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In this paper, a stochastic modeling method is developed and implemented
in a SPICE framework to analyze variability effects on interconnect
structures including general nonlinear elements.

Introduction: Over the last few decades, computer-aided simulation tools
have become an important asset for the design, simulation and optimization
of complex electronic networks. Nonetheless, since large-scale integration
and miniaturization lead to an important impact of the manufacturing
process on the system performance, appropriate instruments are needed
to evaluate uncertainties of the circuit parameters. Typical tools to gather
quantitative statistical information of the circuit response are based
on the well-know Monte Carlo (MC) method. This is computationally
demanding, especially when realistic, complex structures are analyzed.
Effective solutions to overcome these previous limitations have been
proposed, leveraging the so-called polynomial chaos (PC) methods.

In [1], a PC-based technique, called the stochastic Galerkin method
(SGM), was developed in Matlab for transmission lines terminated by
linear loads. This technique for distributed circuits including linear
elements was modified in [2] to allow implementation in a SPICE
environment. A PC-method for lumped circuits consisting of discrete,
linear and nonlinear elements was first reported in [3, 4], allowing to
model uncertainties in a small-signal regime or by approximating the
nonlinearities by means of Taylor expansions. Recently, an improved PC-
technique for distributed circuit elements terminated by general nonlinear
loads was conceived by the authors of the present contribution [5].
Unfortunately, this technique could solely be implemented in Matlab, as
it relies on a finite-difference time-domain (FDTD) solver for transmission
lines, making it also cumbersome to deal with lossy, dispersive lines
and arbitrary circuit topologies. Therefore, in the present paper, a
SPICE-compatible method is developed and implemented in a traditional
environment allowing for the first time to perform PC-based variability
analyses of lossy, dispersive multiconductor transmission lines terminated
by general nonlinear loads.
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Fig. 1: Cross-section AA′ (left) of the source-line-load
configuration (right) of a pair of coupled microstrip lines.

Stochastic Modeling Formalism and Implementation: Consider a uniform
multiconductor transmission line (MTL) with the propagation direction
along the z-axis. The MTL consists of N signal conductors and a reference
conductor. (An example of such a line is given in Fig. 1, where N = 2).
Due to manufacturing, one or more geometrical and/or material parameters
are not known in a deterministic way, thus they have to be treated as
stochastic random variables (RVs), characterized by a probability density
function (PDF), rendering the Telegrapher’s equations nondeterministic.
For ease of notation, in this section, we consider a single lossless
dispersion-free line (N = 1), affected by a single stochastic parameter β.
We can then write the pertinent stochastic Telegrapher’s equations as
follows:

∂

∂z

[
v(z, t, β)

i(z, t, β)

]
=−

[
0 L(β)

C(β) 0

]
·
∂

∂t

[
v(z, t, β)

i(z, t, β)

]
, (1)

where v and i are the voltage and current along the line, and with L and C
the per-unit-of-length (p.u.l.) transmission line parameters. Next to the
position z along the line and the time t, we have also explicitly written
down the dependence on the stochastic parameter β, of which only the
PDF is known, hence prohibiting a straightforward solution of (1).

To solve (1), we rely on the SGM which is detailed in [1]. As a result of
applying this method a novel set of deterministic Telegrapher’s equations
arises:

∂

∂z

[
ṽ(z, t)

ĩ(z, t)

]
=−

[
0 L̃

C̃ 0

]
·
∂

∂t

[
ṽ(z, t)

ĩ(z, t)

]
. (2)

The new unknowns ṽ and ĩ are (K + 1)-vectors, containing voltage
coefficients ṽk(z, t) and current coefficients ĩk(z, t) (k= 0, . . . ,K). The
parameter K determines the number of terms in the so-called PC-
expansions, as explained in [1]. L̃ and C̃ are known (K + 1)× (K + 1)
p.u.l. matrices. The “augmented” system (2) is now fully deterministic, no
longer showing dependence on β, and it can be implemented in a SPICE
framework. Upon solving for ṽ and ĩ, statistical information about v and i

is readily obtained.
To solve the set of the 2(K + 1) equations in (2), a set of

proper 2(K + 1) boundary conditions (BCs) is required. These are
obtained by adding terminations to the lines. Assume that a nonlinear
load is attached to the far-end terminal, i.e. at z =L, with the following
characteristic:

i(L, t, β) = F (v(L, t, β)), (3)

where F (·) represents a general nonlinear function. Then, it was shown
in [5] that by means of the SGM a new set of K + 1 deterministic BCs is
obtained, which can be cast in the form:

∀m= 0, . . . ,K : ĩm(L, t)≈
Q∑

q=1

w
(1)
mq F

(
K∑

k=0

w
(2)
kq ṽk(L, t)

)
, (4)

where w
(1)
mq and w

(2)
kq are weights (k,m= 0, . . . ,K; q= 1, . . . , Q) and

Q is a parameter that determines the accuracy. A similar set of BCs
can be obtained at the near end z = 0, for any kind of (non)linear
load and generator. The novel BCs (4) connect all voltage and current
expansion coefficients contained in ṽ and ĩ through the known nonlinear
function F (·) and proper linear combinations. Hence, these deterministic
BCs (4) are readily implemented in a SPICE framework, using dependent
sources. This results in a somewhat more complex network in terms
of number of nodes, but guarantees a very efficient simulation yielding
comprehensive statistical information, and rendering this technique very
useful for variability analysis during circuit design.
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Fig. 2: Averages of the voltage waveforms vin(t), vout(t), vNX(t), and
vFX(t), at the four terminals of the coupled microstrip lines of Fig.1.
Circles (◦): average computed using the SGM technique; full black lines:

average computed using the MC technique.

Numerical Results: In this section the technique is validated by applying
it to the variability analysis of the pair of coupled copper microstrip lines
illustrated in Fig. 1. The length L is 5 cm and the gap G between the
lines and the relative permittivity ϵr of the substrate are considered to
be two RVs uniformly distributed in the range [70, 90] µm and [3.7, 4.3],
respectively. The first line, i.e. the active line, is excited by means of a
voltage source vs(t) that produces a ramped step, going from 0 V to 1 V in
a risetime of 100 ps, in series with an impedance Rg1 = 50 Ω. This active
line is terminated by means of a forward biased diode described by the
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well-known Shockley-model i= Is

(
e

v
ηVt − 1

)
, where Is = 5 · 10−14 A,

η= 1, and Vt = 25.85 mV. The second line, called the victim line, is
terminated at the near-end by a 50 Ω load Rg2. At the far-end, a 1 pF ideal
capacitor CL is connected. We chose to monitor the voltage waveforms vin
at the input of the active line, vout at the diode, the near-end crosstalk vNX

and the far-end crosstalk vFX, all indicated on Fig. 1. The results are shown
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Fig. 3: Standard deviation of the far-end crosstalk vFX(t). Circles (◦):
SGM technique; black line: MC technique.

in Fig. 2, where the continuous black lines represent the averages of the
voltage waveforms obtained by performing a MC simulation in HSPICE,
using 10000 samples of G and ϵr , drawn according to their respective
uniform distributions. The proposed SGM approach for nonlinear loads
was implemented and simulated also in HSPICE. The parameter K was
set to 5 and all losses, i.e. copper conductivity σ= 5.8× 107S/m and
substrate losses tan δ= 0.02, were taken into account. The results of the
proposed SGM are plotted as circles in Fig. 2. In Fig. 3 the standard
deviation of vFX(t) is presented. For both stochastic moments, i.e. average
and standard deviation shown in Figs. 2 and 3, respectively, a very good
agreement compared to the reference result is obtained.
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Fig. 4: CDF of the maximum of the far-end crosstalk for vFX(t).

All computations have been performed using HSPICE on a Dell
Latitude E6500 laptop with an Intel(R) Core(TM) 2 Duo T9900 CPU
running at 3.06 GHz and 4 GB of RAM. The total runtime for the
MC analysis was 5656.4 s, the SGM simulation only took 1.11 s. A
remarkable speed-up factor exceeding 5000 is obtained by means of the
SGM approach.

Usually, designers are interested in quantifying the maximum amount of
crosstalk that can be expected from a certain topology. Therefore, in a post-
processing step and in addition to stochastic moments, we compute the
cumulative distribution function (CDF) of the maximum far-end crosstalk,
maxt≥0|vFX(t)|. From Fig. 4, an excellent agreement between the MC
simulations and the novel approach is again observed.

Conclusion: A stochastic method was developed and implemented in a
SPICE-type framework for the variability analyses of lossy, dispersive
MTLs in the presence of general nonlinear loads. The methodology
was validated and illustrated in the HSPICE environment by means of
an example consisting of a pair of coupled microstrip lines exhibiting
variability of its geometrical and material parameters, terminated by a
nonlinear diode. Compared to the standard Monte Carlo analysis, this
method delivers an excellent agreement and shows superior efficiency.
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