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The interplay between radio frequency (RF) waves and the density is discussed by adopting the

general framework of a 2-time-scale multi-fluid treatment, allowing to separate the dynamics on

the RF time scale from that on the time scale on which macroscopic density and flows vary as a

result of the presence of electromagnetic and/or electrostatic fields. The focus is on regions close to

launchers where charge neutrality is incomplete and waves are commonly evanescent. The fast

time scale dynamics influences the slow time scale behavior via quasilinear terms (the

Ponderomotive force for the case of the equation of motion). Electrons and ions are treated on the

same footing. Also, both fast and slow waves are retained in the wave description. Although this

work is meant as a subtopic of a large study—the wave induced “convective cell” physics at hand

is of a 2- or 3-dimensional nature while this paper limits itself to a single dimension—a few

tentative examples are presented. [http://dx.doi.org/10.1063/1.4936979]

I. INTRODUCTION

The present paper discusses the interplay of radio fre-

quency waves and plasma close to wave launchers. In this

region, the temperature is sufficiently low for cold plasma

wave models to be relevant but the density is so low that typ-

ically at least part of the wave power is carried by evanescent

waves. The adopted model combines known ingredients but

aims at providing a more complete description for wave

induced density modification.

In view of the very different time scales involved in ra-

dio frequency (RF) wave physics, it makes sense to split the

task of modeling the wave-plasma interaction into 2 subpro-

blems: (i) one describing the fast time scale dynamics and in

which the slow time scale variables can simply be assumed

to be constant as a function of time and (ii) one describing

the slow time scale dynamics, for which the fast dynamics

only intervene through the second order corrections averaged

over the relevant fast dynamics period or periods. All quanti-

ties are assumed to be the sum of a slowly varying term,

topped up by a small, rapidly varying perturbation. This jus-

tifies linearizing the equations and obtaining a description

for the deviations away from the slow time scale dynamics.

Moreover, assuming transient behavior is of no concern, the

fast time scale physics can be studied as a driven response to

an oscillating drive at a prescribed wave frequency x, i.e.,

@/@t ! �ix. When relevant, other fast time scale variations

(in this particular case, the time dependence following from

the Larmor gyrations the strong magnetic field imposes on

the charged particles) equally need to be removed by a

proper averaging when seeking to isolate the “pure” slow

time scale response. Following this approach, the dynamics

can be described by separate but coupled sets of equations,

one set for each of the 2 individual time scales. The fast time

scale description requires slow time scale quantities as input.

The slow time scale description feels the influence of the fast

time scale via quasilinear terms: Although the period-

averaged perturbed quantities vanish, quadratic contributions

do not and hence their time average adds a finite contribution

to the slow time scale equations.

The linearization procedure standardly used when deriv-

ing wave equations for describing wave dynamics in toka-

mak plasmas relies on the fact that the static magnetic field

by far exceeds the magnetic field of the externally launched

waves. Along with the linearization of Maxwell’s equations

and the equation of motion to account for the strong impact

of the confining field, it is customary to linearize the other

equations describing the plasma. This is not without risk. In

the context of the topic treated in the present paper, the linea-

rization of the density is of specific concern: Whereas the

density is high in the main plasma, this is not the case in the

neighborhood of the antenna. Moreover—just because the

density is low in that region—a dominant fraction of the

wave power is carried by large amplitude evanescent waves.

The density perturbation essentially being proportional to the

square of the electric field magnitude, the wave induced den-

sity modification may not be small compared to the slow

time scale density. When linearization fails, the here pre-

sented model loses its validity so an a posteriori check of the

results is needed.

In a previous paper, the wave-induced density modifica-

tion was computed assuming the electric field pattern is

known.1 Adopting a simple 2D wave model, the drift veloc-

ities setting up 2D convective cells were identified and the

creation of a wave induced density asymmetry in front of the

antenna was illustrated. In the present paper and unlike what

was done before, the impact via the density modifications

brought about by the waves on the waves themselves is

accounted for by setting up an iterative scheme. Although it

is clear that the dynamics of the convective cells cannot be

captured fully in 1 dimension, the present paper restricts

itself to slab geometry. The main reason is that a set of linear
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and nonlinear equations needs to be solved simultaneously to

get insight in the wave-particle dynamics. An intermediate

step was judged to be necessary to examine if numerical sta-

bility for the relevant system of equations can be reached.

The extension of this work to 2D or 3D is a logical and nec-

essary step to be taken next.

Launchers are typically embedded in metallic boxes and

excite waves close to metallic vessel walls. Close to such

walls, charge neutrality is violated, and a potential difference

between the wall and the deep plasma—where charge sepa-

ration no longer exists—is set up. Adopting a given, simpli-

fied density profile, the interplay of the different kinds of

waves supported by the plasma behind the last closed flux

surface of a tokamak was studied by solving the cold plasma

wave equation.2 Although a fluid model lacks certain crucial

ingredients to describe what happens very close to the wall,

a somewhat more macroscopic description can be attempted

adopting the here presented model. Metallic boundary condi-

tions can be imposed for the RF waves but the wall voltage

giving rise to charge separation is an input, not an output.

The present paper aims at offering a simple, consistent,

first-principles framework for describing density modifica-

tions brought about by radio frequency waves, and at explor-

ing this framework to describe the dynamics close to

launchers in tokamak environment in the presence of both a

strong confining magnetic field and RF power. Up to few

exceptions, the ingredients used in this paper are “classical.”

The model that will be developed here is a (multi-)fluid

model and hence—by definition—it excludes kinetic effects.

In particular, it overlooks the fact that the velocity distribu-

tion function of the particles generally does not have a

Gaussian shape at the modest densities close to the vessel

walls and antennas, where the time spent by a particle in the

modeled region is not enough to ensure collisional thermal-

ization around a mean value. The often implicitly made

assumption that particles sample a given location many

times—as is the case for a particle on a closed magnetic sur-

face in a tokamak—is not justified when modeling plasma

behind the last closed flux surface. As a result, the routinely

applied averaging that underlies the splitting of 2 time scales

may become questionable for some applications. Moreover,

quasilinear theory is applied, which—given the magnitude of

the electric fields carrying MegaWatts of power into the

tokamak—hinges on the assumption that the net effect of a

rapid succession of events on a fast time scale can sensefully

be captured by a slow time scale model in which the effect

of the fast time scale shows up as a small, finite average over

the oscillation period (or periods) of the fast time scale. It

suffices to consult the work of Dirickx3 on transport equa-

tions to realize that strong gradients necessitate the re-

development of the whole drift ordering theory of the inter-

action of charged particles in the presence of electric and

magnetic fields, a concept far beyond the more modest scope

of the present paper.

The philosophy adopted in this paper is not new. In the

context of high frequency lower hybrid waves (allowing to

capture the wave dynamics by restricting the description to

the parallel electric field component only) and implicitly

assuming the density deviations are typically modest, Chan

and Chiu discussed wave induced density depletion analyti-

cally already 3 decades ago for a number of relevant density

models.4 More recently, Meneghini relied on the 2-time

scale separation to iteratively compute the wave induced

density depletion close to the lower hybrid grill adopting the

view that the various species obey a Boltzmann distribu-

tion.5,6 Both of these works study wave dynamics in a fre-

quency range where cross-talk between the various waves a

cold plasma admits is absent. In the ion cyclotron frequency

domain, wave-wave coupling is routinely occurring in the

low density region close to the antenna and cannot be

neglected. Moreover, even though the RF antenna is

designed to launch fast waves, it also parasitically excites

the slow wave in a magnetized plasma. A model describing

both wave types and retaining all 3 wave components needs

to be adopted when studying radio frequency waves.

The wave induced density depletion is interpreted to be

due to the Ponderomotive force. Klima proposed an elegant

way to compute this force.7 It generalizes the expression

adopted by Chan and Menegheni. As will be explained, both

parallel and perpendicular electric field components have an

impact, depending on which frequency range and which type

of particles is studied.

Meneghini pointed out that an iterative technique for

solving the relevant equations offers perspectives for appli-

cations in more than 1 dimension and he illustrated this by

presenting 1D, 2D, and 3D results; his work aims at compar-

ing reflectometer Alcator C-Mod density measurements with

theoretical predictions. Going beyond a 1D description is

also the longer term goal foreseen for the here presented

work. There are a number of aspects that are not yet properly

captured by the set of equations adopted in the present work

which are thought to have a non-negligible bearing on the

density profile that is set up: One is the fact that the large dif-

ference in mobility along and across magnetic field lines

causes a sharp exponential decay of the density behind the

last closed flux surface. The other is that ionization/recombi-

nation and sputtering modify the particle balance.

Accounting for these processes is intended to be done when

extending the here presented model to more than 1 dimen-

sion but for the time being the scope is limited to the usual

framework also adopted in earlier work.

Furthermore, magnetic field lines are not necessarily

fully parallel to the launcher, as is often assumed in tokamak

wave modelling. Moreover, metallic structures might be

intersecting field lines passing close to the antenna, and par-

ticles crudely following these field lines will undergo wave

induced modifications. Recent theoretical as well as experi-

mental works suggest that the effect of high power density

waves can be observed well away from the antenna at places

magnetically connected to it.8,9 Finally, near metallic objects

charge neutrality is violated, necessitating to account for the

electrostatic potential set up by the charge imbalance. For

that reason, the magnetic field is left arbitrary in this paper,

and violation of charge neutrality is permitted.

An aspect that has, on purpose, been left out of the pres-

ent description is the impact of kinetic corrections. Including

kinetic effects makes the description more realistic but sig-

nificantly more delicate and time consuming. As tackling the
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global problem of wave-particle interaction in a complicated

geometry is intractable with the present-day computers, one

needs to make justified simplifications. While the philosophy

of the adopted approach is the same (relying on linearization

of the equations and on the quasilinear approach to describe

the net impact of the fast time scale on the slow time scale),

the bookkeeping becomes much more demanding (see, e.g.,

Refs. 10–12) and subtleties arise when going from fluid to ki-

netic descriptions, as is, e.g., documented in Ref. 13. Similar

to what is done when deriving the equations governing the

fluid description, kinetic models of the wave-particle cross-

talk typically assume that the distribution function is only

moderately deformed by the rapidly varying waves and one

writes down a Fokker-Planck type equation for the slow time

scale distribution function fs, in which only the net effect of

the rapidly varying terms is retained. Doing this in a suffi-

ciently rigorous way while ensuring no artificial features

show up is far from evident. Provided this first step has been

taken successfully, taking moments results in fluid-type

equations which then contain the effect of the RF waves as

well as terms (e.g., pressure, stress, and collision terms) that

are absent in single particle equations. A typical example is

the work due to Hegna. Assuming fs stays close to the

Maxwellian, Hegna and Callen outlined a procedure to come

up with such a practical set of upgraded fluid-type

equations.14

It has been shown—e.g., by Devaux and Manfredi15,16

—that kinetic corrections do matter when looking into the

more detailed description of the wave-particle interaction.

Devaux’s kinetic computations show that the key deviations

of the distribution function from the Maxwellian are that

zero order flows need to be accounted for, i.e., that fs is no

longer centered around~v ¼~0. In a somewhat crude way, the

notion of temperature linked to the spread of the distribution

around the average flow velocity ~vo in velocity space sur-

vives in a fluid model, be it that kinetic computations show

that deformations away from a Gaussian spread around ~vo

are usually observed. Prior to tackling the problem fully

kinetically, the results of Devaux indicate, however, that one

might make progress in understanding the wave-particle

cross-talk in steps, one step consisting in retaining the flows

but still sticking to a multi-fluid description which is rela-

tively modest in required computational power, and the other

adding the kinetics responsible for the velocity space defor-

mations away from a Gaussian spreading about the mean

flow. It should be noted that the presence of zero order flows

strictly requires that the cold plasma dielectric tensor—

which has been derived assuming ~vo ¼~0—should be

upgraded as well. Sufficiently general kinetic models (see,

e.g., Refs. 17–19) automatically incorporate both the macro-

scopic flow and the deviations of the distribution away from

it, but rigorously solving the wave-particle interaction prob-

lem involving high frequency waves that significantly mod-

ify the distribution is, at this moment, a challenging task for

addressing hot core dynamics (see, e.g., Ref. 20). And it is

an even bigger challenge in low temperature, low density

regions in which the assumptions underlying kinetic treat-

ments are poorly justified. Awaiting further theoretical de-

velopment and for physics aspects that require including

kinetic effects, at present, the only available alternative is

brute force modeling maximally tapping into the potential of

the presently available computing power. Over the last years,

numerical modeling of tokamak plasmas has increasingly

more relied on supercomputers (for examples on waves in

the tokamak edge see, e.g., Refs. 21 and 22). For example,

Monte-Carlo/PIC (particle-in-cell) modeling does exactly

that. This technique attempts to treat the plasma the way it

is: as a large number of individual particles interacting with

each other. It has the advantage that physics processes can

be included fairly easily and that there is no need for lineari-

zation or splitting timescales. The downside is that the full

complexity of a tokamak plasma is statistically ill grasped.

For problems that take place in a very small physical volume

and where a stationary state is reached after tracking the evo-

lution for a limited number of cycles of the fast time scale,

this technique offers a great potential.22 But when needing to

track particles for longer distances over bigger volumes (ex-

perimental evidence shows that the influence of wave power

is felt meters away from launchers9), ensuring that a suffi-

cient number of particles is traced to make the description

statistically relevant soon becomes an unsurmountable chal-

lenge, in spite of the already huge possibilities offered by

parallel processing.

In view of its many weaknesses, one may wonder if it

makes sense to even attempt to adopt the framework of a

fluid theory and the quasilinear approximation to capture

near-field physics. The authors’ approach is pragmatical: In

view of the lack of a fully developed theory incorporating

steep gradients, kinetic effects, and an integro-differential

description of the dielectric response in a full 3D geometry,

it seems worthwhile to assess the potential of a simplified
theory to at least present a qualitative, consistent picture of

the dynamics that can be used to help understand experimen-

tal findings. Lacking certain ingredients (the multidimen-

sional nature of the physics and the inclusion of transport

being trivial ones), it is clear that quantitative agreement can-

not be hoped for and requires further work. On the other

hand, the model presented here combines many of the contri-

butions identified as important in the literature in various

limits and does so yielding a model that is not overly CPU

time consuming.

This paper is structured as follows: First, the relevant set

of equations is sketched and/or derived. Different subsec-

tions are devoted to the various equations. In Section III, the

actual 1D version of the adopted set of equations is given.

Also, the adopted method to solve the obtained mixed set of

linear and non-linear equations is discussed. In Section IV,

some practical examples are given. Finally, conclusions are

drawn and a brief discussion sketches the way ahead.

II. THE RELEVANT SET OF EQUATIONS

To model the interplay of a plasma and electromagnetic

waves, adopting 3 types of equations is a bare minimum:

• Solving Maxwell’s equations yields the electromagnetic

field pattern arising for a given current density.
• Solving the equation of motion learns how the plasma mo-

mentum for each type of species is modified under the
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influence of the relevant forces, the Lorentz force, in

particular.
• Solving the continuity equation provides the density con-

sistent with the flows resulting from the equation of

motion for each population.

In the present paper, it is assumed that the temperature T
is constant. In the region close to the launcher, T is typically

a few to a few tens of eV. The above set needs to be supple-

mented with an energy evolution equation in case more

detailed knowledge of the temperature is required.

A. Equation of motion

Klima derived expressions for the slow scale equation of

motion for charged particles in the presence of a confining

magnetic field and when a driven high frequency electro-

magnetic field perturbs the motion.7 The relevant equation

was first derived for particles and was then generalized for a

gas of identical charged particles. Klima introduces an order-

ing that separates the fast and slow time scales and explicitly

assumes that they are well separated so that the relative mag-

nitude of their characteristic time scales tfast/tslow defines a

small parameter d. The slow time scale equations describe

the motion smoothed with respect to the fast dynamics and

are accurate up to d2; higher order corrections are systemati-

cally dropped. In the present paper, Klima’s equation of

motion will be adopted. For the Ponderomotive term, a simi-

lar derivation was recently obtained.1 The expression due to

Klima is an average over the driver period and relies on the

fast time scale motion being purely driven but retains the

effects of the fast time scale magnetic field. The latter

expression integrates the actual equation of motion on the

fast and slow time scale assuming the magnetic field is con-

stant while ignoring the impact of the perturbed magnetic

field on the motion and represents an average over the driver

as well as cyclotron period. Although numerically indistin-

guishable in the homogeneous plasma limit for RF applica-

tions, Klima’s expression is preferred here because it

includes the full perturbed Lorentz force and yields a more

symmetrical expression, which is more suitable for analytical

integration.

The starting point is the single particle equation of

motion under the influence of the Lorentz force. Since the

Lorentz force due to the strong, static magnetic field domi-

nantly imposes the orbit of the charged particles while the

RF field adds a small but rapidly varying perturbing force to

it, the equation of motion is linearized. Splitting the position

and the velocity into a slow and a small but rapidly varying

contribution (~x ¼~xo þ~q1; ~v ¼~vo þ~v1) and neglecting

higher than first order corrections of the fields, the slow flow

is captured by solving the equation

m
d~vo

dt
¼ q~Eo þ q ~vo � ~Bo þ

�
d~qX

dt
� ~qX:rð Þ~Bo

�" #
þ ~FRF;

(1)

in which ~FRF is the net force due to the rapidly varying

aspects of the driven motion, i.e.,

~FRF ¼
�

q ~v1:r~E1 þ~v1 � ~B1 þ
d~q1

dt
� ~q1:rð Þ~Bo

� ��
; (2)

and where h…i denotes the smoothing time average; for con-

venience, the cyclotron and driven motions are split into the

cyclotron rotation part (denoted with a subscript “X”) and a

driven part. By definition, the driven oscillation (denoted

with the subscript “1”) satisfies

~v1 ¼ �ix~q1

�ixm~v1 ¼ q½~E1 þ~v1 � ~Bo�;
(3)

in which x is the driver frequency and a driven response

/ exp½�ixt� was assumed. ~Bo and ~Eo are the static magnetic

and electric fields, respectively. The ~FRF term is known as

the Ponderomotive force (see, e.g., Ref. 23 for the more

commonly known derivation in the absence of a magnetic

field). Assuming the static magnetic field gradient is large

but its gradient negligibly small, and adopting complex nota-

tion so that the time average of a quadratic driven quantity

over a period is hABi¼Re[A*B]/2, the corresponding accel-

eration can be written as

~aPond ¼ �rH; (4)

where

H ¼ 1

4

1

x2 � X2

� �
j~�j2 �

����~�:~Xx
����
2

þ i

x
~X:~�� �~�

" #

¼ 1

4

1

x2 � X2

� �
j~�j2 �

����~�:~Xx
����
2

� 2X
x

Im ��?1�?;2
� �" #

; (5)

in which ~X ¼ q~Bo=m and where Faraday’s law was used to

eliminate the perturbed magnetic field ~B1 in favour of the

perturbed electric field ~E1; the notation ~� ¼ q~E1=m was

introduced.

Subsequently, Klima extends the result found for single

particles to the case of a flow adopting the assumption that

the pressure is of order d2. Assuming the temperature T is

constant, the generalized equation of motion

d~vo

dt
¼ �v2

t

rNo

No
� qrU

m
�rHþ X~vo �~e== (6)

is obtained. Here, No is the density and v2
t ¼ kT=m is the

square of the thermal velocity. Some details of the derivation

can be found in Appendix A. The linearization of the equa-

tion of motion being based on the fact that the confining

magnetic field is strong, the relative magnitude of the various

terms in the static acceleration ~a is not bound to restrictions.

However, the adopted ordering needs to be justified a poste-
riori, and focusing on certain aspects might require a more

refined model. Solving the relevant equation of motion Eq.

(6) can be done as an initial value problem (in which case

not only the equation for the velocity but also that for the

position needs to be solved) or as a boundary value problem

(in which case the time derivative is local and the solution is

convected by the convection term). Two examples are dis-

cussed in Appendix B.
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For a given static acceleration ~a ¼ �v2
t =NorNo�

qrU=m�rH, the perpendicular part of Klima’s equation

of motion can be integrated by hand. One gets

vþ ¼ vþ0 exp �iXt½ � þ aþ
iX
;

v� ¼ v�0 exp þiXt½ � þ a�
�iX

;
(7)

(where v6¼ v?,1 6 iv?,2) which consists of a rapidly varying

contribution oscillating at the cyclotron frequency, and a

slow drift term across the magnetic field lines of the usual

form

~vdrift;? ¼
1

qB2
o

~F � ~Bo ¼
1

X
~a �~e==
� �

¼ 1

X
~e?;1a?;2 �~e?;2a?;1½ �: (8)

Aside from the ~Eo � ~Bo drift due to the electrostatic

field ~Eo ¼ �rU and the diamagnetic drift due to the

rP¼ kTrNo force, the above equation consists of a

Ponderomotive contribution due to the finite RF electric

field. This solution is found by first integrating the equation

in the absence of ~a and assuming ~Bo to be constant, and then

by relying on the technique of the variation of constants to

introduce the effect of the finite ~a. In the latter, the effect of

a slightly inhomogeneous magnetic field could be introduced

a posteriori by a supplementary m=½qB3
o�½v2

== þ v2
?=2�~Bo �

rBo velocity drift term. On the relevant scale length, the

changes of ~Bo in the antenna region of a tokamak are modest

both in amplitude and direction. Note that the obtained per-

pendicular drift satisfies d~vo;?=dt ¼~0 in an elegant way: it is

time independent (hence @~vo=@t ¼ 0) and it is homogeneous

(hence r~vo ¼ 0 and thus~vo:r~vo ¼ 0). As a result, the sim-

plified equation

~a þ~vo � ~Bo ¼ 0 (9)

is satisfied by the driver-period and cyclotron-period aver-

aged slow time scale velocity.

Klima isolates 2 types of motion (the driven motion and

the slow time scale motion) but does not actually solve the

equations and hence does not remove the fast cyclotron os-

cillation forced by the Lorentz term in case Bo is strong. This

can easily be done by isolating the drift velocity from the cy-

clotron oscillation in Eq. (7) by performing a gyro-average,

which eliminates the fast terms. From this point in the paper

onwards ~vo will represent the zero order velocity averaged

both over the driven and cyclotron motions. As demonstrated

earlier, this yields the steady state equation Eq. (9) —provid-

ing ~vo;?—to be satisfied in the perpendicular direction and

the parallel equation of motion to be solved numerically to

identify v== for a prescribed ~vo;? (see further). Note that

the perpendicular drift is divergence-free provided X is con-

stant, and that it conserves the perpendicular energy

(~a?:~vdrift;? ¼ 0), i.e., it is a force-free flow.

A key point to the approach adopted is that Eq. (6) is

solved by hand fully including the time dependence upon

considering the forces aside from the Lorentz force due to

the confining magnetic field to be static. The Lorentz force

term explicitly contains the velocity~vo and hence cannot off-

hand be considered to be time-independent.

The fact that the acceleration ~a is static does not mean

that its effect is small: The gradient of the density can be

steep and hence the drift perpendicular to the magnetic field

and—depending on the ~Bo orientation—parallel and/or per-

pendicular to the metallic wall can be significant. On top of

that, the equation for the parallel motion is nonlinear. As

will be discussed later in this paper, the burden of finding the

correct solution to the equation is put on the computer.

Rather than solving the non-linear equations directly, an iter-

ative scheme is introduced. The desired solution is the as-

ymptotic solution of an iteration scheme; at each iteration, a

set of linear equations is solved. A similar approach was

used by Louche24 when solving the Fokker-Planck equation

for the RF heated majority, necessitating the use of the non-

linear collision operator and a similar approach was pro-

posed by Meneghini5,6 when studying wave induced density

modification in front of a Lower Hybrid grill. Because drifts

perpendicular to reigning gradients are created due to the

presence of the strong confining magnetic field, the dynamics

cannot fully be captured adopting a 1D model and the

description in this paper is necessarily incomplete.

The fast time scale effect was removed from the

perpendicular dynamics by averaging over the cyclotron pe-

riod, which yields a net drift. The magnetic field is incapable

of accelerating particles along its field lines. Opposite to

what was needed for the perpendicular motion, omitting the

slow time variation altogether (@/@t ! 0) is reasonable

straightaway. Assuming that the confining magnetic field is

strong so that the perpendicular drift velocity is modest—

allowing it to be neglected as a first approximation

(~vo:r � v==@=@x==; this approximation will be relaxed a few

lines further)—the equation of motion for the parallel motion

can be written as

v==
@

@x==
v== ¼ �v2

t

@lnNo

@x==
� q

m

@U
@x==
� @H
@x==

(10)

which can be integrated analytically to yield

No ¼ No;ref exp � 1

v2
t

v2
==

2
þ qU

m
þH

 !" #
: (11)

The above is a generalisation of the Boltzmann expres-

sion incorporating the impact of the parallel flow and of the

RF Ponderomotive force aside the usual electrostatic poten-

tial. The terms v2
===2; qU=m, and H play a similar role in the

density variation and are all position-dependent. For a simple

plane wave solution, ~E / exp½ikxx�, the density change

caused by the electric field scales as the derivative of H:

dlnNo=dxjRF ¼ 2Im½kx�H=v2
t . This readily shows that the

effect of the waves on the density is much more pronounced

when waves are evanescent than when waves are propaga-

tive. Furthermore, as H / j~�j2 the density modification

scales with the square of the electric field. For both of these

reasons, wave-induced density depletion is expected to be

much stronger close to wave launchers than away from
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them. Moreover, short wavelength branches have a stronger

impact than long wavelength modes.

Studying plasma dynamics close to metallic surfaces, it is

routinely assumed that electrons satisfy the Boltzmann expres-

sion Ne ¼ Ne;ref exp½e/=kT� in which Ne,ref is the reference

density at the location where the potential / is zero. For a ther-

malized plasma close to a metallic wall, the differing mass and

thus mobility of ions and electrons cause electrons to load the

wall negatively (/wall < 0), after which it repels electrons;

j/wallj is typically about 3kT/e (see, e.g., Ref. 25). The

Boltmann expression describes the ensuing density depletion

close to the wall. When an oscillating voltage is imposed on

the wall, the potential / in this expression responds to the wall

voltage and is the sum of an electrostatic U and a driven, rap-

idly varying part URFcosxt (see, e.g., Ref. 26):

/ ¼ Uþ URF cos xt. The mean value of the density averaged

over a period TRF of the driver can be computed to be27

1

TRF

ðTRF

0

Nref exp
e/
kT

� �
dt ¼ Nref exp

eU
kT

� �
I0

eURF

kT

	 

: (12)

If the RF potential is very small, then the average density

scales as / exp[eU/kT]. If it is large then the main scaling

becomes / exp[e(UþURF)/kT]. The density response to the

electrostatic U and the Ponderomotive potential

UPond¼mH/q described in Eq. (11) is seen to play a similar

role as the sheath potential and the RF potential, respec-

tively. Rather than being externally driven, the metallic wall

will now respond to the presence of the RF waves bouncing

off it. These waves need not be electrostatic in nature.

It is instructive to evaluate the Ponderomotive potential

UPond for a typical case to get a sense of the magnitude of

the term; recall that the electrostatic potential is typically of

the order of a few times the electron temperature. In the ion

cyclotron region of frequencies, the electron cyclotron fre-

quency is much larger than that of the driver frequency.

Hence for electrons,

UPond;e ¼ �
meHe

e
� �1:11� 10�3

����E== V=m½ �
f MHz½ �

����
2

:

For ions one gets

UPond;i ¼
miHi

qi
� 6:07� 10�7 Zi

~aAi

����E V=m½ �
f MHz½ �

����
2

;

in which the factor ~a is of order 1; it accounts for the differ-

ence in magnitude between X and x and for the polarization.

Electrons thus are primarily influenced by the parallel elec-

tric field while the ions feel the influence of the total field. In

the expression of the density, these terms appear as

H=v2
t ¼ ðq=kTÞUPond. In JET (Joint European Torus), the A2

antenna is at major radius Rant¼ 3.9 m in the equatorial plane.

Central hydrogen minority heating in a deuterium plasma—

the most commonly adopted ICRH (ion cyclotron resonance

heating) heating scheme in JET—is typically done at

Bo¼ 3.45 T in the plasma core and adopting f¼ 51 MHz.

Neglecting the effect of the poloidal magnetic field, this yields

a magnetic field strength of 2.62 T at the antenna location and

hence XD¼ 1.25� 108 rad/s and Xe¼�4.61� 1011 rad/s. For

the majority ions, X/x� 0.4 while for the electrons x can be

neglected w.r.t. X. Consider an edge temperature of

Te¼Ti¼ 5 eV. For the electrons the density e-folding requires

E==� 3.4 keV/m. Figure 1 depicts the variation of the density

along a magnetic field line as a result of the variation of the

parallel velocity or of the potential for a deuterium plasma.

As the electrostatic potential U and the Ponderomotive poten-

tial mH/q play a similar role, only U was varied. Anticipating

the fact that both the electron and ion flow velocity are of the

order of the sound velocity cs¼ (cZikT/mi)
1=2 (Bohm crite-

rium; for a mono-atomic gas c¼ 1.4–1.6), the parallel veloc-

ities are expressed in terms of cs in the figure. Because the

electron thermal velocity is much larger than that of the ion

sound velocity, the electron density is hardly modified by

changes of the parallel velocity. As the differing electron and

ion mobilities cause the wall to charge negatively, the poten-

tial has been scanned only for negative values. Potential dips

of up to 20 V (simple models show the sheath voltage is of

order 3kTe/e; in other regions where the charge separation is

less pronounced the voltage drop is smaller) cause the elec-

tron density depletion to be almost complete. Due to the de-

pendence on the charge, the ion density potentially increases
and does so by up to a factor 50 for fixed v==. An increase of

the parallel velocity significantly moderates this ion density

increase. As will be shown later when solving all relevant

equations simultaneously, the variation of the parallel velocity

and that of the density are intimately coupled. Hence, the here

depicted variation only indicates the trend and cannot not be

used as a prediction for the actual density change. For the

Ponderomotive potential to be as important as the electrostatic

potential in the exponent of the expression for the density

FIG. 1. Electron and (majority) ion

density modification along magnetic

field lines as a result of a v== or poten-

tial change.
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requires jE==j � 5kV=m for the electrons and jEj �
300 kV=m for the ions; a reference value U¼ 10 V was used

to obtain these values. Such values are perfectly feasible close

to the launcher, and in particular, inside the antenna box of

multi-MegaWatt launchers where voltages of tens of kV are

applied on straps that are only centimeters away from

grounded metallic antenna boxes, but—depending on the

local ~Bo direction—they may not be representative (much too

large) very close to metallic surfaces. Remind, however, that

it is not the actual value of H or UPond but its gradient that is

important in the force balance. Constant amplitude propaga-

tive waves do not give rise to density modification. Steep gra-

dients can occur and necessitate taking a closer look at the

interplay of the various effects.

In general, the magnetic field is not strong enough for

the drift terms in the parallel equation of motion to be

neglected altogether. If the upgraded Boltzmann expression

cannot be exploited, the change of v== is then described by

v==
@

@x==
v== ¼ � ~vdrift;?:rv== þ v2

t

@lnNo

@x==
þ q

m

@U
@x==
þ @H
@x==

" #
;

(13)

which can no longer be integrated analytically.

B. Fast time scale wave equation

For a given density, the fast time scale wave equation

can be solved. It is implicitly assumed here that the static

magnetic field is constant. ~Bo can point in any direction,

though, so field lines can intersect the launcher and the

nearby metallic walls. Two relevant Cartesian coordinate

frames (x?,1, x?,2, x==) and (x, y, z) are connected by 2 con-

secutive rotations (see Fig. 2). First keeping the z-axis fixed

rotating over the angle a and then freezing the new y-axis

and rotating over b to align the final z00 axis with ~Bo yields ~e?;1
~e?;2
~e==

!
¼
 

cosbcosa cosbsina �sinb
�sina cosa 0

sinbcosa sinbsina cosb

!
:

 
~ex

~ey

~ez

!
¼ ��R :

 
~ex

~ey

~ez

!
:

(14)

In this paper, the dielectric response is modeled relying

on the usual cold plasma dielectric tensor (see, e.g., Refs. 23

and 28). This choice—which ignores the presence of zero

order flows~vo when relating the driven velocity and the driv-

ing field—is dictated by the wish to keep the model as sim-

ple as possible. But since flows are an integral part of wave

induced density modification, this choice needs to reviewed

at some point in the future. The immediate consequence is

that the fast time scale equation of motion needs to be solved

in parallel with Maxwell’s equations and the dielectric

response needs to be described via the current density, i.e.,

no general purpose dielectric tensor relating fast time scale

velocities and electric fields can be provided here. Up to a

differing choice of the angles a and b, the specific implemen-

tation of the relevant wave equation for finite~vo was already

commented on in Ref. 1. For homogeneous plasmas and

when the perturbations can be described by a single Fourier

mode, upgrading the model amounts to extra Doppler shift

terms ~k:~vo in the analytically invertible equation of motion

linking the perturbed velocity to the RF electric field. For in-

homogeneous plasmas also gradients of the zero order flow

velocity appear in the equation of motion. Except in particu-

lar cases, the inversion is non-trivial and a simple link

between the velocity and the electric field no longer exists,

i.e., the concept of a dielectric tensor that can be written in

explicit form needs to be abandoned.

Assuming the variations in the x-direction dominate the

variations in the 2 independent directions tangent to the wall,

the y- and z-directions can be assumed ignorable for the zero

order quantities and the variation of the rapidly varying elec-

tric field can be described by a double sum of decoupled
Fourier modes (ky, kz). In terms of each (ky, kz), the wave

equation can be written as

k2
y þ k2

z 0 0

0 k2
z �kykz

0 �kykz k2
y

0
B@

1
CAþ

0 iky ikz

iky 0 0

ikz 0 0

0
B@

1
CA d

dx

2
664

þ
0 0 0

0 �1 0

0 0 �1

0
B@

1
CA d2

dx2

3
75

Ex

Ey

Ez

0
B@

1
CA ¼ k2

0
��R�1

: ��K NR:
��R ;

(15)

in which ��R is the above defined rotation matrix (see Eq.

(14)), ��K NR is the usual non-rotated cold plasma dielectric

tensor with respect to the ~Bo-based directions

ð~e?;1;~e?;2;~e==Þ, and ko¼x/c where x is the driver fre-

quency and c the speed of light. Since the cold plasma

dielectric tensor is a matrix rather than a differential opera-

tor, the above equation can immediately be generalized to 2

or 3 dimensions by substituting (ky, kz) ! �i(d/dy, d/dz).

Only when finite temperature corrections or inhomogeneity

or drift effects are accounted for gradient terms appear in the

dielectric response while here ~Bo is assumed constant both in

amplitude and direction. In this exploratory paper, the

description is limited to a single dimension.

As Ex is a linear combination of the other 2 wave com-

ponents and their first derivatives for each (ky, kz), it can beFIG. 2. Sheath (x, y, z) and magnetic field ðx00; y00; z00Þ based coordinate frames.
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eliminated when solving the system. As ��R�1 ¼ ��RT
, it is

readily observed that the unit vectors along the coordinate

lines transform as the corresponding vector components.

Note that describing the variations along the magnetic field

requires the differential operator

~e==:r ¼
@

@x==
¼ R31

d

dx
þ iR32ky þ iR33kz

¼ cos a sin b
d

dx
þ i sin a sin bky þ i cos bkz:

Consequently, the parallel wave number is not a constant in

general. As a result, the dispersion equation cannot be eval-

uated in the usual way by first solving for a prescribed k== to

get the perpendicular wave numbers k2
?, from which subse-

quently the kx values can be found. Only when a¼ p/2 or

b¼ 0, the parallel wave number is a constant. Assuming the

waves are decoupled at the plasma interface, the cold plasma

dispersion equation—found by substituting d/dx! ikx in the

above wave equation and seeking for nontrivial solutions by

imposing the system determinant is zero—can be solved and

the 4 possible kinds of waves (2 of the fast wave and 2 of the

slow wave type) are identified. Rather than appearing as

pairs (kx, �kx) corresponding to a common k2
x for a pre-

scribed k==, the 4 roots of the dispersion equation are typi-

cally distinct.

Four boundary conditions are required to uniquely

define the solutions of this fourth order differential equation.

The boundary conditions at the metallic wall are Ey¼Ez¼ 0.

The other 2 boundary conditions are imposed at the interface

xp of the region of interest with the deeper plasma. Assuming

the various modes supported by the plasma are decoupled at

the plasma interface, solving the polarization equation for

each of the wave types yields the eigenvectors. The inde-

pendent variables and the eigenvectors ~si are related by the

matrix ��T

Ey

dEy=dx
Ez

dEz=dx

0
BB@

1
CCA¼ ��T :

s1

s2

s3

s4

0
BB@

1
CCA

¼

a1 a2 :::
a1ikx;1 a2ikx;2 :::

a1Ez=Eyj1 a2Ez=Eyj2 :::
a1ikx;1Ez=Eyj1 a2ikx;2Ez=Eyj2 :::

0
BB@

1
CCA:

s1

s2

s3

s4

0
BB@

1
CCA:

(16)

The coefficients ai are guaranteeing that the electric field

components of each of the reference eigenvectors corre-

sponding to the roots kx,i have unity amplitude. At any loca-

tion, the full electric field is a combination of fast (FW) and

slow waves (SW). Referring to the various eigenvectors, a

natural choice for the boundary conditions is to impose that

only 1 kind of wave carries energy into the region of interest.

This then, e.g., requires sFW, 6¼ 0 and sSW,!¼ 0 or

sFW,!¼ 0 and sSW,! 6¼ 0.

The adopted set of boundary conditions is useful for

demonstrating the interplay between the different modes

supported by the plasma. For later, more practical applica-

tions more convenient boundary conditions (e.g., matching 2

of the relevant electric field components, which is easier to

implement) are likely to be preferred. By imposing a jump

condition on the derivative of the field components while

ensuring continuity of the 2 retained electric field compo-

nents, a simple sheet current antenna can be included. In that

case, purely outgoing wave conditions are commonly

imposed at the interface with the main plasma.

The expression for the Ponderomotive acceleration

reveals that the various waves supported by the plasma

impact differently on the density. Figures 3 and 4 show the

roots of the dispersion equation and the corresponding expo-

nent of the density expression for the earlier considered

FIG. 3. Dispersion roots, Ponderomotive

potential, and density decay rate as a

function of the log10 of the density for

a¼b¼ 0.01 rad.
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parameters and for the 2 limiting cases a¼b¼ 0.01 rad (rep-

resentative for the magnetic field nearly parallel to the wall)

and a¼ 0.01 rad and b¼ 1.57 rad (field nearly perpendicular

to the wall) when scanning the density. The slow wave has a

much more pronounced impact than the fast wave has due to

the difference in the magnitude of their respective wave

numbers. On the scale of the slow wave, the fast wave is

hardly noticed on the top plots showing the 4 dispersion

equation roots. The fact that the dispersion equation has odd

order terms making that the roots do not appear as pairs

(kx, �kx) is clearly seen. The lower hybrid resonance is rec-

ognized as the region where the slow wave becomes propa-

gative in Fig. 3 for densities a bit lower than 1017/m3. It was

already discussed in the previous work that the presence of

the lower hybrid resonance has repercussions both on the

physics of the wave dynamics close to the launcher and on

the numerical challenge arising when incorporating it in the

model.

The shown curves are somewhat misleading: The ampli-

tude of the wave field is imposed here, while in practice

waves can only have an impact if they are actually excited.

Furthermore, the global effect on the density is the result of

the sum of all waves and not that of a single mode. In prac-

tice, the density depletion is more modest than suggested by

the curves for the individual wave modes because of the fact

that generally several modes coexist to ensure the boundary

condition is satisfied by the total ~E-field; as there is no damp-

ing in the system, an incoming wave hitting the metallic wall

is undergoing total reflection so a pure incoming eigenvector

will unavoidable excite at least one of the outgoing modes.

The pronounced difference between the impact of the slow

and the fast wave is vastly diminished when the slow wave

only carries modest energy, the typical wave intended to be

excited in the RF domain being the fast wave. When discus-

sing the solution of the full problem later in the text, this

effect will be accounted for. The here presented curves

mainly give an idea of the potential of waves to modify the

density.

C. Continuity equation

Making an identical splitting of fast and slow time

scales as was done for the equation of motion, the relevant

continuity equations are obtained. The slow time scale conti-

nuity equation reads

@No

@t
þr: No~voð Þ þ 1

2
Re r: N�1~v1

� �� �
¼ 0; (17)

in which the perturbed velocity and density appear in the last

term; this quasilinear term is the net contribution of the fast

time scale wave dynamics to the slow time scale equation.

The perturbed velocity was already specified earlier.

Conform with the earlier made assumptions, the slow time

scale continuity equation will be solved in the limit @/@t! 0

so one gets

No

@v==
@x==
þ v==

@No

@x==
þ~v?;o:r?No þ

1

2
Re

d

dx
N�1v1;x

� �� �
¼ 0;

(18)

in which r:~v?;o ¼ 0 was used and where the last term in the

above only contains the x-derivative term since the perturbed

quantities vary as exp[i(kyy þ kzz � xt)] in the directions

perpendicular to the wall and hence quadratic quantities of

the form Re[A*B]/2 are independent of y and z when a single

set (ky, kz) of modes is looked at. Note that in the absence of

RF waves and if the confining magnetic field is strong so that

the perpendicular drift velocity is modest, Nov== is roughly a

constant. In that limiting case, the parallel current across the

region of interest is constant. More generally it is not: due to

the gradients, current can partly flow sideways and does not

need to flow straight into the wall and launcher.

FIG. 4. Dispersion roots, Ponderomotive

potential, and density decay rate as a

function of the log10 of the density for

a¼ 0.01 rad and b¼ 1.57 rad.
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Using the equation of motion to eliminate the parallel ve-

locity gradient, the above can be reformulated. The result is�
v2
== � v2

t

�
@lnNo

@x==
þ v==~v?:r?lnNo �

q

m

@U
@x==
� @H
@x==

þ
v==
2No

Re

�
d

dx
N�1v1;x

�
¼ 0: (19)

The coefficient in front of the leading term states that the den-

sity grows or decays depending on whether the flow is faster or

slower than the thermal flow. In the absence of a rapidly vary-

ing field and for a strong static magnetic field, this equation

reduces to the one already adopted in Ref. 1 where the wave

equation was solved without accounting for the wave induced

corrections on No. Whereas the parallel flow equation suggests

that the ion density can grow very large when the electron den-

sity is dropping, the combined equation learns that ion flow

velocities satisfying the Bohm criterium tend to decay towards

metallic walls. As the electron flow velocity is typically much

smaller than the electron thermal velocity close to the wall, the

Boltzmann expression is recaptured in that particular limit.

An expression for the perturbed velocity was evaluated

in Appendix A. The perturbed density obeys the fast time

scale continuity equation

�ixN1 þr:½No~v1 þ N1~v0� ¼ 0: (20)

It may be argued—rightfully—that the slow time scale

continuity equation should in general allow for source/loss

terms so that the density variation is not just due to convection.

Especially, the plasma edge processes, such as ionisation,

recombination, or recycling, are likely to have an impact on the

density profile. When focusing on the dynamics in a limited

volume (such as the sheath formed close to a metal), these

effects can implicitly be accounted for by a properly prescribed
plasma composition. When modeling the wave-particle interac-

tion macroscopically (e.g., looking at the density in the whole

region close to the launcher) such effects play a key role.

A common example for tokamak applications is the cross-

field diffusion that leaks particles across the last closed flux

surface so that the source that injects particles into a magnetic

field line is of the form @/@x?[D?@/@x?[No]], where x? is the

magnetic surface labeling parameter, to be identified with one

of the 2 variables x?,1 or x?,2 introduced before (see, e.g., Ref.

29). A qualitative estimate of the solution of the simplest possi-

ble steady state continuity equation with source

@

@x==
v==No
� � ¼ @

@x?
D?

@

@x?
No

then shows that the density is essentially proportional to

exp[a?x?] where a?¼ (v==/[D?L==])
1=2 in the perpendicular

direction, while in the parallel direction it varies crudely as

exp[a==x==] with a== ¼ D?=½L2
?v==�. The exponential decay

length across the magnetic field lines behind the last close

flux surface is typically of order of a few centimeters: for a

deuterium plasma, assuming an edge temperature of

T¼ 10 eV, taking the parallel scale length L== to be 10 m and

D?¼ 1 m2/s, one gets 1/a?� 0.02 m.

The density gain or loss through ionization or recombina-

tion is described via the reaction rate of the process modeled

and involves the densities of the species taking part in the

interaction, i.e., @Ni=@tjk;ij ¼ 6Rk;ijNiNj where the “þ” is rel-

evant for the “receiving” specie and the “-” for the “donating”

specie. Incorporating a large set of relevant processes and their

respective reaction rates, Wauters successfully developed a

model for the birth of plasma under the influence of RF waves,

which enabled him to get a grip on the dynamics of ion cyclo-

tron wall conditioning and RF assisted plasma startup.30,31

The so far described sources scale with the density.

Aside from this kind of sources, the density may change due

to the processes that are independent of the local density.

When aiming at making realistic macroscopic predictions on

wave induced density depletion, all such effects should be

included in the model. When formulating the problem in 2D,

such description is both natural and essential. At the current

stage, such effects are merely mocked up by a simple source

term in the continuity equation.

D. Slow time scale wave equation: Poisson’s equation

Since the slow time scale magnetic field is constant in

time, the electric field can be derived from a potential. The

law of Gauss then reduces to the Poisson equation

DU ¼ e

�o
Ne;o �

X
i

ZiNi;o

� �
: (21)

E. Scheme

A sketch of the scheme adopted for solving the set of lin-

ear and nonlinear equations is given in Fig. 5. For given ion

and electron density profiles, the electrostatic potential as well

as the RF electric field can be found. The latter allows to evalu-

ate the Ponderomotive force, which—together with all other

relevant forces—is fed into the slow time equation of motion

yielding~vo. The perturbed velocity~v1 is known in terms of the

RF electric field. Locally, the perpendicular part of Klima’s

equation of motion is solved analytically and the rapid cyclo-

tron oscillation is removed so that only the perpendicular drift

motion is retained. The parallel velocity is found solving the

parallel component of the equation of motion numerically.

Using the found slow and fast time scale velocities, the continu-

ity equations allow to update the densities. By iteratively going

through this loop, the stationary state density consistent with

the electric field pattern and electrostatic potential is obtained.

III. ADOPTED EQUATIONS AND NUMERICAL
PROCEDURE

Due to the presence of the strong, static and constant

magnetic field and the fact that the magnetic field cannot

accelerate particles along its field lines, the slow time scale

equation of motion can be solved explicitly for the perpen-

dicular aspects of the motion forced by ~Bo while the parallel

motion is a differential equation with x== as the independent

variable. On the other hand, the presence of a metallic wall

yields dynamics essentially in the x-direction perpendicular

to the wall. It will be assumed in this paper that @/@y� ky
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and @/@z� kz and that the typical scale lengths over which

the zero order quantities vary are long compared to, e.g., the

characteristic scale lengths of the excited RF waves. Strictly,

the earlier described equations allow application of the pro-

posed method to 2D or 3D application and thus allow to

have the full (ky, kz) spectrum for the fast time scale and

proper derivatives for the slow time scale variables, remov-

ing the need to impose prescribed variations along the metal-

lic wall and allowing to find them self-consistently.

The differential operators needed in the various slow

time scale equations now reduce to

@

@x?;1
@

@x?;2
@

@x==

0
BBBBBBB@

1
CCCCCCCA
¼

R11

R21

R31

0
@

1
A d

dx
þ
R12

R22

R32

0
@

1
Akyþ

R13

R22

R33

0
@

1
Akz; (22)

and hence the relevant equations are:

• The slow time scale continuity yielding v==

Av== xð Þ
dv==
dx
þ Bv== xð Þv== þ Cv== xð Þ ¼ 0; (23)

where

Av== xð Þ ¼ R31No

Bv== xð Þ ¼ R31

dNo

dx
þ 3

2
R32ky þR33kz

� �
No

Cv== xð Þ ¼ ½vdrift;?1R11 þ vdrift;?2R21�
dNo

dx

þ
"
vdrift;?1 R12ky þR13kz

� �
þ vdrift;?2

�
	
R22ky þR23kz


#
No þ

1

2
Re

�
d

dx
N�1v1;x

� ��
:

A “density source” term �D?=k
2
SOLNo, where D? is the

diffusion across magnetic field lines and k? is a typical

decay length of the density in the scrape-off layer, can be

added to Cv== when modeling macroscopic decay. As a

boundary condition, it seems natural to assume that the

parallel flow is known at the entrance of the region of in-

terest. In the spirit of dynamics close to metallic objects,

v== is taken to be of the order of the thermal velocity for

the ions while the electron flow is chosen to guarantee that

no steady state current enters the region of interest, i.e.,

v==;eNe ¼ �
P

i ZiNiv==;i.
• The slow time scale parallel equation of motion yielding

the (logarithm of the) density No

AlnNo
xð Þ dlnNo

dx
þ BlnNo

xð ÞlnNo þ ClnNo
xð Þ ¼ 0; (24)

where

AlnNo
xð Þ¼v2

tR31

BlnNo
xð Þ¼v2

t R32kyþR33kz

� �
ClnNo

xð Þ¼R31

d

dx

q

m
UþH

� �
þ R32kyþR33kz

� � q

m
UþH

� �

þ vdrift;?1R11þvdrift;?2R21þv==R31

� �@v==
@x

þ1

2
R32kyþR33kz

� �
v2
==þ

1

2

�
vdrift;?1

� R12kyþR13kz

� �
þvdrift;?2 R22kyþR23kz

� ��
v==;

in which ky and kz are assumed to be the common local

derivatives of No, v2
==; U and H in the y and z direction,

respectively. Integrating the logarithm of the density

rather than the density itself proved to be numerically

more stable. It is assumed that charge neutrality is guaran-

teed at the interface with the main plasma. As the bound-

ary condition, the electron and ion densities are imposed

FIG. 5. Sketch of the adopted scheme

iterating over the fast and slow time

scale equations.
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at that location. Consistent with the alternative Eq. (19),

the above can be substituted for

AlnNo
xð Þ ¼ v2

== � v2
t

h i
R31 þ v== vdrift;?1R11 þ vdrift;?2R21½ �

BlnNo
xð Þ ¼ ½v2

== � v2
t �½R32ky þR33kz� þ v==½vdrift;?1½R12ky

þR13kz� þ vdrift;?2½R22ky þR23kz��

ClnNo
xð Þ ¼ �vdrift;?1

�
R11

@v==
@x
þ

v==
2

�
R12ky þR13kz

��

� vdrift;?2

�
R21

@v==
@x
þ

v==
2

�
R22ky þR23kz

��

� q

m

�
R31

@U
@x
þ ½R32ky þR33kz�U� � R31

@H
@x

þ
v==
2No

Re
d

dx
N�1v1;x

� �� �
:

Note that the last term in the above points to a weakness

in the model: when No ! 0; ClnNo
!1. Rather than

being physically meaningful, this divergence is a testi-

mony of the fact that the linearization—which assumes N1

� No—breaks down and needs to be replaced by a suita-

ble alternative.
• The slow time scale wave equation yielding the potential U:

d2U
dx2
þ k2

y þ k2
z


 �
U ¼ e

�o
Ne �

X
i

ZiNi

� �
: (25)

For a given No, imposing U¼ 0 at xp (the integration do-

main of interest ends where charge neutrality is recaptured)

and a finite value U¼Uwall at xwall yields a unique solu-

tion. This set of boundary conditions is useful in case some

external mechanism (e.g., grounding) is imposing the volt-

age on the vessel wall. More generally, the wall voltage is

a free parameter, however. Other choices were considered

as well. To ensure the potential reaches a constant value at

the interface with the plasma, imposing a vanishing deriva-

tive of U was, for example, also a handy boundary condi-

tion to ensure charge neutrality is gradually removed

towards the interface with the rest of the plasma.
• The fast time scale wave equation yields the perturbed elec-

tric field ~E; details can be found in Sec. II B. Once ~E is

known, the components of the perturbed velocity can be

computed, and H can be found. The perturbed density fol-

lows from the fast time scale continuity equation:

AN1
xð Þ dN1

dx
þ BN1

xð ÞN1 þ CN1
xð Þ ¼ 0 (26)

with

AN1
xð Þ ¼ vdrift;?1R11 þ vdrift;?2R21 þ v==R31

BN1
xð Þ ¼ R31

dv==
dx
þ i

�
� xþ v?;1 kyR12 þ kzR13½ �

þ v?;2 kyR22 þ kzR23½ � þ
v==
2

�
kyR32 þ kzR33

��

CN1
xð Þ ¼ No

dv1;x

dx
þ ikyv1;y þ ikzv1;z

� �
þ v1;x

dNo

dx

þ v1;yky þ v1;zkz

� �
No:

A suitable option for the boundary condition of this first

order equation is to assume that the density N1 is known at

some reference position. Since the wave field modifies the

density and one expects the deviation to be larger for

larger fields (see Eq. (12)), one can—however—not sim-

ply force N1 to have a prescribed density. As will be

explained next, setting up an iterative scheme not only

allows to solve this issue but equally provides an elegant

solution for tackling the set of equations at hand.

Alternatingly imposing N1 to be imposed at the wall or at

the plasma interface and taking it to be the value found in

the previous iteration allows to avoid having to impose a

specific value for N1 at any place.

Most of the equations are linear equations for individual

quantities but are nonlinear equations in terms of the various

unknown quantities. Rather than solving all (linear and non-

linear) equations simultaneously, the set of equations can be

solved iteratively addressing the dependence of the variables

one by one and hence solving a series of linear equations at

each iteration; a similar philosophy was adopted by Louche

and by Meneghini.5,24

Aside from the fast and slow time scale wave equations,

all relevant equations are first order differential equations of

the form

A
dF

dx
þ BFþ C ¼ 0: (27)

The solution of this first order differential equation is

F xð Þ ¼ F xrefð Þ�
ðx

xref

dx
C

A
exp

ðx

xref

B

A
dx

" #" #
exp �

ðx

xref

B

A
dx

" #
:

(28)

IV. A FEW PRELIMINARY EXAMPLES

In spite of the fact that the dynamics of convective cells

is inherently multidimensional and thus strictly falls outside

the possibilities of a 1D model, providing a few examples to

illustrate how the waves and the plasma interact close to

launchers allows to point out a number of the characteristic

ingredients of the wave-particle interaction. The following

parameters were considered: 5% hydrogen in a deuterium

majority plasma, electron and ion temperature

Te¼Ti¼ 15 eV, magnetic field strength Bo¼ 2.5 T at the

antenna and a driver frequency of f¼ 51 MHz (as mentioned

earlier, these values are relevant for JET’s A2 RF antenna

region). Waves excited at the launchers, carrying power

through the low density edge region and subsequently hitting

the metallic wall of the vessel are considered but the mag-

netic field is not required to be parallel to the wall. For the

presented examples, the magnetic field direction is deter-

mined by a¼b¼ 0.5 rad. On the fast time scale the waves

enter the region of interest obliquely to the wall; we chose

ky¼ 5/m and kz¼ 6/m. Various electron densities (ranging

from 5� 1016/m3 to 5� 1017/m3) were considered at the

interface with the region where charge neutrality is regained.

Loosely inspired on the Bohm criterium relevant very close
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to metallic walls, the ion velocities at the interface of the

region of interest with the main plasma are prescribed to be

the thermal velocity multiplied by a factor of order 1; the

electron parallel flow velocity was chosen to ensure that

there is no slow time scale current density at the entrance of

the integration region (J � �eNev== þ
P

i ZiNiv==;i ¼ 0).

The electrostatic potential is 0 at that location. Depending on

whether charge neutrality is assumed or not, the potential at

the wall is given a zero or nonzero value.

As a first example, Fig. 6 depicts the density of the elec-

trons and ions for various values of the perturbed electric

field amplitude j~Ej. Poisson’s equation was not solved, i.e.,

charge neutrality was assumed so the density modification is

solely due to the presence of a finite fast time scale electric

field. The slow time scale gradients parallel to the wall were

assumed to be negligibly small. The antenna is located

almost at the mouth of the antenna region interconnecting to

the “outer plasma.” It is modeled as a simple current sheet

with Jy¼ Jz¼ ct where the constant is determined by adjust-

ing it to a desired electric field amplitude at the interface

with the main plasma. The metallic back wall of the box is

19 cm away from the antenna to the left, and the main

plasma is 1 cm to the right of it. At the latter, the density is

prescribed. A value of Ne¼ 5� 1017/m3 was taken. To

include the effect of the wall in the computation and opposite

to what is usually done, the ~E fields are not computed

towards the main plasma but rather towards the back wall to

simultaneously study the effect of a launcher and a reflecting

wall. Whereas the ions are hardly affected by j~Ej (only the

result for j~Ej ¼ 0 is shown since the other ion curves almost

overlap), the electron density is clearly depleted when j~Ej is

increased. Consistent with the fact that the Ponderomotive

potential involves the square of the electric field magnitude,

the strongest decrease is close to the antenna and the density

modification is strongest close to the antenna. For the param-

eters considered, the electric field—not shown—decreases

somewhat stronger than linearly away from the antenna and

becomes small close to the wall since the magnetic field lines

obliquely fall on it, forcing all components perpendicular to
~Bo to become small in spite of the fact that both a fast and

slow wave are excited by the antenna. Recall that a magne-

tised plasma is gyroscopic and that the ~E components per-

pendicular to ~Bo are closely coupled; the strength of the

coupling of the parallel and perpendicular components

depends on the angle at which the wave propagates but is

typically weaker.

Next, the density modifications for 4 different values of

the angle a are depicted. A common electric field strength of

150 kV/m was considered loosely based on the fact that vol-

tages of a few tens of kV are routinely imposed on RF anten-

nas and that the—usually grounded—side and back walls of

the antenna box are often only several cm (�0.1 m) away

from the straps. A density of No¼ 5� 1016/m3 was assumed

at the interface. Figure 7 shows that the density depletion is

gradually more pronounced when a increases. For the high-

est values of a, the magnetic field is nearly parallel to the

metallic wall (the limiting case a¼ p/2 cannot be modeled

since then there is no projection of x== onto x and hence the

adopted equation for the parallel flow cannot be used to pre-

dict parallel flow modifications perpendicular to the wall; in

that particular case knowing the density at the edge does not

allow predicting its value elsewhere). The density depletion

observed in the figure for ~Bo nearly parallel to the wall is at

least partly the consequence of the geometrical fact that the

distance traveled along the magnetic field line is much larger

than that of the distance traveled perpendicular to the wall

for a given width perpendicular to the wall of the examined

region.

Quite generally, waves hit the wall obliquely and hence

ky and kz are nonzero. This has repercussions for the wave-

particle interaction. Figure 8 shows the density consistent

with ky ranging from �40/m to þ40/m. As before, the ion

response to the changing conditions is much weaker than the

electron response. Only the majority density is plotted and

only for 1 value of ky. The electron density deviation from

the value of 2� 1017/m3 imposed at the interface with the

main plasma differs for every ky, depending on what the RF

wave pattern looks like exactly. Although the density most

FIG. 6. Dependence of the density profile close to the antenna for various

RF electric field strengths. The full lines are the densities in absence of the

RF field. While the ion response is almost unvaried, the electron response

depends critically on the amplitude of the RF electric field. The profiles for

jEj ¼ 5, 15, and 25 kV/m are depicted.

FIG. 7. Macroscopic RF induced density depletion for various values of the

angle a.
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commonly decays when leaving the antenna region, the fig-

ure shows it occasionally increases instead.

Figure 9 shows the density modification close to the

wall. Since the field tangential to the wall vanishes, 2 of the

3 field components need to vanish there. Due to the presence

of the magnetized plasma, all field components are coupled.

As a result, the whole field tends to be much smaller close to

walls and typical values for jEj at microscopic distance from

the wall are much smaller than what was considered for the

macroscopic examples. Furthermore, opposite to the previ-

ous examples, charge neutrality is not assumed and a finite

voltage difference between the main plasma—where charge

neutrality does hold—and the wall is allowed. The corre-

sponding electrostatic field is found solving the Poisson

equation using the zero order densities as input. The model

presented here does not permit to predict the wall potential

and hence a value needs to be imposed. Evidently, the profile

of the potential found depends on the input taken. Assuming

a very small but finite value for the derivative of the potential

at the interface with the main plasma, the value for the wall

potential is left unspecified. Since the Ponderomotive poten-

tial varies nonlinearly with jEj, the density responds nonli-

nearly and the voltage drop across the region is equally

nonlinear. At negligibly small RF field, the drop is about

12 V. This value is crudely unchanged when increasing the

field up to jEj ¼ 3kV=m but when jEj ¼ 4kV=m it almost

doubled to 20 V. Beyond that value, the density at the wall

drops quickly and linearization breaks down: although the

relative magnitude of the perturbed and the zero order den-

sity is acceptably low (a few percent) at the interface when

jEj reaches 4 kV/m, it becomes of similar amplitude at the

wall side. When the RF field becomes larger, the lineariza-

tion breaks down already further away from the wall. It is,

however, reasonable to assume the predicted trend subsists:

RF waves tend to depopulate the region close to the metal

wall. For the specific case of waves in the lower hybrid range

of frequencies, Chan and Meneghini demonstrated that suffi-

ciently large amplitude waves can push the density to

zero.4–6 Figure 10 illustrates how the density, the perturbed

density, the parallel velocity and the potentials (relevant for

the electrons) vary as a function of the distance to the wall

for jEj ¼ 4kV=m. In view of the violation of the lineariza-

tion, it seems useful to explore the potential of a model that

does account for the fact that there are 2 different time scales

in the problem, but that does not rely on the assumption that

the perturbation is small.

Figure 11 illustrates the iteration scheme adopted to

describe the wave-particle interaction for a few key quanti-

ties; the flow diagram given in Fig. 5 is followed. First, the

electrostatic potential and corresponding density are found

by neglecting the RF electric field. The nonlinear equations

are solved by gradually switching on the magnitude of the

nonlinear amplitude terms. Once at full value, the RF terms

are also gradually switched on. Finally, when all terms have

reached their full amplitude, a number of iterations are added

up to the point where none of the quantities still vary from

one iteration to the next. As the reached state satisfies the

non-linear equations, the found solution is considered to be

the stationary state solution to the posed non-linear wave-

particle interaction problem.

V. CONCLUSIONS AND DISCUSSION

In the present paper, a model is presented to study the

interaction of RF waves and a plasma. The focus is on the

region close to the launcher. In view of the vastly different

time scales involved, a 2-time scale model has been set up.

On both time scales, it consists of a wave equation, an equa-

tion of motion, and the continuity equation. The slow time

scale dynamics is influenced by the fast time scale physics

through quasilinear modifications. The fast time scale equa-

tion of motion is solved analytically as a driven problem,

and the corresponding wave fields and fast time scale density

modification are computed starting from the same assump-

tion. The perpendicular dynamics of the slow time scale

equation of motion is equally solved analytically, implicitly

assuming the static magnetic field is strong and that its gra-

dients can be neglected as a first approximation. The parallel

equation of motion needs to be solved numerically, except

FIG. 9. Dependence of the density profile close to the wall for various RF

electric field strengths. The full lines are the densities in absence of the RF

field. While the ion response is almost unvaried, the electron response

depends critically on the amplitude of the RF electric field. The profiles for

jEj ¼ 1, 3, and 4 kV/m are depicted.

FIG. 8. Macroscopic RF induced density depletion for various ky.
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for the case when drifts can be neglected. Discarding perpen-

dicular drifts altogether and just focusing on the parallel dy-

namics allows to integrate the equation of motion by hand

and yields a generalization of the Boltzmann density expres-

sion commonly adopted for the electrons. In that expression,

the parallel energy, the electrostatic potential, and the

Ponderomotive potential play a similar role. Just like the de-

pendence of the electrostatic potential on the sign of the

charge makes that ions and electrons respond differently, the

difference in mass of the species has a direct implication on

the magnitude of the Ponderomotive potential for the various

types of species. Moreover, the required wave polarization

has repercussions on which species are affected: For frequen-

cies in the ion cyclotron frequency range, the electron dy-

namics is dominantly controlled by the parallel electric field

while the ions are mainly affected by the perpendicular com-

ponents. To the exception of the case where an ion cyclotron

resonance is crossed in the region of interest (for which case

strictly a kinetic model—see, e.g., Refs. 32 and 33 —is

required as the cold plasma expressions artificially predict an

infinite response), the Ponderomotive effect is not as impor-

tant for ions as it is for electrons. The adopted fast time scale

wave equation is the standard one; it relies on the cold

plasma dielectric tensor but takes the actual densities into

FIG. 10. Macroscopic density, per-

turbed density, parallel velocity, and

potentials relevant for the electrons for

jEj ¼ 4 kV=m.

FIG. 11. Values of various quantities

as a function of the iteration step.
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account for the electrons as well as the ions. For the slow

time scale wave equation, it is assumed that a steady state

has been reached so that the corresponding electric field is

the gradient of a potential as a consequence of Faraday’s

law. Hence, the full electromagnetic equation does not need

to be solved on that time scale but can be replaced by

Poisson’s equation. The electrostatic potential is nonzero if

charge neutrality is violated.

A key finding of this paper is that the earlier found

expression for the Ponderomotive potential in the presence

of a strong magnetic field plays a role similar to the electro-

static potential for wave induced density modification. This

result was already found by Chan for lower hybrid waves.4

In Ref. 1, the accent was on computing the perpendicular

drifts brought about by the Ponderomotive force. This

allowed to demonstrate that variations of the electric field

amplitude perpendicular to the antenna straps cause poloidal

drifts along the launcher and that the strong gradients at the

antenna strap tips cause radial flows towards and away from

the antenna. In that paper (which described effects that are

beyond a 1D description), the back-reaction of the electric

field through the Ponderomotive potential was not incorpo-

rated in the density modification. This back-reaction was the

main subject of the present paper, be it that the model was

kept 1-dimensional here so that variations of fast as well as

slow time scale variables along the wall or launcher are pre-

scribed rather than computed self-consistently. Ions and elec-

trons are treated on the same footing but respond differently

to the presence of the potentials. At the plasma side, it is

imposed that no net current flows into the region of interest.

The resulting set of equations is a mix of linear and non-

linear equations. Rather than solving the actual nonlinear

problem, an iterative scheme was set up to solve the non-

linear problem as a series of linear ones. The various gra-

dients in the equations of motion and the continuity equation

are gradually switched on so that the parallel velocity, den-

sity, potential, and field can be approximated at each step by

the value found in the previous iteration. Adding supplemen-

tary iterations after the various derivatives are at full strength

allows reaching a steady state solution. In view of the non-

linearities, the equations solved remain numerically touchy

in some cases, however. As a result, many iterations (of the

order of 1000) are needed before reaching a steady state.

Also, a high number of grid points is often required. For the

present examples, up to 60 000 grid points are taken for the

first order equations; the wave equations typically require

only a few hundred grid points. This substantial number of

points is needed to capture the behaviour when the density

approaches zero. Although it does not pose a particular prob-

lem for the present 1D treatment which requires modest

CPU time whatsoever, it both points to the fact there is a

need for improvement of the numerical scheme when the

wave-plasma interaction is to be modeled in more than a sin-

gle dimension, and underlines the fact that the linearisation

locally breaks down and the physics model needs to be

upgraded to properly describe regions where that happens.

The difficulty of solving the nonlinear set of equations rele-

vant for high amplitude waves in low density regions close

to metallic walls has already been noticed when adopting

simpler models: Van Compernolle et al.34 experimented

with implementing the sheath boundary condition due to

Myra and D’Ippolito35–43 and was confronted with non-

convergence when the RF power density was too high.

Further upgrading the model is a must. The here pre-

sented set of equations has been applied in 1D while convec-

tive cells created in front of launchers are multidimensional.

Retaining rather than neglecting the omitted derivatives and

adding proper “source” terms would allow to assess the dy-

namics in 2D or 3D and can be done in a macroscopic

region. This would offer a method for describing the wave

induced density depletion in the antenna box, as was demon-

strated by a first, rather crude example. Such an approach

was already tested in Ref. 1 without iterating on the obtained

density and fast time scale wave field. Since zero order flows

are formed, the cold plasma dielectric tensor (which assumes

~vo ¼ 0) can strictly no longer be used so, ultimately, also the

fast time scale wave equation needs to be upgraded to the set

of equations mentioned in that paper. More work to upgrade

the physics model and to include 2D and 3D effects is re-

served for future work.

As a finishing note, one needs to remind that the here

presented model has the strengths but also the weaknesses

that come along with the adopted fluid model.7 Kinetic mod-

eling remains necessary to obtain more detailed insight in

certain aspects that involve deviations away from

Maxwellian distributions. The main advantage of fluid mod-

eling compared to kinetic modeling is that it requires less

computer time and computer memory. Another obvious limi-

tation is that the derivation of the Ponderomotive force rests

on the assumption that the Taylor series expansion of the

field can be truncated after the linear term. In the antenna

box, this may be questioned, a weakness not only suffered

by the fluid type approach adopted here.
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APPENDIX A: KLIMA’S SLOW TIME SCALE EQUATION
OF MOTION

Klima derived expressions for the slow scale equation of

motion for charged particles in the presence of a confining

magnetic field and when a driven high frequency electro-

magnetic field perturbs the motion.7 The starting point is the

single particle equation of motion under the influence of the

Lorentz force. Following the splitting described in the main

text, one finds Eq. (4) where

H ¼ 1

4
Re ~v1:~v

�
1 þ

i~X
x
:~v1 �~v�1

� �
; (A1)
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in which ~X ¼ q~Bo=m. Introducing the notation ~� ¼ q~E1=m,

H can be written in terms of ~E1 to yield Eq. (5). To obtain

this result, the expression

~v1 ¼
1

X2 � x2
�ix~� þ~� � ~X þ i~X:~�

x
~X

� �
(A2)

is useful; the latter is found starting from the driven equation

of motion, evaluating ~v1:~� and ~v1 �~�, and combining the 2

to isolate ~v1. With the obtained expressions and simplifica-

tions, the equation of motion is now compactly written as

d~vo

dt
¼ � qrU

m
�rHþ X~vo �~e==; (A3)

in which the notation ~Eo ¼ �rU was introduced to reflect

the fact that Faraday’s law requires the electric field ~Eo to be

the gradient of a function when @/@t¼ 0.

Subsequently, Klima extends the result found for single

particles to the case of a flow adopting the assumption that

the pressure is of order d2. Starting from an equation of

motion which looks exactly like the single particle expres-

sion except for the pressure term –N�1rP (in which N is the

density and P is the pressure) and a collision term, and intro-

ducing the relevant upgraded flow velocity ~Vo;new ¼
~Vo � 1

2x Re½i~V�1:r~V1� to capture the net effect of the driven

motion the equation can—up to d3 corrections—be recast in

the same form as before after some manipulations. Here, ~Vo

and ~V1 are the zero order and the perturbed, driven fluid

velocities, respectively; capital letters were introduced by

Klima to avoid confusion with the corresponding single par-

ticle quantities. Whereas the first term of the new velocity

constitutes an average over a driver period at a fixed loca-

tion, the second accounts for the fact that the relevant vol-

ume is itself oscillating as a function of time, i.e., the

averaging is done in terms of Lagrangian coordinates

accounting for the perturbed ~E-field driven change of the

zero order motion. Evaluating this correction requires includ-

ing the leading order spatial inhomogeneity corrections to

the perturbed motion adopting the same philosophy as for

obtaining the Ponderomotive acceleration, while making use

of Eq. (3) to link the driven acceleration, velocity, and dis-

placement corrections. Up to higher order corrections, group-

ing the terms of the upgraded velocity in the right hand side

of the equation, Klima formally finds the same result as

before except that the zero and first order velocities are now

the relevant flow velocities and there is the extra pressure

contribution �N�1
o rP ¼ �N�1

o rkTNo. The adopted order-

ing and philosophy allow Klima to fold the non-linear term

Re½i~V�1:r~V1�=ð2xÞ into the reference flow velocity and get a

simple intuitive equation governing the zero order flow. The

term in question is associated with the Reynolds stress

caused by the forced oscillation. The “relevant” slow time

scale fluid flow ~Vo;new is not taken to be the zero order flow

velocity ~Vo itself but the velocity including the net correc-

tion brought about by the driven motion. This makes that—

for the adopted ordering—there are 2 terms in the equation

of motion that get a different role depending on the adopted

dependent variable. In Klima’s final expression, they are

absorbed in ~Vo;new. When adopting ~Vo as the independent

variable, they constitute accelerations contributing to the

modification of the flow. Either choice of variable can be

made; only the interpretation of the flow is different. Klima’s

choice is adopted in the work presented here. It is similar in

philosophy to the one made by Mc Vey et al.44 and Vaclavik

and Appert45 in kinetic wave modeling of radio frequency

heating and more in particular in the context of defining the

kinetic flux associated with an electromagnetic wave when

making a distinction between actual wave induced heating

(the change of the energy in a reference volume flowing

along with the wave-unperturbed motion) on the one hand,

and a local change of energy due to the fact that a different

number of particles stream into than out of a frozen reference

volume on the other. The latter is not interpreted as

“heating.” Similarly but more involved, to avoid a spurious

parallel acceleration term, Balescu46 upgraded the averaging

method and generalized the parallel velocity when writing

down the equation of motion for the guiding center in pres-

ence of a fast perturbation. Like for the attitude taken with

respect to the inclusion of kinetic effects, the assessment of

the role of the term Re½~V�1:r~V1�=ð2xÞ is sidestepped at this

stage. This is not equivalent to stating that the term is with-

out importance: The wave induced stress is, e.g., seen as a

key ingredient to help explain plasma rotation induced by

the ion Bernstein wave (a mode requiring a kinetic descrip-

tion) as is discussed by Myra and D’Ippolito.47 To lighten

the notation, ~Vo;new will henceforth simply be denoted by the

earlier introduced symbol for the slow time scale velocity~vo,

and likewise for the perturbed velocity. The collision terms

introduced by Klima are omitted in the present work.

Assuming the temperature T is constant one then immedi-

ately finds the generalized equation of motion Eq. (6).

APPENDIX B: INTEGRATING THE EQUATION OF
MOTION: FULL AND AVERAGE DYNAMICS

Solving the equation of motion can be done as an initial

value problem (in which case not only the equation for the

velocity but also that for the position needs to be solved) or

as a boundary value problem (in which case the time deriva-

tive is local and the solution is convected by the convection

term). Two examples of the resolution of the equation of

motion Eq. (6) as an initial value problem are depicted in

Figs. 12 and 13, the former being an example for the ions

and illustrating the force balance, the latter showing the

velocities for electrons having velocities equal to 10% of the

electron thermal velocity. In spite of being an equation for

the “slow” time scale and as earlier demonstrated when inte-

grating the equation by hand, the solutions have a fast (cy-

clotron revolution) variation, imposed by the strong

magnetic field superposed on a steady drift velocity. The

actual slow dynamics is then governed by

d~x?
dt
¼~vdrift;?; (B1)

d2x==
dt2
¼

dv==
dt
¼ a==: (B2)

122505-17 D. Van Eester and K. Cromb�e Phys. Plasmas 22, 122505 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

194.81.223.66 On: Wed, 09 Dec 2015 16:57:28



The corresponding velocities are equally depicted in the

Figs. 12 and 13 for a problem with an analytically prescribed

potential and constitute the average motion around which the

oscillatory motion occurs. In the presence of a strong confin-

ing magnetic field, the cyclotron gyration is a typical feature

of the motion adopting the particle approach; convecting the

solution (i.e., solving the equation of motion for the whole

region of interest at once, making use of the fact that the total

derivative is composed of a partial time derivative as well as

a position shift brought about by the velocity and involving

the local spatial gradient) mixes the gyro-phases and modi-

fies the role of the Lorentz term. It substitutes the fast varia-

tion by its average effect at the guiding center level: the

setting up of a perpendicular drift.
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