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We present here an automated classification scheme which is particularly well suited to scenarios where the
parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled
with probability distributions in a metric space and classification is conducted using the notion of nearest
neighbors. The presented framework is then applied to the classification of type I and type III edge-localized
modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification
of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types.
Further, the classification scheme is general and can be applied to various other plasma phenomena as well.

I. INTRODUCTION

High confinement regimes in tokamak plasmas are ac-
companied by a repetitive magnetohydrodynamic insta-
bility of the plasma edge, called the edge-localized modes
(ELMs)1. On the one hand, they are beneficial as
they contribute towards impurity control. On the other
hand they degrade confinement and large unmitigated
ELMs are expected to cause intolerable heat loads on
the plasma-facing components (PFCs) in the next-step
fusion device ITER.

A first characterization of ELMs is the identification
of their type. Hitherto, various types of ELMs have been
identified on an empirical and phenomenological basis. In
this work, a machine-based classification scheme is devel-
oped for the characterization and automatic classification
of ELM types, with the aim to distinguish ELM classes
(types) in a practical, fast and standardized way.

To this end, two steps are accomplished: ELM feature
extraction and classification. Feature extraction involves
constructing probability distributions of global plasma
parameters and inter-ELM time intervals (also referred
to as waiting times) (∆tELM ). Representation through
probability distributions allows for an effective treatment
of the substantial measurement uncertainties and the in-
herent stochasticity of ELM properties2. In the next
stage, we employ the mathematical framework of infor-
mation geometry, which allows a family of probability
distributions to be interpreted as a (Riemannian) dif-
ferentiable manifold3. The Fisher information provides

a)Contributed paper published as part of the Proceedings of the
21st Topical Conference on High-Temperature Plasma Diagnostics,
Madison, Wisconsin, June, 2016.

b)aqsa.shabbir@ugent.be
c)See the Appendix of F. Romanelli et al., Proceedings of the 25th
IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

a unique metric tensor on such a manifold, which allows
for the derivation of geodesics (length-minimizing curves)
and the geodesic distance (GD) between two points on
the manifold3. This paves way for the development of
a distance-based classifier on the probabilistic manifold.
The classifier is then employed for the classification of
type I and type III ELMs in an assembled dataset of
JET plasmas with PFCs made of carbon fiber compos-
ites (hereafter CW).

II. A GEOMETRIC-PROBABILISTIC NEAREST
NEIGHBOR CLASSIFIER

The distance-based classification on the probabilistic
manifold is performed using the concept of nearest neigh-
bors. The underlying principle of the nearest-neighbor
classification is that instances within a dataset will gen-
erally exist in close proximity to other instances that have
similar properties. In order to classify a test sample (class
unknown), the k-nearest-neighbor (kNN) algorithm finds
its k closest samples (neighbors) in the d-dimensional
training data (class known). The ‘closeness’ or distance
to the training data of a test sample is determined by
using a distance metric, such as the Euclidean distance
in Euclidean space and the GD on the probabilistic man-
ifold. As illustrated in Fig. 1, the test sample is assigned
to the class which is most common amongst its k nearest
neighbors. A GD-based kNN classifier offers a number of
attractive advantages:

• It makes use of a well-developed mathematical
framework for effectively utilizing the information
content residing in the distributions of the plasma
parameters and ELM properties.

• kNN is non-parametric and does not make any as-
sumptions about the underlying class distribution
or the shape of the decision boundary, on the man-
ifold.
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FIG. 1. Illustration of the working of k-nearest neighbor clas-
sification on the manifold M . Test sample (probability dis-
tribution) is assigned class 2, using 3-nearest neighbor (3NN)
classification as class 2 is the majority class amongst its 3
nearest neighbors. The nearest neighbors are ascertained by
computing GDs between the test sample (class unknown) and
the samples in the training data (class known).

• kNN is intuitively simple. Inference is made di-
rectly from the data and there is no model building
process on the manifold.

III. CLASSIFICATION OF ELM TYPES

From the JET CW plasmas a dataset spanning over
the shot range [50564-76483] and comprising 69 type I,
26 type III and 5 so-called type I high frequency (HF)
ELMy plasmas has been constituted. This is essentially
the same dataset that has been used earlier for the vi-
sualization of the tokamak operational space in4 and is
an extension of the data set used earlier by Webster et
al. in5. The analysis, in this work, has been restricted to
time intervals in which the plasma conditions are quasi-
stationary with approximately constant heating, gas fuel-
ing and central density. Further, all experiments dealing
with ELM control and mitigation techniques have been
excluded.

TABLE I. Leave-one-out cross-validated (CV) classification
success rates (%) using global plasma parameters as predic-
tors and 1-nearest neighbour (1-NN) classifier. Euclidean dis-
tance based 1-NN is used for classifying on the basis of the
mean (µ) values of plasma parameters and both Euclidean dis-
tance based 1-NN and GD-based 1NN are used for classifying
on the basis of distributions (µ, σ) of plasma parameters.

Plasma parameters
Distance Leave-one-out

measure CV success (%)

I III Avg

Pinput, ΓD2 , Bt µ Euclidean 89.2 69.2 84.0

Ip, ne, δavg
µ, σ Euclidean 89.2 69.2 84.0

µ, σ GD 95.9 84.6 93.0

A. Using global plasma parameters

The global plasma parameters considered for each dis-
charge are: vacuum toroidal field at R = 2.96 (Bt) (T),
plasma current (Ip) (MA), line-integrated edge density
(ne)(1019 m−2), gas fueling (ΓD2) (1022s−1), input power
(Pinput)(MW) and average triangularity (δavg), where

Pinput = Pohmic + PNBI + PICRH (1)

and

δavg =
δlower + δupper

2
. (2)

For simplicity, we assume that the error bars associated
with each plasma parameter represent a single standard
deviation. Theoretically the underlying probability dis-
tribution is Gaussian with the measurement and its error
bar constituting the mean (µ) and the standard deviation
(σ), respectively.

Table I presents the leave-one-out cross-validated suc-
cess rates (%) for 1-nearest neighbour (1-NN) classifica-
tion of type I and type III ELMs using global plasma
parameters as predictors. The success rate is defined
as the percentage of correct classifications, i.e. the per-
centage of type I and type III ELMs correctly classified.
Class-wise success rates as well as the average classifica-
tion success rates are presented. It can be noted that the
classification using the distributions of the plasma pa-
rameters and GD yields significantly higher success rate
than that obtained using the Euclidean distance measure
or only the mean parameter values as predictors. This
demonstrates that the probabilistic description of plasma
parameters contains significantly more information than
single measurement values (or averages) and that the GD
in contrast to Euclidean distance is a more accurate and
an intrinsic distance measure for comparing probability
distributions.

B. Using ELM waiting times

A robust ELM detection algorithm is used for extract-
ing N ELM waiting times (∆tELM ) from each discharge
using the time trace of Balmer alpha radiation from deu-
terium (Dalpha) at JET’s inner divertor. Gaussian and
2-parameter (2P) Weibull distributions are then used
for modeling the N waiting times extracted from each
discharge. Webster et al.5 have recently shown that,
based on experimentally motivated assumptions, the 3-
parameter (3P) Weibull distribution is a good model for
capturing the waiting time statistics. However, a closed
form of the GD between 3P Weibull distributions has not
been obtained so far. Hence, for ensuring that the de-
veloped classification system is computationally efficient
and as a first approximation, the 2P Weibull distribu-
tion is used. The free parameters of both Gaussian and
2P Weibull distribution are determined using maximum-
likelihood estimation and are shown in Fig. 2.
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FIG. 2. Maximum-likelihood parameter estimates for (a)
Gaussian distribution fit, (b) 2-parameter (2P) Weibull dis-
tribution fit to the ELM waiting times (∆tELMs).

TABLE II. Leave-one-out cross-validated (CV) classification
success rates (%) for type I and type III ELMs using mean
value and distributions of ELM waiting times as predictors
and a 1NN classifier.

Predictors
Distance Leave-one-out

measure CV success (%)

I III Avg

µ Euclidean 95.9 84.6 93.0

(µ, σ) Euclidean 95.9 84.6 93.0

(µ, σ) GD 97.3 96.2 97.0

(β, α) Euclidean 94.6 80.8 91.0

(β, α) GD 97.3 92.3 96.0

An examination of Fig. 2, provides various insights.
Fig. 2(a) suggests that there is a positive linear corre-
lation between mean and the standard deviation of the
waiting times. This implies that type I ELMs, which
typically have a higher mean waiting time, tend to have
a wider distribution (i.e higher standard deviation) than

type III ELMs. Furthermore, both the mean waiting
time and its standard deviation appear to be discrimi-
nators of ELM type, especially for the discharges which,
as far as the distribution of waiting time is concerned,
lie at the boundary between type I and type III ELMs.
For example, type I HF ELMs have mean waiting times
which are smaller than typical type I ELMs but are more
similar to type III ELMs. However, they tend to have a
smaller standard deviation than the standard deviation
of type III ELMs with comparable mean waiting times.
Similarly, Fig. 2(b) indicates that β (shape parameter)
and α (scale parameter) are together discriminators for
ELM type. Type I ELMs typically have a higher value
for α than type III ELMs. Also, the information in β
appears useful for correctly classifying type I HF ELMs,
since they have a higher value of β than the type III
ELMs with similar values of α.

This is also reflected in the classification success rates
presented in Table II. In consistence with the classifi-
cation results obtained using global plasma parameters
as predictors, GD-based 1NN classification using com-
plete distributions of ELM waiting times yields the high-
est classification success rate.

IV. CONCLUSIONS AND OUTLOOK

In this paper, a practical, high-accuracy, standardized
and automatic classification scheme for ELM types has
been presented which can considerably reduce the effort
of ELM experts in identifying ELM types. This work
clearly elucidates that distributions of plasma parame-
ters contain more useful information than the mere av-
erage values. An effective exploitation of this additional
information using information geometry results in a su-
perior performance of the classification system. Lastly,
the presented classification scheme is generic and can also
be applied to other classification problems in fusion plas-
mas.

The future work will involve applying the presented
scheme for classifying additional ELM types, such as
type II ELMs as well as for constructing a machine-
independent classifier of ELM types.
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