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We propose a formal model to explain the mutual influence between observed

behavior and subjects’ elicited beliefs in an experimental sequential prisoner’s

dilemma. Three channels of interaction can be identified in the data set and we

argue that two of these effects have a non-classical nature as shown, for example,

by a violation of the sure thing principle. Our model explains the three effects by

assuming preferences and beliefs in the game to be complementary. We employ

non-orthogonal subspaces of beliefs in line with the literature on positive-operator

valued measure. Statistical fit of the model reveals successful predictions.
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1. Introduction12

During the recent decade, there is an increasing interest in decision-making13

and cognitive models that employ a quantum probabilistic (QP) framework. In14

fact, the application of quantum-like concepts to portray human information15

processing was considered since the early development of quantum mechanics.16

For example, Bohr (1950) defended the idea that some aspects of quantum theory17

could provide an understanding of cognitive processes but never provided a formal18

cognitive model in light of a QP hypothesis. The so called quantum cognitive19

theories have only begun to emerge as of late (Busemeyer and Bruza, 2012;20

Deutsch, 1999; Haven and Khrennikov, 2013; Khrennikov, 2010; Pothos and21

Busemeyer, 2013; Wang et al., 2014; Yearsley and Pothos, 2014).22

QP is defined as the set of mathematical rules used to assign probabilities to23

events from quantum mechanics (Hughes, 1989; Isham, 1989), but without any24

of the physics. As it is derived from a different sets of axioms than classical25

probability theory, it is subject to alternative constraints and has the potential to26

be relevant in any area of science where a need to formalize uncertainty arises.27

Since encoding uncertainty is a major aspect of cognitive functions in psychology,28

QP shows potential for cognitive modeling. These studies are not about the use29

of quantum physics in brain physiology, which is a disputable issue (Hameroff,30

2007; Litt et al., 2006) about which we are skeptical. Rather, we are interested in31

QP theory as a mathematical framework for cognitive modeling.32

Applications of QP theory have been presented in decision-making (Bordley,33

1998; Busemeyer et al., 2011, 2006; Lambert-Mogiliansky et al., 2009; Pothos34

and Busemeyer, 2009; Trueblood and Busemeyer, 2011; White et al., 2014;35

Yukalov and Sornette, 2011), conceptual combination (Aerts, 2009; Aerts and36
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Gabora, 2005; Blutner, 2008), memory (Bruza, 2010; Bruza et al., 2009), and37

perception (Atmanspacher et al., 2004). For a detailed study on the potential38

use of quantum modeling in cognition, see Busemeyer and Bruza (2012) and39

Pothos and Busemeyer (2013). The majority of models presented in the quantum40

cognition literature addresses standard aspects of decision-making processes:41

similarity judgments (Barque-Duran et al., 2016; Pothos et al., 2015; Yearsley42

et al., 2014), the constructive role of articulating impressions (White et al., 2015,43

2014), and order effects in belief updating (Trueblood and Busemeyer, 2011)44

among numerous other applications.45

Little literature has focused on strategic decision-making or game theory.46

Whenever two or more agents interact, one agent is not only reacting to the47

information that he receives, but is likewise generating information towards48

other players. These strategic environments are unique in relation to standard49

decision-making scenarios under uncertainty, since every agent needs to reason50

on two parts of the problem: his own actions and his expectations on the51

opponent’s actions. Few studies applying QP instruments to model the way52

agents process the information in a game have been published with regards to this53

particular matter: Pothos and Busemeyer (2009), Pothos et al. (2011), Busemeyer54

and Pothos (2012), and Martı́nez-Martı́nez and Sánchez-Burillo (2016). Other55

approaches in which the quantumness enters through an extension of the classical56

space of strategies and/or signals have also been discussed, e.g., by La Mura57

(2005), Brandenburger (2005), and Brunner and Linden (2013); as well as a58

model to analyze games with agents exhibiting contextual preferences (Lambert-59

Mogiliansky and Martı́nez-Martı́nez, 2015).60

In this paper, we describe the application of QP theory to modeling the61
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mutual influence between preferences and beliefs in sequential social dilemmas.62

This idea was first explored in Martı́nez-Martı́nez et al. (2015). We present63

a quantum-like model for preferences and beliefs (QP&B) that replicates the64

experimental results from Blanco et al. (2014) while providing a novel theoretical65

approach on cognitive dynamics in strategic interactions. Our model asserts that66

the relationship between a player’s beliefs and his preferences is inherently non-67

classical and continues the work done in Pothos and Busemeyer (2009) exploiting68

the ideas of measurement utilized in quantum theory. We redefine these two69

properties as complementary. In that capacity, they cannot be measured at the70

same time, as the act of measuring one property alters the state of the other71

property. The non-classical nature of such a relationship and its application in72

cognition has already been discussed in, e.g., Denolf and Lambert-Mogiliansky73

(2016).74

2. Experimental design75

The data set that our QP&B model deals with is provided by Blanco et al.76

(2014). Their experiment was designed for explicitly testing different channels77

through which preferences and beliefs of an agent immersed in a social dilemma78

may influence each other. As the authors motivate, this experimental evidence79

is novel and its main interest stems from the fact that previous analyses of80

strategic interactions considered preferences and beliefs to be independent. This81

fact implies that the choice of actions in environments with uncertainty can be82

rationalized as just a best-response to some particular form of belief about the83

possible states of the world or about the action that is expected to be played by an84

opponent.85

4



2.1. Standard version of the prisoner’s dilemma game86

The symmetric prisoner’s dilemma game is a game involving two players,87

player I and player II, who can choose among two actions: cooperate (C) or defect88

(D). The normal form of this game is defined by the following 2×2 payoff matrix89

Player II

C D
Pl

ay
er

I

C (πc, πc) (πb, πa)

D (πa, πb) (πd, πd)

(1)

where the payoff entries satisfy the inequalities πa > πc > πd > πb.90

The scheme of possible results of payoffs is as follows. If player I decides to91

cooperate, I can receive the second best possible outcome πc if the opponent II92

also cooperates, but I’s attempt to cooperate is exposed to being exploited by II93

if II decides to defect. In the latter scenario, II would collect the best outcome of94

value πa while leaving I with the lowest payoff πb. If player I decides to defect,95

then this player is guaranteed not to obtain the lowest payoff, but at least an amount96

πd if player II defects as well. If player II decided to cooperate, then I is taking97

advantage of the situation and obtaining the maximum benefit πa.98

Technically, we say that mutual defection is the Nash equilibrium of this99

game because there is no unilateral deviation that could make the deviating player100

earn more, while mutual cooperation is the Pareto optimal situation. Therefore,101

this game represents a social dilemma for the players: the individual choice102

of defection dominates the attempt to cooperate for any given choice of the103

opponent, which is not socially optimal. Why is this a dilemma? Because this104

game formalizes a conflict between the individual (the Nash equilibrium) and the105

collective (Pareto optimal) level of reasoning: if both players actually choose to106
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Figure 1: (a) Standard (simultaneous) Prisoner’s Dilemma. (b) Sequential Prisoner’s Dilemma.

defect, both of them generate a total payoff of 2× πd, which is by definition lower107

than the aggregate payoff if both of them coordinated in full cooperation, 2 × πc.108

The standard version of the prisoner’s dilemma game is a one-shot strategic109

interaction with simultaneous moves by the opponents. This implies that both110

players make their own individual decision (whether to cooperate or not) without111

knowing what the opponent is choosing. Once both players have chosen their112

strategy, both actions become public and the payoffs are generated.113

Each player reacts to his own belief or expectation on the opponent’s intention,114

and as a consequence, the preferred action in the dilemma crucially depends on115

the way players form their beliefs about the opponent moves. Therefore, it is116

important to understand how beliefs and preferences do (or do not) influence each117

other in this decision-making process.5118

2.2. Sequential prisoner’s dilemma119

The experiment conducted by Blanco et al. (2014) focuses on a variation of120

the Prisoner’s Dilemma game discussed above: a sequential one. In Fig. 1 we121

5See Blanco et al. (2014, Section 1) about possible correlations between preferences and
beliefs in dilemmas with models of social preferences such as inequality aversion and reciprocal
preferences.
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show the game tree of the game played in this sequential experiment (b), and122

compare it to its standard (simultaneous) counterpart with equivalent payoffs (a).123

In the sequential version, the solution concept required is the Subgame Perfect124

Nash Equilibrium (SPNE), a usual refinement of the Nash Equilibrium (NE) when125

turning to sequential games. Solving by backwards induction, we see that it is in126

the best interest of Player II to defect if given the chance to move, which would127

leave Player I with a payoff of 7, and therefore I should choose defect at the128

beginning of the tree, because 10 is a better outcome. Thus, the sequential game129

maintains the content of the social dilemma because the SPNE implies that both130

players’ incentives drive them towards mutual defection, even though they could131

obtain a higher social payoff if they coordinated on full cooperation.132

On the one hand, one can see how in the sequential variation, only the player I133

is bearing the risk of her cooperative choice being exploited by a selfish decision134

of player II. In order to restore the symmetry between the players, all participants135

in the experiment play the game twice. Once in role I and once in role II. After136

all decisions have been made, the players are randomly matched into pairs, with137

the assignment of roles being random as well. Subsequently, they earn the payoffs138

determined by the relevant decisions, given their roles.139

On the other hand, this procedural ‘complication’ is a small price to pay if140

we compare it to the advantages it provides: because of the sequential structure141

in the decision-making, each choice can be observed (measured) at a time. The142

authors design three treatments that intersperse a belief-elicitation task with the143

choices of actions.6 As we discuss now, the treatments differ in the order in which144

6In the belief-elicitation task, the players were asked how many of the other participants
(potential rivals for the play of the game) cooperate in the role of Player II. This task is incentivized
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Treatment Baseline Elicit Beliefs True Distribution
Task 1 2nd move (II) 2nd move (II) 2nd move (II)

Feedback on II No No Yes
Task 2 1st move (I) beliefs (about II) 1st move (I)
Task 3 beliefs (about I) 1st move (I) beliefs (about I)

# Participants 40 60 60

Table 1: Experimental treatments in Blanco et al. (2014, Table 1).

each task is performed and this allows to measure different correlations between145

actions (which are supposed to proxy the preferences of the players) and beliefs.146

We now briefly explain the three different treatments, which are also summarized147

in Table 1.148

2.3. Experimental treatments149

Ten subjects participate in each session. For each of the following treatments,150

several sessions were conducted. The total numbers of participants are displayed151

in Table 1.152

Baseline. This treatment can be considered as a mere control group, such that153

the subjects play the game in its natural structure, with no attention paid to154

observing their beliefs. The players first choose what their action II will be155

and no information is revealed to them so that the participants’ beliefs are not156

exogenously influenced. Subsequently, they choose what their action for the role157

of I will be, and finally they are given a meaningless question about their beliefs on158

the global rate of cooperation in the group of first movers. The informational gain159

of this last task is void because its only use is to balance the different treatments160

making their length comparable (both in time and the number of tasks).161

with a quadratic scoring rule rewarding the accuracy of the stated beliefs: players earn more the
closer their prediction is to the actual rivals’ cooperation rate (Blanco et al., 2014, Equation 3).
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Treatment Baseline Elicit Beliefs True Distribution Total
First mover (Player I) 27.5% 55.0% 56.7% 48.8%

Second mover (Player II) 55.0% 53.3% 55.0% 54.4%

Table 2: Average cooperation rates by treatment in the experiment by Blanco et al. (2014), also
labeled as Table 2 in their original paper.

Elicit Beliefs. In this treatment, the players first choose what their action II will162

be, and then they have to reveal their belief about the rate of cooperation that they163

will receive from the second movers. Finally, they have to choose their action I.164

Thus, this treatment introduces a belief-measurement between the two choices of165

actions. This allows us to explore the effect of a measurement of the beliefs about166

the move by opponent II on the choice of action I.167

True Distribution. This treatment presents a somewhat ‘similar’ sequence of tasks168

for the players compared to the previous treatment Elicit Beliefs. The players169

begin by choosing their action II. Then, they are told what the true cooperation170

rate for action II was in their group. They finish by choosing the action I.171

This treatment differs from the previous one in that this time, the forecast of the172

opponents’ move is not a belief generated by the players themselves, but true173

information being released to them exogenously.174

3. Aggregate behavior and basic modeling175

Table 2 presents the aggregate results of the three experimental treatments.176

First off, we cannot observe any significant difference in the cooperation rates177

as a second mover between treatments. This is to be expected as the question178

(measurement) regarding the choice of action in the role of player II is identical179
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in all aspects over all treatments.7 The small variation in the proportion of180

cooperation reported for the Elicit Beliefs treatment (53.3% vs. 55% in the others)181

can be attributed to sample variance.182

The cooperation rates in the role of first mover (player I) show meaningful183

differences. A chi square test across all three treatments yields a p-value of184

0.007886 (χ2 = 9.6853, df=2). Starting with the first move cooperation rates185

of the Baseline treatment (27.5%) and the Elicit Beliefs treatment (55.0%), the186

null hypothesis of no difference between these two proportions yields a p-value187

of 0.007 (χ2 = 7.3661, df=1), clearly indicating a significant difference. There188

is only one procedural variation between these two treatments: Elicit Beliefs189

includes the elicitation of beliefs about the cooperation rate expected from the190

rivals II before the agents choose their action in the role of I. Thus, we can191

attribute the difference in the player I cooperation rate to the effect that measuring192

a subject’s beliefs about the opponent II may have on his attitude toward the193

actions as first mover.194

A similar result can be found for the first move cooperation rates of the195

Baseline treatment (27.5%) and the True Distribution treatment (56.7%). The196

null hypothesis claiming no difference between these two proportions can be197

rejected, as it gives us a p-value of 0.004 (χ2 = 8.2674, df=1). For the first198

move cooperation rates (role I) of the Elicit Beliefs treatment (55.0%) and the199

True Distribution treatment (56.7%), the null hypothesis of no difference between200

these proportions yields a p-value of 0.85 (χ2 = 0.0351, df=1), indicating no201

significant difference between the result in the two treatments. In this sense, the202

7Note especially that it is the first measurement performed in all treatments and therefore, it is
not subject to the effects targeted by this experimental design.
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incentivized elicitation of beliefs impacts the state of the subjects participating203

in the experiment similarly to an update of beliefs via the acquisition of true204

information revealed exogenously.205

3.1. Violation of the sure thing principle206

The differences in first move cooperation rates reveal the presence of a207

violation of the sure thing principle in the data, as208

27.5% = p(CI) ,
∑

i

p(CI |Bi) = 55%,

with CI the event of the player cooperating on the first move and Bi the event of the209

player answering that he thinks i opponents cooperate during the belief elicitation.210

This in turn points out the interest in using a quantum-like model to describe the211

behavior of the participants in this experiment, since classical statistics cannot212

account for them in a simple manner, while quantum-like easily do.213

3.2. The simplest quantum-like model214

In the remaining of Section 3, we illustrate the basic mechanics of quantum-215

like toy models designed to address the issue of measurement as well as construct216

different building blocks that will be fully developed later. As the reader will see,217

Section 4 integrates them in a unified model. Now, we only show which aspects218

of quantum-like modeling can account for the empirical effects observed in the219

data set, without taking into account how they correlate to form the proper model.220

We introduce the most basic quantum-like model to represent concepts221

such as actions, preferences and beliefs in quantum-like terms (observables,222

measurements and orthonormal basis of their outcomes) and use projective223

measurements (with their resulting probabilities) to explain the first results224

observed in the data from Blanco et al. (2014). We consider the preferences225
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of an agent as the individual’s attitude toward the different elements of a set of226

outcomes, to be reflected in the choices observed along the sequence of decisions227

(Lichtenstein and Slovic, 2006). In this case, and because of the strategic nature228

of this decision-making process, the outcomes (possible payoffs to be obtained)229

depend on the actions (cooperate or defect) a players chooses, but also on the230

choices made by a rival.231

The actions of a player can be represented by two orthogonal vectors |C〉 (for232

cooperation) and |D〉 (for defection). The two vectors form an orthonormal basis233

and span a bi-dimensional Hilbert spaceHi with i ∈ {I, II} denoting the role in the234

game as player I or II for which such action is chosen.8 The player is considered235

to be in a superposition over these actions, being represented by a normalized state236

vector |S 〉. The projection of the state vector onto the elements of the orthonormal237

basis defines the probability that the player chooses each of the actions, as a proxy238

of her preferences.239

We consider the beliefs as the distribution with which the agents judge240

the likelihood of realization of each possible relevant state of the world. The241

possible states in this setting concern the possible cooperation of opponents,242

as this, together with one’s own actions, determines the outcome of the game.243

8For the finite dimensional case, a Hilbert space H is a linear space endowed with a scalar
product 〈ψ1|ψ2〉 ∈ R. Its elements (or states) are denoted by |ψ〉 ∈ H . If the state of the
system is |ψ〉 we say it is in a pure state. The projector Pψ = |ψ〉〈ψ|, an operator acting on H
as Pψ|φ〉 = 〈ψ|φ〉|ψ〉, has a bijective relation with |ψ〉, and we can describe the state |ψ〉 in terms
of Pψ. Any element or vector of the space of states is called a ket-vector and represented by |·〉,
and we have the dual space of the bra-vectors, symbolized by 〈·|. Hilbert spaces are generally
defined over the field of complex numbers, but in this paper it is enough to work only with reals.
Note that given a state |ψ〉 associated to a vector ψ ∈ RN , we obtain 〈ψ| associated to ψT , where
T is the operation of vector transposition. The name of bra-ket (or Dirac’s) notation comes from
splitting the bracket 〈·|·〉 representing the scalar product, which is the crucial operation to compute
probabilities in this framework.
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These beliefs are also represented by a set of mutually orthogonal vectors {|B j〉},244

with the index j running from 0 to 9. This j represents how many of the245

opponents (maximum 9) are believed to cooperate. This orthonormal basis also246

spans a Hilbert space, HB, with the player’s beliefs being represented by a247

normalized state vector: a superposition over the orthonormal basis of beliefs.248

Straightforwardly, j/9 is the expected share of cooperation among the opponents,249

and 1 − j/9 is the expected rate of defection.250

3.3. Projective measurement251

Quantum-like models use projective measurements to represent measurements252

being performed on the system of interest.9 Here, we apply this to model the253

observed behavior in the choice of action as player II in the data from Blanco254

et al. (2014). The state of the player is represent by a normalized state vector |S II〉255

in the two-dimensional Hilbert spaceHII:256

|S II〉 = cII|CII〉 + dII|DII〉. (2)

The probability p(CII) of the player choosing to cooperate is therefore:257

p(CII) = ||PCII |S II〉||
2 = 〈CII|S II〉

2 = c2
II, (3)

with PCII = |CII〉〈CII| = diag(1, 0) the projector on |CII〉. This outcome would258

project the state vector onto its post-measurement state |S ′II〉 = |CII〉. The259

9The probability of observing an outcome is calculated as the square of the norm of the
projection of the state vector onto the subspace spanned by the vectors representing the outcome.
When the outcome is represented by only one vector (simplest case), this calculation reduces to
the square of the inner product of the state vector and the outcome vector. The act of measurement
changes the state vector of the system from an initial state to a post-measurement state, by
projecting (and normalizing) the state vector onto the subspace spanned by the outcome vectors.
Projective measurements deal naturally with incompatible measurements, and note also that when
they are performed on a density matrix diagonal in a particular basis, they are equivalent to
Bayesian updates.

13



probability of the player defecting as second mover is:260

p(DII) = ||PDII |S II〉||
2 = 〈DII|S II〉

2 = d2
II, (4)

with PDII = |DII〉〈DII| = diag(0, 1) the projector on |DII〉. This outcome would261

likewise project the state vector onto its post-measurement state |S ′II〉 = |DII〉. The262

normalization restriction on the state vector implies that total probabilities add up263

to one, c2
II + d2

II = 1. From the cooperation rates as player II reported in Table 2,264

we can estimate these through our sample as:265

ĉ2
II = 0.544 and d̂2

II = 0.456. (5)

Note that we estimate by taking the average cooperation rates across the266

treatments, because we have justified above that they are not significantly different267

from one another.268

We can model the choice of the players for their action as player I in the269

Baseline condition in a Hilbert space HI ≡ R2, with the basis {|CI〉, |DI〉}. The270

state vector is now271

|S I〉 = cI|CI〉 + dI|DI〉, (6)

and we can infer from the data (Table 2, column 1) that272

ĉ2
I = 0.275, and d̂2

I = 0.725. (7)

In this case, we only consider the cooperation and defection rates in the Baseline273

treatment. Because of the significant difference in the cooperation rate as player274

I across treatments, considering the average is not sensible (see discussion in275

Section 3).276
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#Cooperators (Belief) 0 1 2 3 4 5 6 7 8 9
Abs. frequency (out of 60 subjects) 5 2 5 5 12 9 9 6 4 3

Table 3: Number of players in treatment Elicit Beliefs expecting each possible number of
cooperators in their session.

Finally, we model the beliefs of the players in the Hilbert spaceHB, (spanned277

by {|B j〉}). The normalized state vector is278

|S B〉 =

9∑
j=0

b j|B j〉. (8)

From the data regarding the Elicit Beliefs treatment (see Table 3), we get that279

b̂2
0 = 5/60, b̂2

1 = 2/60, b̂2
2 = 5/60, b̂2

3 = 5/60, b̂2
4 = 12/60,

b̂2
5 = 9/60, b̂2

6 = 9/60, b̂2
7 = 6/60, b̂2

8 = 4/60, b̂2
9 = 3/60.

(9)

4. Building blocks280

4.1. Three effects281

Effect 1 (Consensus effect). Proof of and an extensive discussion on the presence282

of this effect is presented in Blanco et al. (2014) where it is shown that players’283

beliefs are biased towards their own actions. As such, a player who cooperates284

as second mover will expect a higher second-mover cooperation rate amongst the285

other players. A visualization of this effect can be found in Fig. 2. Viewing this in286

light of the performed measurements, the consensus effect denotes the influence287

of second mover action measurements on the beliefs of the same participant.288

289

Effect 2 (Reasoned player). The second effect is the influence that belief290

measurements have on action measurements. As these actions are driven by one’s291

15
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Figure 2: Second move defecting players (red line) believe that less opponents will cooperate.
Second move cooperating players (blue line) believe more opponents will cooperate. The second
move action was measured before the beliefs.

preferences, this effect encompasses the influence of the belief measurements292

on the preferences of the same player. We claim that the act of eliciting the293

beliefs of the player fundamentally changes this player even when disregarding294

the exact outcome of this belief measurement. When the player is asked to form295

an opinion about the cooperation rate of his opponents, this changes him into a296

more reasoned state about the opponent, in opposition to a more intuitive state297

when not explicitly asked to form this opinion. In the data, this can be viewed in298

the violation of the sure thing principle discussed in Section 3.1. The average first299

move cooperation rate of players, after forming explicitly their beliefs about the300

cooperation of the opponent (Elicit Beliefs), is twice as large as the average first301

move cooperation rate of players, in which beliefs were not elicited (Baseline)302

(see Table 2). Nevertheless, this cooperation rate in the Elicit Beliefs group is not303
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differing significantly from the cooperation rate in the True Distribution group. In304

this group, participants received full information about the cooperation rate of the305

opponents and are therefore assumed to make a more deliberate decision. Since306

these cooperation rates are similar, we can assume that players are in a similar307

reasoned state in the Elicit Beliefs group.308

309

Effect 3 (Classical correlation). The third effect we discuss is the correlation310

between a player’s first and second move. This is observed in all three conditions,311

as noted in Results 1, 2 and 3 from Blanco et al. (2014). That is, first move312

cooperators are likely to also cooperate on the second move and vice versa. We313

concur with Blanco et al. that this correlation is exhibited mostly through an314

indirect belief-based channel. This way, we attempt to include the observed315

correlation as a logical consequence of our previously described effects. The316

second move action measurement influences the first move action measurement317

through a player’s beliefs. We can assume this correlation to be classical in nature,318

as opposed to the two other effects.319

4.2. Compatible and incompatible measurements320

Roughly speaking, two measurements M1 and M2 are considered incompatible321

if the order in which the measurements are done changes the outcome, as the act322

of performing one measurement influences the other measurements regardless of323

the outcome. Mathematically speaking, this means that one or more projector324

matrices associated with outcomes of measurement M1 do not commute with one325

or more projector matrices associated with outcomes of measurement M2. If two326

measurements are maximally incompatible, no projector matrix associated with an327

outcome of measurement M1 commutes with a projector matrix associated with an328
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outcome of measurement M2, and they are called complementary. As such, both329

measurements M1 and M2 cannot be performed together, as the act of performing330

one of the measurements (without specifying its outcome), influences the other331

measurement. These concepts elegantly deal with situations where violations of332

the sure thing principle emerge.333

We will consider the belief elicitation to be complementary with the action334

measurements, as this explains both the consensus effect and the reasoned player335

effect. This approach should not come as a surprise. First, using complementarity336

as an explanation for the consensus effect is argued in Busemeyer and Pothos337

(2012) where the consensus effect is seen as a form of social projection. Second,338

the idea of the player being more reasoned can be seen as a violation of the339

sure thing principle. These violations are a prime indicator of measurements not340

commuting which is the definition of incompatible measurements. We will now341

show how the projective measurement formalism deals with our hypothetically342

compatible (first and second move actions) and incompatible (actions and beliefs)343

measurements.344

When two measurements are considered compatible, the Hilbert spaces345

representing the outcomes of these measurements can be tensored to construct346

a larger Hilbert space spanned by vectors that now represent joint outcomes. As347

argued before, we assume the first move action and second move action to be348

compatible, as they are considered to be measurable at the same time. Therefore,349

the Hilbert space which models the relationship between both isHI⊗HII, spanned350

by {|CC〉, |CD〉, |DC〉, |DD〉}, with |CD〉 = |CI〉 ⊗ |DII〉 (other vectors defined351

similarly). The player is represented by a normalized state vector:352

|S 〉 = sCC |CC〉 + sCD|CD〉 + sDC |DC〉 + sDD|DD〉. (10)
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We now provide two examples of how probabilities are calculated within this353

Hilbert space. The other relevant probabilities are calculated in a similar way. The354

projector and probability associated with a player defecting on the role of I, but355

cooperating on the role of II is356

PDC = PDI ⊗ PCII =

0 0

0 1

 ⊗
1 0

0 0

 =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


, (11)

so357

p(DC) = ||PDC |S 〉||2 = s2
DC. (12)

The projector and probability associated with the player cooperating on the second358

move (without specifying a choice as player I), are:359

P.C = I2 ⊗ PCII =

1 0

0 1

 ⊗
1 0

0 0

 =



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


, (13)

and360

p(.C) = ||P.C |S 〉||2 = s2
CC + s2

DC. (14)

Directly from the data (for the Baseline treatment), we derive361

ŝ2
CC = 0.25, ŝ2

CD = 0.025, ŝ2
DC = 0.3, and ŝ2

DD = 0.425. (15)

This models the (classical) correlation between first and second move, as noted362

above in Effect 3.363
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Incompatible measurements are represented by different bases in the same364

Hilbert space (as opposed to one tensored basis for compatible measurements).365

To model the relationship between the choice of action in the role of player I366

and the beliefs that a player holds, we could use a Hilbert space HI,B of large367

enough dimensionality to present 10 orthogonal subspaces, each one representing368

one belief. As such, we would need at least a 10-dimensional space, with 10369

orthonormal vectors forming the belief basis. In such 10-dimensional Hilbert370

space, the 2 possible outcomes of the first movement action are each represented371

by orthogonal 5-dimensional subspaces.372

The Hilbert space HII,B, which models the relationship between the belief373

measurement and the second movement action would be similarly spanned by374

10 orthonormal basisvectors, each one representing an outcome of the belief375

measurement. The outcomes of the second movement action are also represented376

by 5-dimensional subspaces. The rules for projection and calculating probabilities377

remain the same. The probability of an outcome of a measurement is still the378

square of the norm of the projection of the state vector on the relevant subspace.379

The act of measuring still changes the superposition of the state vector, projecting380

and normalizing it onto the relevant subspace.381

In summary, the relationship between the belief and action measurement is382

represented by the description of the action subspaces in terms of the belief basis.383

In such setting, the consensus effect would be represented by the form of the 5-384

dimensional action subspaces in HII,B, while the effect of the player becoming385

more reasoned would be represented by the form of the 5-dimensional action386

subspaces inHI,B.387
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4.3. A very basic model388

We can attempt to construct a model which successfully incorporates all three389

effects, by combining how we modeled the compatible action measurements, with390

how we could model the incompatible belief and action measurements. The391

standard procedure from quantum-like measurement theory tells us to construct392

the Hilbert space Horth = HI,B ⊗ HII,B. This is a 100-dimensional Hilbert space,393

with 2 orthogonal 50-dimensional subspaces representing the actions in role I, 2394

orthogonal 50-dimensional subspaces representing the actions in role II, and 10395

orthogonal 10-dimensional subspaces representing the possible beliefs. As the396

first and second move actions are considered compatible, they can be measured at397

the same time. As such, the 4 possible joint outcomes of the action measurements398

are represented by four 25-dimensional subspaces.399

The player would be represented by a normalized state vector in this400

100-dimensional Hilbert space, from which the relevant probabilities can be401

calculated. From a statistical point of view this state vector already provides us402

with 99 degrees of freedom (we lose 1 as the state vector is normalized), without403

even delving into how many degrees of freedom pop up due to the different 10-,404

25- and 50-dimensional subspaces used in this construction. As we have 160 data405

points, this elementary model would be by no means elegant, and a statistical fit is406

not feasible because of being greatly overparametrized. One solution is to impose407

further restrictions on the state vector and/or on the different outcome subspaces,408

for example, by allowing only state vectors within a certain subspace or assuming409

a certain distribution over the resulting probabilities. The form of these restrictions410

is, however, an open question at this point.411

In the following section we show how a small deviation from the most412
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common quantum-like approach allows us to reduce the complexity of the total413

Hilbert space to only four dimensions. We use a less structured set of planes to414

represent beliefs which provides a truly intuitive connection between the different415

elements of the model.416

5. The model for Quantum-like Preferences and Beliefs417

5.1. A new belief basis418

To diminish the problematic dimensionality of HB we let the vectors |Bi〉419

(the outcomes of the belief elicitation) be non-orthogonal because otherwise,420

the 10 orthogonal vectors would span a 10-dimensional Hilbert space. Next to421

making the dimension of HB sufficiently small, this modification will allow us to422

model some implicit structure between the different outcomes and will link the423

construction of these beliefs directly to the approach of Pothos and Busemeyer424

(2009) to the standard prisoner dilemma. Roughly speaking, in Pothos and425

Busemeyer (2009), the emergence and evolution of the player’s beliefs about426

his opponent’s behavior is represented by a rotation of the state vector in the427

Hilbert space. While in Pothos and Busemeyer (2009) this rotation is defined by a428

Hamiltonian with a parameter γ, we now have the means to explicitly incorporate429

the elicited beliefs into our model. To do so, we redefine the belief-vectors |Bi〉430

in a 2-dimensional Hilbert space, with |B0〉 and |B9〉 orthogonal and the other431

|Bi〉 in between them. For simplicity, we will assume the distribution of the |Bi〉432

(i , 0, 9), to be uniform between |B0〉 and |B9〉, yielding an angle π/(2×9) between433

all |Bi〉 and |Bi+1〉. This provides us with an elegant, parameter free (as the ‘9’434

is endogenous to the game) form of the vectors representing the outcomes of435

the belief elicitation. This is a simple first approach to the exact distribution of436

the {|Bi〉}
9
i=0, which can be adjusted or made more complex if necessary. This437
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|B0〉

|B9〉

|S〉

|B7〉

Figure 3: The redefined |Bi〉. A player thinking 7 out of 9 opponents cooperate projects the state
vector onto |B7〉.

effectively makes the players development of her explicit beliefs to be represented438

by a rotation of the state vector, as in Pothos and Busemeyer (2009). Our view439

differs from Pothos and Busemeyer (2009) in the sense that we still want to440

make predictions and derive probabilities from this rotation, using the standard441

rules of projective measurements: an outcome and its probability as defined by a442

projector on the relevant subspace. This approach also models an implicit order443

between the different outcome vectors (e.g. |Bi〉 being ‘in between’ |Bi−1〉 and444

|Bi+1〉), something lacking in the previous approach where all belief vectors were445

orthogonal. This idea is depicted in figure 3.446

With the redefined 2-dimensional Hilbert Space HB, we rebuild the Hilbert447

space HQP&B which contains the representations of all measurements, as well448

as their correlations. As we redefined our vectors |Bi〉 representing the elicited449

beliefs, the projectors onto these vectors will also have a new form:450

|Bi〉〈Bi| =

 cos2 ( iπ
18 ) cos ( iπ

18 ) sin ( iπ
18 )

cos ( iπ
18 ) sin ( iπ

18 ) sin2 ( iπ
18 )

 , (16)

with i = 0, 1, . . . 9.451

To incorporate a measurement with non-orthogonal outcome vectors, we will452

go beyond the basic procedure of quantum measurement as done in Section 3.2.453
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To do so, we present two options, one favoring quantum theoretic consistency and454

one favoring a simpler experimental interpretation. Note that the resulting model455

and probabilities in these two options are identical. Readers not interested in the456

derivation and discussion of these options can skip to the last paragraph of this457

section.458

In the first option we use positive-operator valued measures (POVMs), a well459

known measurement framework within quantum theory, in which non-orthogonal460

outcome vectors can be used. These POVMs allow us to easily build our smaller461

model with our newly defined belief space. For an introduction to these POVMs,462

as well as the mathematical details and recipe on how to construct them, we463

refer to Yearsley (2016, Section 4). The following derivations rely on the derived464

probabilities given in Yearsley (2016, Equation 56).465

In short, when using the POVM framework, the measurement outcome is still466

represented by an outcome vector and its associated projector. If an outcome is467

observed, the state vector is still projected onto the relevant subspace; however,468

the probability of obtaining this outcome is calculated slightly differently. Assume469

that the player is represented by a state vector |S 〉, the probability of the player470

thinking that i opponents have cooperated is now:471

P′(Bi) =
〈Bi|S 〉2∑9

j=0 〈B j|S 〉2
. (17)

This form deviates from the probabilities derived in section 3.2 only in the factor472 ∑9
j=0 〈B j|S 〉2. This extra factor finds root in the fact that the projectors P j forming473

a POVM need to adhere to completeness:474

9∑
j=0

P j = I,
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with I the identity matrix. Equation 16 shows that the projectors onto our belief475

vectors can never sum to the identity matrix, as the off-diagonal elements can476

never sum to zero. To make sure that the relevant projectors still form a POVM,477

a new projector (and outcome) is added to the formalism. This projector is478

associated with the outcome ‘measurement failed’. When this outcome is obtained479

the measurement is redone, ensuring completeness. For details, see again Yearsley480

(2016).481

The second option dismisses the idea of an extra ‘measurement fails’ outcome482

and allows the set of projectors |Bi〉〈Bi| to violate the completeness criteria. This483

violation makes the probabilities of our possible belief outcomes not sum to one:484

9∑
j=0

P(Bi) = 〈Bi|S 〉2 , 1. (18)

From a modeling point of view, this requires the introduction of a scaling485

factor. This makes sure that the total sum of probabilities does sum to one, after486

the standard quantum measurement (calculating probabilities and projecting the487

state vector) is done. This scaling factor is defined as:488

C =

9∑
j=0

〈B j|S 〉2, (19)

making the probability of eliciting belief i, given the state vector |S 〉:489

P′(Bi) = 〈Bi|S 〉2/C. (20)

It is vital to note that the end result of both approaches is identical. We have490

ten outcome vectors, representing the ten possible beliefs, in a two dimensional491

Hilbert Space HB. The probability of eliciting the belief that i opponents have492
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cooperated, given the state vector |S 〉 is:493

P′(Bi) =
〈Bi|S 〉2∑9

j=0 〈B j|S 〉2
. (21)

If the result is i, the state vector gets projected onto |Bi〉. The difference between494

the two options lies in the difference between an approach where we remain495

firmly within the quantum theoretic setting at the cost of adding an ad hoc new496

outcome (actually not present in the experimental setting) and an approach slightly497

departing from the quantum sphere by redefining the probabilities with an ad hoc498

scaling factor, but having a clear interpretation of all the elements of its machinery499

regarding the experiment. The choice between the options has no effect on the rest500

of the paper.501

5.2. The QP&B model502

With our belief measurement now adequately defined in the two dimensional503

HB, we can define HQP&B. We still assume the second move action and the504

belief elicitation to be complementary, representing them by different bases in the505

redefined 2 dimensional Hilbert Space HII,B. Additionally, we define the angle506

between |CII〉 and |B9〉 as βSM (see Figure 4) and derive estimated probabilities507

for a player replying that he thinks i opponents cooperate, after the player has508

cooperated or defected on his second move. As such, this models the consensus509

effect. We expect βSM to be close to 0, as the consensus effect tells us that people510

who cooperate are more likely to assume that opponents cooperate as well.511

Now we can derive the estimated probabilities for the beliefs of a player512
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|B9〉

|B0〉

|B7〉

|CII〉

|DII〉

βSM

Figure 4: The redefinedHII,B with both an action-basis and the new belief-basis.

defecting on his second move (making the state vector |S 〉 = |DII〉):513

P(Bi|D) = 〈Bi|DII〉
2/

9∑
j=0

〈B j|D〉2 (22)

= cos2
(
βSM +

i
9
π

2

)
/

9∑
j=0

〈B j|D〉2 (23)

and for the beliefs of a player cooperating on his second move (making the state514

vector |S 〉 = |CII〉):515

P(Bi|C) = 〈Bi|CII〉
2/

9∑
j=0

〈B j|C〉2 (24)

= sin2
(
βSM +

i
9
π

2

)
/

9∑
j=0

〈B j|C〉2, (25)

with i ∈ {0, . . . , 9}.516

Similarly, we defineHI,B as 2-dimensional with both a first move action basis517

and a belief basis, with βFM the angle between |CSM〉 and |B9〉. Once again, we518

assume βFM close to zero, as players who explicitly think that their opponent will519

defect are assumed to be more likely to defect as well. We can now derive the520

estimated probabilities of a player cooperating or defecting on his first moves,521

after replying that he thinks i opponents cooperated on their second move, which522
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made the state vector |S 〉 = |Bi〉. Note that this first move measurement uses the523

simple derived probabilities as defined in Section 3.2, as this measurement has524

both outcome vectors orthogonal.525

P(D|Bi) = 〈DI |Bi〉
2 (26)

= cos2
(
βFM +

i
9
π

2

)
. (27)

The first and second moves are still considered to be compatible, allowing526

for a tensoring of their respective Hilbert spaces to represent their correlation.527

The projectors and probabilities associated with these measurements are identical528

to the ones defined in the quantum-like model from section 3.2. This gives us529

a final model HQP&B = HI,B ⊗ HII,B. In HQP&B, the belief that all opponents530

cooperate is represented by a plane B9. The angle between B9 and the plane531

representing second move cooperation is βSM. The angle between B9 and the plane532

representing first move cooperation is βFM. This also defines the plane B0, which533

is orthogonal to B9, naturally representing the belief of all opponents defecting534

and the planes Bi between B9 and B0. This incorporates the representation of all535

three measurements and their relationships (compatible or complementary) into536

one 4-dimensional Hilbert space, with clear estimated probabilities resulting from537

this representation.538

5.3. Fitting the data539

We fit the experimental data of the three measurements to our model. Note that540

the proportions of the second move actions are already incorporated in the starting541

state vector (equation 15). Since we have derived concrete dependencies of the542

beliefs on the second moves, and of the first moves on the beliefs, we can formally543
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fit the experimental data of the Elicit Beliefs group to our model. To do so, we544

shall estimate an optimal value of β for the beliefs on the second moves, as well as545

for the first moves on the beliefs. This can be achieved by minimizing the distance546

between the counts observed in our data set and the expected frequencies based547

on the equations derived above. The chi-squared test is typically used to check548

whether or not an observed set of proportions sufficiently matches the expected549

set, so we will focus on minimizing this statistic.550

Let us first focus on the two contingency tables representing the dependencies551

of the beliefs on the second moves (see Tables 4 and 5). When a specific value of552

βSM is provided, we can estimate the expected probabilities P(Bi|D) and P(Bi|C)553

based on equations (23) and (25), respectively, and subsequently evaluate a chi-554

squared statistic for each of the two tables. In order to estimate an appropriate555

βSM, we optimize an algorithm in which the sum of the two chi-squared statistics556

(one for the SM defectors and one for SM cooperators) is minimized over a range557

of possible values for βSM (ranging from −π/2 to π/2). The value of βSM for which558

this sum reaches its lowest point equals −0.2048, corresponding to chi-squared559

statistics of 14.13 and 14.24 for the two contingency tables (one concerning560

the second move cooperators and one concerning the second move defectors),561

respectively. As expected, our estimated βSM is indeed near 0.562

Under normal circumstances, these chi-squared statistics can be translated563

into p-values, by relying on their asymptotic approximation of a chi-squared564

distribution with I − 1 degrees of freedom (with I = 10 the number of possible565

beliefs). For our data set, however, this asymptotic procedure can be problematic566

because several of the expected frequencies fall below five. This induces concern567

about the accuracy of any p-value obtained through asymptotic approximation;568
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i 0 1 2 3 4 5 6 7 8 9

Observed counts 1 0 0 0 3 6 9 6 4 3
Observed proportions 0.031 0.000 0.000 0.000 0.094 0.188 0.281 0.188 0.125 0.094
Expected proportions 0.011 0.000 0.005 0.025 0.058 0.099 0.144 0.187 0.223 0.248

Table 4: The observed counts, as well as the observed and expected proportions of the beliefs of
second move cooperators

i 0 1 2 3 4 5 6 7 8 9

Observed counts 4 2 5 5 9 3 0 0 0 0
Observed proportions 0.143 0.071 0.179 0.179 0.321 0.107 0.000 0.000 0.000 0.000
Expected proportions 0.156 0.163 0.160 0.147 0.127 0.101 0.072 0.045 0.022 0.007

Table 5: The observed counts, as well as the observed and expected proportions of the beliefs of
second move defectors

therefore, we resort to a more accurate estimation via Monte Carlo simulation.569

This technique simulates the sampling distribution of the test statistic (in this570

case, chi-squared) using Monte Carlo methods. We generate random contingency571

tables with the same marginal distribution as our data (i.e. the same sample572

size), and calculate their chi-squared statistic. Subsequently, it is determined573

how many of these random samples display a test-statistic which is larger than574

the one that was originally obtained. The resulting proportion of more extreme575

chi-squared statistics represents our new and more accurate p-value. Note that576

what can be calculated for one chi-squared statistic can also be achieved for577

a sum of chi-squared statistics: we can simulate a p-value corresponding to578

the proportion of summed test-statistics, which are larger than the original sum579

(14.13 + 14.24 = 28.37). For our analyses, we chose to rely on 104 simulated580

samples.581

According to the reasoning in the previous paragraph, these two test-statistics582

allow us to calculate a p-value through Monte Carlo simulation: we obtain one of583

0.071 for both tables combined. Their observed counts, alongside the observed584
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i Observed counts Totals Observed proportions Expected proportions χ2

0 5 5 1.000 0.997 0.016
1 2 2 1.000 0.947 0.111
2 5 5 1.000 0.844 0.925
3 5 5 1.000 0.699 2.153
4 6 12 0.500 0.530 0.044
5 3 9 0.333 0.358 0.023
6 1 9 0.111 0.202 0.464
7 0 6 0.000 0.083 0.542
8 0 4 0.000 0.014 0.056
9 0 3 0.000 0.003 0.010

Table 6: The observed number of cooperators, total number of participants, and observed as well
as expected proportions of and expected proportions of first move cooperators. Note that the
observed number of defectors (as well the the respective observed and expected frequencies) are
not mentioned in this table since this information is redundant (the observed counts of cooperators
and defectors sum to the totals and the observed/expected proportions of both defectors and
cooperators sum to one).

and expected frequencies, can be found in Tables 4 and 5. The p-value testing the585

null hypothesis of no significant difference between our observed and expected586

proportions on the α = 0.05 level indicates an acceptable fit. As this p-value is587

estimated using simulation, the degrees of freedom are not taken into account,588

unlike a traditional (asymptotic) p-value where the chi-square distribution is used.589

As such, this p-value does not take into account that 20 proportions are estimated590

using only one free parameter, making our estimated p-value even more favorable591

to accepting the null hypothesis than the value suggests at first sight. See Tables 4592

and 5.593

When we aim to establish an optimal value of βFM for modeling the first move594

actions, we see that we have to deal with ten different contingency tables: one for595

each belief in the number of cooperators (i = 0, . . . , 9). Since the observed and596

expected probabilities in each of these contingency tables sum to one, we only597
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Figure 5: Observed frequency of FM cooperation versus elicited beliefs on SM cooperation (blue
dots) and fitted model (equation 27, red line).

need to focus on the data counts and proportions for the cooperators P(C|Bi).598

Similar to the beliefs of the second moves, we establish an optimal value of599

βFM for the first move cooperators by minimizing the sum of the ten chi-squared600

statistics using equation (27). The optimal value of βFM is 0.057 which is close601

to 0, as expected. Figure 5 plots the analytical prediction of the POVM model602

(equation 27) for the relationship between first move cooperation rates and stated603

beliefs about second mover cooperation with βFM = 0.057, and compares it to the604

experimental observations.10 The chi-squared statistics and expected proportions605

are displayed in Table 6; and the corresponding simulated p-value equals 0.715606

indicating a very good fit.607

10Blanco et al. (2014, Figure 3) explain the observed relationship between both experimental
variables with a probit regression, obtaining a similar dependency. Nevertheless, our analytical
curve has a deeper meaning because the functional form (equation 27) is a direct consequence of
the geometrical structure of the POVM model.
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6. Discussion608

Our decision to abandon the restriction that outcome vectors coming from one609

measurement are orthogonal to each other has consequences. The most important610

one is the loss of the repeatability of outcomes.11 Repeatability entails that when611

a measurement is performed twice (without any manipulation or evolution of the612

system between two measurements), the same outcome is observed twice. This613

is assured in a standard quantum-like model, as the projection of a state vector614

onto an orthogonal subspace gives the null vector. Repeatability seems a very615

logical and sensible restriction but has been called into question, specifically when616

applied in quantum cognition. See for example Khrennikov et al. (2014) for a617

thorough discussion of this problem and Aliakbarzadeh and Kitto (2016) about618

the use of POVMs, which lack repeatability, in Social Sciences.619

In our context, the loss of repeatability in the measurement of beliefs means620

that when a player replies that, e.g., ‘six’ opponents cooperate, he might reply621

‘seven’ when the question would be posed again. To justify this, we consider622

the measurements to be unsharp. Unsharp measurements are measurements such623

that the outcome represents a bigger subset of a (possible non-discrete) set of624

outcomes. This is applicable in cases where a subject is asked to form a precise625

opinion or belief but he is actually forming a broader opinion or belief. For626

our example of interest, the subjects may think ‘most of them’ but have to give627

a discrete number as an answer. We assume that when a player replies that,628

e.g., six out of nine opponents cooperate, this indicates the player believing629

‘somewhere around six out of nine opponents cooperate’. This implies that he630

11Also called first kindness in Danilov and Lambert-Mogiliansky (2008).
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would not necessarily disagree with the opinion that seven out of nine opponents631

have cooperated. This structure can be viewed in the form of the belief vectors632

|Bi〉. The state vector collapsing on |B6〉 does not preclude the outcome associated633

with |B7〉, as they are close to each other, with the angle between them equaling634

π/18. The closer two vectors are to being orthogonal, the more the outcomes635

they represent do preclude each other. The vectors |B0〉 and |B9〉 are the limit636

case: being orthogonal makes the events associated with them (the opponent637

cooperating and defecting for sure) completely preclude each other.638

The use of these non-orthogonal outcome vectors also opens up new research639

possibilities within quantum cognition. Inflated dimensionality is a common640

obstacle in elegant model building. Once multiple (compatible) measurements641

with more than two possible outcomes are taken into account, any standard642

quantum model would require high dimensionality. Next to the ease of reducing643

dimensionality, some extra structure can be incorporated in the model. As644

can be seen in our case, implicit relationships between different outcomes can645

be represented. Our model can have the B1 outcome be ‘closer’ to the B2646

outcome than it is to the B8 outcome. In a standard quantum model, all outcome647

vectors are orthogonal, so all outcomes play a similar role towards each other.648

This works for all discrete examples in physics, but in decision-making there649

are numerous examples of ordinal scales where a kind of structure is implied650

between the different outcomes. While this might have seemed problematic at651

first, there are other examples in which these techniques are successfully used,652

again, see Aliakbarzadeh and Kitto (2016) and Yearsley (2016). As there is,653

to our knowledge, no known way of simply incorporating ordinal scales into654

the quantum framework (preserving some sense of the notion of an order),655
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constructing bases similar to the one in this paper seems to be an interesting656

road for future research. One obvious candidate for this treatment would be the657

quantum-like modeling of Likert scales. They allow for (mostly) 5 or 7 different658

ordered outcomes and are ordinal scales widely used within cognition. Some first659

steps for Likert scales of this form are presented in Yearsley (2016).660

7. Conclusion661

In this paper we constructed a quantum-like model for preferences and beliefs662

in a social dilemma game. By taking a new look at the experimental data set663

collected by Blanco et al. (2014) for a sequential prisoner’s dilemma, we identified664

and discussed three distinct effects. These effects are all explained as a specific665

type of relationship between the measurements performed in the experiment.666

First, there is a direct positive correlation between the player’s first and second667

move. As it is shown in Blanco et al. (2014), however, this does not provide a668

complete picture of the subject’s behavior because this correlation is also driven669

by an indirect belief-based channel. This interaction is made up of the two other670

effects: the influence of the second move on the beliefs of the player and the671

influence of the beliefs of the player on his first move. The former effect is the so-672

called consensus effect and we attributed the latter effect to the player becoming673

more reasoned about his preferences.674

The nature of these last two effects both point towards a quantum-like675

model. The non-classical structure of the consensus effect is already discussed676

in Busemeyer and Pothos (2012) where it is viewed as a form of social projection.677

Busemeyer and Pothos (2012) represented the construction of a player’s belief as678

a rotation of the state vector in a Hilbert Space. In our case, the belief construction679

and the second move action are non-commuting (and thus incompatible) in nature.680
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The effect of the player becoming more reasoned can be seen as a violation of681

the sure thing principle. The act of belief elicitation significantly changes the682

cooperation rate of the first move action, regardless of the beliefs elicitation683

outcome. This also suggests viewing the belief elicitation and the first move684

action as incompatible. We combined all these observations and constructed a685

Hilbert Space in which the action measurements on the one hand and the belief686

measurements on the other hand were viewed as incompatible measurements by687

defining a different basis for each.688

Following the more traditional recipe, we obtained a model within a 100-689

dimensional Hilbert Space which was greatly overparametrized from a statistical690

point of view. As a solution to this problem, we proposed to redefine the belief691

basis as two-dimensional and considered two options. The first option constructed692

a POVM, which framed our model neatly into conventional quantum theory, at693

the cost of defining an ancillary outcome. The second option dismissed this694

new outcome, staying closer to the actual experiment, at the cost of leaving the695

standard quantum-like framework. Both options result in identical models and696

diminish the problematic dimensionality. This model incorporates the three effects697

observed in the experiment, and yields elegant dependencies between actions and698

beliefs with successful statistical fit.699

As not all vectors associated with outcomes of the belief measurement were700

orthogonal, we lose repeatability of outcomes: obtaining an outcome does not701

exclude obtaining a different outcome when the same measurement is performed702

again immediately. We defined unsharp measurements of beliefs where forcing703

the player to pick one outcome does not mean he disagrees with some other704

possible outcome, thus relaxing the constraint of repeatability. For more on705
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the need (or lack thereof) of repeatability in psychological measurements, see706

Khrennikov et al. (2014).707
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