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ABSTRACT. This paper studies an infinite-server queue in a Markov environment, that is, an infinite-
server queue with arrival rates and service times depending on the state of a Markovian background
process. Scaling the arrival rates λi by a factorN and the rates νij of the background process byN1+ε

(for some ε > 0), the focus is on the tail probabilities of the number of customers in the system, in
the asymptotic regime that N tends to ∞. In particular, it is shown that the logarithmic asymptotics
correspond to those of a Poisson distribution with an appropriate mean.
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1. INTRODUCTION

The infinite-server queue is arguably one of the main pillars of queueing theory, and has been stud-
ied almost since the inception of this field. It has found widespread usage in diverse application
domains, often as an approximation for its many-server counterpart.
In infinite-server systems jobs arrive, are served in parallel (there is no waiting, that is), and leave
when their service is completed. While the original motivation of infinite-server queueing systems
stems from communication networks engineering, where the so-called Erlang model was devel-
oped to describe the dynamics of the number of telephone calls in progress, applications in various
other domains have been explored, such as road traffic [12] and biology [1, 11].
The standard infinite-server model, which is commonly denoted in Kendall notation as M/G/∞,
has the following operation. Jobs (which may, depending on the application, also be denoted as
particles, customers, calls etc.) arrive according to a Poisson process with rate λ, where their service
times form a sequence of independent and identically distributed (i.i.d.) random variables (dis-
tributed as a random variable B with finite first moment), independent of the call arrival process;
a key result states that the stationary number of jobs in the system obeys a Poisson distribution
with mean λEB. In many practical situations, however, the assumptions of a constant arrival rate
and the jobs stemming from a single distribution are not realistic. A model that allows the input

Date: August 23, 2013.
Key words and phrases. Markov-modulated Poisson process, queues, general service times, large deviations.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55743084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J.G. BLOM ?, K.E.E.S. DE TURCK †, M.R.H. MANDJES •,?

process to exhibit some sort of variability (often referred to as ‘burstiness’) is the Markov-modulated
infinite-server queue. In this model, a finite-state irreducible continuous-time Markov process
(usually called the background process) modulates the input process: if the background process is
in state i, the arrival process is a Poisson process with rate, say, λi, while the service times are dis-
tributed as a random variable, say, Bi (while the obvious independence conditions are imposed).
The transition rate matrix of the background Markov chain is given by (νij)

d
i,j=1.

The Markov-modulated infinite-server queue has attracted some (but relatively limited) attention
in recent years. The main focus in the literature so far has been on characterizing (through the
derivation of moments, or even the full probability generating function) the steady-state number
of jobs in the system [5, 7, 9, 10]. Interestingly, under an appropriate time scaling [3, 8] in which the
transitions of the background process occur at a faster rate than the Poisson arrivals, we retrieve the
Poisson distribution for the steady-state number of jobs in the system. Recently, transient results
have been obtained as well, under specific scalings of the arrival rates and transition times of the
modulating Markov chain [3, 4].
The scaling considered in [3, 4] is such that the λi are linearly scaled (informally, λi 7→ Nλi), while
the transition rates are superlinearly scaled (informally, νij 7→ N1+ενij , for some ε > 0). The intu-
itive idea is that the time scale of the background process is faster than the time scale of the arrival
process, such that the customer generation process becomes effectively a Poisson process with rate
λ∞ :=

∑
i πiλi, with πi the stationary probability that the background process is in state i. As a

result, the queueing system will behave as an infinite-server queue with arrival rate λ∞.

Contribution. Where previous work [4] considers a central limit theorem in the scaling described
above, we here focus on tail probabilities. Our main result is that the large deviations of the number
of jobs in the system coincide with those of a Poisson random variable with mean N%t, with %t :=∑
i πiλi

∫ t
0
P[Bi ≥ s]ds. We also show the corresponding steady-state result.

Organization. The organization of the rest of this paper is as follows. In Section 2, we explain the
model in detail and introduce some notation. In Section 3, we state and prove the main result of
this paper. Numerical results are provided in Section 4. The final section of the paper, Section 5,
contains some discussion of the results and concluding remarks.

2. MODEL DESCRIPTION

As mentioned above, this paper studies an infinite-server queue with Markov-modulated Poisson
arrivals and general service times. In full detail, the model is described as follows.
Consider an irreducible continuous-time Markov process (J(t))t∈R on a finite state space {1, . . . , d},
with d ∈ N. Its rate matrix is given by (νij)

d
i,j=1. Let πi be the stationary probability that the back-

ground process is in state i, for i = 1, . . . , d. The time spent in state i (often referred to as the
transition time) has an exponential distribution with mean 1/νi, where νi := −νii.
While the process (J(t))t∈R, often referred to as the background process or modulating process, is in
state i, jobs arrive according to a Poisson process with rate λi ≥ 0. The service times are assumed to
be i.i.d. samples distributed as a random variableBi if the job was generated when the background
process was in state i. The usual independence assumptions apply. We exclude the case that all λi
as well as the distributions of theBi coincide (as otherwise the queue is just an ordinary M/G/∞).
We denote by Bi(·) the complementary cumulative service distribution for jobs arriving during
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background state i:
Bi(t) = P[Bi ≥ t].

We use bold fonts to denote vectors; for instance λ ≡ (λ1, ..., λd). We denote the invariant distri-
bution corresponding to the rate matrix (νij)

d
i,j=1 by π.

3. MAIN RESULT

We perform the scaling λi 7→ Nλi, and νij 7→ N1+ενij . We denote the background process (after
the scaling) by (J (N1+ε)(t))t∈R. Let L(N1+ε)(t1, t2) be the empirical distribution of the background
process in [t1, t2) (with t1 < t2); its i-th component is the fraction of time spent in state i, for
i = 1, . . . , d (where obviously the d components are non-negative and sum to 1). The objectL(t1, t2)

is the counterpart of L(N1+ε)(t1, t2) for the non-scaled background process.
It is well known that the following law of large numbers applies: for any S ⊂ Rd+ such that π is
contained in the interior of S , it holds that P(L(0, t) ∈ S ) → 1 as t → ∞. It is also a standard
result (Thm. 3.1.6 in [6]) that L(0, t) satisfies a large deviations principle with rate function

(1) I(x) := sup
u>0

(
−

d∑
i=1

xi log

∑d
j=1 νijuj

ui

)
;

this function is positive except when x = π. Under mild regularity conditions on the set S , it
means that

lim
t→∞

1

t
logP(L(0, t) ∈ S ) = − inf

x∈S
I(x).

As a consequence, if S does not contain π, then P(L(0, t) ∈ S ) decays essentially exponentially.
In the sequel, we need some additional notation. We define, for a function f : R→ {1, . . . , d},

(2) ϕ(f) :=

∫ t

0

λf(s)Bf(s)(t− s)ds,

and

(3) %t :=

d∑
j=1

πjλj

∫ t

0

Bj(s)ds.

Let M (N)(t) be the number of jobs in the system at time t. We wish to characterize the proba-
bility that M (N)(t) exceeds Na, given that the system starts off empty. We let P (N)(λ) denote a
Poisson random variable with mean Nλ. From [3, 5], we know that the M (N)(t) is distributionally
equivalent to a Poisson random variable with random parameter:

(4) M (N)(t)
d
= P (N)

(
ϕ
(
J (N1+ε)(t)

))
.

Note that since ϕ
(
J (N1+ε)

)
→ %t, a.s. for N → ∞, we have that N−1M (N)(t) → ρt, a.s. for

N →∞. In this paper, we are concerned with the rare event that the number of jobs exceeds a level
Na, with a ≥ ρt.

Theorem 1. For a ≥ %t,

lim
N→∞

1

N
logP

(
M (N)(t) ≥ Na

)
= −%t + a+ a log

%t
a
.

Proof. In view of the distributional equivalence (4), we have that

(5) P
(
M (N)(t) ≥ Na

)
= P

(
P (N)

(
ϕ
(
J (N1+ε)

))
≥ Na

)
.
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For δ > 0, we define ∆(π) as a hypercube around π:

(6) ∆(π) := (π1 − δ, π1 + δ)× · · · × (πd − δ, πd + δ).

Also introduce, for ζ > 0, the event

(7) Eδ(ζ,N) :=

{
L(N1+ε)

(
0,

t

Nζ

)
∈ ∆(π), . . . ,L(N1+ε)

(
dNζe − 1

Nζ
t, t

)
∈ ∆(π)

}
.

Lower bound. We determine the decay rate of the obvious lower bound

P
({

P (N)
(
ϕ
(
J (N1+ε)

))
≥ Na

}
∩ Eδ

(
1

2
, N

))
;

the idea is that we specialize to the scenario that the empirical distribution of the Markov chain is
in ∆(π), and hence systematically close to π.
To this end, first realize that, for any ξ ∈ (0, 1) andN sufficiently large, by virtue of the law of large
numbers for the empirical distribution of the background process, see e.g. [6, Thm. 3.1.6]:

P
(

Eδ

(
1

2
, N

))
≥
d
√
Ne∏

i=1

min
ji∈{1,...,d}

P
(
L
(

0, tN
1
2 +ε
)
∈ ∆(π)

∣∣∣ J(0) = ji

)
≥ (1− ξ)d

√
Ne.

This immediately implies that

lim inf
N→∞

1

N
logP

(
Eδ

(
1

2
, N

))
=0.

We are left with determining a lower bound on

lim inf
N→∞

1

N
logP

(
P (N)

(
ϕ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (1

2
, N

))
.

Recall that the Poisson random variable is stochastically increasing in its parameter. For that rea-
son, we need to find a lower bound on Nϕ(J (N1+ε)), conditional on Eδ(

1
2 , N). By picking in every

segment and for every state (a) a lower bound on the state probability (still in ∆(π)), as well as (b)
the lower bound on the Poisson rate in this segment (i.e. at the start of the segment), it is readily
verified that the following (deterministic!) lower bound applies:

(8) %t(N) := t
√
N

d∑
j=1

b
√
Nc∑

i=1

(πj − δ)λjBj
(
t

(
1− (i− 1)√

N

))
.

We thus obtain that

P
(
P (N)

(
ϕ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (1

2
, N

))
≥ e−%t(N) (%t(N))dNae

dNae!
.

Applying Stirling’s factorial approximation, it is seen that

lim inf
N→∞

1

N
log

(
e−%t(N) (%t(N))dNae

dNae!

)
≥ lim inf

N→∞

1

N

(
−%t(N) +Na+Na log

%t(N)

Na

)
.

Observing that %t(N)/N constitutes a Riemann integral with limit %(δ)
t as N → ∞ (due to the fact

that the functions Bj(·) are Riemann integrable), with %
(δ)
t defined as %t but with the πj replaced

by πj − δ, we conclude that

lim inf
N→∞

1

N
logP

(
P (N)

(
ϕ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (1

2
, N

))
≥ −%(δ)

t + a+ a log
%

(δ)
t

a
.
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The stated follows by letting δ ↓ 0.

Upper bound. We consider the obvious upper bound

P
({
P (N)

(
ϕ
(
J (N1+ε)

))
≥ Na

}
∩ Eδ

(ε
2
, N
))

+ P
(
Eδ
(ε

2
, N
)c )

.

Due to the union bound,

P
(
Eδ
(ε

2
, N
)c )

≤ dNε/2e
(

max
j∈{1,...,d}

P
(
L
(
0, tN1+ ε

2

)
6∈ ∆(π)

∣∣ J(0) = j
))

.

Standard large deviations results imply that

lim
N→∞

1

N1+ ε
2

logP
(
L
(
0, tN1+ ε

2

)
6∈ ∆(π)

∣∣ J(0) = j
)

= − inf
x/∈∆(π)

I(x) < 0,

and hence
lim sup
N→∞

1

N
logP

(
Eδ
(ε

2
, N
)c )

= −∞.

Using [6, Lemma 1.2.15], it is now left to prove that

lim sup
N→∞

1

N
logP

(
P (N)

(
ϕ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (ε
2
, N
))
≤ −%̄(δ)

t + a+ a log
%̄

(δ)
t

a
,

with %̄
(δ)
t defined as %t but with the πj replaced by πj + δ; the stated then follows after sending

δ ↓ 0. This upper bound is established as follows.
We need to find an upper bound on Nϕ(J (N1+ε)), conditional on Eδ(

ε
2 , N). Using a similar reason-

ing as in (8), it is readily verified that the following (deterministic!) upper bound applies:

%̄t(N) := tN1− ε
2

d∑
j=1

dN
ε
2 e∑

i=1

(πj + δ)λjBj

(
t

(
1− i

N
ε
2

))
.

Chebycheff’s inequality on the cumulant generating function of Poisson random variables [6, p. 30]
now entails that

lim sup
N→∞

1

N
logP

(
P (N)

(
ϕ
(
J (N1+ε)

))
≥ Na

∣∣∣Eδ (ε
2
, N
))

≤ lim sup
N→∞

1

N

(
−%̄t(N) +Na+Na log

%̄t(N)

Na

)
,

which yields the desired upper bound, realizing that – using the same reasoning as above –
%̄t(N)/N → %̄

(δ)
t as N →∞. 2

The following corollary is an immediate consequence of the Gärtner-Ellis theorem and the duality
between the cumulant function and the Legendre-Fenchel transform.

Corollary 1. The limiting cumulant function ofM (N)(t) corresponds to that of a Poisson random variable:

lim
N→∞

1

N
logE exp

(
ϑM (N)(t)

)
= %t(e

ϑ − 1).

The above result naturally extends to the steady-state counterpart M (N) of M (N)(t). To this end,
we define % := limt→∞ %t =

∑
i πiλiE[Bi] and realize that M (N) has a Poisson distribution with

mean

N

∫ 0

−∞
λf(s)Bf(s)(−s)ds;
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see e.g. [5]. Then the proof of the corollary below is essentially the same as the one for the transient
case.

Corollary 2. For a ≥ %,

lim
N→∞

1

N
logP

(
M (N) ≥ Na

)
= −%+ a+ a log

%

a
.

In addition, N−1 logE exp
(
ϑM (N)

)
→ %(eϑ − 1) as N →∞.

We conclude this section by noting that the for the transient result, finiteness of the first moment
of Bi is in fact not required in the proof.

4. NUMERICAL EXAMPLES

We illustrate the results of this paper with a stochastic simulation study. In order to circumvent
the long run-times associated with crude Monte-Carlo simulations of rare events, we simulate the
quantity of interest in the following way. Introducing the random variable Y := ϕ(J (N1+ε)), we
can write the probability of interest as:

P
(
M (N)(t) ≥ Na

)
= E[pNa(Y )],

where pa(λ) denotes the complementary cumulative distribution function of the Poisson distribu-
tion:

pa(λ) =

∞∑
k=a

e−λ
λk

k!
.

An efficient simulation thus consists of simulating K trajectories of the background Markov chain,
and then perform an exact computation of the distribution of the Poisson distributed random
variable M (N)(t), with a rate that can be extracted from the trajectory, so that the only source
of error is due to the uncertainty wrt the rate.
As pa(λ) is a smooth function of λ, we can estimate confidence intervals by applying what is
known as the delta method [2, p. 75]. Thus, we have that the variance to be used for the confidence
intervals is equal to σ2 = p′Na(ρt)

2 Var[Y ]. By computing the sample variance of Y , s2
Y , we have an

approximate confidence interval equal to

(9) [ẑ − cαp′Na(Nρt)sY /
√
K, ẑ + cαp

′
Na(Nρt)sY /

√
K],

where ẑ denotes the estimate for the probability of interest, K the number of runs and cα the
coefficient corresponding to a 1− α confidence interval of the standard normal distribution.
Although we have proved only the exponential tail asymptotics, we recall the Bahadur-Rao theo-
rem on exact asymptotics of the Poisson distribution, so as to verify whether this refinement leads
to a better fit; we refer to [6, Thm. 3.7.4]. The cumulant generating function of a Poisson distributed
random variable is equal to Λ(θ) := logE[eθX ] = λ(eθ − 1). The probability that a Poisson random
variable with rate Nλ exceeds Na, with a > λ, can be written asymptotically as

(10) P(P (N)(λ) ≥ Na) ∼ 1

(1− e−η)
√

Λ′′(η)2πN
e−NΛ(η),

where η denotes the positive solution of Λ′(η) = a. After plugging in the expressions specific for
the Poisson distribution we get,

(11) P(P (N)(λ) ≥ Na) ∼ 1

1− λ
a

1√
2πaN

(
λ

a

)Na
e−N(λ−a).
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ε = 0.01 ε = 0.25 ε = 0.75 ε = 1.25

N = 20 [1.182921, 1.199136] [1.184967, 1.197062] [1.188300, 1.193700] [1.189724, 1.192271] 1.190230
N = 40 [1.132820, 1.144161] [1.134665, 1.142299] [1.137006, 1.139946] [1.137897, 1.139053] 1.138278
N = 60 [1.113972, 1.123353] [1.115762, 1.121549] [1.117624, 1.119681] [1.118292, 1.119011] 1.118563
N = 80 [1.103918, 1.112138] [1.105583, 1.110462] [1.107238, 1.108802] [1.107754, 1.108285] 1.107970
N = 100 [1.097761, 1.104898] [1.099229, 1.103421] [1.100678, 1.101968] [1.101112, 1.101534] 1.101291
N = 120 [1.093138, 1.100255] [1.094810, 1.098575] [1.096147, 1.097235] [1.096517, 1.096864] 1.096668
N = 200 [1.084372, 1.089404] [1.085554, 1.088218] [1.086510, 1.087260] [1.086792, 1.086977] 1.086877
N = 300 [1.079575, 1.083622] [1.080570, 1.082623] [1.081347, 1.081846] [1.081535, 1.081657] 1.081593
N = 400 [1.077008, 1.080606] [1.077904, 1.079708] [1.078612, 1.078999] [1.078761, 1.078849] 1.078803
N = 500 [1.075420, 1.078716] [1.076296, 1.077837] [1.076908, 1.077225] [1.077033, 1.077101] 1.077065

TABLE 1. Simulated decay rates for a two-state background Markov chain with
ν1 = 1 and ν2 = 3; λ1 = 1, λ2 = 2; µ1 = 2, µ2 = 1; a = 2, t = 0.8 for different ε and
N , with 95% confidence intervals (Eq. (9)). Exact value ≈ 1.0690. The last column
contains the Bahadur-Rao based value (Eq. (11)). The number of runs is equal to
K = 800.

In our example, we consider a two-state background Markov chain with ν1 = 1 and ν2 = 3; λ1 = 1,
λ2 = 2; a = 2 and exponential service times with rates µ1 = 2, µ2 = 1. For these parameters,
ρt ≈ 0.5746 and the associated Poisson decay rate is I ≈ 1.0690. Furthermore, we take the number
of runs K to be equal to 800. In Table 1, we show the decay rates −(1/N) · logP(M (N) ≥ Na), for
different N and ε. We observe that the simulated decay rate encompasses the predicted decay rate
I , with confidence intervals that get smaller as ε gets larger. This is intuitively clear as the faster
the background cycles, the less likely it is that the empirical distribution of the background chain
differs substantially from the steady-state distribution.
In Fig. 1 we show for N = 100 the simulated 0.95 confidence interval of the Poisson parameter
ρt versus ε, whose width is equal to c0.05sY /

√
K. This plot illustrates that the confidence interval

rapidly gets smaller as ε increases. This is further evidence of the fact that larger ε will see faster
convergence to Poissonian asymptotic behavior. Indeed, as the number of particles is a Poisson
distribution with a random parameter, and the confidence interval of said random parameter gets
rapidly smaller, we can anticipate Poissonian asymptotics as well. In Fig. 2, we plot the logarithm
of the width of the confidence interval against epsilon and find a linear relation, which suggests
that the confidence interval is asymptotically kN−cε, for certain values of k and c.
Lastly, we show in Fig. 3 a contour plot of the confidence interval width on the Poisson parameter
ρt versus ε and N . We see, as expected that the confidence interval gets smaller when N or ε get
bigger.

5. DISCUSSION AND CONCLUDING REMARKS

We have seen that, under the time-scaling considered (arrival rates linearly and transition rates
superlinearly, that is), the tail asymptotics in the Markov modulated infinite server model tend to
those in a corresponding M/M/∞ system; the rationale is that the background process is jumping
faster than the time-scale of the arrivals, so that the arrival stream becomes increasingly Poisson as
N tends to∞.
In the model considered in this paper, the service times were sampled upon arrival instants. In case
of exponential service times, there is a second version of the Markov-modulated infinite-server
queue, though: a version in which the departure rate of each job is µi if the background process
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FIGURE 1. Simulated Poisson parameter for a two-state background Markov
chain with ν1 = 1 and ν2 = 3; λ1 = 1, λ2 = 2; µ1 = 2, µ2 = 1; a = 2, t = 0.8;
N = 50 versus ε. The gray area represents the confidence interval. The number of
runs at each data point is equal to K = 800.

FIGURE 2. A plot of the (decimal) logarithm of the confidence interval width
versus ε.
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FIGURE 3. A contour plot of the confidence interval width versus N (vertically)
and ε (horizontally). The labels show the decimal logarithm of the confidence
interval width.

is in state i. It is conceivable that in this case, the tail asymptotics of the normalized stationary
number of jobsM (N)/N tend to those of P (N)(λ∞/µ∞), with µ∞ :=

∑d
i=1 πiµi, whereas (as before)

λ∞ :=
∑d
i=1 πiλi). In addition, in the transient setting we anticipate the Poisson parameter to

equal λ∞/µ∞ ·(1−e−µ∞t). It is noted, however, that the proof technique used in the present paper
does not extend to this setting. Other generalizations can be thought of, such as non-exponential
transition times (cf. [4, 8]), and the case ε = 0.
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