75=0, (7.102)
Br =0.9x1x0.25=0.225, (7.103)
Bs=0.9x%x1x0.75=0.675. (7.104)

The fulfilment degrees of the output clasgés C5, C3 andC, are obtained by

a1 =6 —0, (7.105)
e = max(fs, 83, O5) = max(0,0.025,0) =0.025, (7.106)
as = max(fy, 86, f7) = max(0.075,0,0.225) =0.225 , (7.107)
oy = fs =0.675, (7.108)

or, after normalization, by
Cecol = (0,0.027,0.243,0.730) . (7.109)

If needed, the obtained fuzzy output can be defuzzified,rfstaince by assigning the
sediment to the ecological quality class with the highesinivership degred,e. C,

in the example. Note that the membership functions werearhasbitrarily. The
behaviour of the fuzzified TRIADE method can be tuned by adgphe membership
functions defining the classes assigned to the variablésdeg, VTR, mortality and
BWI or by changing the procedure to obtaihy,e,,, andCyoy;.
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1] 1 C1: trapeziungo, 0, 1, 2)
4 Ch Cy i1 2
O T T T T T O T T T T
0 04 08 12 16 2 0 80 160 240 320 400
logindex; (-) VTR ()
(@) (b)
1 11
{C Co Cs Cy { Cy Cy
O T T T T T 0 T T T T T
0 20 40 60 80 100 0 2 4 6 8 10
mortality (%) BWI (-)
(©) (d)

Figure 7.15: Membership functions defining the classegassito (a) logindex (b)
VTR, (c) mortality and (d) BWI.
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Table 7.3: Classification with the original and fuzzified ARIE method.

classification

variable  value original fuzzy
logindex 0.00 Ceéhem1 =1  Cchem,1 = (1,0,0,0)
logindex, 0.00 Cehemz=1 Cechem,2 = (1,0,0,0)
logindex 0.20 Cehems =1 Cehem,3 = (1,0,0,0)
logindex, 0.24 Cehemas =1 Cghema = (0.9,0.1,0,0)
logindex 0.00 Cihems =1  Cchemss = (1,0,0,0)
Ioginde>% 0.40 Cchern,G =2 Cchem,G = (05, 0.5,0, 0)
logindex, 0.96 Cehem,r =3  Cechem,r = (0,0.1,0.9,0)
logindex 0.84 Cehems =3 Cechem,s = (0,0.4,0.6,0)
logindex, 0.36 Cehemo =1  Cachem,o = (0.6,0.4,0,0)
Iogindexw 0.00 Cchcm,l() =1 Cchcm,lO = (1, 0,0,0)
|Oginde)(11 0.52 Cchem,ll =2 Cchem,ll = (02, 0.8,0, 0)
Iogindele 0.00 Cchem,12 =1 Cchem,12 = (1, 0,0,0)
Iogindexlg 0.10 Cchem,13 =1 Cchem7l3 = (1, 0,0,0)
C(chem =2 Cchem — (07 017 0. 70)
VTR 140 Cioxin =2 Cioxi1 = (0,0.6,0.4,0)
mortality 30 Cloxiz =2 Cioxiz = (0,1,0,0)
Croxi = 2 Cioxi = (0,0.6,0.4,0)
BWI 6 Chiol = 2 Chiol = (0.25,0.75,0,0)
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7.6 Conclusion

Part Il of this dissertation, consisting of Chapters 7-i$0jedicated to my work on
the monotonicity of linguistic fuzzy models. In this firstaghter, some general as-
pects were discussed, such as the model properties assntiesl work, the applied
representation of if-then rules, the issue of incomparéidey model outputs and the
applicability of monotone linguistic fuzzy models in bigsigce engineering.

In Chapters 8-10 the monotonicity of linguistic fuzzy madehder different
inference procedures is discussed. Chapters 8-9 deal vdthddni—Assilian mod-
els applying the t-norm&y;, 7p and 7y, combined with respectively the COG and
MOM defuzzification method. Chapter 10 focusses on modgidyaqy either plain
implicator-based inference or ATL-ATM inference, one & three basic t-norniBy,
Tp or 11, one of the three R-implicatos,;, Ip or I1, and the MOM defuzzification
method. The objective of this study was to select, for eafdrémce procedure, combi-
nations of t-norm, implicator or defuzzification methoduiéieg in a monotone input-
output behaviour for any monotone rule base, or at leastfpnzonotone smooth rule
base.

Assuming the model properties in Section 7.2, the inpupwatubehaviour of
models withm input variables reduces to the input-output behaviour ofl@®with
m* (m* < m) input variables in those regions of the input space wheegeirthuts
belong to the kernel of the same linguistic value in all biit input domains. Thus,
if certain model properties are necessary to guarantee tmoicdy for models with
m™ input variables, these model properties are also requirgdidrantee a monotone
input-output behaviour for models with more thaut input variables. Therefore, in
Chapters 8-10 the monotonicity of models with a single infauitable is studied first
and throughout the discussion, the number of input varsabbamsidered, is gradually
increased. For Mamdani—Assilian models applying the COfaatdication method,
models with up to three input variables are considered. Famifani—Assilian models
applying the MOM defuzzification method, models with up t@tiwput variables are
considered in case of a monotone rule base, whereas the nofribput variables is
not restricted for models with a monotone smooth rule baseSdction 10.2 it will
be shown that monotonicity cannot be guaranteed for modéhistwo input variables
applying plain implicator-based inference for the ninesidared combinations of the
t-normsTy;, Tp or Ty, and the three R-implicatorky, Ip or I1,, no models with a
higher number of input variables are considered for plaiplicator-based inference.
Finally, for ATL-ATM models, only models with a single or twioput variables are
considered. The purpose of Chapter 10 is to illustrate theinierence method, rather
than to give an extensive description of the monotonicitthete models as is done for
Mamdani—Assilian models in Chapters 8-9.
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CHAPTER 8

‘—Mamdani—AssiIian models: COG defuzzification

Turning points always seem so sudden and absolute, as if
they have come bolt out of the blue. That is not true, of
course. A whole slow process goes into their making.
(Reading Lolita in TeherarAzar Hafisi, 2003)

8.1 Introduction

In this chapter the monotonicity is investigated of Mamed&ssilian models hold-
ing the properties described in Section 7.2 and applyingQbeter of Gravity de-
fuzzification method. It is verified for the three t-normis;, 7p andTi, whether a
monotone input-output behaviour is obtained for any mometale base, or at least
for any monotone smooth rule base.

First, in Section 8.2, the general definition of the crisgotiyé.q (Eq. (2.44))
is reformulated for models holding the properties descrilpeSection 7.2, using the
variables introduced in the same section to characterzeutiput membership func-
tions. In Section 8.3 the monotonicity of models with a séigiput variable is studied
for the t-normsiyg, Tp and7y,. As discussed in Section 7.4, obtaining the empty set
as fuzzy output cannot be avoided when using of the t-nbynin models with two
or more input variables and holding the assumed propertigich makeslt, an inap-
propriate t-norm for these models. Therefore, Section 8agiwith the monotonicity
of models with two input variables for the t-norriigs and7p only. As the research
pointed out that a monotone input-output behaviour caneogumranteed for mod-
els with two input variables and any monotone (smooth) raleebwhen applying the
t-norm Ty, only the t-normTp is considered in Section 8.5 when investigating the
monotonicity of models with three input variables. The deaponcludes with a sum-
mary of the obtained results in Section 8.6.
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8.2 Tailoring the definition of y¢yq

The general definition of the crisp outpyit, has been reformulated for models ap-

plying T, T andTy, and trapezial membership functions forming a fuzzy paniiti

in Chapter 3. To facilitate the reading, the formulae arepéalated in this section

using the parameters introduced in Chapter 7 (Eq. (7.1)uaad throughout Part III.
The center of gravityéo of the surface defined by the global fuzzy output

can be computed from the centers of gravifyandy;, ; and areas; and S, ; of the

n adapted membership functions and thé overlapping parts,

Soiea (45 - Si) = Y (Yap.i - Sopsi)
D Si— Z;’le Sop,i
The formulae listed in Table 8.1 for the terms v, ;, S; andsS,,, ; in Eq. (8.1)
are applicable to models using trapezial membership fonstiorming a fuzzy parti-
tion as shown in Fig. 7.1. When the linguistic output value=duga the consequents of

the rules are all described by membership functions withrimils of changing mem-
bership degree of equal length

(Vse{l,....,rHis ¢ {1,n}), 3B >0)Vie I\{n}){l; =1),

the formulae in Table 8.2 can be used. If, furthermore, thiaede of the output mem-
bership functions are of equal length

Ycoa = (8.1)

(3k > 0)(Vi € I)(k; = k),

the formula forS; can even further be simplified.

8.3 Models with a single input variable

In a model with a single input variable at most two rules aefithe rule correspond-

ing to some linguistic vaIuB; is fired to a degreel(— ;) and the rule corresponding

to the linguistic input valueB}+1 to a degree; (Eq. (7.8)). In case of a monotone rule
base,B} andBj,, can either be mapped to

1. the same linguistic output valug: the constantcase,
2. two consecutive output valuels and A;.,: thesmoothcase, or

3. two non-consecutive output valuds andA;+, (p € N, p > 1,7+ p < n): the
non-smootitase.

The constantcase is meaningless for models with a single input variaddet
indicates the presence of redundant linguistic input \&luétwo adjacent linguistic
input values of a model with a single input variable are mappehe same linguistic
output value they should be merged into a single linguisteit value defined by their
convex hull in order to reduce the complexity and improveititerpretability of the
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Table 8.1: Formulae for the centers of grawfyandy,,, ; and areas; andsS,,, ; of the adapted membership functions and overlappin

parts in Eq. (8.1)

Tp

Tt

Tm
* (1 —1i-1) (3(2— i ) ki +2(3—3a; +a?) (1.1 +1;))
Yi €+ ; 6(2k;+(2—ai)(lia+1s)) ;
S 206 (2k; + (2 — ) (L + 1))
ygp,i 0

Sop,z' (1 — min(ai, [e7F% 05)) Hlil’l(Oéi, [e7F% O5)ll

—li1) (3ki+20i1+215)

i
i+ 6(2k;+1i1+1;)
50 (2k; + lia + 1)

. Aj —O+1 .
0i + 6(aitai) Li
il

2(citair)

¢ + (i =li1) (Bki 20 (Lia+1s)) v
4 6(2ki+a;(li-1+1:))

%Oéi(Qki + ai(li—l =+ lz))

0; + 3 (i — aim)l;

ili(max(ai + e — 1,0))2

Table 8.2: Formulae for the centers of grawtyandy,,, ; and areas; andsS,, ; of the adapted membership functions and overlappin
parts in Eq. (8.1) for models holding specific properties
Twm Tp Ty
(¥s € {1,...,7})(is & {1,n}), (3 > 0)(Vi € I\ {n})(l; = 1)
i (& C; C;
Yop,i 0; 0i + Glaratsl 0i + 2 (a; — )l
Sop,i (1 —min(ay, a+1,0.5)) min(a;, ag+1, 0.5)1 % $l(max(e; + ais1 — 1,0))2

(Vs € {1,...,r)is ¢ {1,n}), (3l > 0)(¥i € I\ {n})(l; = 1), 3k > 0)(¥i € I)(k; = k)

Si al(k—i— (2—0@)[)

a;(k+1)

a; (k4 asl)

deyd

J
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0
a2i-2 faz; + 71 (azi+1 — a2:) T Y @2i-2 Jazi+1 — 71 (@2i+1 — a2; Y
azi-1 — 71 (@2i-1 — azi-2) a2i+1 azi2 + 71 (a2i1 — azi-2) a2i+1
(@ <05 ()71 > 0.5

Figure 8.1: Schematic representation of the output of a ineidle a single input vari-
able when two adjacent linguistic input values are mappethéosame
linguistic output valued; for T = Ty;.

model. A rule base of a model with more than one input variahbtevever, might
contain a pair of non-redundant rulés, and R, with the same linguistic values
for all but one input variabléeX;, in their antecedents, adjacent linguistic valléil%,1
and Bj.;lﬂ for the input variableX;,, and the same linguistic output value in their
consequents. For input values belonging to the kernelsedfriguistic vaIuesBj-l (1 #
[1) and partially belonging t(B;jl andBj.;lﬂ, the model behaviour then corresponds
to the aboveconstantcase.

When monotonicity should be guaranteed for any monotone #nrate base,
the first two cases should be considered, while for any maowmotale base, all three
cases should be considered.

8.3.1 Models applyinglm

WhenB} andB}+1 (j € J1\ {n1}) are mapped to a same linguistic output valie
(Fig. 8.1), the crisp outpu§¢.o is computed with Eq. (8.1) using the formulae in
Table 8.1. Sincey; is equal to {—~;) forv; € [0, 0.5] and equal tey; for v, € [0.5, 1],
monotonicity holds if

dy dye
(v»h € [0,0.5}) (yCCflM” > 0) A (v% € [0.5, 1]) (‘UCO;IM” > o),

Y1 Y1
(8.2)
with
. _ (L = Lie)) B(L 4+ y1)ki +2(1 + 71 +97) (-1 + 1))
Ycoa,1m,11 = Ci + 628 + (1 + 1) (s +10)) ,  (8.3)
\ (I — 1) (3(2 = )k + 2(3 — 371 +42) (L1 + 1))
= Ci —|— . 8.4
yCOG,lM,12 6(2]@ + (2_71)(li-1 +lz)) ( )
One easily verifies by substituting; = 0.5 in Egs. (8.3-8.4) that
Yeoaama1(n = 0.5) = yéoc,lM,m(% = 0.5), and as the derivatives of
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Yeoa,1im,11 ANdyEog 1m,12 @re given by

dycocamar (L= lia) (ki + (Lia + 1)) Bk + (L + 1)(2+ 7))

_ , (85
dmn 3(2k; + (1 + 1)l +15))? ¢
dycocamaz _ (L — L) (ki + (L + 1) (1 = 7)) Bki + (lia +1)(3 — 1))
o 32k + (2= 1)l +10))? ’
(8.6)
that Eq. (8.2) is satisfied if and only if
lii=1;. (8.7)

As the extreme linguistic output value$, and A,, are both described by a
trapezium with one vertical side, monotonicity can only heugnteed for a model
with a single input variable applying if the following constraints are satisfied

(Vs € {1,...,7}) (s ¢ {1,n}), (8.8)
3> 0)(vie I\ {n})li =1). (8.9)

From here on, Egs. (8.8-8.9) are assumed to hold and the fierimuTable 8.2
can be used for the terms, y7, ;, S; andS,y, ; in Eq. (8.1) when proving the monoto-
nicity in the smoothandnon-smootitase.

WhenB} andBl,, (j € J1 \ {n1}) are mapped to the linguistic output values

J
A,; and A;+, respectively (Fig. 8.2), monotonicity holds if

dycoa d (Y7 Si+ Y1 Sier — Yop iSop,i
Vv1 € 10,1 e = : >0). (8.10
< " [ ]) ( dﬁyl d’Yl Si + Si+1 — Sop,i - ( )

Although, the value of the termin(c;, «;+1,0.5) in the formula ofSg,, ; differs
for vy, € [0,0.5] and~; € [0.5, 1],

41 = ,if 0,0.5],
min(ai’ i1, 05) _ O+1 4t I 7 € [ ] (811)
a;=1—m ,|f716[0.5,1],
the same equation can be used for the &gg for v, € [0, 1]:
Sop,i = (1 — min(ai, [e7F 05)) min(ai, Qi+, 05)l = (1 — ’71)71[ . (812)
Thus fory; € [0, 1], using
1 1
i =0; — ki — =1, 8.13
¢ =0~ 5 ( )
1 1
Ci+1 = 0; + ik“l + 51, (814)

the crisp outpuyo is given by

Uki — ki) + (L4 kK + (U ki) (20 + kiwr))y1 — (04 K;)?
(8.15)

.
Ycoa = 0i +
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Aly)
1 Az Ai+1
@ <05 : :
0 T : T
a2;i-2 az; azi+1 azi+3 Y
azi+1 — Y1li
az; + 71l azi+3 — Y1li+1
a2i-1 — Y1lia
Aly)
A A
1 . .
b)y: > 0.5
0 ; : 2
f ! |
ag;-2 az; azi+1 a2i+3 Y
az; +v1l;
azi-1 — Y1li1 azi+1 — Y1li a2i+3 — Y1li+1

Figure 8.2: Schematic representation of the output of a ineidle a single input vari-
able when two adjacent linguistic input values are mappaadaonsecu-
tive linguistic output valuesl; and A;+, for T' = T.

and monotonicity is guaranteed as
dycoc _ (k) + ki) Cn (A =)l + 3L+ ki + ki) (8.16)
dm 20X =) + DI+ (A =y)ki + ki )* -~ '

Whenle andth1 (j € J1 \ {n1}) are mapped to two non-consecutive output
values4; andA;+, (p € N, p > 1,9 + p < n) respectively (Fig. 8.3), monotonicity

holds if p p ‘S 4y S
yEOG Y; i yi+p i+p
Vg €0,1] ) 22206 — — (Tt - TP ) 5 ) 8.17
( mel ]>( dm d%( Si+ Sitp > - ) 6.17)

The crisp outpuyo is given by
(1 =) (@ + )l + ki)ei +71((2 = 1)l + Fisp)Cinp

x = 8.18
YEOG = T a0+ k) T (@ = 1)L T Farg) (68.18)
. i+p—1
or, with Civp = C; +pl+ %]{31 + Z k’j + %ki+p,
j=it+1

(pl + ki + :f: kj + %kﬁp)vl ((2 — )l + Imp)

21 = y1)y1 + DI+ (1 = y1)ki + 71kiap

Yeoa = G + , (8.19)
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Ai+p

azi-2 a2i+1 a2i+2p-QT a2i+2p+1 Y
azi-1 — Y1lia az; + v1l; azi+2p-2 + Y1litp-1 azi+2p+1 — Y1li+p

Figure 8.3: Schematic representation of the output of a ingitle a single input vari-
able when two adjacent linguistic input values are mappetivto non-
consecutive linguistic output valuels and A;., for T' = Tiy.

and monotonicity is guaranteed as its derivative is pasiir alll € R, k;, kivp €

RT,
dye 1 i+p—1 1
WG — (p+ kit 30 by + zhing) %
1 j=it1

(21 + Fi + Kinp)IyE + (14 i) (2(1 — y1)l + kivp)

2020 = y)m + DL+ (1 —y1)ks + 'Ylki+p)2 >0. (8.20)

8.3.2 Models applyinglp

Whenle andB}+1 (j € J1\{n1}) are mapped to a same linguistic output valyethe
crisp outputyé. is constant for all inputs larger than the lower bound of thmkl
of B} and smaller than the upper bound of the kerneB@i1 as the abscissa of the
vertices of the adapted membership function coincide vhighatbscissa of the original
output membership function as shown in Fig. 8.4. Thus, astisp outputy’ is
independent ofy; (Table 8.1)

(Li — Li1) (3k; + 20y + 21;)

Soa = ¢ , 8.21
Ycog = Ci t 6(2ks + It + 1) (8.21)
monotonicity is guaranteed for any fuzzy output partition
d *
eos _ (8.22)

dy

Whenle- and_BJl-+1 (] e 1\ {nm}) are mapped to the linguistic output values
A; and A;4+, respectively (Fig. 8.5), monotonicity holds if

dytoe A (YiSi +yiSin — Yop iSop,i
v 0,1 “dv dv : >0). (8.23
< 7 € [0, ]) < dm dvi Si + Six1 — Sop.i = ( )
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I I
a24-2 | az; a2i+1 a24-2 a2q azi+1

@ <05 ()1 > 0.5

Figure 8.4: Schematic representation of the output of a ineidle a single input vari-
able when two adjacent linguistic input values are mappes game lin-
guistic output valued; for T' = Tp.

A X XXX : (=)
Q2i+1  Q2i+2
a2i-1 azi+1 — Y1li a2i+3 Y

Figure 8.5: Schematic representation of the output of a ineitle a single input vari-
able when two adjacent linguistic input values are mappégdaonsecu-
tive linguistic output valuesl; and A;+; for T = Tp.

By expressing the midpoints andc;+; of the kernel of the membership func-
tions A; and A;+1 as a function ob;

1 1

i =0, — —k; — =; .24
¢ = 0; 2/@ 211, (8.24)
1 = 0i b Sk 2, (8.25)
Ci+1 = 05 B i+1 5l .

the following expression is obtained for the crisp outgiy -

Yeoa = 0i + |12(3 = 2v1)v + (3lili+1 + 6likiy 4 202, 4 6l ki1 + Gk?ﬂ)’h

— (2l2’2—1 + 3l;ql; + 611 k; + lf + 6l;k; + 6]4312)(1 — ’}/1):| X

r —1
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Ai+p

I I I I
a2i-2 azq a2i+1 a2i+2p-1 a2i+2p+1
a2i-1 azi+2p-2 azi+2p

Figure 8.6: Schematic representation of the output of a ineitle a single input vari-
able when two adjacent linguistic input values are mappetivto non-
consecutive linguistic output values and A;., for T' = Tp.

and monotonicity is guaranteed as the derivativeQf, is positive for alll € R,
ki, ki1 € RT,

d *
% = [(2 =)l + 2yl + 202 ki +2(v3 + 3(1 — y1))malial?
1

+ 3Lt lilier + 3(2 — yi)y1lisaliki + 61 Likier + L [y

+ 3li1livr ki + 3l ki + 6l kikisr + 3lia ki

+ (7 =+ (L = y)nld + 2(1 =)l

+ 4077 + 31 = y))mliki + 4010 = 27) ki + (1= A ilZsy
+ 6liliv1 ki + 3(1 — D) lilivrkier + 3(2 — y1) v lik? + 120Kk
+3(1 — D) ik + 2041 ki + 3lisa k7 + 6lis1 kikiar + 657K

+ Gkikfﬂ] X

-1
[6(11-7% + (Lisn + 2kie1) 1 + (L + 1 4+ 2k) (1 — 71))2]
>0. (8.27)

Whenle andle-+1 (j € J1 \ {n1}) are mapped to two non-consecutive output
valuesA; andA;., (p € N, p > 1,9+ p < n) respectively (Fig. 8.6), monotonicity

holds if p p ‘S Lot S
yéOG Yi i yi+p i+p
Yy € [0,1] ) 220G — = (L TETER ) 5 ) 8.28
<71 | ]>( dm d%( Si + Sisp >_ ) (6.28)

The centers of gravity;” andy;,, of the adapted membership functiod$
and A;,,, are respectively equal to the abscissa of the center oftgralithe trapezia
definingA; andA;+,, i.e.the centers of gravity; andy;,, are independent of;. The
abscissa of the center of gravity of a trapezium is alwaysement of its base, thus the
center of gravityy of the adapted membership functiar) is smaller than the center
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of gravity y;,,, of the adapted membership functiﬂr’;w
agi2 < Y; < agiv1 < A2i42p2 < Yiap < A2i42p+1 (8.29)
andy;,,, in the equation of the crisp outpyt, can be substituted by a function gf
Yip =yl +C (CERY). (8.30)
The crisp model outpujé,o; is given by

Si+

* — ;‘ + c—xr

Ycog =¥ S + SHP
(Lisp1 + livp + 2kinp) M

(L + 1+ 2k) (1 — 1) + (Liwp1 + Liep + 2kiep)m

=y; +C , (8.31)

and monotonicity is guaranteed as its derivative is pasiir alll € R, k;, kivp €
RT,

dy&oc _ Clia + Ui + 2k;) (Livpa + Livp + 2Ki4p) >0, (832
dm (i + 1+ 2k) (1 = 71) + (Lisp1 + Lisp + 2Kiap)y1)? —

8.3.3 Models applyingTt,

When B} andBj,, (j € J1 \ {n:1}) are mapped to a same linguistic output vallie
(Fig. 8.7), the crisp outpu§¢.q is computed with Eq. (8.1) using the formulae in
Table 8.1. Sincey; is equal to {—v;) fory; € [0, 0.5] and equal tey; for v; € [0.5,1],
monotonicity holds if

dyt dyr
<wl € [0,0.5]) (yCOGlL“ > 0> A (V’yl e [0.5, 1]) <ycifl“z > 0),

dm gs!
(8.33)
with
. (I = 1) (ks +2(1 — y1) (lies + 1)) (1 — 1)
=¢ , 8.34
yCOG,lL,ll 6(2]{51 I (1 _ ’Yl)(li-l ¥ lz)) ( )
. G = L) Bk 4 2y (L + L))
yCOG,lL,12 =¢ 6(21CZ + 7 (li-l ¥ Z'L)) (835)
One easily verifies by substituting; = 0.5 in Egs. (8.34-8.35) that

Yeogan1 (1 = 0.5) = Yiogr.12(71 = 0.5), and as the derivatives 9f.og 11, 11
andyéOG,lL,IQ are given by

d(Yéoaarat) _ (lia = L) (L + L)X — 1) + k) ((Lir + 1)(1 — 71) + 3Kk)

dm 3((Li + 1) (1 — 1) + 2k;)? ’
(8.36)

d(Yéoaarni2) (s = L) ((Lia + L)yn + k) (L 4 Li)ya + 3k)

= 8.37
dm 3((Li1 + li)yn + 2k;)? ’ (8:37)
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() . L .
[ I [ I
a2 azi+1 — 71l; az; az; + 71l

agq-1 Y a2q-1 Y
azi-2 + y1li-1 a2i-1 — Y1li-1
@y <05 (b) 7 > 0.5

Figure 8.7: Schematic representation of the output of a ineitle a single input vari-
able when two adjacent linguistic input values are mappes game lin-
guistic output valued; for T = T1,.

that Eq. (8.33) is satisfied if and only if
lia=1;. (8.38)

As the extreme linguistic output values, and A,, are both described by a
trapezium with one vertical side, monotonicity can only hemnteed for a model
with a single input variable applying, if the following constraints are satisfied

(Vse{l,...,r})(is ¢ {1,n}), (8.39)
@ >0)Viel\{n)li=1). (8.40)

From here on, Egs. (8.39-8.40) are assumed to hold and timiliae in Ta-
ble 8.2 can be used for the termis 7, ;, S; and S,y ; in Eq. (8.1) when proving the
monotonicity in thesmoothandnon-smootltase.

Whenle andB}+1 (j € J1\{n1}) are mapped to the linguistic output valués
and A;., respectively, monotonicity holds if

dy&oq d (YiSi+ yiSiv1 — y;p iSop,i
v 0,1 e = : >0]. 8.41
< ne [ ’ ]) < dfyl d’Yl Sz + Si+1 — Sop7i - ( )

As illustrated by Fig. 8.8, the adapted membership funstidhand A’,, do
not overlap

1 1
Sop,i = Zl(max(ai +au —1,0) = Zl(max((l —71) 4+ —1,0)*=0. (8.42)

and thesmoothcase can be treated as a special case afdhesmootlttase.
Whenle. andle-+1 (j € J1 \ {n1}) are mapped to two non-consecutive output
valuesA; andA;+, (p € Ny, i + p < n) respectively (Fig. 8.9), monotonicity holds if

dyéOG d y: S’L' + y;;pSHp
1 206G 7 (2t TP ) . 8.43
<V’Y1 €l ]> ( dm dyy Si + Sitp =0 (6.43)
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Ai Ai+1

[ I
azq | a2i+1 a2i+2
azi-2 +71li1 G2i-1 azi+1 — 71li azi+2 + y1liv1

Y

Figure 8.8: Schematic representation of the output of a ineitle a single input vari-
able when two adjacent linguistic input values are mappaadaonsecu-
tive linguistic output valuesl; and A;+; for T' = T1,.

a|2i | a2|7:+2p-1
azi-1 asi+1 — y1li azi+2p Y
azi-2 + v1li-1 a2i+2p-1 — ’Yllz‘+p—1
azit2p +v1litp

Figure 8.9: Schematic representation of the output of a ineitle a single input vari-
able when two adjacent linguistic input values are mappetivto non-
consecutive linguistic output valuels and A;., for T' = 17..

The crisp outpuyé,o is given by

o (=) =yl + ki)ei + (il + Kivp)civgp

- : 8.44
Y006 = ) (T — )i+ ki) + 71 Ol + Kirp) (849
or, with Civp = C; +pl— %k‘l + z ]fj — %k‘i+p
=i
it+p
(Pl — ki + > ki — %kﬁp)’h (711 + k‘i+p>
Ycog = Ci + i ) (8.45)

(293 = 271 + 1)l + (1 — 1) ki + Y1 kinp

and monotonicity is guaranteed as its derivative is pasiir alll € R, k;, kivp €
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R+,
dye 122 1
7(1(’:;1)(; - (pl — kit JZ::/«J - 5kﬁp)

202(1 — y1)71 + ki(2 — y) 71 + ks (1 — 23) + ksik

“P > (0. (8.46
(@7 20 + D (L) Fyikg)? 0 (840)

8.4 Models with two input variables

In this section the monotonicity of models with two inputiadles applying eithefy,

or Tp is discussed. Models with more than one input variable apglyi, are not
considered since they return the empty set as fuzzy modplbtdr some inputs as
discussed in detail in Section 7.4. The results obtainedhmdels with a single input
variable also apply to models with two input variables, aslétter behave as a ‘single
input model’ in parts of their input space. Therefore, fordals applyingly; the
output membership functions used in the consequents ofithe are assumed to have
intervals of changing membership degree of equal length. nkexels applyinglp
no additional model properties were required to guaratteetonotonicity of models
with a single input variable.

8.4.1 Models applyingln

As shown by the counterexample below, monotonicity caneogtaranteed for any
monotone rule base, nor for any monotone smooth rule basenibining the t-norm
Tw with the COG defuzzification method in models with two inpatiables.

The set of four rules represented in Fig. 8.10

IF X,ISB!, AND X,ISB? THEN YIS4,
IF X,ISB!,  AND X,ISBZ,, THEN Y IS4,
IF XiISB!,; AND X,ISB? THEN YIS4,
IF X,ISB!,; AND X,ISB, THEN Y ISA;,

can occur in a monotone smooth rule base as well as in a manotbs base. For
inputsx = (x1, xz2) not firing any other rule than the four rules above

71 =1-Bj (z1) = B} 1, (z1), (8.47)
vo =1- B, (x2) = B .y (22), (8.48)

the crisp outpuyéo (EQg. (8.1) with Table 8.1) is given by

« . Ci((2 — Oélﬂ + ki)ai + Ci+1((2 - Oéi+1)l + k’i+1)0éi+1 - Oi(l — Oé/)O/l
YO0 = T T o)l + ky)aq + (2 — amn)l + k)i — (1—aall
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A; A
Ai Az
B! B! Xy

J1 J1+l

Figure 8.10: Schematic representation of the rules for whimon-monotone input-
output behaviour is obtained when applyifigy combined with the COG
defuzzification method.

Table 8.3: Values taken by the fulfilment degreesand cv;+; andmin(c;, ;+1,0.5)
in different regions of the input space

- 2
o i+ min(ay, a1, 0.5) 7
a l—-vm m Y1
b2 m m c | d
c 1l-mm m 7 b e
d 1-v1 m 1—m 05
e 1-— Y2 Y2 1— Y2 a f
fol-m Y2 Y2 h g
g 94! Y2 Y2 .
h 1-v 7 V2 ] s -

with

a; = max(min(1 — 1,1 —92), min(1 — y1,72), min(y1,1 —12)),  (8.49)
@i+1 = min(y1,72), (8.50)
o/ = min(a;, as1,0.5) . (8.51)

In Table 8.3 an overview is given of the values taken by th&lfiuént degrees
a; anda;+ and the termmin(a;, ai+1,0.5) in different regions of the input space.
For inputsx having the following membership degrees to the linguistitugs
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in the antecedents of the rules (Case b in Table 8.3)
m<l—m A Yo > 0.5,
the fulfilment degrees&; anda;., of the linguistic output valued, and A;., are
=72, 41 =7, and min(a;, ai+,0.5)=.
In this case, the crisp outpyt. is given by

G((2—=y)l+ki)va+cim((2—y)l + kivi)m —oil(1 —m)m

X = , (8.52
yeoa (2 =22)l +ki)y2 + ((2 =)l + ks )71 — 11 = 71)m (8:52)

or, after substituting; andc;+;
Ci = 0; — lkl — ll, (853)

2 2
i+l = -+1k- +ll (8.54)
Ci+1 = Oj 2 1+1 2 ) .
by
I+ K 2 — )l + k; — U+ k)2 =)l + k;

Yoo = 0i + (Lt it )(2 = 1)L+ Ki)ys = (4 Ka) (2 = 90)0 4 K)o . (8.55)

2(((2 =)l + ki) v2 + (I + kivr) 1)

A non-monotone input-output behaviour is obtained for arsz§ output parti-
tion as the derivative af¢,o t0 72 is negative for all € R, ki, ki1 € RT,

dy&oa _ L+ kin
dm 2(((2 = y2)l + ki) vz + (U + kis1))?
[P((2 = 77) + 292(1 = 71)(2 = 72) + 72(1 = 72))
+ Uki(5 = 271 — 72) + lhint (2 (1 = 72) + (92 — 77)) + k7]
>0, (8.56)
dyéoa (U4 ki) 2UL —92) + ki) (U3 —71) + ki + kist) 1

dve 2(((2 = y2)l + ki)yva + (I + kiv1)71)?
<0. (8.57)

In Fig. 8.11 one can see that non-monotone input-outputvielais also ob-
tained for inputsx having the following membership degrees to the linguisticigs in
the antecedents of the rules (Case g in Table 8.3)

Mnm<l—m A 1 > 0.5.

One can easily verify that in this case the derivativeg/&f, to v, is negative for all
l e Rar, ki ki1 € RT.
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0.6 7,=07

04r B

Yy

Figure 8.11: Crisp outpugé, as a function ofy; for the rules used in the coun-
terexample when discussing the monotonicity of models with input
variables applyin@y; combined with the COG defuzzification method.

8.4.2 Models with a monotone smooth rule base applyingp

It is shown in this section that one will always obtain a mamet input-output be-
haviour for a model with two input variables and a monotoneatim rule base when
applyingTp combined with the COG defuzzification method.

The general representation of a set of four rules that camdmbgimultaneously
in a model with two input variableX’; and X5 is

IF X,ISB, AND X,ISB2 THEN YISA4,

IF X;ISB!, AND X;ISB?,, THEN Y ISAp .,

IF X,ISB!,, AND X,ISB), THEN Y ISAu,

IF X,ISBL,, AND X,ISB}, THEN YIS Aupipps

When the rule base of a model is smooth, the valuesg gf> andps in the rules
above are restricted to

(p1,p2,p3) € {(0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,0,1)}. (8.58)

Case | If (p1,p2,p3) = (0,0,0), the four rules

IF X;ISB, AND X,ISB?  THEN Y IS4,
IF X:ISB!, AND X,ISB,, THEN Y IS4,
IF X,ISB!,, AND X,ISB: THEN Y IS4,
IF X;ISB!,, AND X,ISB?, THEN Y IS4,
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contain a same linguistic output valde in their consequent. As a result, for all inputs
x not firing any other rule than the four rules above (Eqgs. (8:@8748)), only the
linguistic output valued; is fired

(i >0),(Vj € I\ {i})(a; =0) (8.59)

and the crisp outpuyé&o (Ed. (8.1) with Table 8.1) is equal to the abscissa of the
center of gravity of4;

(L = Li1) (3k; + 20y + 21;)

X o= 8.60
Ycog = Ci + 6(2k: + la + 1) (8.60)
As the crisp outpuyéo is independent ofy;, it holds that
dYcoa _ 0 and dYcoa _ 0, (8.61)
d’}/l d’}/g

and monotonicity is guaranteed for any fuzzy output partiti

Case Il The four rules obtained ifp1, p2, ps) = (0,0, 1)

IF X;1S le1 AND X, IS BJQ-2 THEN Y IS A;
IF X;IS le-l AND X5 IS Bj?2+1 THEN YIS A;
IF X, 1S le.lﬂ AND X, IS BJZ2 THEN YIS A;
IF X3 1S lelﬂ AND X, IS B]2-2+1 THEN YIS A+

are represented schematically in Fig. 8.12. For all inputsot firing any other rule
than these four rules (Egs. (8.47)—(8.48)), the fulfiimeagrees of the linguistic output
valuesA; and A;,; are obtained by

a; = max((1 —y1)(1 —72), (1 —71)72, 71 (1 = 72)), (8.62)
Qi+l = Y172 - (8.63)

In Fig. 8.12 the different regions of the input space aredattid in which the fulfilment
degreen; is computed by a different function 6f and~s,.
For Case lla, the crisp outpyt. is given by

Yooa = 0i — | [(T=71)(1 —72) (1172 + (1 — 71)(1 — ¥2)) (2121 + 3li1l; + 6l K

+6lik; + 6k7)] + [(1— v —72) Byye(L — 7)1 —v2) + 71
+ 424+ 2(1 — 7)1 —y2) — 1)55] — (2 4+ (1 =7)(1 —72))

Y172 (3lilis1 + 6likiv1 + 2071 + 6liv1kier + 6k12+1)] X
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V2
1

A, Al

. 0.5

A; A; 0 0.5 1N

Qg Qj+1

B B, X, a (Iy)(1-12) M7
o >< n b (1) M
c 71 (1-72) Y172

Figure 8.12: Schematic representation of the rules coresida Case Il of the discus-
sion about models with two input variables applyifig combined with
the COG defuzzification method.

[ﬁ[m (=)= 2] [(1 = 7)1 = 92) (12 + (1= 7)

(1 —=2)) (L +2K;) + (M2 + (1= 71) (1 = 72)) 1172
(Livt + 2kis1) + (B1172(1 —71) (1 —72) + 77 + 75 +2(1 —71)

(1—2)— 1)%]} : : (8.64)

As the crisp outpuy¢o is a rather complex function ef, and~,, the chain
rule will be used to prove that the derivativeygf,, to y; and-, is positive

IWcoa _ Woa % Iycoa Ocin
ogl da; Oy daipr Oy

(8.65)

Expressed as a function of andw;+1, the crisp outpuyé, is given by

Yioa = 0i — |:(Clai — Cyavin) (i + 1) + (a; — i) (02 + By + a2yy)

112:| X |:6(Ozi + Oéi+1)((04i + Oz¢+1)(03ozi + C4O¢i+1)

—1
+(0f + e +ady)l)| (8.66)
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with
Cy = 202, + 3li1l; + 6l k; + 6;k; + 6k7
Cy = 31l + 6likier + 202, + 6liv1kir1 + 6kZ
C3 =l + 2k; ,
Cy = lj+1 + 2kj41,

and its derivatives ta; andq;+; are

IWioa _ Cs
Do, G (8.67)
Iioa Cs
= ;=2 8.68
O+ “ Ce (8.68)

with 05, Cs € RS_

Cs = (a; + vir1) (12, Livr + 202 kiwr 4 3lialilion + 6Lialikin + Lial2
+ Bli-tlivrki + 3lialinikist + 6liakikivy + 3liakfsy + 6lilisa ks
+ 120kikir + 202 ki + 3lisk? + 6lie1 kikisr + 6k kier + 6kik2 )
+ (0 + 1) (s + 20001) Iy + Blis1kist + 3k )i + (205 + aian)
(121 + 3liaks + 3k%) i1 )i + (i + 1) (2(0 + Baaisg + 302,)
(Liv1 + 2ki1) v + 2(302 + Boyiovier + afﬂ)(li_l + 2k¢)ozi+1)l?
+ (40 4 Tz + 40d, )z ly
Cs = (i + ar1) (i (lin + 2k;) 4+ aviwr (liv1 + 2Fi41))
+ (aF + aiaier +ady)l -

Thus, the positivity of the derivatives gf. t0 v, and~, can be restated as

9coa >0 & —%u% + daim >0, (8.69)
om o om
%coa >0 < _aiH% +a; Oaim > 0. (8.70)
02 V2 02
For Case lla (Fig. 8.12) monotonicity is obtained since
8&1‘ 8ai
—ng + o 8{1 =m72(1 —72) + (1 =71)(1 = 72)y2 = 72(1 —12) >0,
(8.71)
8041- ﬁai
i == 1)+ 1 =) —72)n =11 —mn) >0.

Q41 s + 0418772

(8.72)

The equations Egs. (8.67)—(8.68) of the derivativeg&f, t0 o; and o+
hold for all inputsx only firing rules containingd; and A;.; in their consequent, if of
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course, the t-norriip is applied. Monotonicity is guaranteed for Case Ilb and Qlese
since, if (a;, ae1) = ((1 = 71)72,7172)

60[1‘ 6ai+1

—Ozz'+18771 + 0”8771 =y + (1 —1)rre =17 >0, (8.73)
i 2% 4 0, 00 (1 )+ (1= ) = O (8.74)
i+1 E i 97 Y172 Al Y1)727 ) .

and, if (i, ir1) = (71(1 = 72),7172)

8041' aai

_ai+187/y1 + oy 87:1 =—m72(l —92) +11(1 —12)72 =0, (8.75)
8041' 80[‘

—Qir1 57— + Oéz'i“l =717v27 + ’71(1 - ’72)’71 = 712 >0. (8.76)
02 072

Note that if the fulfilment degrees; anda;+; can be written as
a; = (1—a)b ajv1 = ab, (8.77)

as for instance in Case llb and Case llc, the crisp ouipy is independent ob
(Cy, Cs,C3,Cy € Ry are defined in Eq. (8.66))

y (C1(1 = a)b — Caab)b? + (1 — 2a)b(1 + a — a?)b?1?
Ycoa = 0i + N2
6b(b(C3(1 — a)b+ Cyadb) + (1 — a + a?)b?l;)
Ci(l —a) — Coa+ (1 —2a)(1+a — a?)i?
6(C3(1—a)+Cra+(1—a+a?)l;)

(8.78)

:Oi+

Case lll  The four rules obtained ifp1, p2, p3) = (0,1,0)

IF X,ISB!, AND X,ISB?  THEN YIS4,
IF X,ISB!, AND X,ISB:, THEN Y ISA;,
IF XiISB!,; AND X,ISB? THEN YIS4,
IF XiISB!,; AND X,ISB?,, THEN Y ISA;,

are represented schematically in Fig. 8.13. For all inputsot firing any other rule
than these four rules (Egs. (8.47)—(8.48)), the fulfilmeagrees of the linguistic output
valuesA; and A;., are obtained by

@ :max((l _’71)(1 _72)a71(1 _72))7 (879)
@ir1 = max((1 — y1)y2, 7172) - (8.80)

In both regions of the input space indicated in Fig. 8.13 nbamicity is guaran-
teed. As the linguistic output valuet; and A;.; are the only linguistic output values
with a non-zero fulfilment degree, Egs. (8.69)—(8.70) cammglied. If(a;, aj+1) =
((1 = 1)1 —72), (1 — 71)72) (Case llla) the derivatives of the crisp outpgt, to

168



Chapter 8. Mamdani-Assilian models: COG defuzzification

V2
A1 A
A, A; 0 0.5 1M
Q; Q41
B, >< Bla X Ta T)(e) (e
b 1 (1-72) Y12

Figure 8.13: Schematic representation of the rules coresida Case Il of the discus-
sion about models with two input variables applyifig combined with
the COG defuzzification method.

~1 and~s are positive, since

Oay O+

— QU —t i = (1— 1— —(1— 1-— =0, (8.81
41 (9’}/1 + « 871 ( 71)72( 72) ( ’Yl)( 72)72 ( )
oo 041 5 2 2
Qi+l 97 + « 973 ( 71) Yo + ( 71) ( 72) ( %)

(8.82)

For Case Illb monotonicity is also guaranteed, as in thig ¢he fulfilment degrees
«; anda;4; are described by the same functionsypfand~, as in Case lic discussed
earlier in this section.

Case IV The four rules obtained ifp1, p2, p3) = (1,0,0)

IF X;ISB], AND X,ISB?  THEN Y IS4,

IF X,ISB!, AND X,ISB7, THEN YISAu,
IF XiISB!,; AND X,ISB?  THEN Y ISA;
IF X,ISB!,; AND X,ISB, THEN Y ISA;,

are represented schematically in Fig. 8.14. For all inputst firing any other rule
than these four rules (Egs. (8.47)—(8.48)), the fulfiimesgrees of the linguistic output
valuesA; and A;,; are obtained by
i =1-7)1-"2), (8.83)
ais1 = max(y1(1 —2), (1 —71)72, 1172) - (8.84)
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V2
1

Aja A1

. 0.5

A; A1 0 0.5 1 M

Qj+1

1, % 2 ) (w
" >< P ' b (1-v1)(1-72) Y1Y2
c )(12)  m(1-2)

Figure 8.14: Schematic representation of the rules coreida Case IV of the discus-
sion about models with two input variables applyifig combined with
the COG defuzzification method.

As Case IVa and Case IVb correspond to Case llla and Casesipectvely,
only Case IVc still needs to be discussed. As all fulfilmergrdes, other thaa; and
a;+1 are equal to zero, Egs. (8.69)—(8.70) can be used to proveftha;, c;+1) =
((1 = 7)1 = 72),m (1 —72)) the derivatives of the crisp outpyt.o t0 1 andys
are positive, since

Oa; O+

— Qi — + =11 —7)?+(1—7)(1-7)*=(1-")*>0,
gy o Nl =22)"+ 1 =m)1 =) =1 -72)" >
(8.85)
o 22 40, 0% ) (1) — (L= )1 — ) = 0. (8.86)
i+l 97 O =M Y2 24! Y1 Y2)71 =0. .

Case V The four rules obtained ifp1, p2, p3) = (1,0,1)

IF X,ISB!, AND X,ISB} THEN YIS4,

IF X;ISB!, AND X;ISBZ, THEN YISAu
IF X,ISBlL,, AND X,ISB  THEN YISAu,
IF X;ISB!,, AND X,ISB?, THEN YISAu,

are represented schematically in Fig. 8.15. For all inputst firing any other rule
than these four rules (Egs. (8.47)—(8.48)), the fulfilmeagrées of the linguistic output
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Y2
1
A1 Ai+z
. 0.5
0
A A 0 0.5 1 M

Q; Qj+1 Q42

Bj, >< Bl Xira (Tn)(Ie) ()% 1
b (I-y1)(I-v2) m(1-y2) 772

Figure 8.15: Schematic representation of the rules coretida Case V of the discus-
sion about models with two input variables applyifig combined with
the COG defuzzification method.

valuesA;, A;+; andA;., are obtained by

a; = (1- 71)(1 - 72)7 (8.87)
aiv1 = max(y1 (1 —72), (1 = 71)72), (8.88)
Qt2 = Y172 - (8.89)

For Case Va, the crisp outpy¢, as a function ofy; and-,, is given by
Yooa = Ci+l — (1 - ’Yl)(l - 72)(211‘2-1 + 6l;-10; + 611 ki + 3lia ki + 120k,
+ 6k + Okikin) +2(1 —71)(v3 — 292 + 2)1f +3(75 =12 + 1)
(1= y)likiv1 — 2(=7 + 393 — 1 + Delly
— 372 ('Y% — 71 + Dl kier — (6le1li40 + 12041 ki + 21?+2

+ 3livokiv1 + 6lisokivo + 6k kivo + 6k1'2+2)71’)’2] X

6((1 — 1) (1 = y2) (i1 + 2ks) + v17v2(livg + 2ki2) + (1 — 71)
—1
(3 — 2+ Dl + 727 — 1 + Dl + 2(1 — v1)y2kisn)

(8.90)

As the equation obtained g is written as a function of;, c;+1 ando+o is
more complex, the chain rule will not be applied. The deiest ofy . t0y1 andy:
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are both positive for all;.1, I;, l;+1, lj+2 € IR{(J{ ykikiv1, ko € RT and(yq,72)

coa — G
om Cy’
coa — &)
02 Cy’

with

C1 = ((6lis1liva + 12lim1 kiva + 20215 + 3lisokins + 6livakisa + 6kie1kino +

€ 10,17

(8.91)

(8.92)

L)

Eiiye + (1 — v2) (12 Lisa + 202 kivo + 3Ly Lilisn + 611 Likiso + 3liali liva

+ 6151 liv1 kivo 4 L1y + 3litlivak; 4 3lialivokinn + 3liqliokisn

+ 6li1kikisa + 61 kiv1 kisa + 3l kg + 6lilisok; + 120Kikivo + 6lie1Livak;
+ 12ls1 kikio + 200k + 3lisok] + 6lisakikivs + 6lisokikiva + 6k7kivo

+ 12k ki1 ki + 6kikig) + (2 — v1) (1 — v2)y1lie1 (121 + 3lials + 3lia ks

+ Bli-tkisn + 6lik; + 3k7 + 6kikinn) + 271 () — 3m1 + 3)(1 = 72)l3y

(Lia + 2ki) +71(73 — 292 + 2)(2 = 1) (lin) + (75 — 72 + D1i(Blisalisa

+ 6liv1kiva + (g + 3livokier + 3lisakiva + 6kis1kivo + 3kiig)
+271(7F = 371 + 3)((V3 — v2 + 1)l + 2v2ki+1) 1y +311(2 — 1)
(V3 = v2 + Dl + Yokier)livrkier + (V5 — 272 + 2)12 (Lisa + 2kis2)

+ 71721 =) (F =+ D + (1= 71) (1 + y1)v2list (ag + 3lisokisz

+ 3k2s) +2(1 — 1) (1 + 71 + )2 liva + ki)l )72
Co =3((1 —v1)(1 — v2)(lin + 2k;) + y1v2(liva + 2kis2)

+ (1 =) =2+ Dl + (47 — 1+ Dyalinn 4+ 2(1 — 11)v2kisn)?,

C3 = ((6;li1 + 12Lk; + 2121 + 3l ki + 6lik; + 6kiwr ki + 657 ) K (1
+ 71 (Biglia + 2840k + 3lisalisn Lo + 6lisalisi ki + 3liolilion + 6liso
+ lival2y 4 Blisalia kivo + 3lisalia kvt + 3lisalin ki + 6liokivok;
+ 6livokivr ki + 3livak? + 6ls1liakivo + 12l kivak; + 6111 ivo
+ 12Likiok; + 207 kivo + 3lia kg + 6lia kivokivn + 6li1kivok; + 6k

- ’h)
L;k;

2
i+2 ki

+ 12kisokiar ki + 6kinak?) + 71 (1 +72) (1 — 7)1 (125 + 3livalis1 + 3livakiso

+ 3li+okiv1 + 6l41kivo + 31{11%,2 + 61€1‘+2ki+1) +2v (’Y% + 72 + 1)(1 -
(Livz + 2ki2)I; + (=77 + 377 =1 + D1 —72) (1 +72) 7 li
+ (’Y% — 71+ D)lie1 (3Ll + 61:k; + l?.l + 3l kiv1 + 3l k; + 6k

Y2)

ki

+3k7) +2(1 = 2) (3 + 72 + 1)((F — 71 + Dlist +2(1 — y1)ki)17
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+3(1 = 72) (1 +72) (7 — 71 + Dlivt + (1 = y1)kint ) likiss + (=75 + 397
=+ D (lia +2k) + (1 —72)72(1— 1) =2 + DB + (1 —m)

(2 = v2)v2li (12 + 3liki 4 3k7) +2(1 — 1) (73 — 372 + 3)y2(liy + 2k:)17)
(1 - ’Yl)-

As by interchanging; and~y, in the equations of the fulfilment degrees «;+1
ando;.o for Case Va, the equations for Case Vb are obtained, one eelgsto inter-
changey; and~; in Egs. (8.90)—(8.92) to prove that monotonicity is alsorgnéeed
for Case Vb.

8.4.3 Models with a monotone rule base applyinde

As shown by the counterexample below, monotonicity caneogjliaranteed for any
monotone rule base, if combining the t-noiim with the COG defuzzification method
in models with two input variables.

The set of four rules represented in Fig. 8.16

IF X, 1S le-l AND X5 IS szz THEN YIS A,
IF X3 1S lel AND X, IS BJQ-2+1 THEN Y ISA;
IF X;1S lelﬂ AND X, IS BJQ-2 THEN Y IS A;
IF X; IS le-lﬂ AND X5 IS B]z2+1 THEN Y IS A1

can occur in a monotone, but non-smooth rule base. For altsspnot firing any other
rule than these four rules (Egs. (8.47)—(8.48)), the fuliitndegrees of the linguistic
output valuesd; and A;.; are obtained by

a; = max((1 —71)(1 —12),71(1 —12)), (8.93)
Ai+1 — (1 — ’}/1)’)/2 , (894)
Ai+2 = Y172 - (895)

If ~1 is smaller than 0.5 (Case a) the fulfilment degregsw;+; anda;+o are
described by the same functions ¢f and+, as in Case Va in Section 8.4.2. As
the proof given in Section 8.4.2 holds for &f;,~2) € ]0, 1[2, it also proves that
monotonicity is guaranteed in Case a.

Numerical experiments revealed that whanis larger than 0.5 (Case b), the
crisp outputy¢. decreases with increasing when+y, is larger than 0 but smaller
than a critical valuey, .., and increases whey, is larger than that critical value and
smaller than 1. The criticaj,-value is a complex function of all parameters defining
the three membership functiors, A;.; andA,.», asillustrated in Fig. 8.17 for a fuzzy
output partition with intervals of changing membershipreéegof equal length and is
equal to 0.5 if the three membership functions are identieglezia as in Fig. 8.18.

For Case b, the crisp outpyt.o is given by

y';kSL + y;k+1Si+1 + y;k+25i+2 - y;kp,isop,i - y:p,i+1sop,7i+l
Si + Si+1 + Sita — Sop,i — Sop,i+1

* _
Ycog =
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X5 V2
B2 A; A,
jo+l i+l i+2
B2, A, A; 0 0.5 1M

[e7] Qj+1 Ai+2
Bj, >< Bl Xra (1)) 0n)e mre
b Y1 (1-72) (I-v1)y2 172

Figure 8.16: Schematic representation of the rules for whicon-monotone input-
output behaviour is obtained when applyifig combined with the COG
defuzzification method.

l ki l ki+1 l kivo l Y
0<k;+ ki +kiso<1—4l

Figure 8.17: The upper boung, .., of the interval ofy,-values for which a non-
monotone input-output behaviour is obtained in Case b asetiin of
kivo — k;.
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Figure 8.18: Crisp outpuf¢. as a function ofy; for the rules used in the counterex-
ample when discussing the monotonicity of models with twauirvari-
ables and a non-smooth rule base applyiipgcombined with the COG
defuzzification method.

=ci1 + |11 —12) (27172 — 11 — 712)2 (2051 + 6liali + 61k + 3li1 kist
+ 120ik; + 6k7 + 6kikis1) — 117227172 — 71 — 72)* (6lina lisz
+ 120341 kisg + 24y + Blivokisy + 6lisokiva + 6kirrkivo + 6kZ4y)
+ (= 187775 + 329775 — 207772 + 497 + 22973 — 24473
+ 8727 — 107173 + 47173 + 293)12 — 3(27172 — 1 — 72)
(37173 — 312 + 91 — 3% + M2 + 18)likin
+ (27172 — 71 — 72)*Y2lie1 (2(7F = 39 + 91 — Dlin

-3 -mn+ 1)’€i+1)} X

627172 — 71 — Y2)(—(1 —72) 27172 — 71 — v2) Y1 (L + 2k5)

+ (37173 =372 + 77 — 3 + e + )
— 27172 =1 — 2)72((F — v 4 Dlisr +2(1 — 71)kisn)

-1
— vy — 71— v2)m1y2(live + 2k¢+2))} , (8.96)
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and its derivative toy, is

oo _ Y2(C173 + C2v5 + Csvs + Cyva + Csy2 + Cs) (8.97)
om (C7)? ' '

The coefficients”, Cs, C3, Cy, Cs, Cg of the polynomial function ofy, and the term
C'7 in the denominator are functions ®f € [0.5, 1], l;-1,1;, Li+1, li+2 € Rg andk; ki1,
ki+2 € RT and are given in Egs. (C.1-C.7) in Appendix C. Eg. (8.97) shtvat
the derivative ofy¢. to ;1 is equal to zero for, = 0. Instead of proving that the
derivative ofy¢. t0 1 is negative for some values € [0, 1] regardless of the fuzzy
output partition applied by determining the roots of theypoimial function of degree
five in g, it is shown that the derivative of the crisp outpyit, to v: is strictly
negative for any4;, A;.; andA;.o when~, approaches 0

dye -1
lim 2YCOG _ 4 Jiy , [:s(zi.1 Yl 21<:,»)27§3] [(li.1 + 1 + 2k;)
722)0 Y1 722)0

(1 =72y + DI +3(1 = D)l kit + 3k7)
+ (3ki(lia + 2L + ki) 4 (Lia + 1) (Lia + 215))

(1 =7)lis1 + 2ki+l>}
<0 (8.98)

8.5 Models with three input variables

Only models with a monotone smooth rule base applying thertari’s are consid-
ered in this section, since models with two input variablgglyging T\ show a non-
monotone input-output behaviour for some monotone smoatlte rbases
(Section 8.4.1), models with two input variables applyifig show a non-monotone
input-output behaviour for some monotone, but non-smadgthlvases (Section 8.4.3)
and models applyind@y, return the empty set as fuzzy model output for some inputs if
the number of input variables is larger than two (Sectiof.7.4

8.5.1 Numerical experiments

To get more insight in the behaviour of models with three tnguiables applyinde
and the COG defuzzification method, numerical experimemtewarried out. In all
models used during the experiments two linguistic valBésand B, defined by the
membership functions shown in Fig. 8.19, were assignedddttiree input variables
X1, X5 andX3. By combining each of the 18 monotone smooth rule basesrautdiy
applying the 18 combinations of the parametgrtisted in Table 7.1 to the following
set of eight rules
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Bj B

0 T T T
0 0.25 0.75 1 X,

Figure 8.19: Membership functions assigned to the threstiagriablesX;, X, and
X3 during the numerical experiments.

Table 8.4: Output membership functions used in the numlesigeeriments, character-
ized by length$ of the intervals of changing membership degree and lengths
k of the kernels, as well as the paramet@efining the size of the region of
the input space where a non-monotone input-output behaisabtained
for models with rule base ‘Case XI' and rule base ‘Case XVI'.

I ki 1; ki+1 li+1 kivo lLiv2 ki+s l;+3 d-Case XI d- Case XVI
+ 0.005 + 0.005
0.150 0.017 0.150 0.017 0.150 0.017 0.150 0.017 0.150 0.005 0.005
0.118 0.177 0.053 0.005 0.328 0.075 0.081 0.023 0.019 0.005 0.005
0.183 0.216 0.047 0.059 0.147 0.009 0.157 0.008 0.086 0.255 0.005
0.228 0.118 0.045 0.052 0.104 0.124 0.032 0.006 0.040 0.115 0.005
0.134 0.085 0.014 0.125 0.046 0.046 0.067 0.079 0.327 0.155 0.005
0.050 0.126 0.050 0.239 0.050 0.257 0.050 0.073 0.050 0.005 0.175
0.050 0.042 0.050 0.114 0.050 0.170 0.050 0.117 0.050 0.005 0.275
0.050 0.034 0.050 0.203 0.050 0.107 0.050 0.221 0.050 0.005 0.185
0.050 0.132 0.050 0.063 0.050 0.059 0.050 0.073 0.050 0.185 0.005
0.050 0.104 0.050 0.173 0.050 0.098 0.050 0.097 0.050 50.01 0.005

Soo~NouhwN

IF X,ISB! AND X,ISB2 AND X5ISB} THEN Y IS A4,

IF X,ISB! AND X,ISBZ AND X3ISBj THEN YIS Ay, pyips
IF X,ISB! AND X,ISBZ AND X3ISB} THEN YIS Ay +p,

IF X,ISB! AND X,ISBZ AND X;3ISBj THEN Y IS iy pmpsips
IF X,ISBY AND X,ISB? AND X3ISB} THEN Y IS A,

IF X,ISBL AND X,ISB2 AND X5IS B3 THEN Y IS iy, tpotpsips
IF X,ISBY AND X,ISBZ AND X5IS B} THEN Y IS Aisp tpyip,
IF X,ISB} AND X,ISB5 AND X;ISB§ THEN Y IS Ay

With p1, p2, p3, pa, ps, pe, p7 € N andp = p1 + p2 +max(ps, p3 + ps, p3 + ps) + pr,
with each of the ten fuzzy output partitions characteriretiible 8.4, 180 models were
obtained. Note that in partition 1 the membership functidnsA;.1, A+ and A;.3
have an identical shape and that in partitions 6-10 thevateof changing membership
degree are of equal length.

The model outputyf,. of all models was determined for03* inputs
(X1, X5, X3) € [0.245:0.005 : 0.755]>. A monotone input-output behaviour was
recorded for almost all models. Only the models applyingjuautput partitions 3,
4,5, 9 and 10 combined with rule base ‘Case XI’
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IF X;ISB! AND X,ISB? AND X;ISB? THEN Y ISA;,

IF X;ISB! AND X,ISB? AND X;ISB3 THEN Y ISA;y
IF X,ISB! AND X,ISBZ AND X;ISB3 THEN Y ISA;y
IF X,ISB! AND X,ISBZ AND X3ISB3 THEN Y IS A
IF X,ISB! AND X,ISB? AND X;ISB3 THEN Y IS4;

IF X,ISB! AND X,ISB? AND X;ISB3 THEN YIS A,
IF X;ISBl AND X,ISBZ AND X;ISB3 THEN Y ISA;
IF X,ISBl AND X,ISB? AND X3ISB3 THEN Y IS A

and the models applying fuzzy output partitions 6, 7, and@ltoed with rule base
‘Case XVI'

IF X,ISB! AND X,ISB? AND X;ISB3 THEN Y ISA;,

IF X,ISB! AND X,ISB? AND X;ISB3 THEN Y ISA;y
IF X,ISB! AND X,ISBZ AND X3ISB3 THEN Y IS A
IF X,ISB! AND X,ISBZ AND X;ISB3 THEN YIS A,
IF X,ISB! AND X,ISB? AND X;ISB3 THEN YIS A,
IF X;ISBl AND X,ISB? AND X3ISB3 THEN Y IS A4
IF X,ISBl AND X,ISB? AND X3ISB? THEN Y IS A
IF X,ISBl AND X,ISBZ AND X;ISB3 THEN Y IS A

show a non-monotone input-output behaviour in a region ef3fdimensional input
space.

For models with rule base ‘Case XI' the derivativeygf, to v; is negative
for inputsx within the region of the input space defined by the projeaionto the
(v1.72)-, (41,73)- and 62,73)-planes coloured gray in Fig. 8.20. Additional numeri-
cal experiments with models using rule base ‘Case XI' andd00@ndomly generated
fuzzy output partitions, showed that the size of the regibthe input space, charac-
terized by the parametet, is a complex function of the parametéss, k;, l;, ki1,
li+1 , ki+2 andl;+ defining the output membership functioAs, A;+1 and A;+.. The
values ofd obtained for the ten partitions used in the numerical expents are given
in Table 8.4. Ifd = 0.005 £ 0.005 is mentioned,d is an element of the interval
[0,0.01], i.e. either no non-monotone behaviour occurs for the given fymeayition or
non-monotone behaviour is obtained in a very small regiath@finput space charac-
terized by ad-value smaller than the discretization step 0.01 used wleégrmhining
d.

For models with rule base ‘Case XI' the crisp model outggut

YiSi + Yl Siv1 + YfeaSis2 — Yop iSop,i — Yop,i+1S0p,itl
Si + Sis1 + Siva — Sop,i — Sop,i+1

is obtained using the formulae in Table 8.1 with the fulfillndegreesy;, a;+; and
a;+2 being given by

Yooa = , (8.99)

a; = max((1 —y1)(1 —72) (1 —3), 71 (1 = 72)(1 —73)), (8.100)
air1 = max((1 —y1)y2(1 —v3), 1172(1 —v3), (1 — 1) (1 — 72)73, 71 (1 — 72)735

(1 —=v1)7273) 5 (8.101)

Qir2 = V17273 - (8.102)
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72 3 3
1 1 1
d[ d] d
0.5 - 0.5 - 0.57 >
i i —
2 2 d
0 0 0
0 0.5 1 M 0 0.5 1N 0 0.5 1 72

Figure 8.20: Region of the input space where a non-monotgmé-output behaviour
is recorded for some fuzzy output partitions in Case XI.

In the region of the input space where non-monotonicity édrded for some
fuzzy output partitions, the membership degregsy, and~; satisfy

Y2 > v1 > 0.5 A v¥3 >v1 > 0.5, (8.103)
and the fulfilment degrees;, «;+1 anda;+ are given by
;i =7(1—=7)1—"3), (8.104)
aiv1 = (1 —71)7273 5 (8.105)
(8.106)

Q2 = V17273

The derivative ofy¢ t0 1 is an even more complex function ¢f, v, s,
li-1, Uiy Liv1, Liv2, ki, ki+1 @nd k4o, than Eq. (8.97). However, it is known from the
experiments that if the derivative @f. to v is negative for some inputs, it is
negative fory;, o and~s; approaching 0.5 (from the right). Whepn, v, and;
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Table 8.5: Derivative ofi&, t0 71 in models with rule base ‘Case XI’ for;, v and
~3 approaching 0.5 (Eq. (8.107)) for the fuzzy output pantisiin Table 8.4.

1 2 3 4 5 6 7 8 9 10

ayaé% 0.000 0.006 -0.081 -0.029 -0.045 0.100 0.091 0.079 -0.041.00€0

approach 0.5 the derivative 9§, toy; is given by

Ay

€06 — (s — Li1) (L + Liva) (3L; + 3li1 + 8K; 9,1,
Case XI 8'71 (2+2 zl)((11+ z+2)( z+ 1+1+ 1+1)+ 1bi+1
v1—0.5
v¥2—0.5
v3—0.5

+ 12k2,1) 4 12(kirg — ki) (ki + Kiva) (31; 4 3li+1 + 8kix1)

+ 60il31 + 8kZ1) + (Lisr — 1) (i + Lis1 ) (150; + 150541

+ 56ki41) 4 36k2,) + 8(121iva — li12) + 36k (lilisn

— Lialis1) + 16(I ki — [y ki) + T2kies (Likivo — Linaky)

+ 28(I% 1 Livg — Lia17) + 96kis1 (Livi Livg — Lialy) + 56(17 Kine
— k) + 192ks01 (Livr kivo — Liks) + 12(Lisokisz — L k)

(3li + 3li+1 + Ski+1):| X |:3(2li.1 + 3l; + 3liv1 + 240 + 4k;
-1
+ 4k + 4ki+2)2] ) (8.107)

The values obtained fo?m in EQ. (8.107) for the ten fuzzy partitions used
in the experiments are given |n Table 8.5. One sees that,e@orth hand, if a nega—
tive derivative is recorded for some inpyt&;, X, X3) € [0.245 : 0.005 : 0. 755]
negative value is obtained (partitions 3, 4, 5, 9 and 10) amithe other hand, if a posi-
tive value is obtained, no negative derivatives are recbfdeany input(X;, X», X3)
€ [0.245 : 0.005 : 0.755]3. Eq. (8.107) also shows that the membership functiéns
A,+1 and A, for which a positive value is obtained f% in Eq. (8.107),.e.for
which a monotone input-output behaviour is obtained in ¢heerule base contains
a set of rules corresponding to Case Xl, cannot be defined framlstforward way.
However, one can easily verify that if the membership floniA;, A;+1 and A+
have an identical shape,

@ >0) (G e{i—1,....i+2)({1=1), (8.108)
3k > 0)(Vj € {i,...,i+2})(k; = k), (8.109)

the derivativeaya% in Eqg. (8.107) is equal to zero. This analytical observat®n
supported by the results obtained for partition 1.
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V2 3 V3
1 1 1
cd cd cd
0.5+ 0.5+ 0.5+
- Ny 7N
0 t 0 0
0 0.5 1M 0 0.5 1N 0 0.5 1 72

Figure 8.21: Region of the input space where a non-monotgmé-output behaviour
is recorded for some fuzzy output partitions in Case XVI.

For models with rule base ‘Case XVI' the derivative g, to v3 is nega-
tive for inputsx within the region of the input space defined by the projestionto
the (1,72)-, (71,73)- and €2,v3)-planes coloured gray in Fig. 8.21. The valuesiof
obtained for the ten fuzzy partitions used in the numeriggleements are given in
Table 8.4. Ifd = 0.005+ 0.005 is mentionedd is either smaller than the discretization
step 0.01 used when determinigi@r no non-monotone behaviour occurs for the given
fuzzy partition. For a certain fuzzy partition, non-monitety is never observed for
rule base ‘Case XI' and for rule base ‘Case XVI'. Note furthere the analogy be-
tween the regions shown in Figs. 8.20-8.21. If in Fig. 8y20s substituted byt — ~3,
~v2 by 1 — 75 and~ys by 1 — ~4, Fig. 8.21 is obtained.

For models with rule base ‘Case XVI' the crisp model outgit,.

YiSi + Yl Siv1 + Ui Sis2 — Yo, iSop,i — Yop,i+1S0p,i+1
Si + Si+1 + Siva — Sop.i — Sop,i+1

is obtained using the formulae in Table 8.1 with the fulfillndegreesy;, a;+; and
a+2 being given by

Yooa = , (8.110)

a; = (1—=71)(1—2)(1—1s), (8.111)
airr = max(y1 (L —2)(1 —73), (1 = 71)72(1 = 73), (1 = 71)(1 = 72)73s

Y1(1 = 72)73, (L = 71)7273) (8.112)

@ivg = max(y1y2(1 — 73), 717273) - (8.113)

In the region of the input space where non-monotonicity ®rded for some
fuzzy output partitions, the membership degregsy, and~; satisfy

0.5>v3 > A 0.5 > v3 > 72, (8.114)
and the fulfilment degrees;, «;+1 anda;+ are given by
a; = (1—=71)(1 —72)(1 —13), (8.115)
v = (1 —71)(1 — y2)7s, (8.116)
vz = 1172(1 —73). (8.117)
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The derivative ofy¢ to 3 is a complex function ofy, va, v, li-1, b, list,
li+2, ki, ki+1 andk;.o. Again, the characterization of the class of fuzzy outputippans
resulting in a positive derivative @f. to s for all inputsx will not be derived from
this complex function, but from the equation obtained far trerivative ify;, v and
~s approach 0.5. We learned from the experiments that if theater of y&o . t0 v3
is negative for some inpuss it is negative fory;, v2 andvs approaching 0.5 (from the
left). Whenry,, 2 andvs approach 0.5 the derivative 9f., to s is given by

* *
lim 8%0&:— lim 8‘?&. (8.118)
Case XVI Case X1
oo oy 9N SesSos O
v2—0.5 v2—0.5
v3—0.5 v3—0.5

Thus, models with fuzzy partitions for which a strictly pids value was ob-
tained foray,déi‘fG in Eqg. (8.107), being partitions 2, 6, 7 and 8 (Table 8.5), raoe
monotone if ﬁ1eir rule base contains rules correspondir@giee XVI. For models ap-
plying partitions 6, 7 and 8 non-monotonicity was indeedorégd for some inputs
(X1, X2, X3) € [0.245: 0.005 : 0.755)°. Experiments with a smaller discretization
step revealed that also for models applying partition 2 mamotonicity is obtained
(inputs(X1, Xs, X3) € [0.45 : 0.001 : 0.55]° andd = 0.009 % 0.002).

In order to guarantee monotonicity for models with a ruleebasntaining rules
corresponding to Case Xl, as well as for models with a rulee @mitaining rules
corresponding to Case XVI, a fuzzy partition should be useidfying

* *
Jim 8%0& =l 8%0& _0. (8.119)
oSy O ooy 9
¥2—0.5 ¥2—0.5
Na—0.5 Ya—0.5

As the two derivatives are equal to zero if the membershigtfans 4;, A;+1
and A;+»> have an identical shape,

@A >0) (G e{i—1,....i+2)({1 =1), (8.120)
3k > 0)(Vj € {iy....i+2})(k; = k), (8.121)

and Eq. (8.107) does not allow a straightforward, user dligformulation of the class
of membership functiongl;, A;+; and A;+> for which both derivatives are zero, only
fuzzy models with linguistic output values described byniieally shaped membership
functions in the consequents of their rules (The linguigtitput valuesA; and A,, are
excluded as they are described by a trapezium with a vedidal{, = /,, = 0).)

(Vs € {1,...,7})(is ¢ {1,n}), (8.122)
@ >0)(Viel\{n})(l=1), (8.123)
3k < 0)(Vi € I)(k; = k), (8.124)

are considered in the theoretical analysis of the monottygriEémodels with three input
variables applyingp combined with the COG defuzzification method.
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8.5.2 Theoretical analysis

In this section it is shown that when applyifigy combined with the COG defuzzifi-
cation method, one will always obtain a monotone input-oulehaviour for a model
with three input variables, a monotone smooth rule baseiagdistic values in its rule
consequents satisfying Egs. (8.122)—(8.124).

The general representation of the set of eight rules thabedired simultane-
ously in a model with three input variablés,, X, and X3 is

IF X;ISB} AND X,ISB? AND X3ISB} THEN Y IS A4;

IF X;ISBf AND X5ISB? AND X3ISB3 THEN Y IS Aitppyeps

IF X11SBf AND X,ISB3 AND X;3ISB? THEN Y IS Ajp 4p,

IF X, ISB] AND X,ISB; AND X3ISBj THEN Y IS Aitp +potpstps

IF X, ISB) AND X,ISB? AND X3ISB} THEN Y IS A;p,

IF X11SB; AND X5ISBf AND X;3ISBS THEN Y IS Aitp, +potpstpe

IF X;ISBY AND X,ISB? AND X;3ISB} THEN Y IS Ajtppyeps

IF X;ISBi AND X,ISB2 AND X3ISBS THEN YIS At

with p7 = p1 + p2 +max(pa, p3 + ps, p3 + pe) +pr andps, pa, ps, pa, Ps, Pe, pr € N.
When the rule base of a model is smooth, one of the 18 combisatisted

in Table 7.1 should be used for the paramejgrs In the following paragraphs the

monotonicity for Cases | to XVIII will be investigated forpatsx for which member-

ship degrees;, 72 and~ys; can be defined as follows

M =1-=Bj (21) = Bj (1), (8.125)
Y2 =1 = B}, (x2) = B}, (x2), (8.126)
v3 =1 B} (v3) = B} 4 (x3), (8.127)

or in other words, for inputg not firing any other rule than the eight rules above.

Non-zero «; If (p1,p2,P3,p4,P5,06,27) = (0,0,0,0,0,0,0) (Case 1), the eight
rules contain a same linguistic output valde in their consequent. As a result, for
all inputsx not firing any other rule than these eight rules (Egs. (84@)27)), only
the linguistic output valuel; is fired

(@i >0), (V) € I\ {i})(a; = 0), (8.128)

and the crisp outpugéo (Eq. (8.1) with Table 8.2) is equal to the midpoint of the
kernel of 4;
Yooa = Ci - (8.129)

As the crisp outpuyéo is independent ofy;, it holds that

dycos _ g  Weos _y  Weos _ (8.130)
d’yl d’72 d’73

and monotonicity is guaranteed.
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X3 = B?B X3 = B§’3+1 X3 = B;-’s X3 = B§’3+1
Xo Xo Xo Xo
aal A | A ai| A |Am aal A | A ab | A | A
= A | A W= A | A = A | A | A | A
BJ11 BJ1'1+1 Xq BJ1'1 le'ﬁl X1 Bﬂl'l B]lﬁl Xi BJl1 BJ11+1 X1
(a) Case ll (b) Case llI
X3 = B?B X3 = B?;;ﬂ X3 = BJB-3 X3 = BJB-3+1
Xo Xo Xo Xo
ol A [Ain af| Ai |Ain ad| Ai [Ain a8 [ A [ Ain
W8 A | A Wl A | A W A | A W8 A A
Bﬂll BJ1'1+1 X1 BJ1'1 BJl1+1 X1 le'l BJ1'1+1 X1 BJll BJ1'1+1 X1
(c) Case IV (d) Case V
X3 = BjS X3 = B}’33+1 X3 = Bj X3 = szﬂ
X2 X2 X2 X2
m-& A | A; L\!-E A1 | Aina m-& A; |Ain w-& A | Ain
as A; | A &S A1 | Ais as A; | A a8 Air1 | Ainr
BJll B.71'1+1 Xl le'l BJ1'1+1 Xl B.71'1 B.71'1+1 Xl BJll B.Jl'1+1 Xl
(e) Case VI (f) Case VIII
Xz = BJ?)S Xz = B]33+1 Xz = Bi% Xz = B?3+1
Xo Xo Xo Xo
T by Iy Iy
a8 A |Ain | Ajer | Asr RN Air | Ain a8 A |Ain
a8l A | A S| A | A W3 A | A S| A | Ainr
lel lel"'l X1 lel B]1'1+1 X1 le'l BJ11+1 Xq B]ll le1+1 X1
(g) Case X (h) Case Xl

Figure 8.22: Cases considered in the discussion about medtd three input vari-
ables and a monotone smooth rule base wWittand A;.; in the rule con-
sequents.
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Non-zeroa; and a;+1  The eight rules obtained for Cases II-V, VII-VIII, X and XIlI
are represented in Fig. 8.22. In these cases the linguistiesA; and A,.; appear

in the consequents. For all inputsnot firing any other rule than these eight rules
(Egs. (8.125)—(8.127)), the crisp outpiit, , expressed as a function @f ando;+1,

is given by

(is1 — i) (6(1 + k)% (a? + aZpy) + (1312 + 241k + 12k?)c;vier)
6(ai + 1) (2(L+ k) (af + afy) + (31 + 4k)aiiinn)

)

*
Ycog = 0i +

(8.131)
and its derivatives to; anda;+, are

Iioa &
= — e — 8.132
da; Qi+ s ( )

Iioa Gy

= ;= 8.133
O+ “ Cs ( )

with Cl, Csy € Rg

Cy = (813 + 290%k + 331k? + 12k3)(a; + cvisr)?
+ (1112 + 181k + 6kl (0 + vin1)?
+ l3ozi+1ozi(oz,2 + 10 + 04?+1) )

Cy = 3((1@‘ + Oéi+1)2(2(l + k)(OéZQ + 0%2+1) + <3l + 4]€)Oéi0zi+1)2 .

Thus, the positivity of the derivatives gf., t0 1, 72 andyz can be restated

as
L%OG >0 e —ai+1% + a% >0, (8.134)
1 1 1
WS 20 & campmragtizo,  (813)
2 2 2
Weoa 5 g o 2% 4o, 0%m (8.136)
03 03 03

For models with three input variables, it is hard to graplhceepresent the
regions of the input space where the fulfilment degrees aseritbed by a different
function of v, «» and~s. Therefore the regions are defined by the equations in Ta-
ble 8.6. One easily verifies that for aHy,~2,v3) belonging to a boundary plane
between different regions of the input space and thus gatgsfequations defining
different subcases of a case, the functions for the fulfildegrees holding in the cor-
responding subcases coincide. Monotonicity is guararite€ases II-V, VII-VIII, X
and XIIl as for all(«;, a;+1 )-pairs the expressions on the right hand side of the arrows
in Egs. (8.134)—(8.136) are satisfied faf, 72, 73) € 10, 1. The values obtained for
— Q41 g%“; + oy Bg;l” are given in Table 8.7 for alky;, «;+1)-pairs.
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Table 8.6: Definition of the regions of the input space wheranda.,
are described by different functions f, v» and~s for Cases II-V, VII-
VIII, X and XIII. The functions are given in Table 8.7.

conditions on(~y;, 2, v3) (v, tie1)

Ila 0.52’}/1,0.52’72,0.52’}/3 1
b 71 > 0.5,0.5 > 72,0.5 > 3 2

C 0.5 > Y1, V2 > 0.5,0.5 > V3 3

d 71 205,72 =057 >73,7% >3 4

e 0.52’}/1,().52’72,’)/3 > 0.5 5

f 712> 0.5,71 > 72,73 > 72,73 > 0.5 6

g Y2 27173 27172 2 0.5,73 2 0.5 7
Illa 0.52"}/1,0.52’}/2,0.52’)/3,’71 Z"}’Q 8
b 0.52>7,052>72,05>73,7%2>mn 9

c 71 >0.5,0.52> 72,7 >3 10

d Y3 205> 72,73 =71 > 72 11

e 73205271, 7327%22>m 12

f 0.5> 71,7 > 05,7 >3 13

g 7 2>0592>05 771 =73) > (1 —91)(1—72)7 4

h 7 >059 >0.5 (1 —79)(1 =)y > 1721 —13) =
IVa 0.5 > Y1, 0.5> Y2, 0.5> Y3 14
b 71 = 0.5,71 > 72,0.5 >3 15

c Y2 2 Y1, ¥2 = 0.5,0.5 > 73 16

d 0.52’)’1,0.52’}/2,’}/320.5 5

e v1 2> 05,71 = 72,73 > 0.5 6

f Yo > 1,72 = 0.5,73 > 0.5 7
Va 0527 2>7,05>v>m 9
b 0527 27,05> v > 8

c 0527 273,05> 7 >3 14

d M= 2057 >72>05 2

e Y2271 205,72 =7 =205 3

f 13> 72 >05,93>7 =05 5

) Y123 272,71 = 0.5 > 10

h M=y 27720527 15

[ Y2z Y3 2772 2052>m 13

] Y2Z 71 2>V 205> 73 16

k Y3 =71 = 72,73 = 0.5 2> 7 11

| Y322 27,73 =2052>27 12
Vila 0.5 Z Y1y 0.5 Z Y2 17
b 71 > 0.5,0.5 > 79 10

Cc 0.5> 7,7 >05 13

d > 05,7 > 05 4
Villa 0.5 > 171,05 > v, 1172(1 —v3) > (1 —71)(1 —72)y3 14

continued on next page
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continued from previous page

conditions on(vyy,y2,73) (s, ijar)

b 0.5>7v,052>7, (1 —71)(1—92)73 > 7172(1 —73) 17
c 71205 273,71 =27 =73 15
d 7 205 2>v2,7 2 Y273 2 72 10
e 7 =72 20573 >05 2
f Y2z =372 205> 73 16
g Y2 2>052>7,73>2m 13
h Y2 =71 205,793 >05 3
Xa 0.5>7,7% >0.5,v3>0.5 9
b 0.5>7,052>73,7 >3 18
c 0.52>7,0.5>72,7 =72 17
d 71 2 0.5,72 > 0.5,v3 > 0.5 2
e 71 > 0.5,05 > 73,72 > 73 15
f 71 2> 0.5,0.5 > 72,73 > 72 10
Xllla T > Y2, 71 >3, 0.5 > 72, 0.5 > 73 19
b Yo = 71,72 =73, 0.5 > 71,05 > 3 18
c v1 > 0.5,v2 > 0.5,0.5 > 3 14
d Y3 271,73 = 72,0.5 271, 0.5 > 72 17
e v > 0.5,0.5 > Y2, Y3 = 0.5 8
f 0.5 > Y1, Y2 = 0.5, Y3 > 0.5 9
g 71 = 0.5, 72 > 0.5,v3 > 0.5 1

Non-zero «;, a;+1 and ;42 The eight rules obtained for Cases VI, IX, XI-XII and
XIV-XVII are represented in Fig. 8.23. In these cases thguistic valuesA;, A;+1
andA;., appear in the consequents. For all inputsot firing any other rule than these
eight rules (Egs. (8.125)—(8.127)), the crisp outgiy, , expressed as a function of
@, a1 @Ndayaa, IS given by

Yeoa = Cin1 + | (qira — i) (12(k + 1)? (qaisa + i1 (i + ixn))* 4+ 3(8(1 + k)2
— k)i o + (22(1 4+ k) 4 (1 + 2k) k) (i + cn) iy
+ (8(1 + k) + (51 + 4k)k)a;*+1)] X [G(ai + i) (Qis1 + Qiva)
(1 + k) (2o ima (i + civa) + 2(a; + qvian)?aier + 3(c + i)

-1
o2y +203,,) + kag (20040 + (0 + ai+2)ai+1))} . (8.137)
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Table 8.7: Values obtained fora;+1

gg; +aiig—;lﬂ in Egs. (8.134)—(8.136) fd;, o+ ) oceurring in Cases I1-V, VII-VIII, X and XIII.

Ol

6061‘+1

0+l

e% Q1 *Oéi+1g%;1i + i *%ﬂ% + a5 *%412*3; taig
1 (1=7)1 =) —=73) T1Y273 Y21 =2)y3(1 =7v3) (I =y)3(1—=23) (1 —=71)7(l—2)
2 Y1 (1 =72)(1 —3) V17273 0 Yiv3(1 — 7s) Yi72(1 = 72)
3 (1T =71)v2(1 = 73) V17273 Y5y3(1 —3) 0 (1 =)
4 Y172(1 = 73) 117273 0 0 3
) (I =71)(1 =72)3 T1Y273 Y2(1 = 72)73 11— )3 0
6 Y1(1—=72)73 T1Y2Y3 0 i3 0
7 (1 —=v1)7273 T1Y2Y3 V53 0 0
8 (I—7)1—=72)(1—n3) Y1 (1 —72)73 (1 —72)%7y3(1 — 73) 0 Y1 (1= 71)(1 —2)?
9 (1—7)1—12)1—173) (1= 71)7273 0 (L=m)*3(1—13)  (1—=7)*(—-2)
10 (1l —=72)(1—-3) (1= 72)73 0 0 (1= 2)?
11 (1=y)(1—72)7s Y1 (1 —72)73 (1 —72)%y3 0 0
12 (1 =71)(1 = 92)73 (1 =71)7273 0 (1—m)*73 0
13 (1 —=71)72(1 —3) (1 —=71)7273 0 0 (1—m)%*y3
14 (1—7)(1 =)l —) Y172(1 —73) Y2(1=72)(1=13)*>  m(l—7)(1 —73)? 0
15 Y1 (1 =72)(1 —3) Y172(1 = 73) 0 (1 —7s)? 0
16 (1 —v)y2(1 —3) Y172(1 = 73) Y5 (1 = 73)? 0 0
17 (1=m)(—72)1=73) (1=y)(1—72)7s 0 0 (1=7)*(1 —2)?
18 (1—m)(I—92)(1—23) (1—=71)7(l—"3) 0 (T =7)*(1 = 3)° 0
19 1—)0=7)(1-7) n(l=7)1—=13) (1—92)*1—173)? 0 0
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X3 = B?B X3 = B§’3+1 X3 = B;’s X3 = B§’3+1
Xo Xo Xo Xo
aa| A | Ain 08 [ Agr | Aisa aal A | A ad | Aver | Aiee
= A | A W A | Aia = A | A W Ain | Ainr
1 1 1 1 1 1 1 1
Bj Bja X1 Bj Bjim Xu Bj, Bja Xy Bj Bja X1
(a) Case VI (b) Case IX
X3 = B?s X3 = B?gﬂ X3 = BJB-3 X3 = BJB'3+1
Xo Xo Xo Xo
N-E Ai+1 Ai+1 E\I-E Ai+1 Ai+2 N‘E Ai+1 Ai+1 N-E Ai+2 Ai+2
W8 A | A S| Ajer | Air W A | A W8 Aser [ Ainr
Bﬂll BJ1'1+1 X1 BJ1'1 BJl1+1 X1 le'l BJ1'1+1 X1 BJll BJ1'1+1 X1
(c) Case XI (d) Case XIlI
X3 = BjS X3 = Bjs*'l X3 = Bi% X3 = Bj3+1
X Xs Xo Xo
m-& A7;+1 Ai+1 L\!'E Ai+1 Az‘+2 m-& Ai+1 Aq‘,+1 w-& Ai+2 Az
W A A W Aser | Aina W A | A 5| A | Airo
BJll B.71'1+1 Xl le'l BJ1'1+1 Xl B.71'1 B.71'1+1 Xl BJll B.Jl'1+1 Xl
(e) Case XIV (f) Case XV
Xz = BJ?)S Xz = B]33+1 Xz = Bi% Xz = B?3+1
Xo Xo Xo Xo
wi | A | Aisa 08 | Agar | Aiva a0t | Ager | Aiva 0t | Aisa | Aiso
S| A | Ain S| A | A W3 A | A S| Air | Aieo
lel lel"'l X1 lel B]1'1+1 X1 le'l BJ11+1 Xq B]ll le1+1 X1
(g) Case XVI (h) Case XVII

Figure 8.23: Cases considered in the discussion about medtd three input vari-
ables and a monotone smooth rule base WithA;.; andA;.s in the rule
consequents.
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and its derivatives toy;, a;+; andoy+o are

ayci =-C} (Oéi, Qj+1, Oéi+2) ) (8.138)
8ai
m = (()4“_2 — Oéi)OQ(O[h Q41 Oéi+2) ) (8139)
aai+1
Weoa _ C1 (v, a1, ) - (8.140)
Oavisa

The functionsC; andC5, of «;, a;+1 anday+ are given in Egs. (D.1)—(D.2) in
Appendix D and satisfy following properties

(Vl S R(J{)(Vk S R+)(V(ai, 047;4.1701“2) S }O, 1[3)(01 (ai, Ozi+170éi+2) > 0) R (8141)
(Vl S Ra_)(Vk S R+)(V(Oéi, Oéi+1,()(i+2) S }0, 1[3)(02(041‘, Oéi+1,0(i+2) > 0) R (8142)

Co (v, tin1, viva) = Co(vn, v, 05) (8.143)

Thus, the derivative of¢, tov1 (resp.y2 andvys) is given by

dy¢ Oay day
% = —C1 (i, s, 0¢i+2)87ﬂy1 + (qirg — ai)Cz(aham?am)W:l
da;
+ C1(airg, Qv Oéi)& (8.144)

One easily verifies that if monotonicity is guaranteed fdfilfnent degreesy;,
a;+1 and a4+ described by certain functions ef, v» and~s, monotonicity is also
guaranteed for fulfilment degrees, a;+; and «;.+o Obtained by permutation of the
membership degreeg, 72 and~s in these functions. Furthermore it is shown in
the following paragraphs that if monotonicity is obtained fy,,v2,v3) € }ﬂ,%[

X |v2,%2[ x ]v3,73[ and a certain set of fulfilment degrees cv;+; anda+

o = 03(’)/1,’}/2,’}/3) , Oy = 04("}/1,'}/2,'}/3) ,  Ohy2 = 05(71372773) ) (8145)

monotonicity is also obtained fary,y2, v3) € |1 =71, 1 — 1| x |1 =72,1 = 12|
x |1 —73,1 — 73] and the fulfilment degrees;, c;+1, anda;+

oy = 05(1 _7171 _7271 _73)a Qi+l = C’4(1 _7171 _7251 _73)5
iy = C3(1 — 71,1 — 72,1 —3). (8.146)

If monotonicity is guaranteed for the fulfilment degrees o B.145), the fol-
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lowing inequality holds for ally1,v2,73) € |y, 71| x ]ye. 7] x ]vs. 73]

oC, Y2,
— C1(Cs(v1,72,73): Ca(v1,72,73), 05(71,72,73))W
+ (05(,71’72’ 73) - 03(717 727’73))

oC. , Y2,
Ca(Cs(1,72,73), Ca(v1,72,73), 05(71772,73))M

omn
805 ) ) e
+01(05(71772,73)7C4(’Y17’)’2,%),03(71,72773))W >0,
(8.147)

as well as for all(1 — 1,1 — 72,1 — v3) With (y1,72, 13) € |1 —71,1—m] x
=721 =] x J1-75,1—7s[:
—C1(C3(1 —91,1 =2, 1 = 73), Ca(1 = 71,1 — 42,1 —93), C5(1 — 11,1 — 2,1 — 73))
0Cs3(1 — 91,1 — 72,1 —y3)
o1 —m)
+(Cs(1 =71, 1 = 72,1 —y3) = C5(1 = 1,1 — 72,1 — 73))
Co(C3(1 =1, 1 = 72,1 = 73), Ca(1 — 71,1 — 72,1 = 73),C5(1 — y1,1 — 72,1 — 73))
9Cs(1 —m,1 — 2,1 —3)
ol —m)
+C1(Cs(1 =1, 1 — 72,1 = 73), Ca(1 = 71,1 — 42,1 —3),C3(1 — 71,1 — 72,1 — 73))
9C5(1 —y1,1 — 72,1 —7y3)
o1 —m)
>0. (8.148)

Applying
0f(@)  0f(x) 91-x)  Of(x)
or 0(1—2) Ox - o(l-=x)’ (8.149)
and Eq. (8.143) the expression Eq. (8.148) converts to theatige of y¢&q t0 11
(resp.v-2 and~s) for the fulfilment degrees in Eq. (8.146)
—C1(C5(1 = 791,1 = v2,1 = 73),Ca(1 = 71,1 — 72,1 = 743), C3(1 — 71,1 — 72,1 — 73))
0Cs5(1 — 71,1 — 72,1 —73)
8’}/1
+(C3(1 =71, 1 = 72,1 = y3) = C5(1 =71, 1 — 72,1 — 73))
Co(Cs(1 = 1,1 = 72,1 = 73), Ca(1 — 71,1 = y2,1 = 3),Cs(1 — y1,1 — 72,1 — 73))
(904(]. — 71, 1— Y2, 1-— ’)/3)
8’}/1
+C1(C3(1 —71,1 — 72,1 = 73), Ca(l — 71,1 =2, 1 —73), C5(1 — 71,1 — 72,1 — 73))
9C5(1 —y1,1 — 72,1 —3)
371
, (8.150)

>0
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which proves that monotonicity is also obtained for the Kkuént degrees in
Eq. (8.146).

In Table 8.8 the regions are defined where the fulfilment degaee described
by a different function ofy;, 7. and~s for Cases VI, IX, XI-XII and XIV-XVII. In
Table 8.9 an overview is given of the 20 types(of, cv;+1, a;+2)-triplets that occur in
these eight cases. Note that for @ll, 72, v3) belonging to a boundary plane between
different regions of the input space and thus satisfyingéties defining different sub-
cases of a case, the functions for the fulfilment degreeseicdhresponding subcases
coincide.

Table 8.8: Definition of the regions of the input space wherey;.; and
;4o are described by different functions 9f, vo and~s for Cases VI,
IX, XI-XIl and XIV-XVII. The functions are given in Table 8.9

conditions or‘(vl, Y2, ’}/3) (Oéi, QG+l Oéi+2)

Via 052’722’}/1,052’}/32’}/1 1
b 05271 272,05 273> 2

c 0.5>71 >273,052>7 >3 3

d M =7 =271 =05 4

e M =Y 27371 205 5

f Y2 =3 =772 205 6

g Yo =71 =73, 72 = 0.5 7

h Y32 Y2 27,73 =05 8

i Y327 27273 =05 9
Xa 0.5>71,0.5> 72,7721 —73) > (1 —=71)(1 —72)73 3
b 0.52>7,0.52> 2, (1 —7)1—2)v3 > 7721 —73) 10

c 71 >05,71 27 >3 5

d 71 =057 27,73 2 72 4

e Y2 205,79 =7 273 7

f Y2 2>05,7%>7,73 2" 6
Xla 0.5> 71,7 >0.5,v3 > 0.5 1
b 0.5>7,0.5>73,7 >3 11

c 0.5>7,052> 7,7 =7 10

d 1 >05,7%>7,73>m 12

e v1 205,71 > 73,72 = 73 5

f Y1 > 0.5, 71 > 92,73 > V2 4
Xlla 0.52’71,’)/32’)/2 13
b 0.5>27,72 23 14

c 71 205,73 =72 4

d 11 205,72 > =
XIVa Y= Y2, 71 2> Y3, 0.5 > 72,0.5 > 3 15
b 0.5>7,7%2 27,72 2>73,052>13 11

c 7 = 05,72 > 05,71 > 73,7 =73 3

d 0.5>7,05>%,73 271,73 =7 10

continued on next page
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continued from previous page

conditions on(vyy,y2,v3) (s, Qvjxt, Cinn)

e 7 205,73 2057 = 72,73 =72 2

f Y2 > 0.5,793>0.5,7% >7,73>m 1
XVa ~1>0.5,92 > 0.5, y172(1 —3) > (I —v1)(1 —72)73 3
b 71 >0.5,9>05,(1—9)(1—72)y3 > 71721 —93) 10

c Y1 =72,05 27,71 =273 16

d Y3 =71 2> 72,05 > 72 17

e Y2 27,052>7,7% 273 14

f Y3=72 27,0527 13
XVla 1> 2,71 > Y3, 0.5 > 3 18
b Y2 = V1,72 = 73,0.5 > 3 19

c 05273 27,0527 2> 20

d 0.5> 71,05 > 7,73 > 0.5 10

e 71 > 792,71 > 05,73 > 0.5 2

f Y2 > 71,72 = 0.5,v3 > 0.5 1
XVlila M =2 273,05 >3 18
b M =Y 272,05 272 16

c Y1 > 792> 05,7 >v3>0.5 15

d Yo =71 273,05 >3 19

€ Yo =73 27,0527 14

f Y2 > > 05,72 > 793 >0.5 11

g Y3 > 71 > Y2, 0.5 > 79 17

h Y3272 27,05 >m 13

[ Y3 >71 > 0.5,73 > 72 > 0.5 10

The expressions of the derivatives @, t0 1 and-~y, for (o, cvi+1, air2)-
triplet 1 in Table 8.9, with

a; = (1 =7)(1 —72)(1 —3),
air1 = (1 —71)7273
Qii+2 = 717273,
are given in Egs. (D.3)-(D.4) in Appendix D. Both derivatvare positive for all
l € Ry, k € RY and~yi,72,73 € ]0,1[. The derivative ofy,q to 73 is obtained
by substitutingy, by 73 in Eq. (D.4) and is therefore also positive for ale R,
k € RT andvyy,72,73 € ]0,1[. This not only proves that monotonicity is guaran-
teed for(a, aus1, ciso)-triplet 1 in Table 8.9, but also for they;, c+1, ci+0)-triplets
corresponding to the first tripleite. triplets 2-3, 10-11 and 15.
Also for (a;, a1, v )-triplet 4, with

a; =7(1=7)(1—-73),
aiv1 =1 (1—v2)7s,
Qj+2 = Y17273 5
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Table 8.9: Triplets of fulfilment degrees;, «;+1 anda;+o occurring in Cases VI, 1X, XI-XII and XIV-XVII with their reationship to

either triplet 1, 4 or 12.

after substitution of and inter-
oy 041 Q2 equalto| V2 V3 changingo;
by ando;+o

1| (1—7)1—7)1—"3) (1 —=71)7273 MY273 -

2 | (T=7y)(1=2)(1—73) Y1 (1= 72)73 V17273 1 V2 71 -

3 | (T—=7y1)(1 =) —n3) Y172(1 —73) 17273 1 V3 - 7

4 Y1 (1 =72)(1 —3) Y1 (1 —72)73 Y23 -

5 Y1 (1 —2)(1 —3) Y1v2(1 —73) Y23 4 - V3 V2

6 (1 =71)72(1 —9s) (1 =y1)727s V17273 4 Yo 7 -

7 (1 =71)72(1 —3) Y172(1 = 73) Y1273 4 V2 73 71

8 (1 =71 =) (1= 71)7273 T1Y2Y3 4 V3 0% V2

9 (1 =71)(1 =72)y3 Y1(1 = 72)73 T1Y2Y3 4 V3 - "

10| (T=7)(I=72)d =) (T—=7)(1—2)3 Y23 1 l=v 1-=7 1-m yes
11 (1—v)(1=2)(I =) (I —=v1)72(1 —193) V17273 1 =y 1-m 1-93 yes
12 (1 —=72)(1 —3) (1 —=71)7273 V17273 -

B (1=—7)A=7)I-v) T—=7)1-=92)r 1—71)7 4 1=y T—-7v 1-—m yes
141 (1—y)A=72)I =) (I—=v)r2(l—=9) 1—=91)77 4 I=m 1-7 1-17 yes
15| (T—=7)(1=2)1=2v3) 7(1—)(1—13) Y273 1 1-=m 1-7 1-7 yes
16 | (1—y)(1—7)A =) 71m1-7)1T—-v) mn(l—72)7s 4 IL—m 1—m 1-—13 yes
17 =) =7)A =) A-7)0-7)r "l —72)s 4 IL—my l1-9 1-m yes
18| (1-7)(1=12)1=73) 71 =7)(1—-9) y172(1—"3) 4 =93 1=y 1-m yes
19| (1—=7)(1=72)Ad =) (1 —=7)72(l—9) y72(l—"3) 4 =93 1-=72 1-m yes
20| (1—7)(A=7)A=73) (T—=7)1 =)y 772(1 —73) 12 l—y 1—vm 1-m yes
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the derivatives ofj& t0 71, 72 and~s, given in Egs. (D.5)—(D.7) in Appendix D,
are positive for all € RY, & € Rt andyy, 72,73 € ]0,1[. Thus, monotonicity is
guaranteed fofc;, avj+1, i+ )-triplets 4-9, 13-14 and 16-109.

Finally, the derivatives ofy&o to 71, 72 and s show to be positive for
(Ozi, 41, oz,-+2)-trip|et 12, with

a; =7(1—=7)(1—-"3),
a1 = (1 —=71)7273,
Qi+2 = V17273 5

foralll € R{, k € R* andyy, 2,73 € ]0.5, 1[. The derivatives ta; andy, are given
in Egs. (D.8)—(D.9) in Appendix D, and the derivativeytpis obtained by exchanging
9 andys in EqQ. (D.9). As(av, a;+1, aiiso)-triplet 12 only occurs for Case Xld

2= =05 A 3>7 =05, (8.151)

monotonicity is always guaranteed even if the derivativespasitive fory;, vy2,v3 €
10.5,1[ only. If monotonicity is guaranteed fdw;, cvi+1, cii+2)-triplet 12, it is also
guaranteed fofw;, a+1, ai+2)-triplet 20 only occurring for Case XVic

0.5 273 =72 A 0527 =27, (8.152)

since in this case the derivativesyf, t0 71, 72 and~ys are positive fory;, vz, v3 €
10,0.5[.

Non-zeroay, a;+1, ai+2 and a;+3  Only for Case XVIII, represented in Fig. 8.24, the
linguistic valuesA;, A;+1, A;+2 and A;.3 appear in the consequents of the eight rules.
The functions ofy;, 72 and~s describing the fulfilment degrees, ;+1, a+2 anda;.3
in the different regions of the input space are given in Té&bl®. Only Case XVllla
will be discussed, as both the functions describing theoregf the input space as the
functions describing the fulfilment degrees for Cases X¥/fltan be obtained from the
corresponding functions for Case XVllla by permuting v» andvs. This also implies
that for (~1, v2,v3) satisfying the inequalities describing the regions of tiit space
for different subcases of Case XVIII, the functions for tififment degrees for the
corresponding subcases coincide.

For all inputsx with

;= (1=7)(1—92)(1—13),
v =71(1 —72)(1 —73),
v = Y172(1 — 73),
Qi+3 = V17273 5
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Xo= B}

&

J2+l

Ai+1 Ai+2

2

2
J2

Ai Ai+1

133

Jatl

X3 =
X

[ V)

jo+l

Ai+2 Ai+3

2

2
J2

Ai+1 Ai+2

1 1
Bj, Bjin

1
B]1+1

1
X3 B;,

X1

Case XVIlI

Figure 8.24: Case considered in the discussion about madtblshree input variables
and a monotone smooth rule base with A;+1, A;+> andA;.s in the rule
consequents.

Table 8.10: Fulfilment degrees.; andq;+o in different parts of the input space for
Case XVIlI (Wlth o = (]. — ’Vl)(]. — 72)(1 — ’)’3) anda;3 = ’}/1’}/2’}/3).

conditions Or’(’yl,’)/Q,’)/g) Qi+l Q42
a >y > 71 =) (1 =93) m72(l—"3)
b >V > Y2 (1 =7)(1—=93) 7l —72)
c Yo=Y 23 (I =)yl =) ~172(1 —73)
d Yo >3 > M (1 =y)72@ =) (1 =91)7273
e V3> = Ve (1=7)1 =)y 7l —=72)y3
f B> (I =7)A=92)r3 (1 —=71)7273

the crisp outpuyé is given by

Yooa = Ois1 + [12((722 — 1272 + 17)y1 (1 — 3) — (293 + 377 + 18)(1 — 2)

(1—73) + 27175 (1 — 72) (1 = 73) + 117273 (73 + 1) (11 — 293))
+ 6lk(—(77 +6)(1 —2)(1 — 3) + 571 (1 — 3) + (73 + 873
—3)1172) + 6k*(—3(1 — 72) (L — 73) + 271 (L — 73) + 7172

(435 — 1>>} x [6(1(@% 21— )1 — ) + el

—y3) + 7 + 1) + 2k((1 — 2) (1 —73) +m72)|

-1

(8.153)

and its derivatives, given in Eqgs. (D.10)—(D.12) in AppenDi, are positive for all

1l e RS

(71,72, v3) defining Case XVllla.

, k € RT and~y, 72, v3 satisfyingl > 1 > vy > ~3 > 0, i.e. for the
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Table 8.11: Mamdani—Assilian models for which monotogigtguaranteed when ap-
plying the COG defuzzification method characterized by atmemof input
variablesm, a t-normT’, an either monotone or monotone smooth rule base
and additional properties of the membership functions appe in the rule

consequents.
m T rule base additional properties
(VS € {la R T})(ZG ¢ {17n})
L1 Tu monotone (B> 0)(Vi e T\ {n})(ls = 1)
2 1 Tp monotone
(Vs € (L,...,r})(is  {L,n})
31 I monotone > 0)(Vie I\ {n})1l; = 1)
4 2 Tp monotone and smooth

(Vse{l,...,r})(is ¢ {1,n})
BAl>0)iel\{n}H({l;=1)

5 3 T monotone and smooth l;
(Fk = 0)(Vie I\ {1,n})(k; = k)

8.6 Conclusion

In this chapter, it was proved that a Mamdani—Assilian maggdlying the COG de-
fuzzification method is monotone if it corresponds to onéhefftve model types listed
in Table 8.11, characterized by a number of input variables t-normT’, an either
monotone or monotone smooth rule base and additional giep@f the membership
functions appearing in the rule consequents. For the t-a@inandTy,, models with
a single input variable show a monotone input-output behavior any monotone rule
base when the linguistic output values in the consequentseofules are defined by
trapezial or triangular membership functions with intésvaf changing membership
degree of equal length, whereas for the t-n@ipm models with a single input variable
show a monotone input-output behaviour for any monotone bbalse and any fuzzy
output partition. When designing a monotone model with mbestone input vari-
able, one should opt for the t-norfp and use a monotone smooth rule base. It was
shown that monotonicity of models with two input variableplying 7% is guaranteed
for any monotone smooth rule base and any fuzzy partitiomally, it was proved
that a monotone input-output behaviour is always obtainediodels with three input
variables applyin@p and a monotone smooth rule base when the linguistic output va
ues in the consequents of the rules are defined by trapeziaapgular membership
functions of identical shape.

For models with three input variables and applyifig, apart from an analytic
investigation revealing that monotonicity is guarantemdall models with a monotone
smooth rule base with linguistic output values defined by imenship functions of
identical shape in the rule consequents, numerical exgetswere carried out. These
numerical experiments leads one to suspect that monotpiscnot only guaranteed
for models with membership functions of identical shapehimitule consequents, but
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more generally for all models with a fuzzy output partitiatisfying Eq. (8.119), in
other words for all models with a fuzzy output partition fonish the numerator of the
expression in Eq. (8.107) is equal to zero foriadl T \ {n-1,n}

4(lisz — L) (L + Lis2) (L + 3l + 8kiwt) + Wylisn + 12k7,)
+ 12(kisa — ki) (ki + Kiva) (31; 4 3liv1 + 8kix1) + 6131341 + 8k2,)
A (Lisr — 1) (s + 1is1) (A5 + 151341 + 56k;41) + 36k7,,)
+ 8(Flixa — lial2y) + 36kie1 (Lilive — Litliv1) + 16(I2kiva — 1241 K;)
+ T2kis1 (Likiso — Lisaks) + 28(L4y Livo — Liaal3) + 96kie1 (Liv liva — Lia )
+ 56(12 kivo — 2k;) + 192ki01 (Livi kivo — Liks) + 12(Lisokisz — L k)
(31; + 3lis1 + 8kie1) = 0. (8.154)

However, the fact that monotonicity might be guaranteedaftarger class of fuzzy
output partitions than those for which monotonicity wasved is in practice of minor
relevance, since a straightforward interpolation proce@dliows the use of any fuzzy
output partition for all five combinations ofi, 7" and monotone (and smooth) rule
base mentioned in Table 8.11, while guaranteeing a monabpué-output behaviour.
In this interpolation procedure the crisp model outpgftitof a second model is mapped
to a valuey™ in the output domain of the model defined by the user. The secwmuel
applies the same fuzzy partitions as the user-defined modetiinput domain(s). In-
stead of the user-defined fuzzy output partitiomahembership functions, however,
the second model uses a fuzzy output partitior2of2 trapezial membership func-
tions as illustrated in Fig. 8.25, satisfying the additiomedel properties needed to
guarantee monotonicity for the applied number of inputalalgs, t-norm and type of
rule base

F>0)Vie{l,...n1})(l; =1), (8.155)

and, if required,
(Fk>0)(Vie{2,...n1})(ki = k). (8.156)

Note thatk should be strictly positive,e. the identically shaped membership functions
in the second fuzzy partition should not be triangular, ieorto allow for an interpo-
lation to all elements belonging to kernels of trapezial rhership functions in the
user-defined fuzzy partition. The user-defined fuzzy oupautition is characterized
by (a4, ..., a,) and the second fuzzy output partition @, . . ., ab,,.,). Furthermore,
the rule base applied in the second model is slightly diffei@m the user-defined rule
base. The rule base of the second model is obtained by auiginéme indices of the
output membership functions in the consequents of thedesfaned rules by 1

i =g+ 1, (8.157)

while keeping the antecedents of the rules unaltered.

The crisp model outpuy’* obtained for the second model is never smaller than
the midpoint of the kernel of the second membership funatimnlarger than the mid-
point of the kernel of the next-to-last membership functidthe second fuzzy output
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Aly)
1 -
A1 Ag A4 A5
O T T 1 T T T T T
a1 a2 a3z agq a5 = ag a7 asg ag aio
L 1 1 1 1 1 1 1 J Y
Aly)
0
ay ‘12 a3 a6 a7 as ag am a11 a12 a13 a14

Figure 8.25: Interpolation procedure between the user eldéfinzzy output partition
(top) and the fuzzy output partition used in the second matgtom).

partition,i.e.
1 ! I 1% 1 ! /
§(a3 +ay) <y™* < §(a2n+1 + agp42) - (8.158)

The minimum and maximum values gf* are respectively mapped to the lower and
upper bound of the output domain defined by the user. Crigpuésiy’* belonging to
the kernel of the second membership function of the secarmy/fautput partition, are
mapped to a valug* belonging to the kernel of the first membership function &f th
user-defined fuzzy partition, explicitly

., 1 Y™ — (ah + 3a
y* = f(a1+a2)+(a2—a1) 1 4.3 4)
3(ay — a3)

: (8.159)

Crisp outputsy* belonging to the kernel of the next-to-last membership tioncof
the second fuzzy output partition, are mapped to a vatueelonging to the kernel of
the last membership function of the user-defined fuzzy tiamtiexplicitly

/%

Yy i(gaérﬁl + a/2n+2)

. _
%(G/Qn+2 - al2n+1)

1
Yy = 5(0’271-1 + a2n) + (a2n - a2n-1)

(8.160)

Intermediate valueg™ < a

Tright
a; > y'*}, are mapped to a valug' in the corresponding intervah;, .2, a;,,,..-2
using the expression

With ijep, = max{i | a} < y*} andiyighy = min{i |

! Y = 3 @+ Ti)
y* = §(aileft'2 + airigbt'?) + (airight'Z - aileft'Q) o “ej 7 Lright . (8161)
Lright Tleft
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The three equations Egs. (8.159-8.161), can be written iara compact way.
To map anyy’* to a valuey* in the user-defined output domain the following general

expression can be used:

* —_— . . . —_— .
Yy = §(a7«left'2 + a"Lright'2) + (alrigm'Q allefc'Q) X

y* — min(max(}(a), +al, ), 3(ah +3a})), 130k + ahnin))
right’ %(aén+1 + a/2n+2)) - ma‘X(aglcfﬁ %(aé + aﬁl))
(8.162)

min(a)

Monotonicity of models with more than three input variabless not investi-
gated in this study, but the obtained results show that fatetsowith more than three
input variables only models should be considered with a r@msmooth rule base
with membership functions of identical shape in the rulesemuents applyingp.
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CHAPTER 9

‘—Mamdani—Assilian models: MOM defuzzification

Jamais je n’ai tant peres tant exig, tant \ecu, tantete moi,

si jose ainsi dire, que dans les voyages que j'ai faits seéul e
a pied.

(Confessionslean-Jacques Rousseau, 1782)

9.1 Introduction

In this chapter the monotonicity is investigated of Mamed&ssilian models holding
the properties described in Section 7.2 and applying thendéMaxima defuzzifica-
tion method. It is verified for the three t-norriys, 7 and7t, whether a monotone
input-output behaviour is obtained for any monotone rulsebar at least for any
monotone smooth rule base.

First, in Section 9.2, the general definition of the crisgoitiy; oy (EQ. (2.45))
is reformulated for models holding the properties descrilmeSection 7.2, using the
variables introduced in the same section to characterzeutiput membership func-
tions. In Section 9.3 the monotonicity of models with a sinigiput variable is studied
for the t-normsTyg, Tp and7y,. As discussed in Section 7.4, obtaining the empty set
as fuzzy output cannot be avoided when using the t-ribgnin models with two or
more input variables and holding the assumed propertieisfwhakesly, an inappro-
priate t-norm for these models. Therefore, Sections 954d€al with the monotonicity
of models with two (or more) input variables for the t-norffigg and7p only. In
Section 9.4 the monotonicity of models with a monotone simoote base and two or
more input variables is discussed. In Section 9.5 it is shihmhmonotonicity cannot
be guaranteed for models with two input variables and anyatwore rule base when
applying the t-normlg, nor for models with two input variables and any monotone
rule base using six or more linguistic output values whenyapg the t-norm7e. The
chapter concludes with a summary of the obtained resultedti& 9.6.
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9.2 Tailoring the definition of vy,

In this section, the general definition of the crisp outpit,,, is reformulated to fa-
cilitate the investigation of the monotonicity of MamdaAssilian models holding the
properties described in Section 7.2. The crisp outgyt,, only depends on the end-
points of the intervals forming the core of the fuzzy outdutAs in Mamdani—Assilian
models the membership degree of any output valtethe fuzzy outputd is equal to
the maximum membership degree obtained fortlaelapted output membership func-
tions A}, an output value can only be an element of the core of the global fuzzy out-
put A if it belongs to the core of at least one adapted output meshigefunctionsA;
fired to the maximum fulfilment degree,, ..

corgA) = | corg4]), (9.1)
i€ Inax
with
Qmax = Hl%lX Q= ﬂmax = Hl?lf( 68 5 (92)
i= s=
Tnax = {1 € I'| @; = amax} - (9.3)

When applying the t-norniyg, the core of the adapted membership function
coincides with they-cut of the original membership function

(Ve € 10, 1])(corg T (a, A)) = Aa) 9.9)

whereas, when applying the t-norfis and Ty, the core of the adapted membership
function is nothing else but the kernel of the original mersh@ function

(Va € 10,1])(corgTp (e, A)) = corgTr (o, A)) = kern(A)). (9.5)

9.2.1 Linguistic output values fired to the maximum fulfilmentde-
gree

In the following paragraphs it is shown that if none of the pementse; of the input
vectorx has a membership degree 0.5 to a linguistic value of theblarig,, only one
rule is fired to the maximum fulfilment degres,., and, as a result, the core of the
fuzzy output coincides with the core of one of thadapted membership functions

(Wl € L)(71 # 0.5) = [Iax| = 1. (9.6)

Given the expressions for the maximum fulfilment degsge. 7, for mod-
els withm input variables applyingw; in Egs. (7.71-7.76) and considering that for
any~ € [0,1]

v # 0.5 < max(1 —,v) > 0.5, (9.7)
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it follows that the maximum fulfilment degre@,,.x ., iS greater than 0.5 if and
only if none of the components of the input vectorx has a membership degree 0.5
to a linguistic value of the variabl&;

(I € L)(vi #0.5) © Pmax,pgm > 0.5. (9.8)

Thus, if and only if none of the componentsof the input vectok has a membership
degree 0.5 to a linguistic value of the variable there exists a rule?,_._ which is
fired to a degree greater than 0.5, where the fulfilment dagreletained usingn

(1€ L)(1 # 0.5) < (Fsmax € sxﬁf{l BL. (m)>0.5), (9.9)

or, in other words, there exists a rulg__  for which each componeny; of the input
vectorx has a membership degree greater than 0.5 to the corresgdimgjuistic value
in its antecedent

(1€ L)(y # 0.5) & (38max € S)((Vl € L)(BL__(z;) >0.5)). (9.10)

Note that the equivalence in Eg. (9.10) also holds for modefsying a t-norm differ-
ent fromTy,, in this models the index,, .. however does not necessarily correspond
to the index of a rule fired to the maximum fulfilment degree.

Since fuzzy partitions as described in Section 7.2 are usall input domains
and as the rule base is complete and consistent, it hold# thatmembership degree
to all linguistic values in the antecedent of the rllg are greater than 0.5, the other
rules contain at least one linguistic value in their antec¢do which the input vector
x has a membership degree smaller than 0.5, or, expresseémsadtbally, for any

S1 75 S9
(Vi € L)(B. (z1) > 0.5)
=(Vl € L)(B., (z;) > B! (1)) A (31" € L)(0.5 > BL (1)) . (9.11)
Thus, there can only exist one rule to which all componemntsf the input vectork
have a membership degree greater than 0.5 to the corresgdidjuistic value in its
antecedent
(Fsmax € S)((VI € L)(B. () > 0.5))

=(smax € S)((VI € L)(Bl‘,nax (z1) > 0.5)), (9.12)

Smax

and this rule is furthermore the only rule fired to the maxinfutfilment degree since
foranys # Spmax

(W € L)(BL,,,, (x1) > Bi(@) A G € L)(BL,_(a)) > 05> BL (x1))

(9.13)
=(T € {Ta, To (T BL_(w) > T B () (9.14)
:(VT € {TM’TP})(ﬁanax > ﬁs) . (915)
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When only one rule is fired to the maximum fulfiiment degree yamte linguistic
output value can be fired to the maximum fulfilment degree, or

x| = 1 (9.16)

In models with a single input variable the fulfilment degrees equal to the
membership degrees to the linguistic values of the inpualéy and no t-norm is
applied to determine them. Therefore, Eq. (9.6) is alsc®ati for models with a
single input variable applyin@ty,, since it was shown above that Eq. (9.6) is satisfied
for models with one or more input variables applyifig or Tp.

Note thatl,,.x is always a singleton if ali; differ from 0.5, but might also be
a singleton if not ally; differ from 0.5 when all rules fired to the maximum fulfilment
degree contain the same linguistic output value in theisegoent. By contraposition,
it then follows that if two or more linguistic output valuesedired to the maximum
fulfilment degree, at least ong is equal to 0.5

[Tmax| > 2= (3l € L)(y, = 0.5). (9.17)

9.2.2 Generally applicable expressions fog;;ou

For models applyingl: the maximum fulfilment degre@umax (= Bmax,Tag,m)
(Egs. (7.71-7.76)) is given by

m

Omax = rlrli?max(l —y,7) > 0.5. (9.18)

By formulating Eq. (9.17) slightly differently,
[Imax| > 2= (3l € L)(max(1 —~;,v) =0.5), (9.19)

one can easily see that in models applyifig the maximum fulfilment degree,, .«
is always equal to 0.5 if two or more linguistic output valaes fired to the maximum
fulfilment degreei.e.

(Tmax| = 2AT = Tag) = Oimax = 0.5. (9.20)

ForT = T the core of an adapted membership function coincides with-an
cut of the original membership function (Eq. (9.4)). Givee properties of the output
membership functions (Section 7.2) and the factdhat, is equal to 0.5 fofl x| > 2
and greater than 0.5 fdf,,.x| = 1, the cores of two adapted output membership
functions fired to the maximum fulfilment degreg... share at most a boundary point.
When applying the t-norm%p and7i,, the core of the adapted membership function
coincides with the kernel of the original membership fumet{Eq. (9.5)). As the output
membership functions form a fuzzy partition, the intergecbf the cores of the two
adapted output membership functions fired to the maximufinidnt degreey,,. is
always empty. Summarizing, it holds for ahyj € I n.x, 7 < j, that

cOrg(7T'(tmax, A;)) N COrgT (umax, Aj))

_{{%(agi—kagiﬂ)} LT =T andj:i+1,

9.21
0 , otherwise ( )
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For models applyingi, the crisp outpuy;oy IS @ function of the maximum
fulfilment degreex,,., if only one linguistic output value is fired to the degreg....
Explicitly, if Imax = {#max}, then

" 1
YMOM = Cimax T §(limx ~lipae-1) (1 — Qmax) - (9.22)

If more than one linguistic output value is fired to this maxim fulfilment degree
Omax; 1160 | Imax| > 2, thenam.x = 0.5 and

> ((2a2; + 1)? = (2a2i1 — 1i1)?)

1€ Imax

Ymom = 1S (I + 1+ 2k:)
1€ Imax

(9.23)

For models applyindp, the expression afy;5,; can be reformulated as

Z W;C;
" 1€ max
= —— 9.24
Ynmom Z w; ( )
1€ Imax

with

ki if Z kj >0,

J€Imax
1 if > k;=0.

J€Imax

As the crisp outpug;y oy Only depends on the endpoints of the intervals form-
ing the core of the fuzzy outpud, which is the union of the cores of the adapted
membership functions fired to the maximum fulfilment degrgg,, and as for a given
membership functiom the core of the adapted membership function obtained with
Tp is equal to the core of the adapted membership functionmddavith7y,, for mod-
els with a single input variable applyirify, as t-norm, Eq. (9.24) is also applied to
calculate the crisp output;on-

9.2.3 Expressions foty;, Valid in special cases for models apply-
ing T

First, if all linguistic output values between the small@sguistic output valued;,
(i1ets = min I1yax) and the largest linguistic output valuk,  ,, (iright = max Iiax)
fired to the degree,,., are also fired to this degreies.

(Vil,iz S Imax)(Vj S I)(ll < _] < iQ :>j S Imax) s (925)
Eq. (9.23) can be further simplified. In this case for modelsng 7 and|lax| >

2, yriom IS given by

N 1
Ymom = Z(zaQileft'l - lilefc'l + 2a2irighc + linghc) . (9-26)
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Second, if|I,.x| > 2 but none of the extreme linguistic valugls and 4,,
is fired to the degreeuyax, i.€. Imax N {1,n} = ), and if the intervals where the
membership functions overlap are of equal length (31 > 0)(Vi € I\ {n})(; = 1),
thenyyo\ €an be computed using Eq. (9.24), but with

Third, when combining the above two cases, Eq. (9.26) cantiedr simplified
to
. 1
YaoM = 5 (21 + Q20 ) - (9.28)

9.3 Models with a single input variable

In a model with a single input variable at most two rules aredfirthe rule corre-

sponding to some linguistic input valu‘_é} is fired to a degreel(— ~4) and the rule

corresponding to the linguistic vaILB}+1 to a degreey;. In case of a monotone rule
base,B; andBj,, can either be mapped to

1. the same linguistic output valug : the constantcase,
2. two consecutive output valuels and A;.,: thesmoothcase, or

3. two non-consecutive output valuds andA;+, (p € N, p > 1,7+ p < n): the
non-smootitase.

As discussed in Section 8.3, considering ttomstantcase for a model with
a single input variable might seem in disaccord with the amsdfeguard the model
interpretability, but is nevertheless meaningful as jptetable models with more than
one input variable might behave as a model with a single inpaéable in theconstant
case in some parts of the input space.

9.3.1 Models applyingTm

Whenle. andB}+1 (j € J1 \ {n1}) are both mapped to a same linguistic output value
A; (Fig. 8.1), the crisp outpuky;o) IS computed with Eq. (9.22). Sineg,,. is equal
to (1 — ;) forv; € [0,0.5] and equal tey; for v, € [0.5, 1], monotonicity holds if

dyy du
(\m e [070.5}) (yM‘jj“M” > o) A <\m e 0.5, 1}) (yMCj“M” > o) ,

N 1
(9.29)
with
with
" 1
YmoMm,1m,11 = Ci T i(li —li)n (9.30)
X 1
Ynom,1m,12 = Ci + i(li —li)(1=m). (9.31)
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One easily verifies thatyon 1,11 (71 = 0.5) = Yirom,1m,12(71 = 0.5) and
that Eq. (9.29) is satisfied if and only if

iy =1s. (932)

As the extreme linguistic output values, and A,, are both described by a
trapezium with one vertical side, monotonicity can only hemnteed for a model
with a single input variable applying, if the following constraints are satisfied

(Vs € {1,...,70)(is ¢ {1,n}), (9.33)
Q> 0)(Viel\{n})li=1). (9.34)

From here on, Egs. (9.33-9.34) are assumed to hold. \/)’BjeamdB}+1 (G e
J1\ {n1}) are mapped to two consecutive output valdeandA;.1, Eq. (9.28) is used
to compute the crisp outpyt;,,;. The crisp output coincides with the midpoint of the
interval with as lower bound, the lower bound of the kernetha&f smallest linguistic
output valued,, ,, fired to the maximum fulfilment degree,,.., and as upper bound,
the upper bound of the kernel of the largest linguistic ottlue 4; ., fired to the
maximum fulfilment degreev,,.x. The setl,,. and the corresponding indicegg
andi,ign, are given by

1. if v €]0,0.5[, thenlya.x = {i}, henceies, = ¢ andiyighy = 1,
2. if y1 = 0.5, thenlyax = {7,i+1}, henceijes, = ¢ andiygny = i+1,
3. ify; €]0.5,1[, thenlax = {i+1}, henceiies = i+1 andiyigne = i+1.
The desired monotonicity trivially holds since
midpoint([ag;-1, az;]) < midpoint[az;-1, azi+2]) < midpoint[as;+1, azi+a]), (9.35)
and it is know from interval calculus that
(Iby < 1ba) A (uby < uby) = midpoint([iby, ubi]) < midpoint[lby, ubs]). (9.36)

Whenle andth1 (j € J1\ {n1}) are mapped to two non-consecutive output
valuesA; andA4;+, (p € N, p > 1, i + p < n), monotonicity holds if

YMOM,1M,31 < YUMOM,1M,32 < YMOM,1M,33 » (9.37)
with
YMOM, 1M 31 = Ci » (9.38)
(l + kZ)Cz + (l —+ ki+p)ci+p
: o = , 9.39
YMOM,1M,32 20+ I+ ey ( )
yl*VIOM,1M,33 = Ci+p - (9.40)
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The above chain of inequalities always holds since

(L + ki) (cisp — ci)
" =y — < , 9.41
YmMoM,1M,31 = YMOM,1M,32 20+ ks + Kirp Ymom,1M,32 ( )

(l + ki+ )(Cz'+ - Cz‘)
YmMoMm,1M,33 = YMOM,1M,32 2+ ks + ke YmMoM,1M,32 ( )

and thus monotonicity is guaranteed.

From this section, it can be concluded that models with alsiimgput variable
applying the t-norml’yy show a monotone input-output behaviour for any monotone
rule base when the linguistic output values in the conseguefrthe rules are defined
by trapezial or triangular membership functions with imgds of changing membership
degree of equal length.

9.3.2 Models applyinglp or Ti,

In models applyinde or T, the crisp model outpufy;,; depends on which linguistic
output values are fired to the maximum fulfilment degfgg.., but does not depend
on the value as such, of the maximum fulfilment degree as shgvity. (9.24). When
B} andle+1 (j € J1\ {n1}) are both mapped to a same linguistic output value
Yrionm IS constant and equal tg for all v, € [0, 1]. Thesmoothandnon-smootftases,
whenB; andBj,, (j € J1 \ {n:}) are mapped to different output valudsand A;.,,
(p € Ny, 7 + p < n), can be considered simultaneously. In these cases macibyon

holds if

YMOM,1P,31 < YMOM,1P,32 < YMOM,1P,33 1 (9.43)
with
?JKAOM,1P,31 =G, (9.44)
kw;:f;j::w Jif k>0 andk:Hp >0,
) Citp Jf ki =0 andki+p >0,
Un = , (9.45)
MOM,1P,32 C; ,if k; > 0andk;;, =0,

%(Ci + Ci+p) y if ki =0 andk’i_;,_p = 0,
yl*vIOM,lP,SB = Ci+p, (9.46)

which is always satisfied.

From this section, it can be concluded that models with alsiimgut vari-
able applying the t-norrip or 71, show a monotone input-output behaviour for any
monotone rule base.

9.4 Models with a monotone smooth rule base and two
or more input variables

In this section it is shown that for models with two or moreuhpariables and a
monotone smooth rule base monotonicity is guaranteed wpplyiag Ty or Tp.
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Ji=(Jj1,72)

2
sz'l

1 1 1 1 1 X
Bjr? le'l le le*l le*z 1

Pl
A
X

o
X

Figure 9.1: Example of a subspakg for a model with two input variables

Models with more than one input variable applyifg are not considered since they
return the empty set as fuzzy model output for some inputovecis discussed in
Section 7.4. The results obtained for models with a singbaitivariable also apply
to models with two input variables, as the latter behave asrgle input model’ in
parts of their input space. Therefore, for models applyfikgthe output membership
functions used in the consequents of the rules are assurheddantervals of changing
membership degree of equal length (Egs. (9.33-9.34)). Fafets applying/p no
additional model properties were required to guaranteartbeotonicity of models
with a single input variable.

The input space of a model withy input variables can be seen as the union
of severalm-dimensional subspaces whose projections ontarthene-dimensional
input domains coincide with the interval bounded by the lola@und of the kernel of
a linguistic vaIueB;-l and the upper bound of the kernel of the linguistic vaﬂggl
(ji1 € Ji \ {nu}), as illustrated in Fig. 9.1. In such a subspaceall input vectorsx
have a non-zero membership degree to at least one of thertgugdiic value39§l and
B§z+1

Xj={x| (VI € L)(B} (x) = 1= B} ., (x))}, (9.47)

withj = (j1,..-,Jm) € (J1 \ {n1}) x ... x (Jm \ {nm}). Aninput vectorx with
an input valuer; belonging to the kernel of som@;l always belongs to two or more
‘adjacent’ subspaces. This observation allows us to extemdesults, shown in Sec-
tions 9.4.1-9.4.2 for a single subspace, to the whole inpates.

For any input vectok € X; three groups of input domains can be distinguished:
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those for whichz; is greater than or equal to the lower bound of the kerneBJkgf
and smaller than the crisp value corresponding to the iatdin of the membership
functions ofBg.l anng.lﬂ, ie.

Li(x)={l € L| B (x)>05}, (9.48)

those for whiche; corresponds to the intersection of the membership funs]Et}pand
B, ie.

Ly(x)={l€ L| B (x) =05}, (9.49)
and finally, those for whiclx; is larger than the crisp value corresponding to the in-
tersection of the membership functioB#l andBj.l+1 and smaller than or equal to the

upper bound of the kernel (Bé-lﬂ, i.e.

Ls(x)={l € L| B} (x;) <0.5}. (9.50)

9.4.1 Models applyingln

When none of the input values of an input vectox € X; coincides with the inter-
section of the membership functio@l and Bélﬂ, the setly(x) is empty and only
one ruleR; is fired to the maximum fulfilment degreg,,.,, with

] JiflelL ,
jie =47 e L) (9.51)
s+l ifle Li(x).
Furthermore, for these input vectors,,.., is larger than 0.5
. . 1 . 1
Bs = min <ler£1}1(1x) Bj, (x1), ZEIE;I(lx) leﬂ(:m)) >0.5. (9.52)

For an input vectox € X; with a single input valuer;, coinciding with the
intersection of the corresponding membership functiBh;s andBj.j1 +1, tworulesRy,
andR;, are fired to the degree,,.,, with

] Jfle L Ui},
Jis =4 L€ Li(x) Uih} (9.53)
a+1 ifleLsx),
] Jfle L ,
s =47 i€ Li(x) (9.54)
]l+]— ,|fl€L3(X)U{ll},
andag.x is equal to 0.5 since
o . . . 1 . l Iy _
681 - mln(mln(lergi?x) le (xl)a ler]Ingl?x) le+1 (xl))v lel (xh)) =0.9, (955)
> 0.5 =0.5

ﬁsz=min(min(l&g?x)Bé,(mn,lergir(lx)Bﬁ-lﬂ(a:l)),Bj-;lﬂ(xh)) =0.5. (9.56)
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In general, for an input vector € X;, 272l rules R, are fired to the maxi-
mum fulfilment degreev,, ., with

J ,iflELl(X),
Jus =9 €{i,a+1} ifle La(x), (9.57)
n+1 ,Ifl€L3(X)

To investigate the monotonicity of a model in a varialilg, two input vectors
x; andx; are considered, such that; = z,; foranyl € L\ {l1} andzy;, < x24,,
with

L, (x1) = {l € L\ {lL} | B}, (1) = B (x2,) > 0.5}, (9.58)
Lo, (x1) = {l € L\ {1} | B,(z1,) = BY (x2,) = 0.5}, (9.59)
La, (x1) ={l € L\ {l1} | B}, (z1,) = B!, (x2;) < 0.5} . (9.60)

Case a If B}l (z14,) > 0.5andBj! (2.,) > 0.5, the same rules are fired to the

maximum fulfilment degreev,,,..(x1) for x; and to the maximum fulfilment degree
max (x2) for xo, since

Li(x1) = L1(x2) = Ly, (x1) U {l1 }, (9.61)
La(x1) = La(x2) = La\y, (X1) (9.62)
L3(x1) = L3(x2) = L3\, (x1) , (9.63)
thus
Ynmom (X1) = Ynom(X2) (9.64)

and monotonicity is guaranteed.

Caseb If B}l (z1,) > 0.5andB]! (r2,,) = 0.5, the setR, of rules R, fired to
the maximum fulfilment degree,,.x (x1) for x;, with

jl s if | € Ll\ll(xl) U {l1},
Jiss =S €dna+ 1} ifl € Loy, (x1), (9.65)
jl +1 , if |l € L3\11(X1),

is a subset of the s&, of rulesR;, fired to the maximum fulfilment degreg, .. (x2)
for x5, with

Ji Jfle Ly, (x1),
jl,SQ =K € {jlajl + 1} Jifl e Lg\ll()q) U {l1}, (966)
]l+1 y ifl e L3\51(X1).

Let R3 = Rz \ R1, then the indices in the antecedent of a rlg € R3 are
given by

Ji Jfl e Ly, (x1),
Jiss = € i+ 1} L if L€ Loy, (x1), (9.67)
jl+1 ,iflELg\ll(Xl)U{ll},
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and there exists a bijection betwe®3 andRs as for any rule iR, containing the
linguistic vaIuij.j1 in its antecedent, there exists a rulgig containing the same lin-
guistic values for all input variables different froiy, and the linguistic vaIueBé.;1+1
in its antecedent and, as the rule base is monotone and srf@otbllary 7.1), the
same or next linguistic output value in its consequent. Thith S; (resp.Ss) the set

of indices of the rules ifR; (resp.R3), it follows that

min iy < min i, (9.68)
seSy s€ESs
maxi, < maxig, (9.69)
s€Sy sES3

and as the sef, of indices of the rules ik, is the union of the set§; and S;
(S2 = S1 U S3), it follows that

min is = min iy < min 7, , (9.70)
SES, SESs SES3
maxis < maxi,= maXig . (9.71)
s€eS, s€Sy SES3

Since the rule base is assumed to be monotone and smootipwsdrom the above
reasoning that all linguistic values betwedy, ., and4; ., are fired to the maximum
fulfilment degree. Moreover, as the output membership fanstare assumed to sat-
isfy (Egs. (9.33-9.34)), Eq. (9.28) may be used to calciteerisp outputsy;o (x1)
andygonm (x2), given by

Yamom (X1) = %(a%eft(xl)-l + G240 (x1)) (9.72)
with lleft (X1) = ?éis][} is tright (X1) = gé%)fis ;

Yamom (X2) = %(azmﬁ(xz)—l + G240 (x2)) (9.73)
with ilefs (X2) = lgfrellSI; is iright (X2) = géasfis -

Obviously,yiom (%x1) < Yiom(x2) @and monotonicity is guaranteed.

Case c If B! (z1,,) > 0.5andBj! (5,,) < 0.5, all rulesR,, belonging to the
setR, defined by Eq. (9.65) are fired to the degreg,.(x;) and all rulesR;, be-
longing to the seR; defined by Eq. (9.67) are fired to the degreg..(x2). Given
Egs. (9.70-9.71), the crisp outputs oy (x1) andyz o (x2) are obtained by substi-
tuting Lot (Xl), iright (Xl), Ueft (Xg) andiright (Xg) in Eqs (972—973) by

ileft (Xl) = ?61}911 Zs Z.right (Xl) = ?é%,}l( is ’ (974)
Tleft (X2) = min ¢ Tright (X2) = maxig . 9.75
left( 2) prrn s rlght( 2) 565?3( s ( )

Thus,y50m (%1) < Yriom (Xx2) @nd monotonicity is guaranteed.
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Cased If B (¢1,,) = 0.5andB]! (z2,,) < 0.5, all rules Ry, belonging to the
setR, defined by Eq. (9.66) are fired to the degreg,.(x;) and all rulesR;, be-
longing to the seR3 defined by Eq. (9.67) are fired to the degreg..(x2). Given
Egs. (9.70-9.71), the crisp outputs oy (x1) andy; o (x2) are obtained by substi-
tuting diese (X1), right (X1), fiefe (X2) @Ndirgne (x2) in EQs. (9.72-9.73) by

ieft (X1) = gelisn s right(X1) = gré%xis (9.76)
2 2
ileft (X2) = greusr; is  lright(X2) = Eéasi(is - (9.77)

Thus,y50m (%x1) < Yriom (Xx2) @and monotonicity is guaranteed.

Case e If Bjl (v1.,) < 0.5andBjl (w24,) < 0.5, the same seR; (Eq. (9.67)) of
rules is fired to the degree, .« (x1) and the degree,,..(x2), since

Li(x1) = Li(x2) = L1y, (x1) (9.78)
La(x1) = La(x2) = Layy, (x1) , (9.79)
L3(X1) = L3(X2) = L3\l1 (Xl) U {ll} 5 (980)

thusyziom (X1) = Yarom (X2) and monotonicity is guaranteed.

Hence, a monotone input-output behaviour is obtained foh saibspac&;,
and, by construction, for the whole input space of a Mamdassitian model with a
smooth rule base, output membership functions satisfygqey 89.33-9.34) and apply-
ing Tv.

9.4.2 Models applyinglp

When none of the input values of an input vectox € X; coincides with the inter-
section of the membership functio@l and B§l+1, the setl»(x) is empty and only
one ruleR; is fired to the degree,,.,, with

: itlel
jre= 40t e L), (9.81)
a+1 ,|fl€L3(X).

For an input vectox € X; with one single input value;, coinciding with
the intersection of the corresponding membership funs%1 andB§:1+1, two rules
R;, andR;,, with

. . 7 ,iflGLl(X)U{ll},
T =501 Lifle Ly(x),
 a Jifle Li(x)
T V541 il e La(x) U {lh),
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are fired to the maximum fulfilment degreg, .

ﬁ51 = H Bél (IZ) X H B§l+1 (J?l) X Bélll (xll) = Qmax
leL(x) leL3(x) ——
= =05
Bsy = H Bél (w1) % H B§l+1(93l) X B;;1+l(g:l1) = Omax -
l€L1(x) leLs(x)

All other rulesR; € R\{Rs,, Rs, } contain at least one linguistic input value to
which x has a membership degree smaller than 0.5, Wittx) = L, 1 (x) U Ly 2(x),
Lg(X) = Lg’l(X) U L3’2(X) andLl’Q(X) U LS)Q(X) 7é Q), with

i Jf L€ Lya(x) U Ls2(x),
Jus = €,a+1}y ifl=1, (9-82)
g1 +1 Jfle L3’1(X) U LI,Z(X) )

and have a fulfilment degre®, given by

Bs= JI Bi@yx [ Bjulz) <05, (9.83)
lELlyl(x) leLl},l(x)
UL3,2(x) UL1,2(x)

smaller tharo,,,x, since

(V1 € L1(x)) (B}, (1) > B4y (w1)) (9.84)
(V1 € Ls(x)) (B}, (z1) < B4y (1)) (9.85)

In general, when applyin@e, for an input vectox € X;, 222Xl rulesR; are
fired to the degree,, .., with

Ji Jfle Li(x),
jhs — S {jl,jl =+ 1} y if [ S LQ(X) R (986)
g+l Jif 1€ La(x).

The expression above is identical to Eq. (9.57) obtainethfatels applyings. Thus,
for a given model with a monotone smooth rule base and for enginput vector,
the setl,,. of indices of linguistic output values fired to the degteg,. is the same
for a model applyingl’v as for a model applyindp. Thus, for two input vectors
x1,X%2 € Xj, such thatr; ; = zo; foranyl € L\ {l1} andzy;, < za,,

Z.left (Xl) S ileft (XZ) Z.left = iénin 1’; (987)
max
tright (X1) < fright (X2) Iright = nax i, (9.88)
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Tleft I(Xl) irigh: (x1) Ueft =(X2) irightI (x2) I Casea
Tleft I(Xl) = Uright (X1) ileftI(X2) irighti (x2) I Casea
Tlef I(Xl) irigh:(xl) ileftI(XZ) = Zright (X2) I Casea
Tleft I(Xl) = iright (X1) ileftI(XZ) = Zright (X2 I Casea
e x1) e () = e (x2) ) 1 R
Tleft I(Xl) = lright (X1) = 9ot (X2) ’irigh: (x2) I Casea
Tleft =(X1) irigh: (x1) = tieft (X2) = tright (X2) I Casea
Tleft =(X1) = Gright (X1) = t1eft (X2) = trignt (X2) I Casea
Tleft I(Xl) Teft (=X2) irigh:t (x1) irigh: (x2) I Casee
Tleft I(Xl) = dleft (X2) irigh:t(xl) irigh: (x2) I Casec
Tleft I(Xl) Tleft (=X2) irighit(xl) = lright(x2) T Cased
o (1) = ron (%2) e (1) = i) 1 P

Figure 9.2: Cases to be considered fQF;,(x1), %right(X1), et (X2) @Nd iyight(X2)
when investigating models with a monotone smooth rule bpglyimg 7p .

also hold when the t-norfiip is used (Section 9.4.1 and in particular Egs. (9.70-9.71)).
Furthermore, also for models with a monotone smooth rule baglyingTp, all lin-
guistic output values betweety, , andA; . ,, are fired to the degree,,... Therefore,
Imax in EQ. (9.24) can be replaced By, ivight] When calculatingsz; o, (x) for all x
in the subspac;.

To investigate the monotonicity of a model in a varialilg, two input vectors
x; andxs are considered, such thaf; = z5; foranyl € L\ {l1} andzy;, < x2y,.
In Fig. 9.2 the 12 cases are represented that should be eoeditbr the four integers
tleft (X1), Gright (X1), fleft (X2) @Ndiygne(x2). In the discussion below, the first eight
cases are combined in Case a. Before focussing on the mdulibar in Cases a—e,
a useful property is stated:

lright

> kjey
J="eft

, JThett <o )
cl{eft - iright - Cziight ’ (9 89)

2k
J="1eft

with

(V5 € [irefes frogi=1] U [irignet 1 drigne ) (k; = 0) (9.90)
<Hj € [iiefwi;ight])(kj > 0) . (991)
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From Egs. (9.90-9.91) it follows that

i

iright right
> ke 2 kg
J=lleft ek (9.92)
iright nght !
2k >k
J="eft =60
. . .
As furthermore, folij ¢ < iy, it holds that
i;ight i;ight i;ight
2 Ky Kityo Cil, T 20 kjej =Ry e — 30 Kjcy,
J=Yett J=leg+1 J=lege+1
i/ T Gl = i’
7‘rig;ht © 7’right
2k 2k
J=Yett T =Yegy
Xlsht 7;;'ight
= ( > kilej - Ci@))
=ifegg T =g t1
>0, (9.93)
i;ight rlght -1 ‘;lght -1
) Z kjcj Z kﬂ anht i;ight Ci;ight - Z k; 3¢ — il’right Ci;ight
, I T et o T=egy T=egy
1. . - .
right l;ight Z;ight
2k 2k
J=Yett I = Yefy
Tight 1 iright”
:(Z k) (Z k clleft_cj))
=gy T=ege
>0, (9.94)
and forij.g, = iy, it holds that
./
Yright
J= e
— - = Cy . Cit s (9.95)
et left right
>k
Ny
J=Yett

it follows that Eq. (9.89) holds.

Case a When the largest linguistic output value fired to the maximuifiliment de-
gree forx; is smaller than or equal to the smallest linguistic outputi@dired to the

maximum fulfilment degree fax,, i.e.

ieft (X1) < tright (X1) < flefs (X2) < trigne (X2)

(9.96)
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the following chain of inequalities holds

Ciroge (x1) < yK/IOM(Xl) < Cirigne (x1) < Ciers (x2) < yi\k/IOM(XQ) < Cirigne (x2) (9'97)

and it follows that the crisp output;,,(x1) obtained forx; is smaller than or equal
to the crisp outpuy o, (x2) obtained forx,

yf{/IOM(Xl) < CUK/IOM(X2) . (9.98)

Case b When the smallest linguistic output value fired to the maxirmfutfilment

degree forx; is equal to the smallest linguistic output value fired to thaximum

fulfilment degree fok,, the largest linguistic output value fired to the maximunfifful
ment degree fok; is equal to the largest linguistic output value fired to theximam

fulfilment degree fok, and this smallest linguistic output value differs from tlaigyest
linguistic output valuei.e.

ieft (X1) = Gieft (X2) < fright (X1) = trignt (X2) (9.99)

the crisp outputyy;oy (x1) obtained forx; is equal to the crisp outpuly;on (x2)
obtained forx,

Ymom (X1) = yaom(X2) - (9.100)

This can easily be verified by substitutirigs (x2) DY diee(x1) and irigne(x2) by
iright (X1) in the expression fogy,oy (x2).

Case ¢ When the smallest linguistic output value fired to the maxinfutfilment
degree forx; is equal to the smallest linguistic output value fired to thaximum
fulfilment degree foi,, the largest linguistic output value fired to the maximum ful
filment degree forx; is smaller than the largest linguistic output value firedHe t
maximum fulfilment degree fat, and the smallest linguistic output value differs from
the two ‘largest linguistic output values.e.

tlefs (X1) = Geft (X2) < Gright (X1) < trignt (X2) ; (9.101)

three subcases can be distinguished.

Z41‘ight(xl)
Casecl If > k; > 0, then the difference between the crisp outputs
J=t1eft (X2)

Yitom (X2) andyion (x1) is given by

iright (x2) iright (xl)

i )kjl G ) 42( )kjscj3
* * J1=1left (X J3=1%left (X
yarom (X2) — yarom (x1) = = ir:git(xz) - irilgfxt(xll) ’ (9.102)
ka Z kj4
J2=11ett (X2) Ja=11et (X1)
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or, after substitution ofjef; (x1) DY 41est (X2), DY

Yaom (X2) — Yarom (X1)

iright (X2) iright (X1)
kjl Cjy Z kjs Cijs
_ J1=tess (x2) Ja=tlert (X2)
iright (x2) iright(xl)
ka Z kj4
J2=11eft (X2) Ja=tleft (X2)
iright (X2) iright (X1) -1

= § ka E kj4

J2=11eft (X2) Ja=t1eft (X2)

iright (X1) iright (X1) iright (X2)
X E kj4 E kjl Cj, + E : kj1 Cjr
Ja=t1et (X2) J1="t1ett (X2) J1=tright (x1)+1
Tright (X1) iright (X2) iright (X1)
- Yk >k > ki,
J2=tleft (X2) J2=tright (X1)+1 J3=tleft (X2)
7;right(xl) iright(x2) iright(x2) iright(xl)
Kjs > ki - > ki X ko
_ Ja= et (x2) J1=tright (x1)+1 J2=ftright (x1)+1 J3=tlers (X2) (9 103)
iright (X2) right (X1) )
k]é Z kj4
J2=l1eft (X2) Ja=t1eft (X2)

iright (X2)

If > k; = 0, then the difference betweeg; ) (x2) andyy;on (x1) is zero.
J=fright (x1)+1

iright (X2)

If > k; > 0, then the difference betweeyf;,y(x2) and y3;on(x1) is
J=tright (x1)+1

strictly positive since for the assumed fuzzy output p@nc; .. (x,) < Ciuue(x1)+1
and it follows with Eq. (9.89) that

iright (X2)
kjc;

Pzt Gt (9.104)

- <SG
lright(x2) Tright (X2) ’
kj

j=iright (xl )+1

Cirigne (x1)+1 =

iright (X1)
kjc;

J=tlest (X2)
TGy S Cinigne () - (9.105)
k;

J=t1efs (X2)

Cilee (x2) =
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Case c2 If (V) € [t (X2), trigns (x1)]) (K; = 0) and
iright (X2)
> k; > 0, then the following chain of inequalities holds

J=trignt (x1)+1

Cileft(xl) S yi\k/IOM(Xl) S ciright(xl) < ciright(x1)+1 S yi\k/IOM(Xz) S ciright(x2) ’
(9.106)
and it follows that the crisp outpufi;oy(x1) is smaller than or equal to the crisp
outputyy o (x2)
Yaom (X1) < yyrom(X2) - (9.107)

Case ¢3 Finally, when all linguistic output values fired to the maudam fulfil-
ment degree are described by triangular membership  furstio
(Vj € [hess(x2),%right (x2)])(k; = 0), the difference betweem;;,,(x2) and
yxiom (X1) is given by a special case of Eq. (9.103)

Z/K/{OM(X2) - yKﬁOM(Xl)

iright (X2) -1 iright (X2) iright (X1) -1 iright (X1)
J2=11eft (X2) J1=11ett (X2) Ja=t1ett (X2) Ja=t1eft (X2)
(9.108)

which was shown to be positive.

Case d When the smallest linguistic output value fired to the maxinfutfiliment
degree forx; is smaller than the smallest linguistic output value firedht® maxi-
mum fulfilment degree foks, the largest linguistic output value fired to the maximum
fulfilment degree foix; is equal to the largest linguistic output value fired to thexma
imum fulfilment degree fok, and two ‘smallest linguistic output values’ differ from
the largest linguistic output valuee.

ieft (X1) < Gleft (X2) < fright (X1) = trignt (X2) (9.109)

three subcases can be distinguished.

iright(XZ)
Case d1 If > k;j > 0, the difference between the crisp outputs
J=t1efs (X2)

Yriom (X2) andyion (x1) is given by Eq. (9.102), or, after substitution g (x1)
by Z.1[*ight (Xg), by

yntom (X2) — Ynom (X1)

iright (x2) iright (x2)
kjl Cj1 E kj3 Cjs
_ J1=iers (x2) Ja=tlete (x1)
iright (X2) iright (X2)
ka Z kj4
J2=t1ett (X2) Ja=11et (X1)
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iright (X2) iright (X2) -1
( >k > k:j>

J2=tlest (X2) Ja=tlest (X1)

tlegt (x2)-1 iright (X2) iright (X2)
(Y ae S w) Y

Ja=tlest (X1) Ja=tleft (X2) J1="11eft (X2)

iright (X2) Tlest (X2)-1 iright (X2)
(Y mer S k)
J2=t1eft (X2) Ja=11eft (X1) Ja=t1efs (X2)
ilers (X2)-1 iright (X2) Tright (X2) tlers (X2)-1
ki X2 ke — X ki X kg
_ Ja=Tlefs (x1) J1=l1eft (X2) J2=t1eft (X2) Ja=t1eft (X1) (9 110)

right (X2) right (X2)
kin >k
Je=tlert (X2) Ja=tlert (X1)
One can easily verify following a similar procedure as diesat in Case c1 that this
difference betweep;; o (x2) andyz;on (x1) IS positive.

Case d2 If (V) € [t (X2), tright (x2)]) (k; = 0) and
d1eft (x2)-1
>>  k; >0, the following chain of inequalities holds

J=t1eft (X1)
Cilegy (%1) < yi\k/IOM(Xl) < Ciree (x2)-1 < Cipgry (x2) < yKIOM<X2) < Cirigne (x2) (9111)

and it follows that the crisp outpufi;o,(x1) is smaller than or equal to the crisp
outputyyon (x2)
Yaom (X1) < yrom (X2) - (9.112)

Case d3 Finally, when all linguistic output values fired to the maxim fulfil-
ment degree are described by triangular membership  furstio
(Vj € [hess(x1),%right (x2)])(k; = 0), the difference betweemn;;,,(x2) and
yxiom (X1) is given by a special case of Eq. (9.110)

Yamom (X2) — Ynrom (%1)
iright (X2) =1/ drighe(x2) iright (X2) =1/ irigne(x2)
J2=t1eft (X2) J1="t1eft (X2) Ja=t1efs (X1) J3=t1eft (X1)
(9.113)

which was shown to be positive.

Case e When the smallest linguistic output value fired to the maxinfuffilment
degree forx; is smaller than the smallest linguistic output value fireth®smaximum
fulfilment degree forx,, which on its turn is smaller than the largest linguisticpuut
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value fired to the maximum fulfilment degree for, which on its turn is smaller than
the largest linguistic output value fired to the maximum folént degree fok,, i.e.

ileft (Xl) < ileft (XQ) < Z'right (Xl) < Z‘right (XQ) 3 (9114)

four subcases can be distinguished.

right (X1) right (X2)
Caseel If > k; >0and )  k; > 0, then the difference be-
J=lee (X1) J=llefs (X2)

tween the crisp outputs; oy (x2) andyyon (x1) is given by Eq. (9.102)

Z/ik/IOM(X2) - waM(Xl)

iright (X2) iright (X1)
kjlcjl Z kj3cj3
_ J1=es (x2) Ja3=tleft (X1)
iright (X2) iright (X1)
ka kj4
Je2=flert (X2) Ja=ftest (x1)
iright(x2) iright(xl) -1
= E kj2 E : kj4
Jo2=tlert (X2) Ja=tlert (%1)
iright(xl) iright(xl) 7;right(XZ)
X E k'j4 E kjlcjl -+ E kjl le
Ja=t1efs (X1) J1=11eft (X2) J1=tright (X1)+1
Tright (X1) iright (X2) Tright (X1)
- >kt kj > ki
J2 =110t (X2) J2=tright (X1)+1 Ja=t1et (X1)
iright (X2) iright (X1) -1
= E kj2 E : kj4
J2=t1efs (X2) Ja=t1efs (X1)
et (X2)-1 iright (X1) iright (X1)
X § : kj4+ § : kj E : kjlcjl
Ja=tlert (X1) Ja=tlert (X2) J1=lert (X2)
iright (X1) Teft (X2)-1 iright (X1)
- Y K S ket Y. ki,
J2=tlest (X2) Ja=tlest (X1) Ja=rtlest (X2)
iright (X1) iright (X2) iright (X2) iright (X1)
+ Yk ) kjicj — ) i Y, ko
Ja=t1efs (X1) J1=tright (x1)+1 J2=tright (x1)+1 J3=tlef (X1)
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irignt (X2) irignt (X1) -1
= ( Z kj2 Z kj4>

Jo2=tlert (X2) Ja=flert (X1)
ileft (X2)-1 iright (X1) iright (X1) ileft (X2)-1
x DR D S N N A N TR
Ja=tlefs (X1) J1="t1eft (X2) J2=t1est (X2) Ja=t1efs (X1)
iright (X1) iright (X2) iright (X2) iright (X1)
+ § : ka; E : kjl Cjy — ka E : kjs Cjs
Ja=t1et (X1) J1=tright (x1)+1 J2=tright (x1)+1 J3=t1ef (X1)

(9.115)

One can easily verify following a similar procedure as diesat in Case c1 that this
difference betweep;; o (x2) andy;y;on (x1) iS positive.

Case e2 If (Vj € [t (X1), tright (x1)]) (K = 0) and
iright(x2)
k; > 0, then the following chain of inequalities holds

J=tright (x1)+1
* *
Ciegy (x1) < yMOM(Xl) < Cirignt (x1) < Cipigny (x1)+1 < yMOM(XQ) < Cirigne (x2)

(9.116)
and it follows that the crisp outpuyt;,(x1) is smaller than the crisp outpyit; oy (x2)

Yarom (X1) < Yarom(X2) - (9.117)

Case e3 If (Vj € [ttt (X2), trigns (x2)]) (k; = 0) and
ilers (X2)-1
k; > 0, then the following chain of inequalities holds

J=tlete (%1)
Citege (x1) = yK/IOM(Xl) < Citere (x2)-1 < Cijopy (x2) < y;AOM(XQ) < Cirigne (x2) (9.118)
and it follows that the crisp outpyt;,, (x1) is smaller than the crisp outpud; oy (x2)

Yarom (X1) < Yrrom(X2) - (9.119)

Case e4 Finally, when all linguistic output values fired to the maxim fulfil-
ment degree are described by triangular membership  fursgtio
(Vi € [her(x1),%rignt (x2)])(k; = 0), the difference betweemn;;o(x2) and
yriom (X1) is given by a special case of Eq. (9.115)

Yaom (X2) — Yarom (X1)

iright (X2) -1 iright (X2) right (X1) -1 iright (X1)
J2=t1eft (X2) J1=t1ert (X2) Ja=t1et (X1) Ja3=ftlert (X1)

(9.120)
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which was shown to be positive.

Based on the results obtained for Cases a—e it can be coddhatea monotone
input-output behaviour is obtained for each subs@&geand, by construction, for the
whole input space of a Mamdani—Assilian model with a smool# base and applying
Tp.

9.5 Models with a monotone rule base and two input
variables

In this section the monotonicity of models with a monotonie lase and two input
variables is investigated for models applyifig; or 7». Models with more than one
input variable applyindl1, are again not considered. For models applying the
output membership functions are again assumed to satisfy(B33-9.34).

9.5.1 Models applyingln

In this section it is shown that there exist models with twpunvariables and a
monotone non-smooth rule base, for which a non-monotong-optput behaviour is
obtained for any fuzzy output partition as described inigaci.2. As the goal of this
study was to select combinations of t-norm and defuzzificathethod resulting in a
monotone input-output behaviour for any monotone rule bas&y monotone smooth
rule base, the combination @h; and MOM defuzzification is hereby abandoned as
appropriate combination in case of a monotone non-smodgtbases.

When a model with two input variable$, and X, contains the following rules,
represented in Fig. 9.3, in its monotone but non-smoothbrake §;,¢2 € Ny, q1 <

q2)

IF X,ISB}, AND X,ISB?  THEN Y IS4,

IF X;ISB!, AND X,ISB?,, THEN Y ISA;,
IF XISB!,, AND X,ISB; THEN Y IS4,

IF X,ISB!,, AND X,ISB?, THEN YIS A,
IF X;ISB!,, AND X,ISB?  THEN YIS A,
IF XiISB!., AND X,ISB?.,, THEN YIS Aig

the following chain of inequalities should be satisfied whemmodel has a monotone
input-output behaviour

YMOM.2M.1 < YMOM 2M,2 < YMOM,2M.3 » (9.121)
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q1,92 € No,q1 < g2
Ai+q2 Aiﬂnﬂzz Aiﬂnﬂu
A; A; Aitgq

Figure 9.3: Example of a monotone non-smooth rule base fachwho monotone
input-output behaviour can be obtained when applyiRgcombined with
the MOM defuzzification method.

with
Yaromama o B (1) = Jl+1($1) = 0.5,
B (x 2) B (22) = 0.5,
- YNOM.2M. 2 If B1 (r1) < 0.5, B} (1) > 0.5,
Bi (3?2) = B2, (x2) = 0.5,
IUK/{OM,zM,g , if lel+1(x1) = BJ1'1+2(331) = 0.5,
B3, (x2) = B}, (72) = 0.5.

The crisp outputgy; oy 2 ; are derived from fuzzy outputs with correspond-
ing setsliax,i,
L4 Imax,l = {i’i+Q2,i+Q1+QQ},

L Imax,Q = {iai"'(h"'(h}, and

° Imax,3 = {iai+Q1,73+(J1+Q2} .

Since the weights;, Wi+q, , Witg,, Witq +¢, IN EQ. (9.27) are strictly positive,
the difference between the outputs is given by

Witgy (Witgy +gs (Citgitgs — Civgs) — Wi(Cirg, — Ci))
(wi + Witg, + wi+q1+q2)(wi + wi+tZ1+qz)
(9.122)
Witg, (Wi(Cirg, — Ci) — Witg,+qy (Cirgu+gs — Citgr))
(wi + Witq, + wi+q1+q2)(wi + wi+q1+q2)
(9.123)

* *
YmoM,2M,2 — YMoM,2M,1

* *
Ymom,2M,3 — YMOM,2M,2
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oe
0

1 > < 1 1
Bj1 Bh*l >< 311*2 Xl

Figure 9.4: Crisp outpuiy;); Obtained for the rules represented in Fig. 9.3Fo«
T™m, q =1, go = 2 andBj22 (,’L‘Q) = B]2-2+1(.T2) = 0.5.

and, SinCe:; < Cirg, < Citgy < Citgy gy, it fOllOws that

YvoM,2M,1 < YMOM,2M,2 < YMOM,2M. 3
& (WilCitg, = €i) < Witg g (Citgrrgs — Citgs))
A (wi+QJ+Q2 (Ci+tI1+lJ2 - Ci+f11) < w; (Ci+lI1 - C’i))

o Gtares T Civgr o Wi Citqitg T Citgo

Citqy — Ci T Witqytgy Citqy — Ci
= (Citgy — Ci)(Cingqrray — Cingr) < (Cingy — Ci)(Civgrrgs — Citg)
© 0 < (Cirgyrge — Ci)(Cirgy — Cingy) - (9.124)

However, ag;+q,+¢, > ¢; @ndci+q, < ci+q,, the latter expression can never be positive,
and therefore Eq. (9.121) does not hold. This is illustratdeig. 9.4 for the rule base
in Fig. 9.3.

9.5.2 Models applyinglp

We show in this section that also when applyifig, opting for a monotone smooth
rule base is recommended when designing a monotone moxed, sionotonicity is
not obtained for any monotone, but non-smooth rule baseifiibdel uses more than
five linguistic output values.

A monotone input-output behaviour should be obtained forcaatone, but
non-smooth rule base containing the following rules, repn¢ed in Fig. 9.5, with the
three linguistic output values;, A;.,, andA;.,, +4, in their consequentsgyq, g> € No)
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Xo

Ai+q1 Ai+q1+q2 Ai+q1+q2

Aq Aq Airgq

1 > < 1 1
le B71+1 >< BJ1+2 Xl

Figure 9.5: Representation of the monotone non-smoothbade discussed in Sec-
tion 9.5.2.

IF X,ISB), AND X,ISB? THEN Y IS4,

IF X,ISB, AND XISB;. THEN YISAu,

IF X,ISB,, AND X,ISB} THEN YIS4,

IF X,ISB!, AND X,ISB:, THEN YIS A
IF X,ISBlL,, AND X;ISB;  THEN YIS Ay,
IF X,ISBl,, AND X;ISB}. THEN YIS Aug .

in order to withhold the combination of the t-norfip and the MOM defuzzification
method for the design of monotone models with a non-smodéhhrase.
To that end, the following chain of inequalities should hold

YMOM 2P.1 < UMOM,2P.2 < UMOM,2P.3 » (9.125)
with
Ysomzp i B (21) = B} 4y (21) = 0.5,
( 2) B 2+1($2) =05,
Wiront = YNOM 2P 2 If B1 (z1) < 0.5, Bj 41 (x1) > 0.5,
32 (xg) BJQ2+1 (x2) = 0.5,
YMOM,2P,3 'f Bj (1) = B11+2($1) =05,
3]22(@) B2, (x2) = 0.5 .

The crisp outputgy; oy 2p ; @re derived from fuzzy outputs with corresponding
Sets}max,ia

o Imax,1 = {4, 1+q1,i+qi+q2},

L4 Imax72 = {i,i+Q1+Q2}, and
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® Imax,3 = {iai+Q1»i+Q1+QQ} .
In models applyinglp the crisp model output;;oy depends on which linguistic
output values are fired to the maximum fulfilment degtigg., but does not depend
on the value as such, of the maximum fulfilment degree as shgvieg. (9.24). Thus
for the rules represented in Fig. 9.5 it holds that
y§AOM,2P,1 = yK/IOM,2P,3 ) (9.126)
and Eq. (9.125)can only hold if

yKAOM,2P,1 = yKAOM,2P72 . (9.127)

Case a If k;, ki+q, andk;+q,+4, are all strictly positive, Eq. (9.127) is equivalent with

kic; + kiﬂh Citq, T ki+Q1+Q2 Citqr+qz __ kic; + ki+Q1+q2 Citqi+q2

ki + ki"'Ql + ki+Q1+CI2 ki + ki"'fh"‘q;:
& Kikirq, Cirgy + Kivg, Kivgirgs Civgy = Kiking, Ci & Kingy Kivg +qs Civgr+as
= kz (Ci+q1 — C»L') = ki+ql+q2 (Ci+q1+q2 — Ci+q1) . (9128)

Case b If k; andk;.,, are strictly positive and;.4,+4, iS equal to zero, Eq. (9.127)
doesnot hold asc; < cj+q,

k; + ki+q1
YmoM,2p,2 = Ci - (9.129)

E3
YmMom, 2P, 1

)

Case c If k; andk;+q, +4, are strictly positive and;+,, is equal to zero, Eq. (9.127)

holds as

kici + Kitgi+g5Citgi g
ki + Kirgy+qo

Ymom,2p,1 = = YMOM,2P 2 - (9.130)

Case d |If k; is strictly positive andc;+q, andk;.q,+4, are equal to zero, Eq. (9.127)
holds as

YMOM,2P,1 = Ci = YMOM 2P 2 - (9.131)

Case e If kj+q, andk;.q,+q, are strictly positive and; is equal to zero, Eq. (9.127)
doesnot hold ascj+q, < Citgy+gs

kiﬂh Ci+g, T kiﬂh +q2 Citqi+qz

b

*
Ymom,2p,1 —
kiﬂh + ki+q1+q2

YMOM,2P,2 = Citqi+gs - (9.132)
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Casef If kg, is strictly positive and:; andk;+q, +4, are equal to zero, Eq. (9.127) is
equivalent with

1
Citqy = 5(61 + Ci+Q1+42)

= Ci+q1 — C; = Ci+q1+q2 — Ci+q1 . (9133)

Case g If kjiq,+q, is strictly positive and:; andk;.,, are equal to zero, Eq. (9.127)
holds as

QK/IOM,ZPJ = Citqu+qz = yK/IOM,ZP,Q' (9.134)
Case h If k;, ki+q, andk;+q,+4, are all equal to zero, Eq. (9.127) is equivalent with

1
g(ci + Ci+qy + ci+Q1+qz) = §(Ci + Ci+q1+q2)

< Ci+q; — Ci = Ci+qi+qy — Ci+qq - (9135)

As the model designer should have the freedom to apply theeabet of six
rules to any combination of three different linguistic auttpvaluesA;, A;.,, and
Aivq,+q,, fUzZy output partitions that contain a triangular membgrgunction pre-
ceded by two or more trapezial membership functions as veeluazy output parti-
tions that contain a triangular membership function fokoWby two or more trapezial
membership functions should be discarded when monotgngitequired, as a non-
monotone input-output behaviour is obtained for Cases keafithese findings restrict
the output membership functions to fuzzy partitions théisgaone of the following
conditions:

1. n trapezial membership functions,
2. n triangular membership functions,

3. trapezial membership functiods andA,, andn-2 triangular membership func-
tions A4, fori € {2,...,n-1}, or

4. one trapezial membership function and triangular membership functions.

In order to withhold the combination of the t-norffi and the MOM defuzzi-
fication method for the design of monotone models with a mam®nhon-smooth rule
base, monotonicity should also be obtained for the set eruked in Section 9.5.1
to support the recommendation to use a monotone smooth aske wheril’ = Ty
and presented in a schematic way in Fig. 9.3. In the follovgaggraphs the chain of
inequalities in Eq. (9.125) is investigated for the sevesesdisted in Table 9.1.

Cases a and g If k;, ki+q,, Ki+q, andk;.q,+4, are all strictly positive or all equal to
zero, all weightsw;, Wi+q, , Witq, aNAdWj+g,+¢, IN EQ. (9.24) are strictly positive. In
this case, the differences between the crisp outpfits,; ,p ; are identical to those
in Egs. (9.122-9.123) and Eq. (9.124) proves that non-noordity is obtained in this
situation.
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Table 9.1: Cases to be considered when investigating tha afainequalities in
Eq. (9.125) for the rules represented in Fig. 9.3 and mogwil/eng Te.

ki kiﬂh ki+Q2 ki+Q1+QQ ki kiﬂh k“(Zz ki+Q1+Q2
a >0 >0 >0 >0 e =0 =0 >0 =0
b >0 =0 =0 >0 f =0 =0 =0 >0
c >0 =0 =0 =0 g =0 =0 =0 =0
d =0 >0 =0 =0

Case b If k; andk;+4,+q, are strictly positive and;+,, andk;.,, are equal to zero,
Eqg. (9.125) holds since

* ok ok _ klci + ki"'(Il +q2 Citq1+qs 9.136
YmoMm,2P,1 = YMOM,2P,2 = YMOM,2P,3 = L L . o. )
i T Ritgi+gs

Case c If k; is strictly positive andk;+q,, ki+g, and k;+q,+4, are equal to zero,
Eq. (9.125) holds since

* . * . * —
YmoM,2P,1 = YmoMm,2P,2 — YmoMm,2P,3 = Ci - (9.137)

Case d If kjq, is strictly positive andk;, ki+g, and ki.q,+4, are equal to zero,
Eq. (9.125) doesot hold. Indeed,

YMOM,2P.1 < YMOM,2P 2
1 1
<~ g(ci + Civg, + Ci+<Z1+Q2) < 5(01 + Ci+Q1+qz)
= 207;+q2 S C; =+ Ci+q1+q2 ) (9138)
and

YnmoM 2P.2 < YMOM 2P 3
1
~ Q(Cl + Ci+q1+Q2) < Citqy
= C; —+ Ci+q1+q2 S 26i+Q1 y (9139)
together withc;+q, < ci+g,, iImply that Eq. (9.125) does not hold.

Case e If kjiq, is strictly positive andk;, ki, and k;iq,+4, are equal to zero,
Eq. (9.125) doesot hold. Indeed,

* *
YMOM,2P,1 < YMOM,2P 2
1
e Citqy < §(Ci + Ci+<h+qz)

< 2ci+qz < ¢+ Civgrtgs s (9140)
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and

* *
YMOM,2P,2 < YMOM,2P,3

1 1
And §(Ci + Ci+q1+Q2) < g(ci T Cirg, T Ci+CJ1+qz)
= C; + Ci+q1+q2 S 26i+q1 5 (9141)

together withe;+q, < civg,, iImply that Eq. (9.125) does not hold.

Case f If Kjiqg,+q, is strictly positive andk;, ki+q, and k.., are equal to zero,
Eq. (9.125) holds since

* _ * _ * _
Ymom,2P,1 = YmMoM,2P,2 = YMOM,2P,3 = Citqi+gs - (9.142)

If all output membership functions are trapezial, the nurmdddinguistic out-
put values should be smaller than or equal to three, since foe 1 andg, = 2
non-monotonicity is obtained if the rule base contains sigg as in Fig. 9.3 and there
are four consecutive trapezial membership functions (@xséf the number of out-
put membership functions is three, they should satisfite — ¢1) = k3(cz — ¢2)
(EqQ. (9.128)). If the number of output membership functiensmaller than three, no
monotone, but non-smooth rule base can be constructed.odmadly, if all output
membership functions are triangular, the number of linfrizsutput values should be
smaller than or equal to three (Case g) and if the number gtiigtic output values is
equal to three, the membership functions should satisfyc; = c3 —c3 (Eq. (9.135)).
The results obtained for Cases a and g also restrict the muwhbeguistic output val-
ues for fuzzy output partitions with trapezial membershipdtions for the first and last
membership function and triangular membership functiamgtHe intermediate mem-
bership functions. In this case the number of linguistigativalues should be at most
five and if the number of linguistic output values is five th@ditioncs — co = ¢4 — ¢3
(Eg. (9.135)) should be satisfied. Using the results obtbioeCases d and e, among
the fuzzy output partitions consisting of only one trapkaiambership function com-
bined with triangular membership functions, only four tgpmuld be withheld: two
types of fuzzy partitions with four membership functionsce with the first member-
ship function and once with the fourth membership functiemb trapezial, and two
types of fuzzy partitions with three membership functionthwhe trapezial member-
ship function being either the first or the second memberstiptions. Summarizing,
it can be concluded that monotonicity is obtained for the $&ts of rules represented
in Figs. 9.3 and 9.5 that might occur in a monotone, but nooegmrule base, for
fuzzy output partitions with five membership functions iétbrder of triangular and
trapezial membership functions is

{trapeziaJtriangular triangular triangular trapezia} with ¢z —ca =c4 —c3
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with four membership functions if

{trapeziaJtriangular triangular trapezia}
{trapezialtriangular triangular triangulalt  with ¢35 —co = ¢4 — 3
{triangular triangular triangular trapezia} with co —c; =c3 — ¢

and three membership functions if

{trapezialtrapezialtrapezia} with k1 (co — 1) = ks(cs — ¢2)
{triangular triangular triangularg with co —c; =c3 — ¢
{trapeziaJtriangular trapezia}

{trapeziaJtriangular triangulas

{triangular trapezial triangular with ¢ —ci =c3—co

Moreover, it can be proved that for these types of fuzzy fiants a monotone input-
output behaviour is obtained for any monotone rule base.

9.6 Conclusion

In this chapter, it was proved that a Mamdani—Assilian maghglying the MOM de-
fuzzification method is monotone if it corresponds to onehefgix model types listed
in Table 9.2, characterized by a number of input variablesa t-normT’, an either
monotone or monotone smooth rule base and additional giepef the membership
functions appearing in the rule consequents. For the t-ridym models with a sin-
gle input variable show a monotone input-output behaviouahy monotone rule base
when the linguistic output values in the consequents ofitesrare defined by trapezial
or triangular membership functions with intervals of chiaggmembership degree of
equal length, whereas for the t-norffis and71,, models with a single input variable
show a monotone input-output behaviour for any monotone lbalse and any fuzzy
output partition. The monotonicity of models with two inpuriables applyingde is
only guaranteed for any monotone rule base when using o afibhe types of fuzzy
output partitions defined in Table 9.3. Finally, it is prodhdt a monotone input-output
behaviour is always obtained for models with a monotone $imnde base applying
Tw when the linguistic output values in the consequents of tiesrare defined by
trapezial or triangular membership functions with intésvaf changing membership
degree of equal length and for models with a monotone smaodetbase applyind’e
for any fuzzy output partition.

The interpolation procedure presented in Section 8.6 haiveeuser-defined
fuzzy output partition and a second fuzzy partition satigfyjthe constraints required
to guarantee monotonicity, can also be incorporated in teoagplying the MOM
defuzzification method. Therefore, monotonicity can bergnteed for all models with
a monotone rule base, one input variable and applying eftherle or Ty, as well
as for all models with a monotone smooth rule base, an uigestmumber of input
variables and applying eith&h, or Tp, regardless of the fuzzy output partition.
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Table 9.2: Mamdani—Assilian models for which monotoniégyguaranteed if apply-
ing the MOM defuzzification method characterized by a nundfanput
variablesm, a t-normT’, an either monotone or monotone smooth rule base
and additional properties of the membership functions appe in the rule

consequents.
m T rule base additional propertief,
(VS € {17 e 77‘})(7;3 ¢ {13 n})
1 1 Twm monotone (B> 0)(Vi € T\ {n})(l; = 1)
2 1 Tp monotone
3 1 1Ty monotone
restricted class of nine types of
4 2 Tp monotone fuzzy partitions given in Table 9.3
(Vs e{l,...,r})(is ¢ {1,n})
5 Ty monotone and smooth (3> 0)(¥i e T\ {n})(i; = 1)
6 Tp monotone and smooth

Table 9.3: Characteristics of the nine partitions for whiobnotonicity can be guaran-
teed for models with two input variables and a monotone rakebapplying
Tp and the MOM defuzzification method.

n k1 ko ks ka ks additional propertiest;
5 >0 0 0 0 >0 lh =13

4 >0 0 0 >0

4 >0 0 0 0 lo =13

4 0 0 0 >0 1 =1

3 >0 >0 >0 kil1 = ksls

3 0 0 0 i =1

3 >0 0 >0

3 >0 0 0

3 0 >0 0 1 =1
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However, for models with two input variables and a monotome-smooth rule
base applyindp, the interpolation procedure does not allow the user to ogdluezzy
output partition. The nine types of fuzzy partitions in T@Bl3 for which monotonicity
is guaranteed cannot be extended to all fuzzy partitions #sel nine types of fuzzy
partitions

1. the maximum number of output membership functions is fiva a

2. the second to second last membership functions in altipag with four or five
membership functions are triangular.

The relationship between the crisp outplitreturned by the inference procedure using
the second fuzzy partition and the crisp outptiin the output domain defined by the
model designer is functionale. it maps each crisp outpyt* to one crisp outpug*. If

a trapezial membership function in the user-defined fuzziitjwen is represented by a
triangular membership function in the second partitioy ome value within its kernel
can be returned as model outptrendering the other elements of the kernel of this
trapezial membership function redundant and leading taddi{jonal) discontinuity

in the model output.

Thus, if the monotonicity of a model with two input variables monotone
rule base and applyin@p should be guaranteed and one wants to use four or five
linguistic output values, one is only free to choose the shagither triangular or
trapezial, of the extreme membership functions, and shdefihe the intermediate
linguistic values by triangular membership functions. iieovants to use only three
linguistic output values, the shape of all output membgrghinctions can be cho-
sen freely as a fuzzy partition of three trapezial members$binctions guarantee-
ing monotonicity can be used to determip€. One easily verifies that when the
second fuzzy partition is chosen such that all trapezial beeship functions have
kernels of equal length, and that all membership functiceehintervals of chang-
ing membership degree of equal length as well, then the ofaeser-defined fuzzy
output partitions for which monotonicity is guaranteed, ficodels with a monotone
rule base, two input variables and applying the t-ndfg can be summarized as
{ *, triangular, triangular, triangular, *}, { *, triangular, triangular, *}
or{* * * } with * amembership function that might be either triangwdatrapezial.
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cHaPTER 10

| ATL-ATM models

Le seul eritable voyage n'est pas d'aller vers d'autres
paysages, mais d’avoir d’autres yeux.
(Marcel Proust)

10.1 Introduction

In this chapter the monotonicity is investigated of lingigisuzzy models applying

plain implicator-based inference or ATL—-ATM inference idtverified for the three t-

normsTy;, Tp andTy, and the three R-implicatos,;, /p andly, whether a monotone
input-output behaviour is obtained for any monotone rulsebar at least for any
monotone smooth rule base. The models are assumed to hatibaaldproperties

apart from the properties described in Section 7.2: theulst output values in the
rule consequents are assumed to be defined by trapeziamyutar membership func-
tions of identical shape.e.

(Vs € {1,...,r) (s ¢ {1,n}), (10.1)
@ > 0)(Vie I\ {n})li =1), (10.2)
(Tk > 0)(Vi € I\ {1,n})(k; = k). (10.3)

However, the auxiliary interpolation procedure describe8ection 8.6 allows to ex-
tend the results obtained in this chapter to any fuzzy oupgutition as defined in
Section 7.2.1.

In Section 10.2 the monotonicity of linguistic fuzzy modalith a monotone
rule base applying implicator-based inference withoungishe ATL and ATM modi-
fiers is described. As for thiglain implicator-based inference procedure monotonicity
cannot be guaranteed for models with two or more input vieglout only for models
with a single input variable and a smooth monotone rule lhgesection justifies the
introduction of the new implicator-based inference prared

Since the ATL-ATM inference procedure has not been destiibditerature,
Section 10.3 is dedicated to some general remarks on thenfevemce procedure.
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Sections 10.4-10.6 discuss ATL-ATM models with up to twalingariables, applying
the t-normTy, Tp or T, the R-implicatorlyy, Ip or I1, and the Mean of Maxima
(MOM) defuzzification method. In Section 10.4, the monotityi of models with a
single input variable is studied for the R-implicatdsg, /p andIy,. In Section 10.5,
the monotonicity of models with two input variables and a wtone smooth rule base
is discussed for the nine combinations of the t-noiis 7p and7t, and the three im-
plicatorslng, Iy andly,. As the research pointed out that when applying the impicat
Ing or Ip monotonicity cannot be guaranteed for models with a singbeiti variable
and any monotone rule base, Section 10.6 deals with the mioicidy of models with
two input variables and a monotone rule base for the immicht only. The chapter
concludes with a summary of the obtained results in Section. 1

10.2 Motivation for the use of ATL and ATM modifiers

As discussed in Section 7.4 a prerequisite for a monotoneehisdo return a non-
empty fuzzy output different from the universal set for amgut vectorx. In the coun-
terexample below it is shown that obtaining a meaningfugzjuautput for any input
vectorx cannot be guaranteed for models with two input variablesasnydmonotone
(smooth) rule base when applying plain implicator-baséerénce.

The set of four rules

IF X,ISB, AND X,ISB2 THEN YIS4,

IF X,ISB!, AND X,ISB?,, THEN YISAu
IF X,ISBl,, AND X,ISB:  THEN Y ISAu,
IF X;ISBl,, AND X,ISB, THEN YIS A,

can occur in a monotone smooth rule base as well as in a manotmmsmooth rule
base. For an input vector = (x1,x2) not firing any other rule than the four rules
above

M =1-Bj (21) = Bj . (z1), (10.4)
Y2 =1 = B}, (x2) = B}, (22), (10.5)

the fulfilment degrees of the linguistic output valués A;+; andA;., are obtained by

;=T —v,1—7), (10.6)
a1 = max(T(1 —vy1,72), T(v,1 —12)), (10.7)
Qi+ = T(’Yh 72) , (10.8)

with the t-normT eitherTy; or Tp. The t-normT3, is not taken into consideration as
for v = 72 = 0.5, the fulfilment degrees of all linguistic output values agei@ to
zero and the universal set is obtained as fuzzy model outpet$ection 7.4.2).

In the following paragraphs the model behaviour for inputteesx satisfying
Egs. (10.4)—(10.5) is first discussed for the implicatbys and Ip and then for the
implicator I1,. Before starting the discussion, the reader is remindedritihis study,
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a linguistic output valued; originates from a fuzzy partition of trapezial membership
functions as shown in Fig. 7.1 and its support and kernel mendy (note that €

I\ {1,n})
SUpF(AZ-) = ]agi_g,agiﬂ[ kern(Ai) = [agi_l, azi] . (10.9)

Models applying Ins or Ip When a linguistic output valuel; is fired, i.e. if its
fulfilment degreey; is strictly positive, only output valueg belonging to the support
of A; have a non-zero membership degree to the adapted membérsbtjpn A
when using the implicatahy; or Ip

(Vy € Y)(VIr € {Im, Ip})(y < azio = Ir(ai, Ai(y)) = 0), (10.10)
(Vy S Y)(VIT S {IM7IP})(a2i.2 <y <ags = Ir(a;, Ai(y)) >0), (10.11)
(Vy S Y)(VIT S {IM,IP})(y > A2i+1 = IT(CVZ‘, Al(y)) = 0) . (1012)

Thus, when the adapted output membership functions arénebtavith /s or Ip,
the minimum of the membership degrees to the adapted mehibéusictions of two
fired, non-consecutive linguistic output valuésandA;., (p > 1) is equal to zero for
all output valueg,

Vy € Y)(VIr € {Im, Ip})(p > 1 = min(Ir (e, Ai(y)), Ir(qitp, Aisp(y))) = 0),

(10.13)
since
A2i+1 < A2i+2p-2 5 (10.14)
and
(Vy € Y)(VIr € {Im, Ip})(y < agiropa = Ir(aisp, Aisp(y)) =0),  (10.15)
(Vy € Y)(VIr € {Im, Ip})(y > azint = Ir(ci, Ai(y)) = 0). (10.16)

When applying plain implicator-based inference, adapteahb@zship functions of lin-
guistic output values that are not fired are identical to thigarsal set and the mem-
bership degree to the global fuzzy outputs the minimum of the membership degrees
to then adapted membership function§. Therefore, for input vectors firing two
non-consecutive linguistic output values, as for examipéeinput vectors firing the
four rules above, the empty set is obtained as fuzzy outpuEid. 10.1(a) the adapted
membership functionsl;, A.,, and 4., as well as the fuzzy output are shown for

a model applying the t-norfip and the implicatolp, andy; = v, = 0.5.

Models applying I, When a linguistic output valud; is fired, i.e. if its fulfilment
degreey; is strictly positive, the membership degree of an outpuiergainot belonging

to the support of4; is equal tol — «;, while the membership degree of an output value
y belonging to the support of; is greater thain — «; when using the implicatafy,

(Vy S Y)(y < agi-o = IL(OéZ‘, Al(y)) =1- Oéi), (1017)
(Vy S Y)(U,Qi.Q <y < agi+1 = IL(O(“Al(y)) >1-— Oéi) s (1018)
Yy € Y)(y > agi+1 = In(ai, Ai(y)) =1 — o). (10.19)
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(a)Ip (b)IL

Figure 10.1: Fuzzy outputs obtained for input vecto(s; = v = 0.5) firing the four
rules considered in the discussion about models applyaig phplicator-
based inference. The t-noriip and implicators (aYp and (b) Iy, were
applied.

Thus, when the adapted output membership functions arénebtavith /,, the min-
imum of the membership degrees to the adapted membershifidns of two non-
consecutive linguistic output value$; and A;+, (p > 1) which are fired to a same
non-zero membership degregis equal tol — «; for all output valueg

My € Y)(p > 1= min(Ir(as, 4i(y)), [L(i, Airp(y))) =1 —a;),  (10.20)

since

G2i+1 < A2i+2p-2 , (10.21)
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and

(Vy € Y)(y < aziszp2 = (In(as, Ai(y)) > 1 — i A, Aisp(y)) =1 — i),
(10.22)

(Vy € Y)(y > aginn = (I, Aiep(y)) > 1 — i AL(i, Ai(y) =1 — o))
(10.23)

As for input vectorsx firing the four rules above, the same fulfiiment degrees are
obtained for the linguistic output values, A;+; andA;+2 wheny; = v, = 0.5

QA = Qj+1 = Qi = T(05, 05) s (1024)

the fuzzy output obtained in this case is as meaningles&asntpty set or the universal
set since all linguistic output valugshave a same membership degtee T'(0.5,0.5)
(0.5 forTyg and 0.75 forT’p) to the fuzzy outputd. In Fig. 10.1(b) the adapted mem-
bership functions4;, A;,, and A},, as well as the fuzzy outpud are shown for a
model applying the t-norri» and the implicatoty,, andy; = v2 = 0.5.

Conclusion From the discussion above, summarized in Egs. (10.13) ahadq), it
follows that for models with a single input variable and a wimme non-smooth rule
base a constant fuzzy set is obtained for some input vegtaher the empty set for
models applying/m or Ip or a fuzzy set to which all linguistic output values have a
same membership degree for models applyipgsince these models contain a set of
rules corresponding to

IF X1ISB]1 THEN Y IS A,
IF X1ISB]1-+1 THEN Y IS A4y

with p > 1. One can easily verify that models with a single input vadeadnd a
monotone smooth rule base always return a non-empty fuzpubfor the three con-
sidered implicatordys, Ip andly,. As in practice, models with a single input variable
are of minor importance, monotonicity aspects of modeldyapgp plain implicator-
based inference were not investigated in more detail instiigy.

10.3 Some general remarks on ATL-ATM models

10.3.1 Adapted output membership functions
From the definition of the modifierATL. andATM

ATL(A)(x) = sup{A(t) | t < x}, (10.25)

ATM(A)(x) = sup{A(t) | t > x}, (10.26)

it follows that the original membership functioAS'L( A;) andATM(4;) in the conse-
guents of the rules of ATL and ATM models are defined by respalgtincreasing and
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decreasing membership functions. In ATL and ATM models iogtbr-based infer-
ence is applied: the adapted output membership functiohiSL.(4;))’ and
(ATM(A;))’ are given by

(ATL(A;)) (y) = Ir(aarw,i, ATL(A;)(y)) (10.27)
(ATM(A;)) (y) = Ir(aara.i, ATM(A)(y)) - (10.28)

As the three implicatorsy;, Iy andly, considered in this dissertation satisfy
(Vx,y,2 € [0,1))(y < 2 = Ir(z,y) < Ir(x, 7)), (10.29)

the adapted output membership functidd&'L(A;))’ and (ATM(4;))" are respec-
tively increasing and decreasing functions.

When a linguistic output valuATL(A;) (resp. ATM(4;)) is not fired,i.e. if
its fulfilment degreevarr, ; (resp.aarwm,;) is equal to zero, the corresponding adapted
membership functiofATL(A4;))’" (resp.(ATM(A;))’) obtained withly, Iy or I, is
the universal set

I7(0, ATL(A)(y)) =
I7(0, ATM(A;)(y))

(10.30)
(10.31)

L,
L,

whereas, when a linguistic output valdd'L(A4;) (resp. ATM(A;)) has a fulfilment
degreeaarr,; (resp. aarm,;) equal to one, the corresponding adapted membership
function (ATL(A;))’ (resp. (ATM(A;))’) obtained withIy, Ip or Iy, is identical to

the original membership function

I1(1, ATL(A;)(y)) = ATL(4;)(y) . (10.32)
Ir (1, ATM(A;)(y)) = ATM(A;)(y). (10.33)

In this study, a linguistic output valug; originates from a fuzzy partition of
trapezial membership functions as shown in Fig. 7.1 and tpparts and kernels of
the corresponding linguistic valueésl'L(A;) andATM(A;) are given by

SUpF(ATL(AZ)) = ]agi_27 +OO[ kerr‘(ATL(AJ) = [agi_l, +OO[ s (1034)
SUp[iATM(AZ)) = ]—OO7 a2i+1[ kerf‘(ATM(Al)) = }—OO, agi] . (1035)

When a linguistic output valuaTL(A;) (resp.ATM(4,)) is fired,i.e. if its fulfilment
degreeaarr; (resp. aarwm,:) is strictly positive, only output valueg belonging to
the support oATL(A4;) (resp.ATM(A;)) have a non-zero membership degree to the
adapted membership functigATL(A;))’ (resp.(ATM(A;))’) when usingly or Ip

as implicator

(Vy S Y)(VIT S {IM, Ip})(VO&ATL’i > 0)
(y < agie = Ir(aarn,i, ATL(A4;)(y)) = 0), (10.36)
(Vy S Y)(VIT € {IM, Ip})(y > 942 = IT(aATL,i7ATL(Ai)(y)) > 0), (1037)
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respectively,

(Vy (S Y)(VIT S {IM,IP})(V(J&ATM,i > O)

(y > Q941 = IT(OéATM,Z‘,ATM(Ai)(y)) = 0), (1038)
(Vy € Y)(VIr € {Im, Ip})(y < agis1 = Ir(aarm,i, ATM(4;)(y)) > 0).
(10.39)

When applying the implicatofy,, the membership degree to the adapted member-
ship function(ATL(A;))" (resp. (ATM(A4;))’) with aarL; (resp. aarwm,:) being
strictly positive, of an output valug not belonging to the support &TL(A;) (resp.
ATM(A;)) is given byl — aarr,; (resp.1 — aarm,;), While the membership degree
of an output valuey belonging to the support dfTL(A;) (resp.ATM(A;)) is greater
thanl — aarr; (resp.l — aarm,:)

(Vy € Y)(y < agi2 = In(aarn,i, ATL(4;)(y)) =1 — aaTL,i) (10.40)
(Vy € Y)(VaarL, > 0)(y > agi2 = In(aatL,i, ATL(A;)(y)) > 1 — aarv),
(10.41)
respectively,
(Vy € Y)(y > azin1 = In(aarm,i, ATM(A;)(y)) = 1 — aarm,i), (10.42)
(Vy € Y)(Vaarm, > 0)(y < azi1 = In(oarm,i, ATM(A;)(y)) > 1 — aarm,i) -
(10.43)

Finally, since it holds for the three considered implicatbr that
Vz e [0,1)(Ip(z,1)=1), (10.44)

output values belonging to the kernel&TL(A;) (resp.ATM(4;)) also belong to the
kernel of the adapted membership functigfT'L(A;))" (resp.(ATM(4;))’)
(Vy - Y)(VIT & {IM, Ip, IL})(y > agi-1 = IT(OéATLﬂ',ATL(Ai)(y)) = 1) ,
(10.45)

(Vy € Y)(VIr € {Im, Ip, IL})(y < a2; = IT(aarm,i, ATM(A;)(y)) = 1).
(10.46)

10.3.2 Fuzzy output of the ATL and ATM model

The fuzzy output of ATL and ATM models is the intersection lod individual adapted
membership functionGATL(A4;))" and(ATM(A;))’, i.e.

A (y) = min(ATL(4:))'(9) (1047)
Axra(y) = min(ATM(4;))'(3). (10.48)

i=1

As (ATL(A4;)) and(ATM(A;))’ are respectively increasing and decreasing functions,
it follows from their definition thatd a1, and AxT\ are respectively increasing and
decreasing functions.

241



Chapter 10. ATL-ATM models
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Figure 10.2: lllustration of the property defined in Eq. @9).of adapted membership
functions in an ATL model obtained with,; (or Ip).

10.3.2.1 Models applyingln or Ip

In the following paragraphs it is shown that for a strictlyspiive fulfilment degree
aaTr,+p and the implicatordys andfp, the membership degree of any output value
y to an adapted linguistic valU\TL(A;))’ is greater than or equal to its membership
degree to an adapted linguistic valuW€TL(A4;+,))’, i.e.

(Vy S Y)(VIT c {IM, Ip})(VOzATL,Hp > 0)
(b > 1= Ir(aatis ATL(A) () > Ir(@aTL o ATL(Ai,)(3))) . (10.49)

This property is illustrated in Fig. 10.2.
As A; and A;+, originate from a same fuzzy partition as shown in Fig. 7.1 the
parameters defining the corresponding membership furectatisfy

021 < A2i+2p-2 - (10.50)

From Eg. (10.36) it follows that for all values smaller tharequal to the lower bound
of the support oATL(A;+,), Eq. (10.49) holds. Since

(Vy S Y)(VIT S {IM,IP})(VOKATL,H;; > 0)
(y < agivgp2 = I7(QATL i+p, ATL(Ai4p)(y)) = 0) (10.51)

it also holds that

(Vy € Y)(VIT € {IM, IP})(VCYATLJ#p > 0)

(y < agisop-2 = Ir(oatL,is ATL(A;)(y)) > Ir(aary,ivp, ATL(Aip) () -
(10.52)

From Eq. (10.45) it follows that for all values larger thanegual to the lower bound
of the kernel ofATL(4;), Eq. (10.49) holds. Since

Yy € Y)(VIr € {In, Ip})(y 2 a2i1 = Ir(oaTL,i, ATL(4;)(y)) = 1), (10.53)
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it also holds that

(Vy S Y)(VIT S {IM,IP})

(y > agi1 = Ir(aarn,i, ATL(A;)(y)) > Ir(aarr,ivp, ATL(Aip) (y))) -
(10.54)

Since the lower bound.;; of the kernel ofATL(A;) is smaller than or equal to
the lower boundig;+2,-2 Of the support ofATL(A;+,) it follows from Egs. (10.52)
and (10.54) that Eq. (10.49) holds.

Analogously, for a strictly positive fulfilment degreesta;, p > 1 and the
implicators Iy and Ip, the membership degree of any output vaju® an adapted
linguistic value(ATM(A;))’ is smaller than or equal to its membership degree to an
adapted linguistic valuRATM(A;+,))’, i.e.

(Vy S Y)(VIT € {IM, Ip})(VO&ATM’i > 0)

(p > 1= Ir(asrm,i, ATM(A;)(y)) < Ir(aarm,ivp, ATM(Aip) (y))) -
(10.55)

Since the ATL-ATM inference procedure is an implicatordzatference pro-
cedure, the adapted membership functions of linguistipututalues that are not fired
are identical to the universal set and do not contribute ¢ogllobal fuzzy output if
there exists an adapted membership function which is difficirom the universal set.
In Section 7.3.2 it is shown that for any input veckoat least one rule of an ATL (resp.
ATM) model is fired to a fulfilment degree equal to one and frogs §10.32—-10.33) it
follows that the adapted linguistic output value corregpiog to this rule is not defined
by the universal set. From Eq. (10.49) it then follows thatew applyingly; or Ip,
the fuzzy outputd oty of the ATL model is given by the adapted membership func-
tion (ATL(A,,.. ,...))" of the linguistic output value with the largest ind&X.x zero
among all fired linguistic output valueise.

(VIT € {IM7 IP})(AATL (y) = IT(QATL,imaxyzcma ATL(AmaX,zero)(y))) 5 (1056)

with
Imax,zero = max{i € I | aarr; > 0}. (10.57)

Analogously, it follows from Eg. (10.55) that the fuzzy outpAary of the ATM
model is given by the adapted membership functidi'M(A;_ ., ,...))" of the lin-
guistic output value with the smallest indgx;y,, .ero @mong all fired linguistic output
values,i.e.

(\V/IT S {IMa IP})(AATM (y) - IT(O[ATM,i,m;n,Zema ATM(Amin,zero)(y))) ) (1058)
with
imin,zero = min{i el | QATM, i > 0} . (1059)
Thus, given Egs. (10.36-10.39), only output values smtiken or equal to the
lower bound of the support fTL(A do not belong to the fuzzy outputarr,

'Lmax,zero)
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Figure 10.3: lllustration of the property defined in Eq. @4).of adapted membership
functions in an ATL model obtained with,.

of the ATL model,i.e.

(Vy € Y)(VIr € {In, Ip})(Y < 026y pero2 = AaTL(Y) = 0), (10.60)
(Vy € Y)(VIr € {In, Ip}) (Y > 26 o2 = AaTL(y) > 0), (10.61)

and only output values greater than or equal to the upperdaofithe support of

ATM(A;,,.........) do not belong to the fuzzy outputary; of the ATM model,i.e.
(Vy € Y)(VIr € {Inm, Ip})(Y = 24y perot = Aarma(y) = 0), (10.62)
(Vy c Y)(VIT € {IM, Ip})(y > A2 min sorotl = AATM(y) > 0) . (1063)

10.3.2.2 Models applying/y,

In the following paragraphs it is shown that when applylaghe membership degree
of any output valug to an adapted linguistic valU&\TL(A;))’ is greater than or equal
to its membership degree to an adapted linguistic VaNEL(A;+,))" if the linguistic
value (ATL(A;)) is fired to a smaller or the same fulfilment degree as the Isigui
value(ATL(A;+p)), i.e.

(Vy € Y)((aarL, < aatLip AP > 1)
= In(aarL,:, ATL(4:)(y)) > Iu(aarr,ip, ATL(Asp)(y))) - (10.64)
This property is illustrated in Fig. 10.3.
As A; and A;+, originate from a same fuzzy partition as shown in Fig. 7.1 the
parameters defining the corresponding membership furecatisfy the inequality in

Eq. (10.50). From Eqgs. (10.40-10.41) it follows that fonallues smaller than or equal
to the lower bound of the support &fTL(A4,+,), Eq. (10.64) holds. Since

(Vy € Y)(y < agirzp2 = In(aarn,ivp, ATL(Ai+p)(y)) = 1 — aaTL,i+p) , (10.65)
(Vy € Y)(IL(aaTr,i, ATL(A;)(y)) > 1 — aatr,), (10.66)

with aatr; < @aTL i+p, it @ISO holds that

(Vy € Y)(y < agiszp2
= IL(aATL,i, ATL(AJ(:[/)) > IL(aATL7i+p7 ATL(AHP)(:U))) . (1067)
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From Eqg. (10.45) it follows that for all values larger thanegual to the lower
bound of the kernel cATL(A;), Eq. (10.64) holds. Since

(Vy € Y)(y > aziq1 = IL(aaTL,q, ATL(A4:)(y)) = 1), (10.68)
it also holds that

(Vy € Y)(y = azia
= In(oatr,i; ATL(4;)(y)) = Iu(oaty,ivp, ATL(Aip) (y))) - (10.69)

Since the lower bound.;; of the kernel ofATL(A;) is smaller than or equal to
the lower boundug;+op-2 Of the support ofATL(A;4,) it follows from Egs. (10.67)
and (10.69) that Eqg. (10.64) holds.

Analogously, the membership degree of any output vglte an adapted lin-
guistic value(ATM(A;))" is smaller than or equal to its membership degree to an
adapted linguistic valueATM(A,4,))’ if the linguistic value(ATM(A4;)) is fired to a
greater or the same fulfilment degree as the linguistic vVENIBVI (A4;+,)). i.e.

(Vy € Y)((aarm,i = aarm,isp AP > 1)
= In(oarw,i, ATM(A;)(y)) < In(aarm,ivp, ATM(Aisp)(y))) - (10.70)

In Section 7.3.2 it is shown that for any input vectoat least one rule of the
ATL (resp. ATM) model is fired to a fulfilment degree equal teeos the membership
function defining an adapted linguistic value with a cormegfing fulfilment degree
equal to one is identical to the membership function definhwgoriginal linguistic
value and given the property described in Eq. (10.64), oatpuat values smaller than
or equal to the lower bound of the support &TL(A;,,.. ...) do not belong to the
fuzzy outputArr, of the ATL model withiy,.x one the greatest index for which the
corresponding fulfilment degree is equal to ore,

(Vy € Y)((Ur = IL ANy < 240 one-2) = AaTr(y) = 0), (10.71)

(Vy S Y)((IT =1y Ny > azirnax,one'2) = AATL(y) > 0), (1072)
with

Imax,one = max{i € I | aarr,; = 1}. (10.73)

and only output values greater than or equal to the upperdaofirthe support of
ATM(A;,.. ...) do not belong to the fuzzy outputary of the ATM model with
imin,one the smallest index for which the corresponding fulfilmengrée is equal to
one,i.e.

My € Y)((Ir = IL NY > 0245 one+1) = AaTm(y) = 0), (10.74)

(Vy € Y)((Ir = I ANy > G245 oner1) = Aarm(y) > 0) . (10.75)
with

imin,one = min{i el ‘ QATM,i = 1}. (1076)
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10.3.3 Fuzzy output of the ATL—ATM model

Thus, both for models applying,; or I and for models applyingy, there exist indices
Tmax ANdipin, I.€.

max,zero s if I I, Ip},

i = {0 it Iy & {Im, Ip} (10.77)
“max,one ’ if IT = IL ;
'min zZero 1 if I I ) I )

i = it Iy € {Im, I} (10.78)
%min,one ) if IT = IL .

Wlth Z.max,zero, Z.min,zema Z.max,one and Z'1rnin,one respeCtiver deﬁned in EqS (1057)1
(10.59), (10.73) and (10.76). The supportAdfL(A;_ . ) andATM(A;_, ) coincide
with the support of the fuzzy output of the ATL and ATM mode$pectively, given by

Tmin

SUpAare) = lagi,,..-2,+00[ , (10.79)
SUPAATM) = |—00, @i, +1] - (10.80)

The fuzzy outputd of an ATL-ATM model is given by the intersection of the fuzzy
output of the ATL and ATM modei,e.

A(y) = min(AarL(y), Aarm(y)) - (10.81)
When A, . is smaller than4; . , andA4; . andA, . are non-consecutive
linguistic output values,e.
Z.min < 7:max -1 5 (1082)

the lower bound of the support &foy, is greater than or equal to the upper bound of
the support ofA o1, i.€.
024501 S 0202 5 (10.83)

and the fuzzy outpufl is the empty sei,e.
(Vy € Y)(A(y) =0), (10.84)

as illustrated in Fig. 10.4(a).

When4; . is smaller thamd; . andA; . andA,; .. are consecutive linguis-
tic output values, or whed; . is larger thard; _ i.e.
Z'min > imax -1 ) (1085)

the lower bound of the support dfsr1, is smaller than the upper bound of the support
of AATMy i.e.
Q2+l > 02imax-2 5 (10.86)

and the support of the fuzzy outpatis given by,

SUPHA) = 024,25 O2imin+1] 5 (10.87)
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Figure 10.4: Fuzzy output (crosshatched) of an ATL-ATM model.

as illustrated in Fig. 10.4(b—d). Since the endpoints ofstingport ofA are finite, the
defuzzification method introduced by Diak and Jedelsk(1999) coincides with the
COG defuzzification method defined in Eq. (2.44). As furthemnAr, and Axrm
are respectively increasing and decreasing functiong ithe core ofA is a single
interval which is a very attractive property when applyihg MOM defuzzification
method.

10.4 Models with a single input variable

In Section 7.3.2 it is shown that the fuzzy output of an ATLM\odel is deter-
mined by exactly those rules that are fired when applying MameéAssilian or plain
implicator-based inference. Thus, two rules should be idensd when determining
the fuzzy output of an ATL-ATM model with a single input vasla: the rule corre-
sponding to some linguistic vaIuEJl- to which the inputz; has a membership degree
1 — 7, and the rule corresponding to the linguistic input vaﬁgel to which the input
x1 has a membership degree. In case of a monotone rule ba@} andB}+1 can
either be mapped to

1. a same linguistic output valug;: theconstantcase,

2. two consecutive output valugs and A;.,: thesmoothcase, or
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3. two non-consecutive output valuds andA;+, (p € N, p > 1,7 4+ p < n): the
non-smootfcase.

In the ATL model, the fulfilment degrees of the two rules cdesed

Ri: IF X{ISATL(B}) THEN Y ISATL(4,)
Ryt IF X, ISATL(B),) THEN Y ISATL(A,)

are given by
BaTry =1, (10.88)
BatL,2 =71 - (20.89)
In the ATM model, the fulfilment degrees of the two rules cdesed

Ri: IF X, ISATM(B!) THEN Y ISATM(A;)
Ryt IF X;ISATM(BL,,) THEN Y ISATM(A,.,)

are given by

Barm1 =1 —71, (10.90)
Barm2 = 1. (10.91)

10.4.1 Theconstant case

As discussed in Section 8.3, consideringtbastanttase for a model with a single in-
put variable might seem in disaccord with the aim to safedjtiee model interpretabil-
ity, but is nevertheless meaningful as interpretable nodéh more than one input
variable might behave as a model with a single input variable constantcase in
some parts of the input space. WhBj and Bj,, are mapped to a same linguistic
output value4,, the fulfilment degreevsr, ; of the linguistic output valuATL(A;)

is the maximum of the fulfilment degre@arr, 1 andfBarr 2

aarrL,; = max(fBarL,1, farL,2) = max(1l,v1) =1, (10.92)

and the fulfilment degree s ; of the linguistic output valuATM(A4,) is the maxi-
mum of the fulfilment degree8ara,1 andBarwm, 2

aarm,; = max(Barm,1, faTm,2) = max(l —v1,1) = 1. (10.93)

The fuzzy outputs of the ATL and ATM model are thus respettigeren by ATL(A;)
andATM(A4;) and the fuzzy output of the ATL-ATM model, obtained as thelisec-
tion of the fuzzy outputs of the ATL and ATM model, is the lingtic output valueA;

A(y) = min(I7 (1, ATL(A;)(y)), I (1, ATM(A;)(y))) (10.94)
= min(ATL(4;)(y), ATM(4;)(y)) (10.95)
= Ai(y). (10.96)
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Aj
1
05
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1 AprL = ATL(Ai) . Aparm = ATM(A7)
0.5 0.5 ‘
0 . 0
Y Y
A=A;

Y

Figure 10.5: Inference procedure applied in an ATL-ATM mlogligh a single input
variable when two adjacent linguistic input values are negjjp a same
linguistic output valued;.

The inference procedure is illustrated in Fig. 10.5. Thasafl three implicators con-
sidered, the linguistic output valué; is obtained as fuzzy output of the ATL-ATM
model in case of a constant model output in a model with a simgdut variable. As
the obtained fuzzy output is independent~ef monotonicity is guaranteed for any
defuzzification method. When applying the MOM defuzzificatimethod, the crisp
outputyy;oy IS given by

Ynmowm = Ci - (10.97)

10.4.2 Thesmooth case

WhenB}- andB]Lr1 are mapped to the linguistic output valuésandA; ., respectively,
the fulfilment degreesvarr,; andaarr, ;+1 Of the linguistic output valuedTL(A;)
andATL(A;+) are given by
aarL; = BatLi =1, (10.98)
QATL,i+1 = BATL2 = M1, (10.99)
and the fulfilment degreesary; and aarm,+1 Of the linguistic output values
aarm,i = Barma =1—7, (10.100)
aaTM,i+1 = Batm2 = 1. (10.101)
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The fuzzy output of the ATL-ATM model (Egs. (7.31-7.32)) igam by
A(y) = min(ATL(A;)(y), Ir(y1, ATL(As+1)) (y), Ir(1 — 71, ATM(4;)(y)),

ATM(Aj+1)(y)) - (10.102)
For the boundary values of , the fuzzy outputd is equal toA; or A;+;
A=A =0, (10.103)
Ai+1 s if Y1 = 1 s

with corresponding crisp outputg; o, given by

C; 1|f et :Oa
o 10.104
Ymom {ci+1:ci+k+l if g = 1. ( )

In Figs. 10.6-10.7 the inference procedure is illustratedHe implicatorsiyg
and Iy, respectively. Fig. 10.6 clearly illustrates that when gpy In; the fuzzy
output Ay, (resp.Aarm) Of the ATL (resp. ATM) model is given by the adapted
membership functioATL(A; .. ,...))" (resp. (ATM(A;, .. ....))") of the linguistic
output value with the largest (resp. smallest) index amdhfjred linguistic output
values, as was expressed earlier in Egs. (10.56) and (10.B8)same observation was
made for the implicatofp. Thus, for models applyingys or Ip the expression for the
fuzzy outputA in Eq. (10.102) can be simplified to

A(y) = min(I7(y1, ATL(As1)(y)), I7(1 — 71, ATM(A;)(y))) - (10.105)

In Fig. 10.7 one can see thatATL(A;), Ir(y1,ATL(Aix)),
I (1 — v, ATM(A4;)) and ATM(A;+1) all contribute to the shape of the fuzzy out-
put A. Moreover, asATL(A;) and ATM(A;+;) are fired to a fulfilment degree equal
to one, the support of the fuzzy outpdtis bounded even if the adaptation of member-
ship functions usindy, results in membership functions with an unbounded support.
This property of the fuzzy output of an ATL-ATM model applying/t, was discussed
earlier in Sections 10.3.2-10.3.3.

In Fig. 10.8 a schematic representation is given of the fum#put A obtained
for the three considered implicatofg;, Ip andly,. The crisp outpul;;oy IS given
by the same expression for the three implicaties,

1
yK/IOM =c¢; + ik + ’Y1l . (10106)

As the derivative ofyy;oy t0 71 is positive,i.e. [ > 0, and the crisp output obtained
for v1 €]0, 1] is greater than the crisp output obtained{er= 0 and smaller than the
crisp output obtained foy; = 1, monotonicity is guaranteed.

Approximating the functior” = X is a quite frequently addressed issue in
fuzzy modelling articles, for instance in the works by Patlale (1992) and Coragh
etal. (1997). From the expressions {gfq,, in Egs. (10.104) and (10.106), it follows
that the functiort” = X can be easily obtained by applying ATL-ATM inference to a
model with in its rule base rules
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Figure 10.6: Inference procedure applied in an ATL-ATM mlagligh a single input
variable when two adjacent linguistic input values are nealp two con-
secutive linguistic output value$; and A;,; with I = Ing.
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Figure 10.7: Inference procedure applied in an ATL-ATM mlogligh a single input
variable when two adjacent linguistic input values are nealp two con-
secutive linguistic output value$; and A;.; with I = Iy,.
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Figure 10.8: Schematic representation of the output of aeineith a single input vari-
able when two adjacent linguistic input values are mappéddaconsec-
utive linguistic output valuesgl; and A;4; for (a) I+ = Inm, (b) I+ = Ip
and (¢)Ir = Ir..
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Y

As

= X

Figure 10.9: The functio = X can be obtained with ATL-ATM inference.

R IF XISB, THEN YIS A,
and using the same fuzzy partition in the input donigiand the output domail
Ve X)(VyeY)(Vs € {1,...,r})(z =y = Bs(z) = As(y)) (10.107)

This is illustrated in Fig. 10.9.

10.4.3 Thenon-smooth case

When le- and B}ﬂ are mapped to two non-consecutive output valdesand A4;+,,
(» € N,p > 1,1+ p < n) respectively, the fulfilment degrees,rr, ; andaarr, i+p Of
the linguistic output valueATL(A;) andATL(A;+,) are given by

aaTL: = BatL1 =1, (10.108)
OATL,i+p = BATL,2 = 71, (10.109)

and the fulfilment degreeaarn,; and aarwm,i+p Of the linguistic output values

aat™m,i = Barma =1-—m, (10.110)
aaTM,i+p = BaTm,2 = 1. (10.111)

The fuzzy output of the ATL-ATM model (Egs. (7.31-7.32)) igem by

A(y) = min(ATL(A:)(y), I (y1, ATL(Aip) (1)), Ir (1 — 71, ATM(4;)(y)),
ATM(Ai)(y)) - (10.112)
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For the boundary values af, the fuzzy outputd is equal toA; or A;+,

P (10.113)
Ai+p , if Y1 = 1,

with corresponding crisp outpuig; o, given by

C; y if Y1 = O,
L _ 10.114
Ymom {ci+pci+pk+pl Sy =1, ( )
Given Egs. (10.57), (10.59) and (10.77-10.78), for modeidyang I or Ip,
the indeXi,.x Of the linguistic valueATL(A;, .. )) of which the support coincides with
the support ofd o1y, is given by

Imax = max(i,i+p) =i+ p, (10.115)

and the index,,;, of the linguistic valueATM (4;_ .. )) of which the support coincides
with the support ofd o1 is given by

imin = min(i, i +p) =1. (10.116)

Since Egs. (10.82-10.83) are satisfieg, the lower bound of the support ofar, is
greater than or equal to the upper bound of the suppottsafyr, the fuzzy output is
the empty set. Thus, monotonicity cannot be guaranteedddets with a single input
variable and any monotone rule base when applyiior /p.

For models applyingly, the indicesiy,, and iy, are given by (with
Egs. (10.73) and (10.76-10.78))

Tmax = 1, (10.117)
Imin =1+ p. (10.118)
Since Eqs. (10.85-10.86) are satisfiee, the lower bound of the support efary, is
smaller than the upper bound of the supportdofry;, the fuzzy outputd is a non-

empty set. In Fig. 10.10 the fuzzy outp4tis represented foy; € ]0,0.5[, v1 = 0.5
and~; € ]0.5, 1], respectively. The corresponding crisp outputs are giyen b

c; + %"}/11 y if Y1 € ]0705[,
Yatom = § 3(Ci + cirp) = ¢i + 50k + 3pl Jify1 =05,
Citp — %(1 —y)l=c¢+pk+ %(’yl +2p—11 ,ify €]0.5,1].
(10.119)

Since the expressions fgf;,; in Egs. (10.114) and (10.119) satisfy the fol-
lowing chain of inequalities

yrom (1 = 0) < vrrom(m €10,0.5)) < yiom(n = 0.5)
< ynom(m €10.5,1]) < ylom(m =1), (10.120)

and as the derivatives tg of the expressions in Eq. (10.119) are all positive, monoto-
nicity is guaranteed for models with a single input variadoie any monotone rule base

when applyingly..
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Figure 10.10: Schematic representation of the output of dainaith a single input
variable when two adjacent linguistic input values are neabfp two
non-consecutive linguistic output valuds and A;+, for Iy = Iy..
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10.5 Models with two input variables and a monotone
smooth rule base

For an input vectok = (x1, z5) satisfying

1 =1-Bj (21) = Bj (1), (10.121)

Y2 = 1-— BJQ2 (Ig) = Bj2v2+1 (1‘2) y (10122)

the four rules that need to be considered when determiniagrtbdel output of an
ATL-ATM model with two input variables can be represented as

Ri: IF X,ISB, AND X,ISB? THEN YIS4,

Ry: IF X{ISB, AND X;ISBZ, THEN YIS Aup.p,
Ry IF X,ISBl,, AND X,ISB2 THEN Y ISAu,

Ry IF X{ISBL,, AND XISBZ, THEN YIS Aippp

When the rule base is smooth, the valuepafp, andps in the rules above are re-
stricted to

(p17p27p3) € {(07070)7 (Oa Oa 1)7 (07 ]-7 O)a (17070)7 (la Oa 1)} . (10123)

In the following these triplets will respectively be refedrto as Case I, II, IIl, IV and V.
The fulfilment degrees of the four corresponding rules inAfie model

Ryt IF X1 ISATL(B},) AND X, ISATL(B;,) THEN Y ISATL(4;)

Ro: IF X1 ISATL(B;,) AND X5 ISATL(B3,41) THEN Y IS ATL(Ai+p,+ps)
R3: IF X1 ISATL(Bj,+1) AND X2 ISATL(Bj;,) THEN Y ISATL(Ai+p,)
Rs: IF X1 ISATL(Bj,+1) AND X3 ISATL(B,+;) THEN Y IS ATL(A

itp1tpotp3 )

are given by
BarLy =1, (10.124)
BarL2 =72, (10.125)
BAaTL3 =71, (10.126)
Barra =T(y1,72). (10.127)

The fulfilment degrees of the four corresponding rules inXf®1 model

Ri: IF X1 ISATM(BL) AND X,ISATM(BZ) THEN Y ISATM(A,)
Ry IF X1 ISATM(B.,) AND X5 ISATM(B:,.;) THEN Y IS ATM(Aisp,4py )
Rs: IF X1 ISATM(Bj,+;) AND X; ISATM(B

(B; (B

2
J
2)" THEN Y IS ATM(Ajry, )
Ri: IF X, ISATM(BL,,) AND X, IS ATM(BZ ) THEN Y IS ATM(Asupspyeps)

are given by
Barmy =T(1 = 71,1 —72), (10.128)
Barme2 =1-—m, (10.129)
Batm,z =1— 72, (10.130)
Batma =1. (10.131)
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10.5.1 General discussion of Case |

For Case I, with(p1, p2,p3) = (0,0,0), all four considered rules contain a same lin-
guistic outputA; value in their consequent. For input vectors correspontbnany
(71,72) €]0,1[%, the fulfilment degreev oy ; is given by

aarrL,; = max(BarrL,1, faTL,2, BATL,3, BATL,4)
= max(1,72,71,T(11,72)) = 1, (10.132)

and the fulfilment degreear ; is given by

aarM,i = max(Barm,1, BaTM,2, BATM,3, BATM,4)
=max(T(1 —y1,1 —92),1 =y, 1 =2, 1) = 1. (10.133)

The same fulfilment degrees are obtained for the linguistiput values ify; or v
are equal to zero or one. For Case | the same fulfilment degreesbtained for the
linguistic output values of the ATL and ATM model as for a mbaiéh a single input
variable in the constant case (Section 10.4.1). Therefi@rerisp outputy;oys IS given
by the expression obtained in the latter case,

YmoM = Ci (10.134)

and thus, monotonicity is guaranteed.

10.5.2 General discussion of Case Il

For Case lll, with(p1, p2, ps) = (0,1,0), the four considered rules contain linguistic
output values derived from; and A;+; in their consequent. The fulfilment degrees
QATL,i andaATL,m are given by

aarr,; = max(BarL,1, farn,3) = max(l,71) =1, (10.135)
QATL+1 = max(Barr 2, Barr4) = max(y2, T'(71,72)) = 72, (10.136)

and the fulfilment degreesari,; andaawm,i+1 are given by
aarm,; = max(Barm,1, farm,z) = max(T(1 — 1,1 —2),1 —72) =1 =2,
(10.137)

aarM,i+1 = max(fBarm,2, farma) = max(l —yy,1) = 1. (10.138)
The fulfilment degrees obtained for the boundary conditemesshown in Table 10.1.
The fulfilment degrees obtained foy:,v2) € [0, 1] x ]0, 1] correspond to those

obtained for a model with a single input variable in the srhamse (Section 10.4.2).
Thus, for these input vectors the crisp outpit,,; is given by

1 .
yK/IOM =c; + ik + ’}/Ql  if (’}/1,’}/2) € [0, 1} X ]0, 1[ (10139)
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Table 10.1: Fulfilment degreesyrr, ;, ?aTL i+1, @aTM,; @aNdaaTa, ;+1 for the bound-
ary conditions of Case IIl.

71 Y2 QATL,s OATL+1  OATM,i OATM, i+l

0 ]0, 1[ 1 Yo 11— 1

1 ]O, 1[ 1 Y2 1-— Y2 1
0,1[ O 1 (0) 1 (1)
jo,1f 1 (1) 1 (0) 1

It follows from the discussion in Section 10.3 that far € |0, 1] and~y, = 0 (resp.
vo = 1) the fuzzy output of the ATM model (resp. ATL model) is ideai to
ATM(4;) (resp.ATL(A;+1)) and the fuzzy outputl of the ATL—-ATM model is given
by A; (resp.A;+1). In Table 10.1 fulfilment degrees corresponding to an aathptem-
bership function that do not influence the fuzzy outdutry, or Aatyr are putin round
brackets. Thus, for these input vectors the crisp ouif,, is given by

C; ,if 11 €]0,1[andvy, =0,
YoM = 10.140
Ynowm {ci—i—k‘—i—l Jif 31 €]0,1[andy, = 1. ( )

In Case Ill, monotonicity is guaranteed, since the denreatitoy, or v, of all expres-
sions foryg; oy are positive and since the following chains of inequalitiekls for any
73 €10, 1[andyf €10, 1]

yaom(m = 0,72 =73) < yvom(m = 71572 =) < vvom(n = 1,72 =13),

(10.141)

YoM (11 = 71572 = 0) < yniom (1 = 71572 = 13) < Yvom(1 =71572 = 1),
(10.142)

as
1 i} 1 . 1 .
ci+§k+72l:ci+§k+’yzl:Ci+§k+72l, (10.143)
1

G <citghtyl<ethtl (10.144)

10.5.3 Models applyindly; or Tp combined with I or Ip

For Case V, with(py, p2, p3) = (1,0, 1), the four considered rules contain linguistic
output values derived fromi;, A;,; and Ao in their consequent. The fulfilment
degreesvary ;, ¥aTL, i+1 aNdaaTL i+2 are given by

aarL; = BarLy =1, (10.145)
aaTL,i+1 = max(farr,2, BaTL,3) = max(vy2,71) , (10.146)
aatriv2 = Batra = T(71,72) (10.147)
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and the fulfilment degreesa i, aTM,i+1 @ndaaTy i+2 are given by

aarm,i = Barmy = T(1—y1,1 —72), (10.148)
aarM,i+1 = max(Barm,2, Barm,3) = max(l — 1,1 —72), (10.149)
aaTM,i+2 = Barma = 1. (10.150)

When applying the t-nornfys or Tp, the fulfilment degreesvarr, ;+2 and
T, are strictly positive for anyy;, v2) € ]0, 112, i.e.

(V(y1,72) €10, 13)(VT € {T, Te })(T(11,72) > 0) (10.151)
(V(71,72) €10, 1) (VT € {Tm, Te })(T(1 — 71,1 — 72) > 0) (10.152)

Thus, for models applyin@y or e and input vectors characterized by;,v2) €
10,1[%, the indeXiw.y (defined in Egs. (10.57) and (10.77)) of the linguistic value
ATL(4,_,.) of which the support coincides with the supportd{ry, is given by

Imax = max(i,i+ 1,0 +2) =i+ 2, (10.153)

and the indexi.;, (defined in Egs. (10.59) and (10.78)) of the linguistic value
ATM(A;,,,,,) of which the support coincides with the supportdfry is given by

imin = min(i,i + 1,i+2) = i. (10.154)

Since Eqs. (10.82-10.83) are satisfied, the lower bound of the support efary, is
greater than or equal to the upper bound of the suppa#gfy;, the fuzzy outputd
is the empty set. Thus, monotonicity cannot be guaranteechéaels with two input
variables and any monotone rule base when appl¥iggor 7p combined withly,
orlp.

10.5.4 Models applyindgly; combined with I,

For Case V, with(py, p2,p3) = (1,0,1), the four considered rules contain linguistic
output values derived from;, A;+; and A+ in their consequent. The corresponding
fulfilment degrees are given in Eqgs. (10.145-10.150). FertthormTy, they are
obtained by

aar; =1 aarm, = min(l — vy, 1 —72),
QATL+1 = max(y1,72)  aarmivr = max(l -y, 1 —72),
QATL,iv2 = Min(y1,72)  aaTM 2 = 1. (10.155)

For two input vectorsx; and x» characterized byvyy,72) = (m,72) and
(71,72) = (2, n2) respectively with

0<m <mn <0.5, (10.156)
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Figure 10.11: Indication of the two input vectoxs and x, considered in the dis-
cussion about models with two input variables applyihg combined
with I1,.

as indicated in théy,, 2 )-plane in Fig. 10.11, the following inequality should hotd i
order to obtain a monotone input-output behaviour

yxtom (X1) < yarom(X2) - (10.157)

Forxy, the fulfilment degrees are given by

aaTL; = 1 aaTM,: = 1 — 12,
QATL,i+1 = T2 aaTM+1 = 1 —mp,
QATL,i+2 = M1 aaTM,i+2 = 1, (10.158)

and a fuzzy outputd as illustrated in Fig. 10.12(a) is obtained. The crisp outpu
Yriom(x1) is given by X
Yuom(x1) = ¢ + §k +mal. (10.159)

For x,, the fulfilment degrees are given by

aaTL; = 1 aaTM,: = 1 — 12,
(aATL,i+1 = 772) (O[ATM,i+1 =1- ’172) s
QATL,i+2 = T]2 aaTM,+2 = 1. (10.160)

The fulfilment degreesarr, ;+1 andaari,+1 are put in round brackets as it follows
from Egs. (10.64) and (10.70) that the corresponding adaptambership functions do
not determine the fuzzy outputsstr, and Aary. Thus, the fuzzy output obtained for
X5 corresponds to the fuzzy output obtained for a model withhglsiinput variable
in the non-smooth case (Section 10.4.3) and, as illustiat&dy. 10.12(b) the crisp
outputyy;on (x2) is given by

* 1
Ynmom(X2) = ¢ + 57721~ (10.161)
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Figure 10.12: Schematic representation of the output wbthior the input vectors (a)

x; and (b)xs considered in the discussion about models with two input
variables applyindy; combined with/y.,.
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Figure 10.13: Crisp outpufy;o @S @ function ofy; for input vectors firing the four
rules ‘Case V' withy, = 0.4,k =0.1,1 =1,T = Ty andI = I,.

Sincel andr, are strictly positive and is positive, it holds that

1 1
¢ + §k + ol > c; + 5’/72[. (10.162)

Thus, Eqg. (10.157) does not hold and a non-monotone inpiptiobbehaviour is ob-
tained for Case V when applyiri,; combined with/y,. In Fig. 10.13 the crisp output
yxiom 1S Shown as a function of; for input vectors firing the four rules ‘Case V'.
Thus, monotonicity cannot be guaranteed for models withibpat variables and any
monotone rule base when applyitig; combined with/y,.
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A Ain

c; + %k‘r + 7]2Il |

Cl-'r%k}-‘r(l—’r]l)l Y

Figure 10.14: Schematic representation of the model oulypé ‘2inputdy,-1" for
models applyindy,.

10.5.5 Models applyingl’s combined with Iy,

In order to prove that monotonicity is guaranteed for modeith any monotone
smooth rule base applyirifp combined withly, it still needs to be proved that mon-
otonicity is guaranteed in Cases I, IV and V. Before startime discussion about the
model behaviour is these cases, first the crisp model oytpyt, is determined of a
model applyingly, in case the fuzzy output is the intersection of adapted meshie
functions corresponding to the following fulfilment degsee

aaTL, = 1 QATM,i = M1,
OATL,i+1 = 12 aaTM,+1 = 1. (10.163)

with 0 < 2 < 1 —n; < 1. In the following, this type of model output will be referred

to as ‘2input{y-1’. The corresponding fuzzy output is shown in Fig. 10.14. The
core of the fuzzy output is given by

1 1
corgA) = |¢; + §k +nal, e + §k + (1 =m)l|, (10.164)
and the crisp outpujy;,, iS given by
. 11
Ymom = G+ gk + 5(1 —m+n)l. (10.165)

For Cases Il and IV, with{p1, p2,p3) = (0,0,1) and(p1,p2,ps) = (1,0,0)
respectively, the four considered rules contain lingaistitput values derived from;
andA;+, in their consequent. For Case I, the fulfilment degregsr, ; andaarr, i+1
are given by

aarr,; = max(BatL,1, faTL,2, BaTL,3) = max(l,v2,71) =1, (10.166)
aarL,i+1 = Batna = T(71,72) , (10.167)
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and the fulfilment degreessrn,; andaary ;+1 are given by

aaTM,; = max(Barm,1, faTm,2, BATM,3)
=max(T(1 — 1,1 —),1 —71,1 —2)
=max(l —vy,1 — ), (10.168)
aaT™,i+1 = Batma = 1. (10.169)

For Case IV, the fulfilment degrees\r1, ; andaarr, ;+1 are given by

aaTL: = BatLi =1, (10.170)
aaTLi+1 = max(Barw,2, BarL,3, BarL,a) = max(ye,v1, T'(71,72)) = max(y2,71) ,
(10.171)

and the fulfilment degreess Ty ,; andaary ;+1 are given by

aarm,i = Barma =T(1— 71,1 —72), (10.172)
aarM,i+1 = max(Barm,2, Sarm 3, farm,a) = max(l —v1,1 —y9,1) = 1.
(10.173)

The fulfilment degree& arr, i, @ATL i+1, @aTM,; @Ndaary,i+1 Obtained in the
different parts of the input space for Cases Il and IV aredish Table 10.2. The deriv-
atives toy; or v, of all expressions fogy;,, in Table 10.2 are positive. Furthermore,
YoM INcreases for any, € 10, 1[ (resp.y1 € ]0, 1[) wheny; (resp.v2) is increased
from O to 1, as illustrated in Fig. 10.15. Thus, monotonidcstguaranteed for Cases Il
and IV.

For Case V, with(p1, p2, p3) = (1,0, 1), the four considered rules contain lin-
guistic output values derived from;, A;+; and A;.5 in their consequent. The corre-
sponding fulfilment degrees are given in Egs. (10.145-10).1or the t-nornip they
are given by

aATL, = 1 aarm,i = (1 —=71)(1 —2),
QATLi+1 = max(y1,72) aarm,i+1 = max(l — vy, 1 — ),
QATL,i+2 = V172 aaTM,i+2 = 1. (10.174)

In Fig. 10.16 the fuzzy output is shown for input vectors characterized by, < -
and

@ mn+r<i,
(b) 1 +72=1,0r,
©) 7+ >1

Similar fuzzy outputs are obtained for input vectarfor whichy; = 2 or~; > vs.
An overview of the obtained expressions g in the different parts of the input
space is given in Fig. 10.17. The derivativesyjoor -, of all expressions foyy;on
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Table 10.2: Fulfilment degreesarr, i, aaTL,i+1, ®aTMm,: andaarm,+1 and crisp outpuly;oy; Obtained in the different parts of the
input space for Cases Il and IV with a model applyifig combined withly,.

Case conditions ofty1,72)  QATL: QATL+1 QATM, i aaTM,+1  corresponds to YMOM

Ila m =0,v2 €]0,1] 1 ©) 1 1) linput-constant ¢

b y1 €10,1[, 2 =1 1 o] 1—m 1 linput-smooth ci+ sk+ml

llc y1=1,72 €]0,1] 1 2 11— 1 linput-smooth ci+ Sk + 7l

Ind 71 €10,1[,v2=0 1 ©) 1 @) linput-constant ¢

e 7,72 €]0,1[m <7 1 Y172 1—m 1 2inputdy.-1 cit+ k+ 2711+ 2)l

Hf y,72 €10, 1y > e 1 172 1—, 1 2inputdy,-1 cit Sk 11471l
Va 41 =0,2€]0,1] 1 72 1— 7, 1 Linput-smooth i+ 3k + 72l

IVb 7 €10,1[,y2 =1 1) 1 0) 1 linput-constant ci+k+1

IVc v =1,72 €]0,1] 1) 1 0) 1 linput-constant ci+k+1

IV d 71 €]0,1[,72 =0 1 " 1—m 1 linput-smooth ci+ ik+ml

Ve 71,7 €]0,1[, 71 < 72 1 2 (1 —~1)(1 —72) 1 2inputd-1 i+ 2k + (v + 272 — 1172)l
IV 41,72 €]0,1[, 71 > 2 1 " (1—7)(1—72) 1 2inputdg,-1 ¢ + %k + %(271 + v2 — 1172)1

s|spow W1v-11v ‘0T Je1deyd
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L ci+ 3k + 7l 1 ci+k+1
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(a) ‘Case Il (b) ‘Case IV’

Figure 10.15: Overview of the expressions obtained,fpg,; with a model applying
Tp combined withly, and input vectors firing the four rules (a) ‘Case II

and (b) ‘Case IV'.

are positive. Furthermore;;,; increases for anys € 0, 1[ (resp.y; € 10, 1) when
~1 (resp.v2) is increased from O to 1, as illustrated in Fig. 10.17. Thoasnotonicity

is guaranteed for Case V.
Summarizing, the results in Sections 10.5.1-10.5.2 anthis;rdection show

that monotonicity is guaranteed for models with any monetemooth rule base when
applyingTp combined withly,.

10.5.6 Models applyingli, combined with I; or Ip

In order to prove that monotonicity is guaranteed for modeih any monotone
smooth rule base applyirfy, combined withly; or Ip it still needs to be proved that
monotonicity is guaranteed in Cases Il, IV and V. Beforetsigrthe discussion about
the model behaviour is these cases, first the crisp modeubygp,,, is determined
of a model applying or Ip for four model output types. For all four model output
types the same expression is obtainedyigr,, regardless of the implicator applied,

i.e. eitherIyg or Ip.
The first type are fuzzy outputs that are the intersectiordapted membership

functions corresponding to the following fulfilment degsee
aaTL = 1 QATM,i = 71 - (10.175)

with 0 < n; < 1. In the following, this type of model output will be referréa as
‘2input-Ing/Ip-1'. The corresponding fuzzy output is shown in Fig. 10.18(a). The
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cior + sk 4+ (71 + 72 — 1)1 | y

cir1 + 3k + (1 —v2(1 — 7))l

Figure 10.16: Schematic representation of the output eéthwith a model applying
Tp combined withly, for input vectors firing the four rules ‘Case V' and
characterized by, < 2 and (@)y; +72 < 1, () y1 +72 = 1 or (c)
T +re>1L

crisp outputyy; oy 1S given by

1
Yiom = ¢ + 5 (1 =m)l. (10.176)

The second type are fuzzy outputs that are the intersectiadapted member-
ship functions corresponding to the following fulfilmenigdees

QATL,i =T aarMm,; = 1. (10.177)

with 0 < n; < 1. In the following, this type of model output will be referréa as
‘2input-Ing/Ip-2'. The corresponding fuzzy output is shown in Fig. 10.18(b). The
crisp outputyy; oy iS given by

1

Ymom = Ci — 5(1 —m)l. (10.178)
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Figure 10.17: Overview of the expressions obtained,fpg,, with a model applying
Tp combined withly, and input vectors firing the four rules ‘Case V'.

The third type are fuzzy outputs that are the intersectiadapted membership
functions corresponding to the following fulfilment degsee

QATL,i = T QATM,; = 71 - (10.179)

with 0 < 71 < 1. In the following, this type of model output will be referréa as
‘2input-Ing/Ip-3'. The corresponding fuzzy output is shown in Fig. 10.18(c). The
crisp outputyy; oy iS given by
Ynom = Ci - (10.180)
The fourth type are fuzzy outputs that are the intersectfaadapted member-
ship functions corresponding to the following fulfilmentdees

QATL,i+1 = 12 QATM,i = 11 - (10.181)

with 0 < 2 < 1 —n; < 1. In the following, this type of model output will be referred
to as ‘2input{y/Ip-4’. The corresponding fuzzy output is shown in Fig. 10.18(d).
The crisp outputy;oy IS given by

1 1
Yiiom = G+ ok + 5 (L—m +m)l. (10.182)

For Cases Il and IV, witt{p1,p2,ps) = (0,0,1) and(p1,p2,p3) = (1,0,0)
respectively, the four considered rules contain lingaistitput values derived from
A, and A+ in their consequent. The corresponding fulfilment degrdxained for
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Figure 10.18: Schematic representation of the three tyfr®del outputs (a) ‘2input-
In/Ip-1', (b) ‘2input-Ing/Ip-2', (¢) ‘2input-Ing/Ip-3’ and (d) ‘2input-
In/Ip-4’ for models applying/ys (crosshatched) afp (in gray).
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Table 10.3: Definitions of the regions of the input space wHalfiiment degrees are
described by different functions gf and~s,.

Case conditions ofry;,v2)

71 =0,7 € ]07 1[

71 €]0,1[ 12 =1

71 =1,7% €]0,1]

71 €]0,1[,72 =0
71 €]0,0.5[, 72 €]0,1[, 71 <2, +72 <1
71 €]0,0.5],72 € [0.5, 1,71 <v2, 1+ 72 =1
71 €10,1[ 72 €]0.5, 1,71 <v2, M1 +72 > 1
Y1 €10.5,1[ 72 €]0,1[, 71 > 72,71 + 72 > 1
71 €[0.5,1[,72 €]0,0.5], 71 > 72,71 + 72 =1
71 €]0,1[, 72 €]0,0.5[, 71 > 72,11 + 72 < 1

_ T oKQ"T"To o0 ow

Case Il are given in Egs. (10.166-10.169). For the t-ndfrthe fulfilment degrees
are given by

QATL,; = 1 aarm,; = max(l — 1,1 —72),

aatL+1 = max(y +92 —1,0)  aarmie = 1. (10.183)

The corresponding fulfilment degrees obtained for Case &aren in Egs. (10.170-
10.173). For the t-norriy, the fulfilment degrees are given by

aaTL; =1 aarm,; = max(l —y1 —72,0),
QATL,+1 = max(y1,72) aATM,i+1 = 1. (10.184)

The fulfilment degree&ATL,i, QATL,i+1,» (’ATM, i and QATM, i+1 obtained for
Cases Il and IV in the different parts of the input space ddfindable 10.3 are listed in
Table 10.4. The fulfilment degrees corresponding to an adapembership function
that does not determine the fuzzy outputrr, or Aary of models applyingy or Ip
are put inround or squarebrackets. In all subcases the same expressions are obtained
for yyion regardless iffyg, Ip or Iy, is applied as implicator. Models applyirig,
combined with/y, are discussed in Section 10.5.7. The derivatives;tor ~, of all
expressions fogy;5, in Table 10.4 are positive. Furthermotg;,, increases for any
~v2 €10, 1] (resp.y; € ]0,1[) when~; (resp.~-) is increased from 0 to 1, as illustrated
in Fig. 10.19. Thus, monotonicity is guaranteed for Casasdl IV.

For Case V, with(p1, p2,p3) = (1,0,1), the four considered rules contain lin-
guistic output values derived from;, A;,; and A;., in their consequent. The corre-
sponding fulfilment degrees are given in Egs. (10.145-10). For the t-norn¥, they
are given by

oATL; = 1 aarm,; = max(l — vy —72,0),
QATL,i+1 = max(y1,72) aarM,i+1 = max(l —y,1 —y2),
QATL,i+2 = max(y1 + 72 — 1,0) aATM,i+2 = 1. (10.185)
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Table 10.4: Fulfilment degreesarr, i, aaTL,i+1, ®aTMm,: andaarm +1 and crisp outpuiy;oy, Obtained in the different parts of the

input space defined in Table 10.3 for Cases Il and IV with a rhapplying 71, combined withlys, Ip or It..

Case aarL QATL,i+1 QATM,i QATM,i+1 Invorlp Iy, YMOM
correspondsto  corresponds to

Ila 1 [0] 1 [1] linput-constant  linput-constant ¢

Il b (1) o 1—m (1) linput-smooth  linput-smooth ci+ ik + il

Ilc D) Yo 1= D) linput-smooth linput-smooth ¢ + %k + 2l

Ihd 1 [0] 1 [1] linput-constant  linput-constant ¢

Il e—f 1 [0] 1—-m (1) 2inputdai/Ip-1  2inputdy,-2 i+ iml

Ilg 1 mtr-1 1—m (1) 2inputdp/Ip-4  2inputdp-1 ¢+ 2k + (291 + 92 — 1)1

ITh 1 mtr-1 1— 1) 2inputda/lp-4  2inputdy-1 i+ Sk + S(y + 292 — 1)1

Il i—j 1 [0] 1— (1) 2inputdyi/Ip-1  2inputdy,-2 ci + 30l

IVa (1) Y2 1— Q) linput-smooth  linput-smooth ¢+ %k + 2l

Vb [1] 1 [0] 1 linput-constant  linput-constant ¢ +k+1

IVc [1] 1 [0] 1 linput-constant  linput-constant ¢+ k+1

IVd (1) T 1—m (1) linput-smooth  linput-smooth ci+ 3k +ml

IV e (1) Yo 1= — (1) 2inputdyi/lp-4  2inputdy-1 ci+ 3k + 2 (1 + 292)!

Vg (1) 7o [0] 1 2inputdyi/Ip-2  2inputdy-3 citk+i(1+)

IVh-i (1) " [0] 1 2inputdyi/Ip-2  2inputdy-3 citk+i(1+y)l

IV 1) " 1—y1 — 7 (1) 2inputdpi/Ip-4  2inputdy-1 ci+ 2k + 32y + )l
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Figure 10.19: Overview of the expressions obtained,fpg,, with a model applying
Ty, combined withly,, Ip or Iy, and input vectors firing the four rules
(a) ‘Case II' and (b) ‘Case IV'.
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Figure 10.20: Overview of the expressions obtained,fpg,, with a model applying
T, combined withlyg, Ip or I, and input vectors firing the four rules
‘Case V'

The fulfilment degrees arr, i, QATL,i+1, QATL,i+2, CATM,i» ®ATM,i+1 AN aATM i+2
obtained for Case V in the different parts of the input spasfindd in Table 10.3 are
listed in Table 10.5. The fulfilment degrees correspondingrt adapted membership
function that does not determine the fuzzy outdutrr, or Axrnv Of models applying
I or Ip are put in round brackets. The derivativesytoor v of all expressions for
Yyxiom are positive. Furthermoreyy;,, increases for any. € 10,1[ (resp. v €
10, 1) when~y; (resp.~2) is increased from O to 1, as illustrated in Fig. 10.20. Thus,
monotonicity is guaranteed for Case V.

Summarizing, the results in Sections 10.5.1-10.5.2 anthis;rdection show
that monotonicity is guaranteed for models with any monetemooth rule base when
applyingTy, combined withly; or Ip.

10.5.7 Models applyingl, combined with I,

In order to prove that monotonicity is guaranteed for modeith any monotone
smooth rule base applyirfy, combined with/y, it still needs to be proved that mon-
otonicity is guaranteed in Cases I, IV and V. Before startine discussion about the
model behaviour is these cases, first the crisp model oytpyt,; is determined of a
model applyingly, for two model output types.

The first type are fuzzy outputs that are the intersectiordapted membership
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Table 10.5: Fulfilment degre@sarr, s, 0ATL i+1, QATL,i+2, CATM, i, XATM,i+1 aNdaaTm s+2 and crisp outpuiy;oy in the different
parts of the input space defined in Table 10.3 for Case V witlodahapplyinglt, combined withly; or Ip.

Case aaTL OATL,i+1 QATL,i+2 QATM, i QATM,i+1 QATM,+2  corresponds to YMOM

Va 1) 2 0) 11— 1) 1) linput-smooth ci + 5k + 72l

Vb (1) 1) v 0) 1-m 1) linput-smooth cit+ 2k+(1+m)l

Ve 1) (1) Y2 (0) 1—m ) linput-smooth ci+ 3k+ (1+72)!
vd (1) " (0) 1—m (1) (1) linput-smooth ci+ 3k +ml

Ve Q) 7 (0) l—y1—7v (1—=9) ) 2inputdy/Ip-4 ci+ k+2(n+27)!
\Ai 1) V2 (0) (0) V2 (1) 2inputdn/Ip-3 ci+k+1

Vo @ (2) Mt ©) 1—m 1) 2inputim/le-4 ¢+ 2k+ L(1+ 2y + )l
Vh @) (m) Y1 F+y2—1 ) 1— 2 @) 2inputdm/Ip-4 ¢+ Sk + 5(1+71 + 2y2)l
Vi 1) o (0) (0) o €)) 2inputdm/Ip-3 ci+k+1

Vj (1) " (0) -y —72  (1—m) (1) 2inputdm/Ip-4 i+ 3k + 2271 +2)!
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Figure 10.21: Schematic representation of the two typesamfehoutputs (a) ‘2input-
I1,-2" and (b) ‘2input{y,-3’ for models applyindly,.

functions corresponding to the following fulfilment degsee

oaTL = 1 QATM,i = M1,
QATL,i+1 = 0 QATM,i+1 — 1. (10.186)

In the following, this type of model output will be referred &s ‘2input{y,-2'. The
corresponding fuzzy output is shown in Fig. 10.21(a). The crisp outpulfoy 1S
given by

1

The second type are fuzzy outputs that are the intersectiadapted member-
ship functions corresponding to the following fulfilmenigdees

aaTL; = 1 aarMm,; =0,
QATL+1 = T aaTM+1 = 1. (10.188)

In the following, this type of model output will be referred as ‘2input{y,-3'. The

corresponding fuzzy output is shown in Fig. 10.21(b). The crisp outpyi;oy; 1S

given by

1

2
For Cases Il and IV, with{p1, p2,p3) = (0,0,1) and (p1, p2, p3s) = (1,0,0)

respectively, the four considered rules contain lingaistitput values derived from

Yaom = Ci +k+ S(T4+m)l. (10.189)
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A; and A;4; in their consequent. The corresponding fulfilment degrd#ained in
the different parts of the input space defined in Table 10e3liated in Table 10.4.
The fulfilment degrees corresponding to an adapted memipdtsiction that does not
determine the fuzzy outpul sy, or Axry Of models applyingly, are put inround
brackets. The derivatives tp or v, of all expressions fog;;q,; in Table 10.4 are
positive. Furthermorey;;); increases for any, € ]0, 1] (resp.v1 € |0, 1[) when~y;
(resp.~2) is increased from 0 to 1, as illustrated in Fig. 10.19. Thmsnotonicity is
guaranteed for Cases Il and IV.

For Case V, with(p1, p2,p3) = (1,0,1), the four considered rules contain lin-
guistic output values derived from;, A;,; and A;., in their consequent. The corre-
sponding fulfilment degrees are given in Egs. (10.145-10). For the t-norn¥, they
are given by

oaTL; = 1 aarm,; = max(l — vy —72,0),
QATL,+1 = max(y1,72) aarM,i+1 = max(l —y,1 — ),
aATLi+2 = max(y; + 792 — 1,0) aaTM,+2 = 1. (10.190)

In Fig. 10.22 the fuzzy output is shown for input vectors characterized by; < 7,
and

@m+r<i,
(b) v1 +v2=1,o0r,

©) m+ry>1L

Similar fuzzy outputs are obtained for input vectarfor whichy; = 7, orv; > .
An overview of the obtained expressions i, in the different parts of the input
space is given in Fig. 10.20. The derivativesy{oor -, of all expressions foyy;on
are positive. Furthermore;, ., increases for any, € 10, 1[ (resp.y: € ]0, 1[) when
~1 (resp.2) is increased from 0 to 1, as illustrated in Fig. 10.20. Timisnotonicity
is guaranteed for Case V.

Summarizing, the results in Sections 10.5.1-10.5.2 andiighgection show
that monotonicity is guaranteed for models with any monetemooth rule base when
applyingTy, combined withly,.

10.5.8 Overview

Below an overview is given of the results obtained in Sectirb. Combinations
of t-norm and implicator for which monotonicity can be guateeed for models with
two input variables and any monotone smooth rule base areaitedl with a ‘yes’.
Combinations for which monotonicity cannot be guaranteeéhy monotone smooth
rule base are indicated with a ‘no’.

M Tp Ti
ImM no no yes
Ip no no yes
I, no yes yes
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Figure 10.22: Schematic representation of the output wbthivith a model applying
T, combined withly, for input vectors firing the four rules ‘Case V'’ and
characterized by; < v2 and (@)y1 +v2 < 1, (b) v1 + 72 = 1 or (c)
7+ > 1L
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10.6 Models with two input variables and a monotone
smooth rule base

As shown by the counterexample below, monotonicity caneogjliaranteed for any
monotone rule base when applying ATL-ATM inference to msdeith two input
variables using one of the nine considered combinationsioftn and implicator. For
the nine combinations of the t-norns,;, 7» and 7y, and implicatorsly;, Ip and
I, only two combinations should be considered when studyiegniionotonicity of
models with two input variables and a monotone (non-smauoik)basej.e. Tp or Ty,
combined withl,. Since, firstly, in Section 10.4.3 models with a single inpariable
are shown to return the empty set as fuzzy output in the naetntase when applying
Iy or Ip, and, secondly, in Section 10.5.4 it is shown that monotgngannot be
guaranteed for models with two input variables and any nmm®tsmooth rule base
when applyindl’yy combined withly, .

The set of four rules

IF X,ISB, AND X,ISB? THEN YISA4;
IF X,ISBI, AND X,ISB:, THEN YISAu,
IF X,ISBl,, AND X,ISB} THEN YISA4;
IF X,ISBl, AND X,ISB;. THEN Y ISA;.,

can occur in a monotone non-smooth rule base. For all inpetg x4, 22) satisfying

1 =1-Bj (21) = Bj (1), (10.191)
Y2 =1= B} (v2) = B} 4, (x2) , (10.192)

with (y1,7v2) € [0, 1]2, the fulfilment degreesarr. ;, vATL i+1 andaarr, i+2 are given
by

aatL,: = max(farr,1, Bare,3) = max(1l,71) =1, (10.193)
OATL,i+1 = BATL,2 = 72, (10.194)
aaTL 2 = Batna = T(71,72) (10.195)

and the fulfilment degreesara s, carm i+1 andaaTwm i+2 are given by

aarm,; = max(Barm,i, farm,z) = max(T(1 — 1,1 —y2),1 —792) =1 -2,

(10.196)
aarMm,i+1 = Batmz2 =1 —71, (10.197)
aaTM,i+2 = Batma = 1, (10.198)

For two input vectors; andx;, defined by(v1,v2) = (71,12) and(y1,72) =
(1,72) respectively with

e < 0.5 <11, (10.199)
2m 42> 2, (10.200)
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Y2
1
0.5
PR ST S x.l X9
0 1
0 0.5 mi1i M

Figure 10.23: Indication of the two input vectats andxs considered in the discus-
sion about models with two input variables and a monotonesmaooth
rule base.

as indicated in théy;, v2)-plane in Fig. 10.23, the following inequality should hotd i
order to obtain a monotone input-output behaviour

Yarom (X1) < Yrrom(X2) - (10.201)

Forx1, the fulfilment degrees are given by

OATL,; = 1 aarM,; =1 —1n2, (10.202)
QATL,i+1 = T]2 (arm,ivn =1 —m), (10.203)
aarLiv2 = T(m1,72) aaTM 2 = 1. (10.204)

with Tp(T}l, 772) = Mmn2 andTL(m, 772) =m-+n2— 1. Both forT = Tp andT = 1y,
the following chain of inequalities holds fer

Ny <05 <1—my<1—T(n,m), (10.205)

and a fuzzy output! as illustrated in Fig. 10.24 is obtained, with correspogdirisp
outputyy;on (x1) given by

1
yatom (1) = i+ gk +nal. (10.206)

For x5 the fulfilment degrees are given by

oaTL = 1 aaTM,: = 1 — 12, (10.207)
(ALt =m2)  (arme = 0), (10.208)
QATL,i+2 = 12 aaTM,i+2 = 1. (10.209)

From Eq. (10.64) it follows that the adapted membershiptionqd ATL(A;+;))’ will
not determine the fuzzy outputarr,. Furthermore, from Eq. (10.31) it follows that
the adapted membership functiGghTM(A;.1))’ is the universal set and will therefore
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Figure 10.24: Schematic representation of the output oéthior the input vectok,
considered in the discussion about models with two inpugabées and
a monotone non-smooth rule base.

not determine the fuzzy outputaty. Thus, the fuzzy outputl obtained forx, cor-
responds to the fuzzy output obtained for models with a simgbut variable in the
non-smooth case (Section 10.4.3). The crisp oupid, (x2) is therefore given by

1
Ynom (X2) = ¢ + 5772l~ (10.210)

Sincel andn, are strictly positive and is positive, it holds that
1 1
¢ + §k + 12l >c + 57725- (10.211)

Thus, Eqg. (10.201) does not hold and a non-monotone inpiptiobbehaviour is ob-
tained for inputs firing the four rules mentioned at the beijig of this section. Thus,
monotonicity cannot be guaranteed for models with two imauiables and any mono-
tone rule base when applying one of the three t-ndfis 7» and7y, combined with
one of the three implicatorg,, Ip and/y..

10.7 Conclusion

In this chapter, it was proved that an ATL-ATM model applythe MOM defuzzifi-
cation method is monotone when the linguistic output vainése consequents of the
rules are defined by trapezial or triangular membershiptfans of identical shape if
it corresponds to one of the seven model types listed in ThbIé, characterized by
a number of input variables:, a t-normT’, an implicator/; and an either monotone
or monotone smooth rule base. For the implicathys and Iy, models with a sin-
gle input variable show a monotone input-output behaviouafy monotonemooth
rule base, whereas for the implicatfy;, models with a single input variable show
a monotone input-output behaviour for any monotone ruleba¥hen designing a
monotone model with two input variables, one should opt foranotone smooth rule
base and apply the t-noritp combined with the implicatofy, or the t-normly, com-
bined with one of the three considered implicatéys, Ip and/y..
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Table 10.6: ATL-ATM models for which monotonicity is guataed when applying
the MOM defuzzification method characterized by a numbenpiii vari-
ablesm, at-normT’, an implicator/r and an either monotone or monotone
smooth rule base.

m T Ir rule base
1 1 I monotone and smooth
2 1 Ip monotone and smooth
3 1 I, monotone
4 2 Tp I, monotone and smooth
5 2 T Iy monotone and smooth
6 2 11 Ip monotone and smooth
7 2 T, I, monotone and smooth

The fact that the model behaviour of ATL—ATM models was stddibr models
with linguistic output values in the rule consequents defibg trapezial or triangular
membership functions of identical shape, does not restrécpractical implementation
of the results obtained in this chapter to models satisf#igg. (10.1-10.3). With the
auxiliary interpolation procedure described in Sectigha@model designer can apply
any fuzzy output partition in a monotone model when the modsalesponds to one of
the seven model types defined in Table 10.6.

Monotonicity of models with more than two input variablesswzot investi-
gated in this study, but the obtained results show that falletsowith more than two
input variables and one of the nine considered combinatdrishorm and implica-
tor, only models should be considered with a monotone smandéhbase applying
Tp combined with the implicatofy, or the t-normTy, combined with eitheldys, Ip
or Iy,. Furthermore, monotonicity of ATL—ATM models applying CQi&fuzzification
and ATL-ATM models applying other implicators such as thienplicators defined in
Eq. (2.37), could be the subject of further investigation.
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cHAPTER 11

Conclusions and future research

Alles Wissen und alle Vermehrung unseres Wissens endet
nicht mit einem Schlusspunkt, sondern mit Fragezeichen.
(Herman Hesse)

11.1 General Conclusions

This section gives an overview of the main conclusions ofrésearch concerning the
computational aspects of the Center of Gravity defuzzificatnethod in Mamdani—
Assilian models, the ecological case study and the researainonotone linguistic
fuzzy models.

11.1.1 Computational aspects of Center of Gravity defuzzifiation

The Center of Gravity defuzzification method results in agnnodel output that
changes continuously when the input values change contstyja desirable property
in modelling and control applications. However, the CenfeGravity defuzzification
method has a high computational burden. In this dissen&two computational meth-
ods, the slope-based method and the modified transformfatimtion method, were
introduced to determine the crisp output of Mamdani—Aasilinodels using a fuzzy
output partition of trapezial membership functions andiypg the Center of Gravity
defuzzification method. The accuracy, computational codtimplementational com-
plexity of these two methods and the commonly applied diszaton method were
discussed for the basic t-norfiik, 7p andTy,. Its easy implementation appears to be
the only advantage of the discretization method. The tweratiethods to compute the
Center of Gravity defuzzification method are not as stréggivard to implement but
allow both a quicker and more accurate computation. Of treetmethods presented,
the modified transformation function method has the smat@®putational cost while
being as accurate as the slope-based method.
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11.1.2 Ecological case study

Fuzzy classifiers were applied to a modelling problem caringrthe habitat suitability
of river sites along springs to small rivers in the Central &vestern Plains of Europe
for 86 macroinvertebrate species. For each species, fodelsmevere developed, an
A-, N-, P-, and C-model. The fuzzy classifiers take a certadthyvelocity and either
ammonium (A), nitrate (N) or phosphate (P) concentratioelectrical conductivity
(C) as input and return four values between 0 and 1 as outmlitating the degree
to which the river site is considered ‘not suitable’ respety ‘lowly’, ‘moderately’
and ‘highly suitable’ for the species to establish a popoifat With the developed
models the influence on the habitat suitability can be asgefss the stream width
and stream velocity, two variables determining the rivgretand reflecting the water
guantity conditions at a river site, as well as for one aspéthe impact of human
activities,i.e. the nutrient and organic load.

Field data collected at 445 sites in the Province of Ovegij@be Netherlands),
referred to as the EKOO data set, allowed for an objectiviuatian of the four devel-
oped models for 12 selected species. The fact that amongdhlgmone is an indicator
for reference conditions, indicates that given the presamironmental conditions of
rivers in EU Member States, shifts in abundance levels ofencommon species are
more suitable to detect gradual changes in water qualityth \Af improving water
quality, the follow-up of indicator species with more navraiches will gain impor-
tance. Of these 48 models, 16 models turned out to have a goddlmerformance
expressed by the performance measure % CFCI. These 16 gdorhiag and objec-
tively evaluated models are all, except one model, N- or Rlet®

For the four models of the 12 selected species an optimizatiothe member-
ship function parameters of the input variables was canigdOne type of interpreta-
bility-preserving data-driven optimization, as well asauturacy-oriented optimiza-
tion, were applied using both a binary-coded and a realdggmetic algorithm. As
fithess function the average deviation (AD), a new perforreaneasure for fuzzy or-
dered classification, was used. For four models the binadged genetic algorithms
returned less accurate solutions for the accuracy-odesggmization than for the con-
strained optimization, due to the fact that the optimizedninership function parame-
ters only take values from a limited set of values. A shortegmvhich, as shown by
the experiments, can be remedied by applying a real-valgjesentation instead of
a binary representation. The real-coded genetic algositapplied in this study, how-
ever, showed maladjusted to eight of the 96 addressed mehipdunction optimiza-
tion problems, as an exhaustive investigation of the cbstractures of the genetic
algorithms was outside the scope of this study. A purely @myuoriented optimiza-
tion is no option when one wants to preserve the interprittabf the habitat suitability
models under study with the EKOO data set. In this case, ekpewledge is a prereq-
uisite to build interpretable models in order to define tHe hases and determine the
optimization intervals of the membership function pararet The accuracy-oriented
optimization, however, gives a better insight in the dryvifiorce during the bounded
optimization,i.e. the tendency to classify as much data points as possibleiakitin-
dance clasabsent by increasing the regions where the input is mappedbtent,
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and stresses the importance of uniformly distributed aremmimguous training data
for model optimization.

Fuzzy rule-based modelling showed to be of great value apalkdge-based
habitat suitability modelling technique in river manageme The fuzzy sets allow
working with vague information which makes them very suiedbr the variables and
criteria used in this application field. Moreover, the labattached to the fuzzy sets
are relevant for river management as they were inspired dogxfsting classifications
used nowadays in bio-assessment and river typologiesreetjby the Water Frame-
work Directive. The structure of a fuzzy rule base allowstfar incorporation of the
information summarized in the knowledge base into an imfegesystem for habitat
suitability modelling, by expressing non-linear relasidn terms of if-then rules. The
degrees of membership to the different output classesgedkie end-user with a quan-
tification of the uncertainty associated with the model attghis information has an
added value in decision support.

11.1.3 Monotone linguistic fuzzy models

A fuzzy model can be identified by combining quantitativehwjualitative knowledge.
First of all, qualitative knowledge allows us to obtain miegful, interpretable models.
Moreover, it permits a reduction of the search space of tha-didven model identi-
fication which renders the model identification process legserable to noise and
inconsistencies in the data and suppresses overfitting ditsertation focussed on a
common property of evaluation and selection procedureaghaon the monotonicity
of the model output with respect to an input varialke,the fact that the model output
is either increasing or decreasing in the variable for athbimations of values of other
input variables. More specifically, monotone models weuglied in this work,i.e.
models that are monotone in all input variables.

Models were assumed to apply a fuzzy partition of trapezednimership func-
tions in all input domains as well as in the output domain,clliimposes a natural
order on the linguistic values of all variables, and to haveamotone rule basé.e.
to use a set of if-then rules describing a monotone relat&wéen the input variables
and the output variable. The monotonicity of linguisticZyanodels under different
inference procedures was discussed: Mamdani—Assili@ran€e plain implicator-
based inference and ATL-ATM inference. Mamdani—Assiliavdels applying one of
the three basic t-normiBy;, Tp or 71, combined with either the Center of Gravity or
the Mean of Maxima defuzzification method were considerearthermore, models
applying plain implicator-based inference or ATL—ATM inémice, one of the three ba-
sic t-normsTy, Tp or 11, one of the three R-implicato,, Ip or I3, and the Mean
of Maxima defuzzification method, were studied. The obyectf this study was to
select, for each inference procedure, combinations ofananplicator or defuzzifi-
cation method resulting in a monotone input-output behavior any monotone rule
base, or at least for any monotone smooth rule base.

For the assumed model properties, the input-output bebawvibmodels with
m input variables reduces to the input-output behaviour odl@®withm* (m* < m)
input variables in those regions of the input space wherafhés belong to the kernel
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of the same linguistic value in all but* input domains. Thus, if certain model proper-
ties are necessary to guarantee monotonicity for modektsnitinput variables, these
model properties are also required to guarantee a monatpoéeoutput behaviour for
models with more thamn* input variables. Furthermore, an auxiliary interpolation
procedure was presented which allows for the extensionsoltseobtained for models
for which all linguistic output values in the rule conseqgiseare defined by trapezial
membership functions of identical shape to models with alzgy output partition of
trapezial or triangular membership functions.

For a model with two input variables and a monotone rule baseotonic-
ity cannot be guaranteed for the considered combinatiomsfefence procedures, t-
norms, implicators and defuzzification methods, exceptMamdani—Assilian infer-
ence combined with the t-norffip and the Mean of Maxima defuzzification method
if, at least, the model satisfies additional constraints: Mamdani—Assilian models
with two input variables and any monotone rule base appljfiegMean of Maxima
defuzzification method, a monotone input-output behaviaaur be guaranteed when
using a fuzzy output partition corresponding to one of tHiofang schematd *, tri-
angular, triangular, triangular, ¥, { *, triangular, triangular, ¥ or { *, *, * } with *a
membership function that might be either triangular oremal. When a system with
two input variables is described by a monotone smooth ride bavider range of infer-
ence procedures can be applied: Mamdani—Assilian infereiith the t-nornils and
the Center of Gravity or Mean of Maxima defuzzification methblamdani—Assilian
inference with the t-norriiy; and the Mean of Maxima defuzzification method, ATL—
ATM inference with the t-nornip, the implicatorl;, and the Mean of Maxima de-
fuzzification method or ATL-ATM inference with the t-norit},, the implicatorly,,

Ip or I, and the Mean of Maxima defuzzification method.

The monotonicity of ATL—-ATM models with three or more inpwniables was
not studied in this dissertation. For Mamdani—Assilian gledapplying the Center
of Gravity defuzzification method, models with up to threpuhvariables were in-
vestigated. It was proved that a monotone input-output\iebais always obtained
for Mamdani—Assilian models with three input variables ansonotone smooth rule
base applying the t-norfip and the Center of Gravity defuzzification method when
the linguistic output values in the consequents of the rakesdefined by trapezial
or triangular membership functions of identical shape. th@rmore, for Mamdani—
Assilian models applying the Mean of Maxima defuzzificatroathod, it was shown
that monotonicity is guaranteed for models with a monotaneath rule base apply-
ing Tt when the linguistic output values in the consequents ofulesrare defined by
trapezial or triangular membership functions with intésvaf changing membership
degree of equal length and for models with a monotone smadgtbase applyinde
for any fuzzy output partition.

11.2 Indications for future research

Monotone models in habitat suitability modelling Univariate preferences func-
tions are commonly applied in habitat suitability modedligSchneider, 2001). They
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describe the preference of a species for the values takeplysécal or chemical vari-
able by mapping them to values between 0 (for completelyitaise conditions) and
1 (for perfectly suitable conditions). The suitability of#&e as a habitat for a certain
species is then obtained by the product, arithmetic or gé@maean or minimum
of the univariate preferences of the considered varialfiasacterizing the site. In the
fuzzy models developed in the ecological case study, if-thites describe the relation-
ship between a site’s suitability and the variables charagng the site. The habitat
suitability of a site for a species can however also be egpas a function of the
univariate preferences of the species for the differerilsdes characterizing the site,
which results in a model with a monotone rule base.

Performance measures for fuzzy ordered classifiers The newly introduced perfor-
mance measure for fuzzy ordered classifiers, average mevitdkes the order of the
output classes into account by returning the average dewibetween the position of
the class obtained with the model and the position of thesdésred in the data set.
However, average deviation does not differentiate betvekations resulting from
an over-classification,e. a classification in a too high class by the model compared
to the data, and those resulting from an under-classifitatie. a classification in a
too low class by the model compared to the data. In the eadbgase study over-
and under-classification are however, in fact, not consitiéw be of equal importance
when determining the global model performance since olessiications could be the
result of lower abundances for individual species due topmtition between several
species having similar habitat requirements and do therafot necessarily indicate
that the model badly describes the habitat suitability ofain species.

ATL—-ATM models with other implicators  Apart from Mamdani—Assilian models
applying the t-norni’p and the Mean of Maxima defuzzification method and using a
fuzzy output partition belonging to a restricted class ofenypes of fuzzy partitions,
monotonicity cannot be guaranteed for models with two oreminput variables and
any monotone non-smooth rule base. Most systems, howegeadeacribed by a set of
if-then rules forming a monotone non-smooth rule base ashuatrated by the cited
applications from the bioscience engineering field. It wiotlerefore be interesting
to investigate if monotonicity is guaranteed for ATL-ATM delds with two or more
input variables and any monotone rule base when applyingr atfiplicators, such as
the S-implicators defined in Eq. (2.37), or the Center of Gyalefuzzification method.

Computational aspects of defuzzification in ATL-ATM models The modified
transformation function method, allowing for an accurabenputation of the crisp
output of Mamdani—Assilian models applying the Center od\@y defuzzification
method, showed to be an essential tool when studying the tooicdy of these mod-
els. An accurate determination of the model output makefuusamerical exper-
iments guiding the analytical analysis possible and hefabifitates the analytical
analysis of the model behaviour. Therefore, | recommenddvelopment of a proce-
dure to accurately determine the model output of ATL-ATM meleefore continuing
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(resp. starting) the study on the monotonicity of ATL-ATM deds applying the Mean
of Maxima defuzzification method (resp. Center of Gravitfudeification method).

Identification of monotone linguistic fuzzy models The selection made in this dis-
sertation of combinations of Mamdani—Assilian and ATL—ATikference, t-norms
Twm, Tp and Ty, implicators Iy, Iy and Iy, and the Mean of Maxima and Center
of Gravity defuzzification method which guarantee monatityiof models with a
monotone rule base, could be used when developing a daenddentification method
for monotone linguistic fuzzy models.

11.3 Main contributions of this dissertation

This dissertation has tried to make contributions to bothebological modelling as
well as to the fuzzy modelling domain. These contributioreslisted below.

To the ecological modelling community
e afuzzy ordered classifier was applied for habitat suitghitiodelling

¢ the need of a data set including a similar number of examplethe different
phenomena described by the model was illustrated

To the fuzzy modelling community

e an accurate and fast computational method was introdugedketermining the
crisp output of Mamdani—Assilian models applying the CewtfeGravity de-
fuzzification method and using fuzzy output partitions afpzial membership
functions

e a new performance measure for fuzzy ordered classifiers vesempted taking
the ordering of the output classes into account

e guidelines were formulated for designers of monotone listiifuzzy models

e a new inference procedure, called ATL-ATM inference, wasontuced for lin-
guistic fuzzy models with a monotone rule base
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APPENDIX A

| List of macroinvertebrate taxa

In Table A.1 all 86 macroinvertebrate taxa considered mshidy are listed. In the first
column the index is given as used in this manuscript, follblre the full taxon name
and the abbreviation used in this study in the second andi¢cblumn. The twelve taxa
selected for optimization of the membership functions adécated in bold.

Table A.1: Macroinvertebrate taxa

Taxon name Taxon code‘ Taxon name Taxon code
Indicator species
1  Agabus didymus agabdi dy 2 Agabus guttatus agabgut t
3 Agabus paludosus agabpal u 4 Amphinemura sulcicolis anmphsul ¢
5  Anacaena globulus anacgl ob 6  Ancyclus fluviatilus ancyf | uv
7  Baetis rhodani baet r hod 8  Brillia longifurca brillong
9  Crunoecia irrorata crunirro | 10 Dugesia gonocephala dugegono
11  Elmis aenea el m aena 12 Elodes minuta el odm nu
13  Ephemera vulgata epravul g 14  Gammarus roesellii gammr oes
15 Halesus radiatus hal edira 16  Hydroporus nigrita hyponi gr
17  Hydropsyche pellucidula hypspel | 18  Ironoquia dubia i rondubi
19  Limnephilus extricates i luextr 20  Limnephilus fuscifornis l'ilufusc
21 Limnephilus lunatus liluluna | 22  Notidobia ciliaris nodoci | i
23 Odontomesa fulva odnef ul v 24 Orectochillus villosus orecvill
25  Physafontinalis physf ont 26  Platambus maculatus pl tamacu
27  Plectrocnemia conspersa pl trcons 28  Nebrioporus depressus ponedepr
29  Rheocricotopus group fuscipes r hcr gf us 30  Sericostoma personatum set opers
Non-indicator species
31  Acroloxus lacustris aclolacu | 32  Agabus affinis agabaf fi
33  Agabus bipustulatus agabbi pu 34  Anabolia nervosa anabner v

continued on next page
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continued from previous page

Taxon name Taxon code| Taxon name Taxon cofde

35  Anacaena bipustulatus anachi pu 36  Anisusvortex ansuvot e
37  Asellusaquaticus asel aqua | 38  Corixa punctata cori punc
39  Dugesia lugubris/polychroa dugel upo | 40  Erpobdella octoculata er pooct o
41  Galba trunculata gal btrun 42  Gammarus pulex gammpul e
43  Gerris lacustris gerrlacu 44 Glossiphonia complanata gl si conp
45  Glossiphonia heteroclita gl sihete | 46  Glyphotaelius pellucidus gl phpel |

47 Haliplus flavicollis haliflav | 48 Haliplus fluviatilis halifluv
49  Haliplus lineatocollis halilito | 50 Haementaria costata hanecost

51  Helobdella stagnalis hebdstag | 52 Hemiclepsis marginata hecl marg
53  Helophorus aquaticus/grandis her uaqgr 54  Helophorus brevipalpis her ubr ev
55  Hydroporus palustris hypopal u 56  Hydropsyche angustipennis hypsangu
57  Hygrotus inaequalis hyt ui nae 58 llybius fenestratus ilybfene
59  llybius fuliginosus ilybfuli 60  Limnephilus rhombicus i urhom
61 Lype reducta | yper edu 62  Notonecta glauca not ogl au
63 Physa acuta physacut 64  Piscicola geometra pi scgeom
65  Planorbis carinatus pl bi cari 66  Planorbisplanorbis pl bi pl an
67  Plectrocnemia geniculata pl trgeni 68  Proasellus meridianus proaneri

69  Radix peregra radi pere | 70 Sialis fuliginosa sial fuli

71  Sialis lutaria sialluta 72  Sigara falleni sigafall

73  Sigara lateralis sigal ate 74  Sigara semistriata si gasem

75 Sigarasdtriata sigastri 76  Stagnicola palustris stagpal u
77  Valvata piscinalis val vpi sc 78  \Velia caprai vel i capr

79  Brillia modesta brilmde | 80 Aspectrotanypus trifascipennis apsetri f

81 Dicrotendipes group notatus  di t egnot 82  Polypedilum laetum agg. popel aea
83  Parametriocnemus stylatus paocstyl 84  Aplexa hypnorum apl ehypn
85 Prodiamesa olivacea prodoliv 86  Rhantus suturalis rhansura
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stream width

Acroloxus
lacustris spring / small upper course middle course lower course
(acl ol acu, 31) stream stream stream strearirz/we/rsmall
oligosaprobic / oligotrophic / oligoionic
low Absent Absent Low Low
moderate Absent Absent Absent Absent
high Absent Absent Absent Absent
3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Low
2 |_moderate Absent Absent Low Low
‘g | high Absent Absent Absent Absent
% mesosaprobic é&-mesotrophic / mesoionic
> low Low
£ | _moderate Absent Low
S [hign Absent Absent Low Low
ﬁ «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Low Low
moderate Absent Absent Absent Absent
high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent
moderate Absent Absent Absent Absent
high Absent Absent Absent Absent
Agabus affinis stream width
(agabaf fi,32) | Sno/smal | upercourse | middecourse | o8 IS,
stream stream stream river
oligosaprobic / oligotrophic / oligoionic
low Absent Low Absent Absent
moderate Absent Absent Absent Absent
high Absent Absent Absent Absent
3,cc-oligosaprobic /3-mesotrophic [3-mesoionic
low Absent Low Absent Absent
2> |__moderate Absent Absent Absent Absent
‘c | high Absent Absent Absent Absent
% mesosaprobic &-mesotrophic / mesoionic
> [Tow Tow ~ Moderate Tow Absent
1S3 moderate Absent Low Absent Absent
g high Absent Absent Absent Absent
ﬁ a-mesosaprobic / eutrophia¥-mesoionic

Low

moderate Low Low Absent

high Absent Low Absent Absent
polysaprobic / hypertrophic / polyionic

low Absent Low Absent Absent

moderate Absent Absent Absent Absent

high Absent Absent Absent Absent
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stream width

Agabus guttatus
(agabgutt, 2)

spring / small upper course middle course lower course
stream / small
stream stream stream river

(agabbi pu, 33)

Agabus

stream width

bipustulatus

spring / small upper course middle course lower course
stream / small
stream stream stream Tiver

oligosaprobic / oligotrophic / oligoionic

oligosaprobic / oligotrophic / oligoionic

low Low Absent Absent Absent Low Low Low Low
moderate Low Low Absent Absent
high Absent Absent Absent Absent Low Low Low Low
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Low Absent Absent Absent
2 |_moderate Low Low Absent Absent 2 |_moderate
‘o | high Low Low Absent Absent ‘c | high
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low Absent > low Absent Absent Absent Absent
IS Absent € [“moderate Low Low Low Low
S Absent & [Chigh Low Low Low Low
ﬁ 5 a-mesosaprobic / eutrophia¥-mesoionic
Absent low Absent Absent Absent Absent
Low moderate Absent Absent Absent Absent
Low high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Low Absent Absent Absent low Absent Absent Absent Absent
moderate Low Low Absent Absent moderate Absent Absent Absent Absent
high Low Absent high Absent Absent Absent Absent
Agabus paludosuf stream width Agabus didymus stream width
(agabpal u, 3)| Sno/smal | uepercourse | middecouse | JOE DO | | (agandidy, 1) | SPrhalsmal | wpeercowse | midde course | SUEERIEE,
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Low Absent Absent Absent low Absent Absent Absent Absent
moderate Low Low Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,a-oligosaprobic /3-mesotrophic /3-mesoionic 3,ce-oligosaprobic /3-mesotrophic /3-mesoionic
low Low Absent Absent Absent low Absent Absent Absent Absent
2 |_moderate Low Low Absent Absent 2 |_moderate Absent Absent Absent Absent
‘o | high Absent Low. Low Absent ‘C | _high Low. Low Low. Low.
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low Absent > Low
£ Absent 1S Low
7] @

a-mesosaprobic / eutrophiad-mesoionic

Absent
Low

polysaprobic / hypertrophic / polyionic

a-mesosaprobic / eutrophia¥-mesoionic

polysaprobic / hypertrophic / polyionic

moderate
high

Low Absent Absent Absent
Low Low Absent Absent
low  [Wodeiae i [NoGerEE N Low

moderate

high

Absent Absent Absent Absent
Absent Absent Absent Absent
Low Low Low Low
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Anacaena stream width Amphinemura stream width
bipustulatus spring / small upper course | middle course lower course sulcicolis spring / small upper course | middle course | lower course
( anacbi pu, 35) stream stream stream strearirse/rsmall (anphsulc, 4) stream stream stream strearir\v)e/rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic

low Absent Absent Low Absent Low

moderate Absent Absent Absent Absent

high Absent Absent Absent Absent

3,-oligosaprobic /3-mesotrophic /3-mesoionic B, «-oligosaprobic /3-mesotrophic /3-mesoionic

low Absent Absent Low Absent Low

moderate Absent Absent Absent Absent moderate

high Absent Absent Absent Absent high

stream velocity

mesosaprobic &-mesotrophic / mesoionic

mesosaprobic &i-mesotrophic / mesoionic

stream velocity

low Absent Absent Absent Absent
moderate Low Low Low moderate Absent Absent Absent Absent
high Absent Absent Low Absent high Low
«-mesosaprobic / eutrophiay-mesoionic «-mesosaprobic / eutrophic¥-mesoionic
Tow Tow Tow ~ Moderate Tow Tow Absent Absent ‘Absent ‘Absent
moderate Absent Absent Low Absent moderate Absent Absent Absent Absent
high Absent Absent Low Absent high Absent Low Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Low Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
L stream width ) stream width
Anacaena globulyl Anabolia nervos
(anacgl ob, 5) spring / small upper course middle course S'?r"e":r’ncl":rfgl (anabner v, 34) spring / small upper course middle course Slg\glgrmclo:ﬁsu
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Low Absent moderate Absent Low Low Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,c-oligosaprobic /3-mesotrophic [3-mesoionic
low Absent Absent Absent Absent low Absent Low Low Absent
2 [[moderate Absent Absent Low Absent > [_moderate Low | Moderate ~ Moderate Low
‘o | high Absent Low. Low Low. ‘C | _high Absent Low Low Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> [Tow ‘Absent Low T Moderate Tow > [Tow Low Low
E [ moderate Low [ wioderate i I L SWioderatell| £ [ moderate
S [high Absent Low Low 8 [ Low Low
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Low Absent low Absent Absent Absent Absent
moderate Absent Low _ Low moderate Low Low
high Absent Absent Low Absent high Low. Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Low Low Absent
high Absent Absent Absent Absent high Absent Low. Low. Absent
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stream width

stream width

Aplexa hypnoru Ancyclus fluviatilu
(apl ehypn, 84) spring / small upper course middle course sl?rvev:;nclogr;s:xll (ancyfluv, 6) spring / small upper course middle course S'g‘;";[ncfgﬁil
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low low Absent Absent Low Low
Low Absent moderate Absent Absent
Low Low Absent Absent high Absent Low
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
Low low Low Low
> Low Absent 2 |_moderate Low Low
‘o [ _high Low Low Absent Absent ‘c | high Low
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low Absent > | low Absent Absent Low Low
£ | _moderate Low Absent Absent € [“moderate Absent Absent Low Low
S high Low Low Absent Absent g high Low High High
‘3 «a-mesosaprobic / eutrophia¥-mesoionic 43 «-mesosaprobic / eutrophia¥-mesoionic
low Low Low Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Low Low
. stream width ) stream width
Asellus aquaticu Anisus vortex
(asel aqua, 37) | snalsmal | uppercourse | - midde couse | OSSR | |(ansuvot e, 36) | SPrmalsmal | uppercouse | midde couse | SUETERIE,
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Absent Low Low Absent
moderate Low Low Low Low moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,c-oligosaprobic /3-mesotrophic [3-mesoionic
low Absent Absent Absent Absent low Low Low
2 |_moderate Low Low Low Low 2 |_moderate Absent Low Low Absent
‘© high Absent Absent Absent Absent ‘© high Absent Absent Absent Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low Low Low > low
£ £ |_moderate Low Low
8 Low & [high Absent Low Low Absent
ﬁ a-mesosaprobic / eutrophi ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Low Low Absent
moderate Absent Absent Absent Absent
high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Low Low Low Low moderate Absent Absent Absent Absent
high Low Low Low Low high Absent Absent Absent Absent
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Brillia longifurca

stream width

Aspectrotanypus|
trifascipennis

stream width

H spring / small upper course middle course lower course spring / small upper course middle course lower course
(brillong, 8) stream / small (a if 80 stream / small
stream stream stream iver psetrif, ) stream stream stream Tiver
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent
moderate Absent
high Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
Absent Low Low Low Absent
? Absent Low Low Low é\ Absent
o o Absent
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> | low Absent Low Low Low > Absent
£ | _moderate Absent Low Low Low € Absent
S high Low High High High g Absent
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic 5 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent Absent Absent Absent
moderate Absent Absent Absent Absent Absent Absent Absent
high Low Low Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Low Low Low high Low Absent Absent Absent
- stream width . ) stream width
Brillia modesta Baetis rhodani
(brilmode, 79) | ne/smal | wpercouse | middecouse | FEEPIE, | | (paetrhod, 7) | ne/smal | uwpeercouse | mide course | FUT R,
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Absent Absent low Low Low Low Low
Absent Absent moderate Low Low Low Low
Absent high Low
3,c-oligosaprobic /3-mesotrophic [3-mesoionic
Absent
é\ Absent é\
o Absent o
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Absent Absent Absent Absent > low Low Low Low Low
£ Absent Absent Absent Absent £ |_moderate Low Low Low Low
8 Low Absent Absent 8 high
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Low Absent Absent Absent high Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Low. Low Low
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Dicrotendipes gr. stream width Corixa punctata stream width
notatus spring/small | uppercourse | middle course | lower course ) 3g) | sering/smail | uppercourse [ middie course [ lowercourse
( dit egnot , 81) stream stream stream strearirse/rsmall (coripunc, ) stream stream stream slre?m?/rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Low Low Low low Low Low Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Low low Low Low Absent Absent
2 |_moderate Absent Low Low Low 2 |_moderate Absent Absent Absent Absent
‘o [_high Absent Absent Absent Absent ‘o [_high Absent Absent Absent Absent
To.) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> > Low
£ | _moderate Low € [“moderate Low Absent
S high Absent Low Low. g high Low Low Absent Absent
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic ‘3 «-mesosaprobic / eutrophia¥-mesoionic
low Low low Low Low Absent Absent
moderate Absent Low Low Low moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Low Low Low low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
i ream width o a] tream width
Dugesia strea, de Crunoecia irrorat Strea d
gonocephala spring / small upper course middle course lower course f spring / small upper course middle course lower course
(dugegono, 10) stream stream stream stree?ir\rllelrsmall (crunirro, 9) stream stream stream stree:we/rsmal\
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Low Absent Absent moderate Low Absent Absent Absent
high Low Low Low high Low Absent Absent
3,a-oligosaprobic /3-mesotrophic /3-mesoionic (3,-oligosaprobic /3-mesotrophic /3-mesoionic
Absent Low Absent Absent Low Absent Absent Absent
> Low Low Absent > Low Absent Absent
‘© Low. ‘© Low. Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> low Absent Absent Absent Absent > low Absent Absent Absent Absent
£ moderate Absent Absent Absent Absent 1S moderate Low Absent Absent Absent
8 high Low Low. Absent g high Low Absent
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Low Absent Absent high Low Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Low Absent Absent Absent
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Elodes minuta stream width D_uge5|a stream width
: spring / small upper course middle course lower course lugubris/polychrog spring / small upper course middle course lower course
(el odmi nu, 12) stream / small (dugel 39 stream / small
stream stream stream river gel upo, ) stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Absent Absent Low Absent
moderate Absent Absent Absent Absent moderate Absent Low _ Moderate Low
high Absent Absent Absent Absent high Absent Absent Low Absent
3,-oligosaprobic /3-mesotrophic /3-mesoionic B, «-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Absent Absent low Absent Low Low
2 |_moderate Absent Absent Absent Absent 2 |_moderate Low
‘o [ _high Low Absent Absent Absent ‘c | high Absent Low Low
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> Absent Absent Absent Absent > | low Absent Low Low
IS Low Absent Absent Absent € [“moderate Low
S Low. Absent Absent g high Absent Low Low
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic 5 «-mesosaprobic / eutrophia¥-mesoionic
Absent Absent Absent low Absent Absent Absent Absent
Low Absent Absent moderate Absent Absent Low Absent
Low Absent high Absent Absent Low Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Low Absent Absent Absent moderate Absent Absent Absent Absent
high Low Absent Absent high Absent Absent Absent Absent
stream width ’ stream width
Ephemera vulgat Elmis aenea
(epravul g, 13) spring / small upper course middle course S'i’r"e":r’ncl":rrnsgl (el ni aena, 11) spring / small upper course middle course S'g‘g’gfmcf:;f;‘
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Low Low
moderate Absent Low Low Low
high Low
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,c-oligosaprobic /3-mesotrophic [3-mesoionic
low Low Low Low Low Low
2 |_moderate Low > Low Low Low
‘S |_high Low. ‘©
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> low Low > Absent Absent Absent Absent
€ [ moderate Low 1S Absent Absent Absent Absent
S [high Low 3
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Low. high Low Low Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Low Low high Absent Absent Absent Absent
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Gammarus pulex stream width Erpobdella stream width
spring / small upper course middle course lower course octoculata spring / small upper course middle course lower course
ampul e, 42
(9 ! ) stream stream stream stree:irse/rsmall (erpooct o, 40) stream stream stream strea:;*ce/rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Absent Absent Absent Absent low Absent Absent Absent Absent
Low Low Absent Absent moderate Absent Absent Absent Low
Low Absent high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
Low Low Absent Absent low Absent Absent Absent Absent
> Low Absent 2 |_moderate Absent Absent Absent Low
‘© Low. ‘o [_high Absent Absent Absent Absent
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low Absent Absent > | low Absent Absent Absent Low
£ Low Absent € [“moderate Absent Low Low
S Low. g high Absent Absent Absent Low
‘3 «-mesosaprobic / eutrophiay-mesoionic 43 «-mesosaprobic / eutrophic¥-mesoionic
Absent Absent Absent Absent low Absent Low Low
Absent Absent Absent Absent moderate Low
Low Absent high Absent Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Low
high Low Low Absent Absent high Absent Absent Absent Low.
stream width stream width
Gammﬁ_r_us Galba trunculata
roeselli spring / small upper course i lower course spring / small upper course i lower course
(ga oes, 14) pring middle course stream / small (gal btrun, 41) pring middle course stream / small
’ stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Low Low Low Absent Absent
moderate Absent Absent Absent Low ~ Moderate Low Absent
high Absent Absent Absent Absent Low Absent Absent
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,c-oligosaprobic /3-mesotrophic [3-mesoionic
low Absent Absent Absent Low Low Absent Absent
2 |_moderate Absent Absent Absent Low > Low Absent
‘S |_high Low. Low. Low. Low. ‘© Low Absent Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low Low > Low Absent
£ £ Low
8 8 Low Absent
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
Absent Absent low Absent Absent Absent Absent
Low Low moderate Low Low Absent Absent
high Low Low Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Low low Absent Absent Absent Absent
moderate Absent Absent Absent Low moderate Absent Absent Absent Absent
high Low Low Low Low high Absent Absent Absent Absent
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i i stream width ! . stream width
Glossmhqnla Gerris lacustris
heteroclita spring / small upper course middle course lower course spring / small upper course middle course lower course
(gl si hete, 45) steam /small [ |(gerrlacu, 43) stream / small
g ’ stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low Low Absent Absent low Absent Absent Low Low
Low Low moderate Absent Low
Low Absent Absent high Absent Absent Low Low
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
Low Absent Absent low Absent Low
> Low Low 2 |_moderate Low
‘© Low Absent Absent ‘c | high Absent Low
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> Low > | low Absent Absent Low
£ € [“moderate Absent Low
S Low & [Chigh Absent Low
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic 5 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Low Low Absent Absent moderate Absent Absent Low Low
high Low Low Absent Absent high Absent Absent Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
Glyphotaelius stream width Glossiphonia stream width
pellumdus spring / small upper course middle course I?wer (;/ourse” co_mplanata spring / small upper course middle course I;)wer c/ourse"
(gl phpel I, 46) stream stream stream SHea e (gl si conp, 44) stream stream stream i Wl
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low Absent low Absent Absent Absent Absent
Low moderate Low Low Absent Absent
Absent high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic [3-mesoionic
Absent Low Low Absent Absent
? Low 4? Low Low
o Absent o Low Absent Absent
% % mesosaprobic &-mesotrophic / mesoionic
> Absent > Low Low
£ Low £ |_moderate
8 Low. Absent 8 high Low Low
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Low Absent Absent Absent moderate Low Low Absent Absent
high Low Absent Absent Absent high Low Low Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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stream width

stream width

Haliplus flavicollis Haementaria
H spring / small upper course middle course lower course costata spring / small upper course middle course lower course
(haliflav, 47) stream / small (hanecost , 50) stream / small
stream stream stream river , stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Low Low Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Low Low Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Low Low Absent Absent low Absent Absent Absent Absent
2 |_moderate Absent Absent Absent Absent 2 |_moderate Low Low Absent Absent
‘o [_high Absent Absent Absent Absent ‘o [_high Absent Absent Absent Absent
To.) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low > Low Absent Absent Absent
£ | _moderate Low Absent € Low Absent Absent
S high Low Low Absent Absent g Absent Absent Absent
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic ‘3 «-mesosaprobic / eutrophia¥-mesoionic
low Low Low Absent Absent low Low Absent Absent
moderate Absent Absent Absent Absent moderate Low Absent
high Absent Absent Absent Absent high Low Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Low Absent Absent Absent
high Absent Absent Absent Absent high Low Absent Absent Absent
. I stream width ) stream width
Haliplus fluviatilis Halesus radiatus
(hal i f1uy, 4g) | me/smal | wpercouse | middecourse | FoP0E, | | (hal edira, 16) | ne/smal | wppercouse | mide course | oT O,
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Low Low Low Low Low Absent
moderate Low Low Low
high Absent Absent Low Low. high
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,ac-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Low Low low Absent Absent Absent Absent
2 |_moderate Low Low 2 |_moderate Low Low Low Absent
‘© high Absent Absent Low Low ‘© high
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> low Low Low > Absent Absent Absent Absent
€ [ moderate 1S Absent Absent Absent Absent
S [high Low Low 3 Absent
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Low Low moderate Absent Absent Absent Absent
high Absent Absent Low Low high Low. Low Low Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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stream width

Helophorus stream width Haliplus
aquaticus/grandi§  gpring s smail uppercourse | middle course |  lower course lineatocollis spring / small upper course | middle course | lower course
(heruaqgr, 53) stream stream stream strearirse/rsmall (halilito, 49) stream stream stream strearir\v)e/rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Low Low Absent Absent low Low Low Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Low Absent low Low Low Absent Absent
2 |_moderate Low Low Absent Absent 2 |_moderate Absent Absent Absent Absent
‘o [_high Absent Absent Absent Absent ‘o [_high Absent Absent Absent Absent
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low > low
IS Low Absent € [“moderate Low Low
S Low Absent Absent g high Low Low Absent Absent
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic 5 «-mesosaprobic / eutrophia¥-mesoionic
Low Absent low Low Low Absent Absent
moderate Low Low Absent Absent moderate Absent Absent Absent Absent
high Low Low Absent Absent high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Low Low Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
Helophorus stream width Helobdella stream width
brewpalpls spring / small upper course middle course lower course Stagnalls spring / small upper course middle course lower course
(herubrev, 54) stream stream stream strearir\?;rsmall (hebdst ag, 51) stream stream stream stree:we/rsmal\
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Low Low Absent Absent moderate Absent Low Low Low
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,a-oligosaprobic /3-mesotrophic /3-mesoionic 3,ce-oligosaprobic /3-mesotrophic /3-mesoionic
Low Low Absent Absent low Absent Low Low Low
> Low Absent 2 |_moderate Low
‘© Low. Absent Absent ‘C | _high Absent Low Low. Low.
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Absent > low Low
£ Low £ |_moderate
8 Absent S [Chigh Low
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
Low Absent Absent low Absent Low Low
Low Absent moderate Low
Low Absent high Low.
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Low Low Absent Absent moderate Absent Low Low Low
high Low Low Absent Absent high Absent Low. Low Low
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Hydroporus stream width Hemiclepsis stream width
palustris spring / small upper course | middle course lower course marginata spring / small upper course | middle course | lower course
(hypopal u, 55) stream stream stream stree:irce/rsmall (hecl mar g, 52) stream stream stream strea:;c;rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low low Low Low Low Low
Low Absent moderate Absent Absent Absent Absent
Low Low Absent Absent high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Low Absent low
2 |_moderate Low Low Absent Absent 2 |_moderate Low Low Low Low
‘o [ _high Low Low Absent Absent ‘o [_high Absent Absent Absent Absent
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> | low Low Low Absent Absent > | low
£ | _moderate Absent Absent Absent Absent € [“moderate
S high Absent Absent Absent Absent g high Low Low Low Low
‘3 «a-mesosaprobic / eutrophia¥-mesoionic ‘3 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Low Low Low Low
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
Hydropsyche stream width Hydroporus stream width
angustipennis spring / small upper course middle course lower course mgma spring / small upper course middle course lower course
(hypsangu, 56) stream stream stream stree?ir\?;rsmall (hyponi gr, 16) stream stream stream stree:we/rsmal\
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Low Absent
moderate Absent Absent Low Low Low Absent Absent
high Low Low Low Absent Absent Absent
3,a-oligosaprobic /3-mesotrophic /3-mesoionic (3,-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Absent Absent low Low Absent Absent
2 |_moderate Absent Absent Low 2 |_moderate Low Absent Absent Absent
‘o | high Low Low — ‘c | high Low. Absent Absent Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Absent Low > low Low Absent Absent Absent
£ Low £ |_moderate Absent Absent Absent Absent
8 8 high Absent Absent Absent Absent
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
Absent Absent Absent Absent low Absent Absent Absent Absent
Absent Absent Low Low moderate Absent Absent Absent Absent
high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Low Low high Absent Absent Absent Absent
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B stream width stream width
Illybius fenestratuJ Hydropsyche
. spring / small upper course middle course lower course pellucidula spring / small upper course middle course lower course
(ilybfene, 58) stream / small (hypspel I, 17) stream / small
stream stream stream river ypsp , stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Low Low Low Low low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Low Low Absent
3,-oligosaprobic /3-mesotrophic /3-mesoionic B, «-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Low Absent
> 2 |_moderate Absent Low Absent
© Low Low ‘s [ high Low. Low.
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> > | low Absent
£ | _moderate Low € [“moderate Low
S high Low g high
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic 5 «-mesosaprobic / eutrophia¥-mesoionic
low Low Low Low Low low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Low Low Absent
. L stream width stream width
Ilybius fuliginosu Hygrotus
H : spring / small upper course middle course lower course inaequalis spring / small upper course middle course lower course
(I | ybf uli, 59) stream / small hyt ui nae, 57 stream / small
stream stream stream river (hy , ) stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Low Low Absent Absent
moderate Low Low Low Low moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,a-oligosaprobic /3-mesotrophic /3-mesoionic 3,ce-oligosaprobic /3-mesotrophic /3-mesoionic
> 2 |_moderate Low Low
‘© ‘C | _high Low Low Absent Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low Low > low Low Low Absent Absent
£ 1S moderate Absent Absent Absent Absent
8 8 high Absent Absent Absent Absent
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Low Low Low Low moderate Absent Absent Absent Absent
high Low Low Low Low high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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lengphll_us stream width Ironoguia dubia stream width
fuscifornis spring / small uppercourse | middle course lower course ) dubi 18 spring / small upper course | middle course | lower course
(l'ilufusc, 20) stream stream stream strearirse/rsmall (irondubi, 18) stream stream stream stref:;c;rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Low Low Low Low Low Absent Absent
moderate Absent Low Low Low Low Absent
high Absent Absent Absent Absent Low. Low Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Low Low Absent
2 |_moderate Low 2 |_moderate Low
‘o [ _high Low Low ‘c | high Low. Absent
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> > | low Absent Absent Absent Absent
£ | _moderate € [“moderate Low Low Absent Absent
S high Low g high Low Low Absent Absent
‘3 «a-mesosaprobic / eutrophia¥-mesoionic ‘3 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Low Low Low low Absent Absent Absent Absent
moderate Absent Low Low Low moderate Absent Absent Absent Absent
high Absent Low Low Low. high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
Limnephilus stream width Limnephilus stream width
lunatus spring / small upper course middle course lower course extricates spring / small upper course middle course lower course
(| iluluna, 21) stream stream stream strearir\?;rsmall (| iluextr, 19) stream stream stream stree:we/rsmal\
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Low Absent moderate Absent Low Low Low
high Absent Absent Low Absent high Absent Absent Absent Absent
3,a-oligosaprobic /3-mesotrophic /3-mesoionic (3,-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Low Absent low Absent Low Low Low
2 [[moderate Absent Low ' Moderate Low > [_moderate Low
‘o | high Absent Absent Low Absent ‘c | high Absent Low Low. Low.
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> [Tow ‘Absent Low T Moderate Tow > [Tow Low'
E [ moderate Low [ wioderate i I L SWioderatell| £ [ moderate
$ [high Absent Low Low S [hoh Low
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Low Absent moderate Absent Low Low Low
high Absent Absent Low Absent high Absent Low. Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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Nebrioporus stream width Limnephilus stream width
depressus spring / small upper course middle course lower course rhombicus spring / small upper course | middle course lower course
(ponedepr, 28) stream stream stream strearirse/rsmall (1'i l'urhom 60) stream stream stream stref:;c;rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Low Low Absent Absent
high Absent Absent Low Absent high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Low Absent low Low Low
2 |_moderate Absent Absent Low Absent 2 |_moderate
‘o [ _high Absent Low Low ‘c | high Low. Low
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> | low Absent Low Low > | low Absent Absent Absent Absent
£ | _moderate Absent Low Low € [“moderate Low Low Absent Absent
S high Low g high Low Low Absent Absent
‘3 «a-mesosaprobic / eutrophia¥-mesoionic ‘3 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Low Low high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Low Absent high Absent Absent Absent Absent
Notidobia ciliaris stream width Lype reducta stream width
(nodoci I i, 22) | Sne/small | uepercourse | middiecouse | JOR RS | (| yper edu, 61) | SPrnalsmall | ppercouse | midde course | SUST RS,
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low Absent low Absent Absent Absent Absent
Low Absent moderate Absent Absent Absent Absent
Low high Low. Low Absent Absent
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,ac-oligosaprobic /3-mesotrophic /3-mesoionic
Absent Absent Absent Absent Low Low Absent Absent
> Absent Absent Absent Absent > Low Absent
‘© Low. Absent ‘© Low.
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> low Absent Absent Absent Absent > low Absent Absent Absent Absent
£ moderate Absent Absent Absent Absent 1S moderate Low Low Absent Absent
8 high Low. Low Absent Absent 8 high Absent Absent
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Low Low Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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Orectochillus
villosus

(orecvill, 24)

stream width

spring / small upper course middle course
stream stream stream

lower course
stream / small

river

Notonecta glauc

stream width

(not ogl au, 62)

lower course
stream / small
river

spring / small upper course middle course
stream stream stream

stream velocity

oligosaprobic / oligotrophic / oligoionic

oligosaprobic / oligotrophic / oligoionic

low Absent Absent Low Low
High High High moderate Low
high Absent Low. Low
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
Low
High High High >
High High High ‘©
mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
Low Low >
€ [“moderate
& [high Low Low
«a-mesosaprobic / eutrophia¥-mesoionic 43 «-mesosaprobic / eutrophia¥-mesoionic
Absent Absent Absent Absent low Absent Absent Absent Absent
Low Low Low Low moderate Absent Absent Low Low
high Absent Absent Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Low Low Low Low high Absent Absent Absent Absent

Parametriocnemu

stream width

Odontomesa fulv;

stream width

stylatus spring / small upper course middle course lower course dnef ul 23 spring / small upper course middle course lower course
(paocstyl, 83) stream stream stream strearir\?;rsmall (odmef ul v, 23) stream stream stream stree:we/rsmal\
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low Absent Absent low Absent Absent Absent Absent
Absent moderate Absent Absent Absent Absent
Absent high Low. Low. Low. Absent
3,c-oligosaprobic /3-mesotrophic [3-mesoionic
Absent low Absent Absent Absent Absent
> Absent 2 |_moderate Absent Absent Absent Absent
‘© Absent ‘c | high Low. Low Low Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Absent Absent Absent Absent > Low Low Low Absent
£ Absent Absent Absent Absent 1S
8 Low Absent Absent 8
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Low Absent Absent Absent high Low.
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Low Low. Low Absent
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Piscicola geometr:

stream width

Physa acuta

stream width

(pi scgeom 64) spring / small upper course middle course sl?rvev:;nclogr;s;m (physacut , 63) spring / small upper course middle course Slg‘;";[ncf;fﬁil
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent
moderate Absent Absent Absent Low Low Low
high Absent Absent Absent Absent Absent Absent Low Low
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Absent
2 |_moderate Absent Low Low > Low
‘o | high Absent Absent Absent k3] Absent Low
° mesosaprobic &-mesotrophic / mesoionic ° mesosaprobic &-mesotrophic / mesoionic
5] [
> [ low Absent Low >
£ | _moderate Low € [“moderate Low Low
S high Absent Low. g high Absent Absent Low
‘3 «a-mesosaprobic / eutrophia¥-mesoionic ‘3 «-mesosaprobic / eutrophia¥-mesoi
low Absent Absent Absent Absent low Low Low
moderate Absent Absent Absent Low moderate Absent Absent Low Low
high Absent Absent Absent Low high Absent Absent Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Low Low
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
Planorbis stream width Physa fontinalis stream width
carinatus spring / small upper course middle course lower course spring / small upper course middle course lower course
i i stream / small (physfont, 25) stream / small
(pl bicari, 65) stream stream stream iver stream stream stream liver
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Low Low Absent
moderate Low Low moderate Absent Low Absent Absent
high Absent Absent Low Low high Absent Low Absent Absent
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,ac-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Low Low low Low Low Absent
2 |_moderate Absent Absent Absent Absent 2 |_moderate Absent Low Absent Absent
‘o | high Absent Absent Absent Absent ‘c | high Absent Low Absent Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> low Absent Absent Absent Absent > low Low
£ moderate Absent Absent Absent Absent 1S moderate Low Absent
8 high Absent Absent Absent Absent 8 high Absent Low Absent Absent
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Low Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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stream width

stream width

Plectrocnemia Planorbis
conspersa spring / small upper course middle course lower course p_lanorbls spring / small upper course middle course lower course
(pltrcons, 27) stream stream stream strearirse/rsmall (pl bi pl an, 66) stream stream stream strearir\v)e/rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Low Low
moderate Absent Low _ Moderate Low
high Low High Low Low
3,-oligosaprobic /3-mesotrophic /3-mesoionic B, «-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Absent Absent
2 |_moderate Absent Absent Absent Absent >
‘o [ _high Absent Low Low k3] Low Low.
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> | low Absent Absent Absent Absent >
£ | _moderate Absent Absent Absent Absent € [“moderate Low Low
S [high Absent Absent Low Absent & [high Low Low Low Low
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic 5 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Low Low Low Low
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
Plectrocnemia stream width Platambus stream width
geniculata spring / small upper course middle course lower course maculatus spring / small upper course middle course lower course
(pltrgeni, 67) stream stream stream strearir\?;rsmall (pl tamacu, 26) stream stream stream stree:we/rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent
moderate Absent Absent Absent Absent
high Low Absent Absent Absent
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,c-oligosaprobic /3-mesotrophic [3-mesoionic
Low Absent Absent Absent
é\ Low Absent Absent é\
o Low Absent o
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Absent Absent Absent Absent > Low Low
£ Absent Absent Absent Absent £ |_moderate
8 Low. Absent 8 high
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic ﬁ «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Low Low Low Low
high Low Low Absent Absent high Low Low Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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Prodiamesa stream width Polypedilum stream width
olivacea spring / small upper course middle course lower course laetum agg. spring / small upper course middle course lower course
(prodoliv, 85) stream stream stream stree:ir\?e/rsmall (popel aea, 82) stream stream stream strearir\v)e/rsmall
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent Absent Absent
moderate Absent Absent Absent Absent Absent Absent
high Low Low Low Absent Low Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
Absent Absent Absent Absent Absent Absent
> Low Low Low Absent > Absent Absent
‘© Low ‘© Low. Absent
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Low Low Absent > Absent Absent Absent Absent
£ Low € Absent Absent Absent Absent
S g Low Absent Absent
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic 5 «-mesosaprobic / eutrophia¥-mesoionic
Absent Absent Absent Absent low Absent Absent Absent Absent
Low Low Low Absent moderate Absent Absent Absent Absent
high Low Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Low. high Absent Absent Absent Absent
Radix peregra stream width Progs_ellus stream width
. spring / small upper course middle course lower course meridianus spring / small upper course middle course lower course
( radi pere, 69) stream / small i 68 stream / small
stream stream stream fiver (proaneri, 68) stream stream stream liver
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Low Low Absent moderate Low Low Low Low
high Absent Absent Absent Absent high Absent Absent Absent Absent
3,a-oligosaprobic /3-mesotrophic /3-mesoionic 3,ce-oligosaprobic /3-mesotrophic /3-mesoionic
low Low Low Low Absent low Absent Absent Absent Absent
2 |_moderate Low Low 2 |_moderate Low Low Low Low
‘o | high Low Low Low Absent ‘c | high Absent Absent Absent Absent
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> > Low Low Low Low
£ £
8 s Low Low Low
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoi
low Absent Absent Absent Absent
moderate Absent Low Low Absent moderate
high Low Low Low Absent high
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Low Low Low Low
high Absent Absent Absent Absent high Low Low. Low Low
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stream width

stream width

Sericostoma Rhantus suturali
personatum spring / small upper course middle course lower course spring / small upper course | middle course lower course
stream / small (rhansur a, 86) stream / small
(setopers, 30) stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low low Low Low Absent Absent
Low moderate Absent Absent Absent Absent
Low high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
Low Low Low Absent low Low Low Absent Absent
> Low Low Low Absent 2 |_moderate Absent Absent Absent Absent
‘© Low. ‘o [_high Absent Absent Absent Absent
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> Absent Absent Absent Absent > | low Low Absent
IS Absent Absent Absent Absent € [“moderate Low Low Absent Absent
S Low Absent g high Absent Absent Absent Absent
‘3 «a-mesosaprobic / eutrophia¥-mesoionic 43 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent Low
moderate Absent Absent Absent Absent Absent
high Low Low Absent Absent Low Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Low Absent
moderate Absent Absent Absent Absent moderate Low Low Absent Absent
high Absent Absent Absent Absent high Low Low Absent Absent
Sialis fuliginosa stream width Rheocrlcqtopus stream width
H : spring / small upper course middle course lower course (gr) fuscipes spring / small upper course middle course lower course
(sialfuli, 70) stream / small (rhergf 29 stream / small
stream stream stream fiver gf us, 29) stream stream stream liver
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low Low Absent Absent low Absent Absent Absent Absent
Low Absent moderate Absent Absent Absent Absent
Low high Low. Low. Low. Low
3,a-oligosaprobic /3-mesotrophic /3-mesoionic 3,ce-oligosaprobic /3-mesotrophic /3-mesoionic
Low Low Absent Absent low Absent Absent Absent Absent
> Low Absent 2 |_moderate Low Low Low Low
‘© Low ‘© high
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> Absent Absent Absent Absent > low Low Low Low Low
£ Low Low Absent Absent £ |_moderate
8 Absent 8 high
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
Absent Absent Absent Absent low Absent Absent Absent Absent
Absent Absent Absent Absent moderate Low Low Low Low
Low Absent high
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Low Low Absent Absent high

S|epow Ayjiqenns jelqey saseq ajiny ‘g xipuaddy



GTE

stream width

stream width

Sigara lateralis Sialis lutaria
(sigalate, 73) spring / small upper course middle course sl?rvev:;nclogr;s;m (sialluta, 71) spring / small upper course middle course Slg‘;";[ncf;fﬁil
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low low
Low Absent moderate Low Low Low Low
Low Low Absent Absent high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Low
2 |_moderate Low Absent >
‘o [ _high Low Low Absent Absent ‘© Low Low
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> | low Low Low Absent Absent >
£ | _moderate Absent Absent Absent Absent €
S high Absent Absent Absent Absent g Low Low
‘3 «a-mesosaprobic / eutrophia¥-mesoionic ‘3 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Low Low Low Low
high Absent Absent Absent Absent high Low Low Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Low Low Low Low
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
- - stream width . B stream width
Sigara semistriat Sigara falleni
(sigaseni, 74) | Sno/smal | uppercourse | middecouse | JOR PR | (i gafal |, 72) | SPrhalsmal | uppercouse | midde course | SUETEREE,
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Low
Low Absent Low Low
Low Low Absent Absent Absent Absent Low.
3,ac-oligosaprobic /3-mesotrophic /3-mesoionic 3,ac-oligosaprobic /3-mesotrophic /3-mesoionic
Low
2 |_moderate Low Absent 2 |_moderate Low Low
‘o | high Low Low Absent Absent ‘c | high Absent Absent Low Low
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> low Low Low Absent Absent > low Absent Absent Low Low
£ moderate Absent Absent Absent Absent 1S moderate Absent Absent Absent Absent
8 high Absent Absent Absent Absent 8 high Absent Absent Absent Absent
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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stream width

stream width

Valvata piscinalis Sigara striata
(val vpi sc, 77) spring / small upper course middle course sl?rvev:;nclogr;s:xll (sigastri, 75) spring / small upper course middle course :lg'ggrrnc;]:rﬁil
stream stream stream river stream stream stream river
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
low Absent Absent Absent Absent
moderate Low Low Low Low
high Absent Absent Absent Absent
3,c-oligosaprobic /3-mesotrophic /3-mesoionic 3,«-oligosaprobic /3-mesotrophic /3-mesoionic
low Absent Absent Absent Absent
2 |_moderate Low Low Low Low 2 |_moderate
‘o [ _high Absent Absent Absent Absent ‘c | high
TO) mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &i-mesotrophic / mesoionic
> > | low Absent Absent Absent Absent
£ | _moderate € [“moderate Low Low Low Low
S [hion Low Low Low Low & [high Low Low Low. Low.
ﬁ «a-mesosaprobic / eutrophia¥-mesoionic 5 «-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Low Low Low Low moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
Velia caprai stream width Stagnlcgla stream width
. spring / small upper course middle course lower course palustris spring / small upper course middle course lower course
(velicapr, 78) stream / small (st a | 76 stream / small
stream stream stream iver gpal u, 76) stream stream stream liver
oligosaprobic / oligotrophic / oligoionic oligosaprobic / oligotrophic / oligoionic
Absent low Absent Low
Low moderate Low
Absent high Absent
3,ce-oligosaprobic /3-mesotrophic /3-mesoionic
Absent low Absent
> Low 2 |_moderate Low
‘© Absent ‘c | high Absent Low.
% mesosaprobic &-mesotrophic / mesoionic % mesosaprobic &-mesotrophic / mesoionic
> low Absent Absent Absent Absent > low Absent Absent Low
€ [ moderate Low Low Absent Absent £ |_moderate Absent Low.
8 high Low. Low Absent Absent 8 high Absent Low
ﬁ a-mesosaprobic / eutrophiad-mesoionic ﬁ a-mesosaprobic / eutrophia¥-mesoionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Low Low
high Absent Absent Absent Absent high Absent Absent Low Low
polysaprobic / hypertrophic / polyionic polysaprobic / hypertrophic / polyionic
low Absent Absent Absent Absent low Absent Absent Absent Absent
moderate Absent Absent Absent Absent moderate Absent Absent Absent Absent
high Absent Absent Absent Absent high Absent Absent Absent Absent
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APPENDIX C

| Appendix to Section 8.4.3

The termsC1, Cs, Cs, Cy, C5,Cq,C7 in Eqg. (8.97) are functions of; € [0.5,1],
li1, Ui, Livn, Livn € R(}F andk;, ki1, kivo € R,

Cr=—(3y1 — 1)(1 — 1) (271 — 1)20L(121 + 3litki + 12y + 3lisokics + 3lisokiso
+ 3k2 + ki1 kivo + 3k2,) + (1 — 1) (1 4+ 71)(2v1 — 1) i (124 + 3131l
+ 3liak; + 3liakisr + 6lik; + 1o + Blisokive + 3kF + 6k;kiry + 3kZ)
4+ (271 — 1) ki1 (202 + 61115 + 6li1 Ky 4 3li1kiy + 120k + 6141 livo
+ 12041 kiva + 20200 + 3livakivs + 6liokiva + 6kF + 6kikier + ki1 Kivo
+6kZs) — 2(1 —71)(2m1 — D(79F = 5y + Dl + (27 + 1) (1 — 1)
291 — 1)l + 2k:) 1 — (1= 7)1 (1597 — 159 + 417 +7(1 —7)
291 — 1)(18%] = 1797 — 71 + )lFlins + (41 — D2y — (1 — 1)}
liva + 2kin2) = 4(1 =) (20 = 1)(T77 — 571 + DIk +4n(2n — 1)
77— 971+ 3)Fkins — 11 (1 — ) (1297 — 2797 + 237 — 4) (21 — 1)%Lil3,
=303y — 1)(1 —71) (271 — 12 Lilier (Lisa + 2kiun) — 1877 (2y, — 1)?
(11 — 1) lilinkist + 31 (3 — 2) (271 — 1)Lk + 1 (1 —m)
(= m +4)2n - DB + 20 =)0+ + D)2 — D)
(Livz + 2kiv2) + 471(7F — 371 + 3) (21 — 1) By ki — 3 (n — 2)
(27 — 1) Z+1ki+1 )

(
(
(
(

(C.1)
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Cy =

(1—71)(2y1 — 1)(1677 — 9v1 + 1)1, + 3liks + 3k7)l; — 3(671 — 1)

(271 = 1)3(2li1likier + 21 kikier + Lia kg + Alikikin + 252 ki + 2kik7 )
— (1 =)(671 — 1) (71 + 1) (271 — 1)3Lis1 (121 + 3lials + 3li1 ki + 3l kin
+ 6ik; + 3k? + 6kikis1) — 2(671 — 1)(271 — 1)312 kiw — 2(71 — 1)

(3v1 — 1)(137F — 8y + 1)(lig 4 2ki)1Z — (271 + 1) (671 — 1) (71 — 1)?

(271 = 1P (Lin + 2k) 120 + (1= 1) (4597 = 3Ty1 + 8)mlf — 4y (1 —m)
(2571 — 2193 — 99F + 13y1 — 3){Flie1 — 271 (571 — 2) (71 — 1)* (liv2 + 2kis2)
[7 = 4(4577 — 7097 + 3671 — 6)Fkiniy1 + 7 (1 —71) (2 — 1)(607]

— 12677 + 9177 — 991 — Dl + (1 —71) (27 — )57 — 2)2L
(3lis1lisn + 6lix1 Eivo 4 2o 4 3lisokisr + Blisokis + 6kir1 kivo + 3kZ)
=371 (1 —71) (271 — 1)(307] — 2397 — Ty1 + Dlilisakins — 371 (271 — 1)
(2077 — 1971 + Dlik7 — 41 =) (7 =71 +4) 20 — 1)°47lE — 87
(1= 7)(7F +m + D@0 — 1By (lisz + 2kin2) — 16(77 — 371 + 3)

(21 = 1) 7 ki — 471 (1= 7)1+ 7) (271 — 1%lina Iy + 3lisakinn

+ 3kZ,5) — (271 — 1)%y1 (2441 Livokier + 48Lix1 kiv1 Kivo + 8iokin

+ 12040k, + 24laokisi kivo + 24k2, kivo 4 24k ki) — 1273(2 — 71)

(2’)/1 — 1)3li+1ki2+1 5
(C.2)

Cs = —y1(1 —v1)(3172 — 23y, +4) (12, + 3l k; + 3k +v1(1 — 1)

(T = 2)(1+ 7)) (271 — 1?28 1l + 6lialilivy + 6lialisi ki + 6li1livi kit
4+ 120l a1 ks + 6l k2 4 1201 ikiar) + 71 (T — 2)(2y1 — 1) (412 ki

+ 1201 Likiey + 1201 kiksrr + 6li1k2 + 241Kk + 12K K + 12k:K2,)
— 4y (1 =) (47 — 1) (57 — 2)(lia + 2k:)IF + 291 (2m + 1)(T71 — 2)
2y = 1)%(m1 = 1)?(lia + 2k) 15y — (1= 71)71(4977 — 2971 +4)1F +m
(1= 7) (1137} = 379] = 787 + 48v1 — 6)FLiws + 77 (0 — 1)%317

(lisg + 2kia) + 471 (557] — 6997 + 2771 — 3)Fkiwr — 71(1 —m)(12477

— 2477} + 14777 + 577 — 1971 + 2)lils; — 77 (119 — 5)(1 — )l
(3lis1lis2 + 6liv1kisa + 12ho + 3livokisr + 3livokisa + 6kist ko + 3k7s)
+37(1 = 71)(6297 — 3677 — 2997 + 1971 — 2)liliwikinr + 371 (5177

— 6077 + 2171 = 2)likZ +6(1 —71) (7] = +4) (2 — DB + 1297
(1 =) (77 +m + D20 = DBy (lisg + 2kis2) + 2497 (77 — 371 + 3)
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(271 — 12 kier + 697 (1 — 1) (71 + 1) (271 — 1)2lin (4s + 3liokian
+ 3ki2+2) + 67% (271 — 1)2ki+1(6li+1li+2 + 12041 k40 + 2l?+2 ~+ 3liroki+1

+ 6lisokisa + Okirrkiva + 6k71o) + 18(2 — 71) (271 — 1)*Lin ki
(C.3)

Ca =77 (1371 = 5)(1 = y1) (11 + Bl ki + 3kl — 77 (1 — 71) (271 — 1) (871 — 3)
(1 +71)2Lie1 (121 + 6l ki + 3liak; + 217 + 61;k; + 3k7 + 6k;kin) — 277
(871 — 3)(271 — ki1 (202, 4 6l;.11; + 611 ks + 3lig kit + 412 + 121k;

+ 6k + 6kikint) — 1297 (3v1 — 1) (1 — 1) (L + 2k:)I7 — 697(1 — )

(271 — 1)(8v1 — 3)(1 + y1)li-1livr (li — Kix1) — 277 (8v1 — 3) (271 + 1)

(271 — 1) (1 — 1)2laldy + (23y1 — 1)L — y)3 8 + 45 (1 — 71) (6677

— 9593 + 1797 + 21y, — B)il%, 4 293 (1 — 1) li(Blis1livg 4 6lis1 Eivo + 124y
+ 3livokint + Blisokisa + 6kis1 kiso + 3ko) — 371 (1 — 71) (3373 + 47

— 2191 4 5)lilir1 kirn — 372 (3192 — 26791 + 5) k2, — 491 (1 —71) (271 — 1)
(7 = + D0 =87 (1 =) (2 — 1)(F 4+ + D (livz + 2Kis2)

— 477 (8 = 3)(2m + (20 — D — D) Baks — 167/ (271 — 1)

(V2 = 371 4+ 3) 2 kirr — 473 (1 — 71) (271 — D) (71 + Dlss1 ((2sg + Blisokiso
+3kZ,5) — 493 (271 — Dkinr (6lie1linn + 12041 kino + 20300 + 3livokin

+ 6lisakirn + 6k kivo + 6k2g) + 1291 (271 — 1) (71 — 2)lis1 k2
(C.4)

Cs = =293 (1 — y)li (131 + 3lial; + 3lia ks + 207 + 61:k; + 3k7) + 43 (1 —71)
(971 — 4) (71 + Dls1 (121 + 3lials + 3liyky + 3lia ki + 202 + 61k
+ Bkisrl; + 3kZ 4 6kikiv1) + 3 (971 — D)kiwr (Blir iy + 3kiwnl; + 217,
+ 611l + 6Lk + A7 + 120:k;) + 45 (271 + 1)(9y1 — 4) (v — 1)%13,
2k +lia + 1)+ A —71)(F =+ D + 2980 =)+ + 1)
11 (Liva + 2kis2) + 497 (97 = 3m1 + 3) s ki + 71 (1 — 71) (L4 71)lin
(15 + 3lisokiva + 3KZh0) + Vi kie1 (6lis1lis2 + 12lis1 kivo + 20215 + 3livokin
+ Blisakiva + Okir1kiva + Okig) + 377 (2 — 71)lin1 ki + 677 (971 — 4)

(ki + ki) ki ki
(C.5)
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Cs = ’Yf(l — ’Yl)(l + ’Yl)li+1 (112_1 + 3lial; + 3l k; + 3l ki + 2[12 + 6l;k;
+ Bki1ly + 3k + 6kikia1) — v kia1 (202, + 611l + 611 ki + 3l ke + 417
+ 120 k; + 3kie1l; + Gk‘f + 6]{,‘1]41“1) — 7?(2’}/1 + 1)(’}/1 — I)Q(Zi_l +1; + 2/@)

2
li+1 ’

(C.6)

Cr =6(27172 — 71 — 12)(—(1 = 72) 2ny2 — 11 — v2)m (L + 2k:) + (37573
=31+ =3 e )l — e —m —e)e((E —n+1)

liv1 +2(1 — y1)ki1) — 2v17v2 — 71 — v2) 172 (live + 2kis2)) -
(C.7)
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APPENDIX D

Appendix to Section 8.5.2

The terms’; andCy, functions ofa;, a;+1 ande;+o, in EQs. (8.138)-(8.140) are given
by

C1 (v, iy, ing) = |(8alyy + 4408, c; + 2408, v + Tlad, o + 13400,y

Qg + 3lad,, a2y + 440d,, 08 + 2220 0 v 4 17604,
@0y + 14aj, oy + 8ol of + 144ad, 0} aies + 30003,
Q?atiy + 800, iy + 3007, i + 20402, 030,

+ 138a2,,0203,5 + 48ir1 0} a2y + 60ris a5y + 240}
Q2o 4 (ir1 + ;) (2908, + 10502, v + 9502, vivo

+ 10504, 02 + 357at, aicvivo + 12108, 025 + 2903, a3
+ 36905, 02 Qiiag + 45905, ;a2 + 5305, by + 11102,
Qg + 48602, 0202, + 20102, a0y + 1560 ada’,,
+ 2160410205, + 720305,k + 3(vie1 + e (s

+ o) (1lady, + 2403, a; + 2903, aisn + 110202

+ 66a?+1aiai+2 + 21a?+1a?+2 + 32ai+1a?ai+2 + 4841 5
Qg + 240700k 4 12(ie1 + 20040 (i1 + iva)? (s
)82 x (30 -+ aum)(20% + 30 (0 + )

+ 20001 (i + @in2)? + 2050002 (0 + is2))] + 2

-1
+ o) (e + o) (e + a; + ai+2)k)2 ) (D.1)
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O (i, inr, inn) = |(8alyy + 4408, (i + qivo) + Tlad, (@F + aZyy) + 20603,

Q;Qvo + 44012{,104? + 3()8042{,1 ey + ) + 44042{,1
Qo + 80, af + 18103, ayviva (a2 + a2yy) + 43003, 02
2y + 802, 0ty + 3202t g + 23202, 0202, (o

+ ixn) + 3202, ity + 36010202, (0 4 a2,y) 4 108
Qi1 Py + 1205030 (s + iisn)) st 1P + (1 + ;)
(vir1 + aix2) (2908, 4 10502, (i + uixg) + 1050, (a?
+a25) + 351ad g + 2903, (aF 4+ alyy) + 3290,y
a2 (0 + aian) + 8702 i (a2 + a2yy) + 28202, 02
g + 660410700 (0 + ian) + 120002 0) 1Pk + 3(avin
+ i) (i1 4 in)? (11, + 2403, (o + ayan) + 1102,

(Oéz2 + 0512+2) + 51041‘2+104i04i+2 + 22041 ;4o (Olz' + Oé,q.g) +8
OL?OZ?.,,Q)”Cz + 12(Oéi+1 + Oéi)4(051'+1 —+ Oli+2)4k3:| X |:3(Olz

+ i) (st + ae2) 2 (20041 + 303 (@i + qivz) + 2041

(o + Oéi+2)2 + 20040 (@ + Qo))+ 2(aer + ien) (e
—1
+ Oéi)<ai+1 + o, + ai+2)k)2] . (DZ)

For the first(c;, a;+1, auv2)-triplet in Table 8.9 the derivative aff,o to v is
given by
a *
206 — (1P (v (a2 + (L= 18)(1 = 92)) (1393 (2 = 71) + (1 = 33)(1 = 72) (35

omn
Yo +4(1 = 73)(1 = v2) +7372(1 —71))) + 271 (372 + (1 —3)(1

—72))(1 = 73)(1 = 72)(9(1 = 72) (1 = 3)(1 —71) + 3(1 —y3)(1
—72) + 129372(1 — 1) + 29872) + 117575 (12(1 — 73) (1 — 72)(1
—71) +4(1 = 73)(1 = 72) + 13y372(1 — 71) + 57372) + 14(1 — 12)
(L= 93) (7372 + (1 = 3) (1 — 72))* + 37273(1 — ¥2) (1 — ¥3) (7372

+ (1= 73) (1 =72)) #7373 (6(1 = 73)(1 = 22) (L = m1) + (1 = 73)
(1= 72) + 67372(1 — 1) + 29372)) + PE(497 (1 — 72) (1 — 73) (7372
+ (1= 73)(1 = 72))* +27(y372 + (1 = y3) (1 — 72))*(1 — v3)(1
—y2)m1 (1 —=71) +6(1372 + (L = 73)(1 = 72))Bys72 + 2(1 — 73)
(1= 72))337271 (1 = 71) + 15(3372 + (1 = 73) (1 = 72)) (1 — 73)*(1—
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v2)271 4 3(ysy2 + (1 —73) (1 = 72))v3(1 — ¥3)72(1 = ¥2)11 (5 — M)

+53(1 = v2)(1 = 3) (1372 + (1 = v3) (1 — 72))? + 157273(1 — 72)
(1 —=73) (372 + (1 = 73) (1 — 72)) + 7573 (297372 + 27(1 — 43) (1
)

—72))) + 3k (7372 + (1 = 33) (1 — 72)) (((2y372 + 3(1 —3)(1
= ¥2))71 (1 —71) + 3(1 = 3)(1 —2) (71 + 7)) (372 + (1 —3)(1
—72)) +7273(119372 4+ 8(1 — 73) (1 — 12))) + k*12(7372 + 2(1
wmv»mw+uwmewm4thuwm
= 73)(1 = 71) = 2(1 = 71)93(L —73) — 2(1 —y1)72(1 —2) — (6(1
)+ 1+9)7273(02 +73) + 6L —7) + 2(L +7)7373
+ (8(1 = m) + 1+ 7)7273) + 2k(v2ys + (1 — 72) (1 — 73)) (V273

+<1mx1wx1%»f}, (0.3)

while the derivative of¢,o to 2 is given by

5%@% = [(1= 7)1 = 78)7s (P (1 = 72)(1 = 78) +7278) (=197 + 777 + 8)

+ (1= 2) (L= 93)*(—17F + 571 + 6)71 + 4(1 —72)3(1 — 73)%7273
(=177 4+ 577 + 371 +3) + (1 —%2)*(1 — 13)°1375 (=57} + 277

+ 971 +23) +2(1 = 72)(1 = 13)7373 (=177 + 697 + 1m1 +6))

+ PE(yeys + (1= 72) (1 = 33)) (1 = 72) (1 = 73) +7273)° (=277

+ 1877 + 871 +29) + (1 — 72)*(1 = 73)° (377 4+ 16m1) + (1 — 72)?
(1 = 73)%9273(972 + 3071 + 18) + 6(1 — 32) (1 — 33) 1373 (73 + 3
+3)) + 1k23((1 = 72) (1 = 73) +7273)* (1 = 72 — 73)*(37% + ™
+11) + 371 (1 — 73)%(1 — 72)? + 279273(1 — 72) (1 — 73) (677 + 1671

42w+ﬁum%+a%mwwa+mﬂka%+u
—32) (1 = 3))?(1(2(1 — 72) (1 = 43) (L — y1) — 2(1 — y1)y3(1 — 3)
—2(1 = y)y2(l —y2) = (6(1 — 1) + 1 +7)v2v3(72 + 73)

+ (5(1 = 71) + 2(L+ )77 + B(L = 71) + 1+ 97)y27s) + 2k

m%+0wmwmww+amem%mﬂ |

(D.4)
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For the fourth(c;, a;+1, ci+2)-triplet in Table 8.9 the derivative af&q ¢ t0 71

is equal to zero

Iioa

=0, D.5
omn ( )

while the derivative o¢, t0 72 is given by

Iioa
02

= [P (3ys(1 = y2) (1 +72) + 493 (1 = 73) + 1275 (2 — 72) + 67273

(1=72) + 11(1 = 73) + 3(1 = 23) + 972(1 — 73) + 1172(1 — 12)(1
—73) + 42 (1 —72) + 29575 + 73 +493) + 1Pk(273 + 37372(2
—72) + 1293 + 47373 (3 — 72) + 3072(1 — v3) + 38(1 — 73) + 473
+1292(1 = 72) +15(1 = 73)) + IE*(973 + 37375 + 1272(1 — 73)

+39(1 —73) +9(1 —43) + 672 + 15) + 12K3(2 — 73))] x [3(1(7373

1
+ 7273+ (2 =73 +13) (1 —72)) + 2k(y273 + (1 — 72)))2} :

(D.6)

and the derivative 0§, to s is given by

Iioa
O3

= [(1 =) (PP((1 = 73)%(1 = y2)v3(2 — 73) + 4(1 — 13)*72 + (1 — 73)

(1=72)*(1473) +6(1 — 73)(1 —72)%y3 + 1172 + 3(2 — 73)73
+9(1 = y3)72 + 11(1 = 73) 7372 + 4(1 —v3)73 + 2(1 — 13)°(1
—72)% 4+ (1 = 72)% +4(1 — 72)?) + Pk(2(1 — 72)® + 3(1 — 2)?
(1—73) +12(1 — 72)* + 4(1 — 72) (1 — 43)*(2 + 73) + 30(1 — 73)72
+ 3872 + 4(1 — 73)® + 12(1 — 33)y3 + 15(2 — 73)73) + 1K*(9(1
—72)% +3(1 = 32)(1 = 73)* + 12(1 — 73)72 + 3972 + 9(2 — 73)73

1 6(2— 1) + 61— 9a) + 15) + 126°(1 +72>>} x [3(1((2 )

(1—=73)(1 = 2) + (2= 12 +73)73) + 2k((1 —72) + 7273))2} .

(D.7)
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For the twelfth(a;, a+1, cvi+2)-triplet in Table 8.9 the derivative @ff. t0 71
is given by

oy )
% = (v +73 — D1 —y)12v (273 — (e + 3 — 1) + (2
=291 +6)(2 =) (1 = 7)1 —¥3) (7273 — 11 (2 + 73 — 1))3
+ (=39 + 997 — 1671 + 17)71(1 — 72)%(1 — v3)* (7273 — 71 (72
3= D)+ (= + 297 =97 +8)1 =)’ (2 + s — )T+ 321

—71)2(1 =) (1 —3)(y2 + 73 — 1)® + (107] — 317 + 2697 — 17
7+ 48)(1 —71)(1 = 72)*(1 = y3)* (12 + 73 — 1)* + (377 + 1571

— 5297 + 4897 — 3471 +32)(1 — 72)° (1 —78)° (2 + 73 — 1) + (42}
+ 1397 — 1+ 8) (1 — 1) (1 —72)* (1 = 73)*) + PE(7273 — (72

+ 95— 1) (12(273 — 11 (72 +v3 — 1))® + 18(1 — v )11 (7273 — ™
(2 + 73 — 1)) +2(=29 + 771 + 2)(1 — 1) (1 — 72) (1 — 73) (1273
— 1M+ -1 +17(1—m)(r2 + 73 — 1) (7273 — 11 (72 + 73
—1))% + (=497 + 871 + 13)(1 —11)(1 = 72) (1 —33) (12 + 73 — 1)
(= 493 — 2692 + 167, + 26)(1 — 71)(1 — 72)%(1 — v3)% (72
s — 1)+ (=578 — 42 + 2171 + 13)(1 — 1) (1 — 72)3(1 — 5)*)
+31k% (23 — M (2 + 73 — 1))2(2(—1 + 711 +4) (1273 — (e
+79 = 1))+ 3((1—7)(1 —73) + 72713 —711(72 +73 — 1))(1 —71)
(2 +73 = 1)+ 2+7)7 (1 =7)(1 = 72)(1 = 3) (1 —72)(1 —3)
+y27 — (e +y3 — 1) + (1= 72)*(1—)*B+ 7)1 — 7))

+12k* (1273 — 11 (2 + 73 — 1))4)} x [3(7273 — 712 +73 — 1))?
U -m+2A -2+ — 12+ (= + 297 =30 +4)(1
—72) A —=3) (2 + 73 — 1) + 2077 + 1)(1 — 72)*(1 — 73)*) + k(2(1
— 1) (2 +7 =1 +2(—7 +2)(1 — )1 —13)(r2 +73 — 1)
-1
2L+ - 2] 0.8)
while the derivative of¢,o to 2 is given by

8 *

% = [y =) P (= + 777 +8) (1 —7)* (v2 + 93 — D* +2(—1
+ 497 + 1597 + 671 + 16)(1 — 71)* (1 — 72) (1 — 73) (2 + 73 — 1)*
+ (7] = 1571 + 3375 + 3597 + 3671 +48)(1 —71)(1 — 2)*(1

—73)%(v2 + 73 — 1) +4(77 — 691 + 1073 + 297 + 971 + 8)(1 —m1)
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(1—=72)* (1 =)’ (2 +73 = 1) +4(3i + (7] =37 +3n +2)(1
—72)*(1 = 3)*) + PE(y372 — M (72 + 73 — )((—=295 + 1847

+ 871 4+29)(1 —71)* (2 + 3 — 1) 4+ 3(1 = 72) (1 — y3) (2477 + 14
M+ 29)(1—=7)*(v2 + 73 = 1)? +3(1 = 72)(1 = 93)* (=i + 2477
+2071 +29)(1— ) (2 + s — 1)+ (1 —72)(1 — v3)% (v — 293
+ 1877 + 2671 + 29)) + 31E* (y372 — (72 + 73 — 1))*((37f + Tn

+1D)(1 = 1) (2 + 73 = 1)* +2(1 — 71) (1 = 72)(1 — v3) (575 + 8
A1) (2 +y3 — 1)+ (1 —72)*(1 —13)*(—5 +59% + 97 +11))
+ 12631+ 1) (32 — (2 + 73 — 1))4)} X [3(7372 —71(v2 + 3

—1D)PUOT - +2DA =) 2+ 73— D+ (=73 + 297 — 3
+4) (1 =) (L =73)(v2 + 793 — 1)+ 2071 + (1 —72)*(1 —3)%)
FEQIL =) 2+ — D> +2(—7 +2)(1 —72) (1 —13) (12 + 3

-1
— 1)+ 2(1+y1)(1 —y)*(1 —73)2))2} . (D.9)

For the first(c;+1, cvi+2)-pair in Table 8.10 the derivative gf. t0 7, is given
by

a *
% = [(1 =)L =) (P(((—7 = 571 + 12)y + 293 (L +72) + 37172

+273)(1 —72) (1 — 73) + (2937273 + 8(1 — 77) + 17iv3 + 6737273
+ 1075 + 27273) (1 — v3) 4+ (=495 + 7 + 6)72 + 14(1 — ¥7)y2s

+ V17275 4 167273) 4+ 1Pk(72(4(6 — 73) 4+ v3(—2777 + 3173 + 53))
+ (1= 73)(37772(2 = 72 + 293) + 18(1 = 77) + 2(971 +73)(1 — 72)
+ 1993 + 27275 + 11)) 4+ 3IE*((2(1 — ) (L +7) + 271 (1 — 72)
+375 +9) (1 —73) +72(1 — y1) (1 +71) (1 + 473) + 72(573 + 1773
1 0)) 4 12K (a(1 + 295) +1(1 — 73»)] < [3@(@% i +2)

(1= 72)(1 = 73) + 17172(73 + 72(1 = 73) + 1)) + 2k(1172

-1

+ (1 =)L =7))?| (D.10)
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while the derivative of¢.o to 2 is given by

ay;% = [ y1(1 = 43) (IB((117273 + 373 + 1392 + 37273) (1 — 71) + 11(72 + 1)
(1 =) (1 —72) + (21373 + 495 +2072) (1 — 7)) (1 —73) + 3(12
+1)(1—72) + (V2 + 69772 + 71175 + 7178 + 4v2) (1 — 2) (1 — 73)
+ (2 + 2977373 + 29875 + 9073 +293) (1 — ) + (Bys + Dys
(1= 7173) + 4 (1 —7373) + 7973 +71 + 59193 + 3773 + 1173
V3 + 73+ 273) + Ph((—1271 + 473 + 1873 + 993 + 53)(1 — 1)

+4(671 + 6717273 + Y273 + v2vs +73) (1 — 72) + 371 (1 — 72)?

+ (37772 + 1572 + 37175 + 317373 + 293) (1 — 3) + 3(7F + 9) 12
(1= 72)(1 = 73) + 297 + 67773 + 977y3 + 67173 + 617273 + 1373
+ 113) + 3lk2((3’7’2 + 2’7:3 + 293+ 13)(1 — v1) + (47172773 + 272

+ 673) (1 —72) +72(1 = 71) (1 = 72) + 29973 + 377 + 37375 + 373

#2004 8) 4 1282 = -+ 90)| x 300 = 7+ 2)(1 = )
(1—73) + M3 (1 —73) + 172(1+93)) + 2k(ny2 + (1 — 72)

—1
- (011)
and the derivative 0§, to 3 is given by

({)y;% = [’71’72(13((9’73 +14)(1 = y1)(1 = 72) + 147y3(L — 71)(1 = 72)(1 — 73)
+ (Vs + 98 + 29593 + 3993 + T9E + 4 + Ly + 6) (1 — 2)
+ (1 =) —y2)rs+ (1 =m13) (1 =92 + (s + 918
+ 1073) (1 = 72) (1 = 73) + (719373 + 6717573 + 117273 + 8717273
+29173) (1 — v3) + 371 (2 — 73) + 29573 + V372 + 11
+47173) + PE((AT + 1573) (1 = 1) (1 = 72) + (297 + 69773 + 2197
+ 495 + 1273 + 24) (1 — 72) + 6(1 — 7193) (1 — 72) + (67773 + 3973)
(1 —3)(1 —3) + 3119372 (11 + 42) (1 — 43) + 3(272 + 5)11
(72 — 73) + 18v173 + 3m17373 + 27195 + 67173) + 31k (15(1 — 71)

(1 —72) + (575 4+ 573 + 16)(1 — 72) 4+ 573(1 — 72) (1 — v3) + 42
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Y3(1 = 73) + 471 (272 — ¥3) + 37173 + 2719372 + 27173) + 1263 (7

v+ (8= ) (1 - 72)))] x [3(1(@% 4211 —)
V(1 —73) +112(1+73)) + 2k(1172 + (1 — 2) (1 — 73)))? .

(D.12)
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Summary

In linguistic fuzzy models the knowledge about the systeaxj@essed in words, more
specifically in if-then rules such as ’'IF the slope is verygg&AND the coverage by
vegetation is low THEN the expected soil loss by erosion ghhi Hence the term
linguisticfuzzy models. They are referred to as linguistizzymodels since fuzzy sets
are used to incorporate the uncertainty in the definitiorheflinguistic values ‘very
large’, ‘low’ and ‘high’ of the linguistic variables ‘slopgcoverage by vegetation’ and
‘expected soil loss by erosion’ in the model. In contrastlassical set theory where
one or zero is assigned to an objezya real value) depending on whether the object
isinornotin a set, a fuzzy set is characterized by a memigefishction which assigns
a grade ranging between zero and one to each object to réfeedegree to which an
object is ‘a member’ of the fuzzy set.

The components of a linguistic fuzzy modeg. the if-then rules, membership
functions and mathematical operations used to obtain aloatigut from an input, can
all be based on knowledge from an expert familiar with theesys or can — either
partially or completely — be derived from data. In gener#tieo modelling techniques
allow for a higher accuracy than linguistic fuzzy modélks, other types of models re-
turn an output that resembles the output in the data set tgheehdegree. Linguistic
fuzzy models, however, have an interpretable model strectusimple reading of the
if-then rules gives insight in the system’s behaviour andemmning can be assigned to
the fuzzy sets. This property, setting linguistic fuzzy ralscapart from other modelling
techniques, is considered their greatest asset. Theréfiotige identification process
of a linguistic fuzzy model, the interpretability of the m@dhould be safeguarded or
at least be balanced against its accuracy. A good tradectffden accuracy and in-
terpretability can be obtained by including as much quialitgeknowledge as possible,
how little this may be, in the data-driven model identificatprocess. Monotonicity is
the type of qualitative knowledge that plays a central nolinis dissertation. Monotone
is hereby interpreted as order-preserving.

First, however, this dissertation shortly addresses & tivjpm the fuzzy mod-
elling domain which is not related with monotonicity: thengoutational aspects of
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the Center of Gravity defuzzification method, a defuzzifaatmethod which has a
high computational burden. Two computational methodsstbpe-based method and
the modified transformation function method, were intragtlito determine the crisp
output of Mamdani—Assilian models using a fuzzy outputipiart of trapezial mem-
bership functions. The accuracy, computational cost afpdeimentational complexity
of these two methods and the commonly applied discretizatiethod were discussed
for the basic t-normd}y, 7 andTy,. Its easy implementation appears to be the only
advantage of the discretization method. The two other nasthm compute the Center
of Gravity defuzzification method are not as straightforvay implement but allow
both a quicker and more accurate computation. Of the thrébade presented, the
modified transformation function method has the smallestmgational cost while
being as accurate as the slope-based method.

In the ecological case study described in the second pdrisadlissertation habi-
tat suitability models were developed. Fuzzy ordered dlasswere applied to a mod-
elling problem concerning the habitat suitability of rivetes along springs to small
rivers in the Central and Western Plains of Europe for 86 niacertebrate species.
For each species, four models were developed, an A-, N-nB-Camodel. The fuzzy
classifiers take a certain width, velocity and either ammanA), nitrate (N) or phos-
phate (P) concentration or electrical conductivity (C) suit and return four values
between 0 and 1 as output, indicating the degree to whichithesite is considered
‘not suitable’ respectively ‘lowly’, ‘moderately’ and ‘ghly suitable’ for the species
to establish a population. Ordered linguistic values wessgamed to both input and
output variables, but the output variabile, the habitat suitability, was not necessarily
monotone in the input variables. The models were built usixgert knowledge and
evaluated on the EKOO data set collected in the Province efi{3sel in the Nether-
lands. The data allowed for an objective evaluation of the fleveloped models for 12
species. The fact that among them only one is an indicatoeference conditions, in-
dicates that given the present environmental conditiomsefs in EU Member States,
shifts in abundance levels of more common species are mitadbkauto detect gradual
changes in water quality. With an improving water qualibe follow-up of indicator
species with more narrow niches will gain importance. O&&48 objectively evalu-
ated models, 16 models turned out to have a good model peafam@rexpressed by the
performance measure % CFCI. These 16 good performing amdtolgly evaluated
models are all, except one model, N- or P-models. For the 4@efador which the
EKOO data set allowed for an objective evaluation, an imtgbility-preserving as
well as an accuracy-oriented genetic optimization of thentmership functions in the
input domains, applying once binary-coded and once redddaenetic algorithms,
was carried out. As fitness function, a new performance nmedgsu fuzzy ordered
classifiers was applied, referred to as the average davighid) as it takes the order of
the output classes into account by returning the averagatt®vbetween the position
of the class obtained with the model and the position of tlssktored in the data
set. A purely accuracy-oriented optimization showed to deption when one wants
to preserve the interpretability of the habitat suitapifitodels under study with the
EKOO data set. In this case, expert knowledge is a preragusbuild interpretable
models in order to define the rule bases and determine thmiaption intervals of
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the membership function parameters. Furthermore, thenigation results stress the
importance of uniformly distributed and unambiguous tiragndata for model opti-
mization.

The third, more methodological issue discussed in thisediagon is the mono-
tonicity of linguistic fuzzy models. In monotone modelsgered linguistic values are
assigned to both input and output variables and the modplibig monotone in all
input variables. Models were assumed to apply a fuzzy partdf trapezial member-
ship functions in all input domains as well as in the outputnd®, which imposes
a natural order on the linguistic values of all variables] &mhave a monotone rule
basej.e.to use a set of if-then rules describing a monotone relatéwdéen the input
variables and the output variable. The monotonicity of distic fuzzy models un-
der different inference procedures was discussed: twdirgisrference procedures,
Mamdani—Assilian inference arulain implicator-based inference, and a new infer-
ence procedure, ATL-ATM inference. Mamdani—Assilian medgplying one of the
three basic t-norm®y, Tp and7y, combined with either the Center of Gravity or the
Mean of Maxima defuzzification method were considered. Harmore, models ap-
plying plain implicator-based inference or ATL-ATM inferee, one of the three basic
t-normsTy, Tp or T, one of the three R-implicato®,;, Ip or I3, and the Mean of
Maxima defuzzification method, were studied. The objeatiwbis study was to select,
for each inference procedure, combinations of t-norm, icapbr and defuzzification
method resulting in a monotone input-output behaviour for monotone rule base,
or at least for any monotone smooth rule base. A rule basdledcamooth if every
set of two rules differing in only one input variable in thaintecedent and containing
adjacent values for this variable, have equal or adjacdnésan their consequent.

For the assumed model properties, the input-output bebawibmodels with
m input variables reduces to the input-output behaviour ad@®withm* (m* < m)
input variables in those regions of the input space wheranfhés belong to the kernel
of the same linguistic value in all but* input domains. Thus, if certain model proper-
ties are necessary to guarantee monotonicity for modektsnwitinput variables, these
model properties are also required to guarantee a monatpoéeoutput behaviour for
models with more thamn* input variables. Furthermore, an auxiliary interpolation
procedure was presented which allows for the extensionsoltseobtained for models
for which all linguistic output values in the rule conseqgiseare defined by trapezial
membership functions of identical shape to models with alxgy output partition of
trapezial or triangular membership functions.

For a model with two input variables and a monotone rule baseaotonic-
ity cannot be guaranteed for the considered combinatiomsfefence procedures, t-
norms, implicators and defuzzification methods, exceptMamdani—Assilian infer-
ence combined with the t-norffip and the Mean of Maxima defuzzification method
if, at least, the model satisfies additional constraints: Mamdani—Assilian models
with two input variables and any monotone rule base appljfiegMean of Maxima
defuzzification method, a monotone input-output behaviaaur be guaranteed when
using a fuzzy output partition corresponding to one of tHiofang schematd *, tri-
angular, triangular, triangular, ¥, { *, triangular, triangular, *} or { *, *, * } with
* a membership function that might be either triangular @ptzial. When a sys-
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tem with two input variables is described by a monotone sioolke base a wider
range of inference procedures can be applied: Mamdaniti@ssanference with the
t-norm Tp and the Center of Gravity or Mean of Maxima defuzzificationtimoe,
Mamdani—Assilian inference with the t-norify; and the Mean of Maxima defuzzi-
fication method, ATL-ATM inference with the t-norffie, the implicator/y, and the
Mean of Maxima defuzzification method or ATL-ATM inferencéhvthe t-normTy,,
the implicatorly, Ip or I3, and the Mean of Maxima defuzzification method. The
monotonicity of ATL—ATM models with three or more input vables was not stud-
ied in this dissertation. For Mamdani—Assilian models gipy the Center of Gravity
defuzzification method, models with up to three input vdealwere investigated. It
was proved that with the auxiliary interpolation proceduanonotone input-output
behaviour is always obtained for Mamdani—Assilian modeth tirree input variables
and a monotone smooth rule base applying the t-risrand the Center of Gravity de-
fuzzification method. Furthermore, for Mamdani—Assiliandals applying the Mean
of Maxima defuzzification method, it was shown that when gipigl the auxiliary in-
terpolation procedure, monotonicity can be guaranteedrfodels with a monotone
smooth rule base applyiriby; or Tp and any fuzzy output partition.
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In linguistische vage modellen wordt de kennis over het gemoddbegysteem in
woorden uitgedrukt, meer bepaald in als-dan regels zoalS ‘de helling heel groot
is EN de bedekking door vegetatie laag is DAN is het verwaghbtéies aan bodem
hoog'. Vandaar de terrfinguistischevage modellen. Ze worden linggiischevage
modellen genoemd daar vage verzamelingen gebruikt wonaetleconzekerheid in de
definitie van de lingistische waarden ‘zeer hoog’, ‘laag’ en ‘hoog’ van de lirsgische
variabelen ‘helling’, ‘bedekking door vegetatie’ en ‘veaeht verlies aan bodem’ te in-
corporeren in het model. In tegenstelling tot de klassiekeamelingenleer waar een
of nul wordt toegekend aan een object (bv. eérltgetal) afhankelijk of het tot de ver-
zameling behoort of er niet toe behoort, wordt een vage weeliag gekarakteriseerd
door een lidmaatschapsfunctie die een graad tussen nuhetogeent aan een object
afhankelijk van de mate waarin het object ‘lid’ is van de vagezameling.

De componenten van een lirigtisch vaag model, d.w.z. de als-dan regels, lid-
maatschapsfuncties en wiskundige bewerkingen waarmeaeeegromodelingang een
corresponderende modeluitgang bekomen wordt, kunnemadiegebaseerd zijn op
kennis van een expert die vertrouwd is met het systeem, afdur— gedeeltelijk of
volledig — afgeleid worden uit data. Meestal zal met een emd®delleringstechniek
een nauwkeuriger model kunnen bekomen worden dan mefisitisghe vage model-
lering, d.w.z. een ander soort model kan modeluitgangeeveptn die de uitgangen
in de data set beter benaderen. Lirggische vage modellen hebben echter een inter-
preteerbare modelstructuur: het eenvoudigweg lezen vaisdgan regels verschaft
inzicht in het gedrag van het systeem en er kan een betekmyskend worden aan
de vage verzamelingen. Deze eigenschap onderscheididtisgh vage modellen van
andere modelleringstechnieken en vormt hun grootste.t\mfidaar dat bij de iden-
tificatie van een lingistisch vaag model, de interpreteerbaarheid van het maeled d
gevrijwaard te worden of op zijn minst dient afgewogen tedeortegen de nauwkeu-
righeid van het model. Een goed evenwicht tussen nauwKeeidgen interpreteer-
baarheid kan bereikt worden door zoveel mogelijk kwaliteadi kennis, hoe weinig dit
ook mag zijn, te incorporeren in het data-gedreven optsatiéproces. Monotoniteit
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is het soort kwalitatieve kennis dat een centrale rol speélit proefschrift. Monotoon
wordt hierbij génterpreteerd als rangorde-bewarend.

In het eerste deel van dit proefschrift wordt een onderwetphet domein
van de lingtistische vage modellering behandeld dat geen verband megidinono-
toniteit: de rekenkundige aspecten van de zwaartepurggintysmethode, een ont-
vagingsmethode met een hoge rekenkundige last. Twee Imémgkenethoden, de
‘helling-gebaseerde’ methode en de ‘aangepaste tranaf@functie’ methode wer-
den géntroduceerd om de scherpe uitgang te bepalen van Mamdssiliah modellen
die gebruik maken van een vage uitgangspatrtitie van trapearmige lidmaatschaps-
functies. De nauwkeurigheid, rekenkundige last en conifgiéxan de implementatie
van deze twee methoden en de gebruikelijke discretisatimde werden besproken
voor de drie meest toegepaste driehoeksnorignTe enTy,. Haar eenvoudige im-
plementatie blijkt het enige voordeel te zijn van de dissediemethode. De twee an-
dere methoden voor de zwaartepuntsontvaging zijn nietrzeoeelig te implementeren
maar resulteren beide in een snellere en meer nauwkeurigkdmeng. De ‘aangepas-
te transformatiefunctie’ methode heeft de kleinste rekstnvan de drie beschouwde
methoden terwijl ze zo nauwkeurig is als de ‘helling-geleade’ methode.

In de ecologische casestudy, beschreven in het tweedeateditproefschrift,
werden habitatgeschiktheidsmodellen ontwikkeld. Vagerdende klassificatie werd
toegepast op een modelleringsprobleem over de habithigdseid van rivierlokaties
langs bronbeken tot kleine rivieren in de centrale en wigatallakten van Europa voor
86 macro-invertebratenspecies. Voor elk species werdgmadellen ontwikkeld, een
A-, N-, P- en C-model. De vage klassificaties hebben een taphaacedte, snelheid
en hetzij ammonium- (A), nitraat- (N) of fosfaat- (P) contratie of elektrisch gelei-
dingsvermogen (C) als ingang en kennen vier waarden tusserd @oe als uitgang die
aangeven in welke mate een rivierlokatie veronderstelditvoiet geschikt’, respectie-
velijk ‘laag’, ‘matig’ en ‘uitermate geschikt’ te zijn vodret species om een populatie te
ontwikkelen. Geordende linggtische waarden werden toegekend aan zowel ingangs-
als uitgangsvariabelen, maar de uitgangsvariabele, nhatdéatgeschiktheid, is niet
noodzakelijk monotoon in de ingangsvariabelen. De modeilerden ontwikkeld op
basis van expertkennis engmlueerd op de EKOO data set verzameld in de provincie
Overijssel in Nederland. De data lieten een objectieveueri toe van de vier ont-
wikkelde modellen voor 12 species. Het feit dat onder hechéé&eén indicatorspecies
is voor referentieomstandigheden, geeft aan dat, geziboideye milieukwaliteit van
rivieren in lidstaten van de Europese Unie, verschuivingeste abundantie van meer
algemene species geschikter zijn om geleidelijke veramgen van de waterkwaliteit
te detecteren. Bij een verbeterde waterkwaliteit zal deolging van indicatorspecies
met een beperktere niche aan belang winnen. Van de 48 @fjgetvalueerde model-
len, bleken 16 modellen goed te presteren op basis van derpenfitiemaat % CFCI.
Deze 16 goed presenterende en objectiéivghieerde modellen zijn alle, behalve een
model, N- of P-modellen. Voor de 48 modellen waarvoor de EK@a set een ob-
jectieve evaluatie toeliet, werd een interpreteerbaddibeiwarende alsook een nauw-
keurigheidsgeoénteerde genetisch optimalisatie van de lidmaatschagtsfgnn de
ingangsdomeinen uitgevoerd, waarbij eens binairgecddesm eens Eelgecodeerde
genetische algoritmen werden toegepast. Als fitnesstumatrd een nieuwe perfor-
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matiemaat voor vage geordende klassificatie toegepasgge/deviation (gemiddelde
afwijking) genoemd daar het de rangorde van de uitgangsitas rekening brengt
door de gemiddelde afwijking te geven tussen de rang vanaisé&lbekomen met het
model en de rang van de klasse opgeslagen in de data set. Ultatesstonen aan dat
een volledig nauwkeurigheidsgeéniteerde optimalisatie niet kan toegepast worden
wanneer men de interpreteerbaarheid van de bestudeeriatgedchiktheidsmodel-
len wil bewaren met de EKOO data set. Wil men in dit geval iteteerbare modellen
bekomen, dan is expertkennis vereist om enerzijds de ragleim op te stellen en an-
derzijds de optimalisatieintervallen van de parametensdealidmaatschapsfuncties te
definieren. Verder benadrukken de resultaten ook het belang veormarverdeelde en
ondubbelzinnige trainingsdata voor modeloptimalisatie.

Het derde, meer methodologisch deel van dit proefschriftbl over de mo-
notoniteit van lingistische vage modellen. In monotone modellen worden gedede
linguistische waarden toegekend aan zowel ingangsvariabedexaalde uitgangsva-
riabele en is de modeluitgang monotoon in alle ingangshbalém. Modellen werden
verondersteld, ten eerste, gebruik te maken van een vatjgepaan trapeziumvormi-
ge lidmaatschapsfuncties in alle ingangsdomeinen en initggtngsdomein, waardoor
een natuurlijke rangorde wordt opgelegd aan de listigche waarden van alle varia-
belen, en ten tweede, over een monotone regelbank te bkeohikw.z. een set van
als-dan regels te gebruiken die een monotone relatie bpsrhtussen de ingangs-
variabelen en de uitgangsvariabele. De monotoniteit vaguilstische vage modellen
werd onderzocht voor verschillende inferentieprocedutese bestaande inferentie-
procedures, Mamdani—Assilian inferentie gewoneimplicator-gebaseerde inferen-
tie, en een nieuwe inferentie procedure, ATL-ATM inferentiMamdani—Assilian
modellen die gebruik maken van een van de drie meest todgegidshoeksnormen
Tm, Tp enTy, gecombineerd met ofwel de zwaartepunt- ofwel de ‘gemidslekh-
de-maxima’-ontvagingsmethode werden beschouwd. Veréedem modellen bestu-
deerd diegewoneimplicator-gebaseerde inferentie of ATL—ATM inferentae drie-
hoeksnornilyg, Tp of 11, de R-implicatorly;, Ip of I, en de ‘gemiddelde-van-de-
maxima’-ontvagingsmethode toepassen. Het doel van déestvak het selecteren,
voor elke inferentie procedure, van combinaties van dekboorm, implicator en ont-
vagingsmethode waarvoor voor elke monotone regelbank d@fijopminst voor elke
monotone gladde regelbank, een monotoon ingangs-uitgedgsy bekomen wordt.
Een regelbank wordt glad genoemd indien elk paar van twesgelie slechts ién
ingangsvariabele verschillen en aangrenzende waardextéewoor deze variabele,
gelijke of aangrenzende waarden bevatten in hun consequent

Voor modellen met de vooropgestelde eigenschappen, tiehlei ingangs-uit-
gangsgedrag van modellen metingangsvariabelen zich tot het ingangs-uitgangsge-
drag van modellen met* (m* < m) ingangsvariabelen in de delen van de ingangs-
ruimte waarm —m* reéle ingangswaarden tot de kern van dezelfde lisiigche waar-
den behoren. Dus, als bepaalde modeleigenschappen netiizaiin om de mono-
toniteit van modellen met:* ingangsvariabelen te garanderen, dan zijn deze model-
eigenschappen ook vereist om een monotoon ingangs-uggadopg te waarborgen
voor modellen met meer dan* ingangsvariabelen. Er wordt in dit proefschrift ook
een interpolatieprocedure beschreven die toelaat daatmubekomen voor modellen
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waarbij alle lingtistische uitgangswaarden in de consequenten van de regfirg-
eerd zijn door gelijkvormige trapeziumvormige lidmaatggsfuncties uit te breiden tot
modellen met om het even welke vage uitgangspartitie vahdekige of trapezium-
vormige lidmaatschapsfuncties.

Voor een model met twee ingangsvariabelen en een monotgatbamk is
monotoniteit niet gegarandeerd voor de beschouwde cotidsnzan inferentiepro-
cedures, driehoeksnormen, implicatoren en ontvagindsyden, uitgezonderd voor
Mamdani—Assilian inferentie gecombineerd met de drieeneknTp en de ‘gemid-
delde-van-de-maxima’-ontvagingsmethode als het moaabgiecomende voorwaarden
voldoet. Voor Mamdani—Assilian modellen met twee ingamgsbelen en om het even
welke monotone regelbank die de ‘gemiddelde-van-de-maxomtvagingsmethode
toepast, is een monotoon ingangs-uitgangsgedrag geganahadanneer het model ge-
bruik maakt van een vage uitgangspartitie die overeenkaghten van volgende sche-
ma’s{ *, driehoekig, driehoekig, driehoekig,}* { *, driehoekig, driehoekig, } or { *,

*, * 1 met * een driehoekige of trapeziumvormige lidmaatschapdfa. Wanneer een
systeem van twee ingangsvariabelen wordt beschreven dzandevan een monotone
gladde regelbank kan, eventueel door gebruik te maken vameipolatieprocedure,
een breder scala aan inferentieprocedures worden toggéfamdani—Assilian infe-
rentie met de driehoeksnorifp en de zwaartepunt- of ‘gemiddelde-van-de-maxima’-
ontvagingsmethode, Mamdani—Assilian inferentie met dehdeksnornily; en de
‘gemiddelde-van-de-maxima’-ontvagingsmethode, ATLMAIhferentie met de drie-
hoeksnormlp, de implicatorly, en de ‘gemiddelde-van-de-maxima’-ontvagingsme-
thode of ATL-ATM inferentie met de driehoeksnofff), de implicatorly,, Ip of I, en

de ‘gemiddelde-van-de-maxima’-ontvagingsmethode. Deotaniteit van ATL-ATM
modellen met drie of meer ingangsvariabelen werd niet desttd in dit proefschrift.
Voor Mamdani—Assilian modellen die de zwaartepuntontvgginethode toepassen,
werden modellen met tot drie ingangsvariabelen bestuddardierd aangetoond dat
met de interpolatieprocedure altijd een monotoon inganggngsgedrag bekomen
wordt voor Mamdani—Assilian modellen met drie ingangsalagien en een monoto-
ne gladde regelbank die de driechoeksndfmen de zwaartepuntontvagingsmethode
toepassen. Verder werd voor Mamdani—Assilian modellenddiégemiddelde-van-
de-maxima’-ontvagingsmethode toepassen, aangetoonehdaeer gebruikt gemaakt
wordt van de interpolatieprocedure, monotoniteit gewawth is voor modellen met
een monotone gladde regelbank die gebruik maken’gnof 7» en om het even
welke vage uitgangspartitie.
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