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The existence of a double S-shaped process curve during reactive
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The four dimensional parameter space (discharge voltage and current and reactive gas flow and

pressure) related to a reactive Ar/O2 DC magnetron discharge with an aluminum target and

constant pumping speed was acquired by measuring current-voltage characteristics at different oxy-

gen flows. The projection onto the pressure-flow plane allows us to study the well-known S-shaped

process curve. This experimental procedure guarantees no time dependent effects on the result. The

obtained process curve appears not to be unique but rather two significantly different S-shaped

curves are noticed which depend on the history of the steady state target condition. As such, this

result has not only an important impact on the fundamental description of the reactive sputtering

process but it can also have its consequences on typical feedback control systems for the operation

in the transition regime of the hysteresis during reactive magnetron sputtering. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4962958]

Reactive DC magnetron sputtering is a well-established

technique to deposit compound films. Using an elemental

metal target, the film composition on the substrate can be

altered by controlling the reactive gas flow. However, at

given sputtering conditions, an abrupt transition in the oper-

ating conditions is noticed at critical reactive gas flow rates.

This instability restricts the achievable substrate composi-

tions and/or substantially decreases the deposition rate.1–4

The noted Berg model5 describing this transition in the

reactive sputtering process predicts a single S-shaped process

curve of the reactive partial pressure as a function of the

reactive gas flow. The importance of this curve was illus-

trated by Kadlec et al.6 showing the inherent instability of

this curve under typical operating conditions, inducing the

well-known hysteresis effect. Modelling this process curve

yields important information on the influence of the operat-

ing variables on the hysteresis and on the deposition parame-

ters of interest. This incentive encourages researchers to

continuously improve the Berg model to account for addi-

tional effects. An important added feature is the incorpora-

tion of unbounded reactive ions in the target. This forms the

core of the so-called Reactive Sputter Deposition (RSD)

model.7,8 According to this model, poisoning can also occur

in an abrupt way due to an avalanche mechanism based on

reactive ion implantation and the subsequently chemical

reaction mechanism between these ions and target atoms.

This extra mechanism comes into addition to the avalanche

mechanism based on gas gettering by the deposited metal

which is still the basis of the single S-shaped process curve

described by other extensions to the original Berg model.9,10

Although the RSD model enhanced the further under-

standing of reactive sputtering, it also has its drawbacks

compared to the Berg model. It introduces two experimen-

tally hard to retrieve quantities: the sticking coefficient of

molecular oxygen on the target surface and the reaction rate

coefficient governing the reaction between the implanted

reactive species and the target. This issue was however

solved for the case of aluminum and yttrium in an Ar/O2

discharge11–13 by fitting experimental data. An interesting

result from the latter work is that the steady state solution of

the RSD model shows not one unique but two S-shaped pro-

cess curves depending on the process history.13 It predicts

that the return to the metallic mode from the poisoned

regime follows a different path as compared to the opposite

transition. This phenomenon has been experimentally

observed before when operating in the transition zone14–17

but it did not receive any special attention as its origin could

be linked to an irreversible change of the process parameters

such as chamber heating or target erosion.

In this letter, we attempt to experimentally test the pre-

diction of the RSD model that the reactive sputtering process

is described by two S-shaped curves. This feature does not

stem from time dependent effects but it originates from the

fundamental nature of the target poisoning mechanism as

described by the model. In order to prove this result, we

introduce an alternative procedure to obtain the process

curve excluding all time dependent experimental artifacts

that can affect the hysteresis in an irreversible way.

A necessity in any procedure to measure the complete

process curve during reactive sputtering is the possibility to

operate stably in the transition zone. There are several meth-

ods to accomplish this. The hysteresis effect can be avoided

by an increase of the pumping speed,18,19 a reduction of the

target area,20 or by sputtering at higher argon pressures.21

Also feedback mechanisms which continuously adjust the

reactive gas flow22–34 can be used to control the reactive

sputtering process. An alternative and less cumbersome

approach to access process conditions within the transition

zone is based on a study on titanium and tantalum performed

by Schiller et al.25 According to this study, the control of the

discharge power allows to the stable operation at any degree

of target coverage. This method though boils down to con-

trolling the discharge current due to the steep current-voltage

or I–V characteristics of magnetron discharges.26–28 Later

on, McMahon et al.29 noticed that in the case of Al, the sys-

tem was unstable using power-controlled sputtering but
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stable when the discharge voltage was controlled. This dif-

ference in behavior between Ti and Al can be understood

from the material dependency of the discharge voltage on

target oxidation as discussed by Depla et al.30 More recently,

it has been demonstrated that this voltage-controlled operat-

ing mechanism is not only applicable on small scale labora-

tory set-ups31 but also on large industrial coaters.32 We now

exploit this mechanism by measuring I–V characteristics at

constant reactive gas flow in order to investigate the hystere-

sis effect of aluminum.

The experiments were performed in a stainless steel vac-

uum chamber (0.2� 0.2� 0.4 m3) which was pumped by a

combination of a turbo molecular pump and a rotary pump to

a base pressure of less than 1.9 � 10�5 Pa measured by a

compact cold cathode gauge (Pfeiffer IKR 251). A 2 in.

diameter aluminum target (Kurt J. Lesker 99.999% Al) was

mounted on a home built water cooled planar magnetron as

described in previous work.30 The magnetron was powered

by a H€uttinger 1500 DC power supply. A pumping speed of

30 l/s and an argon pressure of 0.4 Pa were selected to ensure

a definite hysteresis behavior. The total gas pressure was

measured using a capacitance gauge (Pfeiffer CMR 375).

The analogue output signal of this pressure gauge was ampli-

fied by a factor of 20 to restrict the accuracy to the gauge res-

olution rather than the data acquisition unit. The oxygen flow

was regulated using a 2 sccm (standard cubic centimeter per

minute) mass flow controller (MKS M330).

During each I–V measurement, the oxygen flow Q was

fixed and the discharge voltage V was altered with a step size

of 5 V every 15 s. Meanwhile, the corresponding current I
and pressure p were registered at a rate of 5 Hz. As it takes

approximately 5 s until the system reaches a new steady

state, only the last 10 s of each step were used for analysis.

The total time interval of the voltage step (15 s) was deliber-

ately kept short to suppress erosion effects. The necessity for

a longer term stability was regularly checked by expanding

the measuring period between two voltage changes. These

measurements indicated that a longer time interval was not

needed. The measured pressure and current within the time

interval were averaged out resulting in the data points as

depicted in Figure 1. The I–V measurement for each oxygen

flow was repeated six times by increasing the discharge volt-

age (i.e., from poisoning towards the metallic mode) as well

as by decreasing the voltage (i.e., from metallic towards the

poisoned mode). All these measurements were randomly

performed to exclude any systematic effect such as chamber

heating. Moreover, to avoid the effects of target erosion, the

discharge voltage was measured for a certain reference con-

dition in the metallic mode. If the decrease of the voltage

due to target erosion33 exceeds 1%, a new target was

mounted and sputter eroded until the reference discharge

voltage was again reached. In addition, this procedure

ensures a sputter cleaned metallic target surface as a starting

point of each I–V measurement.

In order to compose a p-Q curve out of the (I, V, p, Q)

space at a certain current (or power), it is necessary to over-

come the problem that only the discharge voltage and the

oxygen flow are controlled during the experiment. Hence,

the values of the discharge voltage and the oxygen pressure

at any discharge current (or power) must be retrieved from

the data by interpolation. At first sight, one could plot the

oxygen pressure as a function of the discharge current.

However, the pressure is not single valued for a given cur-

rent. The alternative, i.e., presenting the discharge current as

a function of the oxygen pressure, is difficult due to the small

experimental fluctuations in the measured oxygen pressure.

Therefore, the following two-step procedure has been

applied. First, the I–V characteristics at each flow are fitted

with a B-spline curve. As the voltage was monotonously

increased or decreased, the exigency for B-spline fitting is

indeed satisfied. This is demonstrated in Figure 1(a) for a

fixed flow of 1.2 sccm. As indicated by the grey horizontal

dashed line at 0.35 A, it becomes possible now to derive the

corresponding discharge voltages (indicated by blue and yel-

low arrows pointing downward). As a second step, the same

strategy of B-spline fitting is applied to the p-V measurement

at the same oxygen flow (see Figure 1(b)). With the derived

voltages from the first step, it is then possible to derive the

oxygen pressures connected to the oxygen flow at constant

discharge current (indicated with arrows pointing to the left

in Figure 1(b)).

By repetition of this procedure, over all six measure-

ments per oxygen flow for both increasing and decreasing

discharge voltage, an average oxygen pressure and corre-

sponding standard deviation can be determined. In this way,

it becomes possible to derive a p-Q process curve at constant

current (here 0.35 A) as shown in Figure 2(a). It should be

noted that the oxygen partial pressure is determined by sub-

tracting the argon pressure from the total pressure. Due to

experimental fluctuations, the small oxygen pressure in the

metallic mode can be either positive or negative (Figure

1(b)). However, by averaging all six measurements, the oxy-

gen pressure in the metallic mode does not differ signifi-

cantly from zero.

FIG. 1. An I–V measurement of Al

with fixed oxygen gas flow (1.2 sccm).

The pumping speed was set to 30 l/s

and the argon pressure was 0.4 Pa. The

blue markers represent a decreasing

voltage (i.e., metallic to oxide),

whereas the yellow markers depict an

increasing voltage (i.e., oxide to metal-

lic). The grey dashed line indicates a

discharge current of 0.35 A. A double

I–V characteristic is measured. By fit-

ting a B-spline to (a) the I–V and (b)

the p-V data, the corresponding pres-

sure to any current can be obtained.
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The proposed way of data treatment permits to present the

data in different ways. For example, projections such as p-I
curves become possible. Many research groups perform reactive

sputtering at constant power, and it is therefore interesting to

show the p-Q curve not only at constant discharge currents but

also at constant discharge power (see Figures 2(a) and 2(b)).

It appears that there is no unique process curve but

rather two significantly different S-shaped curves which

have been previously noticed before.15,16 The double process

curve is not only noticed during pressure controlled opera-

tion but also during voltage controlled which is demonstrated

in Figures 2(c) and 2(d). However, it should be emphasized

that due to the followed procedure, the data points of the p-Q
curves are obtained from randomly performed experiments.

Hence, systematic and irreversible effects such as chamber

heating and target erosion can now be excluded as an expla-

nation for the double S-shaped process curves. It could be

argued that this behavior could find its origin in our specific

setup. To test this possibility, the experiments were repeated

in a different vacuum chamber using a cylindrical rotating

magnetron. Again, a double I–V curve, similar to the result

presented in Figure 1(a), is measured. This excludes the

influence of the magnetron setup and/or the vacuum chamber

design. An additional explanation could be a changing or

even disappearing anode34 due to the deposition of the com-

pound on the vacuum chamber walls. Thus, a stainless steel

brush was mounted as the anode ensuring a clear defined

anode at any sputtering condition. These experiments yielded

a double I–V curve as well. A last possible reasoning might

be a difference in plasma potential. As the discharge voltage

is measured between the cathode and the anode, an altering

plasma potential would not be noticed. This effect should

change the energy of the impinging ions and consequently

the sputtering yield which would lead to a different target

state. It would suggest that the double S-shaped process

curve origins from the discharge and not from target poison-

ing mechanism as predicted by the RSD model. To investi-

gate this reasoning, the plasma potential was measured using

a Langmuir probe (Hiden Analytical ESPion). The tip of this

probe was positioned perpendicular to the target surface at a

distance of 10 cm to measure the plasma potential in the bulk

of the plasma. Prior to each measurement, the tip was nega-

tively biased (�100 V) to sputter clean the probe. It was

found that the plasma potential of each I–V curve as shown

in Fig. 1(a) only differs by 2 V. This small difference hardly

changes the target state. Therefore, the shift of the discharge

voltage of approximately 20 V as depicted cannot be

explained by an altering plasma potential.

Hence, the result seems to be a fundamental property

inherent to reactive magnetron sputtering. This implies that

a correct description of the reaction kinetics of the

implanted oxygen with the target material forms a crucial

step in the improvement of modelling reactive sputtering.

Although this seems at first sight an academic discussion,

this feature also has its practical consequences to pressure-

controlled feedback systems. As there are two different oxy-

gen flows corresponding to a certain oxygen pressure, the

feedback system can operate for a given set point at differ-

ent flows and consequently multiple target states. It is there-

fore vital to any feedback mechanism to start from the

same target state (either poisoned or metallic). Otherwise,

reproducible operating conditions within the transition zone

can be problematic.

The authors would like to acknowledge Research

Foundation-Flanders (FWO) for financial support.

FIG. 2. The p-Q process curve for an

aluminum target generated by measur-

ing I–V-characteristics at different oxy-

gen flows. Two different operating

conditions are shown for both pressure

and voltage controlled systems: (a) and

(c) a constant discharge current and (b)

and (d) a constant discharge power. The

error bars represent the standard devia-

tion of six identical I–V measurements.
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