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Abstract

This paper considers partial observation Markov
decision processes. Besides the classical control de-
cisions influencing the transition probabilities of the
Markov process, we also consider control actions that
can activate the sensors to provide more or less accu-
rate information about the system state, explicitly in-
cluding the cost of activating sensors. We synthesize
control laws that minimize a discounted operating cost
of the system over an infinite interval of time, where
the instantaneous cost function depends on the current
state, the control influencing the transition probabili-
ties, and the control actions activating the sensors. A
general computationally efficient optimal solution for
this problem is not known. Hence we design supop-
timal controllers that only use knowledge of the value
function for the full state information Markov decision
problem. Our solution guarantees that the discounted
cost of operating the plant increases only by a bounded
amount with respect to the minimal cost for the full state
information problem. A new concept of pinned condi-
tional distributions of the state given the observed his-
tory of the plant is required in order to implement these
control laws online.

Keywords:
POMDP, active sensor control, stochastic control,

suboptimal feedback control, partial information con-
trol

1. Introduction

Feedback controllers for stochastic systems require
that the effect of current decisions on future expected
behaviour is properly taken into account. An optimal
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balance must be found between the current investment
in control action and the reduction this action achieves
for the long term cost of operation of the plant. In classi-
cal Markov decision processes (MDP) the control value
ut is selected, as a function ut(Xt) of the current state
Xt ∈ X of the Markov process, so as to minimize some
cost function (in this paper a discounted cost over an
infinite time interval). If the instantaneous cost at each
instant t is given by c(Xt ,ut) the optimal control law is
given by u∗(x) = argminu(c(x,u)+Eu(V (Xt+1) | Xt =
x,u(t) = u)) where the value function V (x) is obtained
by solving the Hamilton-Jacobi-Bellman (HJB) equa-
tion. Dynamic programing (DP) properly takes into ac-
count all the future effects of the current control de-
cision, finding the optimal balance between instanta-
neous cost increase and future cost reduction. This pa-
per considers partial observation Markov decision prob-
lems (POMDP) where the current state is not com-
pletely known, and therefore the optimal control law
u∗(Xt) cannot be applied.

Usually sensor activation is not considered as part
of the control decision. However the increased use of
networked control systems, often with battery operated
sensors, at remote locations incurring communication
costs, forces the control loop designer to explicitly con-
sider the sensor activation decisions. In this paper we
explicitly quantify the effect and the cost of activating
the sensors. We distinguish on the one hand the classi-
cal actuator control ua indicating how strongly the ac-
tuator pushes the state in a desired direction, and on the
other hand the control value us indicating how much
power is expended in order to improve the accuracy
of the observations. The actuator control finds an op-
timal compromise between the instantaneous cost in-
crease due to making an expensive decision ua, and the
reduction of the expected future cost that this decision
induces. Selecting an expensive sensor activation con-
trol value us can reduce the uncertainty about the next
state, which allows a lower future cost of operating the
plant by avoiding wrong decisions due to wrong state
estimates. The value us must be selected so as to find
an optimal trade-off between the instantaneous sensor
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activation cost and the expected future cost reduction it
can achieve.

This sensor activation control problem only makes
sense for the partial information case, for which the
DP approach is often not practically feasible due to the
curse of dimensionality. For these partially observed
Markov decision problems (POMDP) the conditional
distribution πt(.) = P(Xt = . | Ht) of the state, given
the available information Ht at time t, plays the role of
the state at time t : πt is a Markov process, albeit with a
much larger state space; the HJB equation now defines
the value function Vpart(πt), a much more complicated
object than V (x), and stationary optimal control laws
upart

∗(π). In practice Vpart(πt) and upart
∗(π) can al-

most never be calculated, and heuristic approximations
are used for these control design problems. In this paper
we develop a novel control synthesis strategy for this
problem, allowing consideration of the sensor activation
cost, while requiring only knowledge of the easily ob-
tained value function V (x) for the full state information
DP. Provided certain inequalities are satisfied our partial
information control laws guarantee a bounded increase
in cost of the plant operation as compared to the full in-
formation case. Note that this paper does not provide
any bounds on the cost increase with respect to the par-
tial information cost Vpart(πt) (which of course always
is larger than V (Xt)).

The partial observation control problem has a sim-
ple (almost) analytical solution for linear systems with
quadratic cost and Gaussian noise, the LQG problem,
extended with explicit cost C(us) for sensor activation
control value us. The separation theorem still holds (see
?, ?). The HJB equation is then decomposed into 2 in-
dependent minimizations, one involving ua,t (with op-
timal value −K.X̂t where K is as in the classical LQ
problem), the other involving tr(Qus,t .P) (where P de-
fines the quadratic cost of the linear regulator prob-
lem). Actuator and sensor activation control problems
are completely separated. The conditional distribution
πt is Gaussian, with mean x̂t and error covariance ma-
trix Qus(t). The positive definite matrix Qus,t , calculated
by the deterministic Riccati equation of the Kalman fil-
ter, is independent of ua(τ),τ ≤ t thanks to the fact
that for linear systems the increment dx̂t is uncorrelated
with the past evolution of the observations, and uncor-
related implies independent for Gaussian random pro-
cesses. As soon as the assumptions of linearity or of
Gaussian noise are dropped, this separation is no longer
true. The problems of selecting ua(t) and us(t) then be-
come tightly coupled, and the corresponding POMDP
becomes computationally intractable.

In order to avoid technical details in the analy-
sis we only consider here countable-state controlled

Markov chains Xt , t ∈ Z, with transition probabilities
Π(x → x′;ua)) = P(Xt+1 = x′ | Xt = x,ua,t = ua), and
with sensors modeled by the probability distribution
Q(y | x,x′,v) = P(Yt+1 = y | Xt = x,Xt+1 = x′,us,t =
us) of the observed values Yt as function of the evo-
lution of the state. The bounded instantaneous cost
c(Xt ,ua,t ,us,t) ≤ cM depends not only on the state Xt
and the control value ua,t , but also on a control value us,t
that selects how the sensors are operated and activated.
The actuator control and the sensor activation decisions
depend at each time t on the currrently available infor-
mation Ht , which remembers all the past observations
Yτ≤t . The values of ua(t) and us(t) are selected so as to
minimize the discounted cost over an infinite time hori-
zon, knowing Ht .

The idea behind the control law proposed in
this paper is as follows. In classical Markov deci-
sion problems (MDP) the optimal (stationary Markov)
control law u∗(x) = argminuH(x,u) with H(x,u) =
c(x,u) +Eu(V (Xt+1)−V (x) | Xt = x,ut = u) achieves
H(x,u∗(x)) = 0 (of course in the full state information
case the optimal choice for the sensor activation part
us in u = (ua,us) = (ua, /0) is trivial). The classical DP
proof actually also shows that if a control law uδ can
be selected so that ∀x : H(x,uδ (x)) ≤ δ , then the dis-
counted cost (with discounting factor γ) when using uδ

will be at most δ/(1− γ) higher than the minimal ex-
pected future cost V (Xt) achieved by u∗(Xt). We pro-
pose to use uδ as suboptimal control laws for the par-
tial observation problem with costly sensor activation.
While this bound may in practice not be very tight it
does at least provide a guarantee that the system will not
become unstable. This approach should be compared to
some of the proofs of stability for MPC (see e.g. ?).

The proposed control design method requires the
knowledge of the value function V (x) for the full
state Markov decision problem, which is often easy
to calculate numerically. Notice though that the δ -
approximation of the HJB equation must be verified for
each value x of the state. The conditioning in the in-
equality requires that we calculate, for each value x∈X,
the pinned conditional distribution πx,t(ω), representing
πt(ω) restricted to the subset Ωx,t = {ω ∈ Ω : Xt(ω) =
x} of the complete probability space Ω (ω describes all
the random variables influencing system dynamics and
sensors). Section 4 describes how this can be achieved.

The reason that in the DP approach an optimal
control law is found by optimizing the HJB equation
over one single time step is that the value funtion V (x)
correctly quantifies the expected future cost given that
Xt = x. For the sensor activation control problem knowl-
edge of Vpart(π) would be required in order to cor-
rrectly quantify by how much the improvement in the
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accuracy of value for πt+1 would reduce future costs
after time t + 1. This cost reduction should then be
compared to the cost of the sensor activation us,t at
time t. The method proposed in this paper avoids the
need for calculating Vpart(π). The long term effect of a
more accurate conditional distribution πt+1 is approxi-
mately quantified by looking ahead over a time window
[t +1, t +2, . . . , t +H] using control laws uτ dependent
on πτ ,τ ∈ [t +1, t +2, . . . , t +H], with final cost depen-
dent on the conditional distribution of V (Xt+H). This
approximates the future performance improvement in
the same way that MPC controllers approximate the ef-
fect of current control actions.

This paper explains the proposed approach first by
a motivating example in section 2, considering a simple
2-state machine repair problem. Section 3 reviews the
classical DP results used in this paper, for discounted
cost problems. The proposed method for designing sub-
optimal controllers is explained in detail in section 4.
Section 5 of this paper discusses a few possible appli-
cations - queueing systems and jump Markov LQG - of
our control synthesis method where an optimal control
law, and hence V (x), is known for the full state infor-
mation.

2. Motivating two-state example

In order to introduce the concepts of costly obser-
vations control and pinned conditional distributions we
consider as a very simple example a two-state Markov
chain representing a machine that can be either in the
good state Xt = 0, or in the bad state Xt = 1. At each
time t the transition probability from good to bad state
is ρ; once in the bad state the system remains in the
bad state until a repair action is carried out. The control
agent selects to carry out a repair, at a cost r per re-
pair, at successive times Tn,n = 1, . . . (i.e. ua,t = 0, t 6=
Tn,ua,t = 1 otherwise). If no repair is carried out and the
system state remains unchanged, if ua,Tn = 1 the ma-
chine returns immediately to (or remains in) the good
state Xt+1 = 0. In the good state Xt = 0 the machine
produces with probability 1−λ one good item per time
unit, generating the observable output Yt = 0, and no
cost; if Xt = 0 then at time t the machine produces with
probability λ a defective item, with output Yt = 1 (due
to a fault that may have nothing to do with the state
of the machine); in the bad state the machine always
produces a defective item, and Yt = 1. Each defective
item causes a cost of 1 unit. The control agent selects
the repair times so as to minimize the discounted cost
Jγ(u) = Eu[Σ

∞
t=1γ t .Yt + r.Σ∞

n=1γTn ].

The optimal control law is trivial if the agent knows
the current state. The machine operation is a renewal

process, with the machine starting in the good state
XTn = 0 upon the n-th repair at time Tn, and entering
the bad state XTn+1 = 1 at Tn+1 > Tn (after a geometri-
cally distributed time interval); if no repair were carried
out at Tn+1 defective items will be produced forever at
a discounted future cost 1/(1− γ). If 1/(1− γ) < r it
never is useful to repair the machine, ua(x) = 0,x= 0,1.
If 1/(1 − γ) > r it is obviously optimal to repair at
time Tn+1, i.e. ua∗(0) = 0,ua∗(1) = 1 (delaying the re-
pair by one time step would cause a cost 1+ γ.r > r
if 1/(1 − γ) > r). The minimal cost, and the value
function, can be calculated by an easy renewal argu-
ment: V (0) = λ

(1−γ) +(r+1). ρ.γ.(1−ρ)
1−γ+γ.ρ2 ; adding the cost

of one defective item and a repair, in state Xt = 1 gives
V (1) = γ.V (0)+ r+1.

Unfortunately in practice the agent cannot detect
the transition from good to bad state accurately and im-
mediately since a defective item (and the correspond-
ing observation Yt = 1) can also be produced in the
good state. The conditional probability πt = P(Xt =
1 | Y0,Y1, . . . ,Yt), of being in a bad state at time t, start-
ing with an initial condition π0 = 0, can be recursively
calculated by Bayes’ rule:

πt+1 = 0 if Yt+1 = 0(1)

πt+1 =
ρ+(1−ρ).πt

ρ+(1−ρ).πt+λ .(1−ρ).(1−πt )
if Yt+1 = 1

This recursion is denoted further on as πt+1 =
B(πt ,Yt+1).

The joint process (Xt ,πt) is also a Markov process.
The upper part of fig. 1 represents the related Markov
chain (Xt ,Zt) describing the behavior of the plant up to
the time when a repair is carried out (arcs describing
a repair action have been omitted: they lead from any
state to (0,0)). Zt counts how many defective items have
been produced one after the other. Given that π0 = 0
when the process returns to the state (0,0), after a repair
or after a good item has been produced, the value Zt = n
uniquely defines πt = π(n).

It can be proven (see ?), that a threshold policy is
optimal for this partially observed Markov decision pro-
cess (POMDP): repair as soon as πt > πth (or equiva-
lently when Zt > zth where zth is the smallest integer
such that π(z) ≥ πth. The optimal value for the thresh-
old can be calculated using a renewal type argument,
albeit more complicated than in the full state informa-
tion case. Using the optimal threshold policy each cy-
cle starts in the state (0,0) with π0 = 0, and lasts un-
til Zt ≥ zth. The average discounted cost Jcycle(z), dur-
ing one cycle until the next repair, and using zth =
z, can be calculated using backward recursion (as in
the classical absorption problem for Markov processes)
C(x,q) = E(cost remainder of cycle | (Xt ,Zt) = (x,q)).
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Figure 1. Markov model representing state of
machine, the number of successive defective
items, and the conditional distribution πt

Clearly C(x,zth) = r+ 1,x = 0,1 (since the cycle ends
with a defective item and a repair). Backward recur-
sion gives values for C(x,zth − j), j = 1, . . . ,zth until
C(0,0) = Jcycle(z) is found. It is possible to calculate
in the same way the probability distribution of the du-
ration of a cycle. This allows one to calculate the dis-
counted cost for each value of z, and using the fact that
this cost has a unique minimum as a function of z, to
find the optimal threshold zth by repeating the calcula-
tion for z = 1,2, . . . until the discounted cost starts in-
creasing.

Two types of error cause the partial information
discounted cost to be higher than in the full state infor-
mation case. A useless repair is carried out if πt exceeds
the threshold while the machine is still in the good state
(if by accident zth defective items are produced one af-
ter the other while the machine is in the good state). Or
else defective items at a cost 1 are produced because the
repair is not carried out while the machine is already in
the bad state (because the optimal threshold zth must be
set high enough to avoid repair while the machine is in
the good state). The cost increment due to those uncer-
tainties thus depends on what are called type 1 and type
2 errors in hypothesis testing.

Note that for this simple POMDP the value func-
tion Vpart(π) can actually be calculated explicitly, us-
ing Jcycle(zth). For more realistic examples though this
value function in the POMDP case is very difficult to
obtain. Consider the case where the repair is successful
only with probability pr, then after a repair the system
restarts a new cycle in state (0,0) with probability pr,
and in state (1,0,bad) with probability 1− pr (remain-
ing in the bad state until the next repair, as indicated
in the lower part of fig. 1). Proving optimality of a
threshold policy and calculating an optimal threshold
(if a threshold policy would be optimal) becomes a lot

more difficult.
The system performance can be improved by acti-

vating some expensive sensor, in this case by inspecting
the machine, at a cost h per inspection, at those points
in time when the control agent selects us,t = 1 (us,t = 0
indicates no inspection). The observation Yins,Tins at in-
spection time Tins is: if XTins = 0 then Yins,Tins = 0 (de-
noting good) with probability pi,g,Yins,Tins = 1 (denoting
bad) otherwise; if XTins = 1, then Yins,Tins = 1 (bad) with
probability pi,b, good with probability 1− pi,b. Inspec-
tion improves the accuracy of the estimator πt , and re-
duces the cost due to making wrong decisions, provided
the cost of inspection is less than the future discounted
cost reduction it achieves. The cost to be minimized is
now

Jγ(ua,us) = Eua,us [
∞

∑
t=1

γ
t .[Yt +h.us,t ]+ r.

∞

∑
n=1

γ
Tn ].

The control agent now must decide not only when to
repair but also when inspect so as to minimize this dis-
counted cost. Assuming an inspection is instantaneous
the conditional distribution πTins+ will be obtained by a
Bayesian fusion of the a priori information πTins− with
the information Yins,Tins .

In order to calculate the increase in cost due to
wrong state estimates causing wrong decisions, one has
to calculate the pinned conditional distributions πz,t(ω)
for ω ∈ Ωz,t = {ω ∈ Ω : Xt(ω) = z},z = 0,1. Immedi-
ately after a repair at time t = Tn, when XTn(ω) = 0, the
pinned conditional distribution becomes π0,Tn+(ω) =
0,ω ∈ Ω0,Tn using the fact that a repair never changes
the good state of the machine to the bad state. If the
machine is in the bad state XTn just prior to the repair,
then the pinned conditional distribution immediately af-
ter the repair is π1,Tn+(ω) = 1 − pr,ω ∈ Ω1,Tn since
the repair is successful only with probability pr. In be-
tween inspection times Tins, while no repair is carried
out, πx,t ,x = 0,1 is updated as follows (in our model the
Markov process Xt first selects an update to Xt+1, and
only then does the observation process Yt select a new
random value): π0,t+1 = B(π0,t ,Yt+1), since Xt+1 = 0
can be reached only if Xt = 0, while Xt+1 = 1 can be
reached from Xt = 0 with likelihood ρ.(1 − πt), and
from Xt = 1 with likelihood πt . Note that the likelihood
of being in a state at the preceding time is according
to the conditional distribution πt , not according to the
pinned distributions since the selection of the next tran-
sition, in Ω, is made before the output selection. Nor-
malizing, and then updating the pinned conditional dis-
tributions, gives:

π1,t+1 =
ρ.(1−πt).B(π0,t ,Yt+1)+πt .B(π1,t ,Yt+1)

ρ.(1−πt)+πt
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This update can be iterated until the next repair or the
next inspection.

At the time of an inspection the pinned conditional

distribution π0,Tins is updated to π0,Tins+ =
π0,Tins .(1−pi,b)

pi,g

if Yins,Tins = 0; if Yins,Tins = 1 then π0,Tins+ =
π0,Tins .pi,b)

1−pi,g

This result follows from conditioning in the appropri-
ate subset of Ω : combine the information π0,Tins ob-
tained by observing Yτ ,τ ≤ t, with the inspection out-
come, which in Ω0,Tins is Yins,Tins = 0 with probability
pi,g, or Yins,Tins = 1 with probability 1− pi,g. The update
of π1,Tins is analogous, now using the fact that in Ω1,Tins

the outcome of the inspection Yins,Tins = 1 with probabil-
ity pi,b, Yins,Tins = 0 with probability 1− pi,b.

The discussion in this section does not actually de-
fine a good partial information control law ua,t , it only
describes what a good control law should depend on:
the conditional distribution πt , and the pinned condi-
tional distributions πz,t ,z ∈ X. In section 4 we will de-
rive some methods for selecting good suboptimal con-
trol laws, and in subsection 5.1 we will show how to
apply these suboptimal control laws to the machine re-
pair problem.

3. Partially observed Markov decision pro-
cesses

The example treated in section 2 was extremely
simplified. In section 4 we analyze for a general
Markov process Xt ∈ X the vector of conditional dis-
tributions πt(x) = P(Xt = x | Ht) ∈ R]X

+ , and of ]X
pinned conditional distributions πz,t(x),x,z ∈ X (to be
defined below). Using πt , πz,t we synthesize feedback
control laws, depending only on the observed history,
that guarantee an upper bound on the increase in opera-
tional cost due to the uncertainty about the current state.
This method for synthesizing suboptimal partial infor-
mation control laws, and the calculation of the bound on
the resulting increase in cost, require only knowledge
of the value function V (x) for the full state dynamic
programming problem, not the much more complicated
value function Vpart(π) for the POMDP. In this section
we review those results on Markov decision theory that
are most relevant to our method.

This paragraph summarizes the full state feedback
results for Markov decision problems for finite state
spaces in discrete time (extensions to countable and
continuous state spaces require additional conditions):
consider the Markov process Xt ∈ X ⊆ Z,∀t ∈ Z,X0 =
x0 ∈ Z with transition probabilities

Π(x → x′;ua,t) (2)

that depend on the control values ua,t(Xt) ∈Ua. Control

law ua,t(Ht) ∈ Ua is selected as a function of the past
states Xτ ,τ ≤ t so as to minimize the discounted cost

Jγ(u,X0) = Eu
(
Σt∈Zγ

t .[c(Xt)+g(ua,t)] | X0
)

(3)

where Eu represents the expectation for the controlled
process (this may not be a Markov process if ua,t de-
pends on more than the current state Xt).

For this discounted cost problem there exists a sta-
tionary Markovian optimal control law u∗a(x) : X→ Ua
that depends only on the current state Xt , independent of
time, that is at least as good as any control law in the set
Ua. If such a stationary Markovian control law ua(Xt)
is implemented then the controlled process is a Markov
process with transition probabilities Π(x → x′;ua,t(x)).
The lowest achievable cost, given the initial state X0 = x
is the value function

Vγ(x) = in fUaJγ(u,x) = Jγ(u
∗
a,x) (4)

HJB Optimality Theorem (see e.g. ?, ?) The
value function Vγ(x) is the unique positive bounded so-
lution to the equation:

∀x ∈ X : Vγ(x) = in fua∈Ua{c(x)+g(ua)+ (5)
+γ.Σy∈XVγ(y).Π(x → y;ua)}

If ∀x ∈ X a value u∗a ∈U can be selected such that

Vγ(x) = c(x)+g(u∗a(x))+ γ.Σy∈XVγ(y).Π(x → y;u∗a)
(6)

then applying the stationary Markovian control law
u∗a(Xt) = u∗a at each time t when the current state is Xt
minimizes the future discounted cost of the system. The
same optimal control law is obtained if at each time t the
control value u∗a,t is selected as the first component of
the sequence of control laws u∗a, j ∈ U, j = 0, . . . ,H − 1
that minimizes the control laws (not control values) over
the prediction window [t, t +H −1] :

Vγ(x) = in fua,t+ j∈Ua, j=0,...,H−1Eua, j , j=0,...,H−1 (7)

[ΣH−1
j=0 c(Xt+ j)+g(ua,t+ j)+ γH .Vγ(Xt+H) | Xt = x]

If ∀x ∈ X a value uδ
a (x) ∈U can be selected s. t.

Vγ(x)≤ c(x)+g(uδ
a (x))+ (8)

+γ.Euδ
a (x)

[Vγ(Xt+1) | Xt = x]+δt

where δt is a possibly random time series, then applying
the control law uδ

a (x) at each time t when the current
state is Xt = x, guarantees that the future discounted cost
of operating the system achieves a cost that is at most
Vγ(Xt)+Euδ

a
Σt∈Z γ t .δt . If a deterministic upper bound

∀t : δ ≥ δt is known then this discounted cost is at most
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Vγ(Xt) +
δ

1−γ
(see e.g. ?, pp.152-155). These control

laws uδ
a (x) are called δ -suboptimal controllers.

Moreover if ∀x ∈ X (8) is replaced by the inequal-
ity “left hand side of (7)” ≤ “right hand side of (7)” +
δ ,” then the discounted cost when applying control law
uδ

a (Xt) is at most δ/(1− γ) higher than Vγ(Xt). �
Note that in (7) the first control selection ua,t re-

quires only the choice of a control value ∈ Ua, (since
the current state Xt = x is supposed to be known), but at
each later time, for ua,t+ j ∈Ua, j =, . . . ,H−1, one must
select a control law. Indeed (7) is valid only provided
one maintains the closed loop control over the window
[t, t +H − 1]. Classical textbooks only prove the com-
putationally much more efficient case H = 1. While the
minimization in (5) is over the value space Ua, the min-
imization in (7) is over an H-dimensional space of con-
trol laws, a vector in UH.]X

a . However as explained in
the introduction we will need (7) later on for horizons
H > 1 because the effect of a sensor activation decision
is not quantified properly for H = 1. This result should
be compared to ?.

Note that (8) requires knowledge of the exact value
function Vγ(x) for finding a suboptimal controller with
bounded increase in cost compared to the optimal con-
troller. It is not sufficient to use an approximation to the
value function.

In practice it is usually not possible to apply the op-
timal feedback control law u∗a(Xt) because the state Xt
cannot be measured accurately. The control agent only
receives at time t noisy observation Yt ∈ Y depending
on the state Xτ≤t . Specifically the output Yt+1 = y ∈ Y
is generated according to the probability distribution
Q(y;x,x′,us,t). The control agent selects at each time
t an actuator control value ua,t ∈ Ua and a sensor acti-
vation decision us,t ∈Us. Selecting the sensor activation
control value us,t causes an instantaneous cost h(us,t),
and determines how much information Q(y;x,x′,us,t)
provides about x and x′ (we allow the sensor output to
depend on previous and current state in order to be able
to observe transitions, e.g. an arrival in a queue corre-
sponding to x′ − x = 1). Of course true in all applica-
tions a more expensive choice us,t generates output Yt
that provides more information on Xt , allowing better
control decisions in the future.

In the classical setup for the partial information
Markov decision problem (POMDP) the control agent
remembers at each time t the history

Ht = {Hinit ,Y0,ua,0,us,0, . . . ,Yt−1,ua,t−1,us,t−1,Yt}.
Actuator and sensor control values are selected as func-
tions of Ht so as to minmize the discounted cost:

Jγ(u,x) = Eu{Σt∈Zγ
t .[c(Xt)+g(ut)+h(vt)] | Hinit ,Y0}

(9)

It is well-known that these POMDP (?,?) can be
treated as classical MDPs by replacing the state Xt by
the conditional distribution πt = P(Xt = x | Ht) of Xt
given the observations available up to time t. The tran-
sition probabilities of πt = P(Xt = x | Ht), given the
control values ua,t = ua,us,t = us are defined by the re-
cursive Bayes’ algorithm:
Calculate π

−
t+1 = P(Xt+1 = x′ | Ht) =

Σx∈Xπt(x).Π(x → x′;ua);
apply Bayes’ rule

π̃t+1(x′) = Σx∈Xπt(x).Π(x → x′;ua).Q(y;x,x′,us);
normalize πt+1(x′) =

π̃t+1(x′)
Σx′∈Xπ̃t+1(x′)

=

B(πt ,ua(πt),us(πt))(x′)
πt is a Markov process: the distribution of Yt+1,

and of πt+1 only depend on πt . The HJB theorem re-
mains valid when adding an explicit cost h(us,t) for the
sensor activations - see ? for a similar problem formula-
tion. Hence there exists a stationary Markovian optimal
control laws u∗a(πt),u∗s (πt) mapping the space of con-
ditional distributions to the set Ua of transition control
values, resp. the set Us of observation control values.
The disounted cost to be minimized is

Jpartial
γ (ua,us),π0) (10)

= Eu,v
(
Σt∈Zγ t .[Σx∈Xc(x).πt(x)+g(ua,t)+h(us,t)] | π0

)
V part

γ (π) = in fua,usJ
partial
γ (ua,us,π) satisfies:

V part
γ (π) = inf

ua∈Ua
{Σx∈Xc(x).π(x)+g(ua) (11)

+ inf
us∈Us

[h(us)+ γ.Σπ ′∈ΠV part
γ (π ′).B(πt ,ua,us)(π

′)]}

where the set Π of possible values of the πt+1, reachable
from πt can be calculated using Bayes’ algorithm.

If a mapping u∗a(π),u
∗
s (π) exists that achieves the

minimum in (11) then this defines the stationary opti-
mal control laws both for the actuator and for the sen-
sor activation control. Unfortunately it is rarely pos-
sible in practice to solve this functional BHJ equation
for V part

γ (π), and to obtain an optimal control law using
(10)-(11).

4. Suboptimal history-adapted controllers
with performance bound

Combining equations (7) and (8), including the
sensor activation cost h(us,t), one can obtain a subop-
timal solution with bounded increment in cost for the
partial observation control compared to full state DP by
using

Vγ(x)≤ Eu j ,v j , j=0,...,H−1[Σ
H−1
j=0 γ

j.[c(Xt+ j)+g(ua, j)

+ h(us, j)]+ γH .Vγ(Xt+H) +δt | Xt = x] (12)
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The value function Vγ(x) in (12) satisfies equation (5)
(and also (7)). The inequality (12) must be verified for
each value x ∈ X. The control agent however does not
know the state Xt = x, so that (uδ

a,t ,u
δ
s,t) must be se-

lected not as functions of the state Xt but as functions
of the history Ht . In order to calculate the bounds δt for
each value of x one needs to calculate the probabilistic
behaviour of πt in a subset Ωx,t = {ω : Xt(ω) = x} ⊂
Ω = {Xτ ,Yτ ,τ ∈ Z} of the probability space. The con-
trol agent can thus use the pinned conditional distribu-
tion πx,t(z), that evaluates the conditional distribution of
Xt = z given Ht for ω ∈ Ωx,t . These pinned conditional
distributions πx,t(z) allow the calculation of the differ-
ence between Vγ(x) and the right hand side of (12):

δt(x,ua, j,us, j, j = 0, . . . ,H −1,Ht) = (13)

Eua, j ,us, j , j=0,...,H−1{
H−1

∑
j=0

γ
j.[c(Xt+ j)+g(ua, j)

+h(us, j)]+ γ
H .Vγ(Xt+H)−Vγ(x) | πt ,πx,t}

Note that πx,t(z) uses only as information Ht , and does
not know that Xt = x at time t.

In order to recursively calculate πx,t observe that
Ωx,t = ∪x′∈X(Ωx′,t−1 ∩ {ω : Xt(ω) = x}). Note that
ω ∈ Ωx,t also describes the random generation of
Yt(ω) according to Q(y;x,x′,us). For values of ω ⊂
Ωx′,t−1 the evolution from πx′,t−1(z′) to π

+
x′,t−1(z)

follows the rules of the Bayesian recursive update:
Σz′∈Xπx′,t−1(z).Π(z′ → z;ua).Q(y;z′,z,us); and finally
normalize. In order to calculate πx,t(z) one needs to
consider only those values of ω that are in Ωx,t , i.e. con-
sider for all the precursors Xt−1(ω) = x′,x′ ∈ X, ω ∈
Ωx′,t−1 ∩ Ωx,t the value π

+
x′,t−1(z)(ω). The weight of

each of these precursors is proportional to the proba-
bility that the state at time t − 1 is Xt−1 = x′, given the
prior information Ht−1, is πt−1(x′). In order to describe
the update for each value πx′,t−1(z),z ∈ X one has to
combine these weighted likelihoods π

+
x′,t−1(z).πt−1(x′),

taking into account that the likelihood of going from
Xt−1 = x′ to Xt = x while observing Yt = y is Π(x′ →
x;ua,t−1).Q(y;x,x′,us,t−1). Thus

π̃x,t+1(z) = Σx′∈X(φ(x
′)) (14)

φ(x′) = πt(x′).Π(x′ → x;ua,t).Q(y;x,x′,us,t).π
+
x′,t(z)

followed by a normalization.
The pinned conditional probability distribution of

Xt+ j, j = 0, . . . ,H − 1, defined only for ω ∈ Ωx,t (ar-
bitrarily assigned a value /0 for ω /∈ Ωx,t) must be
calculated using as initial distribution at time t the
pinned conditional distribution πx,t(z). Since the ac-
tual observations Yt+ j during the prediction window
are not known at the time when the control values

(ua,t ,us,t) are selected, the control agent must calcu-
late the best possible Ht -adapted conditional distribu-
tion π

t+ j
x,t (z) = P(Xt+ j = z | πt), with initial condition

πx,t , as a function of the control values ua,t+n,us,t+n,n=
0,1, . . . , j − 1. Starting at time t in Ωx,t the state tran-
sition to Xt+1 = z with output Yt+1 = y occurs with
probability Π(x → z;ua,t).Q(y;x,z;us,t). The probabil-
ity distribution of Yt+1 = y, given Ht and restricted
to Ωx,t is then P(Yt+1 = y | Ht ,Ωx,t) = Σz∈XΠ(x →
z;ua,t).Q(y;x,z;us,t), independent of Ht . This argument
can be extended to the joint distribution

P(Yt+n = yn,n = 1, . . . ,H | Ωx,t) = (15)
= Σ(z1,...,zH )∈XH Pr(z1, . . . ,zH)

with

Pr(z1, . . . ,zH) = Π(x → z;ua,t).Q(y;x,z;us,t)×
Π

H
n=1Π(zn−1 → zn;ua,t+n−1).Q(yn;zn−1,zn;us,t+n−1)

The calculation of π
t+ j
x,t (z) uses only Ht and

the fact that ω ∈ Ωx,t . The trajectories of π
t+ j
x,t (z)

are obtained by recursively applying Bayes’ algo-
rithm (see section 3) for each possible sequence
of observations Yt+n = yn,n = 1, . . . ,H, generating
π

t+ j
x,t (z)(yn,n = 1, . . . ,H) and then averaging accord-

ing to π
t+ j
x,t (z) = Σyn,n=1,...,HP(Yt+n = yn,n = 1, . . . ,H |

Ωx,t).π
t+ j
x,t (z)(yn,n = 1, . . . ,H) assigning the probabil-

ity calculated in (15) to each of these observation se-
quences yn,n = 1, . . . ,H.

These distributions π
t+ j
x,t (z) allow the calculation of

δt(x,ua, j,us, j, j = 0, . . . ,H −1,Ht)

according to (13). In order to obtain a good subop-
timal control law the control agent must select values
(ua, j,us, j) ∈ (Ua ×Us)

H that minimize

δt(ua, j,us, j, j = 0, . . . ,H −1,πt ,πz,t ,z ∈ X) = (16)
max

x
δt(x,ua, j,us, j, j = 0, . . . ,H −1,πt ,πx,t)

The lowest possible value of (16) achievable by an op-
timal choice of ua, j,us, j, j = 0, . . . ,H − 1 is denoted
δ minmax

t . Since eqns (13, 14, 15) depend on both ua,t+ j
and us,t+ j, the optimization defining the control laws
must be done jointly. This makes the problem a lot
more complicated than the special case for LQG mod-
els with observation cost where the separation theorem
allows separate selection of the actuator and of the sen-
sor activation controllers. By using an expensive sensor
activation control value us,t+ j it may be possible to get
very accurate estimates of the states Xt+ j+` which in
turn may allow the control agent to select a very good
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actuator control value ut+ j+`. In fact for some values
of us some particularly bad states z′ may be excluded
completely, if Q(y;z,z′;us) = 0 for some values y.

Properties of the proposed suboptimal controllers:
Selecting the Ht -adapted control laws uδ

a,t ,u
δ
s,t ac-

cording to the first ua and us components of

(uδ
a,t ,u

δ
s,t) = argmin(ua,us)∈(Ua×Us)H (17)

δt(ua, j,us, j, j = 0, . . . ,H −1,πt ,πx,t ,x ∈ X)

ensures that the expected discounted cost of operating
the system, starting in any state Xt = x, is at most

V (x)+ ∑
t∈Z

γ
t .δ minmax

t

Remark 1: Note that δ minmax
t includes a cost for

sensor activation, depending on h(us,t). This must be
taken into account when interpreting the cost increase
compared to Vγ(Xt), due to applying (uδ

a,t ,u
δ
s,t). The

sensing cost of course also is included in the POMDP
minimal cost, which is higher than the full state infor-
mation cost even when h(us,t) = 0.

Remark 2: The horizon H must be selected long
enough so that the future cost reduction thanks to the
sensor activation is properly quantified in (16). This
choice is however limited by the computational com-
plexity of the online algorithm.

5. examples

The machine repair problem of section 2, in the
case where both the repair and the inspection are not
perfect, is a simple example of the application of the
suboptimal control law proposed in section 4. The δ -
values on Ωz,t ,z = 0 = good and = 1 = bad for a win-
dow of size H are

δ (z,ua, j,us, j, j = 0, . . . ,H −1) (18)

= Eua, j ,us, j , j=0,...,H−1{
H−1

∑
j=0

γ
j.[Yt+ j)+ r.ua,t+ j+ h.us,t+ j]

+γ
H .Vγ(Xt+H)−Vγ(z) | πt ,πx,t}

The value functions V (0) = λ

(1−γ) + (r + 1). ρ.γ.(1−ρ)
1−γ+γ.ρ2

and V (1) = γ.V (0)+ r+1, and the transition probabili-
ties for the corresponding Markov chain, have been cal-
culated in section 2. The possible control actions are at
each time t to repair or not to repair, and to inspect or
not to inspect. Evaluate (18) for each possible choice of
inspection and repair times in the interval t, t+1, . . . , t+
H − 1], and select (ua, j,us, j, j = 0, . . . ,H − 1) that
minimizes maxz=0,1δ (z,ua, j,us, j, j = 0, . . . ,H−1).This

minimum is denoted δ minmax. This specifies the subop-
timal inspection and repair times according to the sub-
optimal control law of section 4. Theoretically this re-
quires 2.2H evaluations of δ (z,ua, j,us, j, j = 0, . . . ,H −
1), but in practice many cases can be excluded (like
inspection immediately following a repair). Moreover
one can calculate the cost increment δ minmax/(1− γ) of
this repair and inspection strategy, with respect to the
full state information case.

Other more complcated examples can be treated
by the same approach. Approximate solutions can
be found using the pinned conditional distribution ap-
proach for the control of the optimal arrival rate or of
the optimal service intensity in networks of queues. We
have also considered applications to jump Markov LQG
problemms in the case where the underlying Markov
state is not dirrectly observable.

6. Conclusions

This paper has introduced a novel approach to de-
signing actuator and sensor activation control laws, for
the case where the system state can only be observed
partially and at a cost. The approach provides a bound
on the increment in the cost, due to operating the plant
under the proposed partial information strategy as com-
pared to the full state case.
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