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Abstract—People localization and occupancy mapping are
common and important tasks for multi-camera systems. In this
paper, we present a novel approach to overcome the hurdle of
manual extrinsic calibration of the multi-camera system. Our
approach is completely parameter unaware, meaning that the
user does not need to know the focal length, position or viewing
angle in advance, nor will these values be calibrated as such.
The only requirement to the multi-camera setup is that the
views overlap substantially and are mounted at approximately
the same height, requirements that are satisfied in most typical
multi-camera configurations.

The proposed method uses the observed height of an object
or person moving through the space to estimate the distance
to the object or person. Using this distance to backproject the
lowest point of each detected object, we obtain a rotated and
anisotropically scaled view of the ground plane for each camera.
An algorithm is presented to estimate the anisotropic scaling
parameters and rotation for each camera, after which ground
plane positions can be computed up to an isotropic scale factor.
Lens distortion is not taken into account. The method is tested
in simulation yielding average accuracies within 5cm, and in a
real multi-camera environment with an accuracy within 15cm.

I. INTRODUCTION

Occupancy mapping is a common and important task in
many multi-camera vision applications. An occupancy map
is a two-dimensional representation of a scene in which the
position of foreground objects is marked. Applications which
require such a map include surveillance, smart rooms, video
conferencing and sports analysis. Considerable effort has been
expended to develop accurate and robust methods for calcu-
lating occupancy maps [1]–[4].

All of these methods require the camera system to be
minutely calibrated. The intrinsic parameters are typically
obtained by analysing a number of views of a planar checker
board pattern [5] or polka dot pattern [6] in various orien-
tations. This method often requires a person to stand on a
ladder to provide the camera with a good view of the pattern.
To calculate the extrinsic parameters, common calibration
procedures require placement of specific calibration patterns
or manual entry of tie points [7] or walking around slowly
with an easy-to-track light source such as a coloured flash
light or capped laser pointer [8].

This research was made possible through iMinds, an independent research
institute founded by the Flemish government

In recent years, efforts have been made to fully automate
the calibration process. Significant works include Sinha et al.
[9], who are able to calibrate a dense multi-camera system to
a very high accuracy, but depend on very accurate silhouette
extraction. This is usually achieved by the use of green screen
or similarly uniform background, which limits the real-world
usability outside the lab. Another promising approach was
presented by Dellaert et al. [10], but was only demonstrated
using outlier-free hand-picked features.

The reliance of occupancy mapping on accurate but cum-
bersome calibration procedures is a significant drawback for
many non-critical applications (e.g. statistical behaviour moni-
toring), where it is acceptable to sacrifice accuracy for ease of
use. In this paper, we present a novel approach to calibration
that uses the projected height of a person in the different
camera views to relate their image coordinate system to the
world axes. This eliminates the need for a specific calibration
procedure: the user can just walk around the room and the
system calibrates automatically. No prior knowledge about the
cameras is used. The only requirements to the multi-camera
setup are that all cameras are at approximately the same height,
and there is a substantial area of overlap between the cameras.
In typical configurations, both requirements are easily satisfied.
Lens distortion is not taken into account as, in our experience,
it has proven not to be a significant factor for standard lenses.
It does however preclude the use of extremely wide angle
(fisheye) lenses.

In section II we will explain how the projected height of an
object can be used to calculate the image-to-world coordinate
transform required for occupancy mapping. In section III we
will present a practical algorithm to compute this transform.
Results of both simulations and real-world testing are pre-
sented in section IV. Finally, conclusions about the proposed
method are drawn in section V.

II. PROJECTED HEIGHT AS ESTIMATOR FOR CAMERA POSE

In this section we will analyse how the projected height of
an object (i.e. the difference in camera image Y coordinates
between the top and bottom point) can be used to reproject
image points to world coordinates. We use a pinhole camera
model [11] for this analysis, as it offers the clearest perspective
on the technique we will use.

Assume we have a camera with zero roll angle (i.e. the
horizontal image sensor axis is parallel to the ground plane),



and zero pitch angle (i.e. the vertical image sensor axis
perpendicular to the ground plane). It can be easily seen from
Figure 1 that the projection height h� of a vertical object of
actual height h is inversely proportional to its distance d to
the focal point F of the camera:

h� ∝ h

d
. (1)

sensor plane
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h h
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Figure 1: Relation of height and distance in the zero pitch,
zero roll case (side view).

In other words, we can calculate the relative distances
between different observations of the object from the ratio of
their projection height. The emphasis is on the word relative:
without knowing the distance d for at least one observation,
we cannot obtain absolute distance values. The distances to
the camera are only determined up to a scale factor. If the
actual height h of the object is known, this is also sufficient
to determine the scale factor.

In order to backproject the image points to the world
ground plane, we need to know not just the distances associated
with the image points, but also the focal length f of the
camera. Once depth and focal length are known, this defines
the intersection of the line through the image point and the
focal point with the world ground plane (Figure 2). Note that
the world coordinates of these intersection points are relative to
the camera location and orientation: the obtained world ground
plane maps for different cameras will be rotated and translated
versions of each other.

F

f
d

x

y

h

Figure 2: Backprojection of image point onto world plane,
using known distance d and focal length fc.

If we know the height h of the object or the distance d
for one of the observations, but not the focal length f , we
can determine the absolute distances, i.e. the ground plane Y
coordinates, but not the X coordinates: they will only be known
up to a scale factor. If neither h, d or f are known, the Y axis
will also only be defined up to a scale factor. In this case the
X and Y axis will be differently scaled versions of the actual
(rotated) world axes. A simulated example is shown in Figure
3. In this simulation we assumed a focal length equal to half

the sensor width to compute the ground plane coordinates. The
actual focal length of the simulated camera was 30% longer.
This results in the the backprojected coordinates being slightly
stretched in the X direction.
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Figure 3: Reconstruction of relative object positions using
projection height in the zero pitch case (simulated). The
left image shows the camera position (blue dot) and actual
world object positions (red dots). The center image shows the
view from the camera, and the right image the reconstructed
positions, an anisotropically scaled version of the (rotated)
actual positions.

In the case of a camera with non-zero pitch, the situation
complicates somewhat. As shown in Figure 4, the projection
height h� is no longer proportional to the actual height h, but
to its projection hp on the plane γ through the bottom point
perpendicular to the principal axis, with the focal point F as
center of projection:

h� ∝ hp

d
(2)

In which hp can be seen as the perpendicular projection ha

of h on γ extended by a length hb as a consequence of the
projection through the focal point F . Note that the ratio of
ha to h is constant: it only depends on the pitch angle of the
camera and not on the location of the object. The ratio of hb to
h however depends on the image coordinates of the projection
of the top point of the object. For objects that lie in the bottom
half of the image, hb is negative.

If we ignore the non-proportionality of hb for now, we can
still determine ground plane positions up to two scale factors
for X and Y, similar to the zero pitch scenario. The distances
between observations are still proportional to their projection
heights.

Because of the dependence of hb on image location, the
estimated depths will be inaccurate. The error increases with
increasing downward camera pitch and with increasing lens
aperture. For a wide angle lens with 90◦vertical aperture on a

sensor plane
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Figure 4: Projected height vs. distance in the nonzero pitch,
zero roll case (side view).
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Figure 5: Mean error on the depth estimate versus camera pitch
and vertical aperture angle.

Table I: Analysis of mean depth errors. Aperture range is split
due to rapid deterioration of accuracy for apertures over 80◦.

aperture (deg) 45-80 85-90
mean error (%) 2.81 21.77

error std (%) 1.92 23.21
max error (%) 7.37 89.18

camera pointing 45◦downward, the average error on the depth
estimation over all image points is 11.7% and the maximum
error is 29.6% for objects at the bottom of the image.

If the focal length f in pixels and pitch angle α (negative
for a camera pointing downwards from horizontal) are known,
the length of hb can be determined. Let cy denote the image Y
coordinate of the principal point and ty the image Y coordinate
of the top of the object. The length hb is then given by

hb = h sin(α)
(cy − ty)

f
(3)

and the exact relative depths can be calculated. If we do
not know f or α, the best we can do is calculate hb based
on what we assume are average values f and α. For an
occupancy application, we may assume that common pitch
angles are between 30◦and 60◦, and common vertical aperture
angles between 45◦and 90◦, since the cameras must adequately
cover the room or yard. Using these ranges to calculate an
approximate length hb, the mean depth estimation errors are
shown in Figure 5 and Table I. It can be seen that the errors
are only significant for apertures above 80◦. This means that
our workaround of using typical values is not valid for fisheye
lenses. We may note that the pinhole camera model is a very
poor approximation for this type of lenses anyway, which
would severely compromise the results by itself.

An important final note concerns camera roll. We have
assumed a roll angle of zero in the above discourse, which
will not usually be the case in real applications. Fortunately,
the roll can be easily corrected when observing vertical objects.
It is sufficient to have a single observation which lies on a line
that passes close to the center of the camera image. The angle

between this line (the extension of the observation) through
the center and the vertical axis is the roll angle, and the image
can simply be rotated to achieve the zero roll scenario.

To summarize, so far we have established that for each
camera in a typical multi-camera setup we can use the pro-
jection heights of multiple observations of the same object
in different positions to obtain an anisotropically scaled and
rotated version of the real world plane axes. Or, put differenty,
we can determine the mapping from image coordinates to
world plane coordinates up to a rotation and two scaling factors
using no prior knowledge about the camera whatsoever, just by
comparing the projection heights of two or more observations
of the same object in a different location.

In the next section, an algorithm is proposed to determine
the rotation and scaling factors for each camera by comparing
the observations of the invidual cameras.

III. ALGORITHM

In the previous section, we have built a world coordinate
map for each camera that is an anisotropically scaled and
rotated version of the real world plane. In this section, a
method is outlined to estimate the rotation angles and the X
and Y scale factors for each camera. The core idea is that if we
find scale factors for each camera so that their coordinate maps
are rotated versions of each other, then these coordinate maps
will automatically be uniformly scaled versions of the actual
world coordinates. In order to find the correct scale factors for
each camera, we must be able to compare the observations of
the same object by different cameras. This is easily achieved
when the cameras are reasonably synchronised and only one
object is observed at a time during the calibration phase.

Because of the non-linear relation between the world plane
maps between the cameras (due to the rotation) we will resort
to an exhaustive search in stages. One camera is taken as a
reference: its X scale factor is assumed 1 and its rotation 0◦.
The Y scale factor for the reference camera, and the X and
Y scale factors and rotations of all other cameras are then
estimated simultaneously. The core algorithm to achieve this
is outlined below, in which Pn,j are the preliminary world
coordinates of observation j for camera n.

This is essentially an exhaustive search in which for each Y
scale factor scaley,1 of the reference camera, all combinations
scaley,n and scalex,n are tried for the other cameras, their
rotations computed, and the sum of least squares distances
between their scaled and rotated points with the reference
camera’s points minimized. To make this tractable, the search
intervals for the scale factors are first iterated in large steps to
identify the rough location of the minimal cost solution, after
which a smaller interval is iterated in finer steps to further
pinpoint its location.

Note that the choice of reference camera does not matter.
The algorithm will converge on the correct Y/X scale ratio
for each camera regardless of which camera was chosen as
reference.

Only scale factors between 0.5 and 2 are evaluated, on the
assumption that the estimated focal length f to calculate the
initial world coordinates cannot be more than twice too short



Algorithm 1 Algorithm to estimate the scale factors for each
camera

mincost = 1e10
for scaley,1 ∈ [0.5, 2] do

apply scaley,1 to all P1,j

for n = 2 to N do
cost = 0
for scaley,n ∈ [0.5, 2] do

apply scaley,n to all Pn,j

for scalex,n ∈ [0.5, 2] do
apply scalex,n to all Pn,j

calculate rotation between cam 1 and cam n from
a pair of points in both views
apply this rotation to all Pn,j

cost+ =
�

j |Pn,j − P1,j |2
end for

end for
if cost < mincost then
mincost = cost
save scaley,1 and the best scaley,n and scalex,n for
each cam

end if
end for

end for

or too long. This holds true for the vertical aperture ranges
considered in section II.

Now that for each camera the scale factors and rotation
are known, they define the mapping between image and world
coordinates up to a global isotropic scale factor. There is no
way to determine the exact X scale factor corresponding to
the reference camera without knowing at least one distance or
the height of the object. In an occuppancy mapping context,
the average height of a person can be used to compute an
approximation of the scale factor that is sufficiently close for
practical applications. In a surveillance application for example
it is not as much the absolute position of a person that matters,
but its proximity to the limits of the area. The limits of the
area can be determined automatically by observing a person
who walks along these limits.

The performance of our estimation method will be exam-
ined in the next section.

IV. RESULTS

We have established that it is possible to find the mapping
between each camera’s image coordinates and the world co-
ordinates, up to a scale factor and rotated relative to the first
camera. In this section we will investigate the accuracy of this
method in simulation, and prove its viability with a real-world
experiment.

A. Simulation

To estimate the impact of our assumptions in section II
and the relation between the number of observations and the
accuracy of the obtained mapping, we have conducted the
following simulation. Four cameras are randomly chosen in a 2
by 2 metre region in the corners of a 10 by 10 metre room. The
camera height is random between 2 and 5 metres. The focal

length of each camera is randomly chosen to correspond with
a vertical aperture angle between 45◦and 80◦. The cameras
are pointed at a random point on the ground in a 2 by 2
metre region in the centre of the room, yielding pitch angles
between 18◦and 56◦. A number of observations are simulated
as 1.8 metre high vertical line segments in the middle 5 by 5
metres of the room (where the camera views will generally all
overlap).

For each camera, the mapping from image to world co-
ordinates is computed as described in sections II and III.
The optimal scaling and rotation of these world coordinates
(which are relative to the first camera) to the original simulated
world are determined and applied. The mean euclidian distance
between the world coordinates of each observation in each
camera and the actual position of the object is then computed.
This is repeated 100 times for each number of observations
(5, 10, 20 and 40 observations). The results are summarized
in table II. Visualizations of a good and a poor result are shown
in Figures 6 and 7.

Table II: Results of simulated experiment.

# observations 5 10 20 40
mean err (m) 0.056 0.053 0.051 0.045

std err (m) 0.084 0.072 0.052 0.040

In the simulated experiments, the method proves accurate
to approximately 5 centimetres regardless of the the number of
observations. The standard deviation on the error decreases for
higher numbers of observations. The errors are caused by two
separate effects. The first effect is the impact of the unknown
actual length of hb as decribed earlier. The more the focal
length and pitch differ from their assumed average values,
the lower the maximum theoretical accuracy. The second
effect is that the location of the objects is randomly chosen,
which can give rise to configurations in which the multi-stage
exhaustive search does not converge on the global minimum.
This explains the decrease in error variance for higher number
of observations: a larger number of random locations are more
likely to be adequately spread over the room.

B. Real video

In order to prove the viability in real circumstances, an
experiment was conducted in our multi-camera room. This
room measures 5 by 8 metres and is equipped with a number of
cameras. For this experiment, four cameras were used near the
corners of the room at a height of approximately 3.5 metres.
The cameras are equipped with two different types of lenses
and their viewing areas completely overlap in an approximately
3.5 by 4 metre region. This multi-camera room is often used
for occupancy-related experiments.

As ground truth, 10 spots are measured and marked on
the ground. A 90 second four-camera video is recorded in
which a person walks around the area of overlap, momentarily
standing still at the marked spots. The foreground-background
estimation method of Kim et al. [12] is used to extract the
silhouette of the person in each camera view. When the person
holds still, the top and bottom point of the silhouette are saved
as observations. Figures 10 and 11 show the camera views,
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Figure 6: Example of a good reconstruction result. Simulated
world is shown in top left. Camera views are shown in top
right. Reconstructed world coordinates in bottom image. Red
dots represent ground truth, and are completely obscured by
the reconstructed positions of the individual cameras.

foreground masks and top and bottom points for a sample
frame. These observations are used as input to our method to
compute the image-to-world mapping for each camera. The
observations corresponding to the 10 ground truth positions
are then mapped by each camera, and the average of the four
positions for each point is taken as the estimated location. The
results of this experiment are shown in Figure 8 and table III.

For comparison, the location of the person is also estimated
using a visual hull based method [13]. In this method, the
four cameras are first intrinsically calibrated as per Zhang et
al. [5] and extrinsically calibrated using a method based on
the POSIT algorithm [14], [15]. The silhouette of the person
in each camera is then projected as a generalized cone onto
a voxel cuboid with a voxel size of 2 by 2 centimetres. The
voxels that fall inside all four generalized cones are retained
as the volumetric approximation of the person. The center of
gravity of this voxel shape is projected onto the ground plane
and taken as the estimated location. The results of this method
are also shown in Figure 8 and table III.

It can be seen that the proposed method provides rea-
sonable accuracy without requiring any specific calibration
procedure other than the test person occasionally standing still.
The estimation of the coordinate transforms took 21 seconds
on a standard desktop workstation. Due to the noise in the
measurement of the top and bottom point of the person’s
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Figure 7: Example of a poor reconstruction result. Red dots
represent ground truth, and show that even though the cameras
agree relatively well, they do not accurately map true world
coordinates. Part of the cause in this case is that the objects
only span a narrow, elongated region in the overlapping space.

silhouette and the presence of lens distortion, the accuracy is
lower than in simulation. The error mainly manifests itself as a
skew factor on the world coordinates; manually correcting for
this skew would bring the accuracy in the same range as the
visual hull based method. However, as the focus of this work
was to provide completely unsupervised calibration, we chose
not to do this manual correction. The visual hull based method
therefore boasts superior accuracy, but took over 15 minutes
to calibrate and involved waving checker boards around while
standing on ladders.

Once the camera-to-world transforms have been computed
using our method, occupancy can be calculated by applying
the transform of each camera to the image coordinates of
the bottom edge of each detected object in that camera. This
principle is illustrated for two cylindrical objects in a three-
camera setup in Figure 9.

Table III: Summary of errors of proposed method and visual
hull based method compared to ground truth.

method proposed visual hull
mean err (m) 0.1449 0.0875

std err (m) 0.0867 0.0516
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Figure 8: Comparison of the proposed method to visual hull
based method and ground truth.

World View

Red View Green View Blue View

Figure 9: Principle of occupancy mapping with multiple ob-
jects and occlusion. For each camera, the bottom edge of each
detected object is reprojected using the precomputed image-
to-world transform for that camera. Overlaying the data from
all cameras yields an occupancy evidence map from which the
object positions can be recovered.

V. CONCLUSION

We have presented a novel approach to camera calibration
for occupancy applications that does not require the knowledge
of any parameters about the cameras or the scene. The method
is based on comparing the projection height of observations of
the same object or person in different locations, and computes
a mapping transform from image coordinates to world coor-
dinates for each camera, rather than the traditional pose and
projection matrices. The concept is proven to be sufficiently
accurate in simulations as well as in a real-world experiment.
The results could be further improved by making the process
semi-supervised instead of fully unsupervised.

Figure 10: Example of the camera views in the real experiment.

Figure 11: Example of foreground masks in the real experi-
ment. Top and bottom point of each silhouette are indicated
by red dot.
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