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Abstract

In Deep Level Transient Spectroscopy (DLTS) experiments the majority carrier capture rate is

often determined by observing the growth of the signal amplitude as a function of filling pulse dura-

tion at constant temperature. The analysis of such experiments is complicated by the phenomenon

of slow capture: carrier capture by defects in the Debye tail of the depletion layer at the pulse

voltage. We review here three approaches for analyzing isothermal pulse duration variation DLTS

experiments that have been described or at least have been frequently used in literature. These

methods are compared for their ability to correctly extract capture rates from simulated data as

well as from actual experimental data for the Fe−/2− level in crystalline germanium. Finally, we

tested the performance of the three methods for analysis of DLTS signals that experience a delayed

growth, modeled by an additional time constant in the system.
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I. INTRODUCTION

In the four decades since its introduction in the seminal paper of Lang [1], Deep-Level

Transient Spectroscopy (DLTS) has grown out to the standard technique for characteri-

zation of point defects that introduce deep levels in the band gap of semiconductors. In

classical DLTS transients (∆C exp(−t
τ
)) in the high-frequency reverse capacitance (Cr) of

a (Schottky or p-n) diode depletion layer are measured after application of voltage pulses.

These arise from slow emission of electrons (rate en) or holes (rate ep) by defects in the

depletion layer that change their charge state after returning from the pulse voltage (Vp)

back to the reverse voltage (Vr), because they had captured a carrier (rate cnn = σnvthn

for electrons or cpp = σpvthp for holes) during the pulse. Transients are measured as a

function of temperature (T ), the pulse voltage parameters Vr, Vp and filling pulse time (tp).

Figure 1a shows an example of the capacitance transients in case of majority carrier capture

and emission at a fixed temperature. They may be analyzed by various filter functions [2]

with characteristic window times (tW ) or by Laplace transformation[3]. Subsequent data

analysis (in principle) allows to determine energy level positions in the bandgap and charge

state/transition assignments, carrier capture cross-sections and activation barriers (∆Eσ)

therein, and defect concentration (profiles), in principle both for majority and for minority

carriers. This analysis is based on the theory of DLTS for ideal diodes with low concentra-

tions of deep-level defects, which is well-established and covered by several textbooks. When

applying DLTS to real devices, however, several deviations may occur that can influence the

interpretation of the spectra.[5–7] This paper focuses on one particular problem in DLTS:

determining the majority carrier capture cross-section σ.

In an Arrhenius analysis of the temperature dependence of the carrier emission rate mea-

sured by DLTS, the pre-exponential factor already provides information about σ.[4] Careful

thermodynamic analysis demonstrates, however, that entropy changes in the emission pro-

cess need to be taken properly into account for obtaining accurate σ values. Observation

of the growth of the transient amplitude as a function of pulse time (∆C(tp)) at constant

T presents an independent experimental method for determining σ, that does not require

information on entropy. This method was already introduced by Lang[1]. It is limited by the

minimum pulse duration (in practice ∼ 10−8s) of the setup and can therefore only be applied

to carrier trap levels with (moderate and) small σ in devices with moderate free carrier con-
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FIG. 1: a) pulse sequence applied to determine majority carrier trap parameters, defining the

experimental parameters of the pulse. b) typical (simulated) ∆C(tp) curve in linear and c) the

same curve in exponential pulse time scale. In the abscissa, the dimensionless parameter cnntp

(capture rate × pulse time) is presented

centrations (e.g. cnn < 1× 108s−1 for n = 1× 1014cm−3 implies σn < 1× 10−13cm2). Basic

theory predicts a saturating exponential growth for ∆C(tp). This is seen in Fig. 1b,c where

simulated data are presented (for electrons) as a function of the dimensionless parameter

cnntp, at least for sufficiently small tp values (up to cnntp ≈ 2). However, before actually

saturating, a regime of slower growth of ∆C(tp) is entered, generally referred to as slow

capture. It arises from carrier capture by defects in the Debye tail of the depletion layer (at

Vp), where the free carrier concentration is rapidly decreasing. This effect complicates the

analysis of ∆C(tp) and for reliable extraction of σ it should somehow be taken into account.

Pons found a closed expression for the amplitude of the capacitance transient as a function
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of the pulse length[8].

∆C(tp)

Cr

= − 1

W 2
r n

∫ +∞

0

NT (x)∆f(x, tp)xdx (1)

With Cr and Wr the quiescent capacitance and depletion width at Vr , x the distance from

the junction, NT (x) the trap concentration, n the free carrier concentration, and ∆f the

change in fractional occupation of the trap levels. In order to derive σ from this expression

by fitting, it needs to be approximated. Early proposals for such approximations, based

on the depletion approximation, did not properly take into account re-emission during

capture and led to divergence for ∆C(tp → +∞). Lauwaert et al. worked out an analytical

approximation, that does not suffer from these drawbacks[9]. For accurate estimates

of σ, the ∆C(tp) curve should comprise a range where the effect of slow capture is not

dominant. This presents the main restriction on the use of this method, which has been

successfully applied in determining σ for various transition metal related acceptor levels

in n-type Ge[11–14], by fitting ∆C(tp) in an extensive tp range. Here we consider this

analytical approximation as a reference for comparison with two conceptually simpler,

experiment-based approaches for determining σ from ∆C(tp) curves.

The simplest way of dealing with slow capture is excluding the long pulse tp range, where

slow capture has the most prominent effect, from the analysis. Evidently, decreasing the

number of data points in the analysis leads to results with lower accuracy and narrows

down the range of capture rates that can be analyzed. By choosing the experimental

parameters Vr and Vp wisely - maximizing the ratio between the contribution from normal

fast capture and that from slow capture, one may still try and extend the application range

of this method somewhat. In the limiting case of an infinitely wide depletion layer at Vr

(Vr → −∞), and (Cr → 0), the contribution from slow capture should, indeed, become

negligible. We label this approach here as Method 1.

Exactly in the latter consideration of the limiting case lies the key to a second possible

approach. Keeping Vp constant, one may record ∆C(tp) for increasing values of Vr, from

these data extract σ as a function of Cr by considering only the part of the curves where

∆C(tp) is dominated by normal capture, and extrapolate the resulting σ(Cr) curve to

Cr → 0. Segers et al. recently proposed this approach for the analysis of quenched-in

defects in p-type Ge[16]. Here, we label it as Method 2.

In this paper we compare these two simplified approaches with the analytical approximation
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by Lauwaert et al.[9] which we label as the Analytical Method. In Section 2 we explain

how these three methods relate to the general theory of Pons and how they can be used in

the analysis of ∆C(tp) curves. In Section 3 the three methods are compared by analyzing

data generated through simulations and on an actual experimental example: the Fe−/2−

level in n-type Ge. We present analyses for the capture rate cnn or cpp, since these are

the properties directly extracted from experiments. At a given temperature σ is then

easily calculated when the carrier concentration is determined from the C-V curve. Finally,

Section 4 focuses on a peculiar feature observed in the ∆C(tp) for quenched-in defects in

p-type Ge: the curves exhibit an initial tp-range where ∆C(tp) remains zero, or in other

words, a delayed growth of the signal. Since this range decreases when increasing Vr, just

like the slow capture contribution as discussed by Pons[8], in Ref. [16] this effect was also

attributed to slow capture. We show that in this case fitting the data via Method 2 is the

best option for obtaining reliable estimates of capture rates and cross-sections.

II. THEORY

If one merely wants to calculate the trap concentration NT from ∆C, one assumes that

for long pulse times tp the DLTS signal is saturated and Eq. (1) is simplified by limiting

the borders of the integral to the region where ∆f(x) > 1
2
. Then Eq. (1) reduces to the

conventional ’pulse correction factor’[10]:

∆C =
1

2

NT

nW 2
r

(
(Wr − Lr)

2 − (Wp − Lp)
2)Cr (2)

with Wr and Wp the depletion widths at Vr and Vp, respectively, and Lr = Lp the distance

from the edge of the depletion layer to the position x where ∆f(x) = 1/2. For shorter pulses

tp two effects contribute to the growth of ∆C. First, within this short pulse time only a

fraction of the traps can change their occupancy and ∆f becomes tp dependent. Second, due

to the slow capture in the Debye tails the position Lp (relative to Wp) for which ∆f = 1/2

also becomes tp dependent. In Ref [9] this tp dependence is calculated analytically. Including

these two prerequisites in the pulse correction factor (2) leads to the following analytical

approximation for ∆C(tp)

∆C(tp) =
1

2

NT∆fmax(tp)

nW 2
r

(
(Wr − Lr)

2 − (Wp − Lp(tp))
2)Cr (3)
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FIG. 2: DLTS-signal amplitude as a function of filling pulse duration for different reverse voltages

calculated using the analytical approximation and the parameters shown in table I.

with ∆fmax(tp) the maximum of the function ∆f(x). Figure 2 shows an example of an

analytical calculation with the parameters in table I. For short tp and small pulse heights

Wr − Lr can be smaller than Wp − Lp. Within this analytical approximation this would

result in a negative signal. In order to correct for this only positive results are included in

the fitting and the negative values are set to zero as is seen in the curve for Vr = −0.25V

in Fig. 2. The threshold for the minimum pulse height as a function of tp was calculated

theoretically by Pons [8]. Eq. 3 may be further separated into a term that describes the

normal exponential capture and a second due to slow capture. Hence, we can rewrite Eq. 3

as

∆C(tp) =
1

2

NT∆fmax

n0W 2
r

(
(Wr − Lr)

2 − (Wp)
2)Cr + α (tp)C

3
r (4)

with

α(tp) = −
L2
p − 2WpLp

ϵA

NT

2n0

∆fmax (5)
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FIG. 3: DLTS-signal amplitude as a function of filling pulse duration for different reverse voltages

calculated using the analytic approximation divided by C3
r .

Since α(tp) is independent of Cr, the second term, including the contribution of slow capture,

is proportional to C3
r . This is demonstrated in Fig. 3, where the data of Fig. 2 are divided

by C3
r . One can clearly see that the part of the curves that is dominated by slow capture

(tp > 10−6s) is the same for all Vr values, and hence is independent of Cr. This will allow

to fit ∆C/C3
r curves for different reverse biases Vr simultaneously as is mentioned later in

this section.

In a first approach to analyzing the ∆C(tp) curves - Method 1 - the long pulse duration

range, where slow capture becomes prominent, is avoided. Method 1 thus neglects the tp

dependence of Lp and therefore assumes that ∆C(tp) is proportional to ∆fmax

∆fmax = (1− exp (−tp (cnn+ en)))

(
cnn

cnn+ en

)
(6)

If the concentration of injected charge carriers is high enough, cnn > en, and this fractional

occupation is further simplified to:
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for the calculated DLTS-signal amplitudes as a function of filling pulse

duration.

∆f ≈ (1− exp (−tpcnn)) (7)

Indeed in the neutral region where the normal capture occurs this is well justified. Since for

a uniform injection of carriers and a uniform deep trap concentration Eq. (1) is proportional

to this fractional occupation, it is possible to approximate the DLTS-signal as:

∆C(tp)

∆C∞
= (1− exp (−cnntp)) (8)

For such dependence ∆C(tp) the range in which the signal grows from 1 to 99% of its max-

imum value corresponds with 0.01 < cnntp < 4.6. This range is indicated with Exponential

in Fig. 1. On the other hand, from the analytical approximations for Lp suggested in Ref.

[9], we can expect a significant effect from the slow capture for cnntp > 0.15. This range

is labeled Slow Capture in Fig. 1. It is therefore expected that Eq. (8) only is a good
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FIG. 5: (a) Determination of the derivation at tp = 6×10−7s using Eq. (9) (b) Linear extrapolation

of the slope to Cr = 0 (c) Quadratic extrapolation of the slope to Cr = 0

approximation for small tp. In absence of slow capture effects,

ln

(
1− ∆C(tp)

∆C∞

)
(9)

is proportional to tp, with cnn as proportionality constant. In anticipation of slow capture

effects, the best estimate of cnn from this dependence is obtained from the slope of a straight

line through the origin and the point at the smallest tp for which a change in ∆C is observed.

This method is illustrated in Fig. 4 for the simulations in Figs. 2 and 3 with parameters

shown in Table I, further assuming that only the data for tp > 10−7s are experimentally

available.

Method 2 for analyzing ∆C(tp) curves uses the first derivative of ∆C(tp) at a certain tp

point to estimate cnn as a function of Cr. Figure 5a shows how the slope at tp = 6× 10−7s

is determined numerically using adjacent points. Based on a further approximation of Eq.
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(4), we see that the capture rate can be derived from this slope:

1

∆C∞ −∆C(tp)

d∆C(tp)

dtp
= cnn+ 2

dα(tp)

dtp

n0

NT

C2
r (10)

Where the denominator ∆C∞ −∆C(tp) is approximated in a similar way as in Method 1,

i.e. neglecting the term proportional to α(tp). For the second term Eq. (4) is simplified

even further. For large Wr, Lr ≪ Wr and Wp ≪ Wr which makes that the denominator can

be simplified to: (
1− Lr

Wr

)2

−
(
Wp

Wr

)2

≈ 1

From Eq. (10) it follows that for large Wr - or for Cr → 0 - the perturbation by slow

capture is purely quadratic in Cr. This is the basis for the second method. The slope of

∆C(tp) curve at a chosen tp point (that in principle may differ for ∆C(tp) curves recorded at

different Vr) is determined as a function of C2
r (by varying Vr at fixed Vp) and this curve is

linearly extrapolated to C2
r → 0. This is shown in Fig. 5b. Because this method only makes

use of the first derivative of Eq. (9) in one point we may expect that the accuracy depends

on the choice of tp. Like Method 1, Method 2 can only yield reasonable estimates of capture

rates (and cross-sections) when the contribution of slow capture is small relative to that of

normal capture. For the last two points in Fig. 5b (at large C2
r value, or small |Vr|), the

contribution of slow capture at the chosen tp value is already too large to perfectly follow

the C2
r dependency. Including these points in the extrapolation would lower the estimate

of the capture rate. Method 2, however, also presents an important advantage with respect

to Method 1, more particularly when the exponential growth regime of the ∆C(tp) curve is

delayed, e.g. an additional time constant in the device (see Section IV), which will neces-

sarily lead to underestimates of the capture rate. Method 2 offers freedom in the choice of

the tp point where the
d∆C
dtp

is calculated, and in such case the maximum of the derivative is

expected to yield the best results.

The third, Analytical Method has been described extensively in Ref [9]. A small addition of

this work is that the ∆C(tp) curves recorded at increasing |Vr| are all fitted simultaneously

with the analytical model. This is possible because the parameters that include the slow

capture are proportional to C3
r and the capture rate is independent of Vr. Therefore, includ-

ing an extra curve in the fitting for a different Vr but with same Vp for all curves, induces
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TABLE I: Parameters used for the calculation of the analytical curves shown in Fig. 2.

Parameter Value

t0 1.283ms

tW 6.912ms

p 2.0× 1014cm−3

NT 1.2× 1012cm−3

σ 5.6× 10−14cm2

ep 72s−1

only one extra parameter a3 following the nomenclature of Lauwaert et al. [9]:

a3 =
1

nWr

∫ Wr−Lr

Wp

NT (x)xdx (11)

III. COMPARISON OF THE ∆C(tp) ANALYSIS METHODS

Figure 6 forms the basis for the comparison of the different analysis methods discussed

in Section 3 with respect to their accuracy in extracting the majority (holes) carrier capture

cross-section, expressed as the capture rate cpp. The ordinate value of a data point in this

graph represents the cpp result obtained by analyzing via Methods 1 and 2 the simulated

data in Figs. 2 and 3, generated with the analytical model using the parameters listed in

Table I. The abscissa value represents the minimum tp value for which data are available.

Furthermore, analysis results are presented for data at or up to Vr = −2V and Vr = −5V .

Obviously, the capture rate used in the simulation is found back when analyzing the data

with the Analytical Model. This is represented as a horizontal solid line in the figure,

which should here represent the ideal value that Methods 1 and 2 should approach. The tp

range where the normal and the slow capture contributions to ∆C vary from 1% to about

99% of their maximum are indicated with the grey bars: they overlap by about 1.5 decade.

Both Method 1 and Method 2 lead to reasonable estimates for the capture rate (10-20%

deviating from the value used in the simulations) if data in a significant fraction of the

exponential growth regime are available. In such conditions (at small abscissa values), thus

on the left hand side of the graph, the fitting result hardly depends on the tp point where
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the ∆C(tp) curve starts. However, if data are only available from tp values onwards where

the growth of ∆C is dominated by slow capture, the accuracy of the fitting result rapidly

decreases. Thus, both simplified methods exhibit a transition region between fairly accurate

and unreliable results for 1µs < tp < 2µs. Increasing the σ value shifts both the fast and

the slow capture regime to lower tp values, and consequently also this transition region. We

may further note that increasing |Vr| has, as expected, a positive influence on the fitting

result for both simplified methods: it leads to more accurate fitting values if data are

available at sufficiently short pulses. Unfortunately, it does not shift the transition region

much, or in other words, it does not extend the range of measurable capture cross-sections

significantly. Since Method 2 applies extrapolation of capture rate estimations, which

increase as Cr decreases (|Vr| increases) one may anticipate that the analysis following this

method will lead to higher results than when applying Method 1. This is nicely illustrated

in Fig. 6. Because of the neglect of slow capture, Method 1 should always underestimate

the actual capture rates. Method 2 may lead to overestimation of the capture rate, but

only when data are available from sufficiently small pulse durations.

Fitting the data with the model used for simulating them, obviously leads to accurate

results of capture rates. Restricting the available tp range on the short pulse side, however,

still leads to an increase in the fitting error, which is smaller if data are used up to

Vr = −5V (dashed lines in Fig. 6 indicate the borders of the 95% confidence interval for

the fitting result) than when the maximum |Vr| value is restricted to 2V (dotted lines).

Fig. 6 thus indicates that in comparison with methods 1 and 2, the Analytical Method

shifts the tp range where the fitting becomes unreliable by about one decade towards longer

pulse lengths. Hence, fitting with the analytical model does extend the range of measurable

capture rates (cross-sections).

As a final point of this section, we apply fitting methods 1 and 2, as well as the Analytical

Method to ∆C(tp) curves measured at 155 K for the DLTS peak associated with the Fe−/2−

level in n-type Ge. Previous DLTS analyses of the electron trapping parameters for Fe− by

Gurimskaya et al. [17] Lauwaert et al. [13] have led to the following trapping parameters:

σ∞ = 3.7× 10−15cm2 ∆Eσ = 50meV [13]

σ∞ = 4.98× 10−15cm2 ∆Eσ = 43meV [17]

from which at T = 155 K cnn = 6× 104s−1 is calculated.

The experimental ∆C(tp) and ∆C(tp)/C
3
r curves are shown in Fig. 7 and the analysis

12



results, as a function of the first tp data point included in the analysis, are summarized in

Fig. 8. A good qualitative similarity between Fig. 8 and Fig. 6 is noted: Method 1 leads

to slightly lower capture rates than the Analytical Model, and Method 2 to slightly higher

results. Methods 1 and 2 again exhibit a rather sharp transition range in which the fitting

becomes unreliable situated at 10µs < tp < 30µs. When using the Analytical Method,

the fitting result remains nearly unaffected up to tp = 100µs, which implies a significant

extension of the range of measurable capture rates and cross-sections. Like in the simulation

example, the fitting results for Method 1 and 2 are affected by the Vr value at (or up to)

which the data were recorded and results in somewhat closer agreement with one another

are found for the largest |Vr| value. However, there is an important qualitative difference

with the simulated data: all fitting methods yield a larger capture rate for the highest |Vr|

value. Although this might be a consequence of fitting real experimental data for samples

which, e.g., may exhibit (small) majority carrier density profiles that influence fitting re-

sults, it might also point to an electric field dependence of the electron capture cross-section.

IV. MEASUREMENTS PERTURBED BY AN ADDITIONAL TIME CONSTANT

Pons already noticed that as particular consequence of Eq. (1), for a given pulse duration

tp there exists a threshold pulse amplitude |Vp − Vr| for obtaining a measurable DLTS

amplitude ∆C [8]. The tp dependence of Lp may, indeed, induce a dead time in the ∆C(tp)

curve where the signal remains zero. In Figs. 2 and 7, the curves at Vr = −0.25V exhibit

such behavior. A similar dead time may also be provoked by other effects, e.g. additional

potential barriers (next to the main junction diode). In this case the ∆C(tp) cannot even

be modeled by numerically solving Eq. (1), because the cause for the dead time lies outside

the model. In order to test which fitting method is most suitable for analyzing the capture

kinetics in such case, an additional time constant τ = 1 × 10−7s was introduced in the

simulated data of Figs. 2 and 3 by allowing the potential drop over the junction diode to

vary like

∆V (t) = |Vp − Vr|
(
1− e−

t
τ

)
Figure 9 shows the simulated data at Vr = −5V along with the best fit with the Analytical

Model. Not only is the shape of the ∆C(tp) curve only poorly reproduced, the capture rate

13
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FIG. 6: Estimated capture rate as a function of tp shortest pulse length available for the simulated

data. For the Analytic Model the lines correpond with the borders of the 95% confidence interval.

cpp is also underestimated by about 40%. Figure 10 represents the ln(1 − ∆C(tp)/∆C∞)

curves at different Vr. They all show a linear dependency, but this lines do not pass through

the origin, however. This presents a complication in the application of Method 1 and

obviously leads to underestimations of cpp. For Method 2, one can without any problem

determine the slope of each curve in Fig. 10 at the tp point where it reaches a maximum

and find cpp by extrapolation to C2
r → 0. In an analogous fashion as Figs. 6 and 8, Fig. 11

summarizes the analysis results of the data including an extra time constant following the

(three) methods discussed in this work. When data are available from sufficiently small tp

onwards, Method 2 clearly emerges as the superior method, overestimating the capture rate

used for generating the data points only very slightly. Method 1 and the Analytical Method

perform significantly poorer, both underestimating the capture rate considerably.
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V. CONCLUSIONS

Obtaining accurate values of the majority carrier capture rates and cross-sections for

deep-level defects from DLTS experiments is not so straightforward as it may seem at first

glance. Without detailed knowledge of the entropy changes in capture and emission, direct

calculation from the pre-exponential factor in the Arrhenius analysis of the emission rates

may at best yield the right order of magnitude. Analysis of isothermal pulse length variation

experiments can only yield good estimates of capture cross-sections if the ∆C(tp) curves

are not completely dominated by slow capture effects and not too strongly affected by

additional time constants in the experimental devices, which delay the growth of ∆C. From

the experimental side, it is certainly recommended to record ∆C(tp) data at various reverse

voltage values: inspecting the resulting changes in the curves allows to identify the problems

that will occur in the analysis. The simple approach of Method 1, which ignores the influence
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FIG. 8: Estimated capture rate as a function of tp shortest pulse length available for electron

capture by the Fe−/2− level.

of additional time constants and aims to avoid the range where slow capture effects affect

the data, necessarily leads to underestimates of the cross-section. If the ∆C(tp) curves are

mainly distorted at large tp by slow capture (and not so much by delayed growth at small tp),

fitting the data with the Analytical Model definitely presents the most accurate and most

stable solution. On the other hand, if the ∆C(tp) curves are notably affected by an additional

time constant at small tp, this method may also lead to considerable underestimates of the

capture cross-section. In such case, Method 2, which uses maximum slope analysis of the

∆C(tp) curves and extrapolation of the Vr dependence of the results, may present the best

solution.
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FIG. 9: Simulated DLTS signal amplitude using the parameters in Table I and an additional time

constant. The best fit using the Analytic Model is also inculded in the graph.
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