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Scholte–Stoneley wave propagation on a dihedral and more precisely the diffraction effects occurring at
the corners, has since long been of high importance for nondestructive testing of materials and structures.
Experimental investigations have been reported in the past. Simulations based on radiation mode theory
have been published before, explaining the only situation for which the model is applicable namely rect-
angular corners. The current report describes an investigation applying finite element simulations.
Results are obtained not only for rectangular corners but for any possible corner angle. The outcome is
in agreement with reported experiments. Moreover a critical corner angle is found below and beyond
which different diffraction phenomena occur. The study is performed for different isotropic solids.

� 2014 Published by Elsevier B.V.
1. Introduction

Surface acoustic waves are important for nondestructive testing
of materials. Their propagation properties are well-known, but
scattering effects when they encounter obstacles, such as an edge,
still require investigations. A well-known type of surface acoustic
waves is the leaky Rayleigh wave. Gipson and Marston [1] for in-
stance have reported investigations of scattering and backscatter-
ing of Rayleigh waves at (rectangular) edges of cubes. Comparable
to leaky Rayleigh waves, Scholte–Stoneley waves [2,3] are essen-
tially surface waves propagating on the interface between an iso-
tropic solid and a liquid. Contrary to leaky Rayleigh waves, their
energy is situated mostly on the liquid side and less on the solid
side. The velocity of Scholte–Stoneley waves is smaller but still
close to the acoustic bulk wave velocity in water. Different tech-
niques have been developed in the past to generate such waves
on an interface. They are more difficult to generate because Snell’s
law, in combination with the fact that their velocity is lower than
the one in water, determines that the angle of incidence must be
complex, i.e. 90 degrees plus an imaginary number. In other words
if impinging sound is used, then the sound must be incident at graz-
ing angle and must have the shape of an inhomogeneous wave [4].
That’s a practical limitation overcome by more sophisticated gener-
ation techniques [5–8].
Tinel and Duclos [9] used a special type of transducer, a
so-called interdigital transducer [10], which allows the generation
of surface waves at the surface of piezoelectric crystals. It is also
shown [11] that this type of transducer is able to generate
Scholte–Stoneley waves when the crystal is immersed in a liquid.
This is depicted in Fig. 1 where the transducer is in contact with
a solid dihedral that is completely immersed in water. The exper-
imental setup of Tinel and Duclos enables an investigation of the
influence of the edge angle on the diffracted sound patterns caused
by an incident Scholte–Stoneley wave. A sophisticated measuring
system, applying a rotating measuring device, permitted quantifi-
cation of the sound pressure around the corner.

The current paper presents a numerical study similar to the
experimental investigations done by Tinel and Duclos. As in the pa-
per by Tinel and Duclos, we take into account the following sign
convention: the h-angle is positive in the upper part of Fig. 1 and
negative elsewhere. At specific angles, shown as arrows in Fig. 1,
Duclos and Tinel observe different scattered waves [9]. First of
all, the highest amplitudes are found in-line with the solid–liquid
interface, i.e. at an h-angle of 0�. This forward diffracted sound field
is very characteristic for the diffraction of Scholte–Stoneley waves
at the extremity of the solid plate. It is found in other reports that a
similar effect is not observed for leaky Rayleigh waves [12]. In
addition to the forward diffracted sound field, smaller but still sig-
nificant amplitudes are measured at other h-angles: first a reflected
Rayleigh angle at the critical Rayleigh angle hR as seen in Fig. 1; sec-
ond, a transmitted Scholte–Stoneley wave at �180� þ c; third, a
ring ef-
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Fig. 1. Diffraction of an incident Scholte–Stoneley wave at the corner of a solid dihedral.
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transmitted Rayleigh wave at �90� þ c� hR. The experiments done
by Tinel and Duclos [9] consist of measurements with dihedral cor-
ner angles ranging from 45� to 90�. For all these dihedral angles,
similar diffraction phenomena are observed.

Earlier a theoretical study carried out by Briers et al. [13], con-
firmed some of the experimental results found by Tinel and Duclos
[9]. The study was based on the radiation mode theory [14] that
consists of the construction of a set of acoustic modes (radiation
modes and eigenmodes) of the solid/liquid system under consider-
ation. Despite of the satisfactory results obtained with this ap-
proach, the method remains very cumbersome [13] and is only
applicable to solid corners of 90�. The current report presents
numerical simulations based on different approach, namely the fi-
nite element technique, for the varying dihedral corner angles
experimentally investigated by Tinel and Duclos [9]. First, a de-
tailed description of phenomena appearing at 90� is given, then
the situation for dihedral angles different from 90� is tackled. Fur-
thermore, a ‘critical angle’ will be defined of the dihedral corner
constituting a sudden diffraction pattern switch.

2. Formulation of boundary conditions in terms of analytical
solutions

In order to study Scholte–Stoneley waves in a finite element ap-
proach it is first necessary to obtain their displacement field ana-
lytically. This field is consequently incorporated as a boundary
condition in the finite element model. To do so the three continuity
equations for normal displacement Eq. (1) and normal stresses Eq.
(2) and the vanishing tangential stresses Eq. (3) along the solid–li-
quid interface z ¼ 0 must be fulfilled (Fig. 2):

uS;z ¼ uL;z ð1Þ
TS;zz ¼ TL;zz ð2Þ
TL;xz ¼ 0 ð3Þ

The quantities in Eqs. (1)–(3) are described in terms of the po-
tential functions US and ~WS in the solid, the potential function UL in
the liquid and the displacement functions ~uS and ~uL as

US ¼ A � eklzz � eiðkRx�xtÞ ð4Þ
~WS ¼ B � ekszz � eiðkRx�xtÞ ð5Þ
UL ¼ C � e�kLzx � eiðkRz�xtÞ ð6Þ
~uS ¼ ~rUS þ ~r� ~WS ð7Þ
~uL ¼ ~rUL ð8Þ
Fig. 2. Mechanical continuity equations at the solid–liquid interface applied to
calculate analytically Scholte–Stoneley wave properties.
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whereby the wave vector components satisfy the dispersion
relations
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where the solid (S) is characterized by its density qS, its longitudinal
sound velocity v l and its transversal sound velocity vs, the liquid (L)
by its density qL and its longitudinal sound velocity vL and where x
is the circular frequency, klz the z-component of the longitudinal
wave vector in the solid, ksz the z-component of the shear wave vec-
tor in the solid and kLz the z-component of the longitudinal wave
vector in the liquid. Moreover, the three amplitudes A;B; C are arbi-
trarily chosen. Substitution of Eqs. (4)–(6) into Eqs. (7) and (8) and
use of the Cauchy strain formulation
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1
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with Hooke’s law Eq. (13),

Tm;ij ¼
X

k�m;kkdij þ 2l�m;ij ð13Þ

where i; j ¼ f1;2g, m ¼ fS; Lg, x1 ¼ x; x2 ¼ z; dij the Kronecker sym-
bol, k and l the Lamé constants, leads to the characteristic equation
for surface waves along the solid–liquid interface
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with kR ¼ x
vR

the unknown wave number for the Scholte–Stoneley
waves. Eq. (14) is solved for kR, applying the dispersion equations
Eqs. (9)–(11) and the following material parameters for an alumi-
num–water system with qL ¼ 1000 kg/m3, qS ¼ 2700 kg/m3,
v l ¼ 6420 m/s, v s ¼ 3040 m/s and vL ¼ 1480 m/s. A 5 MHz Schol-
te–Stoneley wave results in a wave velocity of 1476:47 m=s and a
wavelength of 0:2953 mm. The penetration depth turns out to be
less than 3 wavelengths in the solid and less than 11 wavelengths
in the liquid. This can be observed in Fig. 3a and b where the decay
of the displacement of the Scholte–Stoneley away from the liquid–
solid interface is respectively given in the liquid (z > 0) and the so-
lid (z < 0).

3. Finite element model

When analytical methods are cumbersome or impossible to ap-
ply, the use of numerical methods such as the finite element meth-
od becomes apparent, not only in acoustics. The solution offered by
this numerical method in general approximates scientific or engi-
neering experiments very well, because it represents a general
class of techniques to solve partial differential equations. The
n an immersed solid dihedral: Generation, propagation and scattering ef-
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Fig. 3. Displacement curves in the liquid (z > 0) (a) and the solid (z < 0) (b).

Fig. 4. Boundary conditions are applied to mimic a Scholte–Stoneley wave
generating sound source.
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coupled acoustic–structural problem discussed above is treated by
dividing the geometry in a number of elements and solving the
governing equations in those elements iteratively. Consequently,
the finite element method enables the investigation of scattering
and diffraction phenomena taking place when Scholte–Stoneley
waves reach the dihedral edge. It is important to mention that in
order to capture the sound field correctly at a scale smaller than
one wavelength, the number of elements should be accordingly
high.
Fig. 5. Pressure over each quarter of a period along the liquid side, at the boundary wher
results, whereas the probed values are given by symbolic representations as indicated a
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Unlike the experiments, achieved using an interdigital trans-
ducer, the numerical simulations apply appropriate boundary con-
ditions to force Scholte–Stoneley wave generation, based on the
results obtained above. This procedure is represented by Fig. 4,
where the displacement fields ux and uz are applied at x ¼ 0 for
the solid boundary, whereas for the liquid region the displace-
ments are transformed as a pressure boundary by means of the
expression

p ¼ �Bf �
@uL;x

@x
þ @uL;z

@z

� �
ð15Þ

in which Bf represents the bulk modulus of the fluid.

3.1. Simulation of Scholte–Stoneley waves

Prior to proceeding towards scattering effects, it is important to
investigate the propagation of Scholte–Stoneley waves with the
finite element approach and to compare with the analytically
obtained Scholte–Stoneley wave. The first problem to resolve is
the correct application of the boundary conditions imposed by
the analytical Scholte–Stoneley wave distribution (z-axis in
e the Scholte–Stoneley wave sound source is mimicked. Solid lines denote analytical
t the top right corner of the figure.

n an immersed solid dihedral: Generation, propagation and scattering ef-
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Fig. 6. Displacement in the x-direction over each quarter of a period along the solid side, at the boundary where the Scholte–Stoneley wave sound source is mimicked, for
analytically (solid lines) and numerically (probed values) derived Scholte–Stoneley waves.

Fig. 7. Displacement in the z-direction over each quarter of a period along the solid side, at the boundary where the Scholte–Stoneley wave sound source is mimicked, for
theoretically (solid lines) and numerically (probed values) derived Scholte–Stoneley waves.
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Fig. 4). The mesh density in this regard is important because the
displacement fields are probed at the nodes of the mesh. For these
elements an average length of 2E�5 m is considered so that the
sound field can be correctly captured at the boundary of the two
media. Comparison with the theoretical curves shows that the ob-
tained displacement curves in the solid and the pressure curve in
the liquid match very well. This can be readily observed in Fig. 5
where the pressure distribution along the vertical edge at x ¼ 0
in the liquid medium (z > 0) is shown. The theoretical curves are
given in solid lines, whereas the finite element curves extracted
along this line are given in discrete points. The necessary match
is clearly visible. Also for the displacement fields u1 and u2, along
the solid boundary (z 6 0), the same comparison is made. It is clear
that an equally accurate match is obtained as seen in Figs. 6 and 7.

In Fig. 8a the forward propagating Scholte–Stoneley wave,
found through application of the aforementioned boundary
Please cite this article in press as: E. Lamkanfi et al., Scholte–Stoneley waves o
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conditions, is depicted. In the upper parts the pressure distribution
in the liquid is shown, whereas in the lower parts the z-displace-
ment field of the solid medium is shown. Comparison between
the analytical results of Fig. 8a and b and the finite element results
of Fig. 8c and d clearly shows that the pressure wave and the ver-
tical displacement, which are in phase, are exactly the same. This
match signifies also that the necessary mechanical continuity
equations at the interface between the solid and the liquid medium
are equally guaranteed by the finite element method as by the ana-
lytical method.
4. Interaction with a 90� solid edge

The previous section shows that the implementation of the
Scholte–Stoneley waves in the finite element model is correct.
n an immersed solid dihedral: Generation, propagation and scattering ef-
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Fig. 8. Comparison of a forward propagating Scholte–Stoneley wave: an exact match is found between the analytical results (a and b) and the finite element (FEM) results (c
and d) in the solid and liquid region.

Fig. 9. Diffraction of a forward propagating Scholte–Stoneley wave at the edge of
solid plate.
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Here we proceed to the interaction of these surface waves with the
edge of an immersed solid plate. The configuration studied in the
current and the subsequent sections is a liquid/solid/liquid system,
being an 1 cm thick immersed solid plate. To enable comparison
with the experimental results as well as the radiation mode results
reported in the literature and described earlier, the aluminum-in-
water configuration is used as in Tinel and Duclos [9] and Briers
et al. [13]. As mentioned in the introduction, we apply the finite
element method to retrieve the diffracted waves discussed in Sec-
tion 1. For this, a finite element model is developed in which a
Scholte–Stoneley wave is released along the liquid–solid interface
towards the edge having c equal to 90�. When the numerically
modeled Scholte–Stoneley wave propagates towards the edge, a
specific diffraction pattern in the surrounding liquid appears
(Fig. 9).

Different distinct characteristics can readily be recognized. First,
the forward diffracted Scholte–Stoneley wave at h ¼ 0� is clearly
noticeable. As reported in cited works [9,13] it is obvious that this
forward beam has the highest intensity. Second a reflected Ray-
leigh re-radiation field is observed at the Rayleigh angle for a
water–aluminum interface of hR of 31�. Third, a transmitted Schol-
te–Stoneley wave appears at �180� þ 90� ¼ �90�, and also a trans-
mitted Rayleigh wave at �90� þ 90� � 31� ¼ �31�. It is therefore
shown that the developed finite element model confirms experi-
mental results found by Tinel et al. [9] and theoretical results
found by Briers et al. [13]. Not explicitly mentioned in cited works
[9,13] is the appearance of a ‘trailing field’ caused by Rayleigh
waves leaking energy back into the liquid. This phenomenon is vis-
ible in Fig. 9 for the reflected as well as the transmitted Rayleigh
wave. Also the fact that a Rayleigh wave travels around a solid edge
when it encounters one [12,15], is clearly found in Fig. 9. The latter
is seen not only on the top corner, but even on the bottom corner
90� of the solid plate. Hence the finite element model produces re-
sults in agreement with experiments and consistency with known
acoustic scattering effects. The real power of the technique
emerges however in cases not theoretically studied before. Dihe-
dral angles c different from 90� have been experimentally investi-
gated by Tinel and Duclos and are studied numerically in the
following section.
Please cite this article in press as: E. Lamkanfi et al., Scholte–Stoneley waves o
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5. Interaction with a dihedral with different c angles

Whereas the radiation mode theory is limited to 90� corner an-
gles, the finite element method equally works with other angles.
The aluminum–water system, discussed above, is reconsidered
and the angle c of the solid dihedral is changed from 90� to around
45�. Attention is paid to diffraction waves as in earlier sections, but
also to other phenomena. In Fig. 10 the results are shown for six c
angles including the 90� one discussed before, i.e.
c ¼ 90�;72�;64�;61�;55�;48�. In addition to the forward propagat-
ing Scholte–Stoneley wave always at h ¼ 0�, the reflected/trans-
mitted Rayleigh angles and the transmitted Scholte–Stoneley
angle are clearly visible at their respective angles of
hR;�90� þ c� hR and �180� þ c. Furthermore with a decreasing c
angle, another observation is made. There appears to be a signifi-
cant null-zone pointing in the direction of (h ¼ �31�) in Fig. 10a,
incorporated in the trailing field caused by the transmitted Ray-
leigh wave, that rotates downwards along with the corresponding
Rayleigh angle for subsequent decreasing c angles. Furthermore
this null field becomes less distinguishable with decreasing c and
is not even noticable for c angles smaller than 64�. Simultaneously
n an immersed solid dihedral: Generation, propagation and scattering ef-
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Fig. 11. Diffraction angles for a 5 MHz Scholte–Stoneley wave in a brass–water system.

Fig. 10. Diffraction angles for a 5 MHz Scholte–Stoneley wave in a aluminum–water system.
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an upward directed trailing intensity lobe at h ¼ 121� in Fig. 10a,
caused by the reflected Rayleigh wave, becomes stronger as c
decreases.

5.1. Material dependence of the reported phenomena

The discussed phenomena remain clearly visible when different
material combinations are investigated for decreasing c angles. The
incorporation of the null-zone in the trailing field caused by the
Please cite this article in press as: E. Lamkanfi et al., Scholte–Stoneley waves o
fects, Ultrasonics (2014), http://dx.doi.org/10.1016/j.ultras.2014.02.022
transmitted Rayleigh wave on the one hand and the intensity in-
crease of the reflected Rayleigh wave on the other hand are also
found when the material of the solid plate is changed. This is seen
in Fig. 11, where the aluminum solid material is replaced by brass
materials, while maintaining the 5 MHz excitation frequency. The
critical angles are obviously different from the ones discussed
above as retrieved in each case separately. However, also here it
is found that around a c angle of 72� � hR, the same phenomena
as those found above, are retrieved.
n an immersed solid dihedral: Generation, propagation and scattering ef-
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Fig. 12. Diffraction angles for a 3 MHz Scholte–Stoneley wave in a aluminum–water system.
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5.2. Frequency dependence of the reported phenomena

As a final verification of the discussed phenomena, the previous
frequency of 5 MHz is changed to 3 MHz for the earlier aluminum–
water system. In Fig. 12, apart from the obvious wavelength
change of the incoming Scholte–Stoneley, similar diffraction phe-
nomena as those found above, are also retrieved here.
6. Conclusion

The applied numerical method for the examination of acoustic–
structural problems allowed a thorough investigation of the inter-
action of Scholte–Stoneley waves with the corner and edge of an
immersed dihedral solid. First the analytical equations for Schol-
te–Stoneley waves have been derived from the continuity condi-
tions at the solid–liquid interface. The displacement equations
have then been used as a boundary condition for Scholte–Stoneley
wave generation along the interface. Consequently the numerically
generated waves interacted with the corner of the dihedral and
comparison with experimental results and earlier theoretical re-
ports showed perfect agreement for a 90� solid edge. In addition
the study of the diffraction with dihedral angles c different from
90� has been performed showing equally good results in compari-
son with experiments. Furthermore the existence of a critical dihe-
dral angle was discovered, forming a transition between two
diffraction phenomena.
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