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Introduction 

Landslides are a recognized and well-studied geomorphologic phenomenon due to the major 

role they play in the development of hill slopes in mountainous regions, and their socio-

economic consequences (Sidle et al., 1985; Ahmad et al., 1999). Despite this, the causes and 

mechanisms of slope failures remain poorly understood. A number of methods have been used 

in their analysis ranging from systematic field observations and/or interpretation of aerial 

photographs and other remote sensing data, to both simple and sophisticated field, 

experimental and numerical modelling of initiation and sliding mechanisms (Casadei et al., 

2003; Fernandez Merodo et al., 2004;  Jaiswal & Van Westen, 2009, Che et al., 2011). 

Milestone studies of landslides are provided by Varnes (1978); Cruden & Varnes (1996); 

Carrara et al. (1999); Guzzetti et al. (2003) and Davies et al. (2005). Notwithstanding, present 

state of knowledge in understanding, forecasting and controlling hazards associated with slope 

movements is still a difficult task. It necessitates multidimensional and multidisciplinary 

research and interactions to understand the dynamics of landslide processes. This entails 

integrating qualitative and quantitative data generated from distinct disciplines such as civil 

engineering, geology, geochemistry, geomorphology, geophysics, geotechnics, hydrology, 

hydrogeology, etc. Landslide analysis can be performed at numerous spatio-temporal scales 

depending on the objectives of the study (Aleotti & Chowdhury, 1999; van Westen et al., 

2006). Accordingly, the methods and tools used in landslide analysis are quite varied. They  

range from empirical and statistical techniques applied in predicting slopes failure 

susceptibility at regional scale (Dai & Lee, 2002; Süzen & Doyuran, 2004; Duman et al., 2005; 

Knapen et al., 2006; Claessens et al., 2007; Buh, 2009) to process-based approaches (limit-

equilibrium methods, numerical deformation methods) applied at a more local scale. Other 

researchers have focused on evaluating the run out behaviour of slides defining what has been 

termed „the angle of reach‟ or „angle of apparent cohesion‟ defined by the ratio of height drop 

to horizontal distance reached by a given landslide (Corominas, 1996). Most of these studies 

are based on slide descriptions from papers, reports and on the interpretation of aerial 

photographs rather than on first-hand field studies (Wen et al., 2004). In this study, landslide 
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occurrences on the SE lower slopes of Mount Cameroon are analysed based on extensive field 

characterization and a combination of geological, chemical and engineering perspectives. 

A landslide may be defined as a downward and outward movement of slope forming material 

(vegetation, soil, rock or debris) from a higher point to a lower one under the influence of 

gravity (Varnes, 1987; Hutchinson, 1988; Cruden 1991; Terzaghi et al., 1996; Cruden & 

Varnes, 1996). After movement, scars are left behind on the landscape and can be used to 

identify areas that have been affected by failure. In plan view, slide scars are bounded by an 

acute, concave-down slope head scarp, strike-slip faults along its flanks and a concave uphill 

toe (Martel, 2004). Several classification systems have been used to categorize landslides with 

each method having some particular usefulness or applicability related to the recognition, 

avoidance, control, or correlation of the hazard. Fell (1994) introduced a classification scheme 

based on volume. Leroueil (1996) introduced another, based on slope movement stages where 

slides are classified to be in a pre-failure, failure, post failure or reactivation stages. This 

scheme is particularly relevant in the evaluation of future events. Terzaghi et al. (1996) 

proposed another scheme based on the location of the slip plane‟s intersection with the slope 

surface. They discriminated base and slope failure for which the down slope intersection of the 

slip plane with the surface is found above or below the slope base, respectively.  

The most widely accepted and used classification scheme is the one developed by Varnes 

(1978) and modified by Cruden & Varnes (1996). This classification is based on the material 

type involved in the movement, the type of movement and the sliding mechanism. Based on 

this classification, slide material can be categorized as earth (material in which 80% or more is 

less than 2 mm), debris (20 to 80% of material is greater than 2 mm and the remainder less 

than 2 mm) or rock (hard firm mass that was intact and in place before movement). Movement 

may proceed through falling (material moving through free air), sliding (movement along a 

more or less defined plane) and flowing (where the material moves en masse in a fluid, plastic 

or viscous state) or may exhibit a combination of two or more types of movement and are then 

termed complex slides (Varnes, 1978; Crozier, 1986; Hutchinson, 1988; Dikau et al., 1996; 

Terzaghi, 1996). Slides can further be classified as translational, rotational and/or complex. 

Rotational slides have a curve (spoon shaped) slip surface, show backward rotation of trees 
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within the debris and generally result in slope reversal. Translational slides on the other hand 

are characterized by a planar slip surface, show forward rotation of object within the debris, 

with no slope reversal. Complex slides define slides with multiple failure characteristics 

(Dikau et al., 1996). 

These movements could either be slow, i.e. moving a few millimetres per year, or fast, i.e. 

about 3 m/s or more. Slides may also be described as shallow or deep-seated failures. Deep-

seated slides are slides that are > 5 m in depth, i.e. the sliding surface lies well below the 

maximum rooting system of plants, while shallow slides are < 5 m or occur within the 

maximum rooting system of plants (Dikau et al., 1996).). Although lots of efforts have been 

made in defining an exhaustive landslide classification scheme, it is not always easy to assign a 

slide into a particular category because a single slide may involve more than one mechanism 

and more than one type of material. 

The range of landslide phenomena is extremely large, making them one of the most diverse 

and complex natural hazards (Guzzetti, 2005). The area and volume of landslides span many 

orders of magnitude  ranging from small slides only a few m² wide to extremely large 

submarine slides that cover several hundreds of km², capable of triggering other hazards such 

as tsunamis and floods (Guzzetti et al., 2005). The extraordinary wide spectrum of landslide 

phenomena makes it very difficult to define a single methodology for the identification and 

mapping of landslides for risk assessment and susceptibility evaluations. Variation in the slope 

movement types reflect the diversity of conditions that cause slopes to became unstable as well 

as the processes that trigger them. 

Sliding can occur as swarms or as individual slides on natural slopes after intense heavy rains, 

earthquakes, or snow melting. The majority of landslides occurring in the humid tropics are 

initiated in uninhabited areas or are not reported or recorded unless human casualties or a large 

amount of property damage is involved. Hence, monitoring and hazard mitigation is often 

hampered because landslide inventory is incomplete and the timing of landslide occurrence is 

not known exactly. In addition, the causal factors and the processes involved are not known or 

are not properly understood.  
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Natural hazards such as earthquakes, tropical cyclones, volcanic eruptions, and tsunamis can 

trigger the occurrence of landslides. Likewise, landslides may enhance floods, and generate 

tsunamis. Because of this interaction, landslides are considered the second most significant 

natural hazard amongst those identified by the United Nations Development Programme 

(UNDP, 1999). However, they differ from other hazards because they need both causal and 

triggering factors to occur (Ayalew et al., 2005). They are commonly triggered by melt water, 

heavy rains and/or earthquake activities (Guzzetti et al., 2005) though others may occur 

without any particular trigger. On steep unchannelled slopes, cycles of colluvium accumulation 

punctuated by periodic discharge due to landsliding have been observed. In area with a 

homogenous vegetation canopy, as soils progressively thicken, effective root strength 

diminishes and eventually renders the site much more susceptible to failure during intense 

storms.  

Economic losses and casualties due to landslides are greater than commonly recognized. 

Yearly property loss due to landslides is larger than that caused by any other natural hazard, 

including earthquakes, floods and windstorms (Schuster & Fleming, 1986; Alexander, 1989; 

Schuster, 1995; Glade, 1998), probably because most of the damage associated with the 

aforementioned natural hazards is caused by landslides that usually accompany them. Their 

consequences are even greater within developing countries than in the developed world, where 

societal and economic problems are often so large and serious that little attention is paid to the 

prevention or mitigation of the negative effects of natural hazards in general, and of landslides 

in particular. Landslides in the developing world account for about 95 % of all landslide related 

fatalities worldwide (Hansen, 1984). In these countries, the limited available resources are 

invested primarily to improve health and education or to promote the economy, and little 

remains available to mitigate the catastrophic effects of natural hazards, including slope 

failures (Guzzetti et al., 2007). In addition, poverty, lack of equipment and technology to 

identify potentially threatened areas, reduce the capability of these countries to identify, 

mitigate and rapidly recover after these catastrophic events. 

Furthermore, poverty, destitution and demographic pressure have forced more people to live in 

areas prone to landslides thereby increasing risk and exacerbating the effects of disasters 
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(Rosenfeld, 1994; Alexander, 1995; Guzzetti et al., 1999; Annan, 2000). Moeyersons et al. 

(2004) noted that new immigrants around Bukavu (Democratic Republic of Congo) built their 

houses in landslide scars, lobes and other dangerous areas thereby exposing a larger number of 

persons to hazards. Brabb (1991) noted that landslides are a worldwide problem but are more 

manageable and predictable than other hazards such as earthquakes, volcanic eruptions, and 

storms. However, only a few countries have taken advantage of this knowledge to reduce 

landslide hazards. Landslides are thus likely to become more important to decision makers in 

the future as more people concentrate in urban areas causing settlement to expand into less 

stable or marginal slopes, like in the SW Region of Cameroon. It is in response to this problem 

that this work was designed, with the objective of providing knowledge that can lead to the 

reduction of landslide–related death and economic losses associated with landslide events on 

the SE foot slopes of Mount Cameroon.  

1.1 Landslide problems in Cameroon 

In Cameroon, landslides have been reported mainly in the Bamboutos (Zogning et al., 2007, 

Ayonghe & Ntasin, 2008), Limbe, Bafaka and in the Northwest Region of the Country (Lambi 

& Ngwana, 1991; Lambi et al., 2002; Ayonghe et al., 1999, 2002, 2004; Ngole et al., 2007, 

Thierry et al., 2008). Despite their frequent occurrence and dramatic impact for local 

communities, no systematic data on this geomorphic process has yet been collected for the 

Limbe area. 

In the broader NW, W and SW Regions of Cameroon, crater lake outgassing has caused two 

major disasters in the 1980s and remains a concern that is being tackled at Lake Nyos and Lake 

Monoun so that small landslides are arguably the most common and recurrent geohazard in 

these regions where ~6 million people live. Landslides in this region have considerable social 

and economic consequences (Lambi et al., 2002, Ayonghe et al., 2004; Ayangi, 2004 

unpublished report; Ayonghe & Ntasin, 2008). They result in the destruction of farmland, 

subsistent and industrial cash and food crops, disrupt transportation means, cause immediate 

damage to infrastructure and probably contribute to soil and biodiversity loss even though this 

has not been monitored in the affected areas.  



Introduction 

6 

At Mt Cameroon (MC), though volcanic and low intensity earth tremors, lava flows and toxic 

ash falls (Thierry et al., 2008) all pose threats as eruptions historically recurred every 10-20 

years on average (Suh et al. 2003), recurrent small scale landslides have been the main cause 

of fatalities and destruction of local community livelihood. Hence, small landslides can be 

rated as the most significant and recurrent hazard. Despite these threats, MC remains an active 

volcano, which has not been studied in detail. Most published work on the MC region has 

focused on its seismicity (Ateba & Ntepe, 1997; Ubangoh et al., 1998), petrology, eruptive 

behaviour and general volcanology (Fitton, 1983; Suh et al., 2003, 2010; Rankenbury et al., 

2005; Ngwa et al., 2010). Only a few reports dealt with landslides as geohazards in the Limbe 

area (e.g. Lambi, 1990; Lambi & Ngwana, 1991, Lambi et al., 2002; Ayonghe et al., 2004; 

Zogning et al., 2007; Ngole et al., 2007; Thierry et al., 2008; Buh, 2009). Most of these 

publications focus on the 2001 landslide swarm and floods around Limbe during which 23 

persons were killed, farmland destroyed, and about 2800 people rendered homeless (Ayonghe 

et al., 2004; Ayangi, 2004; Tytgat, 2008; Thierry et al., 2008). Some of these articles focus on 

evaluating damage caused by landslides (Ayonghe et al., 2004) and others, in assessing some 

of the factors responsible for failure (Lambi & Ngwana, 1991; Zogning et al., 2007; Ngole et 

al., 2007; Buh, 2009). Most of these slides are appear to be enhanced by anthropogenic 

activities. Very little has been published on the geometric characteristics, magnitude or 

frequency/size relationships of the landslides, geotechnical characteristics of the landslide 

prone soils or landslide susceptibility evaluations, although researchers in other parts of the 

world have focused on these aspects (e.g. Hovius et al., 1997; Malamud et al., 2004; Dahl et 

al., 2010).  

1.2 Objectives and overview 

The overall objective of this project is to produce a landslide susceptibility map for the Limbe 

area and to understand the mechanism and controlling factors of landslides. The specific 

objectives include: 

 Identification, mapping, classification and measurement of the geometric characteristics 

of past landslides (landslide inventory map); 
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 Assessment of the geotechnical characteristics of landslide prone soils to evaluate their 

contribution in sliding,  

 Identification of possible pre-disposing, triggering and sustaining factors for subsequent 

landslide susceptibility evaluation 

 Construction of a landslide susceptibility map for the area that can be used in make 

informed decision for future investment and development to minimise risk and losses 

than can result from future slides. 

1.3 Rationale 

This work was carried out as part of a broader project on geohazards affecting the SW Region 

of Cameroon, in the format of a development cooperation agreement between the University of 

Buea (Cameroon) and Ghent University (Belgium-Flanders), and sponsored by the „Vlaamse 

Interuniversitaire Raad – Universitaire OntwikkelingsSamenwerking‟ (VLIR-UOS; Flemish 

Interuniversity Council – University Development Cooperation) as an „Own Initiative‟ project 

(ZEIN2006PR325-9070), entitled „Capacity building in geohazard monitoring in volcanically 

active areas of South-West Cameroon‟.  

1.4 Structure of the thesis 

Chapter 1 focuses on the location, physiographic setting and climatic characteristics of the 

study area Chapter 2 is dedicated to the systematic documentation and geometric 

characterisation of landslide scars observed within the study area.  It includes methods applied 

during fieldwork and the identification of possible causal and triggering factors of landslides. 

From measured geometric characteristics, the area of the depletion zone, the volume of 

generated debris and the frequency/size relationship of the landslides scars are determined. 

Results indicate that landslides in this area are predominantly translational slides of limited 

volumes. Detail field observation were required because  there are no aerial photographic 

coverage for this region  coupled with  the fact that landslides in this area are small and could 

not be identified on satellite image. 
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Chapter 3 focuses on the characterisation of landslide prone soils with emphasis on the 

determination of the index and geotechnical properties of soils from landslides, the calculation 

of the factor of safety and modelling of sliding mechanisms. Other studies have shown that 

ground condition (weak strength, fabric sensitivity, degree of weathering and fracturing are 

influential parameters and we wanted to evaluate if this was the case in our study area. 

Chapter 4 involves mineralogical characterisation and geochemical element distribution 

patterns. Attention is focused on assessing the impact of clay mineralogy on the occurrence of 

slides. Weathering processes are evaluated and the degree of weathering that has taken place 

determined through weathering indices and the assessment of element distributions within the 

weathering profiles. 

In chapter 5, a data driven bivariate landslide susceptibility model is presented. A brief 

literature review of landslide susceptibility assessment principles and methods is made, then 

the datasets used in this study and the corresponding thematic maps generated from them are 

introduced. The methodology used to assess susceptibility is based on seed cells generated 

from a landslide inventory map. The seed cells are used to constrain the weights of each 

potential explanatory factor. The model is tested and the best set of explanatory factors is 

validated using an independent dataset. The landslide susceptibility map is then interpreted in 

terms of risks by looking at the distribution of settlements and key infrastructures located in 

zones of high and very high landslide susceptibility.  

Finally, the conclusion and perspectives are presented, highlighting the practical relevance of 

the findings of this thesis to mitigate shallow translational landslide hazard in the study area 

and in other tropical regions and the need for the development of new research and application 

projects.  
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Chapter One 

Description of study area 

1.1 Location of the Limbe area 

The study area is situated on the SE lower slopes of the active Mt Cameroon (MC) volcano 

located in the Fako Division of the SW Region of Cameroon. It lies between latitudes 3°55‟ 

and 4°13‟ N and longitudes 9°12‟ and 9°23‟ E (Fig. 1.1), covering a total area of 361 km
2
. It is 

flanked to the SW and S by the Atlantic Ocean and to the SE by the Mabeta Creek. 

Major settlements in this area include the towns of Limbe and Bonadikombo (Mile Four) 

nested in flat areas located between the ridges of the Mabeta massif and the towns of Buea and 

Mutengene located on the foot hills of MC. Settlement in this area dates back to the pre-

colonial era and since then, the population has increased tremendously to over 174000 people 

(84223 in the Limbe area and 90088 in the Buea Municipality; data from the Bureau Central 

des Recencements et des Etudes de Population, (2010). Most of these inhabitants are low-

income earners engaged in extensive and subsistence agricultural activities, petty trading, 

fishing and hunting. The main crop types produced by indigenous subsistence farmers include 

maize, cassava, banana, yams, cocoyams, sweet potatoes and cocoa, but also widespread agro-

industrial complexes of banana (Musa acuininata), rubber (Hevea brasiliensis), and oil palms 

(Elaeis guineensis) occur.. 

As the population grows, so does urbanisation of steep meta-stable slopes on weathered 

pyroclastic cones and flood plains. This has already led to an increase in the recurrence of 

landslides and flooding problems within the region. Recent constructions have witnessed a 

boom in the use of reinforced concrete and cement blocks though wooded structure- locally 

called "carabot"- are also abundant. Construction projects usually do not take in to account 

building codes put in-place by the Ministry of Town Planning and Housing, thereby enhancing 

slope stability problems. Field evidence shows the presence of natural slope instability 

problems; however, instability induced by humans following deforestation, land development 

and construction programs, are becoming increasingly evident.  
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Fig. 1. 1. Location of the study area. Inset shows map of Cameroon with the SW region 

(in green) indicating where Mt Cameroon is situated. 
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Geomorphologically, the area is characterized by two different types of volcanic terrains that 

generate thick, weathered, soil columns which might remain meta-stable for long periods of 

time in the absence of external factors (such as human intervention through widespread 

excavation and rapid deforestation). These include: 

1) Gently sloping lower slopes of MC made up of mudflow deposits and multiple lava 

flow deposits, punctuated by tens of ~50 – 300 m high, ~20-40° steep Strombolian 

volcanic cones particularly to the W of the study area (Fig. 1.1). The cones extend from 

the elevated summit of MC to the lower foothills in both the NE and SW direction (Suh 

et al., 2003; Bonne, 2006; Bonne et al., 2008). This corresponds to material of the third 

volcanic phase defined by Hasselo (1961). This corresponds to initial MC lava flow 

deposited over Miocene (10 - 20 Ma) sediment (Dumort, 1968). 

2) Volcanic terrain composed of E – W trending ridges separated by asymmetric valleys 

of the Limbe-Mabeta massif (Fig. 1.1) bounded to the east by the Ombe 170° trending 

structure (Mathieu et al,, 2011). These ridges are made up of weathered volcanic flows 

thought to correspond to an early stage of growth of the active volcano during the 

Palaeogene and Pliocene (10 - 60 Ma) over Cretaceous soft sediments. They constitute 

material of the first volcanic phase according to Hasselo (1961). 

These two areas have been described as the „young‟ and „old‟ volcanic landscape of Tertiary 

and Quaternary age by Hasselo (1961). The ridges and low elevation cones are covered by 

several meters thick of soils formed from prolonged and protracted intense weathering. On the 

ground, the terrain is characterized by a series of mounds and depressions, the low-lying areas 

between the ridges being occupied by human settlements (Fig. 1.2) which are gradually 

invading steeper slope due to growing population densities. 
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Fig. 1. 2. Panoramic view of the study area with numerous degraded asymmetric pyroclastic 

cones. Note the extension of building onto the steep slopes on the fragile cones. 

1.2 General physiographic characteristics of the Limbe area 

The major rock types in this area are Tertiary to Recent alkali basaltic lava flow deposits, 

pyroclastic deposits commonly occurring as cones of diverse shapes (circular, elliptical and 

asymmetric) and sizes, mudflow (lahar) deposits and alluvial deposits confined within stream 

channels and flood plains (Fig. 1.3).  Due to limitation in the number of out crops within the 

study area, position of lithologic boundaruy are poorly defined. Pyroclastic deposits include 

volcanic bombs and vesiculated scoria (or cinders) and tephra. Tephra particles range from ash 

(< 2 mm) through lapilli (2 - 64 mm) to blocks and bombs (> 64 mm). These either lay 

exposed at the surface or are covered by dark brown, reddish brown and/or pale yellowish 

brown sticky, clayey soils derived from the weathering of these materials. Soil thicknesses 

range from a few centimetres to over 10 m, particularly on the old volcanic terrain of the 

Mabeta massif.  i 

Soil investigations within the study area indicate the presence of loamy soils developed on 

lahar deposits at elevations above 650 m above sea level (a.s.l.) whereas very clayey soils 

occur below 450 m a.s.l. forming a chrono-toposequence (Van Ranst et al., 1990). Intense 

agriculture, vegetation and soil development within the study area actually conceal the nature 

of the parent material on which the soils have been developed, but it is likely that the soil can 
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act as a fingerprint to the source parent material. A 1/100,000 scale map of MC produced by 

Hasselo in 1961 exists and has been used to extract the soil map of the study area (Fig. 1.4).  

 

Fig. 1. 3. Geological map of the study area. Note the presence of lahar deposits 

to the E and pyroclastic cones (dotted) to the N and W section of the study area. 

According to Hasselo‟s classification, there are basically seven soil types, namely old volcanic 

soils, ash, lava, lithosol, valley clay soils, rocky soils and fragipan. Old volcanic clay soils are 

moderately deep soils developed on basalts of the first volcanic phase (Mabeta massif). Ash 

soils are derived from soils on lava flows washed away by lahars. Lithosols are shallow soils 

developed on hard rock such as basalts. Stony soils are less than 60 cm thick, characterised by 

undulating broken surfaces and correspond to gravelly and stony soils developed on “young 
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lava flows”. Ash, lava and lithosols developed from lava of the third volcanic phase. Valley 

clay soils, fragipan and stony soils are young transported soils containing volcanic parent 

material. 

 
Fig. 1. 4. Soil map of the study area modified from physiographic maps for 

soil investigations by Hasselo (1961). 

Hillsides are drained by numerous small ephemeral streams (most of which flow only during 

the rainy season) and a few perennial streams (whose discharge seasonally varies dramatically, 

emphasizing the contribution of surface runoff in sculpturing the landscape). The streams 

provide the area with a characteristic parallel to dendritic drainage pattern (Fig. 1.5).   

Observations from water wells in the Limbe area indicate that the regional ground water level 

lies within the saprolite or at the saprolite – bedrock interface located at a depth of ~3 – 15 m. 

The coastal areas to the E of the study area are covered by mangrove forest, the central, north 
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and Southern parts by low land forest, while the W and E sections are occupied by peasant 

farmland, and by palm, rubber and banana industrial plantations. Here, the forest is luxuriant, 

immense with an interrupted canopy of leaves and thick undergrowth. 

 

Fig. 1. 5. Hydrologic map of the Limbe area superimposed on a shaded relief. Note 

the parallel to dendritic drainage pattern that characterises the study area. Elevation 

ranges from 0 m to 1200 m a.s.l. 

At the time this study was carried out, ~36 % of the study area was covered by banana, rubber 

and palm plantations, ~58 % by secondary/low land forest and other indigenous subsistence 

farm land, and < 1 % by mangrove forest. MC is home to some rare and endangered plant and 

animal species such as the Prunus africana, red eyed monkeys, drills, elephants, chimpanzees, 
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birds and is the life wire of the Cameroonian economy as it hosts the only national oil refinery, 

several palm, rubber, banana and tea plantations, a number of hospitals, schools, churches, and 

the lone anglo-saxon university centre (the University of Buea), in the country.   

1.3 Climate of the Limbe area 

The Limbe area is characterized by a Tropical Monsoon Climate. It is marked by two distinct 

seasons: a four-month dry season that begins in November and ends mid-March, and an eight-

month long rainy season that runs from mid-March to November. These seasonal variations are 

a result of the migration of the Inter Tropical Convergence Zone formed by the convergence of 

the Monsoon and Harmattan winds. The Monsoon or Southeast Trade Winds generated from 

the St-Helen high pressure zone or anticyclone are warm and moist, and move from the 

Atlantic into the interior of the country in a NE direction bringing rain, whereas the Harmattan 

or Northeast Trade Winds are cold and dry, and are generated from above the Sahara, blowing 

in a SW direction resulting in a dry season. The rainy or wet season is characterized by highly 

localized rainfall events with the number of rainy days and rainfall quantity decreasing as one 

moves away from the coast inland (data from the Cameroon Development Cooperation 

Meteorological Centre). Precipitation occurs in the form of rain and dew with very rare 

occasions of hailstones that accompany severe rainstorms. Mean annual precipitation from 12 

rain stations in the area is provided in Table 1. 

Table 1. 1. Mean monthly and annual precipitation (mm) summary from 12 rain gauges manage by the Cameroon 

development Cooperation.  Note maximum rainfall in the months of July and August.  

STATION LAT LONG Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec  Mean 
annual 

Bimbia 439030 525348 89 77 158 187 296 635 752 849 560 352 183 45 4182 
Bota 445065 521348 16 30 134 140 228 523 860 741 459 214 89 32 3465 
Ekona 465779 537707 6 23 84 174 178 211 368 453 300 245 68 9 2119 
Esuke 449019 534375 12 31 104 157 208 341 620 536 263 199 93 11 2575 
Krater 444678 519795 15 62 164 239 325 722 985 901 476 311 120 38 4357 
Likomba 452258 538481 13 24 96 157 212 293 554 499 253 215 97 7 2421 
Mabeta Camp 441484 532214 14 58 179 218 328 597 996 939 459 316 161 63 4326 
Mokundange 444677 511655 53 97 172 206 337 757 990 1093 720 301 151 51 4926 
Moliwe 449347 527934 14 31 36 65 65 173 364 555 122 89 40 31 1583 
Molyko 459328 533079 10 22 82 133 170 210 408 389 278 203 89 20 2016 
Tole 455050 527260 14 21 85 145 169 283 551 567 329 209 71 10 2455 
Saxenhof 452721 523602 7 17 101 148 181 312 772 692 346 207 68 20 2871 
Mean   22 41 116 164 225 421 685 684 380 238 102 28 3108 
Sd   24 26 44 46 82 212 242 221 161 71 43 18 1102 
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The rainy season begins in March and ends in November with peak rainfall recorded between 

June and September. June and July are characterised by intense and short-lived rainfall 

whereas August and September experience less intense but more prolonged rainfalls. Monthly 

rainfall frequently exceeds 500 mm and sometimes attains 1000 mm in June, July and August. 

These months coincide with periods of reported landslide events. Figure 1.6 shows the monthly 

distribution of rainfall within the study area based on 20 to 34 years of monthly rainfall data 

(from 1974 to 2009) from 12 rain stations (10 located within the study area and 2 out of the 

study area) operated by the Cameroon Development Cooperation (CDC).  

 

Fig. 1. 6. Spatial distribution of mean monthly precipitation in the study area. Note 

similarity in the pattern with maximum rainfall in July and August and minimum values in 

December and January. Data from the two station located out of the study area are excluded 
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From the figure, it is observed that monthly rainfall decreases with increasing distance from 

the coast. However, monthly data from all the stations show a similar annual distribution 

pattern with maximum values recorded either in the month of July or August. These months 

coincide with the occurrence of recorded landslides.  December and January are the driest 

months. Of the 12 station available within the study area, only four namely: Mokundange, 

Krater, Moliwe and Esuke Benuoe provide daily rainfall records as shown on Table 1.2. 

Station Recording 

interval 

Duration 

in years 

MAP 

(mm) 

SD Max daily 

(mm)   

Max number of 

rainy days/year  

Esuke 1999-2009 11 2496   587 271 159 

Krater 2001-2009 8 3609 1344 400 154 

Moliwe 2000-2009 9 2630 1774 300 146 

Mokundange 1994-2009 16 4732 967 447 197 

Table 1. 2.  Stations with 8-16 years of daily rainfall indicating the maximum 24 hours rainfall and the maximum 
number of rainy days /years. All values given in the table are calculated based on the number of years for which 

daily rainfall is available. Note significant differences in MAP here and those presented in Table 1.1 calculated 

over longer periods of time.  

The most intensive one-day rainfall recorded in the last 14 years at the above-mentioned 

stations is included in Table 2. These maxima have a 17-, 13-, 12-, and 11-years return period, 

respectively, assuming Gumbel Extreme Value Distribution. From the rainfall records, it is 

evident that daily rainfall intensity and duration vary enormously throughout the region.  

 

Relative humidity in this area is generally above 85 % (CDC Meteorological Centre). Mist and 

clouds are very abundant within the study area, particularly during the rainy season. Mean 

annual temperatures range from 21.0 to 30 °C, and show minimal variation with seasons. 

1.4 Geology of the study area 

Mount Cameroon (MC) is an unusually steep lava dominated, elliptical volcano that covers a 

total area of about 1400 km
2
. It is 35 km wide and 60 km long and lies at the continent-ocean 

boundary of a 1600 km long chain of volcanic centres called the Cameroon Volcanic Line 

(Rakenbury et al., 2005; Fig. 1.7).  
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Fig. 1. 7. Geologic map of Mount Cameroon, modified from Endeley et al. (2001) and Thierry et 

al. (2008) with field checks. Inset is the map of the Cameroon Volcanic Line, modified after 

Marzoli et al. (2000) and Rankenbury et al. (2005). 
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Volcanic rocks from MC are mainly of alkaline affinity and include basalt, basanite, hawaiite, 

ankaramite, muguearite and picrite lavas characterised by high concentrations of high field 

strength elements (Suh et al., 2008).  

Hundreds of pyroclastic cones occur on the flanks and summit regions (Suh et al., 2003; 

Bonne, 2006; Njome et al., 2008). These cones are mostly concentrated along the volcano‟s 

long axis while the lower flanks are covered with lahar deposits probably derived from sector 

collapses of the volcano initiated by intense rains. Typical eruptive behaviour ranges from 

effusive eruptions producing lava flows to moderately explosive eruptions (Hawaiian to 

Strombolian-style) resulting in the formation of pyroclastic cones (Suh et al., 2003; Njome et 

al., 2008).  
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Chapter Two 

Inventory, mapping and description of geometric parameters of landslide scars 

2.1  Introduction 

Landslides activities represent one of the principal geomorphologic processes through which 

hill slopes evolve (Ahmad et al.,  1999) and have long been overlooked and/or underestimated 

as important natural disturbing agents that modify the terrain, ecosystem and the environment 

at large (Geertsema & Pojar, 2007). The effects of slope movements range from negligible to 

catastrophic levels. However, the consequence of landslides could be minimized if people are 

vigilant, watch and report abnormal occurrences around their vicinity and look out for some 

evidence of slope movements such as the presence of cracks, bent trees, tilted pole and fences, 

earth moving away from foundations and why not avoid areas that are prone to sliding.  

Within the last three decades, a number of mass movement events occurred in Cameroon with 

ca 99 % of these slides occurring along the Cameroon Volcanic Line. Analysis of recorded 

landslide events reveal a total death toll of 142 persons within this time span (Table 2.1) 

suggesting an average of 4.3 deaths per year assuming a Poisson distribution, and enormous 

damage to crops, farmland, and other human infrastructure such as roads, bridges, and houses. 

The death toll resulting from landslide activities in Cameroon appears to be on the rise (Fig. 

2.1) probably because of demographic pressure and territory mismanagement or because of the 

increasing awareness about natural hazard, resulting in major hazards being reported. It is 

therefore obvious to question the cause of the observed increase and attempt to evaluate the 

degree of vulnerability associated with this increase.  

Though landslides are an important geohazard affecting the lives of individuals in Cameroon, 

particularly in the NW, SW and W Regions, literature coverage of landslides in Cameroon is 

scarce and mostly limited to short reports from the formal Ministry of Mines, Water and 

Energy, (Ayonghe et al., 1999).  Some information is also made available by news paper 

reports which simply make mention of where the slide occurred and number of casualties,  

from eye witness reports and approximately 10 published articles (Lambi 1989,  2004; Lambi 

& Ngwana 1991; Lambi et al., 2002; Ayonghe et al., 1999, 2002, 2004; Ngole et al., 2007; 
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Zogning et al. 2007; Ayonghe & Ntasin, 2008) that provide descriptive analysis of the causal 

factors, statistical analysis of rainfall events that triggered some of these slides. Landslide 

susceptibility assessment for the Limbe area has been attempted by Thierry et al. (2008) and 

Buh (2009). Table 2.1 below presents an inventory of some recorded landslide activities in 

Cameroon from 1976 to 2010. It is worth noting that this is not an exhaustive list as most slides 

occur in sparsely populated area and are not reported or recorded unless significant human 

and/or material casualties are involved. 
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Fig. 2. 1. Landslide related deaths (bar graph, left scale) and cumulative death 
toll (line graph, right scale) of landslides recorded in Cameroon in the last 3 

decades. 

2.2  Importance of landslide inventory  

Landslide inventory and the generation of inventory maps is a fundamental part of any 

landslide study. The information shown on them can be used to investigate landslide spatio-

temporal abundance and estimate exceedence probability (Crovilli, 2000). They can also be 

used to obtain statistics of landslide size and volume (Malamud et al., 2004). Landslide 

inventory are used to estimate the frequency of occurrence and determine areas that are likely 

to be affected by future slides (Susceptibility evaluation). In addition, frequency/size 

distributions have been used to estimate the severity of landslide events and to determine the 

contribution of landslides to erosion.  
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Month and year Locality Causalities and damage Rock type Possible triggering  

factors 

Number of slides 

June- October 

1976* 
Akum, Mile 8. 

Destroyed the Bamenda 

Bafoussam highway that had just 

been constructed; traffic halted 

for several hours. 

Weathered trachytic and 

basaltic rocks 

Human intervention , 

rainfall and earth tremor 
 

August 1978* Dschang 6 deaths    

Late August    

1982* 

Kongbou , along the 

Mbouda-Santa 

highway 

 
Weathered trachytic and 

basaltic rocks 
  

Mid September 
1982* 

Santa, close to the 

former custom 
Frontier post 

  

Earth tremor with intensity 

of about 3-4 on the Richter 
scale 

 

December 1986* 
Mount    Mbankolo 

and Akok Bikanda 
No casualties Metamorphic rocks   

June 1988* 
Bakombo, Melong 

(CVL) 

11 deaths, a lot of damage to 

property farmland and houses 

destroyed 

Volcanic rocks   

September-

October 1989* 

Cassava Farm, Limbe 

(CVL)  

houses destroyed, farmland lost 

and lot of    property destroyed 

Weathered scoriaceous 

material, volcanic rocks 

Human intervention and 

Rainfall 
 

August 1990* 
Oyomabang, 

Yaoundé 
5 deaths, damage to property Metamorphic rocks   

July 1991* Mt Cameroon, Limbe 1 death, a house damaged 
Pyroclastics on volcanic 

cone 

Human intervention, 

terracing on slope and 

precipitation 

One 

September 1992* 
Santa, Pinyin 

Bamenda Highlands 
12 deaths, damage to property Volcanic rocks   

5th September 

1995* 

Bafaka Balue Ndain 

Division, Rumpi 

Hills 

3 deaths, farmland and property 

destroyed 

Volcanic and sedimentary 

rocks 

3 days of continuous 

rainfall, and an earthquake 

of magnitude about ~4 on 
the Richter scale 

57 landslides, 1 

rockfall and 

mudflow.  

September 1997* Sho, Belo subdivision  2 deaths, highway, farmland and 

property destroyed 

Volcanic rocks Heavy rainfall  

September 1997* Guoata (Dschang) 1 death and damage to farmland Weathered granite  Precipitation  

July 1998* Baingo, Belo 

subdivision  

5 deaths, damage to 3 houses and 

farmland 

Weathered rhyolites Precipitation and earth 

tremor 

One slide 

September 1998* Anjin, Belo 2 deaths and loss of farmland Weathered volcanic rocks Precipitation  
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Table 2. 1 Some recorded landslides in Cameroon from 1988 to 2010 updated after Ayonghe et al. (1996), and Zogning et al.  (2007), field surveys carried out 
from 2008 to 2010, and from news reports. Note that landslide record is incomplete. * Slides reported by previous landslide studies, ** reported by this study.

27th June 2001* Limbe 23 deaths, 2400 displaced, farmland and 

property destroyed 

Weathered basaltic 

blocks 

Precipitation Several landslide 

swarms 

September 2001* Ron (Nwa) 6 deaths and damage to farmland Weathered volcanics 
and migmatites 

Precipitation  

July 2003 * Wabane , West 

Region 

25 deaths and    property valued at US $ 

803,773.6 

  Slide swarms 

21th July 2005 ** Bonjo No deaths but destruction of farmland Weathered basaltic 

material 

Precipitation Several Landslides 

2006 * Station Bamenda 4 deaths, one house completely destroyed Rhyolites Precipitation One landslide 

5 am, 14th July 2006 

** 

Mini coquette, 

Bonduma, Buea 

4 deaths and one house destroyed Lahar deposits Precipitation One landslide 

June 12 2007** Abangoh, 

Bamenda 

3 deaths, 1injured and subsiquentkly died in 

hodspital  

   

20th    October 

2007* 

Kekem 1 death, 1 injured, 16 families displaced, 

farmland and Bafoussam Douala road 

destroyed 

Weathered rhyolite Precipitation One slide 

July – August 2008* Bonjo, Mondoli, 

Makuka Limbe 

No major destruction  Weathered porphyritic 

basalts, pyroclastics 

Precipitation 4, all reactivations 

of older slides 

August and early 

September 2008* 

 Garoua 9 deaths, livestock and  houses destroyed by 

floods and landslides 27 communities affected 

 Precipitation  

1 and 3 am, 29th 

June    2009**  

Unity Quarter and 

Moliwe  

 2 deaths, damage to 3 buildings Weathered loose 

pyroclastic material 

Precipitation 3 and 2 respectively 

4:30, 4th    August 

2009** 

Below Governor‟s 

office Station, 
Bamenda 

Bamenda high way completely blocked  Weathered rhyolitic    

material 

Precipitation One slide 

4th  August 2009  Sisia Quarter 1 death, 2 seriously injured Weathered Gneisses Precipitation One slide 

7th  August 2009  Anindoh, mile 3, 

Bamenda 

Collapse of bridge on Major national high way    

2pm, 6th August 

2009** 

Kie Village, 

Limbe 

Bota-Mukundange road completely blocked, 

water tank partially buried, fence broken. 

Soil on pyroclastic 

material 

Precipitation 1 car owner injured 

and car partially 

destroyed 

7-8 of August 

2009** 

Mile 3 station Bamenda- Bafoussam highway completely cut 

off for over two weeks  

Weathered rhyolite Precipitation  subsidence 

July 2010 Likomba No major damage Lahar deposits Precipitation  One slide 

12-13 September 

2010** 

Zekeng-fondom Damage to cocoa and palm farms, road and 

foot path linking the 3 villages blocked 

Weathered volcanic Precipitation  Multiple slides 
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Landslide inventory maps can also be used to evaluate the number of historical landslides that 

have been erased by erosion, human activities, and vegetation cover (Malamud et al., 2004). 

Landslide inventory can be obtained by analyzing historical catalogues of landslide events from 

reports, newspaper articles and other published literature, interpretation of multi-temporal aerial 

photos and satellite images, intensive field mapping or a combination of the aforementioned 

methods. In this study, all documented slides were observed and described in the field due to the 

lack of recent and regular aerial photography surveying in the region. Assuming that landslide 

occurrences are independent random point events in time, a Poisson model was adopted to 

investigate the occurrence of landslides within the study area. According to this model, the 

probability of experiencing X slides during time t is given by 

                .....3,2,1,0,
!

):( X
X

e
XP

x

     

where P = the probability,  

                        X = is time  

                        λ = the estimated mean number of slides per year. 

 

From the above equation, and considering the 10 year period from 2001 to 2010 with well 

documented landslide records, a total of 56 landslide sites were identified (43 produced in 2001 

and 13 others from 2002-2010). This results in a mean of 5.1 slides per year for the study area 

and a 3.1 % probability that 1 slide would occur each year. From equation 1, and assuming that 

landslide recurrence will remain the same, the exceedence probability (probability of 

experiencing one slide or more) is given by  

x
t

t eetXPtXP 11}0)({(1)1)((     

For the Limbe area, this results in a 96.3 % probability of at least one slide occurrence per year 

within the area. 

2.3  Landslide mapping method 

This study involves detailed field observations and mapping of the geometric configuration of 

landslide scars produced between the year 2001 and 2010. Because vegetation recovery rates 

within the study area are rather high such that scars are completely covered within five years 



  Chapter two               Inventory, mapping and geometric characterisation of landslides scars 

 

26 

 

after failure, only landslide scars observed in the field are accounted for in this study. Field 

mapping, reports and interviews with local inhabitants who witnessed the landslide events or 

their impacts provided insights into the factors responsible for landslide occurrence within the 

study area. Several field visits and ground reconnaissance surveys were made to locate slide scars 

and systematically measure their morphological characteristics. Landslide scars were recognized 

in the field by sharp changes in vegetation type, the presence of bare crescent (acute slope) 

shaped scarps, sharp depressions in the landscape as well as the presence of displaced material at 

the foot of the scar (jumbled-up mixture of subsoil and topsoil). Recognition was aided by 

published reports and by inquires made to the local population, particularly farmers and hunters. 

During field, mapping the traverse mapping technique was adopted due to inaccessibility and the 

rugged nature of the terrain. Hence, the inventory is incomplete particularly for densely vegetated 

areas. Traverses were made by car and on foot. Geographic coordinates of all scars were obtained 

at the left margin, centre and right margin of the crown and toe of the slide with a Garmin Etrex 

GPS receiver using a common reference system (Universal Transverse Mercator (UTM) Zone 32 

N, WGS84 datum). Measurements of the geometric parameters (width of rupture (Wr), length of 

rupture (Lr) and scarp height (h) (Fig. 2.2) were made with a graduated surveyor‟s tape. From 

these parameters, the area of the rupture zone (A) and the volume (Vl) of displaced material were 

estimated using the follow standard formulae:  

WrLrA  (Guthrie & Evans, 2004a) 

hWrLrVl
6

1
 (Cruden & Varnes, 1996) 

The latter equation assumes that each slide has an elliptical shape, which appears to be a 

reasonable first-order approximation based on detailed field observations. Worthy of note is the 

fact that Lr is difficult to measure because the outline of the rupture surface around the foot is 

usually buried under displaced material. Hence Lr was extrapolated from the outline of the main 

scarp and slide flanks with the elevation along the extrapolation line taken as the elevation at the 

foot. Slide run-out distance was measured for all fresh slides and ignored in cases where the slide 

trail had either been completely re-colonized by vegetation or converted into farmland. From 

these, the total surface area covered by the rupture zone and the accumulation zone was 

calculated. Slope gradient before failure was estimated by measuring the gradient of slopes 

adjacent to the slide with a Silva compass/clinometer. 
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Fig.  2.  2. Sketch of plan view of 2009 debris slide at Moliwe indicating where and how various parameters were 

measured in the field. Nomenclature after Cruden & Varnes (1996), Dikau et al. (1996) and Knapen et al. (2006). 

The aspect (slope orientation, which refers to the direction of movement or the direction the 

failure plane faces), was obtained with the aid of a compass. 

The mode of movement was determined following the procedure proposed by Davies et al. 

(2005). Rotational and translational movements are distinguished based on the presence of 

perched ponds at the head of the slide or backward rotation of displaced objects and vegetation. 

The McCalpin (1994) age classification system was used. This provides a qualitative description 

of the state of activity and age of the slide rather than providing absolute ages. Furthermore, 

vegetation type, land use patterns, presence of streams/rivers, effective soil thickness, rock type 

and other factors believed to be responsible for sliding at each location were noted and later used 

to construct factor maps for susceptibility assessment (Chapter 5). Land use and land cover 

characteristics such as vegetation type, limits of built-up areas, farmland, forest, etc., was noted 

and used in the validation of data obtained from satellite images.  

2.4 Equipment used 

Figure 2.3 represents a catalogue of some of the equipment used in the field. 
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Fig. 2. 3. Catalogue of equipment used in the field; a) Silva compass clinometer for orientation and inclination 

measurements; b) Permanent bold marker used in the labelling of samples; c) Hand lens; d) Torvanemeter used to 

measure in situ relative shear strength of the soils; e) geologic hammer; f) Measuring tape; g) Etrex Garmin GPS 

receiver. 

2.5 Results from field observations 

2.5.1 Description of landslide scars 

A total of 63 slides, 53 recent (i.e. slides with well-defined margins, head scarp, with no or 

partially developed drainage channels) and 10 older landslide (i.e. slides where margins and head 

scarp have been degraded) scars were observed. These slides together produced a total volume of 

~10
5
 m

3
 of debris from a total area of ~0.1 km

2
, which is ~0.03 % of the study area. The width of 

the depletion zone (Wr) ranges from 3.0 -79.0 with a mean of 22 m + 17 m, and  length (Lr) from 

1-110 m (mean 25 + 23 m). Individual aerial extent and volume ranges from a few m
2 

to 9.3 x 

10
3 

m
2
 and 2.5 m

3 
to 5 x 10

4
 m

3
, respectively. Measured widths are approximately equal to the 

length of the rupture zone for rotational slides whereas the width is smaller than the length for the 

translational slides observed in this study.  

a b c d 

e f g 
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Most of the studied slides initiated at mid slope rather than at the shoulder or top of the slope. 51 

% of the observed slides are associated with road cuts, and built-up areas whereas 49 % occur in 

areas where there has been minimal excavation and/or close to stream channels. Figure 2.4 shows 

the distribution of landslides in combination with land use patterns.  It was also observed that 

most of the slides occurred on slopes with a gradient between 25 and 40º. Slides occurring on 

slopes above 40° are associated with artificial slopes created by excavation works (Fig. 2.4b). 

     

Fig. 2. 4. Distribution of landslide scars: a) based on characteristics close to the initiation site. NE 

represents natural environment with no excavation works. CTS: close to stream channels; b) in 

relation to slope gradient measure at the initiation zone. 

Landslide height, measured as elevation difference between the crown and the toe of the slide 

(drop in height of the depletion zone) ranges from 1 - 81 m with a mean of 18 + 16 m. The 

accumulation zone of 87 % of the observed slides is covered by vegetation, converted into 

farmland or portions of it had been washed away by streams. Hence the actual run-out distance 

could not be measured in these cases. Estimated values of run-out distance generally 

underestimate the total mass or volume of material that moved down slope and the total area 

affected by slide debris.  

According to the landslide classification scheme of Cruden & Varnes (1996), most of the slides 

observed in this study are shallow translational (96 %) earth and debris slides while rotational, 

complex slides and rock fall make up 2 % each (Fig 2.5).  

Two slides initiated as shallow translational slides and then transformed into mudflows with 

debris thickness above 2.5 m, probably as a result of excess water supplied by intense rain and 

the entrainment of surface runoff into the slide debris. From the classification scheme of 

0

10

20

30

40

NE Road Building CTS

Location

%
 o

f 
o

b
s

e
rv

e
d

 s
li
d

e
s

a 

0

5

10

15

20

25

30

35

40

<15 15 -

20

20 -

25

25 -

30

30 -

35

35 -

40

40 -

45

45 -

50

 >50

Slope gradient (º)

%
 o

f 
o

b
s

e
rv

e
d

 s
lid

e
s

b 



  Chapter two               Inventory, mapping and geometric characterisation of landslides scars 

 

30 

 

Terzaghi et al. (1996), which is based on the location where the slip surface intersects the slope, 

all the slides are classified as slope failures because the slip surface intersects the slope above its 

base (foot). 

 

Fig.  2.  5. Proportion of various landslide types observed within the study area, 

based on the classification scheme of Cruden & Varnes (1996). 

 

A catalogue of some of the observed slides is presented below (Fig. 2.6). The slides generally 

have well defined crescent shaped head scarps with near vertical head walls and margins similar 

to the map view of slides described by Martel et al. (2004). They are made up of dark red, 

reddish brown and yellowish soils overlying gray or purple mottled saprolite (Fig. 2.7). In some 

cases, the head scarp is composed of a mixture of soils and rock fragments that are a few 

centimetres to over 1 m in diameter with completely weathered surfaces and fresh interiors (Fig. 

2.8). This observation emphasises the influence of jointing in the weathering of the parent rocks. 

These are dark, porphyritic rocks with abundant large dark (black), greenish, and a few white 

minerals as phenocrysts probably (pyroxene, olivine, and plagioclase).   
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Fig. 2. 6. Field photographic view of some landslide scars within the study area: a) 2001 landslides on 

pyroclastic cones at Mabeta New Layout; b) translational slide at Makuka; c) Close up view of slide of 

slide B at Makuka; d) translational slide at the banks of a stream at Makuka, reactivated in August 2008;  e) 

2005 rotational slide at Bonjo (Courtesy of Nele Tytgat, field observations in 2006); f) earth slides at a road 

cut in Bonjo initiated from excavation works; g) and h) June 29-30th 2009 translational slides at Moliwe; i) 

August 2009 rotational slide at Kie Village; j) reactivation of translational slide at Kie with retrogressive 

characteristics; k) translational slide at Unity Quarter; l) translational slide at Makuka Limbe. White arrows 

indicate the direction while broken line marks slide margin. 

L 
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Fig. 2. 7. Characteristic field view of the head scarp of some observed scars: a) slide 22 at 

Bonjo and b) slide 6 at Makuka. Note the change in texture and colour of the overlying soil and 

the underlying saprolite. 

 

Fig.  2.  8. Contact between soils and saprolite and the characteristics observed at the head scarp: 

a) reddish brown soils and underlying gray saprolites at slide 8 Makuka; b) jointed basaltic 

blocks at head scarp of a rotational slide at Bonjo sandwiched by pale yellow clayey soils. 

The crown and areas close to the main scarp are commonly marked by the presence of acute, 

open tension cracks that are between 30 cm and 100 cm wide and were observed at or close to 

the head scarps of most of the slides.  

According to Terzaghi et al. (1996), slope failure in cohesive material is generally preceded by 

the formation of tension cracks behind the upper edge of the slope. Pinnacles, representing 

aborted slide material were also observed in some areas. Longitudinal sections through the 

different slide types are shown below (Fig. 2.9).  
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Fig. 2.  9. Sketch of observed slides: a) shallow translational slide at Moliwe; b) rotational earth slide at Kie; 

c) rock slide along the banks of the Ombe river. Note the presence of mature vertical trees at the top of the 

slip mass indicating block movement with minimal rotation; d) progressive translational slide at Makuka on 

steep slope with a very short run out distance. Sliding plane lies at the contact between lateritic soils and 

saprolite; e) Shallow translational slide developed on a degraded pyroclastic cone at Mabeta New Layout.  

Reddish brown soils 

Grey mottled saprolite 

brown soils 

Reactivated slide 

Slide surface 

Stream 

15 

m 

5 

m 

2.5 

m 

0 

m 

Slide debris 

d 

b 

Saprolite developed from the  
weathering of porphyritic basalts   

a 

c 

Water oozing out of  
the contact between  
lahar and massive  
basaltic lava flow 



  Chapter two               Inventory, mapping and geometric characterisation of landslides scars 

 

34 

 

2.5.2 Statistical analysis of geometric parameters 

The geometric properties of the slides were statistically analyzed in SPSS 16.0 to obtain trends 

and patterns exhibited by the data set. A summary of the descriptive statistical parameters are 

shown in Table 2.2. 

Table 2. 2. Descriptive statistics of geometric parameters of landslide scars (depletion zones) observed in and around 

Limbe. N represents the number of samples for which a particular geometric parameter was measured 

The geometry of the slide depletion zones vary widely throughout the study area. ~ 96 % of the 

observed slides were < 50 m wide (Fig. 2.10a). Plots of landslide distribution with elevation 

above mean sea level indicate that slides are more abundant at low elevation with predominance 

in the area between 75 and 200 m a.s.l (Fig. 2.10). The height of individual scars ranges from 1 

to over 10 m with mean values of 3 + 2 m (Fig. 2.10d). In addition, these histograms indicate that 

all measured geometric properties are unimodal and positively skewed except for the height plots 

that show a bimodal distribution (Fig. 2.10d). Furthermore, the number of landslides decreases 

with increasing width, depth, length and run-out distance as shown on figures 2.10 a, b c, and d, 

respectively. A list of the geometric characteristics of all observed slides is given in Appendix 1.  

Plots of the proportion of observed slides against slope gradient measured at the head scarp 

suggest that most of the slides occur on slopes with a gradient between 25 and 38°. No slide was 

recorded on a slope less than 15°.  Further detail regarding the distribution of landslide and the 

slope gradient in the study area is given in chapter 5 Slides occurring on slopes greater that 38° 

were mostly on artificial slopes generated by human intervention in the form of excavations for 

the construction of roads and houses or the extraction of local materials (quarrying). Together all 

observed slides produced a total volume of ~9.5 x 10
4
 m

3 
of debris from the study area. 

Geometric parameter N Minimum Maximum Mean Std. Deviation Skewness Kurtosis 

Height of scarp (m) 60 1 10 3 2 1.2 1.1 

Width of rupture (m) 60 3 85 22 17 1.9 4.1 

Length of rupture (m) 53 1 110 25 23 2.0 4.9 

Initial slope (°) 49 20 70 38 15 1.1 .31 

Elevation (m)  63 13 716 157 124 2.6 8.7 

Area (m2) 53 3 9350 7.6 x102 1391 4.8 28.5 

Volume (m3) 53 5 48976 2.1 x 103 6802 6.6 45.6 
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Fig. 2. 10. Distribution of geometric parameters: a) width of depletion zone; b) length of depletion 

zone; c) elevation at the main scarp in meter above sea level;  d)  height of the scarp; e) run out 

distance; f) slope at the point of initiation of main scar.  
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According to the classification scheme of Fell (1994, Table 2.3) the landslides in this study can 

be classified as extremely small, very small, and small slides with volumes that range from a few 

m
3 
to 5 x 10

4
 m

3
.  

Size 

class 

Magnitude Size description Volume (m
3
) Number of 

observed slides 

1 1 Extremely small <500    30 

2 2 Very small 500 – 5000   19 

3 3 Small 5000 – 50,000     4 

4 4 Medium 50,000 – 250,000     - 

5 5 Medium–large 250000 – 1000000     - 

6 6 Very large 1,000,000 – 5,000,000     - 

7 7 Extremely large >5,000,000     - 

 

Table  2. 3. Size classification for landslides (Fell, 1994). Volume was not measured for 9 of the recorded slides 

because of the dense vegetation cover hence all parameters could not be measured. 

The largest of the studied slides (Mondoli landslide, 27
th
 June 2001) accounts for ~ 45 % the total 

volume of displaced material within the study area. Plots of landslide area and volume ranked 

from the largest to the smallest show some characteristic patterns as observed in Figure 2.11. The 

ranked order might be interpreted as a proxy for frequency (magnitude) of that landslide size 

within the study area. These plots on a logarithmic scale display a straight line (Fig. 2.11d), with 

only the smallest and largest slides offset from this general trend. From the graphs ~75 % of the 

slides have a surface area < 1000 m
2
 and a volume < 1700 m

3
. Only 10 % of the slides have a 

surface area > 1800 m
2
 and a volume > 4000 m

3
. Fluctuations in this linear relationship could be 

a result of non-exhaustive documentation of the smallest and largest slides, respectively.  

The largest Mondoli slide is significantly offset from the frequency-size relationship plot. This is 

further supported by tests for the presence of outliers, which indicate that 4 of the calculated 

volumes and 2 areas can be considered outliers. This is an indication that the sliding mechanism 

of these relatively large landslides is different or that they must be quite infrequent. Deviation 

from the straight line on the semi logarithmic plot also signifies that the landslide inventory in 

this study is still incomplete and can be enhanced in the future, bearing in mind accessibility 

difficulties due to vegetation growth and the absence of aerial photographic coverage of the area. 
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Fig. 2. 11. Distribution of the areas and volumes of 50 individual landslides triggered by rainfall in the 

Limbe area. In the graphs, x-axes show rank order, from largest to smallest landslide, y-axes show 

landslide area/volume: a) linear-linear plot; b) linear – log plot; c) log-log plot, d) log–linear scale. Left 

column represents area plots, right column volume plots. 
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This semi-logarithmic relationship between the cumulative frequency and the volume of the slide 

is of great interest to assess the probability of occurrence of slides of a given  volume 

(magnitude) in the future. This relationship is similar to that obtained from geometrical datasets 

for other landslides (Hovius et al., 1999; Malamud, 2004; Brunetti et al., 2009).  

Two tail-t tests for the significance of the correlation between the different geometric parameters 

(Table 2.4) show the existence of a strong positive correlation between slide volume and area 

(Pearson‟s correlation coefficient (r) of 0.96), between length and area (r = 0.81), and between 

slide width and area with (r = 0.73). All these correlations are significant at the 99 % confidence 

interval. These relations advocate that variations in aerial and volumetric dimensions of the 

depletion zone are generally controlled by the width and length of the failure and to a lesser 

extent by its depth.  

 

Table  2. 4. Pearson  correlation coefficient matrix for geometric parameters. *Correlation is significant at the 0.05 

level (2-tailed); **, correlation is significant at the 0.01 level (2-tailed). 

This is opposed to landslides on the foot slope of Mt Elgon in Uganda where Knapen et al. 

(2006) showed that variation in volume is mostly controlled by the depth of the shear plane. 

Secondly, the volume-area correlation suggests that the height of the scarp (depth of failure) does 

not vary greatly within the region. Run-out distance shows a moderate but significant positive 

correlation with the volume (r = 0.67) implying that the distance over which the material travels 

is dependent on the volume of generated debris. There is also a moderate correlation between the 

length of the depletion zone and the run-out distance of the slides suggesting that slides with a 

long depletion length will also have a longer run-out distance. There is a weak but significant 

negative correlation between the initial slope angle and the length of the landslide scar with 

longer scars observed on gentler slopes and shorter lengths on steep slopes. This relationship can 

 Elevation 
(m)  

Width of 
scarp (m) 

Height of 
scarp (m) 

Length 
(m) 

Initial 
slope 

Run out 
distance (m) 

Volume 
(m3) 

Area 
(m2) 

Elevation (m)  1        

Width of scarp (m) -.16 1       

Height of scarp (m) -.311
*
 .54

**
 1      

Length (m) -.04 .55
**

 .34
**

 1     

Initial slope -.10 -.26 -.02 -.44
**

 1    

Run out distance (m) -.15 .49
**

 .47
**

 .66
** -.25 1   

Volume(m3) -.08 .65
**

 .55
**

 .66
**

 -.16 .70
**

 1  

Area (m2) -.08 .73
**

 .54
**

 .81
**

 -.27 .75
**

 .96
**

 1 
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be explained by the idea that as the slope becomes steeper, the distance over which material will 

move is shorter. A weak but significant negative correlation exists between the width/length ratio 

and slope gradient (at a 0.05 confidence level). A moderate but significant positive correlation 

exists between the scar height and the run-out distance as well as the length of the depletion 

zone.  

Plotting the location of observed landslide scars within a Geographic Information System (GIS), 

we note that landslides are not evenly distributed throughout the study area (Fig. 2.12). Instead, 

they exhibit some level of clustering with 88 % of the slides occurring on the Limbe Mabeta 

massif characterised by thick residual soil columns and 12 % on the lower slopes of MC. The 

slides are also more abundant on pyroclastic cones than on weathered lava flows. Areas that 

experienced landslides are also characterised by specific land use types, slope gradient, soil 

colour, and parent material.  For this reason, the study area was divided into six landslide zones 

namely Mabeta, Bonjo, Chopfarm, Makuka, Moliwe and Kie landslide zones. A few isolated 

cases do not fall within any of these zones.  

The Mabeta and Kie landslide zones (Fig. 2.12) are characterized by the presence of pyroclastic 

deposits, reddish to reddish brown soils and slopes with gradients above 32º. Human activities 

such as the construction of houses, footpaths and roads are abundantly present. Extensive 

fieldwork carried out in the Limbe area shows that residual soils are widespread. Red to reddish 

brown coloured residual soils are mostly located at the top of pyroclastic deposits produced by 

explosive eruptions of basaltic magmas while pale yellow and dark brown soils develop on lava 

flows. The unweathered pyroclastic material, typically exploited as aggregates for road 

construction and repair, are made up of loose mechanically weak particles that are very porous, 

highly permeable, and stable in the dry and natural state. 

Stability comes from the fact that they were formed from the deposition of volcanic ejecta such 

that the particles are laid down at their angle of repose controlled by the degree of grain-grain 

chaining between adjacent highly irregular-shaped particles (Riedel et al., 2003).  

The Chopfarm, Bonjo, and Makuka landslide zones (Fig 2.12) are located on weathered lava 

flows, characterized by secondary forest and/or farmland, gentler slopes, and are sparsely 

inhabited. Excavation activities and other human influences on these slopes are less common 
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than in the Mabeta zone, with the notable exception of slides in Bonjo, which were directly 

associated with road cuts and construction works. 

 

Fig. 2. 12. Distribution of  landslide zones within the Limbe area. 

The Makuka zone is characterized by secondary forest and farmland, sparsely populated, and has 

a high stream density with most of the slides terminating along stream channels. Stream 

undercutting is likely an important factor in slide generation here.  

The Moliwe landslide zone (Fig. 2.12) lies within industrial palm plantations grown on pale 

yellow soils developed from the weathering of basaltic rocks. Slides in this zone occur close to 

streams, paved and unpaved roads used by CDC tractors and particularly in recently deforested 
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areas. Individual slides within this zone are relatively small in size with shorter run-out distances 

compared to those occurring in other zones. Though all the slides within each of these zones have 

their unique characteristics, only one slide in each of these zones will be described in detail as a 

type example except for slides within the Chopfarm zone. The latter were all heavily re-

vegetated, hence detailed observation and description was not possible. Human, material and 

economic losses associated with the described slides vary from one place to another and are 

summarized in Appendix Table A2. Slides in the Chopfarm, Moliwe and Makuka zone 

commonly result in the destruction of farmland and the environment at large because the areas in 

which they occur are sparsely inhabited. Slides in the Bonjo zone result in the destruction of 

buildings, farmland and occasionally block roads. 

2.6 Slide description 

2.6.1 Mabeta slides 

Several first-time (slopes that have never been affected by a landslide) translational landslides 

(Fig. 2.6) occurred on degraded pyroclastic cones with slope gradients of 30° to 40° in Mabeta 

New Layout on the afternoon of June 27
th

, 2001 after severe rains during which 180 mm of rain 

in 24 hours was recorded at Krater ca. 4 km away. People were buried by the floods and 

landslides, which destroyed their houses. Together, the flood and the slides at Mabeta destroyed 

ten houses and killed 23 people (Ayangi, 2004; Ayonghe et al., 2004; Zogning et al., 2007). 

Although no rainfall intensity data is available, eyewitness accounts attest to prolonged rainfall 

of high intensity. They also report water oozing out of the ground below the foundations of some 

houses located down slope and anomalous muddy surface runoff a few hours before sliding. This 

crucial observation could be used in risk awareness raising for future events and in understanding 

the processes that led to sliding. According to the local people, landslides in these areas took 

them by surprise, as is often the case with other natural disasters such as floods. The majority of 

the respondents did not anticipate the occurrence of landslides. Some of them linked the 

occurence of the 2001 slides to supernatural factors and myths. 

Wr of individual slides range from 12  to 43 m, Lr from 17 to 58 m and h from 2 to 7 m. The 

approximate run-out distance of the largest slide located ca. 100 m away from the studied slide is 
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ca. 350 m (slide 1 on Fig. 2.6a) whereas that of the studied slide is ca. 100 m. Together, these 

two slides damaged six houses and killed 14 persons either by burial and asphyxiation or as a 

result of collapsing buildings. Both slides initiated as shallow translational slides and transformed 

into debris flows due to the entrainment of surface runoff and ground water releases at the slip 

surface. The run-out distance of these slides were possibly limited by the presence of houses that 

acted as obstructions decreasing the velocity of movement and the presence of gentler slopes 

further down slope. Pits dug into the scar of the studied slide suggest that debris thickness is up 

to 2.3 - 3 m in depth. Boulders account for less than 20 % of the total displaced mass. A 

longitudinal section through slide 3 (Fig. 2.5a) is presented in Figure 2.8d. The depletion zone 

has a well-defined scarp (approximately 7 m high) and margins made up of a mixture of mottled 

dark red (2.5YR3/6) to dark brown (7.5YR3/4) soils/saprolite and weathered vesicular 

porphyritic basaltic pyroclastic rocks (Fig. 2.13). At the time of observation the slide trail had 

well-developed drainage corridors separated by longitudinal ridges 30 to 90 cm high and about 1 

to 2 m wide, parallel to the slide margin (Fig. 2.14) 

The local population in Limbe has increased significantly over the last few decades (from a 

population of 44,561 in 1987 to 84,223 inhabitants in 2005 implying a annual growth rate of 

3.4% for the Limbe municipality (Bureau Centrale des Recensements et des Etudes de 

Population, 2010).  

     

  Fig. 2. 13.  Material making up the slide scarp at Mabeta. Note the height of the slide margin about 4m high 
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Fig. 2. 14. Internal morphology of the Mabeta slide characterised by 

the presence of 30- 90 cm high ridges parallel to slide margin  and 
separated by parallel furrows. 

In the Mabeta New Layout and Unity Quarter areas, characterized by steep slopes (> 30°) and 

made up of pyroclastic material, construction projects are usually not associated with any formal 

stabilization measures. Individuals simply cut little terraces in a haphazard manner to provide 

room for construction (Fig. 2.15). Deforestation for crop cultivation is also a common practice in 

this area. In the last 20 years individuals have moved further uphill around the Mabeta New 

Layout to elevations of ca. 120 m a.s.l. to cultivate yams, cassava and maize (Fig. 2.6 a). This has 

increased the slope length void of vegetation and as such large areas initially covered by primary 

forest have been stripped of its vegetation and converted into farmland and secondary forest 

made of fruit trees and wild palms. Considering these observations, it is possible that anarchical 

construction, excavation of foot slopes, steep slopes and deforestation were the main 

conditioning factors whereas intense prolonged rainfall for a day or so and associated soil 

saturation were the main triggers of the 2001 slides at Mabeta.  

Ridges 2 m wide 

and 30 – 90 cm 

high 

Furrow 

Slide  margin 
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Fig. 2. 15. Close view of anarchical construction at Mabeta. Note terrace cut 
into slope to provide space for construction without any stabilization measure 

put in place. Excavated material piled down slope is a potential threat to down 

slope located buildings. White arrow inidacte  near  slope created by 

construction works. 

2.6.2 Bonjo slide  

On July 21
st
, 2005, a rotational landslide occurred along a road cut in Bonjo, a small locality 

within the Limbe Municipality. It blocked the single unpaved road linking the Military Base of 

Man „O‟ War Bay, the Limbe 3 Council area and the town of Limbe (Fig. 2.16) for two days 

before the debris was excavated and the road reopened. 120 mm of rain in 24 hours was recorded 

at Krater located ca. 4.5 km away from Bonjo. This slide occurred on a 22º slope and has well-

defined scarp and margins. The crown is characterized by the presence of a crescent shaped 

tension crack, 0.3 to 1 m wide and ca. 1 m deep. The scar is 25 m wide, 24 m long with a scarp 

height (h) of 2.8 m resulting in an estimated volume of ca. 10
3
 m

3
 and a total run-out distance of 

35 m. Rock clasts range in size from a few mm to over 1 m and make up less than 10 % of the 

debris material. Prominent phenocrysts observed in the sample are plagioclase feldspar, pyroxene 

and olivine phenocrysts in a microlite and glass rich groundmass. The phenocrysts make up 

about 20 % of the rock mass. 
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Fig. 2. 16.  21st July 2005 landslide at Bonjo. Slide completely blocked 
the road to Man „O‟ War Bay. Image taken after debris had been cleared  

to reopen the road. Excavated debris is visible in the foreground 

(Courtesy of Nele Tytgat, field observations in 2006). 

Debris moved from the road itself was piled up on the right side of the road and later remobilized 

by intense rainfall that followed a few days after the debris was clear off the road, causing 

significant damage to buildings located tens of meters down-slope such that ca. 80 inhabitants 

were rendered homeless for ca. 6 months. A key additional finding of crucial relevance for future 

interventions when clearing a landslide site and for local risk awareness rising is just how 

hazardous it can be to leave much of a former slide heap by the roadside in the vicinity of down 

slope located buildings. Inhabitants also reported that some other slides within the Bonjo area are 

generated by the mobilisation of debris excavated for the construction of foundations.  

Between June and August 2008, the NE edge of the slide was reactivated (Fig. 2.17) moving the 

scarp backward by 5 m giving it a retrogressive character. H increased to 3.2 m and the crown 

still shows the presence of tension cracks and soil pinnacles. Renewed sliding presents rotational 

and flow type failure characteristics with a total run-out distance of 24 m. 
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Fig. 2. 17. Field view of 2008 reactivation of the Bonjo slide; a)  slicken slide  at the head wall; c) detailed view 

slide debris; d) view of the 2008 reactivation of the 2005 Bonjo slide a week after slide reactivation. e) View of 

the July–August 2008 slide (photograph taken in November 2008). Note the backward migration of the head 

scarp and the degree of re-vegetation of slide debris three months after reactivation. 

For this reason, the slide can be characterised as a complex slide according to the classification 

scheme of Cruden & Varnes (1996). With the paving of the Limbe - Man „O‟ War Bay road at 

the end of 2009, a retaining wall was constructed across the slide. Construction works exposed 

well developed sections of the soil profile (Fig. 2.18).  

From the exposed section, it is observed that rocks that make up the slope are intensely fractured, 

weathered and show heterogeneous weathering patterns. Thickness of the soil layer around the 

Bonjo area measures over 10 m and is underlain by purplish saprolites.   

a b 
c 

d e 
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Fig. 2. 18. Profile of Bonjo slide exposed by road construction in 2009. Pale yellowish soil occurs on purplish 

saprolite. Note the presence of fractures, weathering heterogeneity and thickness of soil column. 

2.6.3 Makuka debris slide 

On the same day, the 27
th

 of June 2001, several slides occurred on slopes in Makuka, a quarter in 

Limbe. One of these slides is described here in detail. The debris slide occurred on a 26° natural 

slope developed on weathered basaltic flow within a secondary forest, characterized by the 

presence of fruit trees located away from built-up areas. The depletion zone or zone of rupture 

has a width of 55 m, a length of 52 m and a scarp height of 3 m, giving area coverage of 2.8 x10
3
 

m
2
 and a volume of 7.6 x 10

2
 m

3
. the slide debris is composed of a jumbled mixture of dark 

porphyritic basaltic rock fragments and clayey soils. These fragments are an admixture of 

rounded, sub-angular and angular, partially or completely weathered, blocks that range in size 

from a few mm to over 1 m across. The phenocryst assemblage is made up of shiny black, 

brownish (pyroxene), greenish (olivine) and whitish minerals (plagioclase) with crystal sizes that 

range from a few mm to over 2 cm in diameter. The pyroxenes in particular appear to be the most 

dominant phenocrysts in hand specimen. The scarp and margins are sharp and the eastern margin 

is characterized by the presence of 3 curved successive concentric tension cracks. The slide 

terminates along a stream channel flowing on jointed, dense, porphyritic basalts. These joints 

have diverse orientations, dominantly between N30°–N60° and N120°-N150°E. The orientation 

of measured fractures is shown in Figure 2.19.   
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Fig. 2. 19. a) Field view of translational slide at Makuka with scarp height, outline of slide indicated by 

dotted lines and direction of movement indicated by white arrows. Note difference in stage of vegetation 

within slide scar and the neighbouring slopes; b) rose diagram for fracture patterns observed and 

measured in the field. The main fracture pattern is NE-SW; c) characteristic land use pattern in the 

Makuka area viewed from the Bonjo area west of Makuka. 

 

At the time of observation, debris was still visible within the stream channels although some had 

been washed away by the stream. The scar was cover with grass and fern plants.  Evidence of 

slope undercutting and material erosion was observed, indicating that stream undercutting played 

a role in the occurrence of the landslide. 

b 
c 

Acute Tension crack 

 Scarp  

Height  

3 m 

 Slide margin 
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2.6.4 Debris slide at Unity Quarters  

On June 29-30
th
, 2009, three debris slides were reported at Unity quarters, a small locality within 

the Limbe municipality. All three slides were shallow and translational in nature. Generally, the 

slides were small with widths ranging from 4 to 9 m, lengths from 7 to 10 m and cumulatively 

generated debris of 90 m
3
. One of these slides (Fig. 2.20), though small (9 x 1 x 6 m), caused the 

collapse of the wall of a house, which killed two children in their sleep and injured their mother. 

The cost of repairs was evaluated at ca. 4 million FCFA (ca. 6000 Euros, i.e. equivalent to the 

yearly incomes of about 5 subsistence agric farmers in the area). This illustrates the high human 

and economic impact of the small-size landslides, especially on less well off and vulnerable 

people. The local population acknowledges that these slides took them by surprise and cited 

anarchical construction as the main cause of the failure. The slides occurred on 63 - 64° artificial 

slopes that range from 5 to over 10 m in height created by the excavation of slope material for 

construction purposes. These slopes are made up of loose, partially weathered pyroclastic 

materials with partial or no stabilization measures implemented (Fig 2.20). The debris slides 

were associated with torrential rains. Eyewitnesses reported that the rains were so heavy that the 

distress cries of the victims were not heard by neighbours only 10 m away. 400 mm of rain in 

one day was recorded at Krater located ca. 3 km away. From field observations made two weeks 

after the event and from eyewitness reports, anarchical construction on steep slopes and slope 

excavation are possibly the main conditioning factors. Figure 2.21 represents typical land use 

patterns observed at Unity quarter.  

 



  Chapter two               Inventory, mapping and geometric characterisation of landslides scars 

 

50 

 

    

Fig. 2. 20. June 29th, 2009 slide at Unity quarters, looking west. Note the presence of an uncompleted retaining 

wall west of the scar and steep slope created by material excavation for construction. 

 

 

Fig. 2. 21. Typical land use patterns observed at Unity Quarter.  Note the steep slope and anarchical construction 

and irregular terracing; b) sketch of land use patterns, not drawn to scale 

a b 
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2.6.5  Earth slide at Moliwe 

Two shallow translational slides on weathered basaltic rocks were reported at Moliwe, ca. 7 km 

NE of Unity Quarter on the night of June 29-30
th
, 2009 (Fig. 2.22a).  

    

 

Fig. 2. 22.  a) Photograph; b) transverse section and c) plan viewof the 2009 Moliwe landslide. 

This site was initially occupied by oil palm plantations, which were cut down in April 2009 to 

prepare the land parcel for replanting of new palms. At the time of observation, the area was 

covered with climbers (cover crop) only and lacked trees. According to the classification of 

Cruden & Varnes (1996), the slides are earth slides involving colluvial soil developed from the 

weathering of basaltic lava flows. The studied slide is 21 m wide and 62 m long, with total run-

out of 83 m. The slide was initiated on a 26° slope and has a scarp height of 2.3 m. The failure 

plane lies along the soil/saprolite boundary. The area of the rupture zone is ca. 1.3 x 10
3
 m², 

b 
E a W 

c 
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whereas the entire slide (rupture and accumulation zone) covered ca. 1.7 x 10
3 

m². The estimated 

volume of material that slid is 1.5 x 10
3
 m

3
. The debris formed a wide lobe that terminated in the 

Moliwe stream (Fig. 2.22a and b). Both earth slides, located ca. 100 m from each other, 

terminated in the Moliwe stream. Significant evidence of flooding was observed (i.e. bent 

vegetation and deposited debris indicating that the stream occupied more space than its normal 

flow channel). Rainfall data from Moliwe show that 64 mm was recorded on the day the 

landslide occurred and a total of 308 mm of rain fell in the vicinity in the 7 days preceding the 

event. These slides did not cause any significant damage but illustrate that deforestation and 

stream undercutting are important predisposing factors for the occurrence of slides.  

2.6.6 Earth slide at Kie Village (Ngeme) 

At ca. 3 pm on August 6
th
, 2009, an earth slide occurred at Kie Village (Fig. 2.23). 

 

Fig. 2. 23. Photograph of the August 6th, 2009 rotational slide at Kie Village developed within colluvial soils on 

thinly layered pyroclastic materials; b) plan view; c) longitudinal section through the slide. The slip surface lies at 

the soil/pyroclastic boundary. 

The slide is a rotational earth slide that initiated on a 34° slope. It involves the movement of 

reddish brown colluvial soils developed from the weathering of thinly bedded pyroclastic 

material. The thickness of the soil layer observed at the head scar is over 7 m. The head scarp is 

a 

a 
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characterized by the presence of nearly vertical head walls ca. 6 m high. The slide geometry 

measures 53 m, 36 m, and 6 m for the depletion zone‟s width, length, and height, respectively.  

Total run-out was 138 m. Approximately 6 x 10
3
 m

3
 of soil was moved by the sliding process 

covering a total area of 7.3 x 10
3
 m

2
 with the rupture zone making up 1.9 x 10

2
 m

2
 of this total 

area. The left margin of the scarp shows the presence of acute tension cracks with a 0.5 m 

displacement of the downthrown block. This slide formed a wide lobe in the SSE direction that 

blocked the road linking Bota and Idenau, partially buried a 300 m
3
 water tank that supplies 

potable water to local residents, injured one person and partially buried his car (Fig. 2.24), and 

interrupted electricity supply for about two days. 

 

Fig. 2. 24. Typical landslide damage at Kie village; A, B) house destroyed by debris from 
the 2009 slide at Kie; C) road blocked and vehicle partially buried by slide debris. 

Eyewitnesses reported an increase in the amount of soil washed away by runoff and anomalous 

muddy runoff at the base of the slope a few hours before sliding, indicating incipient failure prior 

to the major collapse. They also reported that movement was rapid and came in two batches, the 

second one occurring ~10 minutes after the first one. During field visits to the site prior to the 
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collapse, the slope was observed to have been cut to construct a dirt track to the water tank that 

was partially buried by the slide. In addition, pozzolan (siliceous volcanic ash) excavation was 

initiated along the dirt track, cut into the pyroclastic cone in April 2009 producing an 8 - 12 m 

high near-vertical wall. On August 5
th
 and 6

th
, 2009, ca. 145 and 65 mm of rain, respectively, 

were recorded at the Krater rain gauge station, located only 400 m away from the slide location. 

A total of 568 mm of rain was recorded in the 7 days preceding the event. Weathering, slope 

undercutting to construct a road to the water tank, and the excavation of pozzalan could be the 

conditioning factors here. The threat possessed by this slide is enormous considering that there 

are 2 tanks each holding 300 m³ of water within its vicinity. If these had actually broken the 

water would have mixed with the earth to produce mudflows with more severe consequences.   

2.7  Internal morphology of the landslide scars 

In most of the observed scars, channel morphometry is shallow and narrow with the 

depletion/rupture zone either devoid or partially covered by a thin veneer of debris. Nowhere was 

bedrock exposed. Ridges (approximately 2 m wide and 30 to 90 cm high; Fig. 2.5) were observed 

within the scars at Makuka, Mondoli and the Mabeta (Fig 2.14) areas probably derived from 

differential erosion and transportation of debris in the rupture zone by runoff. Furthermore, onion 

skin weathering was the dominant type of weathering that characterized the scar head and 

margins with core stones present at the centre of these weathered blocks (Fig. 2.25). 

 

Fig. 2. 25. Spheroidal or onion skin weathering at head scarp. Note the presence of core stone exposed 

by the 2008 reactivation of the Makuka slide. Blocks are about 5cm in diameter and porphyritic with 

olivine, pyroxene and plagioclase phenocrysts. The blocks also show a kind of jigsaw fracturing.  
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2.8  Landslide triggering factors.  

Previous research on landslides suggest that melt water, heavy rains and/or earthquake activities  

are  the major triggers of landslides (Guzzetti et al., 2005) though others may occur without any 

particular trigger. To effectively minimize losses that can result from landslides, it is necessary to 

understand the triggering factors, their occurrence probability and return periods. These 

parameters are necessary requirements in the design and implementation of effective early-

warning systems.  

Considering that the study are lies in a tropical environment and is volcanically active, 

earthquakes and rainfall are thus the most plausible triggers. Triggers in landslide studies refers 

to a process or phenomenon that actually initiates failure. The seismicity of this region is 

monitored by the Unit for Volcanological and Geophysical Research Centre (ARGV) located at 

Ekona (located out of the study area). According to Ateba et al. (2009) normal seismicity in this 

area is characterised by 1-3 low magnitude events per day that might not even be felt at the 

epicentre (Aka 2001). Ateba et al. (2009) noted an increase in seismic activity between May to 

mid September following the 2000 eruption.  The number of daily event returned to normal after 

September 2000. According to Aka (2001) in Buh (2009) the month of June 2001 was 

characterized by 0–8 low-magnitude seismic events/day, and there was no observed increase 

prior to or after the 27th of June 2001, suggesting that seismicity was not a significance 

triggering factor of the slide occurrence (Buh 2009). Thus, the importance of seismic activities as 

a trigger is not evaluated in this study given most of the recorded slides occurred in 2001.  

Rainfall has been internationally recognized as one of the major triggering factors of landslides 

(Glade, 2000). In the Limbe area, the relationship between landslide and rainfall is known from 

empirical observation during landslide events and eyewitness accounts. However, this 

relationship has not been quantified to identify the approximate rainfall threshold required 

initiate failure. Incomplete (or absence of) landslide inventory and inaccuracy in recorded dates 

and time of slide occurrence make it difficult to quantify rainfall thresholds or sequence that lead 

to landslides. A threshold refers to the minimum or maximum value of some quantity required 

for a process to take place or for a state to change (White et al., 1996). Minimum threshold refers 

to a value below, which a phenomenon will never occur and a maximum refers to that above 

which the phenomenon must occur. Several attempts have been made (Lumb, 1975; Caine, 1980; 
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Brand, 1984; Mongomery & Dietrich, 1994; Hengxing et al., 2003; Jakob & Weatherly, 2003; 

Guzzetti et al., 2007 and other references therein) at various scales to determine the amount of 

precipitation and its duration required to trigger slope failures. Most of these threshold values are 

based on empirical or statistical analytical relations between rainfall and landslide initiation. This 

is probably because the actual relationships existing between rainfall and the occurrence of 

landslides are poorly understood. Review of literature indicates that there are no standard 

measurements to characterise rainfall conditions that will or will not trigger slope failure. 

Reasonably reliable prediction of landslide occurrences based on climatic thresholds has been 

accomplished in Japan, New Zealand, the United States, Portugal, Italy (Mateos et al., 2007) and 

in San Francisco Bay (Barb, 1991) where real-time monitoring of rainfall, precipitation forecast 

and delineated areas susceptible to landslides and debris flows were used to construct an early 

warning-system. This implies that effective rainfall recording at high temporal resolution and 

systematic recording of landslide occurrence can be effectively used to predict slope failures and 

thus minimise human and material losses. 

The relationship between landslides and rainfall have generally used mean annual rainfall totals 

(Glade et al., 2000) and antecedent rainfall. Antecedent rainfall refers to the cumulative amount 

of rain an area has received within a specific time period. Antecedent rainfall and antecedent soil 

moisture conditions have been shown to be important in the localisation of rain triggered slides 

(Campbell, 1975).  

To define a possible thresholds, daily rainfall from the four stations described in Table 1.2. and 5 

recorded landslide events that resulted in a slide or landslide swarms in different parts of the 

study area were used (Table 2.5).  The effects of  a 30 days, 3 days and 24 hrs antecedent rainfall  

on these 5 rainfall events were evaluated to determine their impacts on the occurrence of 

landslides. 

It is worth noting that the daily rainfall measurement by the CDC is manually operated, thus 24 

hours in total represent the 24 hours prior to 9 am on the day of recording. The consequence is 

that about 62.5 % of the recording time attributed to a given day occurs on the previous day, 

which introduces a 9 to 15-hours lag when defining rainfall values.  
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Table 2. 5. Observed landslides with corresponding rainfall values  recorded in 24 hours at the gauge nearest to the 
slide location.  

On the other hand, the automatic gauges have an in-built clock that automatically resets and 

stores data on 24-hours basis.  Precipitations in the Limbe area occur in the form of light (< 10 

mm/day) to heavy rains (> 50 mm/day) typically associated with spatially localized rainstorms. 

These storms vary in duration from a few minutes to over four days in a row. On a daily basis, 

rainstorms produce huge precipitation gradients around MC with significantly different amounts 

of rainfall recorded in locations located ~ 5 km apart. It is therefore likely that the amount of rain 

at any location could be higher or lower than that recorded at the closest rain station. Because of 

these variation, in this study, a  5 km buffer zones was constructed around each slide; the highest 

daily rainfall recorded from stations located within the 5 km buffer zone or data for the closest 

rain gauge if located less than 1 km from the observed landslide is used to represent the total 

rainfall that resulted in sliding.  

Figure 2. 26 represents 30 days daily and cumulative rainfall prior to failure.  

Location of 

landslide 

Date of 

occurrence 

Location of 

closest rain 

station 

Measured rainfall  

amount (mm) 

Rainfall 

before slide 

No of slides  

Mabeta New Layout 27 June 2001 Krater 40  180 43 

Bonjo 21 June 2005 Krater 120  60 1 

Bonduma 18 June 2006 Esuke 134  79.9 1 

Unity Quarter 29-30 June  2009 Krater 81 400 3 

Moliwe 29-30 June 2009 Moliwe 55 8.9 2 

Krater (Ngeme) 6 -August 2001 Krater 66  145 1 



  Chapter two               Inventory, mapping and geometric characterisation of landslides scars 

 

58 

 

 

 

Fig. 2. 26 30-day cumulative rainfall and daily totals at recorded the closest station for five 

recorded landslide events in Limbe. Red dots represent days with recorded landslides. 

 

The graphs demonstrate that a wide range of 30 days of cumulative rainfall end up in failure 

suggesting that 30 days cumulative rainfall is not a good predictor of landslide triggering events.  

With the daily rainfall, some patterns can be identified (Fig. 2. 26). Some of the landslides are 

associated with extreme rain event (> 110 mm) recorded after 2 - 3 days of very little or no rain 
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as observed by sharp break on the cumulative curve (Fig. 2.26a, b, d, f). Others occur after 

prolonged lower intensity rains of ~60 mm/day for 5 days in a row (Fig. 2. 26c, e, and g). It is 

worth noting too that there are days with even higher rainfall amounts that did not trigger 

landslides or landslides were not recorded. For example, about 170 mm measured at Krater on 

July 8, 2009, 110 mm at Moliwe on the 20
th

 of June 2009 and 210 mm at Esuke Benoue on July 

8, 2006 (Fig 2. 26) but were not associated with slide occurrences. 

Using 3-days antecedent rainfall, a threshold of 210 mm can be defined. Figure 2.27 

demonstrates that 3-day cumulative rainfall amounts >210 mm are not frequent. Four of the 

landslides events were triggered after 210 mm of antecedent rain and one with a 3 days 

cumulative rainfall of less than100 mm.  

 

Fig. 2. 27. Period of 3- days antecedent rainfall recorded within the study area for the 

months of May to August in 2001, 2005, 2006 and 2009 with documented landslide events. 

Red dots represent landslide occurrences. 

 

The 210 mm interval is therefore proposed as the minimum three day antecedent rainfall 

threshold for the initiation of some slides.  As shown on the graph, periods with 3-day antecent 

rainfall higher than the threshold and not associated failure are also observed. Thus, more 
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analysis with more landslide triggering events and detail rainfall measurements are required to 

better constrain this value. 

2.9 Discussion  

The temporal frequency of landslide events can be established from archive inventories (Coe et 

al., 2000; Guzzetti et al., 2003) and from multi-temporal landslide maps (Guzzetti et al., 2005). 

This study presents an accurate inventory of slides observed in the study area. It provides data on 

the location and geometric characteristics of landslides that can be used in the future to update 

landslide inventory maps from which exceedence and recurrence can be calculated. Landslide 

statistics indicate that large landslides in the study area are rare. Like other areas in the world like 

Hongkong, Turkey and Italy, most of the recorded landslides in Limbe are human induced and 

rain triggered though contributions from natural processes also play an important role. 

The geometry of the slide depletion zones vary widely throughout the study area. This result is 

similar to that observed by Knapen et al. (2006) on the foot slopes of Mt Elgon in Uganda. 

However the volume of generated debris in the Limbe area is dependent on the length and width 

of the depletion zone rather than on the depth as noted by Knapen et al. (2006). There are no 

standard measuring tools to evaluate the magnitude or impact of individual landslides. Fell 

(1994) used landslide volume as a measure of magnitude while others use frequency/size 

distribution (area and volume) (Hovius et al., 1997; Malumad, 2004).  In this study, it was noted 

that the severity/magnitude/nature of landslide related material and economic losses is not 

proportional to landslide geometry/type, but is closely linked to the location of the slide with 

respect to human infrastructure. For example a small 9 x 1 x 6 m³ slide at Unity Quarter resulted 

in the loss of two lives and property damage estimated at ca. 4 million FCFA (ca. 6000 Euros) 

whereas a 21 x 2.3 x 62 m³ slide at Moliwe resulted in severe local environmental damage but 

did not lead to any casualty or property damage because these areas are sparsely populated. 

Systematic trends are highlighted when landslide volume or area in a data base is plotted on a 

semi-logarithmic scale, after ranking the slides from the smallest to the largest.  This pattern can 

be used to evaluate the completeness of the landslide inventory. On such a graph, only the 

smallest and largest slides are offset from this general trend, suggesting a non-exhaustive 

documentation of the smallest and largest slides or might mean a change in the sliding processes 
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that produce these types of slides. This semi-logarithmic relationship between the cumulative 

frequency and the volume of the slide is of great interest because they can be used to assess the 

probability of occurrence of slides of large volume in the future. A similar relationship is 

obtained from geometrical datasets for other landslides in New Zealand, Italy, Guatemala and the 

USA (Hovius et al., 1997; Malamud, 2004; Brunetti et al., 2009). 

Slope gradients at which slides developed on pyroclastic material are generally steeper than those 

on the weathered lava flows, ranging from 32° - 45º on natural slopes, and can go well beyond 

63º for slopes with human intervention. Slides on basaltic lava flow deposits initiate at lower 

slope angles (22° - 36º) except in areas where steep slopes are generated as a result of road and/or 

building construction. The width and depth of failure does not vary with parent rock type. 

The slip surface in most of the slides in this area is not controlled by a saprolite – fresh rock 

boundary as noted in other studies (Wen et al., 2007), but occurs within the saprolite or at the soil 

– saprolite boundary. This is probably a result of heterogeneity imposed by weathering as 

reported by Ngole et al. (2007) for the Mabeta area or as a result of the generation of positive 

pore pressure enhanced by fracture permeability. Larsen & Simmons (1999) noted that high 

intensity short duration rain results in the occurrence of shallow translational slides with the slip 

surface located within saprolites or at the soil-saprolite boundary due to the development of 

excess pore pressure. Deep soils and underlying saprolite result from intense and prolonged 

weathering governed by voluminous rainfall and high mean annual temperatures of 

approximately 26 °C. 

The Poisson model used to investigate the temporal occurrence of natural hazards allows for 

determining the probability of future occurrences for different times t (i.e. for a different number 

of years) based on the statistics of past landslide events assuming that (i) the number of events 

that occur in disjoint time intervals are independent; (ii) the probability of an event occurring in a 

very short time is proportional to the length of the time interval; (iii) the probability of more than 

one event in a short time interval is negligible; (iv) the probability distribution of the number of 

events is the same for all time intervals of fixed length, and (v) the mean recurrence of events 

will remain the same in the future as it was observed in the past. These assumptions may not 
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always hold for landslide events: the interpretation of landslide exceedence probability should be 

treated with caution when results are derived from a Poisson probability model. 

2.9.1 Causal factors 

Landslides in the Limbe area are caused by a combination of factors. The presences of steep 

slopes, anarchical construction, and rock type are observed to be the major causes of failure in 

this area. In the study area, particularly at Unity Quarter, Bonjo and Mabeta, the construction of 

houses, roads and foot paths involves the excavation of soil and the creation of small terraces. 

This removal causes water stagnation on the flattened areas and increased infiltration as well as 

changes the slope line and the angle of repose of particles located upslope, thereby increasing the 

amount of stress on these slope materials. The excavated soil in most cases is piled on the down 

slope end of individual land parcels so that with intense rain, the loose soil rapidly absorbs water, 

becomes saturated and slides causing damage to down slope located structures. Furthermore, 

high mean annual precipitation ranging from 2100 to 4600 mm (CDC Meteorological Centre) 

concentrated in 3 months of an 8 month rainy season, results in high soil moisture contents and 

soil saturation for long periods of the year and this can be considered as one of the causal factors 

for landslides. 

2.9.2 Triggering factors 

Analysis of 20 - 34 years of monthly rainfall data suggest that landslide activities in Limbe are 

associated with extreme rainfall events. A threshold for the initiation of slides is  however 

difficult to define because of high spatio-temporal variations in intensity and duration of rainfall 

within the area, and because of the absence of records of the exact date and time for most of the 

landslides. Hence, the link between landslides and specific rainfall events cannot be precisely 

defined. 

However, most of the slides with known dates suggest that they are associated with rainfall > 110 

mm in 24 hours preceded by 2 - 4 days with no or limited rainfall (0 - 4 mm). Other heavy 

rainfall events, with daily rain amounts > 110 mm and as great as 250 mm particularly preceded 

by days with more intense rains, are however not associated with landslide events. Lumb (1975) 

suggested a relationship between the preceding 15 days and 24 h total rainfall and landslide 
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occurrence. However, Brand et al. (1984) argue that in most tropical residual soils, antecedent 

rainfall is not a controlling factor in slide initiation. Instead, it seems reasonable to assume that 

the likelihood of landslide occurrence is enhanced subsequent to periods of sustained rainfall. 

These observations are true for most of the landslides with known dates in the Limbe area. 

Nevertheless, a successful monitoring of small landslide hazards in the region requires a dense 

network of rainfall stations continuously recording rainfall intensity and duration. Such 

information needs to be available in real-time to scientists so as to enable them to define absolute 

rainfall events capable of triggering landslides. 

According to Larsen & Simmons (1999), short-duration/high-intensity rainfalls usually result in 

the occurrence of shallow landslides caused by excessive pore pressure in shallow soil zone. 

These slides too tend to have their failure plane in saprolite or at the soil-saprolite boundary, 

which is typical for most of the 2001 landslides in the Limbe area. Low-intensity/long-duration 

rainfall instead results in the occurrence of deep seated failure with the slip surface occurring at 

the saprolite bedrock boundary. It is therefore possible that the 1-day 110-mm and the 3-days 

210-mm threshold identified in this study is a proxy for rain triggered landslides in the study 

area, considering that they are mostly shallow translation slides with the slide surface commonly 

occurring at the soil-saprolite boundary where saturation and the development of positive pore 

pressure is possible after high intensity rainfall.  However, the data set for landslide events used 

in this study is rather small to make statistically reasonably conclusion with regards rainfall 

threshold,  thus  a wider data set needs to be evaluated.  

Buh (2009) analyzes seismic activities as possible triggers for the June 2001 landslides in Limbe 

and concludes that June 2001 was characterized by 0 - 8 low magnitude events/day. Thus 

because of the lack of increased seismicity before and/or on the 27
th

 of June 2001, seismicity did 

not seem to have been a major triggering mechanism. It can thus be concluded that landslide 

occurrence within the study area is not linked to a single factor but occurs in response to an 

interplay of several preparatory factors with rainfall as a probable trigger. These results are 

similar to those reported by Kitutu et al. (2009) for the Bududa district, Eastern Uganda. 
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2.10 Conclusion 

From field observations, eyewitness accounts and data interpretation, the following conclusions 

can be drawn from this field study: 

I. Landslides in Limbe are small to very small translational and/or rotational landslides with 

a mean width of 24 m. Large landslides (> 10
4
 m³) are rare and might be triggered by 

other processes than intense rainfall. Importantly our observations highlight the lack of 

correlation between landslide size and their impact, which is mostly controlled by the 

proximity to vulnerable infrastructures and populations. 

II. Landslide occurrence in the Limbe region results from a combination of factors such as 

the presence of steep slopes, pyroclastic material, thick soil cover, or the proximity to 

stream channels. Landslides are especially frequent on old pyroclastic cones which have 

undergone significant weathering. 

III. Intense and prolonged rainfall (> 110 mm in 24 hours preceded by 2 - 4 days with no or 

limited rainfall (0 - 4 mm) act as the major trigger that initiate failure. 

IV. Slide occurrence is exacerbated by human interferences in the form of urban expansion, 

anarchical construction, slope excavation and deforestation. When deciding on the 

localization of new development projects, it is essential to pay attention to slope stability 

issues in order to mitigate potential losses due to landslides. In addition, construction 

works on steep slopes, especially on deeply weathered pyroclastic cones should be 

discouraged. If unavoidable, adequate retention walls, drainage paths and slope 

reinforcement measures should be implemented and maintained to limit damage resulting 

from sliding. 

This study thus provides important new insights and quantitative constraints to be used in 

deterministic modelling of volume-limited slides. It will also serve as a basis to constrain a 

landslide susceptibility assessment based on the identified causative factors. It also provides data 

that can be subsequently used in the development and evaluation of slope instability mechanisms 

for particular sites considered at risk in the Limbe region of Cameroon, or other areas in a similar 

context where steep weathered volcanic terrains receive intense and prolonged rainfall in the 

subtropics worldwide. 

 



 Chapter three                                                     Geotechnical characterisation of landslide prone soils 

 

65 

 

Chapter Three 

 Geotechnical characteristics of landslide prone soils  

3.1  Introduction  

The occurrence of landslides in any area may be attributed to the geotechnical (Yalcin, 2007), 

mineralogical and chemical properties of the soils as well as forces acting on these materials.  

Ground conditions such as weak strength, sensitive fabric, degree of weathering and fracturing 

can be considered as some of the factors that influence slope stability. Sidle (1985) observed that 

soil properties such as particle size and pore distribution in the soil matrix can influence slope 

stability. These properties influence the rate of water movement and the capacity of the soil to 

retain water. Finer soils tend to hold higher volumes of water under unsaturated conditions than 

do their coarse textured equivalents (Sidle, 1985). Other soil parameters that contribute in 

landslide occurrence include the swelling properties of clay and the rate at which water infiltrates 

into the clay at depth (Inganga & Ucakuwun, 2001). Clays play an important role in slope 

instability problems because of their plasticity, low permeability, structure, chemistry and 

mineralogy, moisture dependence of shear strength and above all volume change after water 

absorption or dehydration.  

Thus, after detailed field observations and measurements of the geometric characteristics of the 

landslide scars, it is necessary to evaluate the properties of these landslide prone soils, in order to 

understand the sliding mechanisms operating within the study area. Mechanisms of slope 

movements as defined by Hutchinson (1988) are idealized ways through which slope material 

might move. Sliding mechanisms depend on geometric, physical and mechanical properties of 

weathered profiles (particle size, pore pressure, cohesion, effective angle of internal friction, soil 

thickness, slope angle, bulk density), the transient properties (natural water content, degree of 

saturation) and the mineralogical composition of the soils. They are also affected by external 

factors such as human intervention, rainfall and seismic activities. To achieve this, three slide 

scars were chosen and studied in detail. The choice of these scars was based on accessibility, 

type and/or mode of failure, observed/reported damage incurred and on the material type 

involved in the sliding process to cover all slide types observed in the study area.   
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Figure 3.1 shows the distribution of the pits described in this study. 

 

Fig. 3. 1 Location of sampling pits dug into 3 landslide scars analysed in detail during 

this study. 

Six 2.5 to 4 m deep rectangular (1 x 1.5 m) pits (Fig. 3.1) were dug into three landslide scars and 

their profile described. In situ shear tests were also realised by driving a Torvane meter into the 

sides of the pit and rotating it until failure. The corresponding torque is read off the vane meter 

and later converted to shear strength values, providing the in situ apparent cohesion. These 

undrained field tests were undertaken as a preliminary assessment to determine the degree of 

vertical and spatial variation in shear strength properties. Measurements were done at 20 cm 

interval up to a depth of 1.2 m and at intervals of 40 cm after 1.2 m.  Figures 3.2a and b show the 

geometric configuration of Pit 1 and how shear strength was measured with the Torvane meter.   
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Fig. 3. 2. View of geometric configuration of Pit 1dug into  a slides scar at Bonjo: a) digging pits; b) 

in situ measurement of  relative shear strength with a Torvane meter. 

18 block samples (20 x 15 x 10 cm), 3 from each pit, were collected by the channel chipping 

method (Fig. 3.2) with the exception of Pit 5 (where digging was inhibited by its stony nature and 

thus only two samples were collected) and Pit 6 (that displayed many more horizons and 4 

samples were collected). The samples were wrapped tightly in plastic bags, labelled and 

transported to the laboratory for the determination of their geotechnical properties, as well as for 

mineralogical and chemical characterization.  

 

Fig. 3. 3. Collecting block samples for laboratory analysis from the wall of 

a pit sunk at Bonjo. Note sharp the colour transition on the walls of the pit. 

Sample labels contain two parts, e.g. in the sample P1S01, P1 represents the pit number 1 and 

S01 represents sample number 01. Sampling was done in March of 2009, which marks the end of 
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the dry season in this area. Thus, measured natural moisture content (measured without any form 

of drying) provides a genuine or vivid picture of the soil moisture content within the study area. 

Geotechnical characterization of the soils was done at the “Laboratoire de Mécanique des Sols” 

in the Department of Building, Architecture and Town Planning of the Université Libre de 

Bruxelles. 

3.2   Equipment, sample preparation and analysis 

Some of the equipment used in the laboratory is presented below (Fig. 3.3). 

3.3  Methods used in the determination of index and physical properties 

The index properties of the soils evaluated in this study include:  

 Colour with the aid of a Munsell soil colour classification chart 

 Natural moisture content  

 Loss on ignition 

 Atterberg‟s (consistency) limits   

 Grain size distribution  

 Bulk density 

 Particle specific gravity 

 Shear strength (cohesion and effective angle of internal friction) 

 Permeability 

3.3.1 Colour of soils  

The colour characteristic of each horizon was obtained from the Munsell Soil Classification 

Chart. Sampled were aerated for 24 hrs. Using a spatula, aggregates of soil samples were 

mounted on white cardboard paper. The colour was obtained by matching the soil sample with 

the standard colour on the Munsell chart from which the colour was read off and given in terms 

of the hue, value and chroma. Results of the colour characterisation are integrated in the next 

chapter. Soil colour is an important property used in the identification of soils. 
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Fig. 3. 4. Catalogue of the laboratory equipment used for sample analysis: a) electronic balance used to determine 

sample bulk density; b) hydrometer; c) sieves and mechanical sieve shaker used for separating particles into 

different fractions; d) magnetic stirrer; e) 1 litre sample solution in a water bath for measuring the silt and clay 

fractions within each sample through sedimentometry;  f) Casagrande apparatus used in the determination of liquid 

limits; g) shrinkage dish for linear shrinkage measurements; h) petrologic microscope; i) agate ball mill; j) external 
view; k) internal view of agate ball mill used for the preparation of sample powders for ICP-OES analysis; l) 

pressure chamber with pycnometer used for the determination of the specific gravity of the solid particles; m) three 

automated triaxial cells. 
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3.3.2 Determination of natural moisture content  

Moisture content, affects the weight and the behaviour of soil particularly the clay fraction. The 

natural moisture content (Mc) was determined according to the procedure described by Van 

Reeuwijk (1993).  About 50 g of sampled material (as collected without any form of drying) is 

weighed in air (Wb), oven dried at 110 °C for 24 hours and reweighed (Wa). The following 

equation was used to determine the moisture content in %:

  

100
Wa

WaWb
Mc      

3.3.3 Loss on ignition (LOI) 

After the Mc was determined, 10 g of the sample was extracted and heated in a muffle type 

furnace for 2 hr at 550 °C and the difference in weight before and after firing considered as the 

LOI. This is also equated to the amount of organic matter present. 

3.3.4 Determination of Atterberg’s Limits  

Atterberg‟s limits (liquid, plastic and shrinkage limits) are a standard measure of the consistency 

of fine-grained soils depending on its moisture content.  These limits are used to determine the 

plasticity index, which provides a clue to the type of mass movement (flow or slide) that would 

characterise a given area. Normally, very dry soils behave like solids; as the moisture content 

increases, the behaviour of a soil changes from solid to plastic. This transition point is known as 

the plastic limit (PL; Jackson 1996). If the moisture content increases further, a stage is 

eventually reached where the soil particles become suspended in water and the soil exhibits 

viscous behaviour, starting to flow under its own weight.  

This transition is referred to as the liquid limit (LL; Summerfield, 1991; Jackson, 1996). These 

limits are characterised for the < 420 µm size fraction. LL is determined with the aid of a 

Casagrande‟s apparatus (Fig. 3.1f). Soil samples are soaked overnight to ensure total saturation. 

The saturated sample is transferred onto a marble board, mixed thoroughly and allowed to 

dehydrate with time. In due course, a small fraction of the dehydrating sample is extracted, 

placed on a brass cup of the Casagrande‟s apparatus to maximum depth of 13 mm. A groove is 
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made down into the centre of the soil pad with a standard grooving tool. The cup is repeatedly 

dropped from a height of 1 cm onto a hard rubber base by turning the crank at a speed of 2 blows 

per second during which the groove closes up as a result of its impact. The number of blows and 

the moisture content is recorded and plotted on a semi-logarithmic graph. LL is defined by the 

moisture content at which the groove closes by 1 cm under the effect of 25 blows.  

PL is determined by rolling a ball of soil on a smooth surface into 3 mm thick threads that break 

into 1 cm long fragments. The fragments are collected and moisture content determined. The 

moisture content at which this happens represents the plastic limit. 

Rosenak (1963) defines the shrinkage limit (SL) as the moisture content at which a soil stops 

shrinking with further loss of water. To determine the shrinkage limit, three metal shrinkage 

dishes of known volume (V) (Fig. 3.1g) are greased (so that sample should not stick to the walls) 

and weighed (Md), filled with wet soil and compacted by gently tapping on the table to drive off 

trapped air bubbles. The filled dishes are weighed (Mdw) and allowed to air dry for at least 24 

hours. This is to prevent the development of cracks or fissures within the sample. The air-dried 

sample is then oven dried at 110 °C for at least 12 hours, allowed to cool in a desiccator and 

reweighed (Ms). The soil sample is then immersed in a beaker of known volume filled with 

Mercury. The mass difference between the Mercury and beaker before and after immersion 

represent the volume of the sample. The calculated moisture content corresponding to this 

volume change represents the shrinkage limit.  

Though empirically determined, Atterberg‟s limits are used in soil identification and 

classification and also allow empirical correlation with other engineering properties that are more 

difficult or costly to measure. From the PL and LL values, the Plasticity Index (PI; a measure of 

plasticity or the range of water content at which the soil exhibits plastic behaviour) is calculated. 

It is defined as the difference between the liquid limit and the plastic limit. It can also be used as 

a criterion for estimating the liquefaction potential of clayey soils (Lambe & Whiteman, 1979). 

The natural moisture content, plastic limits and plasticity index and/or grain size data were used 

to compute the liquidity index (LI) and activity coefficients (AC). The liquidity index, is used for 

scaling the natural water content of a soil sample to its Atterberg‟s limits; it is given by  
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PI

PlMc
LI   where  Mc is the moisture content, 

LI = Liquidity index 

Pl = Plastic limit 

PI = Plasticity index. 

 

LI indicates the behaviour of fine grained soils upon shearing and can be used as a proxy for the 

undrained shear behaviour of remoulded samples. Negative values suggest that the colluvial soils 

are unlikely to fail by flow type movement unless a large amount of water is added (Shakoor & 

Smithmyer, 2005). 

The activity coefficient (AC), defined as the plasticity index divided by the percentage of the 

clay fraction within the sample (Underwood, 1967) was also calculated for all the soil samples 

(Table 5). From the AC one can predict the dominant clay type present in a soil sample. High 

activity signifies large volume changes when wetted and large shrinkage when dried while lower 

values signify small change. Soils with a high AC are chemically very reactive.  

3.3.5 Grain size distribution 

Grain size influence the moisture content and the rate at which water flows through a soil. 

Granulometric analysis was done by wet and dry sieving to separate the sand fraction. 

Sedimentation with a hydrometer (Fig. 3.1b) was used to separate the clay from silt, following 

the procedure described by Van Reeuwijk (1993). Samples were first dried in a warm room set at 

40 °C, disaggregated and sieved to separate fractions greater than 2 mm. 200 to 300 g of the 

passing fraction was later sieved wet on the 75 µm sieve. The fraction retained on the sieve was 

then oven dried at 105 °C and sieved through a stack of sieves (1.65 mm; 840, 420, 210, 105, 74 

µm) placed on a mechanical shaker (Fig. 3.1c) for 20 minutes. Approximately 0.5 g of the sand 

size fraction was observed under a petrographic microscope and photomicrographs were made.  

5 g of deflocculant (sodium hexametaphosphate) was added to 50 g of the < 75 µm fraction and 

mixed on a magnetic stirrer (Fig. 3.1d). The sample/deflocculant mixture was allowed to stand 

for at least 12 hours to ensure complete disaggregation. After this period, samples were agitated 

for at least 5 minutes to ensure complete dispersal. Samples are then transferred into a 1000 ml 

measuring cylinder, filled up to the mark with distilled water and placed in a water bath set at 25 
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ºC (Fig. 3.1e). Temperature and hydrometer readings are taken after 0.5, 1, 2, 5, 15, 30, 60, 250, 

and 1440 minutes to determine the amount of silt and clay fraction within each sample according 

to Stokes‟ law. Results obtained are later plotted on a semi-logarithmic graph (grain size chart). 

The proportions of sand, silt and clay present in each sample were later plotted on a textural 

triangle to obtain a textural classification of the samples.  

3.3.6 Determination of bulk density (γ)      

The soil bulk density is a measure of natural soil in situ compaction, and can be used to 

determine how much air or water can be stored or can migrate through the soil. Bulk density 

indicates how tight soil particles are packed, hence, can directly or indirectly influence soil 

stability. To determine the soil bulk density, about 15 g of the field sample clods (samples as 

collected without any form of drying) was tied with a string and weighed in air, coated with 

paraffin, reweighed in air, and the soil/paraffin sample immersed in water. The volume of 

displaced water is measured (Fig. 3.1a) based on Archimedes‟ principle. The information 

obtained is then used to calculate the bulk density as shown below. Prior to this, the density of 

the paraffin and that of water is determined. Sample density was derived from the following 

equation: 

a

w
WpaWpaWsplWs

Ws
ws

                                   (2) 

where  s = bulk density of sample 

w = density of water 

a = density of paraffin 

Ws = weight of sample in air (g) 

Wspl = weight of sample and paraffin coating in water (g) 

Wpa = mass of paraffin = weight of paraffin and sample in air (Wspa) - Ws  

 

 Observed standard deviation in the sample range from 0.01 - 0.18 for the soil samples  

3.3.7 Determination of particle specific gravity (Gs) 

Particle specific gravity is an important physical property used in volume-weight relationships 

for soils and rocks (Rosenak, 1963). It is used to determine other important properties such as 
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void ratio, porosity, and degree of saturation (Yalcin, 2007). The specific gravity is the ratio 

between the unit weight of a substance and the unit weight of pure water at 4 °C (Cernica, 1995). 

It was determined with the aid of pycnometers.  

Procedure 

Approximately 15 g of each soil sample was placed in a pycnometer (density bottle) of known 

weight and volume.  The pycnometer and sample are weighed and demineralised water added 

and thoroughly mixed with the soil sample before placing it without a stopper in a pressure 

chamber (Fig. 3.1m) to drive off air bubbles. The pycnometer filled with sample and distilled 

water is then placed in a water bath set at 25 °C over night to allow for complete saturation. The 

complete assembly (saturated sample, density bottle, with water) is then reweighed and the 

temperature of the sample is measured. If it is not equal to 25 °C then, temperature corrected 

specific gravity (G‟) will have to be calculated. The pycnometer is then emptied, filled with 

distilled water and placed in a water bath to the same temperature and weighed. The specific 

gravity calculated as follows: 

)()( 2314

12

WWWW

WW
Gs

     where W1 is the weight of the pycnometer (g) 

W2 = weight of pycnometer and soil (g) 

W3 = weight of pycnometer soil and water (g) 

W4 = weight of pycnometer and water (g) 

Gs = particle specific gravity 

 

25°Cat  water ofdensity  Relative

 ure  temperatroomat  water ofdensity  Relative
' GsG

 

Observed standard deviation between sample specimens range from 0.006 - 0.04 g/cm
3
. 

  

 

3.3.8 Consolidated undrained triaxial test 

Shear strength parameters, cohesion and friction angle were determined in the laboratory in an 

automated triaxial cell (Fig. 3.1m) on reconstructed samples (PS3S08 and PS3S09 for the 

pyroclastic material and sample P6S19 and P6S20 for lava flows). 
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Procedure 

A mass of dry soil is mixed with distilled water, in order to reconstruct the natural water content 

and extruder in a metallic cylinder to obtain cylindrical sample specimens (Fig. 3.5) with a length 

width ratio of 2. Sample mass is calculated to correspond to the sample volume in order to 

reconstitute the bulk volumic weight. The height and diameter of the sample specimen is 

measured and then the sample weighed and encased by a rubber membrane.The sample specimen 

is then placed in the triaxial cell and the cell filled with water.  

               

 

Fig. 3. 5. Procedure involved in sample preparation and analysis in a triaxial cell. 

 

The cell is then gradually subjected to an all round confining pressure and axial load applied ca 

10 minute after the application of the chamber pressure. This only changes the normal force 

acting on the sample whereas the all round pressure remains constant. The sample is compressed 

at a fixed speed and proving readings of axial stress continuously measured until failure.  

 The axial stress P/A at failure is read off and the all round pressure (σ3) is added to obtain the 

maximum normal stress (σ1). The unit strain (ε) and adjusted instantaneous area (A) are 

calculated:  

i.e. ε  = dL/Lo  

where dL = change in specimen length 

Lo = initial specimen length 

The axial load (P) is measured and the principal stress computed as  

σ1 = σ3 + P/A  

From the calculated σ1, the maximal difference between the principal stresses  σ1 - σ3 is 

computed. At least four sets of analysis were made on each sample under different loading 

 Sample reconstruction  reconstructed  soil cylinder 
Consolidation and shearing 

in an automated  triaxial cell 
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conditions. Using derived σ1- σ3 values, Mohr circles (Appendix 3, Fig. A1) are constructed 

corresponding to different failure conditions. The tangents of the circles provide the failure 

envelopes for the soil. The slopes of the tangent represent the angle of internal friction and the 

intercept characterises the cohesion.  

3.4    Result of geotechnical characterization 

The natural moisture content, grain size distribution and other index properties measured in this 

study are presented in Table 3.1. Natural moisture content ranges from 31 to 55 % with a mean 

value of 43 + 6 %. It shows an increasing downward trend in Pits 1, 2 and 3, dominated by clay. 

Plasticity index is 23.6 + 8. The plastic and liquid limit range from 31.9 to 61.8 and from 46.7 to 

87.3 %, respectively.  The average specific gravity is high, ranging from 2.76 to 2.98 g/cm
3
 with 

mean values of 2.86 + 0.06 g/cm³. The average bulk density is 1.95 g/cm³ which is about half 

that of the fresh rock samples. Porosity (a measure of the volume of voids in the bulk sample 

volume) ranges from 24 to 44 % with mean values of 32 + 5 %. All these data fit with other 

results obtained from studies on residual soils in tropical climates (Lohnes et al., 1977; Vaughan 

et al., 1988; Rahman et al., 2010). 
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Table 3. 1. Index and geotechnical properties of soils from landslide scars in the study area as derived from laboratory analysis.  Mc: natural moisture 

content; LOI: Loss on ignition; PL: plastic limit; LL: liquid limit; Sw: shrinkage limit; LI: liquidity; AC: activity coefficient; Gs: particle specific gravity; γd:  

dry density; γ: bulk density; n: porosity. 

S No Texture Sand  Silt  Clay Mc 
LOI 

(%) 

PL 

(%) 

LL 

(%) 

PI 

(%) 

Sw 

(%) 
LI AC 

Gs 

(g/cm³) 

γ d(g/ 

cm
3
) 

γ (g/ 

cm
3
) 

n 

(%) 

P1S 01 Silt loam 15 60 25 38.2  49.9 81.5 31.6  -0.37 1.26 2.90 1.23 1.70 41.30 

P1S 02 Silty clay loam 20 45 35 43.7 12.3 50.1 74.3 24.2 26.9 -0.27 0.69 2.84 1.29 1.85 34.75 

P1S 03 Clay  22 35 43 44.9 8.9 44.2 71.7 27.4 26.9 0.02 0.64 2.90 1.42 2.06 29.05 

P4S 05 Clay loam 34 34 32 37.4 11.3 42.5 73.6 30.9 48.0 -0.16 0.97 2.88 1.35 1.86 35.58 

P4S 06 Clay 4 29 68 43.2 13.3 54.1 87.3 33.2 37.6 -0.33 0.49 2.96 1.36 1.95 34.19 

P4S 07 Silty clay  4 49 48 50.4 11.7 52.4 79.2 26.8 40.7 -0.07 0.56 2.98 - 2.05 31.35 

P3S 08 Clay 2 24 74 39.6 13.1 57.8 81.3 23.5 44.7 -0.78 0.32 2.93 1.38 1.93 34.24 

P3S 09 Clay 4 24 73 44.4 15.2 56.3 81.0 24.7 30.0 -0.48 0.34 2.85 1.44 2.08 27.02 

P3S 10 Silty clay 3 45 53 46.7 12.1 61.8 80.9 19.1 39.5 -0.80 0.36 2.93 1.32 1.94 33.92 

P2S 11 Clay loam 31 41 29 54.8 10.5 46.0 77.3 31.3 30.8 0.28 1.08 2.93 1.39 1.65 44.01 

P2S 12 Sandy clay loam 46 26 29 41.5 7.6 40.4 74.8 34.3 30.2 0.03 1.20 2.95 1.34 1.90 35.75 

P2S 13 Sandy loam 69 24 8 48.3 7.4 38.8 69.6 30.9 38.2 0.31 4.12 2.94 1.11 2.15 26.58 

P5S 14 Clay loam 32 41 27 50.4 9.0 45.0 64.7 19.7 38.8 0.28 0.73 2.88 1.40 2.11 26.79 

P5S 15 Silt loam 39 50 11 34.6 8.2 31.9 46.7 14.8 37.4 0.18 1.35 2.83 1.60 2.15 24.02 

P6S 17 Silty clay loam 20 45 35 46.4 11.8 38.3 63.6 25.3 28.8 0.3 0.72 2.82 1.34 2.20 24.94 

P6S 18 Loam 34 49 17 39.8 8.4 42.4 53.4 11.0 40.7 0.23 0.65 2.88 1.32 1.90 31.28 

P6S 19 Silt loam 31 57 13 30.8 7.4 35.2 47.4 12.2 40.6 0.36 0.97 2.76 1.45 1.85 35.84 

P6S 20 Silt loam 26 63 11 38.3 7.1 38.9 47.3 8.4 37.4 0.07 0.77 2.93 1.59 1.96 30.44 

Minimum 2.3 23.5 7.5 30.8 7.1 31.9 46.7 8.4 26.9 -.80 0.32 2.76 1.11 1.65 24.02 

Maximum 69.0 63.0 74 54.8 15.2 61.8 87.3 34.3 48.0 0.32 4.12 2.98 1.60 2.20 44.01 

Mean 24.1 41.0 34.9 42.9 10.0 45.9 69.7 23.9 36.0 -.14 0.96 2.89 1.37 1.95 32.39 

Standard deviation 17.8 12.6 21.1 6.1 2.50 8.31 13.1 8.03 6.3 0.35 0.85 0.06 0.11 0.15 5.42 
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3.4.1 Description of geotechnical profiles 

The above properties are integrated into the soil profiles described for each pit to generate a 

geotechnical profile. These profiles are described in detail hereafter.  

3.4.1.1 Profile 1 Bonjo 

The profile at Bonjo was obtained from Pit 1, a 3.5 m deep pit dug into a complex slide at Bonjo, 

developed on weathered basaltic lava flow deposits. The pit is located ca. 10 m below the main 

scarp at an elevation of 52 m a.s.l. Within this pit, the soil profile shows 4 distinct horizons (Fig. 

3.6). The material is dominantly clay and silt with less than 25 % sand though the sand fraction 

shows a downward increasing trend. The terms “sand “ and “sandy” will be used here strictly in 

characterizing the grain size, or granulometry, and not related to the mineralogical composition. 

The sandy fraction is made of grains of weathered parent rock. The first 20 cm are covered by a 

dark humus layer. Underneath, a 1 m thick pale yellow mottled plastic clayey loam horizon 

occurs, with a Gs of 2.83 g/cm³ and a γ of 1.85 g/cm³, interrupted at 80 cm depth by a thin layer 

of decaying debris, probably representing the top material from the previous slide. At a depth of 

1.2 m below the surface, there is an abrupt change in colour from yellow (5Y8/2) to brown 

(7.5YR5/2) clay with Gs 2.9 g/cm³ and γ 2.06 g/cm³. The material then gradually grades into a 

light gray (2.5Y7/1) silty saprolite with alternating gray and brown strips. Fragments of 

unweathered rock found within the slide debris suggest that the parent rock is dark coloured 

porphyritic basalt characterized
 
by plagioclase, pyroxene and olivine phenocrysts and which has 

a γ of 2.93 g/cm³. Within this profile, the moisture content, proportion of sand and clay increases 

with depth, whereas the specific gravity, plasticity index and plastic limit show more irregular 

patterns as seen in Table 3.1 and Figure 3.6. The porosity is also observed to decrease downward 

in the profile. It is worth noting that the sand fraction is characterised by the presence of 

yellowish concretions (probably iron oxides) that were not analysed in this study.  

The grain size distribution for Pit 1 is shown in Figure 3.7. Grain size analysis data from which 

this and other graphs were obtained, are given in Appendix 4. These soils are dominated by the 

silt fraction while the sand fraction is characterised by the presence of yellowish brown 

concretions.  
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Fig. 3. 6. Photograph mosaic and sketch of the Bonjo soil profile with associated index properties 
measured in the laboratory. Note significant and abrupt colour changes downward in the profile. 

 
Fig. 3. 7. Grain size distribution for samples P1S01, P1S02 and P1S03 from Pit 1 at Bonjo. Note the 

dominance of the silt fraction. Sand fraction is made up of yellowish brown concretions.     
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3.4.1.2 Profiles 2, 3 and 4, Mabeta New Layout 

Pits 2, 3 and 4 were dug into one of the several slides at Mabeta (Fig. 2.5d). The profiles show no 

sharp colour differences but exhibit significant differences in terms of texture and humidity 

down the profiles. 

Profile 2 (Fig. 3.8b) describes the section of a 3.8 m deep pit dug into a 30 - 40° slope on a 

degraded pyroclastic cone at Mabeta. It is located 30 m below the main scarp at an elevation of 

89 m a.s.l. The first 70 cm are characterised by loose reddish brown clayey loam soil with Gs 

2.93 g/cm³ and γ 2.15 g/cm³, probably representing loose debris from the previous slide. This 

depth corresponds to the maximum rooting system of plants within the slide at this point. 

Underlying to this horizon down to a depth of 2.8 m below the ground surface, a moist mottled 

sandy clay loam horizon occurs with Gs 2.95 g/cm³, γd 1.34 g/cm³ and γ 1.90 g/cm³. Below 2.8 

m, the profile is wet (saturated), and characterised by loose sandy loam soils with visible olivine 

and pyroxene crystals together with completely weathered rock blocks. This section has a Gs of 

2.94 g/m³, γd 1.34 g/cm³ and γ 1.65 g/cm³. The parent rock is a spongy dark brown porphyritic 

rock with a density of 2.29 g/cm³. Measured index properties indicate that the amounts of silt and 

clay, and the values for PL and LL decrease down the profile while the sand fraction, natural 

moisture content and porosity increase down the profile. Material from this pit represents intact 

material that was not involved in previous slides.  

Profile 3 (Fig 3.8c) describes a 3.2 m deep pit dug at an elevation of 73 m a.s.l. and lies 30 m 

down slope from Pit 2 where there exists an abrupt change in slope gradient from 33 to 10°, 

probably representing the accumulation zone or as a result of human intervention on this slope. 

This zone is heavily vegetated as compared to the location of Pit 2 with only sparse vegetation. 

The area of Pit 3 also appears damp at the surface and throughout the profile. However the 

moisture content was several orders lower that than observed at the bottom of Pit 2, suggesting 

the presence of a permeability boundary or barrier. From 0 to 2 m, corresponding to the 

maximum rooting system depth, the soil has a clayey texture, and is moist, mottled, (reddish 

brown with white patches) and maintains the same colour throughout the profile. Below the 

maximum rooting depth no rock fragment, gravel and sand sized particles occur. In this profile, 

the moisture content increases downward while the grain size distribution shows only minor 
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variations. Measured index properties show irregular patterns, hence it is concluded that the pit 

represents debris that was mobilized by sliding and accumulated at the foot of the slope. 

Profile 4 (Fig. 3.8d) is 2.4 m deep and lies at 53 m a.s.l. close to the toe of the landslide. It is 

composed entirely of loose, reddish brown clayey soils, representing debris mobilized during the 

2001 landslide events. This conclusion is draw from the fact that the bottom of the pit is marked 

by the presence of a floor layer made up of Portland cement, indicative of former human activity, 

which was buried under the debris. This observation implies that the thickness of the debris at 

this location was at least 2.4 m. Measured index properties also do not show any visible trends. 

This can be accounted for by the fact that the soils are a jumbled mixture of material moved 

down the slope by sliding.   

Characteristic grain size distribution patterns of these soils are presented in Figure 3.9. It is 

observed that soils from Pit 4 located at the base of the slope, are dominated by the clay fraction. 

As one moves upslope, the sand concentrations increase with peak values recorded in Pit 2. This 

is an indication that the veneer of soil initially present on the slope has been moved down the 

slope to expose a new surface to the agents of weathering. In addition, the sand fraction increases 

with depth suggesting the presence of a more permeable layer underneath a less permeable 

clayey horizon.  

 

Fig. 3. 8. Grain size distribution of samples from Pits 2, 3 and 4 at Mabeta. Note the dominance of 

the silt fraction and a progressive increase in the sand fraction with depth in Pit 2. 
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Fig. 3. 9. Cross sectional view of the Mabeta slide showing the nature of associated soil profiles: a) longitudinal 

section;  b) profile described from Pit 2; c) profile of Pit 3; d) profile of Pit 4.  
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3.4.1.3     Profiles 5 and 6, Makuka 

Profiles 5 and 6 are described from Pits 5 and 6 dug in a translational slide at Makuka (Figure 

3.10).  

 

Fig. 3. 10. Sketch of Makuka slide showing the location of sampling pits. Diagram not drawn 

to scale. 

These soils are principally silt dominated though large boulders were observed within slide 

debris. Profile 5 (Fig. 3.11) is only 2.4 m deep because the bottom was too stony and digging 

was impossible. It is located 10 m away from the main scarp. From 0 to 20 cm the profile is 

characterized by a dark humus layer below which lies a 30 cm thick purplish to gray clayey 

layer. At depths greater than 50 cm, yellowish brown soils which are wet, sticky, and silty with 

rounded basaltic blocks showing characteristic onion-skin weathering. Onion-skin weathering 

(exfoliation) is initiated by the presence of dense fractures that favour differential weathering 

commonly observed in the study area. The blocks range in diameter from a few mm to over 40 

cm. However, within the slide debris, blocks of more than 1 m were observed. The index 

properties of the two horizons observed are shown on Figure 3.11.  

 

Profile 6 describes a 4 m deep pit that shows remarkable variations in colour, texture and 

composition with depth (Fig. 3.12). It is located about 30 m down slope from Pit 5 (Fig. 3.10).  
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Fig. 3. 11. Geotechnical profile of Pit 5 at Makuka. 

 

The profile is topped by 30 cm thick loose purplish horizon probably representing a humus layer 

underlain by a 50 cm thick light olive brown clayey layer with Gs 2.82 g/cm³, γd 1.34 g/cm³ and 

γ
 
1.96 g/cm³. Underneath,  a 70 cm thick pale olive (5Y6/4) silty horizon occurs with a Gs of 

2.89 g/cm³ and γ of 1.85 g/cm³ that slowly transgresses towards a gray (2.5Y6/1) stony and 

fractured layer with clays sandwiched in between the joints. This material has a Gs of 2.93 g/cm³ 

and a bulk density of 2.20 g/cm³. The bottom of the pit is made up of a gray (10YR6/1) stony 

saprolite which still exhibits the textural characteristics of the parent rock. The parent rock is a 

dark, dense porphyritic basalt with a bulk density of 2.82 g/cm³.  Porosity, Ac and Atteberg‟s 

limit of these horizons are presented on Table 3.1 and Figure 3.12. 
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Fig. 3. 12. Profile of Pit 6 at Makuka with associated index properties. 

. 

The clay fraction, PL and LL values decrease down the profile, whereas the silt fraction shows 

an increase. Porosity decreases with depth. However, observed fracturing may enhance surface 

water infiltration at depth. Profiles 5 and 6 are characterised by low plasticity index values, 

hence can change rapidly from plastic to viscous behaviour. 

Grain size distribution patterns of the soils sampled at Makuka are shown on Figure 3.13. Note 

the dominance of the silt fraction.  
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Fig. 3. 13. Grain size distribution curve for samples collected at Makuka Pits 5 and 6. Note the 

abundance of the silt fraction and low clay and sand concentrations. 

3.5  Textural classification and its significance 

Grain size distribution plots on the United States Department of Agriculture (USDA) textural 

triangle indicate that samples P1S03, P2S06, P3S08, P3S09 are clay, P3S07 and P4S10 silty 

clay, P1S02 and P6S20 silty clay loam, P2S05, P4S13 and P5S14 clay loam,  P6S19 loam, 

P1S01, P5S15, P6S17 and P6S18 silt loam, P4S11 sandy loam and P4S12 sandy clay loam (Fig. 

3.14). The soils are silt rich and are thus fine enough to inhibit fast internal water movement and 

coarse enough to inhibit rapid and fast capillary build up, while simultaneously displaying some 

cohesion.  

Measured plasticity indices (i.e. the water content range over which the soils remain plastic) for 

most of the samples is medium based on Casagrande‟s plasticity chart, despite the high clay 

content and the corresponding high natural moisture content. This suggests that samples can still 

absorb appreciable moisture before they pass the liquid limit and liquefy. 77 % of the samples 

analysed in this study have PI values greater than 15. According to Gratchev et al. (2006), soils 

with a PI >15 are non liquefiable. 
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Fig. 3. 14. Textural classification of samples using the USDA textural triangle.  

Atterberg‟s limits were plotted on a Casagrande plasticity chart which is a plot of plasticity index 

against liquid limit (Fig. 3.15). All the samples plot below the A-line (an empirical boundary that 

separates inorganic clays from silt and organic soils). Adopting the Unified Soil Classification 

Scheme (USCS), 77 % of the samples are classified as inorganic silts of high plasticity (MH) and 

23 % as inorganic silt of medium plasticity (MI). According to Vaughan (1988) and Rao (1995), 

tropical residual soils rich in allophane, kaolinite and halloysite are stable and are characterised 

by excellent geotechnical properties even though they plot below the A-line in the MH field. 

However, it is worth noting that sedimentary soils that plot in this field tend to have low 

engineering properties. 

Scattered plots of LL, PL and PI against the total clay fraction per sample (Fig. 3.17) show that a 

slight positive correlation exists between LL and clay fraction, PL and the amount of clay 

particles present, with R
2
 values of 0.57 and 0.67, respectively. A low R

2
 value is found for the 

relationship between PI and the clay fraction present. Similar observations were noted by Croney 

& Croney (1997). 
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Fig. 3. 15. USCS classification of samples based on Casagrande's (1948) plasticity 
chart. CL, CI, CH: inorganic clay of low, intermediate and high plasticity, 

respectively; ML, MI and MH inorganic silt of low, moderate, and high plasticity, OI, 

OH organic clays of intermediate and high plasticity respectively.   

      

              
Fig. 3. 16. Relationship between clay content and Atterberg‟s limits of the soils: a) Liquid Limit 

(LL);   b) Plastic Limit (PL); c) Plasticity Index (PI). Note the positive correlation between PL and 

LL and the clay fraction and the absence of a clear correlation between PI and clay fraction.  

a b 

c 
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 These suggest that the range of water content over which the sample is behaving plastically 

(between PL and LL) is not dependent on the proportion of clay present but rather on the type 

(mineralogy) of clay or on the combined effect of all the clay mineral species present within the 

sample. Contribution from organic matter cannot be ruled out either. 

 

LOI obtained for the soil samples range from 7.4 to 15.2 %.  Pits 1, 2, 5 and 6 show a decreasing 

LOI pattern with depth while Pits 3 and 4 show irregular patterns. The decreasing pattern is 

associated with decreased weathering intensity whereas the irregular pattern observed in  Pit 3 

and 4 can be accounted for by the fact that they represent reworked material.  

The plasticity index was plotted against the proportion of clay fraction in each sample (%) on the 

modified activity chart that classifies the swelling – shrinkage potential of the samples (Williams 

& Donaldson, 1980). The samples show a widely dispersed swelling – shrinkage potential, 

ranging from low to high with ca. 67 % of the samples in the low and medium (Fig. 3.17) 

categories.  This suggests that the clays present are non-swelling to swelling clays.  

 

Fig. 3. 17. Modified activity chart, i.e. a plot of the plasticity index against the 

amount of clay size particle (Williams & Donaldson, 1980), characterising the 

swelling-shrinkage potential of the samples. 

Soils with an activity coefficient between 0.75 and 1.25 are described as normal clays 

(Skempton, 1953). In this case, it is assumed that the plasticity index is directly proportional to 

the amount of clay size particles present. When AC is less than 0.75, the material is considered 

inactive. When AC is greater than 1.25, the material is considered active. Calculated AC values 
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suggest that 47 % of the samples are normal clays, 41 % inactive clays and 2 % active clays. The 

activity coefficient can also act as a finger print to the mineralogy of the soils. For sedimentary 

clays, an AC between 0.4 and 0.5 indicates the presence of muscovite, 0.5 to 0.75 kaolinite, 0.75 

- 1.25 illite and > 1.25 smectite. It is observed that calculated AC values for  Pit 2 show a 

downward increasing trend whereas that for the other pits show no clear cut patterns. The 

downward increasing trend might suggest the presence of poor drainage conditions that might 

enhance the production of some amount of swelling clays. In addition, all the samples from the 

pits dug into debris generated from the 2001 slides at Mabeta (Pits 3 and 4) are characterised by 

relatively low AC values. Pits dug into material that has not yet been mobilized, have AC values 

greater than 1.25 (Fig. 3.18). 

   

Fig. 3. 18. Activity coefficient calculated for soil samples analysed in this study: a) plots of AC versus clay 

fraction. Note decreasing activity with increasing clay content; b) activity of sample most AC values are below 

1.25.  

A very close relationship exists between the position at which Atterberg‟s limits plot on a 

plasticity chart and clay mineralogy composition of a soil (Terzaghi et al., 1996; Ohlmacher, 

2004). In this study, the Plasticity Index for each sample is plotted on a plasticity chart, which 

contains montmorillonite, halloysite and allophane fields (Fig. 3.19). These plots indicate that all 

the samples fall within the field of volcanic ash soil (Andosol) with strong allophane influence. 

However, mineralogical analysis by X-ray diffraction indicates that the soils are composed of a 

mixture of swelling and non-swelling clays. Details about the mineralogy of soils samples are 

given in the next chapter.  
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Fig.  3. 19. Plasticity index against liquid limit on a plasticity chart showing the 

relationship between Atterberg‟s limits and clay mineralogical composition of 

the analysed samples. 

3.6   Shear strength parameters and their significance 

Soil strength parameters (cohesion, residual and effective angle of internal friction) measured in 

the laboratory from undrained triaxial tests, and permeability measured on two reconstructed 

samples are given in Table 3.2.  

Geotechnical property Degraded  

Pyroclastic cone 
P2S07 and P2S08  

Weathered basaltic flow 

P6S19 and P6S20 

Apparent cohesion (kPa) (total stress) 71.0 102.0 

Residual frictional angle (°) 22 18.5 

Effective angle of internal friction (°)  34.8 34.2 

Effective cohesion  (kPa) 42.0 67.9 

Permeability (m/s) 3.62 x10-10 6.90 x10-10 

 

Table 3. 2. Shear strength parameters and permeability values of  reconstructed soil samples obtained 

from  landslide scars on the SE foot-slopes of MC. 

There are significant variations in these properties between soils developed on pyroclastic 

material and those derived from basaltic lava flows. Woldearegay et al. (2006) obtained cohesion 

values of 5 to 32 kPa and effective frictional angles of 16 to 28° for weathered basalt in Ethiopia. 

In this case, the cohesion is higher on both types of soils. However, the values fall in the range of 

values obtained for basaltic parent material by Barton (1973) and Hoek & Bray (1977). In 

addition, relative undrained shear strength measured in situ with a Torvane meter are similar to 
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those calculated in the laboratory for the pyroclastic samples but are significantly lower than 

laboratory results obtained from those in the lava flows. These variations can be explained by the 

fact that the profile at Makuka was stony and non homogenous whereas Torvane record works 

well in homogenous clay horizons. Shear strength values are affected by factors such as loading, 

progressive failure, orientation of the failure plane, pore water migration during testing and the 

moisture content of the soils while the Torvane meter does not account for any of the above 

variables. Because of these variations, we use laboratory calculated results for further analysis 

hereafter.  

Relative undrained shear strength values measured in the field are  presented on Figure 3.20. It 

was observed for most of the samples that the shear strength increases progressively to a depth of 

8-120 cm. At greater depth, the shear strength shows very irregular patterns but strength at depth 

> 200 cm is systematically lower than the maximum strength obtained in the first 120 cm. 

  

Fig. 3. 20. Relative undrained shear strength measured with a Torvane meter. Values measured on: a) 
soil profiles developed from weathered basaltic lava flow; b) soils developed on pyroclastic material. 

From laboratory determinations, the soil samples are characterised by high effective cohesion, 

high effective angle of internal friction and permeability low. The static factor of safety (ratio of 

forces that tend to resist down slope movement and those that drive down slope movement of 
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slope materials) for these slopes calculated based on the standard infinite slope stability model 

considering that the slip surface is parallel to the ground and neglecting the effect of vegetation is 

greater than 1. The following equation was used. 
tan

tan

tan

tan

sin

wm

H

C
FS  

where FS is factor of safety, C the effective cohesion (kPa), γ the total unit weight of the soil (KN/m3), H is the 

thickness of the sliding mass (m), β  the slope gradient, γw unit weight of water (kN/m3), m the height of water table, 

and the internal friction angle of the soil (º).  

The first term accounts for the resistance due to cohesion, and is the only one to be sensitive to 

variations in the thickness of the sliding layer H. The second term represents the resistance 

related to the internal friction angle and the third term accounts for static effect of water 

saturation.   

Generally, all slope exist in one of the three stability stages: stable, marginally stable and 

unstable (Crozier, 1986) as shown on the Figure 3.21 and provide a frame work in understanding 

landslide causal factors. Stable slopes are those where the margin of stability is sufficiently high 

to withstand all destabilizing forces. Marginally stable slopes are those which will fail at some 

time in response to the destabilizing forces attaining a certain level of activity. Finally, actively 

unstable slopes are those in which destabilizing forces produce continuous or intermittent 

movement 

   

Fig. 3. 21. Probability distribution curve for the factor of safety adapted from Popecus (http://www.geoengineer.org) 
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Calculated values of the factor of safety, therefore, is a simple and clear means of distinguishing 

between stable and unstable slope. When Fs < 1 slop is unstable, 1 < Fs < 2 slope is marginally 

stable and Fs > 2 the slope is stable.  

Figure 3.22 illustrates that high FS (>>1) values are obtained from the considered slope 

assuming that the thickness of the sliding mass is 5 and 3 m (means soil thicknesses measured at 

the main scarp of landslide scars) for pyroclastics and weathered lava flows, respectively. From 

these graphs, and taking the worst case scenario of fully saturated soils where stability is 

controlled by bulk density, cohesion, angle of internal friction, slope angle, depth to solid rock 

and pore water pressure slopes on pyroclastic materials with gradient between 22° and 40° will 

be marginally stable, whereas those with gradient above 40° will be unstable. On the other hand, 

slope composed of weathered lava flows with gradient between 38 and 80 will be marginally 

stable and liable to fail in the presence of external factors while slopes greater than 80° will be 

unstable. These results suggest that the pyroclastic cone are more susceptible to failure than the 

lava flows which is in agreement with field observations.  

   

Fig. 3. 22. Variation in calculated factor of safety with slope gradient for a completely dry soil and fully saturated 

soil assuming a) cohesion to be 42 kPa, frictional angle 34.8° and h 5 m (pyroclastic deposits)  b) cohesion 67.9 kPa, 

frictional angle 34.2° and h 3 m (lava flows deposits) for slope failure on the foot slopes of Mt Cameroon.  

Keeping all parameters constant, i.e. cohesion 42 kPa and frictional angle 34.8°, and varying soil 

thickness from 1 to 10 m, it is observed that the slopes on weathered pyroclastic cones which are 

generally between 35° and 40°, will become quasi stable when the thickness of the sliding slab is 

more than 4 m and completely unstable above 6 m (Fig. 3.23). For weathered lava flows, with 
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cohesion 67.9 kPa and frictional angle 34.2°, slopes between 25° and 35° on which most of the 

slides were observed will be marginally stable when the thickness of the sliding layer is above 6 

m, and become completely unstable when the soil thickness develops to more than 10 m (Fig. 

3.24). 

 

Fig. 3. 23. Calculated factor of safety assuming cohesion to be 42 kPa and 

effective angle of internal friction 34.8° on variable slope with variable thickness 

of the sliding layer. 

 

Fig. 3. 24. Calculated factor of safety assuming cohesion to be 67.9 kPa 

and effective angle of internal friction of 34.2° for weathered lava flow 

deposits on variable slope with variable thickness of the sliding layer. 
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Most of the slides observed in the field were recorded on slopes with gradients between 22° and 

38° for natural slopes on basaltic flows and up to 40° on the pyroclastic materials. Slides on 

higher slopes were associated with human intervention. From the calculated factors of safety, it 

is evident that failure on these slopes is attributable to another mechanism than simple loading. 

Considering that the depth of the soil column measured at the main scarp of the Makuka slide 

was 3 m on a 26° slope, and  6 m on a 33° slope at Mabeta, their corresponding factor of safety 

are 1.2 and 4.45  respectively, which is greater  larger than 1 and thus will be marginally stable 

and stable, respectively.  However, because they failed, it is postulated that failure was caused by 

another mechanism than pure loading on low strength soils and thus propose that failure should 

be attributed to the presence of fracture permeability, which is readily explained based on field 

evidence that rocks in this area are highly fractured and weathering is not uniform. Through 

fractures located somewhere up slope, water is fed into the underlying more fractured and 

permeable layer (saprolite), where it results in the development of positive pore pressure, forcing 

the overlying clayey soils to move. This process is explained in detail hereafter.  

3.7  Sliding mechanism 

Rainfall is an important triggering factors for landslide occurrence. Rainwater infiltration can 

result in changes in the level of ground water table. It may also result in a decrease in soil matrix 

suction and the development of positive pore pressure, as well as raising soil unit weight and 

thus reducing shear strength in rocks and soils. From measured index properties, the sliding 

mechanisms can be determined. Based on results from the geotechnical properties of the soils, 

two mechanisms have been proposed to explain the sliding mechanism of different landslides on 

the SE foot-slope of MC: the fracture permeability model and the human induced rain triggered 

mechanism.  

3.7.1 Fracture permeability mechanism model 

Assuming that the permeability of soils, irrespective of the parent material, is driven by 

macropores and micropores, soil saturation during rainfall can proceed from two fronts. During 

rainfall events, saturation proceeds from the surface down the profile due the infiltration of 

rainwater through the macro- and micropore network, resulting in the propagation of a 
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downward wetting front. The migration of water through the macropores (fractures) is faster, 

particularly if the fractures are interconnected. Through these fractures, water easily penetrates 

into a more permeable layer overlain by a low permeability clay horizon. The lower permeability 

of the upper clayey soil will instead enhance the generation of surface runoff. Rapid infiltration 

through fractures may facilitate the development of a perched saturated zone in the underlying 

more permeable saprolite, particularly in areas where fracturing and weathering are not uniform. 

Intense and prolonged rainfall may also result in rapid changes in the ground water level creating 

an upward wetting front that is prevented from rising freely by the presence of the overlying 

impermeable layer. This will result in the development of positive pressure in the more 

permeably saprolite that enhances up lift and mobilizes the overlying soil column.   

The lower permeability of the overlaying soils tends to retard infiltration and provide a 

conductive environment for the generation of positive pressure at the soil/saprolite interface 

because of the permeability contrast that inhibits the propagation of pressure dissipation.  One 

can assume that this positive pressure in the silty saprolite develops hydrostatically under the 

level where this layer is saturated. This can cause an uplift pressure on the upper clay soil 

reducing the factor of safety of the slope. Notwithstanding, the amount of pressure required and 

the time it takes for it to build up was not quantified in this study. The downward wetting front 

on the other hand, causes a decrease in matrix suction to the extent that suction may reduce to 

zero, particularly when the two fronts meet and the soil becomes fully saturated and fails. As 

suction decreases, the shear strength also decreases and the soil may end up in failure. A sketch 

of the stages involved in this process is presented in Figure 3.25. 
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Fig. 3. 25. Sketch of the steps and processes involved in the proposed fracture permeability sliding mechanism. 

3.7.2 Human induced, rain triggered mechanism 

Calculated factors of safety indicate that in the absence of external forces, pyroclastic cones are 

always stable. As earlier mentioned, stability comes from the fact that they are formed from the 

deposition of volcanic ejecta such that the particles are laid down at their angle of repose (which 

is defined as the maximum angle to the horizontal at which rocks, soil, or loose material will 

remain without sliding) which is controlled by the degree of grain-grain chaining between 

adjacent highly irregular-shaped particles (Riedel et al., 2003). 

As time goes by, weathering processes set in and will change the properties of the rock. The rock 

may become more porous due to the dissolution of minerals, individual mineral grains are 

weakened and bonding between grains is lost resulting in decreasing shear strength. In addition 

weathering products may be leached and deposited or precipitated within pores or at grain 

boundaries and along fractures, thereby decreasing soil permeability but also creating a cohesion 
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due to cementation by clay particles. Once significantly thick soil columns are generated, plant 

growth also adds weight to the soil, thereby increasing the shear stress on the slopes. On the 

other hand, plants also play an important role in stabilizing the slope as their roots have 

anchoring capabilities that tend to hold the soils in place. Human interference in the form of 

excavation and construction either removes load at the base of the slope, or increases the load by 

construction. Increased load will increase shear stress on the slope and thus exacerbate failure. In 

the event of continuous and intense rainfall say for two to three days in a row, the soil may 

absorb water due to high porosity and low permeability, the soils may absorb water and become 

saturated or result in a change in the natural moisture content. Weight increase and the 

development of positive pore pressure further weaken the slopes. If the rain persists, a perched 

water table may develop and act as a lubricate surface on which the top soil glides in a bid to 

dissipate excess positive pressure and attain a new angle of repose. This mechanism is illustrated 

in Figure 3.25.  

 

Fig. 3. 26. Sketch of the human induced, rain-triggered landslide mechanism observed in Limbe, particularly 

on pyroclastic cones. 
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In the study area, the construction of houses, roads and foot paths, particularly at Unity Quarter, 

Bonjo and Mabeta, involves the excavation of soil and the creation of small terraces. This soil 

removal changes the slope line. Above the terrace, the slope angle is much steeper than the 

particle‟s angle of repose. However, this vertical cutting may remain stable for a while due to a 

strong apparent cohesion. The flattened areas cause water stagnation and increased infiltration. 

The cutting adds stresses on the slope destabilizing the balance between forces that tend to hold 

the soil in place in favour of gravitational forces. In most cases, the excavated material is piled 

up down slope at the end of an individual land parcel. Due to changes in compaction and 

porosity of the excavated debris, the material has a higher potential to absorb large volumes of 

water. It is also worth mentioning here that moist unsaturated soils have a higher angle of repose 

because the surface tension between water and the soil particles tends to hold the material in 

place.  

However, if the rate of infiltration exceeds the rate at which water flows through the debris, the 

liquid limit is reached and even exceeded, resulting in failure because individual particles are 

completely dismembered and grain-grain frictional contact is lost. This situation is further 

aggravated when drainage water is deviated into the excavated debris. This mechanism can be 

used to explain the occurrence of the 2006 slide at Bonduma, and some of the slides recorded at 

Bonjo.  

3.8   Discussion        

The study of rainfall-induced landslide mechanisms is one of the most important and difficult 

issues in landslide research (Hengxing et al., 2003). This is because the engineering, chemical, 

and mineralogical properties of soils are closely related to the mechanical behaviour of soils at 

different moisture concentrations, the stress state and stress history. The soils analysed in this 

study are characterised by high natural moisture content, high particle specific gravity, high 

porosity, high clay and silt fractions, very high cohesion and angles of internal friction, low bulk 

density and low permeability. These observations imply good geotechnical performance of soil 

materials in this region and low susceptibility to failure. According to Sidle (1984), the dynamic 

conditions of pore water pressure built up during different storm events are directly related to 

landslide initiations. Therefore, the low permeability of the soils and fracture-enhanced 
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permeability of the underlying saprolite provides a conducive environment for the development 

of positive pore pressure and slide initiation. These parameter also suggest that the pyroclastic 

materials are more susceptible to failure than the lava flows. Considering that the shear strength 

and permeability was measured on remoulded (disturbed) samples it is possible that the values 

are over or underestimated as such further analysis on undisturbed samples need to be carried out  

for comparison and  comfirmation. 

The granulometry curves differ significantly from the ones of sedimentary soils: they are poorly 

graded (no sedimentation selective classification effect) and made up of a wide range of grains, 

including sand, silt and clay in the same soil. This may result to a specific soil skeleton with a 

grain intrication favouring good mechanical properties if undisturbed. For the same reasons, the 

mechanical behaviour of the residual soils will completely degrade if they become over-

saturated. Grain size distributions and textural classification indicate that most of the samples are 

inorganic silt with high plasticity probably due to the presence of allophane, halloysite and 

kaolinite in the soils accounting for the high liquid limits but low plasticity indices. The presence 

of these clay minerals may induce a strong apparent cohesion, not only due to capillarity effects 

in a wet but unsaturated soil, but also to cementation in relatively dry conditions. 

The average particle specific gravity of soils reported in literature is ca. 2.6 g/cm
3
, with a range 

from 2.4 to 3.6 g/cm
3
 depending on the nature of the mineral constituents (Cernica, 1995). In this 

study the observed Gs is generally higher than the reported mean, ranging from 2.8 to 3.0 g/cm³ 

with mean values of 2.9 + 0.1 g/cm³. These higher values can be attributed to the mafic 

composition of the parent rock rich in iron and magnesium silicates (olivine, pyroxenes) and the 

presence of magnetic minerals (e.g. haematite, magnetite, goethite, titanomagnetite, see Chapter 

4) that are characterized by high specific gravity values and constitute the major opaque mineral 

phases in rocks of the Mount Cameroon region (Suh et al., 2003; Njome et al., 2008). Particle 

specific gravity sometimes referred to as particle density of soils gives us an idea about the 

relative proportion of organic matter and mineral particles present in a soil as well as the 

chemical composition and structure of the soil minerals. 

In literature, most materials from landslide scars plot well above the A-line on a Casagrande 

plasticity chart (Wen et al., 2007; Yalcin, 2007; Kitutu et al., 2009; Azañón et al., 2010), in 
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fields characterized by clays of high and/or medium plasticity based on the USCS classification. 

In this study however, all the samples plot well below the A-line in the field of silt of high and 

moderate plasticity and compressibility (MH and ML). They are characterised by good 

engineering properties, an observation that was also noted by Rouse et al. (1986) for volcanic 

soils in Dominica, West Indies. According to standard guides used in the USCS, MH soils of 

sedimentary origin have poor engineering properties and are considered unsuitable for various 

engineering purposes. On the other hand, Westly & Irfan in Blight (1997) noted that many 

tropical residual soils, rich in allophane, kaolinite and/or halloysite plot in the MH field and soils 

rich in these minerals tend to exhibit very good engineering properties. However, there has not 

been a clear understanding of why this is the case. Nevertheless, these properties can be 

attributed to the dominance of kaolinite and halloysite over 2:1 clay as observed on XRD 

diffraction patterns described in Chapter 4. It can therefore be suggested that another 

classification scheme is required for tropical residual soils or that the classification of residual 

soils using the USCS scheme should be treated with caution. From this study, it is noted that the 

soils have very good engineering properties and will be stable under normal circumstances, thus 

the occurrence of landslides in this area is attributable to the presence of fracture permeability or 

to artificial destabilization by human action. 

Atterberg‟s plastic and liquid limits are widely used parameters for determining the consistency 

of cohesive soils. They provide useful information regarding soil strength, stability, mineralogy, 

state of consolidation of the soil, and the classification of soils into organic or inorganic clays 

(Yalcin, 2007). High plasticity indices in soils can be attributed to the presence of clay minerals 

or the abundance of organic matter content. The plasticity values observed in this study are most 

likely a contribution from the mineralogy of these soils though contributions from organic matter 

cannot be completely ruled out for the surfacial layers because the area is densely vegetated and 

rainfall is intense. The plasticity index of the soils ranges from low to high, with a larger fraction 

showing values above 15 that seem to be non-liquefiable according to Gratchev et al. (2006). 

This probably account for the abundance of slide type failure and rare occurrence of debris flow 

type failure within the study area.  

The LI of all the samples is slightly negative or slightly above zero.  Other studies have shown 

that for remoulded samples when PI is equal to or less than zero the soil is compact, solid and 
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unlikely to fail by flow (Shakoor & Smithmyer, 2005). When LI is greater than 1, the soil is 

liquid because its natural moisture content is greater than the soils liquid limit and thus the soil is 

in an open and non compact state. Excavation or compaction of such slopes is subject to severe 

strength loss. Samples with LI greater than 1 were not observed in this study.  In in situ residual 

soils, weathering might result in a relatively strong porous soil structure that can hold large 

proportions of entrapped water. When these soils are remoulded or disturbed by construction, the 

structure collapses and the water is realised resulting in severe weakening of the soils. The 

samples analysed in this study, therefore, will behave as brittle solids and are unlikely to fail by 

flow type movement unless large amounts of water is added (Shakoor & Smithmyer, 2005). This 

probably accounts for the reduced number of flow type failures observed in the study area. 

According to Campbell in Shakoor & Smithmyer (2005) shallow storm induced slides require 

three conditions to occur: a mantle of colluvial soil, a steep slope and soil moisture equal to or 

greater than the liquid limit of the colluvial soil. These conditions are easily attainable within the 

study area, particularly on the Limbe-Mabeta massif, presumed to be an older volcanic structure 

that is now characterised by thick soil columns due to prolonged weathering relative to the lower 

foot slopes of Mt Cameroon. Sliding is not very rampant because of the mineralogy of the soils.  

In the field, water was observed oozing out at the contact between saprolites and the soil after 

rainfall events, thereby confirming the existence of temporal aquifers. Eyewitness accounts of 

the Mabeta landslide also reported an increase in ground water discharges below foundation of 

some houses prior to the landslide, suggesting the emergence of pressurised ground water. This 

goes ahead to support the fracture permeability mechanism. Furthermore, sections observed 

along road cuts indicate the presence of dense fracturing and non uniform weathering in this 

area. 

3.9  Conclusion 

From the geotechnical point of view, the following conclusions may be drawn: 

 Soils within the Limbe area have good geotechnical properties and will be stable under 

normal and/or natural circumstances but failure may be enhanced by human activities and 

fracture permeability. 

 The good geotechnical properties of the soils in the Limbe area can be a possible 

explanation why large landslides are rare and why the number of landslides is not very 
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rampant as would be expected in other areas characterised by poorer geotechnical 

properties.  

 Index and geotechnical properties of the soils can be used as a fingerprint or a proxy from 

whci the sliding mechanism can be deduced.  

 Based on the present results, two sliding mechanisms have been proposed to explain the 

occurrence of landslides within the area. Sliding can take place through the influence of 

fracture permeability or differential permeability with depth, and/or can be human 

induced and rain triggered. Other conceptual models are also possible for example the 

influence of vegetation change on the extend of soil saturation and sliding might also 

exist, but this needs to be investigated in detail to better constrain the processes involved. 

Like wise the fracture permeability model proposed in this study needs to be tested and to 

establish how much pressure and the duration required for the appropriate amount of 

pressure to develop. 
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Chapter Four 

Mineralogy, chemistry and element distribution in landslide prone-soils 

4.1  Introduction 

Soils contain both primary minerals derived from the solidification of magma and secondary 

minerals produced from the weathering of primary mineral and glass phases. The primary 

minerals can provide insights into the origin/provenance of parent rocks and weathering rates. 

Secondary minerals on the other hand may strongly influence the physical and chemical 

properties of the soil (Harris, 2007), potentially resulting in the swelling of clays or the 

concentration of clays along slip surfaces and ultimately resulting in the occurrence of landslides.  

Weathering thus contributes significantly in the localisation of landslides because it affects the 

engineering properties of the rock and soil by reducing both strength and stability (Vaughan et 

al., 1988). Many researchers have attempted to link specific clay minerals to landslide 

susceptibility (e.g. Shuzui, 2001; Duzgoren-Aydin et al., 2002; Azañón et al., 2010) while others 

associate the occurrence of landslides to the accumulation of clays in relict joints (e.g. Prior & 

Ho, 1972; Parry et al., 2000). It has also been proven that clay mineralogy and chemistry provide 

indicators of potential sliding plane conditions (Shuzui, 2001; Zheng et al., 2002; Wen et al., 

2004; Kitutu et al., 2009). For these reasons, mineralogical and chemical characterisations of 

soils were incorporated in this study to enhance the understanding of the processes at work in the 

landslides. In addition, it offers the potential to gain insight into weathering rates and element 

distribution patterns of some major and trace elements during weathering.  

4.2  Mineralogical characterisation 

Mineralogy controls the sizes, shape and surface characteristics of soil particles. Mineralogical 

interaction with fluid phases determine the geotechnical properties (plasticity, swelling, 

compression and shear strength of soils as well as the hydraulic conductivity) and susceptibility 

of soils to failure. Mineralogical characterisation is thus vital in the understanding of the 

geotechnical performances of soils. Several techniques have been used for the mineralogical 

characterisation of soils such as differential thermal analysis and scanning electron microscopy, 

but X-ray diffraction (XRD) is the technique most heavily relied on in soil mineralogical analysis 
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(Harris, 2007). This technique provides information about the atomic structure of crystalline 

substances and is thus a powerful tool for the identification of minerals in soils particularly 

because clay size particles are too small to allow for the application of standard optical 

crystallographic techniques (Harris, 2007). In this study, 17 bulk samples (10 from the main 

scarp and 7 from the pits described in chapter 3) were collected from landslide scars and some of 

their oriented clay fractions were analysed. Table 4.1 lists the samples on which mineralogical 

analysis was performed. 

Slide No 

/Locality name 

Sampling site 

within the scar  Sample name Colour Description 

1  

Bonjo Main scarp 

SBS – 01# 5Y8/2 Pale yellow 

SBA - 01# 5Y7/3 Pale yellow 

BBS - 01# 2.5Y8/4 Pale yellow 

20  

Bonjo site 2 Main scarp 

BAS – 02# 10YR3/6 Dark yellowish brown 

BSS – 02# 2.5YR4/3 Weak red 

2  

Mandoli Main scarp 

MSS - 03# 5Y7/2 Light gray 

MSD - 03# 2.5Y7/6 Yellow 

13 
Mabeta 

Main scarp 

MHB - 04# 2.5YR3/6 Dark red  

MHC - 04# 7.5YR3/4 Dark brown 

MSS – 04# 

Assumed slip surface 7.5YR4/4 Dark brown 

Pit 4 

P4S11* 7.5YR4/4 Mottled dark brown 

P4S12* 7.5YR4/4 Mottled dark brown 

P4S13* 7.5YR4/4 Mottled dark brown 

12 

 Makuka Pit 6 

P6S17*  Olive  brown 

P6S18* 5Y6/4 Pale olive 

P6S19* 5Y6/4 Gray 

P6S20* 10YR6/1 Gray 

Table  4. 1. Description of samples used for XRD analysis:  # both bulk sample powder and clay fraction were 

analysed, * samples of which only the bulk sample powder was analysed. 

Most of the soils are dark red, reddish brown to light coloured pale yellow silts, clayey silts and 

clay overlying gray to purplish saprolite. Details on morphological descriptions and the physico-

mechanical properties of the soil horizons are given in Chapter 3. Samples were collected from 

several horizons along a vertical channel cut into the walls of the pits or at the head scarp, placed 

in plastic bags for mineralogical and chemical analysis. It is worth mentioning that the humus 

layer was not taken into consideration in this study.  
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Bulk sample powders provide a general picture of the mineral species present in the sample 

while oriented clay fractions are used to identify the clay minerals present. These analysis were 

done at the Laboratory for Soil Science at the Department of Geology and Soil Science, Ghent 

University, Belgium using a Philips X‟PERT SYSTEM with a PW 3710 based diffractometer. 

The diffractometer is equipped with a copper anode (h = 1.54 Å), a secondary graphite beam 

monochromator, a xenon filled detector and a 35 position multiple sample changer. The 

secondary beam section of the diffractogram is made up of a 0.1 mm receiving slit, a soller slit 

and a 1º anti scanner slit. The tube is operated at 40 kV and 30 mA and diffractogram collected 

in a θ, 2θ geometry from 3º to 60º to provide enough X-ray diffraction peaks to identify most 

common minerals present in the soil. Irradiation time is set at 12 mm and incident beams are 

automatically collimated.  

 Sample preparation and analysis 

For the bulk sample analysis, the samples are simply air-dried at room temperature, milled into 

fine powder to minimised the orientation preference and maximised sample representativeness. 

The sample powder is then bombarded with X-rays to obtain the general mineralogical 

composition. For the oriented fractions, samples are air dried and sieved through a stack of 

sieves to obtain the fraction smaller than 63µm. This fraction is then saturated with 2 % sodium 

bicarbonate for at least 8 hours to ensure complete disaggregation of the clay fractions. After 

saturation and disaggregation, NaCl is added to the mixture and allowed to flocculate for another 

8 hours. A small fraction of the supernatant is periodically pipetted out and clays washed by 

centrifugation. The clay fraction is then extracted and oriented by drying aliquots of the 

suspension on glass slides. Prior to XRD analysis, the clay residues are saturated with Mg
2+

 by 

repeated washing with  normal solutions of MgCl (magnesium chloride) and Mg(OAc)2 

(magnesium acetone). Excess of the saturation solution is washed out with acetone and alcohol 

until free of Cl
-
. The Mg-saturated clay slides are later solvated in a vacuum in an atmosphere of 

ethylene glycol. 

It is observed that the diffractogram patterns for the whole samples are characterized by a lot of 

background diffraction. However, they display the general mineralogical characteristics of the 

soil whereas those from the oriented samples show smoother peaks with less background and are 
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used to identify some specific clay minerals present in the sample. Peak areas and d-spacings 

were automatically calculated by a software package attached to the diffractometer and matched 

with those of pure minerals from a computer database by an automatic mineral matching 

function to identify the mineral species present within each sample. These automatically 

generated results were corrected by expert interpretation of the generated peaks and confirmed 

by comparing the calculated d-spacing with those on the Mineral Powder Diffraction File 

compiled by the International Centre for Diffraction Data. The d-spacing is calculated from 

Bragg‟s equation given by                  

             sin2dn      where n = is an integer number 

   λ = wavelength of incident wave 

   Ө = diffraction angle and  

   d = spacing between planes in the atomic lattice 

Peaks at 14 - 15 Å in the Mg-saturated samples that expand to 17.7 - 18.0 Å after glycolation 

were used to identify smectites, 9.9 - 10.1 Å peaks in the Mg-saturated and glycerol solvated 

samples are used to identify illite, 7.1 - 7.2 Å peak in both Mg-saturated and glycolated samples 

represent kaolinite (Moore et al., 1989). 7.3 - 7.4 Å peaks represent dehydrated halloysite, 3.51 

and 1.89 Å peaks represent diffraction peaks for anatase, 4.18 and 2.45 Å represent goethite, 

2.96 – 2.99 Å augite, 2.54 and 1.72 Å ilmenite, and 2.52 Å pyroxene (enstatite). The goal of 

these analyses was to determine the mineralogical composition of the soils from the area affected 

by landslides. These results are presented on Table 4.2. 

4.3  Chemical characterisation 

The engineering behaviour of soils does not only depend on the stress state and history but also 

on the state of weathering. Hence it is essential for engineering geologists to quantify the 

changes that take place during weathering (Ceryan, 2008) which could be expressed as changes 

in the chemistry of the parent material. Weathering indices (an approximation of the degree of 

weathering) represent one of the most widely used ways of quantifying chemical changes in 

rocks. These indices have been used to quantify the engineering properties of regoliths 

(Duzgoren-Aydin et al., 2002) although they mostly provide a better understanding of element 

mobility during weathering. The mobilization and redistribution of elements may follow various 

pathways as different elements are affected differently by various pedogenic processes including 

dissolution of primary minerals, formation of secondary minerals, redox processes, transport of 
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material, and ion exchange (Middleburg et al., 1988). Birkeland (1999) proposed that elements 

released by weathering may or may not be redistributed down-slope as a function of their 

mobility under constant or changing geochemical environments along the slope. Therefore, to 

understand the weathering patterns and the behaviour of geochemical elements during 

weathering within the study area, the chemical composition of 3 fresh rock and 6 soil samples 

was analysed and results are discussed in detail here below.   

The distribution and mobility of major and some trace elements within the study area was 

assessed from three locations, Bonjo, Mabeta New Layout and Makuka, respectively from Pits 1, 

2 and 6 described in Chapter 3. Because the pits did not reach the bedrock, fresh rock samples 

were collected from outcrops located at the lower reaches of the scars, along the banks of 

streams, or from fresh rock fragments observed within the slide debris.  

Whole rock (WR) major and trace element composition was determined by Inductively Coupled 

Plasma - Optical Emission Spectroscopy (ICP-OES) at Ghent University, using the equipment 

housed at the Department of Analytical Chemistry. Soil samples were dried overnight at 40 ºC 

while rock samples were sawed to obtain fresh pieces and crushed into finer fragments with a 

jaw crusher. Crushed rocks and soil samples were pulverized in an agate ball mill. About 4 g of 

each powder was dried at 105 °C and Loss on ignition (LOI) was determined by heating at 850 

°C for two hours. After LOI determination, ~ 0.2 g of the sample was homogenised and fused 

with 1 g of 50/50 lithiummeta-/-tetraborate flux (AccuSpec Ultrapure) with a sample/flux ratio of 

1:5 in high purity graphite crucibles. The resulting glass was dissolved in 2 % HNO3 for analysis 

with a Spectro Arcos ICP-OES (for Al, Ca, Fe, K, Mg, Na, P, Mn, Ti, Si and selected trace 

elements: Ba, Sr, Zr, V, Cr, Ni, Ce, Y, Sc and Co). Calibration lines were produced by analysis 

of rock standards, dissolved following the same procedure. BHVO-2,  AGV-2, QLO-1, GSP-2, 

from the USGS (US Geological Survey), JSy-1, JB-2, from the Japanese Geological Survey, and 

NIM-L  from Mintek, South Africa were used as standards. Calibration lines were produced by 

analysis of rock standards, dissolved following the same procedure. Care was taken that the rock 

standards bracketed the elemental composition of the unknowns. Accuracy of the analysis was 

monitored by the analysis of secondary rock standards, different from those used for the 

calibration line. Major elements are accurate within 2 % relative. The accuracy for trace elements 

above 10 ppm is better than 10 %. 
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Chemical transformation and element losses and gains that accompany physical breakdown of 

the parent rock into soils was quantified by parent normalisation, that is, the ratio of elemental 

concentration of the soils and saprolites to their concentration in the fresh rock. Parent 

normalisation is based on the following assumptions: 

1. The system is open and all elements are mobile.  

2. The fresh rock sample can be taken as a reference and  

3. Relative enrichment of a certain element is calculated by normalizing the concentration 

of the element within the soils and saprolites to that in the parent rock. If the normalized 

value is greater than 1, the element is enriched, if it is less than 1 it is depleted.   

The chemical mass balance model proposed by Brimhall et al. (1985) and Brimhall & Dietrich 

(1987) was not applicable in this case because all the elements analysed for in this study were 

mobile. Instead, the density of the samples was used as a proxy to the degree of weathering 

assuming that the soils formed by isovolumetric processes. Percentage changes were calculated 

according to the following relation (Millot & Boniface, 1955) 

Mass losses   1001
.

.
%

pp

ww

C

C
change  

 where C is the concentration of any element, γ is the bulk density while w and p represent the 

weathered and parent rock, respectively. 

The Magnesium number (Mg#), given by: 

FeOMgO

MgO
Mg

100
#  

with FeO calculated as 0.9 x Fe2O3* (Fe2O3* total iron ), was determined and used to estimate 

the degree of evolution of the magmas that produced the various parent rock types. It is worth 

noting that Mg# is calculated on a molecular basis.  
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Weathering indices such as the Chemical Index of Alteration CIA, the Vogt Residual Index, and 

the silica/alumina ratio (Ruxton ratio) given by the following equations were calculated to 

estimate the extent of weathering within the profiles. 

OKONaCaOOAl

OAl
CIA

2232

32100             Nesbitt & Young (1982) 

ONaCaOMgO

OKOAl
V

2

232100     Vogt (1927) 

32

2ratioRuxton 
OAl

SiO
     Ruxton (1968)  

The calculation of these indices is done on the molecular proportion of the metal oxides based on 

the assumption that the distribution of chemical elements along the profile is mainly regulated by 

the degree of weathering (Duzgoren-Aydin et al., 2006). 

4.4  Results 

4.4.1 X-ray diffraction 

Bulk mineralogical compositions of the samples analysed in this study are given in Table 4.1.  

Examples of some of these diffractograms are given in Figures 4.1 to 4.6. Diffractograms from 

samples MSS-03 and MSD-03 from horizon B and C at Mandoli, P2S11, P2S12, and P2S13 

from Mabeta New Layout are not discussed in this section due to their similarity with described 

diffraction patterns but are included in Appendix 5. Their mineralogy is also summarised in 

Table 4.1 below.  

The Mg saturated clay fraction from Bonjo shows the presence of four dominant peaks: at 15 Å, 

9.9 Å, 7.2 Å and 5.6 Å, with a minor peak at 3.6 Å for samples above, on and below the slip 

surface. Two extra peaks at 3.25 Å and 2.17 Å appear for the sample below the slide surface. 

After glycolation, the 15 Å peak shifts to a higher angle of ~17.2 Å indicating the presence of 

smectites. The 7.2 Å peak indicates the presence of kaolinite or dehydrated halloysite since the 

peak does not move to a higher value after glycolation. The 9.9 Å peak can be interpreted as a 

second order peak of smectite because it only appears after glycolation. A very low intensity 

goethite peak at 4.1 Å is also noted. 
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Table 4. 2. Mineralogical composition of bulk samples and oriented clay fractions: X = mineral present, - mineral absent, ? = presence of mineral inferred. 

Colour  characteristics were determined from Munsell soil classification.  SBA-01, BSS-02, BBS-03 represent soil samples from Pit 1 at Bonjo, BAS-02, BSS-

02 are samples from the B and C horizons of an older slide at Bonjo, MSS-03, and MSD-03 from B and C horizon at Mandoli, MH- 04, MHC-04, MSS -04, for 

samples from the B, C and presumed slide surface at Mabeta New Layout,  P2S011, P2S12, P2S13 from Pit 2 at Mabeta New Layout, and P6S17, P6S18, P6S19 

and P6S20 from Makuka. 

Sample name 
SBA- 

 01 

BSS 

-01 

BBS 

- 03 

BAS  

– 02 

BSS  

- 02 

MSS 

 - 03 

MSD  

- 03 

MHB 

-04 

MHC 

-04 

MSS 

-04 

P2 

S11 

P2 

S12 

P2 

S13 

P6 

S17 

P6 

S18 

P6 

S19 

P6 

S20 

Description 
Pale  
yellow 

Pale  
yellow 

Pale  
yellow 

Dark 
yellowish  
brown 

Weak 
Red 

Light 
 gray 

Yellow 
Dark 
 red  

Dark 
brown 

Dark  
brown 

Dark  
brown 

Dark  
brown 

Dark  
brown 

Olive 
brown 

Pale 
olive 

Gray Gray 

Moist Colour 
5Y  
8/2 

5Y  
7/3 

2.5Y 
 8/4 

10YR  
3/6 

2.5Y
R  

4/3 

5Y  
7/2 

2.5Y 
 7/6 

2.5Y
R  

3/6 

7.5Y
R  

3/4 

7.5Y
R  

4/4 

7.5Y
R 4/4 

7.5Y
R 4/4 

7.5Y
R 4/4 

 
5Y 
6/4 

5Y  
6/4 

10Y
R 

6/1 

Magnetite - - - - - X - X X X X X X X X X X 

Goethite - X X X X X X X X - - - - X X X X 

Ilmenite X - X - X X X X X - - - - X X X X 

Hematite - X - - X - - X - - X X X - - - - 

Plagioclase/ 

Feldspar 
X  X ? ? X  X - - - - - X X X X 

Olivine - - - - - - - - X - - - -    X 

Smectite X X X X X X X - - X - - - X X X X 

Halloysite/  

dehydrated 

halloysite 

X X X X X X X X - X X X X X X X X 

Kaolinite - X X X - X X X - X - - - X ? ? X 

Sanidine X X X - - X - - - - - - - X X X X 

Anatase X X - X X - - - ? - - - - X X X X 

Pyroxene  X - - - - - X ? - - X X - - - - 

Mica - - - - - - - - X X X X X X X X X 
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The sample above the slip surface shows a slightly more intense non-swelling clay peak at 7.2 Å 

relative to the swelling clays while that from the slip surface show a more intense smectite peaks. 

Samples below the slip surface show almost an equal proportion of swelling and non-swelling 

clay peaks as seen in Figure 4.1 

 

 

a 

b 
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Fig. 4. 1. X-ray diffraction patterns of oriented clay fractions of the 2005 

landslide at Bonjo after Mg2 saturation and glycolation: a) from above the 

slide surface, b) on the slip surface and c) below the slip surface Sm: 

smectite, K: kaolinite; Ha: halloysite; G: goethite and F: feldspars 

It is also observed that the intensity of these peaks decreases down the profile suggesting a 

decrease in the amount of clay minerals as one moves down the profile. This is contradictory to 

grain size data described in Chapter 3 where an observed increase in the clay size fraction with 

depth was observed. Whole sample powders indicate the presence of sanidine (6.50 Å, 3.7, 3.46, 

3.30, 3.2 Å, 1.7 Å), anatase (3.51 - 3.53 Å, 1.89 Å), augite (3.2 Å), in addition to the above 

mentioned clay minerals. The abundance of the clay minerals decreases down this profile with 

maximum values observed in the samples above the slip surface:  and minimum intensities below 

the slip zone diffractograms indicate that clay mineralogy shows no fluctuation with depth. It is 

observed that the intensity of the peaks of non-clay minerals increases down the profile with 

maximum intensities for sanidine observed in the samples below the slip surface (Fig. 4.2). 

c 
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Fig. 4. 2. X-ray diffraction patterns of random soil powders of the 2005 

landslide at Bonjo: a) from above the slide surface; b) on the slip surface and 

c) below the slip surface. 

b 

a 
Sm - Smectite (swelling clay) 

K – Kaolinite / halloysite (non-swelling clay) 

I - Illite 

G - Goethite 

Au - Augite 

Sa - Sanidine 

He – Hematite 
 

c 
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Oriented clay fractions prepared from samples BAS-02 and BSS 02 from two horizons at the 

head scarp of an older slide (Slide 20 in the inventory) at Bonjo suggest the dominance of 

smectite (swelling clays) evidenced by the presence of a very pronounced peak at 12.5 Å which 

expands to 16.7 Å after glycolation. Relatively lower intensity peaks occur at 7.20 Å, 4.4 Å, 4.16 

Å, 3.58 Å and 3.10 Å for the magnesium treated samples, representing kaolinite, halloysite and 

goethite, respectively. After glycolation, the 7.2 Å peak degenerates, producing peaks at 8.45 Å 

(a second order reflection peak of smectite) and 7.20 Å, both with lower intensities. This implies 

that the peak at 7.2 Å before glycolation was a contribution from smectites and kaolinite. The 

peak at 5.64 Å after glycolation is the third order reflection peak of the smectite (Fig. 4.3b, c). 

These patterns indicate the dominance of swelling clays over non-swelling clays in this profile. 

There is no visible difference in the mineralogy at both horizons. 

 

Fig. 4. 3. a)  Picture of the head scarp. X-ray diffraction patterns of oriented clay fractions of slide 22 at 

Bonjo after Mg2+ saturation and glycolation: b) from B horizon and c) from the C horizon. Note the high 

intensity peak of the swelling clay minerals and visible colour and textural variation between the horizons.  
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In the Mabeta area, soils were collected from the main scarp based on observable differences in 

colour and texture (MHB-04, MHC-04 from the B and C horizons) and an assumed sliding plane 

(MSS 04). The clay fraction from this profile shows low intensity peaks at 7.3 Å after treatment 

with Mg and glycolation, indicative of kaolinite and/or dehydrated halloysite. After glycolation, 

a low intensity peak between 16.7 - 17.0 Å is observed in all the samples suggesting the presence 

of minor amounts of smectites. From the diffractograms (Fig. 4.4), it is clear that the amount of 

clay minerals is minimal and that there are no obvious differences in the mineralogical 

composition of the soil in the different horizons. 

 

Fig. 4.  4. X-ray diffraction patterns of Mg saturated and glycolated oriented clay fractions of soils from: a) the B 

horizon: b) the C horizon and c) slip surface at Mabeta New Layout. No dominant clay minerals are observed except  

for minor kaolinite peaks. 

a 

b 

c 

C 

B 

Sm - smectite (swelling clay) 

K- Kaolinite 

Ha - Halloysite (non-swelling clay) 

G - Goethite 
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As on ones descends to the B horizon an indistinct Sm peak is observed which becomes even 

more prominent in the sample collected from the assumed slip surface. XRD patterns for the bulk 

soil powders (Fig. 4.5) indicate the presence of dehydrated halloysite and/or  hydrated halloysite 

(4.48 Å), goethite (4.15 Å), magnetite (2.96 Å), augite (2.18 Å), hematite (2.69 Å, 2.57 Å) and 

ilmenite (1.72 Å). Magnetite (1.61 Å, 1.48 Å) and a very low dehydrated halloysite (7.33 Å, 3.56 

Å) peak are observed in the C horizon (Table 4.1, Fig. 4.5).   

   

Fig. 4. 5. X-ray diffraction patterns for sample powders from a pyroclastic cone at Mabeta New Layout: a) field 
location of sampling point at head scarp: b) sample form B horizon: c), sample from C horizon: d) sample from 

assumed slip surface. Note the abundance of non-clay mineral with preference to iron bearing minerals in all 

samples of this profile. 

d 

b 

c 

K C 

B 

 
Sm - smectite (swelling clay) 

K – Kaolinite/ Halloysite (non-swelling clay) 

G – Goethite 

Au – Augite 

He – Hematite 

Il – Ilmenite 

Mg – Magnetite 

En - Entatite  
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Goethite and magnetite identified in this profile were also reported by Ngole et al. (2007). They 

also reported the presence of anatase which was not observed in this study. The diffraction 

patterns indicate that there are no obvious differences in the mineralogy of the samples down the 

profile. Most of the other sample analysed show similar patterns with the Bonjo and Mabeta 

samples. Bulk samples from Pit 2 dug into the same scar at Mabeta show similarities in their 

mineralogical pattern to the clays from the C horizon; thus, the clay fraction was not analysed.  

Diffraction patterns from the slide at Makuka are shown in Figure 4.6. There is no significant 

difference in the diffraction patterns with depth. Dominant minerals include feldspars (sanidine) 

and halloysite with minor amounts of 2:1 clays, mica, goethite, and magnetite. 

 

 

 

 

a 

b 
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Fig.  4.  6. Diffraction patterns of bulk sample powders from Pit 6 at Makuka: a) P6S17; 

b) P6S18; c) P6S19 and d) P6S20. Note increasing intensity of non-clay mineral notably 

feldspars (sanidine) with depth.  Sm:  2:1 clays; M: Mica; Ha: halloysite; G: goethite; F: 

feldspar; Sa: Sanidine; Mg: magnetite. 

Photomicrographs of the sand fraction from the Mabeta slide (from the pits described in Chapter 

3) reveal the presence of vesicular rock fragments with high amounts of shiny black magnetic 

minerals, dominantly magnetite and hematite, as well as visible olivine (Fig. 4.7).The 

          c 

d 
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micrographs, X-ray diffraction patterns and grain-size analysis suggest that the breakdown of the 

pyroclastic material in the Mabeta region and in the Limbe area in general results in the 

formation of clay sized particles with little or no sheet-like silicates or clay minerals. 

 

   

    

Fig. 4.  7. Photomicrographs of the sand fraction of soils derived from the weathering of pyroclastic material from 
the landslide scar at Mabeta. Note the abundance of opaque minerals and vesicular rock fragments with little or no 

feldspars. RF: rock fragment; O: olivine; M: magnetic minerals 

    

Micrographs from the soils developed on lava flows are characterised by the presence of white, 

fractured sub-angular minerals (plagioclase), yellowish secondary mineral phases (goethite) and 

partially weathered basaltic rock fragments (Fig.4.8).  
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Fig. 4. 8. Photomicrographs of the sand fraction of soils developed on weathered lava flows: a, b, c and d are 

samples from Bonjo Pit 1; e from Pit 6, f from slide 6 in the inventory (Makuka, Fig 2.7b). Note the abundance of 

secondary minerals (goethite) in the Bonjo sample. Also visible are variable proportions of whitish minerals 

(plagioclase) within the samples. Plagioclase crystals are fractured and stained brown or pinkish. Rock fragments are 

devoid of vesicles relative to the samples from the pyroclastic cone. 

4.4.2 Element distribution patterns 

Results of WR chemistry for the rocks and soil samples are given in Table 4.2. These results are 

also graphically presented in Figure 4.9. HR represents fresh rock from the various profiles. The 

major and trace element concentrations display significant variations with depth in all three 

profiles. Notable values include near constant concentrations of SiO2 and TiO2, systematic 

enrichment in Al2O3 and Fe2O3
* 
(Total Iron) and depletion of alkali and alkali earth metal oxides 

notably Ca and Sr. 
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 Bonjo (slide 1) Mabeta (slide 13)  Makuka (Slide 39) Lava from MC 

Sample 

number P1S02 P1S03 HR1 P2S11 P2S12 HR2 P6S17 P6S20 HR3 

MC* 

1959 

MC* 

1982 

MC* 

1999 

MC* 

2000 

Depth 

(cm) 80 200  160 290  50 290  

    

Major element concentration (wt %)     

SiO2 37.94 42.95 45.05 38.72 38.31 44.60 40.46 38.01 47.11 46.58 44.71 46.47 45.99 

TiO2 3.96 5.14 3.23 4.39 3.95 2.95 5.19 4.44 3.26 3.24 3.50 3.21 3.15 

Al2O3 26.57 19.18 13.97 17.58 15.46 11.72 20.84 24.94 16.11 16.31 15.21 15.75 15.17 

Fe2O3* 18.68 20.81 12.87 21.40 22.04 13.18 17.82 18.29 11.18 10.94 12.84 11.57 11.83 

MnO 0.04 0.26 0.19 0.31 0.32 0.19 0.21 0.16 0.21 0.20 0.20 0.20 0.20 

MgO 1.01 2.07 6.97 5.36 8.32 12.17 2.62 1.55 5.19 5.44 6.24 6.29 7.08 

CaO 0.04 0.34 11.39 4.04 4.18 12.28 2.66 0.65 10.33 9.97 12.03 10.58 11.03 

K2O 0.31 0.61 1.41 0.01 0.00 0.94 1.57 0.52 1.72 4.45 3.51 4.02 3.79 

Na2O 0.00 0.00 3.40 0.00 0.00 1.06 0.75 0.07 3.16 1.84 1.26 1.65 1.49 

P2O5 0.48 0.53 0.63 0.06 0.05 0.40 0.89 0.61 0.75 0.84 0.54 0.73 0.67 

Total 88.96 91.81 99.10 91.80 92.59 99.50 93.01 89.25 99.02 99.81 100.04 100.49 100.4 

LOI 12.28 8.91 1.66 7.94 8.67 2.09 11.88 7.43 1.59     

Mg# - - 51.7 - - 64.6 - - 47.9 49.6 49.0 51.8 54.2 

Trace element concentrations (ppm)     

Ba 730 375 384 537 845 361 548 613 470 516 370   
Sr 300 261 792 25 30 474 186 279 979 1140 917 1055 1063 

Zr 477 387 235 328 387 244 459 469 324 386 348 404 410 

V 376 466 275 349 363 314 405 412 212 246 331 266 272 

Cr 90 254 183 2581 1803 800 142 85 101 44 37 106 151 

Ni 57 115 82 803 479 279 100 48 44 48 65 74 88 

Ce 228 146 111 116 155 102 224 160 162 163.3 143 168.4  

Y 60 47 27 53 40 27 64 45 33 36.8 31.14 33.99 33.31 

Sc 28 40 27 100 86 43 37 27 16 18.1 30.8 22.3 25.1 

Co 43 82 48 135 122 60 69 68 41 44 46 38 43 

 

Table 4. 3.  WR major and trace element composition of fresh rocks and soil samples from the Limbe area, SE foot-

slope of MC; HR: fresh rock and S: soil samples analysed during this study. MC* are some fresh rock sample from 

the 1959, 1982, 1999 and 2000 lava flows of MC analysed by Suh et al. (2008). Note similarities in the major 

elements analysed in this study and variation in the trace element composition. Fe2O3*: total iron.  
 

On a Total Alkali – Silica (TAS) diagram (Fig. 4.10) after Le Bas et al. (1986), the fresh rock 

samples from the lava flow (P1HR1 and P6HR3) plot within the basalt field whereas that from 

the pyroclastic cone (HR2) plots in the picrobasalt field. The lava flow samples are 

mineralogically similar to lava samples analysed by Suh et al. (2003) and Njome et al. (2008) for 

the 1954, 1959, 1999, and 2000 lava flows of the MC area (Fig. 4.9). The pyroclastic material 

composition is offset from the general pattern. Calculated Mg# values are 37.56, 50.63 and 34.05 

for P1HR1, P2HR2, and P6HR3, respectively. These values indicate that the pyroclastic material 

was produced from a more primitive magma while the lava flows were generated from more 

evolved magmas. 
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Fig. 4.  9. Element distribution patterns of: a) Pit 1 at Bonjo; b) Pit 2 at Mabeta New Layout; c) Pit 6 at Makuka. 

Left column represents major element patterns and right column trace element patterns. Note very high Cr and Ni 

concentrations in the Mabeta sample, a corresponding change in the scale of the vertical axis relative to the others, 

and high Sr in the Bonjo and Makuka samples. 
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Fig.  4. 10.  Total Alkali – Silica (TAS) diagram  after Le Bas et al. (1986). 

Samples from other MC lavas from Suh et al. (2003) and  Njome et al. (2008). 

 

Average silica content also increases from the pyroclastic material through P1HR1 to P6HR3 

with values of 44.83, 45.46 and 47.58 wt %, respectively. The chemical composition of the rocks 

indicates that SiO2, Al2O3, Fe2O3 and CaO are the dominant oxides present, making up 83.3 % of 

the rock. As the rock transforms into soil, CaO, MgO, Na2O, and K2O are leached out, leaving 

behind SiO2, TiO2, Al2O3, and Fe2O3, which constitute ~ 91 % of the soils in the most weathered 

B horizon. Major element distribution patterns are similar in all the profiles whereas trace 

element patterns are similar for the sample from the lava flows and completely different from 

that of the pyroclastic material. Parent normalised element distribution patterns are presented in 

Figure 4.11. The most prominent feature in these plots is the significant depletion of Ca and Sr 

noted in all the profiles and a net increase in all the other trace elements. Similarly, there is an 

observed depletion in oxides of Na, K, Ca, and Mg with a corresponding enrichment in Al2O3 

and Fe2O3* (total iron). 
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Fig. 4. 11. Parent normalised element patterns of soils and saprolites from landslide scars in 
Limbe. Left column represents major elements and right column trace elements. Note 

significant depletion in Ca, Na and Sr and a corresponding enrichment in all the other trace 

metals. l; parent rock; ll: sample from C horizon; lll: sample from horizon B. 
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Chemical indices are the most widely used means of measuring weathering rates. Calculated 

weathering indices CIA, Ruxton ratio and Vogt residual index are shown in Table 4.3. 

Sample number  CIA Ruxton ratio Vogt ratio 

P1S02 97.9 2.42 10.35 

P1S03 96.5 4.11 4.17 

P1HR1 34.3 5.47 0.39 

P2S11 70.5 3.74 0.84 

P2S12 67.0 4.20 0.54 

P2HR2 31.9 6.46 0.24 

P6S17 92.2 2.59 4.97 
P6S20 71.6 3.29 1.91 

P6HR3 39.2 4.9 0.54 

Mean*  35.5+ 0.9 5.06 + 0.14 0.39 + 0.03 

Optimum fresh value** < 50 > 10 (4.0-4.5#) < 1  

Optimum weathered value ** 100 0 (2#) Infinite 

Table 4. 3. Weathering indices for fresh rock and soil samples from landslide scars in 

Limbe, SW Cameroon. Volcanic rocks on MC and world average values. * values 

calculated from the chemistry of fresh rock samples from the MC region by Suh et al. 

(2003) and Njome et al. (2008), ** values provided by Price & Velbel (2003), # value 

provided by Ruxton  (1968). 

Variations in these indices are compared with those of fresh rock samples from MC and 

optimum fresh and weathered values given by Price & Velbel (2003). The CIA and Vogt indices 

for the fresh rock samples are lower than the optimum fresh value reported by Price & Velbel 

(2003) thus representing the unaltered parent material to which the soils and saprolites are 

normalised. Ruxton ratio on the other hand is less than the optimum value reported by Price & 

Velbel (2003). P1S02, P1S03 and P6S017 show weathering indices close to the optimum 

weathered value suggesting almost complete weathering. P2S11, P2S12 and P6S20 show 

intermediate values which can be interpreted as having undergone lower weathering intensities. 

On the Si-Al-Fe ternary plot used by Hill et al. (2000), the most intense level of weathering 

observed in this area is the kaolinisation stage (Fig. 4.12). 
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Fig. 4. 12. Si-Al-Fe ternary diagram by Hill et al. (2000) for the parent rocks and 

soil samples from landslides scars in Limbe. 1: average composition of fresh 

basalts; 2: Lithomarge (saprolite); 3: laterite; 4a: bauxite and 4b: Iron ore crust.  

4.5 Discussion 

4.5.1 Diffraction patterns 

From Table 4.1 and the diffractograms described above and in Appendix 4, it is noted that the 

soils in this area are a mixture of non-swelling (kaolinite, dehydrated and hydrated halloysite) 

and swelling clays in varying proportions. Though swelling clays predominate in some samples, 

non-swelling clays are more wide spread particularly in material from the pyroclastic cones. The 

mechanical and geotechnical behaviour of the soils is thus not a function of a single clay type but 

rather of interplay of smectites, 1:1 clays and other non-clay minerals such as goethite, hematite, 

anatase, olivine, sanidine and magnetite, all present in the coarse fraction. Vingiani et al. (2010) 

working on the Ischia landslides in Italy, noted that the volcanic soils on which the slide 

occurred were characterised by the presence of poorly ordered kaolinite in all horizons and 

expandable clay minerals only in the deepest horizons. The low concentrations of smectite in the 

profiles may be a result of the decomposition of smectite to amorphous oxides and 1:1 or non-

swelling clays due to the high rainfall and good drainage conditions that exist in this area. 
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Limited concentrations of swelling clays, high clay fraction in the soils and the presence of non-

swelling clays may be indicative that these slopes will be stable under normal conditions as has 

been noted by Vaughan et al. (1988).  

In literature, there has been much research linking the occurrence of landslides to the presence of 

swelling clays (Matsuura, 1985; Shuzui, 2001; Zheng et al., 2002). However, this study shows 

that sliding is also possible in soils characterised by non-expansive clays as has been noted by 

Vingiani et al. (2010). The presence of the non-swelling clays may highlight the fact that soils in 

the Limbe area are characterised by good geotechnical properties and failure in this case can be 

associated with other factors such as fracture permeability described in Chapter 3. Dixon & 

Robertson (1970), Blight (1996), and Queiroz & Simmons (1997) explained that soils with large 

amount of halloysite are characterised by high plasticity, low permeability and display sensitivity 

to drying and manipulation. This might be a possible explanation for the observed high moisture 

content and liquid limits observed in the samples. 

Diffraction patterns do not show clear variations within profiles but there are significant 

variations in the mineralogy from one profile to another indicating the uniqueness of each failure 

site. Mineralogical heterogeneities within profiles were not identified in this study. Instead, index 

properties and geotechnical characterisation discussed in Chapter 3 make the presence of 

geotechnical heterogeneities within the profiles evident. Based on results from this study, clay 

mineralogy, cannot be used in this case as an index in identifying areas or horizons that are 

susceptible to failure. However, more analysis and further research involving clay mineralogical 

analysis in this area is recommended to better constrain this assertion. Site specific 

characterisation is thus an invaluable tool for local and regional engineering applications since 

results from one site are not directly transferable to another area due to non uniform distribution 

of geotechnical properties.  

The mineralogy of soils derived from basaltic flows is different from those derived from 

pyroclastic material. Duzugoren-Aydin et al. (2006) also noted variations in weathering products 

from pyroclastic material and those from granitic profiles in Hong Kong. They noted higher 

halloysite-to-kaolinite ratios for granitic profiles than for pyroclastic profiles at the same degree 

of weathering and attributed this to better leaching conditions in the granite relative to the 
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pyroclastics. In this study, pyroclastic material is weathered to clay sized particles with very little 

clay minerals mainly non-swelling clays, whereas a mixture of swelling and non-swelling clays 

are present in the profiles from weathered basaltic flows. This is probably due to poorer drainage 

in the basaltic flows than in the pyroclastic material.  Higher porosity enhances rapid and more 

intense weathering in the pyroclastic materials. Deep weathering coupled with steeper slopes that 

characterise pyroclastic material make them more susceptible to failure. This may account for the 

variation in failure susceptibility of these materials. In addition, the high clay fraction, low 

plasticity index and low concentration of clay minerals in the pits on the pyroclastic material 

suggest that the plasticity of the soil is dependent on the type of clays and not only the amount of 

clays fraction present. 

Halloysitic soils are known to display high natural moisture content, high liquid limit, and 

relatively low plasticity indices (Dixon & Robertson, 1970; Queiroz & Simmons, 1997). Because 

of the high liquid limits, high moisture contents, low plasticity indices and the peaks observed on 

the X-ray diffractograms, hydrated and dehydrated halloysite could be coexistent with kaolinite 

in these samples. Further analysis such as the formamide test, heat treatment at 300 and 500 °C 

of K-saturated samples would need to be conducted to actually confirm which of these two 

species (kaolinite or halloysite) are more abundant because the peaks at 7.1 -7.35 Å in the 

glycolated samples could signify the presence of any of these two minerals. Prominent peak at 

3.5 Å may be interpreted as a second order reflection of the halloysite and kaolinite peaks or as 

indicative of the presence of short range order clays such as allophane (Sieffermann et al., 1968). 

Sieffermann et al. (1968) identified allophane, ferrihydrite, and imogolite in soils from the MC 

areas. Tests for the presence of allophane and other short range order clays (for example oxalate 

extraction) is therefore recommended as soils dominated by these minerals exhibit very good 

geotechnical properties. Goethite and sanidine were also observed in some profiles identified by 

the presence of peaks at 4.18 and 2.70 Å, and 3.51 and 1.89Å, respectively. These peaks could 

still be reflection peaks of the aforementioned minerals, hence further analysis would be required 

for complete characterisation.  
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4.5.2 Variations in element distribution 

Variations in major element concentrations within the basaltic saprolites strongly indicate the 

unstable nature of their primary minerals (olivine, pyroxene, amphibole and plagioclase), the 

formation of secondary minerals, and mobility of each element during weathering. Strong 

depletion in the alkali and alkali earth metals (K2O, Na2O, and CaO) reflects intense and even 

complete decomposition of plagioclase and high mobility of these elements. Weaker depletion in 

MgO could be related to the decomposition of olivine and other ferromagnesian minerals 

whereas SiO2, Al2O3, Fe2O3*, TiO2, and MnO remain constant or show slight enrichment. This 

enrichment might be associated with the formation of secondary minerals (Wen et al., 2004), 

particularly clays and sesquioxides (Duzugoren-Aydin et al., 2002).  

Comparing the trace element concentration in the rock samples measured in this study with those 

of fresh rock samples from MC (Suh et al., 2003; Chauvel et al., 2005; Njome et al., 2008) it is 

observed that their concentrations in P1HR1 and P6HR3 are similar while P2HR2 shows wide 

differences with exceptional high Ni and Cr concentrations. Deurelle et al.(1987) and Sato et al. 

(1990) have measured similar concentration in some rock samples from the MC region. 

Generally, fresh rocks from MC are characterised by high Ba (400 to 609 ppm) and Sr (927 to 

1216 ppm) values.  

Looking at the trace elements concentrations in the soils and the parent rocks, it is observed that 

they all show significant enrichment to the noticeable exception of Sr that is significantly 

depleted in the soils. High Ba concentrations in the soils result from a high initial concentration 

in the parent material that becomes enriched as weathering proceeds. The soils are also 

characterised by a high Sr concentration. Similar results have also been noted by Dia et al. 

(2006) who measured Ba concentrations between 200 and 619, and Sr between 374 -1021 ppm in 

multiple soil samples from MC and by Nchia (2010) who measured Ba concentrations between 

136 and 1117 ppm, and 906 – 1196
 
ppm Sr in top soils within the Limbe area.  

Significant Sr depletion might be related to the decomposition of plagioclase in which Sr 

replaces Ca. This relationship is confirmed by a strong negative correlation between Sr and Ca 

with an r (Pearson‟s correlation coefficient) value of -8.2. Sr is a highly mobile element with 
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similar chemical behaviour to Ca and K, implying that soils will generally have lower 

concentrations of Sr than the parent rocks. Studies have shown that Mn easily scavenges Ba, 

showing a high affinity for Mn in diverse redox-active environments (Wen et al., 2004). Thus Ba 

accumulation may also be associated with both abundance and mineralogy of clays (Wen et al., 

2004). However, there is no correlation between Ba and MnO (r = -0.15) within these profiles. 

Other studies have shown that Ba partitions in sanidine, which is still present in profiles 1 and 3.  

The pyroclastic rock and soils derived from it are characterised by the presence of high Ni and 

Cr concentrations ranging from 800 ppm in the parent rock to 2581 ppm in the soil for Cr and 

279 ppm in the parent to 803 ppm in the soil for Ni. Other rocks from MC measured by Suh et 

al. (2003, 2008),Chauvel et al. (2005), and Njome et al. (2008) have values that range between 

48 - 213 and 40 - 99 ppm, for Cr and Ni, respectively. The pyroclastic rock is also characterized 

by a higher magnesium oxide, lower Al2O3 and K2O content than other rocks of the MC region. 

Liu et al. (1996) found that soils developed on basalts normally have higher concentrations of 

elements that belong to the Fe family, such as Ti, V, Co, Cr, and Ni relative to soils developed on 

more evolved rocks such as granite and rhyolite. These trace elements become relatively 

enriched in the soils formed from basaltic rocks due to preferential loss of the other major 

elements during weathering. Observed r values between these elements are also high (Table 4.4.) 

These observations were also noted in this study as metals of the iron family all show relative 

positive enrichment with intense weathering. Significant enrichment in Cr and Ni noted for 

Profile 2 can be accounted for by the fact that the parent rock in this area is characterised by 

pyroxene, amphibole and olivine which are the principal hosts of Cr and Ni. The weathering of 

these minerals would liberate these elements, which are enriched in the soil because of their low 

mobility.  

From the parent normalized patterns, it is noted that all elements are mobile as some are 

relatively depleted and others enriched. This observation is contrary to the common assumption 

that Ti and Zr are nearly always immobile as assumed in many mass balance calculations within 

the tropics (Beyala et al., 2009). A wider suite of trace and rare earth element analyses is 

recommended to further constrain the most appropriate inert element that can be used in 

isovolumetric mass balance evaluations in this region.  
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 SiO2 TiO2 Al2O3 Fe2O3* MnO MgO CaO K2O Na2O P2O5 LOI Ba Sr Zr V Cr Ni Ce Y Sc Co 

SiO2 1                                        

TiO2 0.78 1                                      

Al2O3 0.49 0.01 1                                    

Fe2O3* -0.02 -0.43 -0.66 1                                  

MnO -0.04 0.05 -.96** 0.64 1                                

MgO -0.51 -0.50 -.85* 0.69 0.79 1                              

CaO -0.58 -0.33 -0.82 0.39 0.77 .89* 1                            

K2O 0.41 0.78 0.22 -.80* -0.25 -0.50 -0.24 1                          

Na2O 0.07 0.56 0.01 -0.74 -0.07 -0.19 0.14 .91* 1                        

P2O5 0.47 0.71 0.58 -.88* -0.56 -0.78 -0.60 .91* 0.70 1                      

LOI -0.10 -.31 0.88* -0.26 -0.80 -0.62 -0.73 -0.25 -0.45 0.16 1           

Ba -0.72 -0.50 0.11 -0.12 -0.17 0.10 0.36 -0.27 0.00 -0.32 0.14 1                   

Sr 0.61 0.56 0.70 -0.68 -0.75 -.88* -.82* 0.68 0.40 .87* 0.36 -0.28 1                 

Zr 0.06 0.29 .87* -.92* -.86* -.86* -0.62 0.59 0.46 0.79 0.56 0.23 0.77 1               

V .94** .90* 0.18 -0.25 -0.10 -0.62 -0.63 0.56 0.20 0.65 -0.15 -0.68 0.65 0.25 1             

Cr -0.54 -0.62 -0.79 0.78 0.74 .98** .85* -0.67 -0.37 -.90* 0.48 0.21 -.93** -.86* -0.69 1           

Ni -0.52 -0.62 -0.77 0.80 0.73 .98** 0.81 -0.66 -0.38 -.88* -0.46 0.12 -.91* -.86* -0.67 .99** 1         

Ce -0.11 -0.10 .97** -0.61 -.89* -0.78 -0.71 0.10 -0.07 0.45 0.91* 0.26 0.53 .84* 0.05 -0.69 -0.69 1       

Y -0.14 -0.35 0.72 -0.24 -0.65 -0.36 -0.60 -0.14 -0.30 0.22 0.81* -0.21 0.28 0.38 -0.07 -0.33 -0.25 0.69 1     

Sc -0.49 -0.57 -0.78 .85* 0.79 .95** .82* -0.71 -0.44 -.92** -0.45 0.20 -.96** -.88* -0.63 .99** .98** -0.68 -0.35 1   

Co -0.33 -0.32 -.90* 0.80 .93** .94** .85* -0.53 -0.28 -0.81 -0.63 0.05 -.93** -.91* -0.44 .94** .93** -0.81 -0.49 .96** 1 

Table  4. 4. Pearson‟s correlation matrix for major and trace element analysed in this study. ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level 

(2-tailed). 



Chapter four                      Mineralogy, chemistry and element distribution in landslide-prone soils 

134 

Y in this case is more conservative and can be used as an inert element though Hill et al. (2000) 

note that Y is mobile at the very early stages of the weathering of basaltic rocks. 

4.5.3 Weathering indices 

Changes in weathering indices with depth in all profiles correlate with their degree of 

weathering. Each change corresponds to a horizon where soil has developed at the expense of the 

initial parent rock and with the development of alteration gradients. Irregular or anomalous 

patterns might be a result of the mixing of soil material by slope forming processes such as 

landslides and other colluvial processes. Ruxton (1968) proposed a weathering index based on 

the SiO2/Al2O3 ratio of the bulk soil. He found that fresh Si-Al rocks commonly have a value of 

4.0-4.5, which decreases progressively until it reaches a value of 2 in pure kaolinite. Ruxton 

ratios for fresh rock samples from MC calculated from data generated in this study and data 

reported by Suh et al. (2003) and Njome et al. (2008) range from 4.9 to 5.47 with a mean value 

of 5.06. The ratio decreases progressively with increasing weathering intensity to values of 2.4, 

3.74 and 2.59 for Pits 1, 2 and 6, respectively, indicating intensive weathering resulting in the 

enrichment of Al2O3 and slight depletion of SiO2. Furthermore, calculated CIA is close to 100 

suggesting that there has been an almost complete removal of feldspars within the system 

relative to the fresh rock. Vogt residual indices range from 0.54 in the pyroclastic material at 

Mabeta New Layout to 10.35 in the weathered lava flow suggesting that the lava flows are more 

intensely weathered than the pyroclastic materials.  

4.5.4 Mass Balance Evaluations 

There are no universal methods used in estimating changes in the concentration of individual 

elements during weathering (Duzugoren-Aydin et al., 2002). In this study, chemical 

transformation and elemental losses and gains accompanying the physical breakdown of the 

parent rock into soils is done by parent normalisation. Relatiive depletion patterns follow the 

order Na = Ca = Sr > Mg > K > P > Si. The observed patterns tally with the overall bulk 

chemistry of the parent rock. The rocks are enriched in Ca relative to Mg due to the presence of 

Ca-rich plagioclase, and smaller proportions of Mg- and K-rich minerals. Sr patterns follow 

those of Ca because it replaces the latter element in the lattice structure of plagioclase. Silica is 
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relatively immobile. Generally, dramatic differences exist in the physical properties of soils and 

parent rocks. Soil bulk densities are generally less than half those of the parent rock with the 

lowest values measured in the most weathered soils. This decline in density results from a 

progressive increase in porosity with weathering due to the loss of elements accompanied by 

volume increase and/or decrease. Similar results were reported by Jersak et al. (1995) and 

Anderson et al. (2002) in the USA.  

4.6  Conclusion 

From the mineralogical and chemical characterisation of soils from landslide scars on the SE foot 

slope of MC the following conclusions can be drawn: 

 Clay mineralogy is composed of a mixture of swelling and non-swelling clays. 

 The dominant clay types are the 1:1 or non-swelling clays (kaolinite, hydrated and 

dehydrated halloysite). 

 The sand and silt fraction is characterised by rock fragments, anatase, goethite, hematite, 

magnetite and ilmenite. 

 Significant differences exist in the trace mineral patterns of soils from different parent 

materials, in this case basalt flows and pyroclastic material. 

 Significant depletion in Sr, alkali and alkali earth metals is remarkable in weathering 

profiles within this area. 

 Significant mineralogical heterogeneities exist between profiles with minimal 

heterogeneity within the same profile. 

  The most advanced stage of weathering in this area is the kaolinisation stage. The soils 

developed on the lava flows have undergone greater intensity of weathering than those 

on the pyroclastic material. 

  Based on the results presented in this thesis, neither mineralogy nor chemistry of the 

profiles can be used as a fingerprint to identify slip zones for sliding in the study area. 

Hence further research in this area is recommended. 
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Chapter Five 

Landslide susceptibility mapping (modelling)  

5.1  Introduction 

Considering that every location on a slope is continuously experiencing a tug-of-war between 

forces that tend to resist down-slope movement of material and gravitational forces that tend to 

move material down slope, we observe that slides only occur in those areas where the 

gravitational forces exceed the strength of the resisting forces. Usually, these forces are at a state 

of equilibrium. However, natural and human forces tend to destabilize this state of equilibrium in 

favour of gravitational forces (Ahmad & McCalpin, 1999). Although some slope failures are 

abrupt, in most circumstances landslides usually progress gradually until a trigger sets in and 

accelerates the movement. Triggers refer to single events that actually initiate failure whereas the 

cause of a slide may be defined as the reason why a slope failed at a particular location and at a 

particular time. The cause could also be considered as the (combination of) factor(s) that make a 

slope vulnerable or more susceptible to failure and may include geological, anthropogenic, 

climatic and geomorphologic aspects. 

Landslide susceptibility modelling basically involves landslide cartography aimed at producing a 

landslide inventory map and a map of all potential triggering and conditioning factors. Maps are 

the tools earth scientists fancy in order to portray geological information and convey it to other 

scientists, decision-makers and the public (Guzzetti, 2005). Landslide maps are prepared to show 

where landslides have happened (inventory) or where they are expected to occur in the future 

(susceptibility), and can be used to divide land areas into zones of different hazard and risk levels 

(zonation). 

During the past 5 decades, research, environmental and government organizations over the world 

have invested huge resources in forecasting the spatio-temporal occurrence probability and 

intensity of all types of slope movements (Aleotti & Chowdhury, 1999; Bonnard et al., 2003; 

Guzzetti, 2005) with the goal of minimizing damage and fatalities linked to landslide 

phenomena. Mitigation of landslide related hazards can only be successful when detailed 

information about the frequency, magnitude and character of slope failures within a particular 

area is known (Vijith et al., 2009). For this reason, the identification of landslide prone areas 
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represents a cheap and fast method in understanding this hazard. Mitigation could begin with 

landslide susceptibility assessment. Landslide susceptibility involves predicting where a 

potentially damaging landslide may occur without any reference to the time or the intensity of 

associated damage (Ahmad & McCalpin, 1999; Ohlmacher, 2000; Sorriso Valvo, 2002; Van 

Western et al., 2006) and ranks the degree to which parts of the slope are prone to future failure, 

based on the factors that produced past landslides. 

Landslide intensity on the other hand is a measure of the destructive potential of a landslide, 

based on a set of physical parameters, such as velocity, thickness of the displaced debris, 

volume, energy and impact forces. Susceptibility and intensity can be expressed in qualitative 

and/or quantitative terms. Intensity varies with location along and across the travel path of the 

material and therefore should ideally be described using a spatial distribution for adequate 

mitigation measures to be implemented.  

Landslide risk is defined as the potential degree of damage losses due to landslides and the 

expected number of lives lost, people injured, damage to property and disruption of economic 

activities (Varnes et al., 1984). It is expressed as a simple overlay between elements at risk and 

landslide susceptibility categories. Elements located in the high and very high landslide 

susceptibility zones are very vulnerable. Landslide risk assessment therefore requires the 

construction of an inventory of objects at risk. Objects at risk could vary immensely from whole 

villages through specific houses, walls and individuals based on the scale of the assessment. 

5.1  Methods of landslide susceptibility assessments 

Various studies have been performed in different areas around the world, using diverse methods 

to generate susceptibility maps that can help in the reduction of landslide related damage. Miller 

et al. (2007) used aerial photo interpretation, geomorphological mapping and field surveys 

(direct methods) to produce a landslide inventory map. They applied Bayesian conditioning 

probability for weighing factors conditioning sliding and integrated these into a Geographic 

Information System (GIS) package to produce a landslide susceptibility model for St Thomas, 

Jamaica. Bivariate statistical methods (matrix, seed cell, weight of evidence method, weighed 

factor, information value) have been applied in landslide susceptibility assessment in other areas 

(e.g. Cross, 1998; Donati & Turrini, 2002; Suzen & Doruyan, 2004; Ayelew et al.,  2005; Thiery 

et al., 2007; Conoscenti et al.,  2008; Ruff & Czurda, 2008; Yalcin, 2008; Jiménez-Peràlvarez et 



Chapter  five                                                                                                                 Landslide susceptibility modelling 

139 

al.,  2009, Vijith et al.,  2009). Discriminant analysis and logistic logic regression have also been 

used in landslide hazard modelling and spatial prediction of landslides (Gorservski et al., 2000; 

Santacana et al., 2003; Ayalew et al., 2005; Lei & Jing-Feng, 2006). On a local scale, 

deterministic methods involving geotechnical characterisation of soil properties and liquid 

equilibrium methods have been applied. The factors conditioning slope failure in most of these 

studies include elevation, slope, slope orientation, profile curvature, plan curvature, tangent 

curvature, flow path and upslope gradient.  

From the above methods, it is observed that most landslide susceptibility assessment approaches 

blend into each other and are based on the principle of uniformitarianism which states that the 

past and present are keys to the future. That is, under conditions of environmental similarity 

future slides will occur in similar areas and under the same conditions as past and present failures 

(Varnes et al., 1984; Carrara et al., 1991, 2003; Hutchinson, 1995; Guzzetti et al., 2003). Despite 

their operational differences, the above assessment methods involve 3 steps: 

 Landslide inventory 

 Mapping of factors conditioning slope failure  

 Estimating the relative contributions of each factor. 

The above methods can be regrouped into three: deterministic, heuristic and statistical methods. 

The deterministic model involves site specific characterisation of the geotechnical properties of 

the sliding material and is thus capital intensive and can only be applied on a limited or restricted 

area. The heuristic approach, based on expert knowledge, is very subjective and affected by 

limited reproducibility. The statistical approach can either be bivariate or multivariate depending 

on the analysis method (Soeters & van Western, 1996). In multivariate statistical analysis, factors 

are assumed to be related and are treated together whereas bivariate methods assume factor 

independence and treat the influence of each factor on landslides independently and sum them 

up. The fate of the final susceptibility map is often decided by the theoretical basis and 

assumptions made in the model (Carrara et al., 1999).  

According to Jiménez-Peràlvarez et al. (2009), landslide inventory is of prime importance in any 

susceptibility assessment project and determines the quality of the final results. Landslide 

mapping and the identification of conditioning factors is either done by intensive field surveys 

and/or from the interpretation of aerial photographs and other remote sensing data such as 
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LANDSAT, ASTER, SPOT and IKONOS images. The contribution of each factor can be 

evaluated based on expert‟s knowledge about the relation between the occurrence of landslides 

and their hypothetical predisposing factors (Thiery et al., 2007) or statistically by calculating 

landslide densities per factor class (Carrara et al., 1991; Soeters & van Western, 1996; Ruff & 

Czurda, 2008; Yalcin, 2008). From these calculations, assessments are made on those sites where 

failures are likely to occur in the future (Carrara et al., 1999). Reviews outlining the methods 

used in landslide susceptibility are given by Brabb (1984), Hutchinson (1995), Soeters & Van 

Westen (1996), Aleotti & Chowdhury (1999) and Guzzetti et al. (1999).  

There are no universal guidelines regarding the selection of factors in susceptibility mapping 

(Ayalew et al., 2005). Although any parameter may be important with respect to landslide 

occurrence in a certain area, the same parameter may not be important for another area. A very 

wide number of factors have been identified as landslide conditioning and triggering factors, 

including geological, hydrological, geomorphological and geotechnical properties of the sliding 

material. From detailed hydrological analysis, Fiorillo & Guadagno (2000) suggested that 

historical reactivations of Adriatic landslides are connected to long rainy periods with high 

cumulative rainfall of low intensity. High pore pressure due to saturation has also been reported 

to be one of the major causes of landslides (Montgomery & Dietrich, 1994; Davies et al., 2005). 

Esu & Grisolia (1991) ascribe episodic reactivation of landslides along the Adriatic coast to 

changes in pore pressure. Trefois et al. (2007) suggest that increasing hydrostatic pressure and 

human mismanagement are the major causes of large landsliding while deforestation and large 

population increase are indirect causes of slide reactivation around Bukavu. Yalcin (2007) 

reported the importance of soil geotechnical parameters as causal factors. Though qualitative 

answers to landslide controlling factors can be made using engineering or geomorphologic 

judgment, human reasoning alone is inadequate to synthesize the mass of factors involved in 

complex slope stability problems (van Westen et al., 2006).  

In this study we implement a data driven bivariate landslide susceptibility model to build a 

susceptibility zonation map for the Limbe area. The seed cell method proposed by Süzen & 

Doyuran (2004) is modified and combined with the Infoval (Information value) method used by 

Vijith et al. (2009). This model is based on:  
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1. Systematic documentation of the location and characteristics of past landslides in the area 

(Che et al., 2011) and converting them into seed cells 

2. Identification of key factors that control slope stability, systematic mapping of these 

factors and transferring them into grids. 

3. Calculation of zonal statistics between the seed cells and factor maps to obtain the number 

of seed cells per factor class, which is later used to create weighed factor maps. 

This model was adopted because it is flexible, robust and has the ability to minimise expert 

subjectivity. It also does not require intensive computer resources or extensive computer 

modelling experience.  

5.1.1   Raw data 

Four data sets were used to generate the predisposing factor maps necessary for the evaluation of 

landslide susceptibility. Table 5.1 shows a list of available data sets, corresponding factors 

derived from them and associated factor classes. A 1:50000 scale topographic map (with 20 m 

contour lines) of the study area published by the French National Institute of Cartography in 

1963, was scanned and geo-referenced for use in a GIS (ERSI ArcGIS 9.1). Elevation contour 

lines, the road network and drainage pattern of the area were digitized from this map. 

Three sets of satellite images namely 1 TM and 2 ETM+ acquired on December 12, 1986, 

December 10, 2000, and January 31, 2008, respectively were down loaded from the University 

of Maryland Global Land Cover Facility (GLCF 

http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp). These satellite images were used together in 

with 1 Advanced Space Transmission and Reflection Radiometer (ASTER) image acquired in 

2007 bought from the United States Geological Survey (USGS) Global Visualisation Viewer 

(GLOVIS). Direct landslide mapping on these images was not possible because of the small 

sizes of the observed slides and a relatively coarse pixel size of the image. The depletion zone of 

the slides in this study hardly exceeds 25 m suggesting that the typical landslide area will only 

occupy a single pixel in a Landsat image and is unrecognisable. Hence Landsat images were only 

used to digitize land cover types. A brief description of the characteristics of the Landsat and 

ASTER images is given in Tables 5.2, 5.3 and 5.4. Detailed descriptions of these images are 

provided by Lillesand & Kiefer (2000).  

http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp
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Table 5. 1. Raw data, associated list of parameters (factors) observed to control landslide activities and factor classes 
used in landslide susceptibility assessment on the SE foot slopes of Mt Cameroon. 

Data Source of data Data type Derived map Factor class 

Landslide 
inventory Field observations Point Seed cells  

 
Geology/parent 
rock type 

 
Field survey, literature 

 
Polygon 

 
Rock type 

Pyroclastic 
Porphyritic basaltic 
lava flow 
Porphyritic vesicular 
basalt 
Mud flow deposit 
Alluvial deposits 
Beach sand, shingle 
and pillow lava 
Massive basalts 

 
Soil type 

  
Hasselo 1961 

 
Polygon 

 
Soil type 

Ash soil 
Litho sol 
Old volcanic soil 
Valley clay soil 
Rocky soil 
Fragipan 
Lava soils 

 
Land cover type 

 
2000 ETM+ and field observations 

 
Polygon 

 
Land use raster 

Built-up areas 
Plantation 
Forest  
Mangrove forest 

 
DEM 

 
1/50000 Topographic map 

 
Digitised contour lines (line 
vector) 

 
Slope (in degree) 

0 – 5º 

5 – 10º 

10 – 15º 

15 – 20º 

20 – 25º 

25 – 30º 

30 -35º 

>35º 

 
Slope orientation 

N 

NE 

E 

SE 

S 

SW 

W 

NW 

 
River 

 
1/50000 topographic map 

 
Lines 

 
Distance from rivers and 
stream density values 

0 – 50 m 

50 – 100 m 

100 – 150 m 

150  - 200 m 

200 – 250 m 

250 – 300 m 

> 300 m 

 
Euclidean distance 
interpolation of stream 
network 

   
Stream    density  

Extremely low 

Very low 
Low 
Moderate 
High  
Very high 

Extremely high 

 
Road net work 

 
1/50000 topographic map and field 
survey 

 
Line 

 
Distance from road 

0  – 50 m 

50 -100 m 

100  – 150 m 

>150 m 

 
Faults and fractures 

 
1/200000 geologic map from the 
GRINP Project 

 
Line 

 
Distance from faults 
  

<100 m 
100 - 200 m 
200 – 300 m  
300 - 400 m 
400 – 500 m 
500 – 600 m 

> 600 m  

 
Mean 
Annual 
precipitation 

 
20 - 34 years monthly rainfall from 
12 stations operated by the CDC  

 
Rainfall (mm) 
 

< 2400 mm 
2400 – 2800 mm 
2800 – 3200 mm  
3200 – 3600 mm 
3600 – 4000 mm 

>4000 mm 
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Landsat TM metadata 

 Bands Resolution (m) Spectral range  

1 30 Blue 

2 30 Red 

3 30 Green 

4 30 Near infra red 

5 30 Short wave infra red 

6 120 Thermal infra red 

7 30 Shortwave infra red 

 

Table 5. 2. Properties of Landsat TM images. 

 

Landsat ETM+ metadata 

 
Bands Resolution (m) Spectral range  

1 30 Blue 

2 30 Red 

3 30 Green 

4 30 Near infra red 

5 30 Mid infra red 

6 30 Thermal infra red 

62 60  

7 30 Shortwave infra red 

8 15 Panchromatic 

 

 Table 5. 3. Properties of Landsat ETM+ images. 

ASTER metadata 

 Bands Resolution (m) Spectral range  

1 15 Blue 

2 15 Red 

3N 15 Visible near infra red 

3B 15 Visible near infra red 

4 30 Shortwave infra red 

5 30 Shortwave infra red 

6 30 Shortwave infra red 

7 30 Shortwave infra red 

8 30 Shortwave infra red 

9 30 Thermal infra red 

10 90 Thermal infra red 
11 90 Thermal infra red 

12 90 Thermal infra red 

13 90 Thermal infra red 

 

Table 5. 4. Properties of ASTER images 

The third data set is a soil map produced by Hasselo (1961). Faults and fractures were extracted 

from the geologic map produced by the GRINP Project that was carried out in 2005 to evaluate 

geohazards around the Mt Cameroon region. 
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5.1.2 Landslide mapping and generation of seed cells 

From February 2008 to June 2010 intensive field surveys were undertaken to determine the 

spatial distribution of landslide scars (landslide inventory map) described in Chapter 2. A total of 

63 landslide recorded between 2001 and 2010 were described. The inventory map was prepared 

at a scale of 1:50000 based on field surveys due to the unavailability of aerial photographs. 

Landslide locations were obtained at the centre of the main scarp. As slide scars are of relatively 

small size, they were recorded as point data in the Geographic Information System (GIS) 

database. The landslide data set was divided into a training set (75 %) used to calibrate the model 

and a validation set (25 %) used to validate the model in ArcGIS 9.1. Considering that the best 

undisturbed morphological conditions (conditions before failure) can be extracted from the 

vicinity of the landslide itself, seed cells were selected using a 25 m buffer zone around each 

landslide point. This buffer interval was chosen as the width and length of the landslide depletion 

zone rarely exceeded 25 m. Hence this buffer zone includes the entire failed area and its direct 

surrounding and thus provides the best representation of the properties of unstable areas. As the 

factor raster maps were produced at 20 m spatial resolution, a 25 m buffer resulted in at least 4 

seed cells per landslide scar. This technique produced 222 seed cells from the training dataset 

and 84 seed cells from the validation data set, from which the contribution of the different 

determinant factor to landslide occurrence was calculated. 

5.1.3  Data processing and generation of factor maps  

All images and maps were first registered in Universal Transverse Mercator (UTM) Zone 32 N 

with WGS 84 as datum. However, because multi-temporal satellite images are acquired on 

different dates with different resolution, acquisition angles, sun angle and atmospheric influence, 

the coordinates of ground cells usually do not correspond between different images. Hence, the 

registered images could not be perfectly overlain on each other. For this reason, all the images 

were co-registered using ground control points and then wrapped onto a master image (ETM+ 

2000) using the image and image polynomial warping algorithm in ENVI 3.6.  

The study area is located in the hot humid tropical area: thus the images are strongly influenced 

by climatic perturbations and are frequently cloud covered. Correction for climatic influence on 
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the quality of the images was necessary to improve on its quality. In the absence of field data for 

calibration, the darkest pixel method was used. This involves subtracting the digital number 

(DN) of the darkest pixel in each band from the DNs of all the other pixels in that band. 

Enhancement and supervised classification were performed on all the images to reveal subtle 

differences and reduce data redundancy. Due to abundant cloud coverage in the 2000 image (Fig. 

5.1), classification results were not good and were modified by manual digitisation. 

  

 

Fig. 5. 1. False colour composite of: a) band 532 of 1986 image and b) band 542b of 2000 image. Note the presence 

of clouds particulaly on the 2000 and the distribition of land use patterns. 

 

As mentioned above, no universal guidelines exist regarding the selection of factors in 

susceptibility mapping. However, the selection of the causal factors must take the nature of the 

study area and data availability into account. In a GIS based study, the factors selected must be 

operational, represented over the entire area, non-uniform, non-redundant and measurable 

(Ayalew et al., 2005). Based on the above criteria, field observations, enquiries from inhabitants 

of affected areas, literature and available data, a total of 10 predisposing factors were considered 

in this study: rock type, soil type, land use, type slope gradient, slope direction, distance from 

streams, stream density, distance from roads, distance from faults and major fractures, and mean 

a 
b 
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annual precipitation (MAP). After selecting a causal factor, thematic maps were prepared for 

each of these factors following the methods and data described hereafter. Figure 5.2 shows a 

flow chart of the steps involved in the production of factor maps and associated factor weights. 

 

Fig. 5. 2. Schematic illustration of the steps involved in the creation of factor maps and in the 

susceptibility evaluation procedure used in this study. 
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Rock type 

Though gravity is the main driving force in the occurrence of landslides, it does not act alone but 

in conjunction with other factors such as rock type (geology), soil type, slope gradient and so on. 

Many researcher  agree that rock typ has a major  impact on the occurrence of landslides (Dia et 

al, 2001, Yalcin, 2007).  Parent rock type (lithology) determines to a great extent the rate of 

weathering and plays an important role in conditioning the development of drainage lines. Parent 

rock may also determine the shear strength and permeability of soils and rock and hence controls 

the rate of water infiltration. It also influences the properties of the residual soils derived from it, 

hence soil type was considered as one of the conditioning factors as well. The lithologic map was 

constructed by compiling field observations, geologic maps from existing literature (Endeley et 

al., 2001; Njome, 2008; Thierry et al., 2008), topographic maps and interpretation of satellite 

images. Figure 5.3 shows the lithologic map containing 7 rock types: porphyritic basalt, 

pyroclastic deposits, lahar (mudflow deposits), alluvial deposits, massive and vesicular 

porphyritic basalts, beach sand, shingle and pillow lava. Porphyritic basalts occupy about 74 % 

of the study area followed by lahar deposits that make up 17 % whereas the other classes each 

cover less than 5 % of the study area. Due to the limited amount of outcrops and the various data 

sources used, the position of the lithological boundaries has limited accuracy. Some slides are 

located on weathered pyroclastic cones, particularly those that have been modified by human 

interference in the form of excavation for construction without the application of any formal 

stabilization measure. Rock fall was observed within lahar deposits along the banks of the Ombe 

and Ndongo Rivers and on cliffs along the rocky coast of the Atlantic Ocean. A correlation 

between the rock type and the seed cells indicates that the pyroclastic material is more 

susceptible to failure than the lava flows and mudflow deposits.  
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Fig. 5. 3. Geological map of the study area modified from Endeley et al. (2000), Njome et al. 

(2008) with field check.  The limit of the lahar deposits was adjusted and pyroclastic deposits 

included. Faults, fractures and lineament were extract from the geological map  of MC 

produced by the GRINP Project, Thierry et al. (2008).  

 

Soil type 

Soil type influences the occurrence of landslides within a particular area. Different soil types can 

be derived from the weathering of the same parent rock. The resulting product depends on the 

degree of weathering and the drainage condition operating during the weathering process. Soils 

within the study area are mottled, reddish brown, yellowish brown and pale yellow clayey silts, 
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silts and clays with diverse physical and chemical properties. They are characterized in detail in 

Chapter 3. However, due to limited aerial coverage of the soils analysed during this research, the 

soil map produced by Hasselo (1961) was digitised and used in this study. According to 

Hasselo‟s classification, there are seven soil types: old volcanic soil, ash soil, lava soil, lithosol, 

valley clay soil, stony soil and fragipan. Old volcanic soil refers to soils developed on basalts of 

the first volcanic phase of activity along the Cameroon Volcanic Line in the Mio-Pliocene. They 

are moderately deep soils characteristic for the Mabeta massif. The second volcanic phase is 

characterised by more evolved lava (trachyte, Awah, http://cameroun-

foret.com/system/files/11_01_62.pdf) and these products are not found on MC. Ash soils, lava 

soils and lithosols are developed from lava of the third volcanic phase (Quaternary to Recent). 

Ash soils are soils on lava flows washed down slope by lahars, lithosols refer to shallow soils 

developed on hard rock such as basalts. Valley clay soils, fragipans, and rocky soils are young 

soils with volcanic parent material. Valley clay soils form in the valleys separating the ridges of 

the Mabeta massif. Stony soils are less than 60 cm thick, characterised by undulating broken 

surfaces and correspond to gravely and stony soils developed on “young lava flows”. The 

distribution of the soil groups is presented in Figure 1.4. In this study, the seven major soil 

groups were adopted and make up 28, 36, 18, 2, 11, 2 and 3 % of the study area, respectively. 

Land use 

Landslides are natural occurring phenomena and will occur whether people are present or not. 

However, human land use practice may accelerate the occurrence or play a vital role in the 

occurrence of landslides. A land use map (Fig. 5.4) was produced by supervised classification of 

an orthorectified Landsat image of the Mount Cameroon region, on the 10
th
 of December 2000. 

This classification was based on observed variations in colour, texture and tone of objects on the 

image, calibrated using field observations or ground truthing. Because of significant cloud 

coverage, results of the classification were edited and simplified by manual digitalisation. Four 

main land use types were considered, namely forest, plantations, built-up areas and mangrove 

forest. These classes make up ~58, 36, 6, and <1 % of the study area, respectively. 

http://cameroun-foret.com/system/files/11_01_62.pdf
http://cameroun-foret.com/system/files/11_01_62.pdf
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Fig. 5. 4. Land use map of Limbe and its environment, manually digitised from a 

2000 Landsat image.  

Slope gradient and slope orientation 

It has been observed that slope failure is more common on steep slopes than on gentle slopes. 

Thematic maps of slope gradient (Fig. 5.5), and slope orientation were generated using 20 m 

grids from the Digital Elevation Model (DEM). The DEM was obtained by interpolating 20 m 

contour lines digitised from a geo-referenced 1:50000 topographic map using the “Topo to 

Raster” function in ERSI ArcGIS 9.1.  
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The Topo to Raster algorithm is an interpolation method specifically designed for the creation of 

hydrologically corrected DEMs. It is based on the ANUDEM program developed by Hutchinson 

(ArcGIS desktop help). ANUDEM calculates ridges and streams from points of maximum local 

curvature on contour lines and incorporates a drainage enforcement algorithm that automatically 

removes spurious sinks in the fitted elevation surface (Hutchison, 1988).  

 

Slope gradient derived from the DEM ranges from 0 to 43º and was regrouped into 8 classes of 

5º intervals to cover the entire range of values, all the pixels with slope above 35° being grouped 

into one single class. Tests were made to assess the influence of the class ranges on the derived 

factor class weight, but an equal interval was found to be the most rational choice. 

 

Fig. 5. 5. Slope map of the study area generated from a 20 m DEM showing the 

location of observed landslide scars. The DEM was derived from Topo to Raster 

interpolation of 20 m contour lines. Slope angles are given in degrees. 
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Slope orientation, which represents the direction of maximum slope, was categorised into 8 

classes of 45º interval, i.e. into N, NE, E, SE, S, SW, W and NW facing slopes (Fig. 5.6). 

 

Fig. 5. 6. Slope orientation map of the study area generated from a 20 m DEM 

showing the location of observed landslide scars. 

 

Proximity to streams and stream density 

The proximity to streams is considered as a potential controlling factor as stream undercutting of 

slope base has been recognized to be the cause of several landslides in the region (Che et al., 

2011). The potential effect of proximity to stream is implemented by applying the Euclidean 

distance function in ArcGIS along the streams and rivers digitised from the topographic map. 

The distance is then reclassified into 7 classes of 50 m intervals, all pixels further that 300 m 

from rivers were grouped into one single class as it is assumed that the influence of the stream 

would be negligible beyond such a distance. 
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To approximate the regional distribution of ground water conditions, a drainage density map (Fig 

5. 7), which defines the number of line elements of fixed length in a fixed area (Süzen & 

Doyuran, 2004), was obtained by a non-interpolative mean using the density function in ArcGIS 

and used as a factor. The stream drainage density map was computed with a search radius of 600 

m and classified into 7 classes of equal interval of density values. 

 

Fig. 5. 7. Stream density map (search radius 600 m) of streams identified in the 

Limbe area. Density values are in number of line elements/km2. Streams are 

superimposed on the density map and landslide scars represented as red dots. 
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Proximity to roads 

Proximity to roads is considered as a potentially important factor because road construction is 

usually accompanied by excavation in some areas and the addition of material to the slope. This 

might result in changes in the slope line or may be accompanied by the creation of artificial slope 

or road cuts that might be affected by landslide activities (Che et al., 2011). The role of these 

processes on the occurrence of landslides is evaluated by applying multiple buffers (50 m 

increments) around roads digitised from the topographic map and corrected by tracking new 

roads with a Garmin GPS 60CSX receiver (Fig. 5. 4). The 50 m buffer was chosen as a trade-off 

between the 20 m resolution of the factor map and the accuracy of the road mapping from the 

initial topographic map. Areas located at a distance greater than 150 m from a road were 

considered as not affected by road-related instability and grouped into a single class. 

 

Proximity to major fractures and lineaments 

Faulting results in fracturing and destabilization of rock and soils and thus was considered as one 

of the main factors. Field observations indicate that rocks within the study areas are highly 

fractured and weathering is not uniform. Faults and major fractures were extracted from the 

geological map produced by the GRINP (Management of Natural Risks and Civil Protection) 

project (Thierry et al., 2008) and multiple buffers of 100 m incremental distance were used to 

generate a „proximity to fault‟ map (Fig. 5.8). The area is characterised by low magnitude 

earthquakes and faults that are not very active. Hence, their destabilizing potential will tend to 

decrease with increasing distance from the fault line. A 100 m interval is thus appropriate to 

mimic the influence of faults on the occurrence of landslides.  
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Fig. 5. 8. Proximity to faults and major fractures digitised from the geological map of Mt 
Cameroon modified after Thierry et al. (2008), obtained by applying the Euclidian distance 

function in ArcGIS 9.1. Categories are defined by 100 m incremental distance. Distance 

values are in m. 

 

Mean annual precipitation (MAP) 

MAP is considered as a factor potentially contributing to slope instability as rainfall is the 

principal source of groundwater recharge coupled with the fact that the area is characterised by a 

long rainy season that lasts at least 8 months per year. The spatio-temporal distribution of rain is 

highly variable within this region. Mean annual rainfall distribution therefore provides a general 

picture of groundwater distribution within the study area and can better explain the long term 

effect of soil water on slope destabilization. The lack of long term daily rainfall data prevents 
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using rainfall to assess the triggering factor controlling the timing of landslides. MAP is obtained 

by interpolating 20 - 34 years of mean annual rainfall data from 12 stations (Fig. 5.9),  10 located 

within and 2 outside the study area (to the NE and SW). The Inverse Distance Weighted 

Interpolation method used here does not enable to account for topographic control on rainfall 

distribution, but constraints are lacking to calibrate a more realistic interpolation. Minimum 

MAPs is ~2000 mm and maximum ~4400 mm/ year. This range was sub-divided into 6 classes 

of 400 mm interval to cover the entire range of values.  

 

Fig. 5. 9. MAP of the study area obtained by the inverse distance interpolation technique of 

20 to 35 years of monthly rainfall data from 12 rain stations managed by the CDC.  
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5.2  Landslide susceptibility evaluation 

Bivariate statistical analysis involves determining the abundance of landslides within each factor 

class. To evaluate the influence of each factor class on landslide susceptibility, zonal statistics 

from factor maps for all the seed cells of the training dataset were calculated and the frequency 

of  seed cells per factor class used to calculate landslide density values per factor class based on 

the following formula: 

)(

)(
10000

ij

j

j
FNpix

ScNpix
D           

where Dj = slide density for the factor class j 

Npix (Sc) j = number of seed cells within a factor class j 

Npix (Fj) = number of cells within the factor class. 

 

To determine the influence of each factor on the entire area, weighting values were introduced, 

which, following Süzen & Doyuran (2004) enable the comparison of the slide density per factor 

class to the slide density in the entire study area. This is done by subtracting the landslide density 

of the entire area from the landslide density of each factor class. 
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 where Wj = weighted factor for class j 

             ΣNPix (Sc) = total number of seed cells within the study area  

       ΣNPix (F) = total number of pixels within the study area 

 

To avoid negative weighting values, normalization (rescaling) is implemented by adding the 

absolute value of the largest negative value to the weight of each factor class. Negative values 

indicate a low tendency for landslides to occur within that factor class. Normalized weights 

(Information value (Infoval)) are assigned to each factor class to obtain weighted factor maps. 

These factor maps are then summed up on a 20 m grid basis using the raster calculator tool to 

obtain a landslide susceptibility index value for each pixel.  

Resulting susceptibility indices, which are continuous variables, are then reclassified into five 

susceptibility classes (very low, low, moderate, high and very high). It should be noted that there 

are no universally acceptable norms with regards to the division of continuous data into discrete 

parameters (Ayalew et al., 2005). In this study, the susceptibility indices were reclassified into 
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five classes with the mean susceptibility index as the lower boundary of the moderate 

susceptibility class. Other classes were then defined using the standard deviation as the class 

interval. Susceptibility indices above the mean plus twice the standard deviation were considered 

to be in the very high susceptibility category. This idea is borrowed from mineral exploration, 

where element concentrations less than the mean plus two standard deviations are considered as 

normal background values whereas values above the mean plus two standard deviations are 

considered as enrichment zones or ores. Although this classification is based on a subjective 

choice, it was shown to generate acceptable results and as it is based on the statistical distribution 

of susceptibility values, it can be reproduced in a comparable manner for different factor 

combinations. The model was evaluated with the training data set to obtain the accuracy and then 

validated with the validation seed cells that were not used for model calibration. Success rate 

curves are drawn to test the prediction potential of the factor maps.  

5.3  Landslide risk assessment 

In this study, risk is perceived as the number of people, roads and specific structures that are 

likely to be affected by future landslides, and can be expressed as a simple overlay of element at 

risk on the susceptibility map. The outline of built-up areas was used, including an inventory of 

133 individual structures that could be occupied by a large number of persons, such as schools, 

hospitals, churches, markets and financial institutions, as well as 20 road junctions and 12 

bridges on the SE foot slopes of MC (Table 5.5).  

Structure Number 

Schools 46 

Bridges 12 

Clerical institutions 15 

Health facilities   8 

Financial institutions 13 

Government administrative structures 49 

Water Tanks   1 

Markets   2 

Road junctions 20 

Total                166 

 

Table 5. 5. Summarised inventory of objects at risk. 

 

The outline of built-up areas (Fig. 5.10) acts as a surrogate to the total population, whereas the 

road network acts as a fingerprint to the disruption of economic activities. Limits of built-up 

areas were extracted by digitising from 3 LANDSAT ETM+ images acquired on December 12, 
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1986, December 10, 2000 and on January 31, 2008. These shape files were converted to raster 

files and zonal statistics between the susceptibility map and objects at risk evaluated to identify 

the proportion of the objects at risk within each SC. 

 

Fig. 5. 10. Time series changes in the outline of built-up areas on the SE foot slope of MC 

digitized from 3 Landsat images acquired in 1986, 2000 and 2008. Note gradual expansion of the 

outline of built-up areas with time. 
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Fig. 5. 11. Spatial distribution of important facilities within the study area. 

 

5.3.1  Relationship between factors and seed cells. 

Histograms of the proportion of seed cells within each factor class and the distribution of factor 

classes within the study area are shown below. Based on calculated Information value (Infoval), 

rock type and slope gradient seem to be the most influential parameters in the study area with 
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values of 15.56 and 12.04, respectively recorded on pyroclastic materials and on slopes with a 

gradient between 25 - 30°.  

Considering the factor rock type, 68 % of the training seed cells fall in porphyritic basaltic lava 

flows, 28 % on pyroclastic material and 3 % on mudflow deposits. None of the training seed 

cells were observed on porphyritic vesicular basalt or on massive basalt. Figure 5.12 shows the 

distribution of rock types and associated seed cells. Looking at the relatively high proportion of 

seed cells on the pyroclastic material relative to its aerial extend in the study area, it can be 

concluded that pyroclastic materials are more susceptible to failure than lava flows and mudflow 

deposits. Maximum Infoval in this factor is linked to the pyroclastic material indicating a high 

susceptibility to failure. All the other classes show rather low susceptibility. Table 5.6 shows the 

proportion of pixels in each factor class, associated number of pixels and calculated Infoval from 

which the histograms in Figure 5.12 were derived. Similar tables for all the 9 other factors are 

included in appendix 6.  

 

Fig. 5. 12. Distribution of the various rock types, proportion of seed cells they contain and 

associated normalized weighted values (Infoval) for the factor layer. PY: pyroclastics; AD: 
alluvial deposit; PBF: porphyritic basaltic lava flow deposit; MB: massive basalt; MFD: 

mudflow deposit; PVB: porphyritic vesicular basalt; BSSP:  beach sand, shingle and pillow 

lava. 
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Table 5. 6. Distribution of the various rock types, proportion of seed cells they contain and associated normalized 

values (Infoval) for the factor layer. 

Based on soil type, 77 % of the training seed cells occur within old volcanic soil, 11.7 % in 

valley clay soils, 8.1 % in ash soil, whereas the other soil types contain very low or no training 

seed cells. Figure 5.13 shows the distribution of soil types and the proportion of associated seed 

cells. It is worth noting that old volcanic soils which make up 28.4 % of the study area host 77 % 

of the seed cells. Maximum Infoval in this factor is linked to the old volcanic soil with a rating 

value of 6.69. Lower but significant weights are assigned to rocky and valley clay soils. All other 

classes show extremely low weights suggesting lower susceptibility to failure. The full table is 

included in Appendix 6, Table A 6. 

Rock type 

Total 

number 

of pixels 

Number 

of seed 

cells 

% of 

total 

area 

covered 

% of 

seed 

cells 

Seed cell 

density per 

factor class 

Weighted 

density 

Normalized 

values 

Pyroclastics 40483 63 4.49 28.38 15.6 13.10 15.56 

Alluvial deposits 9275 1 1.03 0.45 1.1 -1.38 1.08 

Porphyritic basaltic flow 671636 152 74.50 68.47 2.3 -0.20 2.26 

Massive basalt 3690 0 0.41 0.00 0.00 -2.46 0.00 
Mudflow 155174 6 17.21 2.70 0.39 -2.08 0.39 

Porphyritic vesicular 

basalt 20628 0 2.29 0.00 0.00 -2.46 0.00 

Beach sand , shingle and 

pillow lava 630 0 0.07 0.00 0.00 -2.46 0.00 

 901516 222      
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Fig.  5.13. Distribution of the various soil types, proportion of seed cells they contain and 

associated normalized values (Infoval) for the factor layer. AS: ash soil; VCS: valley clay 

soil; RS: rocky soil; OVS: old volcanic soil; LLS: lithosol; LS: lava soil; F: fragipan.  

 

Of the four land use patterns noted in the area, forest covers 58 %, plantations 36 % and built-up 

areas 6 % of the study area (Fig. 5.14). These land use types are associated with 70, 15 and 15 % 

of the seed cells, respectively. Maximum Infoval is observed in built-up areas. In addition, built-

up areas have the highest weighted value followed by forest/mixed land (Table available in 

Appendix 6, Table A 7). It was observed that some of the slides within palm plantations occurred 

after older palms were cut down for replanting (Che et al., 2011). 



Chapter  five                                                                                                                 Landslide susceptibility modelling 

164 

 

Fig. 5. 14. Summary of land use factor class distribution, proportion of seed 

cells they contain and associated normalized values for the land cover type. 

 

Slopes with gradients < 10º make up 69 % of the study area and contain less than 15 % of the 

seed cells (Fig. 5.15), whereas slopes with a gradient between 10° and 30° represent 31 % of the 

area and contain 85 % of the seed cells. Maximum Infoval for the slope factor (Table  available 

in Appendix 6, Table A 8) is associated with slope gradients between 25° and 30º, followed by 

gradients between 20° and 25º and 15° and 20º indicating a high probability of failure for these 

slope categories. It is worth noting that slope gradients measured in the field are slightly different 

and generally higher than those obtained from the DEM. This is probably due to the limited 

DEM resolution and effect of the interpolation method used for obtaining slope gradients. In the 

field slides occurred only on slopes above 15º but were dominant on slopes between 26° and 40º.  



Chapter  five                                                                                                                 Landslide susceptibility modelling 

165 

 

Fig. 5. 15. Distribution of slope gradient factor classes associated seed cells and associated Infoval. 

The dominant slope orientations are SE, S and E facing, making up 32 %, 24 % and 15 % of the 

study area, respectively (Fig. 5.16). All other directions each make up less than 9 % of the study 

area. The number of seed cells is highest on S facing slopes whereas SE, SW, NW, W and N 

slopes have almost the same percentage of seed cells. High Infoval is associated with N, NW and 

W facing slopes whereas moderate values appear on NE and SW facing slopes (Appendix 6, 

Table A 9). This is probably due to the fact that the dominant rift zone follows a NE-SW 

orientation, and hence major failure directions should be oriented perpendicularly to the rift 

zone, i.e. NW and SE. All other classes represent low to very low probability of failure.  

 

From the relationship existing between the training seed cells and the factor proximity to stream, 

it is noted that the distribution of seed cells do not vary significantly with various factor classes. 

However, minimum values are recorded for the class interval 250 - 300 m. Similarly, calculated 

Infoval does not vary greatly and ranges from 0 - 3.5 (Fig. 5.17). These values are small when 

compared to Infoval calculated for other factor classes, thus suggesting that proximity to stream 

does not play a major role in the localisation of landslide scars within the study area. Figure 5.17 

shows that there is no clear pattern for occurrence of landslides in relation to the distance to 

streams. The complete table presenting the distribution of seed cells within the study area and 

their relationship to the proximity to stream is included in Appendix 6, Table A 10. 
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Fig. 5. 16. Distribution of slope orientation factor classes, associated seed cells 

and Infoval. 

 

Fig. 5. 17. Distribution of proximity to stream factor classes, associated seed 

cells and  Infoval. 

The stream density evaluation indicates that 68 % of the training seed cells occur in the moderate 

and high stream density categories. Areas with high and moderate stream density show higher 

Infoval (Fig. 5.18) than those with low or very high density values. The full table is included in 

Appendix 6, Table A 11. Considering that stream density provides an idea about regional 
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groundwater distribution, regions with very high and extremely high stream density correspond 

to low lying, marshy and swampy areas, flood plains and stream channels where slope failure is 

less likely to occur. Areas with high and moderate stream densities are more likely to fail 

because of high ground water concentration and a net negative influence on soil stability due to 

increasing shear stresses. Lower stream densities indicate drier soils and it has been proven that 

drier soils tend to be more stable than wet soils. 

 

Fig. 5. 18. Distribution of stream density factor classes, associated seed cells and 

associated Infoval for the factor stream density used in landslide susceptibility 

assessment in the Limbe area. 

 

The factor proximity to roads shows a bimodal distribution for the seed cells within the various 

classes; 21 % of the seed cells are located within < 50 m from roads. This percentage drops to 8 

in the interval 50 – 100 and then increases progressively towards a maximum value at a distance 

above 150 m, suggesting that there are two types of slides in this area: road related and non-road 

related slides. Calculated Infoval indicate that the maximum values are recorded in the 0 - 50 m 

category, followed by the 100-150 categories (Fig. 5.19). This suggests that the presence of roads 

affect the occurrence of some of these slides while others occur in areas where roads do not have 

an impact on their occurrence. The complete table illustrating the distribution of pixels in 

relation to the factor proximity to roads is given in Appendix 6, Table A 12. 
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Fig. 5. 19. Distribution of factor classes for factor distance to road, associated 

seed cells and associated Infoval. 

For the factor proximity to major fractures and lineaments, the total number of pixels and seed 

cells per class decreases progressively with increasing distance from lineaments (Fig 5.20). 

However, the maximum number of seed cell occur in the < 100 m class interval. Similarly, 

Infoval decreases gradually with increasing distance. There thus exist a relative negative 

correlation between distance to faults and distribution of seed cells. However, maximum Infoval 

values (4.79) are relatively low when compared to other factors. In addition, the variation in 

Infoval for various classes is not significantly different as most of the values range between 2 

and 4.8 with only the class > 600 m having Infoval less than 2. This means that the presence of 

fractures in this area contributes positively to failure though the contribution is not significant. 

Fractures probably enhance infiltration of ground water resulting in positive pore pressure build-

up particularly in areas characterized by non-uniform weathering. Field observation makes it 

evident that the main rock types are highly fractured and weathering is not uniform. Furthermore, 

seismic activity in this area is characterised by low magnitude earthquakes (Ateba et al., 1997) 

and do not contribute in the occurrence of landslides in this area (Buh, 2009). The complete table 

describing the distribution of pixels in relation to the factor proximity to lineaments is given in 

Appendix 6, Table A 13.  
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Fig. 5. 20. Distribution of proximity to lineament factor classes, associated seed cells, 

and associated Infoval. 

 

 

Looking at the factor MAPs, it is observed that high Infoval is associated with areas that receive 

between 3600 and 4000 mm of rain annually, followed by those that receive between 3200 and 

3600 mm (Fig 5. 20). Lower values are obtained for areas that receive less rain. Detailed values 

are presented in Appendix 6, Table A 14. As mentioned before, MAP provides a general picture 

of the groundwater condition within the study area and can better explain the long-term effect of 

soil water on slope destabilization. 

 

Fig. 5. 21. Distribution of MAP factor classes associated seed cells and Infoval. 
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5.3.2 Selection of suitable factor combinations 

The way in which important independent variables that condition failure are selected for 

landslide susceptibility analysis and how these variables are adequately combined is a subject of 

debate (Chau et al., 2004). Although all factors considered in this study were observed to be 

operational in the study area (Che et al., in press), calculated Infoval show that some of the 

factors do not enable the discrimination of zones with higher landslide frequency. It was 

therefore necessary to investigate the most meaningful factor combination that would account for 

most of the landslides observed in the study area. As the bivariate approach also assumes 

independence between the controlling factors, correlation between the factors was considered for 

this selection and prediction performance of several factor combinations was assessed.  

Firstly, a model where all the factors are added cumulatively in decreasing order of maximum 

Infoval was assessed. Generated susceptibility indices were evaluated and success rate curves 

constructed. These curves are plots of the cumulative percentages of training seed cells in each of 

the susceptibility classes against the cumulative sum of pixels in each susceptibility class 

arranged in decreasing susceptibility ranking (Fig. 21; Chung & Fabri, 1999; Conoscenti et al., 

2008). The success rate curves allow us to estimate the goodness of fit of the predictive model by 

representing the proportion of training seed cells that are correctly categorised into the high and 

very high categories, respectively.  

In the second case, a series of models with an increasing number of controlling factors was 

assessed. Each successive model introduced one additional factor, with factors being introduced 

in decreasing order of recorded maximum Infoval. The accuracy of each model was evaluated by 

the construction of success rate curves. If the added factor did not increase the slope of the first 

portion of the curve, it was considered redundant and eliminated from the set of factors because 

its impact is already accounted for by the other factors. In this way, the factors proximity to 

streams and proximity to major fractures and lineaments were excluded. For two models with a 

comparable success rate curve, the one with the lowest number of controlling factors would be 

favoured. It is worth noting that a factor combination that shows the highest true positive value 

with the training seed cells does not necessarily mean the best factor combination: it just 

indicates an accurate estimate of the quality of analysis. 
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A third set of models similar to the second was assessed: here the factor lithology was eliminated 

from the set of factors due to uncertainties in the boundaries of the geological map. This 

elimination was required despite the high Infoval value of 15 for pyroclastic rock as it resulted in 

high to very susceptibility classes in the centre of Limbe, notwithstanding a low angle to flat 

topography. This highlights the need to reassess the exact position of lithological boundaries in 

the study area. 

All the susceptibility maps generated were validated with the validation dataset and sensitivity 

ratio (i.e. the ratio between true positives values observed with the validation dataset and the 

proportion of the study area categorised into the H and VH SC) was calculated. The factor 

combination with the highest sensitivity ratio, which categorises a minimal portion of the study 

area into the H and VH SC, and has a high prediction  value for the validation data, is considered 

as the best prediction combination. 

Table 5.7 presents the proportions of test and validation seed cells categorised into the high and 

very high susceptibility classes, and the sensitivity ratio of the factor combinations used in this 

study. Some factor combinations have a good accuracy but lower prediction capability, 

evidenced by high proportions of training seed cells in the H and VH SCs and by a 

corresponding lower proportion of test seed cells in the H and VH categories. Furthermore, the 

proportion of the study area categorized into the VH SC is also quite variable when these factor 

combinations are considered. Based on the selection criteria mentioned above, the best factor 

grouping was a six factor combination: slope gradient, land use, MAP, stream density, slope 

orientation and distance from roads (Table 5.7). 

From Table 5.7 it is noted that various factor combinations have diverse contributions to shallow 

landslide occurrences. Success rate curves for the above factor combinations are shown on 

Figure 5.21.  
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Rock 
type  

 Slope 
gradient 

Land 
use 

Mean annual 
precipitation 

Stream 
density 

Soil 
type 

Proximity to 
roads 

 Slope 
orientation 

 Proximity to 
lineament 

 Proximity to 
streams 

% of  TSC in  
H+ VH SC  

% TSS  
H  +VH SC 
(Sensitivity) 

% of TP in  
H +VH SC 

%  TP in  
VH SC 

Sensitivity  
Ratio   

 x x x x x x x x x x 83.0 78.6 17.1 4.6 4.6 

F
ac

to
r 

g
ro

u
p
in

g
 

x x - - - - - - - - 63.0 65.5 17.3 4.5 3.8 

x x x - - - - - - - 61.0 65.5 16.4 4.4 4.0 

x x x x - - - - - - 66.7 66.7 14.5 4.3 4.6 

x x x x x - - - - - 70.0 61.9 13.6 4.7 4.6 

x x x x x x - - - - 71.5 72.6 17.7 4.6 4.1 

x x x x x x x - - - 75.5 75.0 21.7 3.4 3.5 

x x x x x x x x - - 77.5 77.4 16.4 4.7 4.7 

x x x x - x x x x - 77.0 77.4 17.3 4.9 4.5 

x x x x x x x x x - 78.5 79.8 17.1 4.6 4.7 

x x x x x x - x x x 80.5 72.6 17.6 4.6 4.1 

x x  x - x - - - - 71.5 72.6 17.4 4.6 4.1 

- x x - - - - - - - 61.0 54.8 19.4 4.4 2.8 

- x x x - - - - - - 70.0 77.4 19.4 4.4 3.9 

- x x - x - - - - - 75.0 67.9 16.5 4.6 4.1 

- x x x x - - - - - 73.0 84.5 17.6 4.6 4.8 

- - - - - x - x x x 81.5 64.3 18.7 4.7 3.4 

- x x x x x - - - - 73.0 72.6 18.7 4.1 3.9 

- x x x x x x - - - 81.5 79.8 18.8 3.7 4.2 

- x x x x x - x - - 77.5 72.6 18.8 4.6 3.86 

- x x x x - x x - - 82.0 78.6 16.9 4.9 4.7 

- x x x x x - x x - 78.5 72.6 18.8 4.3 3.9 

- x x x x x - x x x 76.5 76.2 18.7 4.1 4.1 

Table 5. 7. Factor grouping, associated proportion of pixels in the high and very high susceptibility classes, percentage of training and test seed cells in the high 
and very high susceptibility class, and the sensitivity: percentage of pixels in the high and very high susceptibility class, used to determine the best factor 

combination for landslide susceptibility assessment in the Limbe area. H+VH SC: high and very high susceptibility classes; TSC: training seed cells; TSS: test 

seed cells. TP: proportion of total area.   
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Fig. 5. 22. Prediction performance (success rate curve) of grouping of multiple factor combinations: a) from the 

training data set and b) for the validation data set  for 4 different factor combinations.  

The susceptibility map generated using all the factors (10) considered in this study correctly 

classifies 83 % of the training seed cells and shows a lower prediction performance of 78.6 % for 

the validation seed cells. With this combination, 17.1 % of the total area is categorized in the 

high and very high susceptibility classes.  

Eliminating the factors proximity to streams and proximity to major fractures and lineaments, the 

accuracy decreases to 77.5 % for the training seed cells and  to 77.4 % for the test cells while 

16.3 % of the study area is categorised into the H and VH SCs.  

In the third case where rock type is removed, the best trade off between the model accuracy and 

the number of factors was obtained using only six parameters: slope gradient, land cover, mean 

annual precipitation, stream density, soil type and proximity to roads. This model enables to 

categorizes 82 % of training seed cells and 78.6 % of validation seed cells in the high and very 

high susceptibility classes. Based on this factor combination, 16.9 % of the study area falls in the 

high and very high susceptibility categories. These results are similar to the ones of the first 

model that made use of 10 factors. Validating this model with the validation seed cells, it is 

observed that 47.6 % of the seed cells occur in the very high susceptibility class, and 31 % in the 

high category. Only 7 % of the validation seed cells is attributed to the low susceptibility class 

and none to the very low susceptibility class (Table 5.8). This is an indication that the model has 

a high predictive power.  
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Scenario Susceptibility 

ranking 

Susceptibility 

index 

Pixel % 

in study 

area 

Proportion 

of training  

seed cells 

Proportion 

of validation 

seed cells 

All factors considered (10 

factors) 

Very low 2.5 – 9.8 13.8 0 0 

Low 9.8 – 20.1 43.6 0.5 10.7 

Moderate 20.1 – 30.5 25.5 16.5 10.7 

High 30.5 – 40.4 12.5 36.5 25.0 

Very High 40.4 – 69.2 4.6 46.5 53.6 

All factors except distance to 

streams and distance to 

lineaments (8 factors) 

Very low 2.5 – 7.2 12.2 0 0 

Low 7.2 – 16.7 46.9 0.5 11.9 

Moderate 16.7– 26.1 24.5 22.0 10.7 

High 26.1 – 35.6 11.6 31.5 22.6 

Very High 35.6 – 65.5 4.7 46.0 54.8 

Best factor combination  

(slope, land use, MAP, stream 

density, slope orientation and 

distance from roads) 6 factors 

without mask 

Very low 1.5 – 5.6 14.8 0 0 

Low 5.6 – 11.8 41.8 0.5 7.1 

Moderate 11.8 – 18.0 26.5 17.5 14.3 

High 18.0 – 24.2 12.2 38.0 31.0 

Very High 24.2 – 42.5 4.7 44.0 47.6 

Best factor combination  

(slope, land use, MAP, stream 

density, slope orientation and 

distance from roads) 6 factors 

with mask 

Very low 1.5 – 5.6 27.0 0 3.6 

Low 5.6 – 11.8 33.5 0.5 3.6 

Moderate 11.8 – 18.0 23.8 17.5 14.3 

High 18.0 – 24.2 11.4 38.0 31.0 

Very High 24.2 – 42.5 4.4 44.0 47.6 

Table  5. 8. Training and validation results for landslide susceptibility in Limbe for three scenarios analysed in this 

study. Note the proportion of the study area in the high and very high susceptibility categories. The proportion of 

seed cells in the very low susceptibility category is minimal for the 6-factor scenario.  

Figure 5. 23a shows the susceptibility map of the Limbe area obtained from the best factor 

combination. Despite the good prediction performance of the model, some areas observed to 

have slopes less than 2° in the field appear in the high and very high categories, particularly in 

the town of Limbe. These areas are characterized by a combination of parameters with high 

Infoval such as, built-up areas for the land cover factor, a close proximity to roads and high mean 

annual rainfall, resulting in a high susceptibility despite the low slope gradient. To correct for 

this, a mask was applied that attributes very low susceptibility to areas with slope gradient less 

than 2° irrespective of all other factor combinations. The applied mask however did not change 

the success rate of the model but reduced the total amount of pixels classified in the high and 

very high susceptibility classes by 0.8 and 0.2 %, respectively as seen on Table 5.8. Fig. 5. 23b is 

the susceptibility map obtained after the application of the mask.  
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Fig. 5. 23. Landslide susceptibility map of Limbe, using the six-factor combination: a) susceptibility before the application of a mask and b) susceptibility 

after application of a mask. Note that there is no significant difference in the distribution of the high and very high susceptibility classes. 
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5.4   Limitation of the model 

Despite its high predictive power, the proposed model has some limitations.  

 First, it assumes that landslides will happen under the same combination of factors 

(principle of uniformiterianism) whereas field observations indicate that some slides are 

caused by a specific set of factors (e.g. proximity to rivers in conjunction with other 

factors like land use and slope gradient; Che et al., 2011).  

 Secondly, this susceptibility analysis requires a continuous update of the input factors: a change 

in the land cover might, for example, significantly increase the landslide susceptibility of an area.  

 Third, this model tends to oversimplify factors that condition sliding by considering only those 

factors that are easily mappable or can be derived from the DEM. It neglects geotechnical 

characteristics of the soil which vary enormously in space.  

 Finally, this bivariate takes into account the independent relationships of individual factors with 

landslide occurrence, without accounting for the possible combination of factors that might act 

together in increasing the slope instability. 

5.5  Risk assessment  

As mentioned earlier, landslide risk is a measure of the potential degree of damage to a given 

element or sets of elements at risk. In this study we used the outline of built-up areas, the road 

network and the distribution of some strategic objects to evaluate their vulnerability to future 

landslide occurrences. Built-up areas as at December 2000 covered 22 km
2
, i.e. about 6 % of the 

study area. About 6 km
2
 of this area lies in the high to very high susceptibility category. By 

2008, the total built-up area had doubled to 45.6 km
2
, i.e. 12.6 % of the study area. Of the 24.2 

km
2
 increase in built-up areas between 2000 and 2008, 9 % (2.2 km

2
) of it lies in the high and 

very high susceptibility classes (Table 5.9). These values suggest a tremendous increase in 

urbanisation and a corresponding extension of lifeline into hazardous and safe areas. 

Approximately 253 km of both paved and unpaved roads exist in this region. Of this length, 69.3 

km, i.e. 23 % of the road network is likely to be affected by future failures. Of the 166 individual 

structures recorded, 24.6 % of them are located in the high and very high susceptibility 

categories and thus are highly vulnerable. Individually, there are 10 schools, 8 bridges, 3 health 

facilities and 14 government administrative structures in the high and very high susceptibility 

categories (Table 5.10).  
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Susceptibility class Proportion of built-up 

area in 2000 (%) 

Proportion of built-up areas 

between 2000 and 2008 (%) 

Road net work at 

risk (%) 

Very low 33 36 23 

Low 16 40 21 

Moderate 24 15 33 

High 13 06 16 

Very high 13 03 07 

Total  22.6 km2 24.2 km2 261 km 

Table 5. 9. Proportion of built-up areas in various landslide susceptibility categories on the SE foot slope of MC. 

Totals given in square kilometers.  

Structure Number Number in the VH 

SC 

Number in the  

H SC 

Schools 46 3 7 

Bridges 12 2 6 
Clerical institutions 15 3 1 

Health facilities   8 1 2 

Financial institutions 13 1 1 

Government administrative structures 49 2 12 

Water  tanks   1 1 0 

Markets  2 0 0 

Road junctions 20 1 7 

Total 166 14 36 

Table 5. 10. Distribution of individual objects at risk, objects are located in the high and very high susceptibility 

classes of the susceptibility map. VH SC: very high susceptibility class; H SC: high susceptibility class. 

Figure 5.24 shows the spatial distribution of objects at risk in this area and the different 

susceptibility categories. Amounts these structures, the water tank at Kie, Saker Baptist College,  

Goverment Nursury School Mabeta, the delegation of Town Planning and Housing, and FIFFA 

Limbe were observed to be at high risk  during field surveys. These structure also fall in the very 

high susceptibility category of the susceptibility map.  Figure 5. 25 displays the distribution of 

the outline of build up areas superimposed on the susceptibility map. 
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Fig. 5. 24. Specific objects at risk superimposed on the susceptibility map. 
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Fig. 5. 25. Spatial distribution of the outline of built-up areas superimposed on the 

susceptibility map of Limbe expressing the spatial distribution of human population and 

infrastructure vulnerability to the impact of future landslides. 
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5.6  Discussion  

Understanding the factors and processes that lead to the occurrence of landslides is crucial in 

managing hazards and in understanding landscape evolution. Based on this fundamental 

principle, this study presents the results of a comprehensive landslide susceptibility evaluation 

for the Limbe area. The susceptibility map describes the zoning of relative probability of future 

landslide occurrence based on field identification of possible contributing factors. Landslide 

densities for each contributing factor and Infoval are computed and used to rank the importance 

of each factor in landslide processes. It is important to emphasize the fact that the quality of this 

output depends on the quality of the input parameters. In this case the geological map was flawed 

with uncertainties that result in miscalculation of susceptibility zones and thus had to be 

eliminated from the model, despite the fact that the bivariate analysis highlighted the 

concentration of landslides on pyroclastic rocks.  

In this study, the seed cell method is combined with the Infoval method, which is a bivariate 

statistical method applied in landslide susceptibility assessment to model rain induced shallow 

translational slides in the Limbe area. This method was adopted because the dominant failure 

type within the study area were rain induced shallow translation slides which, according to Süzen 

& Doyuran (2004), are most suitable for the application of the seed cell method since the slope 

form does not change significantly after failure. Moreover the method reduces the impact of 

expert opinion in susceptibility determination since no special ranking measures are introduced 

but for those that result from data-driven factor weight calculation. This implies that the 

combined seed cell and Infoval method is an objective method when compared to other bivariate 

statistical methods although their operation principles are basically the same.  

Generally, the model has a good predictive power as it categorizes 78.6 % of test seed cells into 

the high and very high landslide susceptibility classes. It is possible that the seed cells in the 

moderate and low susceptibility classes result from the fact that the observed slides are rather 

small when compared to the dimensions of the buffer used in generating the seed cells. They 

may also result from errors in mapping the boundaries of some parameter classes. In addition, to 

correct for areas where landslides are not expected but appear in the high and very high 

susceptibility class, a mask is used that attributes low susceptibility to slopes with a gradient less 

than 2° irrespective of the factor combination. Susceptibility mapping with the seed cell methods 
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mostly consider the depletion zone and does not take into account the size and potential run-out 

of the slides nor the assessment of the areas down slope from the unstable slope thereby resulting 

in the underestimation of risk. 

Thierry et al. (2008) used slope as the principal factor in landslide susceptibility zoning and 

categorized about 80 % of the Mabeta massif in the high and very high susceptibility classes, 

which probably overestimates the susceptibility of this area. In the present study based on field 

observations it is noted that several factors contribute to slope instability in the study area. Slope 

alone would not be a good predicting factor. After several trials and eliminations, the best factor 

combination that accounts for landslides in the study region includes slope gradient, land use, 

mean annual precipitation, slope orientation, distance to roads and stream density, predicting 

79.8 % of the test seed cells and categorizing 16.9 % of the study area into the high and very 

high susceptibility categories. Proximity to streams and faults have minimal influence on the 

occurrence of landslides in this area though field observations indicated a significant influence of 

streams on the occurrence of some slides. This indicates that factors that are the actual causes of 

specific landslide cannot always be used to account for the spatial distribution of all landslides in 

the whole region, as the specific controlling factors differ from one slide to another. This is 

probably because some of the streams present in the field are not visible on the topographic map 

and thus were not digitised or accounted for in the model. Instead, MAP and stream density, 

which acts as a surrogate to groundwater distribution (Vijith et al., 2009) or provides clues for 

the regional hydrogeological properties of the rock (Süzen & Doyuran, 2004), are more 

significant contributors. Furthermore, uncertainties in the quality and the scale of the geologic 

map used in this study might have a neutralising effect on the contribution of distance to faults. 

Decreasing Infoval with increasing distance from the major faults and fractures is 

understandable, considering that the area is characterised by low intensity earthquakes. A 

decreasing influence of seismic acceleration with increasing distance from the fault line could 

play a role in landslide distribution but a more detailed study of the distribution and 

characteristics of active geological structures is required to constrain this potential control. 

From field surveys it was noted that construction works, particularly on weathered pyroclastic 

cones, are abundant and not accompanied by any stabilization measures, thereby enhancing 

susceptibility particularly in steep areas covered by pyroclastic materials. Excavation for any 
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form of construction changes the slope line creating terraces and sub-vertical slopes, whereas 

addition of material results in extra load on the slope and reduction in infiltration, particularly 

when impermeable materials are used, thus locally concentrating runoff and changing ground 

water flow paths. This might account for the high weighted values observed for areas very close 

to roads and in built-up areas.   

From the susceptibility map, it is observed that significant portions of the study area especially 

around Limbe and in the Limbe-Mabeta massif are highly susceptible to failure. Any new 

development project should therefore be directed away from these hazard-prone areas. Safer 

areas characterised by low susceptibility indices are identified to the north of Limbe (Bojongo, 

Wututu, and Tole) or to the east of the Limbe-Mabeta massif (Ombe and Mutengene). W of 

Limbe there exist low susceptibility areas that could be used, instead of building on very steep 

slopes of weathered pyroclastic cones. However, if unavoidable, adequate stabilization and 

remediation measures are essential to decrease the risk of loss of life and to minimize other 

adverse impacts.  Field observations indicate that most of the occupants of houses constructed on 

steep slopes are less-well-off citizen who, because of poverty and destitution, cannot afford to 

pay for land in safer areas due to the exorbitant costs involved in the acquisition of land titles in 

safe areas relative to those in unsafe areas. Ancestral attachment also represents one of the major 

reasons why some of them are reluctant to leave. 

Low-cost bio-engineering applications could also be implemented to stabilise slopes. For 

example, vetiver grass (Vetiveria zizanioides) barriers have been successfully used to stabilise 

landslide areas on the Befang-Wum road (Abia, 2003); it has also been applied in other areas 

such as Vietnam and Australia. This method could easily be applied in the Limbe area as well. 

Buttressing slopes and constructing retaining walls is currently being practised on a limited scale 

but could be extended particularly along road cuts and embankments generated by excavation for 

construction. Surface and subsurface drain pipes and drainage corridors can also be constructed 

and maintained, particularly in areas characterized by loose soils so as to divert runoff and 

decrease the rate of infiltration. Respect of building codes and building licenses is also 

imperative. Continuous sensitisation of the local populace is also a very important component 

and has been initiated by the use of radio programs and the installation of billboards to make the 

population aware of impending risk and its consequences.  
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The landslide susceptibility map can be used by local authorities to raise the awareness and 

preparedness of future landslide impact. However, for detailed urban planning and enforcement 

of exclusion zones in high hazard areas, detailed site specific investigations are strongly 

recommended.   

5.7  Conclusions 

From the above susceptibility assessment, the following conclusions can be drawn: 

1. Landslides in the Limbe area are caused by a number of factors that interplay to make 

slopes susceptible to failure although their contribution varies from one slide to the other. 

Notwithstanding this variability, the best factor combination that accounts for most of the 

failures includes slope gradient between 10 and 35°, land use type, mean annual rainfall, 

stream density, slope orientation and distance from roads.  

2. The parent rock type also contributes significantly to landslide occurrence with 

pyroclastic cones showing a higher susceptibility to failure than lava flow deposits. More 

detailed geological mapping is recommended to better constrain the control of lithology 

upon landslide susceptibility. 

3. The combined seed cell and Infoval susceptibility modelling method is appropriate for 

this area. Validation results expressed as success rate curves indicate that the model‟s 

predictive abilities are good.  

4. Areas on the Mabeta massif are more likely to fail than those located on the foot slopes of 

MC. 

5. The susceptibility map can be used by local authorities in urban planning and 

development. However, detail on-site geotechnical characterisation is required for on-site 

specific development projects. 
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Conclusions and perspectives 

This thesis provides a detailed analysis of small-scale landslide processes that affect the 

livelihood of inhabitants on the SE foot slopes of MC, based on field observations and laboratory 

measurements. It focuses on the description of the geometric parameters of landslides scars, the 

physico-mechanical properties, mineralogy and chemistry of landslide-prone soils and on 

landslide susceptibility assessment as a method to reduce the impact of future devastating 

landslides based on experiences in the Limbe area. It provides direct answers to the scientific 

questions raised at the onset of the research project, including: 1. where have landslides occurred 

and what are their geometric properties; 2. what are the causal and triggering factors 3. where are 

the zones with the highest probability of future landslides and  finally, what are the elements at 

risks. It also makes an attempt to identify rainfall thresholds that might trigger failure.  

Apart for providing information about landslides, it is also a major contribution in the analysis of 

the geotechnical properties of tropical residual soils which has not been extensively treated in the 

literature.  

The thesis provides a post-sliding evaluation of landslides within the Limbe municipality, and 

has resulted in a better understanding of the factors that cause movement and the mechanisms 

that result in sliding. It also brings to light the importance of a multidisciplinary approach in the 

understanding of landslide processes as it integrates aspects of geology, soil mechanics and 

engineering in the evaluation of landslide processes. The fact that some devastating landslides 

were recorded during the course of this research emphasises the significance of this problem on 

the SE foot slope of MC. Based on the results obtained from this study, the following 

conclusions are made. 

First, typical landslides on the SE foot slopes of MC are rain-triggered very small to small earth 

and debris slides with individual volumes less than 50000 m
3
. In addition, landslides with 

volumes > 10
4
 m

3
 are rare. The slip surfaces of most of these slides lay within saprolites or at the 

soil/saprolite interface. Observations from this study highlight the fact that there is no direct 

correlation between landslide volume and their impact. Instead, the impact of landslides is 

controlled by its proximity to population and human infrastructural elements. Although several 

factors contribute to the occurrence of landslides within the study area, this study makes it 
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evident that the combination of factors operating at each landslide site is unique to that particular 

location. Hence, the factors taken into account in subsequent modelling needs to consider the 

various factor combinations at different sites. 

Furthermore, the occurrence of landslides in the Limbe area is enhanced by anthropogenic 

factors such as anarchical construction and the excavation of material on steep weathered slopes. 

Some anthropogenic instability factors might be reduced by well-thought out and enforced 

regulations, engineering stabilization techniques (retention walls, construction and maintenance 

of drainage network, and the use of vertiver grass barriers), but landslides controlled by natural 

factors can be expected to continue occurring in the study area. 

The landslide inventory used in this study was generated by the traditional field-based approach 

that allows the extraction of first-hand information about causal factors by systematically 

documenting observed landslide scars. The dataset is presented as point data on a map in a GIS 

environment to acquire a picture of the spatial distribution of landslides within the study area. 

From the map, it is noted that landslide scars are not uniformly distributed throughout the study 

area but is observed to be concentrated within specific zones characterised by steep slopes, and 

weathered pyroclastic cones. The field method has some major setbacks in that some of the 

landslide scars might not have been mapped out particularly in the densely forested areas which 

are difficult to access. Moreover, this method is time consuming but it remains the only way 

through which first hand information about landslide processes can be obtained and used to 

constrain subsequent modelling in absence of frequently acquired very high resolution imagery.  

Secondly, this thesis highlights the value of a field-based landslide inventory in tropical regions 

affected by landslides. Most landslide research nowadays relay on the interpretation of remote 

sensing data, traditional aerial photo interpretation, newspaper reports and other published 

articles with minimal field checks to confirm the interpretation of the images. These large-scale 

images have for example been used by Barlow et al. (2003) and Cheng et al. (2003) in locating 

landslides. During this research project, it was noted that small-scale landslides, which 

characterise the Limbe area, cannot be identified on Landsat and ASTER images. Thus, the 

applicability of these techniques in identifying individual slide scars is limited and only 

applicable to large-scale sliding. Only landslide scars with dimensions larger than 200 x 200 m 
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and clear land cover contrast would be identifiable on Landsat images but slides of this 

dimension were not observed in the study area. Remote sensing data are also valuable for time 

series evaluation but at the scale of landslides observed in the study area, coupled with persistent 

cloud coverage, dense vegetation and rapid vegetation recovery rates, they prove not to be 

useful. Thus, the applicability of large scale satellite images in the study of extremely small to 

medium slides in the humid tropical environment characterised by dense forest is questionable. 

Repetitive air photos acquisition is also lacking in Cameroon. This therefore means that higher 

resolution images such as Quickbird or Ikonos images would be required. these images are 

relatively expensive thus limiting their applicability in large scale research areas. The Landsat 

and ASTER images however proved valuable in mapping out spatio-temporal land use changes.  

Thirdly, to effectively monitor, model and manage landslide processes, it is essential to 

understand the fundamental causes of their occurrence and the failure mechanisms involved. 

This is achieved through systematic field surveys and mapping of the geometric properties of the 

visible landslide scars and through the characterisation of landslide-prone soils. From this study, 

it can be concluded that geotechnical characterisation of slide prone soils is invaluable in any 

landslide research as the geotechnical characteristics provide insights into the sliding mechanism. 

From six pits dug into three slide scars it is concluded that soils within the Limbe area have good 

geotechnical properties and will not favour the occurrence of landslides (i.e. in the absence of 

external forces). The soils are characterized by high cohesion and effective angle of internal 

friction, and a low permeability. Most of the soils have PI values greater than 15 and are thus not 

liquefiable. This accounts for the dominance of slide type failure over flow within the study area. 

From mineralogical analysis obtained so far, clay mineralogy cannot be used to identify horizons 

that are more susceptible to failure. As described in Chapter 4, the soils in the study area are 

made up of a mixture of swelling and non-swelling clays. Identified clay minerals present in 

these soils include smectite, kaolinite, halloysite and some mica. However, clay mineralogy 

shows significant heterogeneity between the various profiles but demonstrate minimal variation 

down the profile. In addition, the weathering of pyroclastic material result in the production of 

clay-sized particles but with little amount of clay, principally kaolinite and illite. The silt and 

clay fraction of the soils in the study area are characterized by the presence of anatase, sanidine, 

ilmenite and goethite for profiles developed on weathered lava flows whereas the above 
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mentioned minerals together with hematite and magnetite were recorded in samples from 

weathered  pyroclastics materials. 

From a chemical point of view, major element and trace element composition of the lava flows 

analysed in this study are similar to those of other MC lavaflows; however, there exist significant 

differences in major and trace element composition between the soils and rock from the 

pyroclastic cone analysed in this study and those of other Mt Cameroon rocks. The pyroclastic 

rock and its soils are characterised by the presence of extremely high Ni and Cr concentrations 

ranging from 800 ppm in the parent rock to 2581 ppm in the soil for Cr and 279 ppm in the 

parent rock to 803 ppm in the soil for Ni while other rocks from MC have values that  range 

between 48-213ppm and 40-99 ppm, for Cr and Ni, respectively. The pyroclastic rock is also 

characterised by a higher magnesium oxide, lower Al2O3 and K2O content than other rocks of the 

MC region.  Sr is the most mobile of all the trace elements and is significantly depleted from the 

weathering profile while all the other trace elements particularly Ba are relatively enriched as 

weathering advances.   

Based on the geotechnical measurements and the mineralogical characterisation, two conceptual 

models are proposed to explain landslide occurrence mechanisms for the area. Sliding will occur 

where infiltrating water results in the development of positive pore pressure within a lower more 

permeable horizon underlying a less permeable soil horizon. The less permeable horizon 

impedes the free rise of pore water and enhances the development of positive pore pressure in the 

underlying horizon. This positive pressure will result in uplift and mobilization of the overlying 

soil. Some sliding can also be explained by the human induced rain-triggered model. In this case, 

human activities increase shear stresses on the slope or rework slope material resulting in loose 

soil particles that can enhance rapid water absorption and saturation. The saturated loose soils are 

more easily eroded and transported during intense rainstorms resulting in failure. 

Susceptibility mapping as conducted here is a key step in identifying zones that should not be 

developed or that require mitigation measures to limit the impact of naturally-occurring 

landslides. Based on this map, vast areas on the Limbe –Mabeta massif are susceptible to failure. 

Safer areas exist to the E, W, and N portions of Limbe and these could be exploited to minimise 

losses due to sliding. The produced map has limited applicability on a local scale and requires 
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on-site geotechnical characterisation of individual sites to take knowledge-based decisions with 

regards the best stabilization method required for each site. Notwithstanding, the produced 

susceptibility map will already enable the implementation of future practices aimed at reducing 

landslide occurrence or impact via remediation, land-use and urban planning efforts. These 

efforts can be implemented at several scales ranging from individual through regional to a nation 

level.  

1. Individuals can act through the use of low-cost bioengineering approaches used in slope 

stabilization such as the planting of vertiver grass barriers which have been documented 

to be effective in other areas.  

2. In addition, individuals could be sensitized to produce gently sloping talus when cutting 

terraces and terracing could be done in a more organised and uniform manner instead of 

the disorganised terracing system currently in place.   

3. The implementation of standard stabilization methods such as the construction of 

retaining walls after cutting steep slopes for construction should be encouraged. The local 

Council too can engage in the construction of retaining walls along road cuts as has been 

implemented in some parts of Limbe. Furthermore, organised construction and 

maintenance of drainage corridors should be encouraged by the City Council. 

4. Strict rules prohibiting construction on steep slopes can be implemented by the Ministry 

of Town Planning and Housing. Demolition of structures existing in very susceptible 

areas should only be considered if no other feasible stabilization or mitigation measures 

can be applied. 

5. Furthermore, a denser network of rain stations capable of measuring real-time rainfall 

intensity and transmitting this information to scientists would be vital to be able to 

identify actual rainfall amounts and duration that may trigger landslides. With this 

approach, a well-constrained early-warning system could be developed so as to minimise 

the rate of false alarms.  

6. In situations of very intense rainfall, individuals might consider leaving their homes for a 

while until the storm is over. However, they need to be sensitized on when this should be 

done and where they should go to by state agents and other groups of authorised persons 

or organisations interested in natural disaster reduction programs. 
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7. Improving and making safe transport infrastructures around landslide-prone zones, both 

for evacuating the population and for bringing in relief should also be considered. 

From field expeditions and interviews with the local population, it is noted that people are less 

aware of the causes and consequences of slope instability than of hazards related to volcanic 

activities. Even for those that are aware of these hazards, poverty will force individuals to settle 

in slide-prone areas because the cost of lands in the safer areas is high and their income will not 

permit the establishment of standard remediation measures. Continuous sensitization campaigns 

can be organised to educate the local population about the processes and the areas at risk, about 

the measures that can be implemented to ensure stabilization of some of these slopes, and about 

some of the regulations that will help reduce their exposure to this natural hazards. These 

campaigns have been initiated in the course of this project through the use of media interviews, 

the installation of billboards, seminar presentations and interaction with some administrative 

bodies and with the local population and through lessons given in some schools to inform the 

local population about the damage with which they live. These sensibilisation campaigns need to 

be sustained as individuals tend to forget fast in the absence of immediate danger.  

Moreover, from the literature, no standard method of assessing the magnitude or severity of 

landslides, although some studies have used landslide size (i.e. area and volume) or frequency/ 

area statistics as a proxy for landslide magnitude. Magnitude/severity in this study refers to the 

amount of physical, emotional, material impact and human casualties induced by a landslide. In 

this study, it is noted that the impact of a landslide is not dependent on the size of the slide nor on 

the volume of debris produced but is rather linked to the location of the landslide in relation to 

human infrastructure. It is therefore necessary to be able to document all landslide types rather 

than only focusing on the large debris generating slides, which might in effect be of less 

consequence than small-scale failures in densely populated areas. Standardising the way 

landslide magnitude is reported will make it easier to report and communicate amongst 

researchers involved in landslide analysis in different parts of the world. 

The findings from the present study also have generic value and can be used to tackle small-scale 

slope instability problems elsewhere in the subtropics. Besides providing insights into small-

scale devastating landslides affecting vulnerable people, it provides first hand field-measured 
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geometric characteristics of landslide scars and systematically documents and quantifies for the 

first time the overall features, and geometric parameters of volume-limited devastating slides in 

Limbe. It thus provides constraints for modelling, monitoring and remediation efforts that might 

be applied in other areas affected by similar small-scale failures.  

Future perspectives 

Since this area is characterised by a dense vegetation cover, frequently cloud-coverage and has 

rapid vegetation recovery rates, periodic aerial photographic surveys would be vital to document 

temporal changes. This would enable to document the approximate timing and spatial 

characteristics of new landslide events. It would put further constraints on the temporal 

relationship of land cover changes or new road infrastructure and the destabilization of specific 

slopes. The aerial photographs will also allow to make knowledge-based decisions with regards 

to the direction in which urban development projects could be expanded. Interaction and active 

participation of the local inhabitants is vital so that the exact date and time of landslide 

occurrence can be reported.  

Future studies can be developed to test the validity of the proposed models. This would involve 

the installation of piezometers at well-defined points on some of these slopes from which 

changes in pore pressure in relation to rainfall can be monitored. In addition, monitoring 

groundwater level changes in response to rainfall is also necessary to be able to document 

quantify the amount of pore pressure that is required to initiate sliding. In addition, systematic 

soil coring and site geotechnical analysis should be encouraged to ensure that appropriate 

remediation measures are put in place before any construction project is carried out. 

Furthermore, a dense network of rain gauges capable of recording, storing and making data 

available to scientists in real time would be necessary together with information regarding the 

time and date of occurrence of landslides such that an effective early-warning system can be 

designed and implemented for the Limbe area. This is required to reduce the number of false 

alarms that might result from the system and create unnecessary panic in the local population. 

From such a system, the local population may be sensitised to leave their homes for a while 

when specific rainfall thresholds are reached. This well help minimise the damage or casualties 

that could result in case a slide occurs. The rainfall record also have implications for other 
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natural hazards such as floods which are also frequent in this area and can be taken into 

consideration in future research projects.  

The government should consider possibilities of developing rescue centres where individuals 

could run to for shelter in case of danger.  

Susceptibility assessment indicates that rock and soil type play a fundamental role in the 

occurrence of landslides. However, detailed geologic and pedologic maps do not exist for the 

Limbe study area. Future research dedicated to the production of reliable and high-resolution 

geological maps for this region is of prime importance for future susceptibility assessment. 

Extensive soil testing to generate geotechnical maps is also deemed necessary. Geotechnical tests 

for new constructions in any area and particularly in landslide-proned zones should be a rule as 

this would aid in the implementation of appropriate stabilization measures. 
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Summary 

Limbe town and surrounding areas on the SE foot slopes of the active Mt Cameroon Volcano, 

have experienced numerous small-scale shallow landslides within the last 20 years. These 

resulted in the loss of ca. 30 lives and significant damage to farmland and properties. In the 

first section of this thesis, landslides and their scars are identified in the field and their 

geometry systematically measured to construct a landslide inventory map for the study area. 

Typical slides within the study area are small-scale, shallow, translational earth and debris 

slides although some rotational earth slides were also documented. In total 63 landslide scars 

were identified. The depletion zones have mean widths of 22 m + 17 m and lengths of 25 + 23 

m. The estimated aerial extent of landslide scars and the volume of generated debris range 

from 10 to 10
4
 m

2
 and from 2 x 10

0
 to 5 x 10

4
 m

3
, respectively. By plotting these scars in a GIS 

environment, it is observed that landslides are not uniformly distributed within the study area 

but are spatially clustered. Specific landslides are investigated in detail to identify site-specific 

controlling and triggering factors. This is aimed at constraining key input parameters and their 

variability for subsequent susceptibility and risk modelling for immediate local and regional 

applications in land-use planning. A key finding is that most slope instabilities within the study 

area are associated with and appear to be exacerbated by man-made factors such as excavation, 

anarchical construction and deforestation of steep slopes. Prolonged, high-intensity rainfall 

notably during localized storms is the principal triggering factor identified so far. The findings 

from this case study have relevance to understand some key aspects of locally devastating 

slope instabilities that commonly occur on intensely weathered steep terrains across subtropical 

Africa and in the subtropics worldwide and affecting an ever denser and most vulnerable 

population. 

Previous studies suggest that the occurrence of landslides in any area may be attributed to the 

geotechnical, mineralogical and chemical properties of the soils as well as forces acting on 

these materials. Thus after identifying the spatial distribution of landslides in the Limbe area, it 

was necessary to characterise the nature of the landslide-prone soils. In the third and fourth 

chapters of this thesis, geotechnical, mineralogical and chemical characterisation of some 

selected landslide scars is performed to obtain insights into the role the soil characteristics play 
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in the occurrence of shallow translational landslides. This involve digging six, 2.5 to 4 m deep 

pits into three landslide scars. From these pits, the soil profile was described, in-situ shear tests 

performed on the walls of the pit and samples collected for laboratory analysis. Laboratory 

results show that the soils are dominantly inorganic silts of high plasticity according to the 

Unified Soil Classification System. Bulk density varies from 1.11 to 1.60 g/cm
3
, specific 

gravity from 2.76 to 2.98 g/cm
3
, porosity from 43 to 62 %, and natural moisture content from 

38.2 to 56.3 %. The plasticity index range for most of the samples is greater than 15 and the 

soils are thus not liquefiable. Permeability values range from 3.62 x 10
-10 

to 6.90 x 10
-10 

m/s. 

Undrained triaxial tests performed on reconstructed samples yield cohesion and effective angle 

of internal friction values of 42 to 67.9 kPa and 34.2 to 34.8°, respectively. These values are 

high, thus the calculated factor of safety using a standard infinite slope model for these slopes 

is greater than 1.  

X-ray diffraction analysis indicate that the clay fraction of the soils is made up of both swelling 

and non-swelling clays. Bulk soil samples contain sanidine, anatase, goethite, magnetite and 

ilmenite, all accounting for the high specific gravity values recorded in this study. The 

mineralogical composition varies from one profile to another with 1:1 clays being abundant in 

some profiles and 2:1 clays more significant in others. Clay mineralogy however, does not 

change significantly with depth in the same profile. It is concluded that the soils, from a 

geotechnical point of view, are highly stable. Slope instability is thus attributed to other factors 

than pure loading on the soils. Field observations suggest that the presence of fracture 

permeability may play a major role in the sliding mechanism. This is most likely because the 

rocks in this area are highly fractured and weathering is not uniform. Through fractures, water 

easily penetrates into a more permeable layer overlain by a low-permeability clay horizon. This 

results in an upward wetting front that is prevented from freely rising by the presence of a low 

permeability horizon above, resulting in the development of excessive positive pore pressures 

lifting up and mobilizing the overlying soil column. Furthermore, chemical analysis was made 

to determine the degree of weathering that the rock has experienced and the behaviour of some 

major and some trace elements during weathering. It is noted that all alkali and alkali earth 

metals are depleted while SiO2, Al2O3, Fe2O3 and TiO2 become enriched. All trace elements 
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analysed in this study (Ba, Sr, Zr, V, Cr, Ni, Ce, Y, Sc and Co) are relatively enriched to 

varying degrees with the notable exception of Sr that is significantly depleted. 

From field and laboratory investigations together with data from previous studies, ten potential 

causal factors are identified and used in landslide susceptibility modelling. In Chapter 5 of this 

thesis, a raster-based data driven method involving seed cells is used to construct a landslide 

susceptibility map for the Limbe area. Factors considered to be potential controls on the 

occurrence of slope failure within this area include slope gradient and direction, rock type, 

distance from roads, mean annual precipitation, soil type, land use type, stream density, 

distance from streams and from geological structures. Landslide data is randomly divided into 

a training (75 %) and validation dataset (25 %) and seed cells are generated by creating 25 m 

buffer zones around the head scarp of each scar. This method is advantageous because the 

buffer takes into account the characteristics of the immediate vicinity of the slide and provides 

the best representation of the pre-failure properties of the considered slope. Though all factors 

used in this study were operational from field observations, normalised factor weighting 

(information values) were not significant for two factors, thus several factor groupings were 

evaluated to identify the best predictive factor combination. Our preferred model combines the 

weights of 6 factors (i.e. slope gradient, land use, mean annual precipitation, stream density, 

proximity to roads and slope orientation). Based on this model, 14.8, 41.8, 26.5, 12.2 and 4.6 

% of the study area are classified into the very low, low, moderate, high and very high 

susceptibility categories, respectively. Using the validation dataset, 7.1 % of the seed cells are 

categories into the low susceptibility class, 14.3 in the moderate, 31.0 and 47.6 % of the 

validation seed cells in the high and very high susceptibility category respectively.  

To estimate the degree to which humans and infrastructure in the study area are at risk of being 

affected by future landslides, an inventory of roads, key individual structures frequently 

occupied by a large number of persons (e.g. churches, markets, hospitals, schools, financial 

institutions), and the outline of built-up areas in 2000 and its extension as at 2008 was used. 

The outline of built-up areas act as a proxy for the total population, while the road network acts 

as a fingerprint to the disruption of economic activities. Of the 24.2 km
2
 of urban extension 

from 2000 to 2008, 9 % was located in the high and very high susceptibility categories. In total  
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14 administrative buildings, 10 schools, 4 clerical institutions, 8 bridges, 3 health facilities, 2 

financial institutions, and 1 portable water supply tank and ~23 km of roads are located within 

the high to very high susceptibility classes. From the susceptibility map, it is observed that vast 

areas on the Mabeta massif are susceptible to failure with more stable areas occurring to the E 

(Ombe, Mutengene and Esuke areas), N (Wututu and Tole areas) and W (Bota Ngeme area) of 

Limbe city that could be used for human habitation or the expansion of urban developmental 

projects. If construction on the Mabeta massif is however unavoidable, low-cost 

bioengineering and other stabilization techniques should be put in place using the expertise of 

civil and geotechnical engineers. 

In an attempt to evaluate rainfall thresholds required to trigger landslides, it is observed that 

high intensity rain generally above 110 mm per day following dry periods of 2-3 days would 

result in the occurrence of landslides. Also, lower intensity and long duration of 60 mm for 3 to 

4 days rolling (> 210 mm, 3 days cumulative rainfall)  mayalso result in slope failure within 

the Limbe area. 

Overall, this thesis provides a description based on first-hand field observations of the 

geometric properties of landslides on the SE foot slopes of Mt Cameroon and proposes two 

conceptual models of landslide mechanisms. It also provides a better understanding of the 

causes of landslide problems that can be extended to other areas suffering from small-scale but 

devastating landslide issues in subtropical areas where high temperatures and heavy rainfall 

dominate. In addition to the benefit of this work to assist in civil protection and urban planning 

efforts in SW Cameroon, the low-cost readily applicable landslide susceptibility approach does 

not require intensive computer resources or extensive computer modelling experience and has 

the potential to support geohazard risk scientists in developing countries where modelling 

skills are limited. 
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Samenvatting 

De stad Limbe en haar omgeving, gelegen op de zuidoostelijke lage flanken van de actieve 

vulkaan Mount Cameroon, werden in de voorbije 20 jaar getroffen door talrijke kleinschalige 

aardverschuivingen. Deze hebben ongeveer 30 dodelijke slachtoffers geëist en belangrijke 

schade toegebracht aan landbouw en infrastructuur. In het eerste deel van deze thesis worden 

aardverschuivingen en hun littekens geïdentificeerd in het veld en wordt hun geometrie 

systematisch opgemeten om op deze manier een inventarisatiekaart te kunnen maken van 

aardverschuivingen voor het studiegebied. De typische aardverschuivingen die in het 

studiegebied voorkomen, zijn kleinschalige, ondiepe, translationele aard- en puinlawines hoewel 

enkele rotationele aardverschuivingen ook werden opgetekend. In totaal werden 63 littekens van 

aardverschuivingen geïdentificeerd. De aardverschuivingszones hebben een gemiddelde breedte 

van 22 ± 17 m en een gemiddelde lengte van 25 ± 23 m. De totale oppervlakte van de littekens 

van de aardverschuivingen en het volume van verplaatst puin worden geschat op respectievelijk 

10 – 10
4
 m² en 20 – 5 x 10

4
 m³. Door deze littekens in een GIS op te nemen, valt het op dat de 

aardverschuivingen niet uniform verdeeld voorkomen in het studiegebied, maar ruimtelijk 

geclusterd zijn. Specifieke aardverschuivingen worden in detail onderzocht om de specifieke 

factoren te bepalen die bijdroegen tot de onderliggende oorzaak en de uiteindelijke aanleiding 

van de verschuiving. De bedoeling hiervan is om de determinerende inputparameters en hun 

variabiliteit vast te leggen voor latere susceptibiliteit- en risicomodellering voor zowel lokale als 

regionale toepassingen in ruimtelijke ordening. Een belangrijke conclusie is dat de meeste 

hellingsinstabiliteiten in het studiegebied geassocieerd zijn aan en lijken te worden verergerd 

door factoren die door de mens geïnduceerd worden zoals uitgraving, ongeordende bouwwerken 

en ontbossing van steile hellingen. Aanhoudende hevige regenval, vooral tijdens lokale stormen, 

is de voornaamste aanleidingsfactor die totnogtoe geïdentificeerd is. De resultaten van deze 

studie zijn relevant om de lokale verwoestende hellingsinstabiliteiten te begrijpen die vaak 

voorkomen op intens verweerd en steil terrein in subtropische gebieden, zowel in Afrika als 

elders in de wereld, en die een effect hebben op een steeds grotere en kwetsbaardere bevolking.  

Eerdere studies hebben aangetoond dat het voorkomen van aardverschuivingen in eender welk 

gebied kan worden toegeschreven aan de geotechnische, mineralogische en chemische 

eigenschappen van de bodems, alsook aan de krachten die inwerken op het materiaal. Daarom 
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was het, na de identificatie van de ruimtelijke verdeling van de aardverschuivingen in het gebied 

rond Limbe, nodig om de aard te karakteriseren van de bodems die eventueel onderheving 

kunnen zijn aan aardverschuivingen. In het derde en vierde hoofdstuk van deze thesis wordt een 

selectie van littekens van aardverschuivingen geotechnisch, mineralogisch en chemisch 

gekarakteriseerd om inzicht te verschaffen in de rol die deze bodemkenmerken spelen in het 

voorkomen van ondiepe, translationele aardverschuivingen. Hiervoor werden zes 2.5 tot 4 m 

diepe putten gegraven in drie littekens van aardverschuivingen. In elk van deze putten werd het 

bodemprofiel beschreven, een in situ schuifproef uitgevoerd op de wanden van de put, en 

monsters genomen voor laboratoriumanalyses. Testresultaten tonen aan dat volgens het Unified 

Soil Classification System (bodemclassificatiesysteem, USCS) de bodems voornamelijk bestaan 

uit anorganische silt met een hoge plasticiteit. De bulk dichtheid varieert van 1.11 tot 1.60 g/cm³, 

de materiaaldichtheid van 2.76 tot 2.98 g/cm³, de porositeit van 43 tot 62 %, en het natuurlijke 

vochtgehalte van 38.2 tot 56.3 %. Voor de meeste stalen is de plasticiteitsindex groter dan 15. De 

bodems zijn dus niet vloeibaar. De permeabiliteit varieert tussen 3.62 x 10
-1

 en 6.90 x 10
-10

 m/s. 

Niet-gedraineerde triaxiale tests op gereconstrueerde monsters geven waarden voor de cohesie en 

effectieve hoek van interne wrijving van respectievelijk 42 – 67.9 kPa en 35.2 – 34.8°. Dit zijn 

hoge waarden waardoor de factor van veiligheid berekend aan de hand van een standaard 

onbeperkt hellingsmodel voor de bestudeerde hellingen meer dan 1 bedraagt.  

X-stralendiffractie onderzoek toont aan dat de kleifractie van de bodems bestaat uit zowel 

zwellende als niet-zwellende kleimineralen. Bulkmonsters bevatten sanidien, anataas, goethiet, 

magnetiet en ilmeniet die bijdragen aan de hoge materiaaldichtheid van de bestudeerde bodems. 

De mineralogische samenstelling varieert tussen de verschillende profielen, waarbij 1:1 

kleimineralen meer voorkomen in bepaalde profielen, en 2:1 kleimineralen dan weer belangrijker 

zijn in andere. De kleimineralogie verandert echter niet significant met de diepte in hetzelfde 

profiel, en kan dus in dit studiegebied niet gebruikt worden om de meest waarschijnlijke diepte 

van een mogelijk toekomstig glijvlak in te schatten. Vanuit een geotechnisch standpunt bekeken 

zijn de bodems zeer stabiel. Hellingsinstabiliteit wordt dus toegeschreven aan andere factoren 

dan zuivere lading op de bodems. Veldwaarnemingen suggereren dat de aanwezigheid van 

breukgerelateerde permeabiliteit een belangrijke rol zou kunnen spelen in het 

verschuivingsmechanisme. Dit is zeer waarschijnlijk omdat de gesteenten in dit gebied sterk 

gebroken zijn en hun verwering niet uniform gebeurt. Water kan gemakkelijk langs breuken in 
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een meer permeabele laag terechtkomen die bedekt wordt door een weinig permeabele kleilaag. 

Dit leidt tot een opwaarts stijgend waterfront dat wordt verhinderd om vrij te stijgen door de 

aanwezigheid van een bovenliggende weinig permeabele laag. Dit resulteert in de ontwikkeling 

van een excessieve opwaartse druk in de poriën die de bovenliggende bodemmassa optilt en 

mobiliseert. Verder werden chemische analyses uitgevoerd om de graad van verwering die het 

gesteente heeft ondergaan en het gedrag van bepaalde hoofd- en spoorelementen tijdens 

verwering te bepalen. De bodems zijn verarmd in alkali- en aardalkalimetalen, en aangerijkt aan 

SiO2, Al2O3, Fe2O3 en TiO2. Alle spoorelementen geanalyseerd in deze studie (Ba, Sr, Zr, V, Cr, 

Ni, Ce, Y, Sc en Co) zijn in verschillende mate aangerijkt, met uitzondering van Sr dat duidelijk 

uitgeloogd is.  

Uit veld- en laboratoriumanalyses, aangevuld met data uit eerdere studies, werden tien mogelijke 

oorzaakfactoren geïdentificeerd, die gebruikt werden in de modellering van susceptibiliteit voor 

aardverschuivingen. In Hoofdstuk 5 worden de data geplaatst in een raster om een 

susceptibiliteitskaart te construeren voor aardverschuivingen in het Limbe gebied. De factoren 

die een mogelijke invloed hebben op het al dan niet voorkomen van een afglijding in het 

studiegebied zijn: hellingsgradiënt en –richting, gesteentetype, afstand tot wegen, gemiddelde 

jaarlijkse neerslag, bodemtype, landgebruik, dichtheid van riviernetwerk, afstand tot rivieren, en 

afstand tot geologische structuren (bv. breuken). De gegevens van de aardverschuivingen werden 

willekeurig ingedeeld in een oefendataset (75 %) en een validatiedataset (25 %). Invoercellen 

worden gegenereerd door bufferzones van 25 m te creëren rond de aflijning van elke 

aardverschuiving. Deze methode is voordeling omdat de bufferzone de kenmerken van de 

onmiddellijke omgeving rond de verschuiving in rekening brengt en de kenmerken van de 

betrokken helling vóór de verschuiving het best weergeeft. Hoewel alle factoren die in deze 

studie gebruikt werden duidelijk van belang waren zoals bleek uit de veldwaarnemingen, werden 

voor twee factoren de genormaliseerde gewogen waarden niet significant bevonden. Daarom 

werden verschillende factorgroeperingen geëvalueerd om de best voorspellende combinatie te 

identificeren. Het model dat de voorkeur geniet, combineert het gewicht van zes factoren: 

hellingsgradiënt en –richting, landgebruik, gemiddelde jaarlijkse neerslag, dichtheid van 

riviernetwerk, afstand tot wegen. Op basis van dit model wordt 14.8, 41.8, 26.5, 12.5 en 4.6 % 

van het studiegebied respectievelijk ingedeeld in de categorieën zeer lage, lage, matige, hoge en 

zeer hoge susceptibiliteit. In het studiegebied wordt 16.9 % dus gecategoriseerd in de klasses van 
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hoge tot zeer hoge susceptibiliteit. Met de validatiedataset wordt 7.1 % van de invoercellen 

ingedeeld in de klasse van lage susceptibiliteit, en 14.3% in de matige, 31 % in de hoge en 47.6 

% in de zeer hoge susceptibiliteit.  

Om in te schatten in welke mate mens en infrastructuur in het studiegebied risico lopen om 

geaffecteerd te worden door een aardverschuiving, werd een inventaris gemaakt van wegen, 

belangrijke infrastructuurelementen die regelmatig door een grote hoeveelheid mensen tegelijk 

bezocht worden (bv. kerken, markten, ziekenhuizen, scholen, financiële instellingen), en de 

bebouwde oppervlakte in 2000 in vergelijking met haar uitbreiding in 2008. De bebouwde 

oppervlakte is een indicatie voor de totale bevolking, terwijl het wegennetwerk van vitaal belang 

is voor economische activiteiten. De bebouwde oppervlakte is tussen 2000 en 2008 toegenomen 

met 24 km², waarvan 9 % gelokaliseerd is in de categorieën van hoge tot zeer hoge 

susceptibilitieit. Tien administratieve gebouwen, elf scholen, drie kerken, drie 

gezondheidsinstellingen, drie financiële instellingen, één voorraadtank voor drinkbaar water, 

zeven bruggen en ongeveer 23 km wegen zijn gelokaliseerd in de zones van hoge tot zeer hoge 

susceptibiliteit. Op de susceptibiliteitskaart is het duidelijk dat aanzienlijke delen van het Mabeta 

massief potentieel onderhevig zijn aan afglijdingen. De meer stabiele gebieden komen voor ten 

oosten (Ombe, Mutengene en Esuke), ten noorden (Wututu en Tole) en ten westen (Bota Ngeme) 

van de stad Limbe, en zouden preferentieel kunnen aangewend worden voor bewoning of de 

uitbreiding van (ontwikkelings)projecten. Indien bebouwing op het Mabeta massief echter 

onvermijdelijk is, zouden goedkope landbouwkundige en andere stabilisatietechnieken moeten 

toegepast worden gebruik makende van de expertise van burgerlijke, landbouwkundige en 

geotechnische ingenieurs. 

Uit de evaluatie van de hoeveelheid neerslag die nodig is om een aardverschuiving in gang te 

zetten, wordt geconcludeerd dat hevig intense neerslag van meer dan 110 mm per dag na 

periodes van 2 à 3 dagen, aanleiding kan geven tot het voorkomen van aardverschuivingen. 

Daarnaast kunnen minder intense regens gedurende een langere periode, meer bepaald 60 mm 

per dag gedurende 3 à 4 dagen na elkaar, ook leiden tot hellingsinstabiliteiten in het Limbe 

gebied.  
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Deze thesis bevat een beschrijving van veldwaarnemingen van de geometrische eigenschappen 

van aardverschuivingen op de zuidoostelijke lage flanken van Mount Cameroon en stelt daarbij 

twee conceptuele modellen van aardverschuivingsmechanismen voor. Zij draagt ook bij tot een 

beter begrip van de oorzaken van aardverschuivingen, die kunnen worden uitgebreid naar andere 

gebieden met kleinschalige, maar verwoestende aardverschuivingen in de subtropen die 

gedomineerd worden door hoge temperaturen en hevige neerslag. De resultaten van dit werk 

kunnen gebruikt worden voor ontwikkelingen in civiele bescherming en stedelijke planning in 

ZW Kameroen. Daarnaast biedt de goedkope en gemakkelijk toepasbare methode voor het 

bepalen van de aardverschuivingsgevoeligheid het voordeel dat ze geen intensieve 

computerberekeningen of uitgebreide ervaring in numerieke modellering vereist. De methode 

heeft daarom het potentieel om aangewend te  kunnen worden door wetenschappers betrokken 

bij studies naar natuurlijke gevaren en gerelateerde risico‟s in ontwikkelingslanden waar ervaring 

in modellering vaak beperkt is.  
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Appendix 

slide 
ID 

Longitude 
in UTM 

Latitude 
in UTM 

Elevation 
(m) 

Width of 
scarp(m) 

Height of 
scarp (m) 

Length 
(m) 

Initial 
slope 

Volume 
(m

3
) 

Area 
(m

2
) 

 
Type 

1 523900 441613 58 31.6 2.8 23.7 22 1098 749 Complex 
2 523720 440616 114 85.0 10.0 110.0 30 48976 9350 Translational 
3 527485 438384 157 30.0 5.0 47.9 N/A 3764 1437 Translational 

4 526511 438697 194 39.0 3.0 27.6 46 1691 1076 Translational 

5 524517 441942 124 24.5 3.0 108.0 26 4158 2646 Translational 

6 524980 441957 110 17.9 3.5 20.0 32 656 358 Translational 

7 524967 441942 105 40.0 4.0 40.0 27 3352 1600 Translational 

8 524962 442031 81 37.0 5.0 29.0 28 2810 1073 Translational 

9 523737 441716 36 12.5 5.0 13.0 32 426 163 Translational 

10 523710 441747 33 21.2 2.0 27.0 28 600 572 Translational 

11 524741 442101 43 9.5 2.5 22.6 32 281 215 Translational 

12 524724 443904 78 11.5 3.5 14.5 28 306 167 Translational 

13 524712 443952 104 22.5 6.0 57.6 32 4073 1296 Translational 

14 524706 443902 76 16.5 2.0 10.0 28 173 165 Translational 

15 524637 443881 86 17.0 2.5 6.0 32 134 102 Translational 

16 527967 450028 186 8.4 1.1 6.3 28 30 53 Translational 

17 528141 450164 213 20.3 1.5 6.2 28 99 126 Rotational 

18 525626 443912 112 12.7 8.3 5.0 45 276 64 Translational 

19 525683 443932 129 9.0 2.5 15.0 28 177 135 Translational 

20 523765 441418 103 18.2 5.3 34.3 22 1733 624 Translational 

21 523903 441501 96 20.9 2.0 39.8 36 871 832 Translational 

22 523907 441491 84 30.0 1.5 15.1 22 356 453 Translational 

23 529936 449242 184 3.0 3.0 0.5 70 2 2 Rock fall 

24 529951 449253 182 39.4 2.0 0.5 70 21 20 Translational 

25 530086 449339 184 79.0 5.6 12.0 30 2781 948 Translational 

26 528870 449164 179 15.0 1.2 3.1 46 29 47 Translational 

27 529801 448735 196 30.0 8.0 - - - - Translational 

28 525200 441895 124 55.1 5.0 52.1 26 7519 2871 Translational 

29 524507 441968 121 15.0 3.5 3.0 60 83 45 Translational 

30 523968 441888 14 15.0 10.0 1.0 70 79 15 Translational 

31 534675 453220 289 8.0 1.0 12.0 0 50 96 Translational 

31 534675 453220 289 8.0 1.0 12.0 0 50 96 Translational 

32 534740 453428 322 25.0 3.0 13.0 0 511 325 Translational 

33 534753 453427 320 12.0 2.0 12.0 0 151 144 Translational 

34 537788 452214 110 34.0 1.0 10.0 40 178 340 Translational 

35 523619 444280 33 8.0 0.9 - - - - Translational 

36 523804 444280 34 7.0 5.0 - - - - Translational 

37 531282 450718 174 - - - - - - Translational 

38 519728 449274 628 - - - - - - Translational 

39 525017 448109 246 0.0 0.0 0.0 - - - Translational 

41 523466 440966 140 19.2 2.8 32.0 29.8 901 614 Translational 

40 524928 443980 103 8.0 1.0 0.0 - - - Translational 

42 527551 450455 221 8.0 1.5 0.0 - - - Translational 

43 527579 450403 242 13.6 5.2 0.0 - - - Translational 

44 525724 443941 133 30.0 7.0 0.0  - - Translational 

45 525976 444147 223 43.1 2.0 42.1 32 1901 1815 Translational 

47 524754 444622 164 31.1 4.0 45.0 30 2932 1400 Translational 

48 524934 444748 162 15.0 2.5 30.0 40 589 450 Translational 

49 527319 450454 228 16.0 2.5 31.7 20 664 507 Translational 

50 524725 444033 147 8.8 2.0 13.2 58 122 116 Translational 

51 525228 441975 97 8.0 1.0 10.0 - 42 80 Translational 

52 529349 459734 716 9.0 1.0 20.0 30 94 180 Translational 

53 528052 453405 461 10.0 1.0 50.0 36 262 500 Translational 

54 522967 444229 65 4.0 1.0 10.0 65 21 40 Translational 

55 522952 444282 83 9.5 1.0 9.0 64 45 86 Translational 

56 522947 444309 86 10.0 1.0 7.0 64 37 70 Translational 

57 523785 445174 106 17.7 3.0 6.0 40 167 106 Translational 

58 527458 448862 187 6.0 1.0 6.0 30 19 36 Translational 

59 527974 449037 204 20.8 2.3 61.6 26 1539 1277 Translational 

61 520080 444212 138 52.5 6 36.0 34 5940 1890 Rotational 

62 519827 444235 80 46.2 6 45.0 36 6534 2079 Translational 

Table A. 1. Location of individual slides and their characteristics identified during this study. 
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Appendix 2 

 

slide ID Location name Year of occurrence 
Farm 
land Culvert 

Building 
destroyed 

Road 
block 

Casualties 
/injury 

Other 
damage 

1 Bonjo 21-Jul-05 X - - X - - 
2 Mondoli 27-Jun-01 X - - - - - 
3 Chop farm 27-Jun-01 - X - X - - 
4 Chop farm 27-Jun-01 - - - X - - 
5 Makuka 27-Jun-01 X - X - - - 
6 Makuka 27-Jun-01 - - - - - - 
7 Makuka 27-Jun-01 X - - - - - 
8 Makuka unknown - - - - - - 
9 Bonjo 2004 - - X - - - 

10 Bonjo 1999 - - X - - - 

11 Makuka 08-Aug - -  - - - 
12 Mabeta New Layout  27-Jun-01 X - X - - - 
13 Mabeta New Layout  27-Jun-01 X - X - - - 
14 Mabeta New Layout  27-Jun-01  - - - - - 
15 Mabeta New Layout  27-Jun-01 X - - - - - 
16 Mt Mbinde  unknown X - - - - - 
17 Mt Mbinde  unknown X - - - - - 

18 Mabeta New Layout  unknown - - - - - - 
19 Mabeta New Layout  unknown - - - - - - 
20 Bonjo unknown X - - - - - 
21 Bonjo unknown X - - - - - 
22 Bonjo unknown - - - - - - 
23 Ombe1 unknown X - - - - - 
24 Ombe 2 unknown X - - - - - 
25 Ombe 3 unknown X - - - - - 
26 Tomatel 1 unknown X - - - - - 
27 Tomatel 2 unknown X - - - - - 
28 Makuka 27-Jun-01 X - - - - - 
29 Makuka unknown - - - - - - 
30 Bonjo unknown - - - - - - 
31 Mutengene 2007 - - - - - - 
32 Mutengene 2007 - - - - - - 

33 Mutengene 2007 - - - - - - 
34 Likomba unknown - - - - - - 
35 Cassava farm 27-Jun-01 - - - - - - 
36 Cassava farm 27-Jun-01 - - - - - - 
37 Mevio unknown - - -  - - 
38 Engel Mount unknown - X - - - - 
39 Mile 4 unknown - - - - - - 
40 Mabeta New Layout 27-Jun-01 - - - - - - 
41 Mondoli unknown X - - - - - 

42 Mt Mbinde  unknown X - - - - - 
43 Mt Mbinde unknown X - - - - - 
44 Mabeta New Layout 27-Jun-01  - - - - - 
45 Mabeta New Layout 27-Jun-01 X - 6 - 14 X 
46 Mabeta New Layout  unknown  - - - - - 
47 Towe slide 1  27-Jun-01 X - X - - - 
48 Towe slide 2  27-Jun-01 X - X - -  
49 Mt Mbinde unknown X - - - - - 

50 Mabeta   New Layout unknown - - - - - - 
51 Makuka  unknown - - - - - - 
52 Bonduma 18-Jul-06 X - 1 - 4 - 

53 Balondo hill unknown X - - - - - 
54 Unity quarter 29-Jun-09 - - 1 - - - 

55 Unity quarter 29-Jun-09 - - 1 - 2 - 
56 Unity quarter 29-Jun-09 - - 1 - - - 
57 Lifanda South Jun-09 - - 1 - - - 

58 Moliwe 29-Jun-09 X - - - - - 
59 Moliwe 29-Jun-09 - - - - - - 

60 Mile one Limbe Jun-09 X - - - - - 
61 Kie Village 06-Aug-09 X X X 1 1 - 
62 Kie Village Aug -09 - - - - - - 

Table A. 2. Year during which landslides were recorded with associated damage involved at each site. „Unknown‟ 

means the actual date of occurrence is not known but morphologic properties show that they took place within the 

last 2 decades. X: damage observed; - damage category not observed 
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Appendix 3  

 
 Particle specific gravity 

(kN/m³) s 27.85  

    

Physical    

parameters 
Confining pressure    (kPa) 49 98 196 392 CS CS 

Dry unit weight (kN/m3) 12.74 13.02 12.97 12.94 12.88 12.60 

Porosity  n 0.55 0.54 0.54 0.55 0.55 0.56 

Void ratio e 1.23 1.18 1.19 1.20 1.21 1.26 

Moisture 

properties 

Initial moisture content (%)  41.60 41.48 42.03 42.47 41.23 43.03 

Initial    degree of saturation 

(%)  98.63 99.80 98.95 98.77 98.93 99.29 

Final moisture content (%) wf 48.11 48.14 47.23 45.89 41.23 43.51 

Final degree of saturation (%) Sf 100.00 100.00 100.00 100.00 98.93 100.00 

Condition at 

failure  
Cell pressure (kPa) σ 49.0 98.0 196.0 392.0 0.0 0.0 

Effective normal stress (kPa) ' 321.32 470.36 539.24 797.36 808.79 362.86 

Effective lateral pressure    
(kPa) ' 27.29 49.23 78.78 153.57 0.00 0.00 

Effective stress ratio 

' '

1177.32 955.51 684.53 519.23 808.79 362.86 

Pore pressure    (kPa) u 21.71 48.77 117.22 238.43 0.00 0.00 

Relative deformation    (%) 1.31 2.56 1.86 2.32 2.47 2.53 

Pore pressure is deducted from the values given in the table      

 Pore pressure (KPa) u0 196.00      

 

Table A. 3. Parameters and components used and derived from the triaxial cell test for  samples  from the pyroclastic 

cones 

 
 Particle specific gravity 

kN/m³ s 27.86  

    

Physical    

parameters 
Confining pressure    (kPa) 49 98 196 392 CS CS bis 

Dry unit weight (kN/m3) 14.28 14.20 14.59 14.82 13.88 14.18 

Porosity  n 0.49 0.49 0.48 0.47 0.50 0.49 

Void ratio e 0.95 0.96 0.91 0.8789 1.01 0.96 

Moisture 

properties 

Initial moisture content (%) wo 33.61 33.46 32.72 34.35 35.10 32.58 

Degree of saturation (%) So 95.51 95.16 95.50 94.30 99.06 95.94 

Final moisture content (%) wf 35.88 36.05 35.90 34.92 35.58 33.02 

Final degree of saturation (%) Sf 100.00 100.00 100.00 100.00 100.00 97.23 

Failure 

conditions 
Total stress (kPa) 49.0 98.0 196.0 392.0 0.0 0.0 

Effective normal stress (kPa) ' 273.60 410.79 589.29 858.57 105.95 171.57 

Effective lateral pressure    

(kPa) ' 40.14 58.25 116.53 192.40 0.00 0.00 

Effective stress ratio 

' '
681.63 705.23 505.69 446.24 105.95 171.57 

Pore pressure    (kPa) u 8.86 39.75 79.47 199.60 0.00 0.00 

Relative deformation    (%) 1.41 2.43 2.52 5.45 14.71 2.35 

Pore pressure is deducted from the values given in the table     

 Pore pressure (KPa) u0 196.00      

Table A. 4.  Parameters and components used and derived from the triaxial cell test for samples from lava flows. 



Appendix 

 

215 

 
    
Fig. A. 1. Test results of consolidated undrained triaxial tests on reconstructed samples from landslide scars in Limbe, 

SW Cameroon. Stress envelopes and Mohr circles of: a) total; b) effective stress envelope for samples from the 

pyroclastic cone; c)  total; d) Effective stress envelope stress for samples from weathered lavaflow; e) plot of deviator 

stress against effective stress for samples from the pyroclastic cone;  and f) plot of deviator stress against effective 

stress for samples from the weathered lavaflow.  σ1: normal stress; σ3: axial stress; C: total cohesion; Ø: total angle of 

internal friction; σ1‟: effective normal stress; σ3‟: axial stress; C‟: effective cohesion; Ø‟: effective angle of internal 

friction. 

 

C = 66.3kPa 

Ø = 34.6° 
C = 41kPa 

Ø = 35.6° 
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Appendix 4 

 

 

 Depth (cm) 

50-

70 

100 -

120 

190 - 

210 

50 - 

70 

100 -

130 

200 - 

230 

40-

60 

150- 

170 

260- 

280 

40-

60 

160-

180 

280-

300 

30-

50 

100-

120 

50-

70 

160-

180 

220-

240 

290-

310 

Sample 

number 

P1 
S01 

P1 
S02 

P1 
S03 

P4 
S05 

P4 
S06 

P4 
S07 

P3 
S08 

P3 
S09 

P3 
S10 

P2 
S11 

P2 
S12 

P2 
S13 

P5 
S14 

P5 
S15 

P6 
S17 

P6 
S18 

P6 
S19 

P6 
S20 

Particle 
diameter Percentage less  than 

2380  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1680  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.2 0.0 0.1 0.2 0.2 0.1 
840   1.2 0.2 1.1 4.6 0.1 0.1 0.1 0.1 0.1 2.0 10.0 19.3 2.4 2.8 1.6 3.6 3.6 1.6 
420   2.2 1.0 6.8 21.2 0.3 0.7 0.4 0.3 0.3 10.1 28.8 51.1 8.4 11.8 6.3 12.1 12.1 7.1 
210  3.4 1.8 12.6 29.8 0.6 1.5 0.7 0.6 0.5 18.5 36.5 61.4 14.9 20.4 10.4 18.3 18.3 12.3 
105 5.0 3.0 18.9 32.4 1.0 2.0 0.9 0.9 0.7 26.3 42.1 65.2 23.8 29.5 15.0 24.8 24.8 20.2 
74  5.8 3.8 20.3 32.5 1.2 2.0 1.0 1.0 0.8 29.2 44.7 66.6 26.9 33.4 16.9 28.0 28.0 22.5 
45  43.7 41.6 25.9 37.6 9.1 9.7 7.1 10.3 9.4 34.3 48.6 73.5 38.7 49.1 24.8 32.6 35.7 34.2 

32  49.6 42.2 28.9 43.5 10.6 14.2 8.6 10.3 12.3 37.5 51.6 76.4 40.2 55.1 32.3 39.4 41.3 40.6 
23  52.6 43.1 34.8 46.5 13.5 18.7 10.1 11.8 15.3 42.8 54.6 79.4 46.3 61.1 36.9 46.9 49.2 48.6 
15  55.5 49.1 39.3 49.5 16.4 24.7 11.6 13.3 22.6 49.1 57.7 83.3 50.9 67.0 42.9 55.4 56.0 54.9 
8  61.5 52.1 43.7 55.4 20.8 32.3 14.5 13.3 29.9 56.5 60.7 87.2 58.6 73.0 51.9 66.9 65.6 69.8 
6  64.4 55.1 46.7 58.4 25.2 36.8 17.5 14.8 34.3 61.8 63.7 89.2 63.2 77.5 54.9 74.9 71.8 76.1 
4  67.4 58.1 51.1 61.3 28.1 41.3 20.4 16.3 40.1 64.5 66.7 90.2 66.3 82.0 57.9 79.4 78.6 80.4 
2  74.8 64.1 55.6 67.3 32.5 51.8 26.3 26.7 47.4 70.3 71.3 92.1 72.4 88.0 63.9 85.7 85.9 87.8 

0.9 79.2 71.5 65.9 70.3 39.9 54.8 32.2 32.7 54.7 72.4 75.8 94.1 77.0 91.0 69.9 88.0 91.0 92.6 

Table A. 5.  Percentage retained fraction from dry sieving and sedimentation analysis (granulometric analysis of soil samples from landslide scars in Limbe). 

Data set used in plotting grain size distribution curves in Chapter 3.  
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Appendix 5. 

 X-ray diffractograms for samples collected from landslide scars in the Limbe area.  

 

Bulk powder sample diffractogram for BAS 02 from horizon B of slide 20 at Bonjo. 

 

Bulk powder sample diffractogram for sample BBS 02 from horizon C of slide 20 at Bonjo. 

 

Bulk powder sample diffractogram for MSD-03 from horizon B Slide 2 at Mandoli. 
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Diffractogram of oriented clay fraction of sample MSD-03 from horizon B Slide 2 at Mandoli. 

 

Bulk powder sample diffractogram for MSS-03 from horizon C Slide 2 at Mandoli. 

 

Diffractogram of oriented clay fraction of sample MSS-03 from horizon C Slide 2 at Mandoli. 



Appendix 

 

219 

 

Bulk powder sample diffractogram for sample P2S10 from Mabeta New Layout. 

 

Bulk powder sample diffractogram for sample P2S12 from Pit 2 at Mabeta New Layout. 

 

Bulk powder sample diffractogram for sample P2S13 from  Pit 2 Mabeta New Layout. 
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Appendix 6 

Soil type 

Total 
number 

of pixels 

Number 
of seed 

cells 

% of total 
area 

covered 

%  
of seed 

cells 

Seed cell 
density  

factor class 
Weighted 

density 
Normalised 

values 
Ash soil 325142 18 36.07 8.11 0.55 -1.91 0.55 
Valley clay soil 100100 26 11.10 11.71 2.60 0.13 2.0 
Rocky soil 15272 4 1.69 1.80 2.62 0.16 2.62 
Old volcanic soil 255785 171 28.37 77.03 6.69 4.22 6.69 
Lithosol 19980 0 2.22 0.00 0.00 -2.46 0.00 
Lava soil 158647 3 17.60 1.35 0.19 -2.27 0.19 
Fragipan 26590 0 2.95 0.00 0.00 -2.46 0.00 
 901516 222      

Table A. 6. Proportion of pixels within the study area, seed cells, landslide density and Infoval for the factor soil 

type. 

Land cover 

Total 
number 
of pixel 

Number of 
seed cells 

% of total 
area 

covered 

% of 
seed 
cells 

Seed cell 
density  

factor class 
Weighted 

density 
Normalized 

values 
Built-up area 56294 40 6.24 18.02 7.11 4.64 7.11 
Plantation 323090 39 35.84 17.57 1.21 -1.26 1.21 
Forest 521981 143 57.90 64.41 2.74 0.28 2.74 
Mangrove 150 0 0.02 0.0 0.00 -2.46 0.00 
 901515 222      

Table A. 7. Proportion of pixel within the study area, seed cell, landslide density and Infoval for the factor land use. 

Slope 
Total number of 

pixels 

Number 
of seed 

cells 

% of 
total area 

covered 
% 

 of seed cells 

Seed 
 cell density    
factor class 

Weighted 
density 

Normalised 
values 

0 – 5 415690   2 46.11   0.90   0.05 -2.41   0.05 
5 – 10 204142 26 22.64 11.71   1.27 -1.19   1.27 
10 – 15 139003 67 15.42 30.18   4.82   2.36   4.82 
15 – 20 81374 66   9.03 29.73   8.11   5.65   8.11 
20 – 25 40607 42   4.50 18.92 10.34   7.88 10.34 
25 – 30 14949 18   1.66   8.11 12.04   9.58 12.04 
30 – 35 4836   1   0.54   0.45   2.07 -0.39   2.07 
>35 914   0   0.10   0.00   0.00 -2.46   0.00 
 901515 222      

Table A. 8. Proportion of pixels within the study area, seed cells, landslide density and Infoval for the factor slope 

gradient. 

 

Slope 
orientation 

Total 
number of 

pixels 

Number 
of seed 

cells 

% of total 
area covered 

% of 
seed 
cells 

Seed cell 
density per    
factor class 

Weighted 
density 

Normalised 
values 

N 50319 36 5.58 16.22 7.15 4.69 6.02 

NE 66278 20 7.35 9.01 3.02 0.56 1.89 
E 133797 16 14.84 7.21 1.20 -1.27 0.06 
SE 291615 33 32.35 14.84 1.13 -1.33 0.00 
S 217941 42 24.17 18.92 1.93 -0.54 0.80 
SW 75901 28 8.42 12.61 3.69 1.23 2.56 
W 32955 24 3.66 10.81 7.28 4.82 6.15 
NW 32709 23 3.63 10.36 7.03 4.57 5.90 
 901515 222      

Table A. 9. Proportion of pixels within the study area, seed cells, landslide density and Infoval for the factor slope 

orientation. 
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Distance from 
rivers 

Total 
number 

of pixels 

Number 
of seed 

cells 
% of total 

area covered 

% of 
seed 
cells 

Seed cell 
density    

factor class 
Weighted 

density 
Normalized 

values 
<50 217419 69 24.12 31.08 3.17     0.71 2.25 
50 - 100 181669 28 20.15 12.61 1.54 -0.92 0.62 
100 - 150 122467 33 13.58 14.86 2.69     0.23 1.77 
150 -200 105523 32 11.71 11.71 3.03     0.57 2.11 
200 - 250 66818 30      7.41      7.41 4.49     2.03 3.57 
250 - 300 54115     5      6.00      6.00 0.92 -1.54 0.00 
    >300 153504 25 17.03  17.03 1.63 -0.83 0.70 
 901515 222      

Table A. 10. Proportion of pixels within the study area, seed cells, landslide density and Infoval for the factor 

proximity to stream/river.  

Stream 
density 

Total 
number of 

pixel 
Number of 
seed cells 

% of total 
area covered 

% of 
seed 
cells 

Seed cell 
density    

factor class 
Weighted 

density 
Normalized 

values 
Extremely 
low 110467     6 12.25      2.70 0.54 -1.92 0.54 
Very low  187594 34 20.81 15.32 1.84 -0.65 1.84 
Low 240413 31 26.67 13.96 1.29 -1.17 1.29 
Moderate 187561 75 20.81 33.78 4.00     1.54 4.00 
High 113635 76 12.60 34.23 6.69     4.23 6.69 
Very high 48043    0      5.33 0.00 0.00 -2.46 0.00 
Extremely 
high 313802    0      1.53 0.00 0.00 -2.46 0.00 
 901486 222      

Table A. 11. Proportion of pixels within the study area, seed cells, landslide density, and Infoval for the factor 

stream density.  

 

Table A. 12. Proportion of pixels within the study area, seed cells, landslide density and Infoval for the factor 

proximity to roads.  

Table A. 13. Proportion of pixel within the study area, seed cell, landslide density and Infoval for the factor 

proximity to fault and major lineament. 

 

Distance 
from road 

Total 
number of 

pixels 
Number of 
seed cells 

% of total 
area covered 

% of 
seed 
cells 

Seed cell 
density    

factor class 
Weighted 

density 
Normalised 

values 
0 – 50     65753     46     7.29 20.72 7.00     4.53 5.21 
50 – 100     55820     18     6.19      8.11  3.22     0.76 1.44 
100 – 150     41974     26     4.66     11.71  6.19     3.73 4.41 
>150 737968   132 81.86 59.46  1.79 -0.67 0.00 

Total 901515 222      

Distance    
from Fault 

Total 
number of 

pixels 
Number of 
seed cells 

% of total 
area covered 

% of 
seed 
cells 

Seed cell 
density    

factor class 
Weighted 

density 
Normalised 

values 
<100 141248 75 15..67 33.78 5.31     2.85 4.79 
100-200 116355 48 12.91 21.62 4.13     1.66 3.60 
200-300 96038 30   10.65     13.51 3.12     0.66 2.60 
300-400 75365 19   8.36 8.56 2.52     0.06 2.00 
400-500 59567 17   6.61     7.66 2.85     0.39 2.33 
500-600 48487 14 5.38 6.31 2.89 0.43 2.37 
>600 364455 19 40.43 8.56 0.521 -1.94 0.00 
Total 901515 222      
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Table A. 14. Proportion of pixels within the study area, seed cells, landslide density and Infoval for the factor   

MAP. 

 

MAP 

Total 
number 

of pixels 
Number of 
seed cells 

% of total 
area 

covered 

% of 
seed 
cells 

Seed cell 
density  

factor class 
Weighted 

density 
Normalized 

values 
<2400 67749 0   7.52   0.00 0.00 -2.46 0.00 
2400 - 2800 404360 70 44.85 31.53 1.73 -0.73 1.73 
2800 - 3200 151509 4 16.81    1.80 0.26 -2.20 0.26 
3200 - 3600 107001 58 11.87 26.13 5.42   2.96 5.42 
3600– 4000 109695 75 12.17 33.78 6.84   4.37 6.84 
            >4000 61201 15    6.79   6.79 2.45   -0.01 2.45 

 901515 222      
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