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ULRICH BUNDLES ON SOME THREEFOLD SCROLLS OVER Fe

MARIA LUCIA FANIA AND FLAMINIO FLAMINI

Abstract. We investigate the existence of Ulrich vector bundles on suitable 3-fold scrolls
Xe over Hirzebruch surfaces Fe, for any e > 0, which arise as tautological embedding of
projectivization of very-ample vector bundles on Fe which are uniform in the sense of Brosius
and Aprodu–Brinzanescu, cf. [8] and [3] respectively. We explicitely describe components
of moduli spaces of rank r > 1 Ulrich vector bundles whose general point is a slope-stable,
indecomposable vector bundle.

We moreover determine the dimension of such components as well as we prove that they
are generically smooth. As a direct consequence of these facts, we also compute the Ulrich
complexity of any such Xe and give an effective proof of the fact that such Xe’s turn out to
be geometrically Ulrich wild.

Introduction

Let X be a smooth irreducible projective variety of dimension n > 1 and let H be a
very ample divisor on X. A vector bundle U on X is said to be an Ulrich vector bundle
with respect to H if it satisfies suitable cohomological conditions involving some multiples of
the polarization induced by H (cf. Definition 1.1 below for precise statement and, e.g. [5,
Thm. 2.3], for equivalent conditions).

Ulrich vector bundles first appeared in Commutative Algebra in the paper [23] by B. Ulrich
from 1984, since these bundles enjoy suitable extremal cohomological properties. After that,
the attention on Ulrich bundles entered in the realm of Algebraic Geometry with the paper
[16] where, among other things, the authors compute the Chow form of a projective variety
X using Ulrich vector bundles on X, under the assumption that X supports Ulrich bundles.

In recent years there has been a huge amount of work on Ulrich bundles (for nice surveys
the reader is referred to e.g. [13, 14]), mainly investigating the following problems:

• Given any polarization H on a variety X, does there exist a vector bundle U which is
Ulrich with respect to H?

• Or even more generally, given a variety X does there exist a very ample divisor H,
inducing a polarization on X, and a vector bundle U on X which is Ulrich with respect
to H?

• What is the smallest possible rank for an Ulrich bundle on a given polarized variety
(X,H) (the so called Ulrich complexity of X w.r.t. H, denoted by ucH(X), cf. Remark
1.2-(i) below)?

• If Ulrich bundles on (X,H) do exist, are they stable bundles? If not empty, are their
moduli spaces M either smooth or at least reduced?

• What is dim(M)?

Although something is known about these problems for some specific classes of varieties
(e.g. curves, Segre, Veronese, Grassmann varieties, rational normal scrolls, hypersurfaces,
some classes of surfaces and threefolds, cf. e.g. [5, 9, 13, 14] for overviews) the above questions
are still open in their full generality even for surfaces.
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In the present paper we investigate the case when X is a 3-fold scroll over a Hirzebruch
surface Fe, with e > 0. More precisely we focus on 3-fold scrolls Xe arising as embedding,
via very-ample tautological line bundles OP(Ee)(1), of projective bundles P(Ee), where Ee are
very-ample rank-2 vector bundles on Fe with Chern classes c1(Ee) numerically equivalent to
3Ce + bef and c2(Ee) = ke, where Ce and f are the generators of Num(Fe) and where be and
ke are integers satisfying some natural numerical conditions (cf. Assumptions 1.7 and Remark
1.8 below).

In this set-up one gets 3-fold scrolls Xe ⊂ P
ne , with ne = 4be − ke − 6e + 4, which are of

degree deg(Xe) = 6be − 9e− ke (cf. (2.2) below), whose hyperplane section divisor we denote
by ξ. The aim of this paper is to study the behaviour of 3-fold scrolls (Xe, ξ) as above in
terms of Ulrich bundles they can support.

In [18] the existence of Ulrich bundles of rank one and two on low degree smooth three-
dimensional scrolls over a surface, was investigated. Among such three-dimensional scrolls
over a surface, that are scrolls over Fe with e = 0, 1. Here we extend these results to 3-fold
scrolls (Xe, ξ), e ≥ 0 by proving the following:

Main Theorem For any integer e > 0, consider the Hirzebruch surface Fe and let OFe
(α, β)

denote the line bundle αCe + βf on Fe, where Ce and f the generators of Num(Fe).
Let (Xe, ξ) be a 3-fold scroll over Fe as above, where ϕ : Xe → Fe denote the scroll map.

Then:

(a) Xe does not support any Ulrich line bundle w.r.t. ξ unless e = 0. In this latter case, the
unique Ulrich line bundles on X0 are the following:

(i) L1 := ξ + ϕ∗OF0(2,−1) and L2 := ξ + ϕ∗OF0(−1, b0 − 1);
(ii) for any integer t ≥ 1, M1 := 2ξ+ϕ∗OF0(−1,−t−1) and M2 := ϕ∗OF0(2, 3t−1), which

only occur for b0 = 2t, k0 = 3t.

(b) Set e = 0 and let r > 2 be any integer. Then the moduli space of rank-r vector bundles Ur

on X0 which are Ulrich w.r.t. ξ and with first Chern class

c1(Ur) =

{

rξ + ϕ∗OF0(
r+3
2 , (r−1)

2 b0 − r), if r is odd,

rξ + ϕ∗OF0(
r
2 ,

r
2b0 − r), if r is even.

is not empty and it contains a generically smooth component M(r) of dimension

dim(M(r)) =

{

(r2−1)
4 (6b0 − 4), if r is odd,

r2

4 (6b0 − 4) + 1, if r is even.

The general point [Ur] ∈ M(r) corresponds to a slope-stable vector bundle, of slope w.r.t. ξ
given by µ(Ur) = 8b0 − k0 − 3. If moreover r = 2, then U2 is also special (cf. Def. 1.3 below).

(c) When e > 0, let h > 1 be any integer. Then the moduli space of rank-2h vector bundles
U2h on Xe which are Ulrich w.r.t. ξ and with first Chern class

c1(U2h) = 2hξ + ϕ∗OFe
(h, h(be − e− 2))

is not empty and it contains a generically smooth component M(2h) of dimension

dim(M(2h)) = h2(6be − 9e− 4) + 1.

The general point [U2h] ∈ M(2h) corresponds to a slope-stable vector bundle, of slope w.r.t. ξ
given by µ(Ur) = 8be − ke − 12e− 3. If moreover h = 1, then U2 is also special.

The proof of the Main Theorem will be the collection of those of Theorems 2.1, 3.1, 3.2, 4.8
and 4.13.

Recall that, as suggested by an analogous definition in [15], there is a notion of Ulrich
wildness for a given polarized variety X. To be more precise for a projective variety X ⊂ P

n

the notion of being Ulrich wild can be defined both:
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• algebraically, i.e. in terms of functorial behavior of suitable modules over the homogeneous
coordinate ring of the variety X, we refer the reader to [17, Section 2.2] for more precise
details,
• geometrically, namely if it possesses families of dimension r of pairwise non–isomorphic,
indecomposable, Ulrich vector bundles for arbitrarily large r, cf. e.g. [15, Introduction].

Moreover, if X is Ulrich wild in the algebraic sense, then it is also Ulrich wild in the geometric
sense (cf. [17, Rem. 2.6–(iii)]).

We must point out that the 3-fold scrolls (Xe, ξ) studied in this paper are algebraically
Ulrich wild (and thus, from above, also geometrically Ulrich wild) and this follows from the
results in [17]. In fact, when e = 0, the Ulrich line bundles L1 and L2 as in Main Theorem,
(i), satisfy the conditions of [17, Theorem A, Corollary 3.1] as well as, when e > 0, then two
general Ulrich rank 2 vector bundles as in Theorem 3.2, which are not isomorphic, satisfy the
same conditions in [17, Theorem A, Corollary 3.1]. These facts imply that Xe is (strictly)
algebraically Ulrich wild for any e > 0, see [17, Def. 2.5] for precise definition.

In this perspective, Main Theorem not only computes the Ulrich complexity of the 3-
fold scrolls (Xe, ξ) that we are considering but it also gives a constructive proof of the fact
that (Xe, ξ) is geometrically Ulrich wild, for any integer e > 0, explicitely describing families of
pairwise non–isomorphic, indecomposable, Ulrich vector bundles of arbitrarily large dimension
and rank, with further details. Hence one has:

Main Corollary For any e > 0, the moduli spaces M(r) constructed in Main Theorem, (a)-
(b)-(c), give rise to explicit families of arbitrarily large dimension and ranks of slope-stable,
pairwise non–isomorphic, indecomposable, Ulrich vector bundles on (Xe, ξ), an effective proof
of the geometric Ulrich wildness of such varieties. Moreover,

(a) when e = 0, the Ulrich complexity of X0 w.r.t. ξ is ucξ(X0) = 1 and X0 supports Ulrich
vector bundles w.r.t. ξ of any rank r > 1, with no gaps on r;

(b) for e > 0, the Ulrich complexity of Xe w.r.t. ξ is ucξ(Xe) = 2 and Xe certainly supports
Ulrich vector bundles w.r.t. ξ of any even rank 2h, for any integer h > 1.

It is an open question whether there are no odd-rank gaps for e > 0 as soon as the rank is
higher than one.

To conclude we observe that the 3-fold scrolls (Xe, ξ) are varieties not of minimal degree in
P
ne , being de 6= ne − 2 (see 2.2), which are (strictly) Ulrich wild, as in [17, Def. 2.5], therefore

(Xe, ξ), for any e > 0, is a class of varieties which satisfy [17, Conjecture 1.].

The paper consists of four sections. In Section 1 we recall some generalities on Ulrich vector
bundles on projective varieties, which will be used in the sequel, as well as preliminaries from
[1, 7, 8] to properly define 3-fold scrolls (Xe, ξ) which are the core of the paper. Sect. 2 deals
with Ulrich line bundles on scrolls (Xe, ξ), cf. Theorem 2.1, whereas Sect. 3 focuses on the
rank-2 case, using extensions suitably defined (cf. Theorems 3.1, 3.2). Finally Sect. 4 deals
with the general case of any rank r > 1, via inductive processes, extensions, deformation and
modular theory (cf. Theorems 4.8 and 4.13).

Notation and terminology. We work throughout over the field C of complex numbers. All
schemes will be endowed with the Zariski topology. By variety we mean an integral algebraic
scheme. We say that a property holds for a general point of a variety V if it holds for any
point in a Zariski open non–empty subset of V . We will interchangeably use the terms rank-r
vector bundle on a variety V and rank-r locally free sheaf on V ; in particular for the case r = 1
of line bundles (equiv. invertible sheaves), to ease the notation and if no confusion arises, we
sometimes identify line bundles with Cartier divisors interchangeably using additive notation
instead of multiplicative notation and tensor products. Thus, if L and M are line bundles on
V , the dual of L will be denoted by either L∨, or L−1 or even −L, so that M ⊗L∨ will be also
denoted by either M ⊗ L−1 or just M − L. If P is either a parameter space of a flat family
of geometric objects E defined on V (e.g. vector bundles, extensions, etc.) or a moduli space
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parametrizing geometric objects modulo a given equivalence relation, we will denote by [E]
the parameter point (resp., the moduli point) corresponding to the geometric object E (resp.,
associated to the equivalence class of E). For further non-reminded terminology, we refer the
reader to [20].

Acknowledgments. We would like to thank Juan Pons–Llopis for pointing out the reference
[17] and for useful conversation.

1. Preliminaries

We first remind some general definitions concerning Ulrich bundles on projective varieties.

Definition 1.1. Let X ⊂ P
N be a smooth variety of dimension n and let H be a hyperplane

section of X. A vector bundle U on X is said to be Ulrich with respect to H if

H i(X,U(−jH)) = 0 for i = 0, · · · , n and 1 ≤ j ≤ dimX.

Remark 1.2. (i) If X supports Ulrich bundles w.r.t. H, then one sets ucH(X), called the
Ulrich complexity of X w.r.t. H, to be the minimum rank among possible Ulrich vector
bundles on X.
(ii) If U1 is a vector bundle on X, which is Ulrich w.r.t. H then U2 := U∨

1 (KX + (n+1)H) is
also Ulrich w.r.t. H. The vector bundle U2 is called the Ulrich dual of U1. From this we see
that, if Ulrich bundles of some rank r on X do exist, then they come in pairs.

Definition 1.3. Let X ⊂ P
N be a smooth variety of dimension n polarized by H, where H is

a hyperplane section of X, and let U be a rank-2 Ulrich vector bundle on X. Then U is said
to be special if c1(U) = KX + (n+ 1)H.

Notice that, because U in Definition 1.3 is of rank-2, then U∨ ∼= U(−c1(U)) therefore being
special is equivalent to U to be isomorphic to its Ulrich dual bundle.

We now remind facts concerning (semi)stability and slope-(semi)stability properties of these
bundles (cf. [9, Def. 2.7]). Let E be a vector bundle on X; recall that E is said to be semistable
if for every non-zero coherent subsheaf F ⊂ E, with 0 < rk(F) := rank of F < rk(E), the

inequality PF

rk(F) 6
PE

rk(E) holds true, where PF and PE are the Hilbert polynomials of the

sheaves. Furthermore, E is stable if the strict inequality above holds.
Similarly, recall that the slope of a vector bundle E (w.r.t. OX(H)) is defined to be µ(E) :=

c1(E)·Hn−1

rk(E) ; the bundle E is said to be µ-semistable, or even slope-semistable, if for every non-

zero coherent subsheaf F ⊂ E with 0 < rk(F) < rk(E), one has µ(F) 6 µ(E). The bundle E is
µ-stable, or slope-stable, if the strict inequality holds.

The two definitions of (semi)stability are related as follows (cf. e.g. [9, § 2]):

slope-stability ⇒ stability ⇒ semistability ⇒ slope-semistability.

When the bundle in question is in particular Ulrich, the following more precise situation holds:

Theorem 1.4. (cf. [9, Thm. 2.9]) Let X ⊂ P
N be a smooth variety of dimension n and let

H be a hyperplane section of X. Let U be a rank-r vector bundle on X which is Ulrich w.r.t.
H. Then:
(a) U is semistable, so also slope-semistable;
(b) If 0 → F → U → G → 0 is an exact sequence of coherent sheaves with G torsion-free, and
µ(F) = µ(U), then F and G are both Ulrich vector bundles.
(c) If U is stable then it is also slope-stable. In particular, the notions of stability and slope-
stability coincide for Ulrich bundles.

In the sequel, we will focus on n = dim(X) = 3; in such a case, the following notation will
be used throughout this work.

X is a smooth, irreducible, projective variety of dimension 3 (or simply a 3-fold);
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χ(F) =
∑3

i=0(−1)ihi(F), the Euler characteristic of F, where F is any vector bundle
of rank r > 1 on X;
KX the canonical bundle of X. When the context is clear, X may be dropped, so
KX = K;
ci = ci(X), the ith Chern class of X;
d = degX = L3, the degree of X in the embedding given by a very-ample line bundle
L;
g = g(X), the sectional genus of (X,L) defined by 2g − 2 = (K + 2L)L2;
if S is a smooth surface, ≡ will denote the numerical equivalence of divisors on S.

For non-reminded terminology and notation, we basically follow [20].

Definition 1.5. A pair (X,L), where X is a 3-fold and L is an ample line bundle on X, is
a scroll over a normal variety Y if there exist an ample line bundle M on Y and a surjective
morphism ϕ : X → Y with connected fibers such that KX + (4− dimY )L = ϕ∗(M).

In particular, if Y is a smooth surface and (X,L) is a scroll over Y , then (see [6, Prop.
14.1.3]) X ∼= P(E), where E = ϕ∗(L) is a vector bundle on Y and L is the tautological line
bundle on P(E). Moreover, if S ∈ |L| is a smooth divisor, then (see e.g. [6, Thm. 11.1.2]) S is
the blow up of Y at c2(E) points; therefore χ(OY ) = χ(OS) and

(1.1) d := L3 = c21(E)− c2(E).

For the reader convenience we recall the following Theorem [18, Theorem 2.4] that will be
used in the paper.

Theorem 1.6. Let (Y,H) be a polarized surface with H very ample and let E be a rank two
vector bundle on Y such that E is (very) ample and spanned. Let F be a rank r vector bundle
satisfying:

(1.2) H i(Y,F) = 0 and H i(Y,F(−c1(E))) = 0,

for i = 0, 1, 2. Then on the 3-fold scroll X ∼= P(E)
π
−→ Y , the vector bundle U := π∗F ⊗ ξ

is Ulrich with respect to ξ, where ξ denotes the tautological line bundle on X, with (X, ξ) ∼=
(P(E),OP(E)(1)).

Throughout this work, the base Y of the scroll X in Definition 1.5 will be the Hirzebruch
surface Fe := P(OP1 ⊕ OP1(−e)), with e ≥ 0 an integer.

Let πe : Fe → P
1 be the natural projection onto the base. Then Num(Fe) = Z[Ce] ⊕ Z[f ],

where:
• Ce denotes the unique section corresponding to the morphism OP1 ⊕ OP1(−e) →→ OP1(−e)
on P

1, and
• f = π∗(p), for any p ∈ P

1.
In particular

C2
e = −e, f2 = 0, Cef = 1.

Let Ee be a rank-two vector bundle over Fe and let ci(Ee) be its ith-Chern class. Then
c1(Ee) ≡ aCe + bf , for some a, b ∈ Z, and c2(Ee) ∈ Z. For the line bundle L ≡ αCe + βf we
will also use the notation OFe

(α, β).
From now on, we will consider the following:

Assumptions 1.7. Let e ≥ 0, be, ke be integers. Let Ee be a rank-two vector bundle over Fe,
with

c1(Ee) ≡ 3Ce + bef and c2(Ee) = ke,

such that

(i) h0(Ee) ≥ 7
(ii) be ≥ 3e+ 1
(iii) be − e < ke < 2be − 4e
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Moreover, there exists an exact sequence

(1.3) 0 → Ae → Ee → Be → 0,

where Ae and Be are line bundles on Fe such that

(1.4) Ae ≡ 2Ce + (2be − ke − 2e)f and Be ≡ Ce + (ke − be + 2e)f

From (1.3), in particular, one has c1(Ee) = Ae +Be and c2(Ee) = AeBe.

Remark 1.8. We give the explanation of the above assumptions. Conditions (i), (ii), and the
inequality be − e < ke in (iii) give necessary conditions for the very ampleness of Ee (cf. [1,
Prop.7.2]). In particular, be − e < ke in (iii) ensures that Be is a very ample line bundle (cf.
[20, §V, Prop.2.20]). For the existence of the exact sequence (1.3), with Ae, Be as in (1.4),
cf. [1, Prop.7.2] and [8]. Finally the last hypothesis in (iii), i.e. ke < 2b2 − 4e, ensures that
also Ae is a very ample line bundle (cf. [20, §V, Prop.2.20]) which, together with be − e < ke
in (iii), obviously implies that the vector bundle Ee is very ample (cf. [19, Remark 4.2 -(1)],
where computations therein hold also for e = 0, 1).

2. Ulrich line bundles on 3-fold scrolls over Fe

In this section, we consider 3-dimensional scrolls over Fe, with e ≥ 0, in projective spaces
satisfying the conditions as in Assumptions 1.7.

Let therefore Ee be a very ample, rank-two vector bundle over Fe such that

c1(Ee) ≡ 3Ce + bef, c2(Ee) = ke,

with be and ke as in Assumptions 1.7-(ii) and (iii). Let (P(Ee),OP(Ee)(1)) be the 3-fold scroll

over Fe, and let πe : Fe → P1 and ϕ : P(Ee) → Fe be the usual projections. Then OP(Ee)(1)
defines an embedding

(2.1) Φe := Φ|OP(Ee)(1)|
: P(Ee) →֒ Xe ⊂ P

ne ,

where Xe = Φe(P(Ee)) is smooth, non-degenerate, of degree de, with

(2.2) ne = 4be − ke − 6e+ 4 > 6 and de = 6be − 9e− ke.

We set (Xe, ξ) ∼= (P(Ee),OP(Ee)(1)). Our aim in this section is to determine line bundles on
such scrolls which are Ulrich w.r.t. ξ.

Theorem 2.1. Let e > 0 be an integer and let (Xe, ξ) be a 3-fold scroll as above. Then Xe

does not support any Ulrich line bundle w.r.t. ξ unless e = 0, in which case the following are
the unique Ulrich line bundles on X0:

(i) L1 := ξ + ϕ∗OF0(2,−1) and its Ulrich dual L2 := ξ + ϕ∗OF0(−1, b0 − 1);
(ii) for any integer t ≥ 1, M1 := 2ξ + ϕ∗OF0(−1,−t− 1) and its Ulrich dual

M2 := ϕ∗OF0(2, 3t − 1), which only occur for b0 = 2t, k0 = 3t.

Proof. Let L = aξ +ϕ∗OFe
(α, β) be an Ulrich line bundle on Xe. From [18, Corollary 2.2] we

know that a = 0, 1, 2.

Case I: If a = 1 then, by [18, Corollary 2.2], L = ξ + ϕ∗OFe
(α, β) is Ulrich with respect to

ξ if and only if

H i(Fe,OFe
(α, β)) = H i(Fe,OFe

(α, β) − c1(Ee)) = 0 for i = 0, 1, 2.

Thus χ(Fe,OFe
(α, β)) = χ(Fe,OFe

(α, β)−c1(Ee)) = 0. By Riemann-Roch we get, respectively,

(α+ 1)(eα − 2β − 2) = 0(2.3)

and

(α− 2)(eα − 2β + 2be − 3e− 2) = 0(2.4)
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Thus either α = −1 which, along with (2.4), gives β = be − 2e− 1 or α = 2 which, along with
(2.3), gives β = e− 1. We need to check if H i(Fe,OFe

(α, β)) = H i(Fe,OFe
(α, β)− c1(Ee)) = 0

for i ≥ 0, with (α, β) = (−1, be − 2e− 1) or (α, β) = (2, e − 1).
If e = 0 then the vanishings follow by the Künneth formula, hence we get L = L2 in the first

case whereas L = L1 in the latter case, where L1 and L2 are as in the statement. If otherwise
e > 0, the cohomology groups are not all zero therefore there are no Ulrich line bundles with
a = 1 in these cases.

Case II: If a = 2 then, by [18, Corollary 2.2], L = 2ξ + ϕ∗
eOFe

(α, β) is Ulrich with respect
to ξ if and only if

H i(Fe,OFe
(α, β)) = H i(Fe,Ee(OFe

(α, β))) = 0 for i = 0, 1, 2.

Thus χ(Fe,OFe
(α, β)) = χ(Fe,Ee(OFe

(α, β)))) = 0. By Riemann-Roch we get (2.3) and

−eα2 + 2αβ + αbe − 4eα + 2α+ 5β + 4be − 6e− ke + 5 = 0,(2.5)

respectively. From (2.3) either α = −1 or β = αe
2 − 1.

Case II-a: α = −1.
Plugging such value in (2.5) we get β = −be+e+ ke

3 −1, which forces ke = 3t for some t ∈ Z,

hence β = −be + e+ t− 1. We compute H i(Fe,OFe
(α, β)) = H i(Fe,OFe

(−1,−be + e+ t− 1))
and H i(Fe,Ee(OFe

(−1,−be + e+ t− 1))) for i = 0, 1, 2.
Now Riπe∗(OFe

(−1,−be + e + t − 1)) = 0, for i ≥ 0, hence, from Leray’s isomorphism we
have H i(Fe,OFe

(−1,−be + e+ t− 1)) ∼= H i(P1, 0) = 0, for i = 0, 1, 2.

To compute H i(Fe,Ee(OFe
(−1,−be + e + t − 1))) we recall that the vector bundle Ee sits

in the exact sequence (1.3), where Ae ∈ |OFe
(2, 2be − ke − 2e)| and Be ∈ |OFe

(1, ke − be + 2e)|
and after twisting (1.3) with OFe

(−1,−be + e+ t− 1) we have

(2.6) 0 → OFe
(1, be−2t−e−1) → Ee(OFe

(−1,−be+e+t−1)) → OFe
(0, 4t−2be+3e−1) → 0.

Now

Riπe∗OFe
(1, be − 2t− e− 1) = 0, for i > 0, and

πe∗OFe
(1, be − 2t− e− 1) ∼= (OP1 ⊕ OP1(−e))⊗ OP1(be − 2t− e− 1),

hence, from Leray’s isomorphism we have

H i(Fe,OFe
(1, be − 2t− e− 1)) ∼= H i(P1, (OP1 ⊕ OP1(−e))(be − 2t− e− 1))(2.7)

= H i(P1,OP1(be − 2t− e− 1))⊕H i(P1,OP1(be − 2t− 2e− 1))

and similarly

H i(Fe,OFe
(0, 4t − 2be + 3e− 1)) ∼= H i(P1,OP1(4t− 2be + 3e− 1))(2.8)

We consider first the case e = 0 and then the case e ≥ 1.
If e = 0, then (2.7) and (2.8) become

H i(F0,OF0(1, b0 − 2t− 1)) = H i(P1,OP1(b0 − 2t− 1)⊕2)

H i(F0,OF0(0, 4t − 2b0 − 1)) = H i(P1,OP1(4t− 2b0 − 1))

If b0 − 2t− 1 ≥ 0 then

h0(P1,OP1(b0 − 2t− 1)⊕2) = 2(b0 − 2t)

h1(P1,OP1(b0 − 2t− 1)⊕2) = 0, by Serre’s duality on P
1.

Note that if b0 − 2t− 1 ≥ 0 then 4t− 2b0 − 1 ≤ −3 hence h0(P1,OP1(4t − 2b0 − 1)) = 0 and,
by Serre duality, h1(P1,OP1(4t− 2b0 − 1)) ∼= h0(P1,OP1(2b0 − 4t− 1)) = 2b0 − 4t.

These computations, along with the cohomology sequence associated to (2.6), give

hi(E0(OF0(−1,−b0 + t− 1))) = 2b0 − 4t ≥ 2 (by assumption), for i = 0, 1,

h2(E0(OF0(−1,−b0 + t− 1))) = 0, trivially.
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If b0 − 2t− 1 < 0 then

h0(P1,OP1(b0 − 2t− 1)⊕2) = 0

h1(P1,OP1(b0 − 2t− 1)⊕2) ∼= 2h0(P1,OP1(2t− b0 − 1)), by Serre’s duality on P
1.

Note that

h0(P1,OP1(2t− b0 − 1)) =

{

0 if b0 = 2t
2t− b0 if 2t− b0 − 1 ≥ 0.

Note also that b0 − 2t− 1 < 0 implies that 4t− 2b0 − 1 ≥ −2, hence
if 4t− 2b0 − 1 ≥ 0, h0(P1,OP1(4t− 2b0 − 1)) = 4t− 2b0 and h1(P1,OP1(4t− 2b0 − 1)) = 0;
if 4t− 2b0 − 1 = −1, h0(P1,OP1(4t− 2b0 − 1)) = h1(P1,OP1(4t− 2b0 − 1)) = 0;
if 4t− 2b0 − 1 = −2, h0(P1,OP1(4t− 2b0 − 1)) = 0 and h1(P1,OP1(4t− 2b0 − 1)) = 1.
These facts, along with (2.6), give that

hi(E0(OF0(−1,−b0 + t− 1))) = 0, for i = 0, 1, 2, if b0 = 2t,

h0(E0(OF0(−1,−b0 + t− 1))) 6= 0, in the remaining two cases,

the latter case holds because otherwise from the cohomology sequence associated to (2.6) it
would follow that h1(E0(OF0(−1,−b0+ t−1))) < 0, which is impossible. Thus we are left with
the cases b0 = 2t, k0 = 3t, where t ≥ 1, as it follows from Assumptions 1.7 - (ii). Hence in this
case we get L = M1 is Ulrich and its Ulrich dual is M2.

If e ≥ 1 in order to compute the cohomology groups in (2.7) and (2.8) we consider first the
case in which be − 2t− 2e− 1 ≥ 0. Note that in this case also be − 2t− e− 1 ≥ 0 and thus in
(2.7) we have

h0(Fe,OFe
(1, be − 2t− e− 1)) = h0(P1, (OP1 ⊕ OP1(−e))(be − 2t− e− 1)) = 2be − 4t− 3e,

h1(Fe,OFe
(1, be − 2t− e− 1)) = h1(P1, (OP1 ⊕ OP1(−e))(be − 2t− e− 1)) = 0.

As for (2.8) note that 4t− 2be + 3e− 1 ≤ −3− e, by assumption, and thus

H0(Fe,OFe
(0, 4t− 2be + 3e− 1)) ∼= H0(P1,OP1(4t− 2be + 3e− 1)) = 0 and

h1(P1,OP1(4t− 2be + 3e− 1))) = h0(P1,OP1(2be − 4t− 3e− 1))) = 2be − 4t− 3e.

From the cohomology sequence associated to (2.6) it follows that

h0(Ee(OFe
(−1,−be + e+ t− 1))) = h1(Ee(OFe

(−1,−be + e+ t− 1))) = 2be − 4t− 3e ≥ 2 + e,

because 4t− 2be + 3e− 1 ≤ −3− e.
If be−2t− e−1 ≥ 0 and be−2t−2e−1 < 0 (the case be−2t−2e−1 ≥ 0 was just treated),

then

h0(Fe,OFe
(1, be − 2t− e− 1)) = h0(P1, (OP1 ⊕ OP1(−e))(be − 2t− e− 1)) = be − 2t− e ≥ 1.

Thus h0(Ee(OFe
(−1,−be + e+ t− 1)) ≥ h0(Fe,OFe

(1, be − 2t− e− 1)) = be − 2t− e ≥ 1.

Case II-b: β = αe
2 − 1.

Plugging such value in (2.5) we get

α =
−8be + 12e+ 2ke

2be − 3e
(2.9)

which implies that

(α+ 4)(2be − 3e) = 2ke.

By Assumptions 1.7-(ii) we get 2be − 3e ≥ 3e+ 2 ≥ 2. Moreover by Assumptions 1.7-(iii) we
get ke > be − e ≥ 2e + 1. Thus α + 4 > 0, that is α ≥ −3. Notice that if α = −3 then (2.9)
gives be =

3
2e+ ke =

1
2e + e + ke >

1
2e+ be by Assumption 1.7-(iii), which is a contradiction.

Hence α ≥ −2 and therefore from (2.9) it follows that ke ≥ 2be − 3e which contradicts the
condition ke < 2be − 4e in Assumptions 1.7-(iii).

The proof is complete since the case a = 0 is the Ulrich dual of the case a = 2. �
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3. Rank-2 Ulrich vector bundles on 3-fold scrolls over Fe

As in the previous section, we consider here 3-dimensional scrolls over Fe, with e ≥ 0, in
projective spaces, satisfying the conditions as in Assumptions 1.7. Our aim is to prove the
existence of some moduli spaces of rank-2 Ulrich bundles on such 3-fold scrolls and to study
their basic properties. As a matter of notation, in the sequel F will always denote the fiber
of the natural scroll map ϕ : Xe

∼= P(Ee) → Fe.

3.1. Rank-2 Ulrich vector bundles on 3-fold scrolls over F0. From Theorem 2.1 we
know that on X0 there exist Ulrich line bundles. Using these line bundles, we will construct
rank two Ulrich vector bundles arising as non-trivial extensions of them.

Case L: Let L1 and L2 be line bundles on X0 as in Theorem 2.1-(i). Notice that

Ext1(L2, L1) ∼= H1(X0, L1 − L2) = H1(X0, ϕ
∗OF0(3,−b0)) ∼= H1(F0,OF0(3,−b0))

∼= H1(P1, S3(OP1 ⊕ OP1)(−b0)) ∼= H1(P1,O⊕4
P1 (−b0)) ∼= H0(P1,O⊕4

P1 (b0 − 2)).

Hence dimExt1(L2, L1) = 4b0 − 4 > 0, being b0 ≥ 2 by Assumptions 1.7. Thus there are
non-trivial extensions F1

0 → L1 → F1 → L2 → 0(3.1)

of L2 by L1. Similarly

Ext1(L1, L2) ∼= H1(X0, L2 − L1) = H1(X0, ϕ
∗OF0(−3, b0)) ∼= H1(F0,OF0(−3, b0))

∼= H1(F0,OF0(1,−2− b0)) ∼= H1(P1, (OP1 ⊕ OP1)(−2− b0)) ∼= H0(P1,O⊕2
P1 (b0)).

Hence dimExt1(L1, L2) = 2b0 + 2 > 0 and thus there are non-trivial extensions F′
1

0 → L2 → F′
1 → L1 → 0(3.2)

of L1 by L2. Notice that the vector bundles F1 and F′
1 are both Ulrich rank two vector bundles

with

c1(F1) = c1(F
′
1) = 2ξ+ϕ∗OF0(1, b0−2) and c2(F1) = c2(F

′
1) = ξ2+ξ·ϕ∗OF0(1, b0−2)+(2b0−1)F,

also c2(F1) = c2(F
′
1) = ξ · ϕ∗OF0(4, 2b0 − 2) + (2b0 − k0 − 1)F . Moreover, since L1 and L2 are

non-isomorphic line bundles with the same slope

µ(L1) = µ(L2) = 8b0 − k0 − 3

with respect to ξ then, by [9, Lemma 4.2], F1 and F′
1 are simple vector bundles.

The family of non-trivial extensions of (3.1) is of dimension 4b0 − 4 while the one of (3.2)
is 2b0 + 2, which are different positive integers unless b0 = 3.

Case M: LetM1 andM2 be line bundles on X0 as in Theorem 2.1-(ii). As above one computes

Ext1(M2,M1) ∼= H1(P(E0),M1 −M2) = H1(2ξ + ϕ∗OF0(−3,−4t)) ∼= H1(F0, S
2(E0)(−3,−4t)),

hence we need to compute H1(F0, S
2(E0)(−3,−4t)), where S2(E0) denotes the second sym-

metric power of E0. The vector bundle E0 fits in the exact sequence (1.3), with A0 and B0

as in (1.4) and with b0 = 2t and k0 = 3t, t ≥ 1. By [20, 5.16.(c), p. 127], there is a finite
filtration of S2(E0),

S2(E0) = F 0 ⊇ F 1 ⊇ F 2 ⊇ F 3 = 0

with quotients

F p/F p+1 ∼= Sp(A0)⊗ S2−p(B0),

for each 0 ≤ p ≤ 2. Hence

F 0/F 1 ∼= S0(Ae)⊗ S2(B0) = 2B0

F 1/F 2 ∼= S1(A0)⊗ S1(B0) = A0 +B0

F 2/F 3 ∼= S2(A0)⊗ S0(B0) = 2A0, that is F 2 = 2A0,
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since F 3 = 0. Thus, we get the following exact sequences

(3.3) 0 → F 1 → S2(E0) → 2B0 → 0

(3.4) 0 → F 2 → F 1 → A0 +B0 → 0

(3.5) F 2 = 2A0

Twisting (3.3), (3.4) with OF0(−3,−4t) and using (3.5) we get

(3.6) 0 → F 1(−3,−4t) → S2(E0)⊗ OF0(−3,−4t) → OF0(−1,−2t) → 0

(3.7) 0 → OF0(1,−2t) → F 1 ⊗ OF0(−3,−4t) → OF0(0,−2t) → 0

First we focus on (3.7).

hi(OF0(1,−2t)) = hi(P1,OP1(−2t)⊕2)

so, for dimension reasons, hi(OF0(1,−2t)) = 0, for any i ≥ 2. Since t ≥ 1, h0(OF0(1,−2t)) = 0
and h1(OF0(1,−2t)) = 4t− 2. Similarly

hi(OF0(0,−2t)) = hi(P1,OP1(−2t))

so, hi(OF0(0,−2t)) = 0, for any i ≥ 2, h0(OF0(0,−2t)) = 0 and h1(OF0(0,−2t)) = 2t− 1 then
(3.7) gives

h1(F 1(−3,−4t)) = 6t− 3, hi(F 1(−3,−4t)) = 0, for i = 0, 2.

Passing to (3.6) observe that, hi(OF0(−1,−2t)) = 0, for any i ≥ 0. This, along with (3.8)
and (3.6) gives

h1(2ξ + ϕ∗OF0(−3,−4t)) = h1(F0, S
2(E0(−3,−4t)) = 6t− 3 = 3b0 − 3,(3.8)

hi(2ξ + ϕ∗OF0(−3,−4t)) = hi(F0, S
2(E0)(−3,−4t)) = 0, for i = 0, 2, 3.

Hence dim(Ext1(M2,M1)) = 3b0 − 3 > 0 because b0 ≥ 2 by Assumptions 1.7. Thus there are
non-trivial extensions F2

0 → M1 → F2 → M2 → 0(3.9)

of M2 by M1. Similarly,

Ext1(M1,M2) ∼= H1(P(E0),M2 −M1) = H1(−2ξ + ϕ∗OF0(3, 4t))
∼= H2(ϕ∗OF0(−2,−b0 − 2))

∼= H2(F0,OF0(−2,−b0 − 2)) ∼= H0(F0,OF0(0, b0))
∼= H0(P1,OP1(b0)).

Hence dim(Ext1(M1,M2)) = b0 + 1 > 0 and thus there are non-trivial extensions F′
2

0 → M2 → F′
2 → M1 → 0(3.10)

of M1 by M2. Notice that the vector bundles F2 and F′
2 are both Ulrich rank two vector

bundles with

c1(F2) = c1(F
′
2) = 2ξ +ϕ∗OF0(1, 2t− 2) and c2(F2) = c2(F

′
2) = ξϕ∗OF0(4, 6t− 2)− (5t+1)F.

Moreover, since M1 and M2 are non-isomorphic line bundles with the same slope

µ(M1) = µ(M2) = 13t− 3

with respect to ξ then, by [9, Lemma 4.2], F2 and F′
2 are simple vector bundles. The family

of non-trivial extensions of (3.1) is of dimension 3b0 − 3 while the one of (3.2) is b0 + 1 which
are different positive integers unless b0 = 2.

Case L-M: If we consider extensions using both line bundles of type Li and Mj , with i, j =
1, 2, one can easily see that for some of them we get only trivial extensions, precisely:

Ext1(M1, L1) ∼= H1(X0, L1 −M1) = H1(X0,−ξ + ϕ∗OF0(3, t))
∼= H1(F0, 0) = 0,

Ext1(L1,M2) ∼= H1(X0,M2 − L1) = H1(X0,−ξ + ϕ∗OF0(0, 3t))
∼= H1(F0, 0) = 0,
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Ext1(M1, L2) ∼= H1(X0, L2 −M1) = H1(X0,−ξ + ϕ∗OF0(0, 3t))
∼= H ∼= H1(F0, 0) = 0,

Ext1(L2,M2) ∼= H1(X0,M2 − L2) = H1(X0,−ξ + ϕ∗OF0(3, 3t − b0) ∼= H1(F0, 0) = 0.

On the contrary, in the remaining possibilities we get non-trivial extensions and precisely:

Ext1(L1,M1) ∼= H1(X0,M1 − L1) = H1(X0, ξ + ϕ∗OF0(−3,−t)) ∼= H1(F0,E0(−3,−t));

an easy computation gives that dim(Ext1(L1,M1)) = 1 and thus there are non-trivial exten-
sions F3 such that c1(F3) = 3ξ + ϕ∗OF0(1,−t− 2) and c2(F3) = ξϕ∗OF09, 3t− 3)− (8t+ 1)F .

Ext1(M2, L1) ∼= H1(X0, L1 −M2) = H1(X0, ξ + ϕ∗OF0(0,−3t)) ∼= H1(F0,E0(0,−t));

in this case dim(Ext1(M2, L1)) = 5b0 − 5 and so there are non-trivial extensions F4 (because
b0 > 1) such that c1(F4) = ξ + ϕ∗OF0(4, 3t − 2) and c2(F4) = ξϕ∗OF0(2, 3t− 1) + (6t− 4)F .

Ext1(L2,M1) ∼= H1(X0,M1 − L2) = H1(X0, ξ + ϕ∗OF0(0,−3t)) ∼= H1(F0,E0(0,−t)),

thus dim(Ext1(L2,M1)) = 5b0 − 5 and thus there are non-trivial extensions F5 with c1(F5) =
3ξ + ϕ∗OF0(−2, t− 2) and c2(F5) = ξϕ∗OF0(3, 7t − 3) + (2− 7t)F .

Ext1(M2, L2) ∼= H1(X0, L2 −M2) = H1(X0, ξ + ϕ∗OF0(−3,−t)) ∼= H1(F0,E0(−3,−t)) ∼= C;

thus there are non-trivial extensions F6 with c1(F6) = ξ + ϕ∗OF0(1, 5t − 2) and c2(F6) =
ξϕ∗OF0(2, 3t − 1) + (t− 1)F .

Previous computations show that there are Ulrich rank-2 vector bundles belonging to dif-
ferent moduli spaces, since their Chern classes are different. For simplicity, in the sequel we
will focus only on extensions of type (3.1) and, in particular, we prove the following theorem.

Theorem 3.1. Let (X0, ξ) ∼= (P(E0),OP(E0)(1)) be a 3-fold scroll over F0, with E0 as in
Assumptions 1.7. Let ϕ : X0 → F0 be the scroll map and F be the ϕ-fibre. Then the moduli
space of rank-2 vector bundles U on X0 which are Ulrich w.r.t. ξ and with Chern classes

(3.11) c1(U) = 2ξ + ϕ∗OF0(1, b0 − 2) and c2(U) = ξ2 + ξ · ϕ∗OF0(1, b0 − 2) + (2b0 − 1)F,

is not empty and it contains a generically smooth component M of dimension 6b0 − 3, whose
general point [U] corresponds to a special and slope-stable vector bundle, of slope w.r.t. ξ

(3.12) µ(U) = 8b0 − k0 − 3.

Proof. We consider non–trivial extensions (3.1) in Case L. Recall that dimExt1(L2, L1) =
4b0 − 4 > 0, being b0 > 1 by Assumptions 1.7, and moreover that an indecomposable vector
bundle F1 as in (3.1) is Ulrich and simple, that is h0(F1 ⊗ F∨

1 ) = 1. Since µ(L1) = µ(L2) =
8b0 − k0 − 3, as computed in § 3.1-Case L, the same holds true for µ(F1).

We now want to show that h2(F1⊗F∨
1 ) = 0 = h3(F1⊗F∨

1 ) and that χ(F1⊗F∨
1 ) = −6b0+3.

Tensoring (3.1) with F∨
1 we get

0 → L1 ⊗ F∨
1 → F1 ⊗ F∨

1 → L2 ⊗ F∨
1 → 0.(3.13)

Dualizing (3.1) gives the following exact sequence

0 → L∨
2 → F∨

1 → L∨
1 → 0(3.14)

Tensoring (3.14) with L1 and L2, respectively gives

0 → L∨
2 ⊗ L1(= ϕ∗OF0(3,−b0)) → L1 ⊗ F∨

1 → OX0 → 0(3.15)

0 → OX0 → L2 ⊗ F∨
1 → L2 ⊗ L∨

1 (= ϕ∗OF0(−3, b0)) → 0(3.16)

Because F1 is simple, then h0(X,F1⊗F∨
1 ) = 1. The remaining cohomology H i(X,F1 ⊗F∨

1 )
can be easily computed from the cohomology sequence associated to (3.15) and (3.16). Clearly
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hi(OX0) = 0 if i ≥ 1 and h0(OX0) = 1. It remains to compute H i(ϕ∗OF0(3,−b0)) and
H i(ϕ∗OF0(−3, b0)).

H i(X0, ϕ
∗OF0(3,−b0)) ∼= H i(F0,OF0(3,−b0)) ∼= H i(P1, S3(OP1 ⊕ OP1)(−b0))(3.17)

H i(P1,O⊕4(−b0)) =

{

0 if i = 0, 2, 3
4b0 − 4 if i = 1

Similarly

H i(X,ϕ∗OF0(−3, b0)) ∼= H i(F0,OF0(−3, b0)) ∼= H2−i((F0,OF0(1,−2 − b0))(3.18)

H2−i(P1,O⊕2
P1 (−2− b0)) =

{

0 if i = 0, 2, 3
2b0 + 2 if i = 1

It thus follows that

h2(F1 ⊗ F∨
1 ) = 0 = h3(F1 ⊗ F∨

1 ).

From (3.13) we have that

χ(F1 ⊗ F∨
1 ) = χ(L1 ⊗ F∨

1 ) + χ(L2 ⊗ F∨
1 ) = −6b0 + 4.

By [9, Proposition 2.10], since h2(F1 ⊗ F∨
1 ) = 0 and from the fact that Ulrichness is an open

condition by semi-continuity, it follows that [F1] corresponds to a smooth point of a unique
component M of the moduli space of rank two Ulrich vector bundles with Chern classes

c1(F1) = 2ξ + ϕ∗OF0(1, b0 − 2) and c2(F1) = ξ2 + ξ · ϕ∗OF0(1, b0 − 2) + (2b0 − 1)F,

as computed in § 3.1-Case L.
Moreover, as h3(F1 ⊗ F∨

1 ) = 0 and F1 is simple, we have that

dim(M) = h1(F1 ⊗ F∨
1 ) = −χ(F1 ⊗ F∨

1 ) + 1 = 6b0 − 3.

By semicontinuity and the invariants of the Chern classes, same assertions hold for the general
point [U] ∈ M so M is generically smooth. Note further that

KX0 + 4ξ = −2ξ + ϕ∗OF0(−2,−2) + ϕ∗OF0(3, b0) + 4ξ = 2ξ + ϕ∗OF0(1, b0 − 2) = c1(F)

thus U is special, as stated.
It only remains to prove that U is slope-stable. By [5, Sect 3, (3.2)], if U were not stable,

it would be presented as an extension of Ulrich line bundles on X0. In such a case, by the
classification of Ulrich line bundles in Theorem 2.1 and all the possible non-trivial extensions
computed in § 3.1-Case M or Case L-M, we see that the only possibilities should be either
(3.1) or (3.2), by Chern classes reasons. In both cases the dimension of (the projectivization)
of the families of extensions are either 4b0 − 5 or 2b0 + 1, which are both strictly smaller
than 6b0 − 2 = dimM. This shows that [U] ∈ M general corresponds to a stable and also
slope-stable bundle (cf. Theorem 1.4-(c) above).

Finally, the slope µ(U) = c1(U)·ξ2

2 of the vector bundle U with respect to ξ is µ(U) =
8b0 − k0 − 3, as c1(U) = c1(F1). �

3.2. Rank-2 Ulrich vector bundles on 3-fold scrolls over Fe, e > 0. In this section, we
will focus on the case e > 0.

Theorem 3.2. Let (Xe, ξ) ∼= (P(Ee),OP(Ee)(1)) be a 3-fold scroll over Fe, with e > 0 and Ee

as in Assumptions 1.7. Let ϕ : Xe → Fe be the scroll map and F be the ϕ- fibre. Then the
moduli space of rank-2 vector bundles U on Xe, which are Ulrich w.r.t. ξ, with Chern classes

(3.19) c1(U) = 2ξ+ϕ∗OFe
(1, be−e−2) and c2(U) = ξ2+ξϕ∗OFe

(1, be−e−2)+(2be−3e−1)F,

is not empty and it contains a generically smooth component M of dimension 6be − 9e − 3,
whose general point [U] corresponds to a special and slope-stable vector bundle of slope w.r.t. ξ

µ(U) = 8be − ke − 12e− 3.(3.20)
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Proof. By [4, Theorem 3.4], we know that there exist rank two vector bundles H1 on Fe, which
are Ulrich with respect to c1(Ee) = OFe

(3, be), given by extensions

0 → OFe
(3, be − 1) → H1 → IZ ⊗ OFe

(4, 2be − 1− e) → 0,(3.21)

where Z is a general zero-dimensional subscheme of Fe of length ℓ(Z) = 2be − 3e. Such a
bundle H1 is stable, [4, Remark 3.7], hence simple, that is h0(H1 ⊗H∨

1 ) = 1,
Let H := H1(−c1(Ee)). Note that H is stable, being a twist of a stable vector bundle, so

it is also simple, i.e. h0(H ⊗H∨) = 1. Because the vector bundle H satisfies (1.2), then by
Theorem 1.6 we know that the vector bundle V := ϕ∗(H) ⊗ ξ is a rank two vector bundle on
P(Ee) which is Ulrich with respect to ξ.

From (3.21) we see that c1(H) = OFe
(1, be − 2− e) and c2(H) = 2b2 − 3e − 1. Easy Chern

classes computations give that

c1(V) = 2ξ + ϕ∗OFe
(1, be − e− 2) and c2(V) = ξ2 + ξϕ∗OFe

(1, be − e− 2) + (2be − 3e− 1)F.

Moreover by [5, Sect 3, (3.2)] such a bundle V is stable, so slope-stable by Theorem 1.4-(c),
since there are no Ulrich line bundles on (Xe, ξ) as it follows from Theorem 2.1.

Our next step is to compute the cohomology groups H i(Xe,V⊗ V∨) for i = 0, 1, 2, 3. Be-
cause H i(Xe,V⊗V∨) = H i(Xe, ϕ

∗(H⊗H∨)) ∼= H i(Fe,H⊗H∨) we will focus on computations
of H i(Fe,H ⊗H∨), i = 0, 1, 2, 3.

First of all h3(Fe,H⊗H∨) = 0, as Fe is a surface, and h0(Fe,H⊗H∨) = 1, as H is simple.
For the other cohomology groups, we then tensor (3.21) with −c1(Ee) = OFe

(−3,−be) and we
get

0 → OFe
(0,−1) → H → IZ ⊗ OFe

(1, be − 1− e) → 0(3.22)

Because H is of rank 2 and c1(H) = OFe
(1, be − 2− e), we have that H∨ ∼= H⊗OFe

(−1,−be+
2 + e) and thus after tensoring (3.22) with H∨ we get

0 → H ⊗ OFe
(−1, 1 + e− be) → H ⊗H∨ → IZ ⊗H⊗ OFe

(0, 1) → 0.(3.23)

In order to compute the cohomology groups of H ⊗ OFe
(−1, 1 + e− be) we will use the short

exact sequence (3.22) twisted with OFe
(−1, 1 + e− be) which gives

0 → OFe
(−1, e− be) → H ⊗ OFe

(−1, 1 + e− be) → IZ → 0.(3.24)

From this we can easily see that H0(F⊗OFe
(−1, 1+e−be)) = 0 = H2(F⊗OFe

(−1, 1+e−be))
and h1(F ⊗ OFe

(−1, 1 + e− be)) = 2be − 3e− 1.
Our next task is to compute the cohomology groups of IZ ⊗H ⊗ OFe

(0, 1). We tensor the
sequence

0 → IZ → OFe
→ OZ → 0

with H ⊗ OFe
(0, 1) and OFe

(1, be − e), respectively, and we get

0 → IZ ⊗H⊗ OFe
(0, 1) → H ⊗ OFe

(0, 1) → (H ⊗ OFe
(0, 1))|Z → 0(3.25)

0 → IZ ⊗ OFe
(1, be − e) → OFe

(1, be − e) → OZ → 0.(3.26)

We tensor (3.22) with OFe
(0, 1) and we get

0 → OFe
→ H ⊗ OFe

(0, 1) → IZ ⊗ OFe
(1, be − e) → 0.(3.27)

Now use the cohomology sequence associated to the short exact sequences (3.25), (3.26) and
(3.27). Note that

h0(Fe,OFe
(1, be − e)) ∼= h0(P1,OP1(be − e)⊕ OP1(be − 2e)) = 2be − 3e+ 2,

and

hi(Fe,OFe
(1, be − e)) ∼= hi(P1,OP1(be − e)⊕ OP1(be − 2e)) = 0 for i = 1, 2

because by assumption be > 3e. Notice that dim(|OFe
(1, be − e)|) = 2be − 3e + 1, so h0(IZ ⊗

OFe
(1, be−e)) = 2 , being Z general of length ℓ(Z) = 2be−3e. Therefore from (3.26) it follows

that hi(IZ ⊗ OFe
(1, be − e)) = 0 for i = 1, 2. Now using (3.27) it follows that h0(Fe,H ⊗
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OFe
(0, 1)) = 3 and hi(Fe,H⊗OFe

(0, 1)) = 0 for i = 1, 2. Thus h2(IZ ⊗H⊗OFe
(0, 1)) = 0 and

this, combined with the cohomology sequence associated to (3.24), gives that h2(H⊗H∨) = 0.
Thus from (3.25), since h0(Fe, (H⊗OFe

(0, 1))|Z) = 2(2b2−3e) and hi(Fe,H⊗OFe
(0, 1)|Z) = 0

for i = 1, 2, it follows that χ(IZ ⊗H ⊗ OFe
(0, 1)) = χ(H ⊗ OFe

(0, 1)) − χ(H ⊗ OFe
(0, 1)|Z) =

3− 4be +6e. From the cohomology sequence associated to (3.24) it follows that χ(H⊗H∨) =
χ(IZ ⊗H⊗OFe

(0, 1))+χ(H⊗OFe
(−1, 1+ e− be)) = 3− 4be +6e− 2b2 +3e+1 = 4− 6be +9e

and thus h1(H ⊗H∨) = 1− χ(H ⊗H∨) = 6be − 9e− 3.
As already observed, H i(Xe,V ⊗ V∨) ∼= H i(Fe,H ⊗ H∨), i = 0, 1, 2, 3, hence the above

computations give us the dimensions of all the cohomology groupsH i(Xe,V⊗V∨), i = 0, 1, 2, 3.
By [9, Proposition 2.10], since h2(V⊗ V∨) = 0, it follows that [V] corresponds to a smooth

point of a unique component M of the moduli space of rank two Ulrich vector bundles with
Chern classes c1(V) = 2ξ+ϕ∗OFe

(1, be− 2− e) and c2(V) = ξ2+ ξϕ∗OFe
(1, be − 2− e)+ (2be −

3e− 1)F = ξϕ∗OFe
(4, be − 2− e) + (2be − 3e− ke − 1)F . Moreover we have that

dim(M) = h1(V⊗ V∨) = 6be − 9e− 3.

Since Ulrichness, slope-stability, simplicity are open conditions as well as Chern classes are
constant for vector bundles varying in M, it follows that all the properties satisfied by V hold
true for the general point [U] ∈ M, in particular M is also generically smooth.

Note further thatKXe
+4ξ = −2ξ+ϕ∗OFe

(−2,−2−e)+ϕ∗OFe
(3, be)+4ξ = 2ξ+ϕ∗OF0(1, be−

e− 2) = c1(V), thus U is a special Ulrich bundle. Finally, the slope of U with respect to ξ is

µ(U) =
c1(U) · ξ

2

2
=

(2ξ + ϕ∗OFe
(1, be − e− 2)) · ξ2

2
= 8be − ke − 12e− 3.

�

Remark 3.3. In [18, Theorems 5.8, 5.9] it was shown the existence of stable rank two Ulrich
vector bundle w.r.t. ξ on X0 and X1 of low degree. In [21, Corollary 5.17] it was shown
the existence of rank two Ulrich vector bundle on P(E) → Fe w.r.t. a different very ample
polarization D = π∗(A) + ξ with A such that rk(E)A + c1(E) is also very ample, rk(E) ≥ 2
and π : P(E) → Fe the natural projection. But nothing was said about their moduli space.

4. Higher rank Ulrich vector bundles on 3-fold scrolls over Fe

In this section we will construct higher rank slope-stable Ulrich vector bundles on Xe, where
e > 0. We will moreover compute the dimensions of the moduli spaces of the constructed
bundles, completely proving the Main Theorem and the Main Corollary, stated in the
Introduction.

To do so, we will use Theorems 2.1, 3.1, 3.2, as well as inductive procedures and deformation
arguments.

4.1. Higher rank Ulrich vector bundles on 3-fold scrolls over F0. We will first concen-
trate on the case e = 0. From Theorem 2.1 we know that, under Assumptions 1.7, the case
e = 0 is the only case where Ulrich line bundles on (X0, ξ) actually exist. We will focus on
the line bundles

L1 = ξ + ϕ∗OF0(2,−1) and its Ulrich dual L2 = ξ + ϕ∗OF0(−1, b0 − 1),(4.1)

as in Theorem 2.1-(i), which are Ulrich w.r.t. ξ.
Recalling computations in § 3.1-Case L and the fact that b0 > 1 by Assumptions 1.7, we

have that:

dim(Ext1(L2, L1)) = h1(L1 − L2) = 4(b0 − 1) > 4, whereas(4.2)

dim(Ext1(L1, L2)) = h1(L2 − L1) = 2(b0 + 1) > 6.

In Theorem 3.1 we used such extensions to construct rank-2 Ulrich vector bundles. To
construct higher rank Ulrich bundles on X0 we proceed with an iterative strategy as follows.
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Set G1 := L1; from (4.2) the general [G2] ∈ Ext1(L2,G1) = Ext1(L2, L1) is associated to a
non-splitting extension

(4.3) 0 → G1 = L1 → G2 → L2 → 0,

where G2 is a rank-2 Ulrich and simple vector bundle on X0 with

c1(G2) = 2ξ + ϕ∗OF0(1, b0 − 2)

(cf. (3.1), where G2 := F1 therein, and the proof of Theorem 3.1). If, in the next step, we
considered further extensions Ext1(L2,G2), it is easy to see that the dimension of such an
extension space drops by one with respect to that of Ext1(L2,G1). Therefore, proceeding in
this way, after finitely many steps we would have only splitting bundles in Ext1(L2,Gk) for
any k > k0, for some positive integer k0.

To avoid this, similarly as in [10, § 4], we proceed by taking extensions

0 → G2 → G3 → L1 → 0, 0 → G3 → G4 → L2 → 0, . . . ,

and so on, that is, defining

(4.4) ǫr :=

{

1, if r is odd,

2, if r is even,

we take successive extensions [Gr] ∈ Ext1(Lǫr ,Gr−1) for all r > 2:

(4.5) 0 → Gr−1 → Gr → Lǫr → 0.

The fact that we can always take non–trivial such extensions will be proved in a moment
in Corollary 4.2 below. In any case, all vector bundles Gr recursively defined as in (4.5) are
of rank r and Ulrich w.r.t. ξ, since extensions of Ulrich bundles are again Ulrich. The first
Chern class is given by

(4.6) c1(Gr) :=

{

rξ + ϕ∗OF0(
r+3
2 , (r−1)

2 b0 − r), if r is odd,

rξ + ϕ∗OF0(
r
2 ,

r
2b0 − r), if r is even.

Thus, for any r > 1, the slope is

(4.7) µ(Gr) = 8b0 − k0 − 3,

as in § 3.1-Case L and in (3.12). Moreover, from Theorem 1.4-(a), any such Gr is strictly
semistable and slope-semistable, being extensions of Ulrich bundles of the same slope µ(Gr−1) =
µ(Lǫr) = 8b0 − k0 − 3.

Lemma 4.1. Let L denote any of the two line bundles L1 and L2 as in (4.1). Then, for all
integers r > 1, we have

(i) h2(Gr ⊗ L∨) = h3(Gr ⊗ L∨) = 0,
(ii) h2(G∨

r ⊗ L) = h3(G∨
r ⊗ L) = 0,

(iii) h1(Gr ⊗ L∨
ǫr+1

) > min{4b0 − 4, 2b0 + 2} > 4.

Proof. For r = 1 we have G1 = L1; therefore G1 ⊗ L∨ and G∨
1 ⊗ L are either equal to OX0 , if

L = L1, or equal to L1 − L2 and L2 − L1, respectively, if L = L2. Therefore (i) and (ii) hold
true by computations as in § 3.1-Case L. As for (iii), by (4.4) we have that Lǫ2 = L2 thus
h1(G1 ⊗L∨

2 ) = h1(L1 −L2) = 4b0 − 4, as is § 3.1-Case L, the latter being always greater than
or equal to min{4b0 − 4, 2b0 + 2} > 4 as b0 > 2.

Therefore, we will assume r > 2 and proceed by induction. Regarding (i), since it holds for
r = 1, assuming it holds for r − 1 then by tensoring (4.5) with L∨ we get that

hj(Gr ⊗ L∨) = 0, j = 2, 3,

because hj(Gr−1 ⊗ L∨) = 0, for j = 2, 3, by induction hypothesis whereas hj(Lǫr ⊗ L∨) = 0,
for j = 2, 3, since Lǫr ⊗ L∨ is either OX0 , or L2 − L1, or L1 − L2.

A similar reasoning, tensoring the dual of (4.5) by L, proves (ii).
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To prove (iii), tensor (4.5) by L∨
ǫr+1

and use that h2(Gr−1⊗L∨
ǫr+1

) = 0 by (i). Thus we have
the surjection

H1(Gr ⊗ L∨
ǫr+1

) ։ H1(Lǫr ⊗ L∨
ǫr+1

),

which implies that h1(Gr ⊗ L∨
ǫr+1

) > h1(Lǫr ⊗ L∨
ǫr+1

). According to the parity of r, we have

that Lǫr ⊗ L∨
ǫr+1

equals either L1 − L2 or L2 − L1. From computations as in § 3.1-Case L,

h1(L1 − L2) = 4b0 − 4 whereas h1(L2 − L1) = 2b0 + 2. Notice that

min{4b0 − 4, 2b0 + 2} :=











4b0 − 4 = 4, if b0 = 2,

4b0 − 4 = 2b0 + 2 = 8, if b0 = 3,

2b0 + 2 > 10, if b0 > 4.

Therefore one concludes. �

Corollary 4.2. For any integers r > 1 there exist on X0 rank-r vector bundles Gr, which
are Ulrich w.r.t. ξ, with first Chern class c1(Gr) as in (4.6), which are morover simple, i.e.
h0(Gr ⊗ G∨

r ) = 1, indecomposable and of slope µ(Gr) = 8b0 − k0 − 3.

Proof. For r = 1, we have G1 = L1 and the statement holds true from Theorem 2.1 and
computations in § 3.1-Case L.

For any r > 2, notice that

Ext1(Lǫr ,Gr−1) ∼= H1(Gr−1 ⊗ L∨
ǫr
).

Therefore, from Lemma 4.1-(iii) there exist non–splitting extensions as in (4.5), which are
therefore Ulrich with respect to ξ and whose Chern class c1(Gr) is exactly as in (4.6).

By induction µ(Gr−1) = µ(Lǫr) = 8b0−k0−3; then Gr has the same slope w.r.t. ξ. Moreover
Gr−1 and Lǫr are not isomorphic, in fact if r > 2 they have different ranks, while if r = 2
then Lǫ2 = L2 is not isomorphic to G1 = L1 as it follows from their expressions in Theorem
2.1. Hence by [9, Lemma 4.2] we get that Gr is a simple bundle. In particular, it must be
indecomposable. �

From Corollary 4.2, at any step we can always pick non–splitting extensions of the form
(4.5). We will henceforth do so.

Lemma 4.3. Let r > 1 be an integer. Then we have

(i) h1(Gr+1 ⊗ L∨
ǫr+1

) = h1(Gr ⊗ L∨
ǫr+1

)− 1,

(ii) h1(Gr ⊗L∨
ǫr+1

) =

{

(r+1)
2 h1(L1 − L2)−

(r−1)
2 = 2(r + 1)(b0 − 1)− (r−1)

2 , if r is odd,
r
2h

1(L2 − L1)−
(r−2)

2 = r(b0 + 1)− (r−2)
2 , if r is even.

(iii) h2(Gr ⊗ G∨
r ) = h3(Gr ⊗ G∨

r ) = 0,

(iv) χ(Gr ⊗ L∨
ǫr+1

) =

{

(r+1)
2 (1− h1(L1 − L2))− 1 = (r+1)

2 (5− 4b0)− 1, if r is odd,
r
2(1− h1(L2 − L1)) =

r
2(−1− 2b0), if r is even.

(v) χ(Lǫr ⊗ G∨
r ) =

{

(r−1)
2 (1− h1(L1 − L2)) + 1 = (r−1)

2 (5− 4b0) + 1, if r is odd,
r
2(1− h1(L2 − L1)) =

r
2(−1− 2b0), if r is even.

(vi) χ(Gr ⊗ G∨
r ) =

{

(r2−1)
4

(2−h1(L1−L2)−h1(L2−L1))+1=
(r2−1)

4
(4−6b0)+1, if r is odd,

r2

4 (2− h1(L1 − L2)− h1(L2 − L1)) =
r2

4 (4− 6b0), if r is even.

Proof. (i) Consider the exact sequence (4.5), where r is replaced by r + 1. From
Ext1(Lǫr+1 ,Gr) ∼= H1(Gr ⊗ L∨

ǫr+1
) and the fact that the exact sequence defining Gr+1 is con-

structed by taking a non–zero vector [Gr+1] in Ext1(Lǫr+1,Gr), it follows that the coboundary
map

H0(OX0)
∂

−→ H1(Gr ⊗ L∨
ǫr+1

)

of the exact sequence

0 → Gr ⊗ L∨
ǫr+1

→ Gr+1 ⊗ L∨
ǫr+1

→ OX0 → 0,(4.8)
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is non–zero so it is injective. Thus, (i) follows from the cohomology of (4.8).

(ii) We use induction on r. For r = 1, the right hand side of the formula yields 4(b0−1) which
is exactly h1(G1 ⊗ L∨

2 ) = h1(L1 − L2) as in § 3.1-Case L.
When r = 2, the right hand side of the formula is 2(b0 + 1) which is h1(G2 ⊗ L∨

1 ) =
h1(L2 − L1) = 2b0 + 2, as it follows from computations in § 3.1-Case L, from the exact
sequence

0 → OX0 → G2 ⊗ L∨
1 → L2 − L1 → 0,

obtained by (4.5) with r = 2 and tensored with L∨
1 , and the fact that hj(OX0) = 0, for j = 1, 2.

Assume now that the formula holds true up to some integer r > 2; we have to show that it
holds also for r + 1. Consider the exact sequence (4.5), with r replaced by r + 1, and tensor
it by L∨

ǫr+2
. We thus obtain

0 → Gr ⊗ L∨
ǫr+2

→ Gr+1 ⊗ L∨
ǫr+2

→ Lǫr+1 ⊗ L∨
ǫr+2

→ 0(4.9)

If r is even, then Lǫr+2 = L2 whereas Lǫr+1 = L1. Thus h
0(Lǫr+1⊗L∨

ǫr+2
) = h0(L1−L2) = 0

and h1(Lǫr+1 ⊗ L∨
ǫr+2

) = h1(L1 − L2) = 4b0 − 4. On the other hand, by Lemma 4.1-(i),

h2(Gr ⊗ L∨
ǫr+2

) = 0. Thus, from (4.9), we get:

h1(Gr+1 ⊗ L∨
ǫr+2

) = (4b0 − 4) + h1(Gr ⊗ L∨
ǫr+2

) = (4b0 − 4) + h1(Gr ⊗ L∨
ǫr
),

as r and r + 2 have the same parity. Using (i), we have h1(Gr ⊗ L∨
ǫr) = h1(Gr−1 ⊗ L∨

ǫr) − 1

therefore, by inductive hypothesis with r−1 odd, we have h1(Gr−1⊗L∨
ǫr) =

r
2(4b0−4)− (r−2)

2 .
Summing up, we have

h1(Gr+1 ⊗ L∨
ǫr+2

) = (4b0 − 4) +
r

2
(4b0 − 4)−

(r − 2)

2
− 1,

which is easily seen to be equal to the right hand side expression in (ii), when r is replaced by
r + 1.

If r is odd, the same holds for r+2 whereas r+1 is even. In this case Lǫr+2 = L1, Lǫr+1 = L2

so h1(Lǫr+1 ⊗ L∨
ǫr+2

) = h1(L2 − L1) = 2b0 + 2 and one applies the same procedure as in the
previous case.

(iii) We again use induction on r. For r = 1, formula (iii) states that hj(L1−L1) = hj(OX0) =
0, for j = 2, 3, which is certainly true.

Assume now that (iii) holds up to some integer r > 1; we have to prove that it holds also
for r + 1. Consider the exact sequence (4.5), where r is replaced by r + 1, and tensor it by
G∨
r+1. From this we get that, for j = 2, 3,

hj(Gr+1 ⊗ G∨
r+1) 6 hj(Gr ⊗ G∨

r+1) + hj(Lǫr+1 ⊗ G∨
r+1) = hj(Gr ⊗ G∨

r+1),(4.10)

the latter equality follows from hj(Lǫr+1 ⊗ G∨
r+1) = 0, j = 2, 3, as in Lemma 4.1-(ii).

Consider the dual exact sequence of (4.5), where r is replaced by r+1, and tensor it by Gr.
Thus, Lemma 4.1-(i) yields that, for j = 2, 3, one has

hj(Gr ⊗ G∨
r+1) 6 hj(Gr ⊗ L∨

ǫr+1
) + hj(Gr ⊗ G∨

r ) = hj(Gr ⊗ G∨
r ).(4.11)

Now (4.10)–(4.11) and the inductive hypothesis yield hj(Gr+1 ⊗ G∨
r+1) = 0, for j = 2, 3, as

desired.

(iv) For r = 1, (iv) reads χ(L1−L2) = −h1(L1−L2) = 4−4b0, which is true since hj(L1−L2) =
0 for j = 0, 2, 3.

For r = 2, (iv) reads χ(G2 ⊗L∨
1 ) = 1− h1(L2 −L1) = −1− 2b0 and this holds true because

if we take the exact sequence (4.5), with r = 2, tensored by L∨
1 then

χ(G2 ⊗ L∨
1 ) = χ(OX0) + χ(L2 − L1) = 1− h1(L2 − L1) = 1− (2b0 + 2),

as hj(L2 − L1) = 0 for j = 0, 2, 3.
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Assume now that the formula holds up to a certain integer r ≥ 2, we have to prove that it
also holds for r + 1. From (4.9) we get

χ(Gr+1 ⊗ L∨
ǫr+2

) = χ(Gr ⊗ L∨
ǫr+2

) + χ(Lǫr+1 ⊗ L∨
ǫr+2

).

If r is even, the same is true for r + 2 whereas r + 1 is odd. Therefore,

(4.12) χ(Gr+1 ⊗ L∨
ǫr+2

) = χ(Gr ⊗ L∨
2 ) + χ(L1 − L2) = χ(Gr ⊗ L∨

2 )− h1(L1 − L2).

Then (4.8), with r replaced by r − 1, yields

(4.13) χ(Gr ⊗ L∨
2 ) = χ(Gr−1 ⊗ L∨

2 ) + χ(OX0) = χ(Gr−1 ⊗ L∨
2 ) + 1.

Substituting (4.13) into (4.12) and using the inductive hypothesis with r − 1 odd, we get

χ(Gr+1 ⊗ L∨
2 ) = χ(Gr−1 ⊗ L∨

2 ) + 1− h1(L1 − L2)

=
(r)

2
(1− h1(L1 − L2))− h1(L1 − L2)

=
(r + 2)

2
(1− h1(L2 − L1))− 1,

proving that the formula holds also for r + 1 odd.
Similar procedure can be used to treat the case when r is odd. In this case, Lǫr+1 = L2

whereas Lǫr+2 = L1. Thus, from the above computations,

χ(Gr+1 ⊗ L∨
1 ) = χ(Gr ⊗ L∨

1 ) + χ(L2 − L1) = χ(Gr ⊗ L∨
1 )− h1(L2 − L1).

As in the previous case, χ(Gr⊗L∨
1 ) = 1+χ(Gr−1⊗L∨

1 ) so, applying inductive hypothesis with

r − 1 even, we get χ(Gr ⊗ L∨
1 ) = 1 + (r−1)

2 (1 − h1(L2 − L1)). Adding up all these quantities,
we get

χ(Gr+1 ⊗ L∨
ǫr+2

) = χ(Gr+1 ⊗ L∨
1 ) =

r + 1

2
(1− h1(L2 − L1)),

so formula (iv) holds true also for r + 1 even.

(v) For r = 1, (v) reads χ(L1 − L1) = χ(OX0) = 1, which is correct. For r = 2, (v) reads
χ(L2 ⊗ G∨

2 ) = 1 − h1(L2 − L1), which is once again correct as it follows from the dual of
sequence (4.5) tensored by L2.

Assume now that the formula holds up to a certain integer r > 2 and we need to proving it
for r + 1. Dualizing (4.5), replacing r by r + 1 and tensoring it by Lǫr+1 we find that

χ(Lǫr+1 ⊗ G∨
r+1) = χ(Lǫr+1 ⊗ L∨

ǫr+1
) + χ(Lǫr+1 ⊗ G∨

r )(4.14)

= χ(OXn
) + χ(Lǫr+1 ⊗ G∨

r ) = 1 + χ(Lǫr+1 ⊗ G∨
r ).

The dual of sequence (4.5), with r replaced by r − 1, tensored by Lǫr+1 yields

(4.15) χ(Lǫr+1 ⊗ G∨
r ) = χ(Lǫr+1 ⊗ L∨

ǫr
) + χ(Lǫr+1 ⊗ G∨

r−1).

Substituting (4.15) into (4.14) and using the fact that r + 1 and r − 1 have the same parity,
we get

χ(Lǫr+1 ⊗ G∨
r+1) = 1 + χ(Lǫr+1 ⊗ L∨

ǫr
) + χ(Lǫr−1 ⊗ G∨

r−1).

If r is even, then χ(Lǫr+1 ⊗L∨
ǫr
) = χ(L1 −L2) = −h1(L1 −L2) whereas, from the inductive

hypothesis with r − 1 odd, χ(Lǫr−1 ⊗ G∨
r−1) = 1 + (r−2)

2 (1− h1(L1 − L2)). Thus

χ(Lǫr+1 ⊗ G∨
r+1) = 1− h1(L1 − L2) + 1 +

(r − 2)

2
(1− h1(L1 − L2)),

the latter equals 1 + r
2 (1− h1(L1 − L2)), proving that the formula holds also for r + 1 odd.

If r is odd, the strategy is similar; in this case one has χ(Lǫr+1 ⊗ L∨
ǫr) = χ(L2 − L1) =

−h1(L2 − L1) and, by the inductive hypothesis with r − 1 even, χ(Lǫr−1 ⊗ G∨
r−1) =

(r−1)
2 (1 −

h1(L2 − L1)) so one can conclude.
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(vi) We first check the given formula for r = 1, 2. We have χ(G1 ⊗ G∨
1 ) = χ(L1 − L1) =

χ(OX0) = 1, which fits with the given formula for r = 1. From (4.5), with r = 2, tensored by
G∨
2 we get

(4.16) χ(G2 ⊗ G∨
2 ) = χ(L1 ⊗ G∨

2 ) + χ(L2 ⊗ G∨
2 )

(v)
= χ(L1 ⊗ G∨

2 ) + 1− h1(L2 − L1).

From the dual of (4.5), with r = 2, tensored by L1 we get

(4.17) χ(L1 ⊗ G∨
2 ) = χ(L1 − L1) + χ(L1 − L2) = χ(OX0)− h1(L1 − L2) = 1− h1(L1 − L2).

Combining (4.16) and (4.17), we get

χ(G2 ⊗ G∨
2 ) = 2− h1(L1 − L2)− h1(L2 − L1),

which again fits with the given formula for r = 2.
Assume now that the given formula is valid up to a certain integer r > 2; we need to prove

it holds for r+1. From (4.5), in which r is replaced by r+1, tensored by G∨
r+1 and successively

the dual of (4.5), with r replaced by r + 1, tensored by Gr we get

χ(Gr+1 ⊗ G∨
r+1) = χ(Gr ⊗ G∨

r ) + χ(Gr ⊗ L∨
ǫr+1

) + χ(Lǫr+1 ⊗ G∨
r+1).

If r is even, then r+1 is odd and Lǫr+1 = L1. From (v) with (r+1) odd, we get χ(Lǫr+1 ⊗
G∨
r+1) = 1+ r

2(1−h1(L1−L2)), whereas from (iv) with r even χ(Gr⊗L∨
ǫr+1

) = r
2 (1−h1(L2−L1)).

Finally, by the inductive hypothesis with r even, χ(Gr⊗G∨
r ) =

r2

4 (2−h1(L1−L2)−h1(L2−L1)).
Summing–up the three quantities, one gets

χ(Gr+1 ⊗ G∨
r+1) = 1 +

(r + 1)2 − 1

4
(2− h1(L1 − L2)− h1(L2 − L1)),

proving that the formula holds for r + 1 odd.
If r is odd, then χ(Lǫr+1 ⊗G∨

r+1) =
r+1
2 (1−h1(L2 −L1)), as it follows from (v) with (r+1)

even, whereas χ(Gr ⊗ L∨
ǫr+1

) = (r+1)
2 (1 − h1(L1 − L2)) − 1, as predicted by (iv) with r odd.

Finally, form the inductive hypothesis with r odd, we have χ(Gr⊗G∨
r ) = 1+ (r2−1)

4 (2−h1(L1−
L2)− h1(L2 − L1)). If we add up the three quantities, we get

χ(Gr+1 ⊗ G∨
r+1) =

(r + 1)2

4
(2− h1(L1 − L2)− h1(L2 − L1)),

finishing the proof. �

We now define, for any integer r > 1, the irreducible scheme M(r) to be the modular
family of vector bundles Gr recursively defined by (4.5). For r > 2 the scheme M(r) contains a
subscheme, denoted byM(r)ext, which parametrizes bundles Fr that are non–trivial extensions
of the form

(4.18) 0 → Ur−1 → Fr → Lǫr → 0,

with [Ur−1] ∈ M(r − 1).

Lemma 4.4. Let r > 2 be an integer and let [Ur] ∈ M(r) be a general point. Then Ur

is a vector bundle of rank r, which is Ulrich with respect to ξ with slope w.r.t. ξ given by
µ := 8b0 − k0 − 3. Moreover,

(i) χ(Ur ⊗ U∨
r ) =

{

(r2−1)
4

(2−h1(L1−L2)−h1(L2−L1))+1=
(r2−1)

4
(4−6b0)+1, if r is odd,

r
2

4
(2−h1(L1−L2)−h1(L2−L1))=

r
2

4
(4−6b0), if r is even.

(ii) hj(Ur ⊗ U∨
r ) = 0, for j = 2, 3.

Proof. Ulrichness is an open property in irreducible families, as well as the rank and the slope
are constant, since c1 is. Thus the general member [Ur] ∈ M(r) is Ulrich of rank r and slope
µ as each Gr defined by (4.5) (cf. Corollary 4.2).
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Property (ii) follows by specializing Fr to a vector bundle Gr constructed above, and using
semicontinuity and Lemma 4.3-(iii) and (ii), respectively. Property (i) follows by Lemma 4.3-
(vi), since the given χ depends only on the Chern classes of the two factors and on X0, which
are constant in the irreducible family M(r). �

We want to prove that the general member of M(r) is also slope–stable. To this aim we
will first need the following auxiliary results.

Lemma 4.5. Let r > 2 be an integer and assume that [Fr] ∈ M(r)ext sits in a non–splitting
sequence like (4.18) with [Ur−1] ∈ M(r − 1) being slope–stable w.r.t. ξ. Then

(i) Ur is simple;
(ii) if D is a destabilizing subsheaf of Ur, then D∨ ∼= U∨

r−1 and (Fr/D)∨ ∼= L∨
ǫr
; if further-

more Fr/D is torsion–free, then D ∼= Fr−1 and Fr/D ∼= Lǫr .

Proof. The reasoning is similar to [10, Lemma 4.5], we will describe it for the reader’s con-
venience. We first prove (ii); assume that D is a destabilizing subsheaf of Ur, that is
0 < rk(D) < rk(Ur) = r and µ(D) > µ = µ(Ur). Define the sheaves

Q := Im{D ⊂ Ur → Lǫr} and K := Ker{D → Q}

so that (4.18) may be put into the following commutative diagram with exact rows and
columns:

0 0 0
↓ ↓ ↓

0 → K → D → Q → 0
↓ ↓ ↓

0 → Ur−1 → Ur → Lǫr → 0
↓ ↓ ↓

0 → K′ → Ur/D → Q′ → 0
↓ ↓ ↓
0 0 0

defining the sheaves K′ and Q′. We have rk(Q) 6 1.
Assume that rk(Q) = 0. Then Q = 0, whence K ∼= D and Q′ ∼= Lǫr . Since µ(K) = µ(D) >

µ = µ(Ur−1) and Ur−1 is slope–stable, we must have rk(K) = rk(Ur−1) = r − 1. It follows
that rk(K′) = 0. As

c1(K) = c1(Ur−1)− c1(K
′) = c1(Ur−1)−D′,

where D′ is an effective divisor supported on the codimension one locus of the support of K′,
we have

µ 6 µ(K) =
(c1(Ur−1)−D′) · ξ2

r − 1
=

c1(Ur−1) · ξ
2

r − 1
−

D′ · ξ2

r − 1
= µ−

D′ · ξ2

r − 1
.

Hence D′ = 0, which means that K′ is supported in codimension at least two. Thus, the
sheaves exti(K′,OX0) are zero, for i 6 1, and it follows that

D∨ ∼= K∨ ∼= U∨
r−1 and (Ur/D)∨ ∼= Q′∨ ∼= L∨

ǫr ,

as desired. If furthermore Ur/D is torsion–free, then we must have K′ = 0, whence D ∼= Ur−1

and Ur/D ∼= Lǫr .
Next we prove that rk(Q) = 1 cannot happen. Indeed, if rk(Q) = 1, then rk(K) = rk(D) −

1 6 r − 2 < r − 1 = rk(Ur−1) and rk(Q′) = 0; in particular Q′ is a torsion sheaf. Since

c1(K) = c1(D)− c1(Q) = c1(D)− c1(Lǫr) + c1(Q
′) = c1(D) − c1(Lǫr) +D,
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where D is an effective divisor supported on the codimension-one locus of the support of Q′,
we have

µ(K) =

(

c1(D)− c1(Lǫr) +D
)

· ξ2

rk(K)
>

(

c1(D) − c1(Lǫr)
)

· ξ2

rk(K)

=
µ(D)rk(D) − c1(Lǫr) · ξ

2

rk(K)
=

µ(D)rk(D)− µ

rk(D)− 1
≥

µrk(D)− µ

rk(D)− 1
= µ

This contradicts the slope–stability of Ur−1.
To prove (i), assume that Ur is not simple, that is, it admits a non-trivial endomorphism.

This implies there exists a non-zero endomorphism ϕ : Ur → Ur dropping rank everywhere;
indeed, take any endomorphism α that is not a constant times the identity, pick an eigenvalue
λ of α(x), for some x ∈ X0, and set ϕ := α − λId; then det(ϕ) ∈ H0(det(U∨

r ) ⊗ det(Ur)) =
H0(OX0)

∼= C vanishes at the point x, whence it is identically zero. Both Ker(ϕ) and Im(ϕ),
being subsheaves of Ur, are torsion–free, and one easily checks that at least one of them is
destabilizing. By part (ii), it follows that either Ker(ϕ) ∼= Ur−1 or Im(ϕ)∨ ∼= U∨

r−1. In the first
case, ϕ factors through Lǫr , whence the map Ur → Lǫr in (4.18) splits, a contradiction. In
the second case, the natural injection Im(ϕ) ⊂ Im(ϕ)∨∨ ∼= U∨∨

r−1
∼= Ur−1 shows that ϕ factors

through Ur−1, whence the map Ur−1 → Ur in (4.18)splits, again a contradiction. �

Lemma 4.6. Let r > 2 be an integer. Assume that the general member of M(r − 1) is
slope–stable. Then M(r) is generically smooth of dimension

dim(M(r)) =

{

(r2−1)
4 (6b0 − 4), if r is odd,

r2

4 (6b0 − 4) + 1, if r is even.

Furthermore M(r) properly contains the locally closed subscheme M(r)ext, namely
dim(M(r)ext) < dim(M(r)).

Proof. Consider the general member [Ur] ∈ M(r). It satisfies h0(Ur ⊗ U∨
r ) = 1, by Lemma

4.5-(i), and hj(Ur ⊗ U∨
r ) = 0 for j = 2, 3, by Lemma 4.4-(ii).

From the fact that h2(Ur⊗U∨
r ) = 0, it follows that M(r) is generically smooth of dimension

dim(M(r)) = h1(Ur⊗U∨
r ) (cf. e.g. [9, Prop. 2.10]). On the other hand, since h3(Ur ⊗U∨

r ) = 0
and h0(Ur ⊗ U∨

r ) = 1, we have h1(Ur ⊗ U∨
r ) = −χ(Ur ⊗ U∨

r ) + 1. Therefore, the formula
concerning dim(M(r)) directly follows from Lemma 4.4-(i).

Similarly, being slope-stable by assumptions, also the general member Ur−1 of M(r − 1)
satisfies h0(Ur−1⊗U∨

r−1) = 1. Thus, using Lemma 4.4-(ii), the same reasoning as above shows
that

(4.19) dim(M(r − 1)) = h1(Ur−1 ⊗ U∨
r−1) = −χ(Ur−1 ⊗ U∨

r−1) + 1,

where χ(Ur−1⊗U∨
r−1) as in Lemma 4.4-(i) (with r replaced by r−1). Morover, by specialization

of Ur−1 to Gr−1 and semi-continuity, we have

(4.20) dim(Ext1(Lǫr ,Ur−1)) = h1(Ur−1 ⊗ L∨
ǫr) 6 h1(Gr−1 ⊗ L∨

ǫr),

where the latter is as in Lemma 4.3-(ii) (with r replaced by r − 1). Therefore, by the very
definition of M(r)ext and by (4.19)-(4.20), we have

dim(M(r)ext) 6 dim(M(r − 1)) + dim(P(Ext1(Lǫr ,Ur−1))

= −χ(Ur−1 ⊗ U∨
r−1) + 1 + h1(Ur−1 ⊗ L∨

ǫr
)− 1

6 −χ(Ur−1 ⊗ U∨
r−1) + h1(Gr−1 ⊗ L∨

ǫr).

On the other hand, from the above discussion,

dim(M(r)) = −χ(Ur ⊗ U∨
r ) + 1.
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Therefore to prove that dim(M(r)ext) < dim(M(r)) it is enough to show that for any integer
r > 2 the following inequality

−χ(Ur−1 ⊗ U∨
r−1) + h1(Gr−1 ⊗ L∨

ǫr) < −χ(Ur ⊗ U∨
r ) + 1

holds true. Notice that the previous inequality reads also

(4.21) − χ(Ur ⊗ U∨
r ) + 1 + χ(Ur−1 ⊗ U∨

r−1)− h1(Gr−1 ⊗ L∨
ǫr
) > 0,

which is satisfied for any r > 2, as we can easily see.
Indeed use Lemmas 4.4-(i) and 4.3-(ii): if r is even, the left hand side of (4.21) reads

rb0 + 2 + (r−2)
2 which obviously is positive since r, b0 > 2; if r is odd, then r > 3 and the

left hand side of (4.21) reads (r − 1)(2b0 − 3) + (r−3)
2 which obviously is positive under the

assumptions r > 3, b0 > 2. �

We can now prove slope–stability of the general member of M(r).

Proposition 4.7. Let r > 1 be an integer. The general member of M(r) is slope–stable.

Proof. We use induction on r, the result being obviously true for r = 1.
Assume therefore r > 2 and that the general member of M(r) is not slope–stable, whereas

the general member of M(r − 1) is. Then, similarly as in [10, Prop. 4.7], we may find a one-

parameter family of bundles {U
(t)
r } over the unit disc ∆ such that U

(t)
r is a general member of

M(r) for t 6= 0 and U
(0)
r lies in M(r)ext, and such that we have a destabilizing sequence

(4.22) 0 → D(t) → U(t)
r → Q(t) → 0

for t 6= 0, which we can take to be saturated, that is, such that Q(t) is torsion free, whence so
that D(t) and Q(t) are (Ulrich) vector bundles (see [9, Thm. 2.9] or [5, (3.2)]).

The limit of P(Q(t)) ⊂ P(U
(t)
r ) defines a subvariety of P(U

(0)
r ) of the same dimension as

P(Q(t)), whence a coherent sheaf Q(0) of rank rk(Q(t)) with a surjection U
(0)
r → Q(0). Denoting

by D(0) its kernel, we have rk(D(0)) = rk(D(t)) and c1(D
(0)) = c1(D

(t)). Hence, (4.29) special-

izes to a destabilizing sequence for t = 0. Lemma 4.5 yields that D(0)∨ (respectively, Q(0)∨) is

the dual of a member of U(r− 1) (resp., the dual of Lǫr). It follows that D
(t)∨ (resp., Q(t)∨) is

a deformation of the dual of a member of U(r − 1) (resp., a deformation of L∨
ǫr), whence that

D(t) is a deformation of a member of U(r− 1), as both are locally free, and Q(t) ∼= Lǫr , for the
same reason.

In other words, the general member of M(r) is an extension of Lǫr by a member of M(r−1).
Hence M(r) = M(r)ext, contradicting Lemma 4.6. �

The collection of the previous results gives the following

Theorem 4.8. Let (X0, ξ) ∼= (P(E0),OP(E0)(1)) be a 3-fold scroll over F0, with E0 as in
Assumptions 1.7. Let ϕ : X0 → F0 be the scroll map and F be the ϕ-fibre. Let r > 2 be any
integer. Then the moduli space of rank-r vector bundles Ur on X0 which are Ulrich w.r.t. ξ
and with first Chern class

c1(Ur) =

{

rξ + ϕ∗OF0(
r+3
2 , (r−1)

2 b0 − r), if r is odd,

rξ + ϕ∗OF0(
r
2 ,

r
2b0 − r), if r is even.

is not empty and it contains a generically smooth component M(r) of dimension

dim(M(r)) =

{

(r2−1)
4 (6b0 − 4), if r is odd,

r2

4 (6b0 − 4) + 1, if r is even.

The general point [Ur] ∈ M(r) corresponds to a slope-stable vector bundle, of slope w.r.t. ξ
given by µ(Ur) = 8b0 − k0 − 3.

Proof. It directly follows from Theorem 3.1, (4.6), (4.7) and from Lemmas 4.4, 4.6 and Propo-
sition 4.7. �
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If in particular we set b0 = 3 and r = 2, then from Theorem 4.8 one gets

c1(U2) = 2ξ + ϕ∗OF0(1, 1),

dim(M(2)) =
7

2
(4) + 1 = 15

and

µ(U2) = 21− k0,

which is what was obtained in [18, Proposition 5.7] with k0 = 7, 8, 9, 10.

4.2. Higher rank Ulrich vector bundles on 3-fold scrolls over Fe, e > 0. Here we focus
on the case e > 0. The strategy we will use is similar to that in § 4.1, thus we will be brief. We
will inductively define irreducible families of vector bundles on (Xe, ξ) whose general members
will be slope–stable Ulrich bundles, obtained by induction as deformations of extensions of
lower ranks Ulrich bundles.

The main difference with respect to the case e = 0 is that there are no Ulrich line bundles
w.r.t. ξ on (Xe, ξ) when e > 0, as it follows from Theorem 2.1. Therefore our starting point
for the inductive process will be rank-2 Ulrich vector bundles as in Theorem 3.2 which, using
extensions, recursive procedures, deformations and moduli theory, will allow us to construct
slope-stable Ulrich vector bundles on (Xe, ξ) of even ranks 2h, for any h > 1, and to study
their moduli spaces.

We start by defining the irreducible scheme M(2) to be the component M as in Theorem
3.2. Recall that M(2) = M is generically smooth, of dimension dim(M(2)) = 6be − 9e − 3
and that the general member [U2] ∈ M(2) is a rank-2 Ulrich vector on Xe, which is slope-
stable of slope µ(U2) = 8be − ke − 12e − 3 w.r.t. ξ, and whose first Chern class is c1(U2) =
2ξ + ϕ∗OFe

(1, be − e− 2).
Assume by induction, to have defined an irreducible scheme M(2h − 2), for some h > 2,

similarly as in [12] we defineM(2h) to be the (possibly empty a priori) component of the moduli
space of Ulrich bundles on (Xe, ξ) containing bundles F2h that are non-splitting extensions of
the form

(4.23) 0 → U′
2 → F2h → U2h−2 → 0,

with [U′
2] ∈ M(2) and [U2h−2] ∈ M(2h − 2), and such that U′

2 6∼= U2h−2 when h = 2. As in
§ 4.1, we let M(2h)ext denote the locus in M(2h) of bundles that are non-splitting extensions
of the form (4.23).

In the next results we will prove that non-trivial extensions as in (4.23) always exist and
that M(2h)ext 6= ∅, so in particular M(2h) 6= ∅, for any h > 2. In statements and proofs below
we will use the following notation: U′

2 will correspond to a general member of M(2) and U2h−2

to a general member of M(2h − 2), with U′
2 6∼= U2h−2 when h = 2. We will denote by F2h

a general member of M(2h)ext and, in bounding cohomologies, we will use the fact that U2h

specializes to F2h in an irreducible flat family.
All vector bundles F2h, h > 2, recursively defined as in (4.23) are of rank 2h and Ulrich

w.r.t. ξ, since extensions of Ulrich bundles are again Ulrich. Their first Chern class is given
by

(4.24) c1(F2h) := 2hξ + ϕ∗OFe
(h, h(be − e− 2)) = h c1(U2)

and its slope w.r.t. ξ is

(4.25) µ(F2h) = 8be − ke − 12e− 3.

Moreover, from Theorem 1.4-(a), any such F2h is strictly semistable and slope-semistable,
being extensions of Ulrich bundles of the same slope.

Lemma 4.9. Let h > 1 be an integer and assume M(2k) 6= ∅ for all 1 6 k 6 h. Then

(i) hj(U2h ⊗ U′
2
∨) = hj(U′

2 ⊗ U∨
2h) = 0 for j = 2, 3,

(ii) χ(U2h ⊗ U′
2
∨) = χ(U′

2 ⊗ U∨
2h) = h(4 + 9e− 6be),
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(iii) hj(U2h ⊗ U∨
2h) = 0 for j = 2, 3,

(iv) χ(U2h ⊗ U∨
2h) = h2(4 + 9e− 6be).

Proof. For h = 1, (iii) and (iv) follow from the proof of Theorem 3.2. As for (i), the vanishings
hold when U′

2 = U2 once again by the proof of Theorem 3.2, and thus, by semicontinuity, they
also hold for a general pair ([U′

2], [U2]) ∈ M(2) ×M(2). Similarly, (ii) follows from the proof
of Theorem 3.2, since the given χ is constant as U2 and U′

2 vary in M(2).
We now prove the statements for any integer h > 2 by induction. Assume therefore that

they are satisfied for all positive integers k less than h.
(i) Let j ∈ {2, 3}. By specialization and (4.23) we have

hj(U2h ⊗ U′
2
∨
) 6 hj(F2h ⊗ U′

2
∨
) 6 hj(U′

2 ⊗ U′
2
∨
) + hj(U2h−2 ⊗ U′

2
∨
),

and the latter are 0 by induction. Similarly, by specialization and the dual of (4.23) we have

hj(U′
2 ⊗ U2h

∨) 6 hj(U′
2 ⊗ F2h

∨) 6 hj(U′
2 ⊗ U′

2
∨
) + hj(U′

2 ⊗ U2h−2
∨),

which are again 0 by induction.
(ii) By specialization, (4.23) and induction we have

χ(U2h ⊗ U′
2
∨
) = χ(F2h ⊗ U′

2
∨
) = χ(U′

2 ⊗ U′
2
∨
) + χ(U2h−2 ⊗ U′

2
∨
)

= (4 + 9e− 6be) + (h− 1)(4 + 9e− 6be) = h(4 + 9e− 6be).

Likewise, by specialization, the dual of (4.23) and induction, the same holds for χ(U′
2⊗U2h

∨).
(iii) Let j = 2, 3; by specialization, (4.23) and its dual we have

hj(U2h ⊗ U∨
2h) 6 hj(F2h ⊗ F∨

2h) ≤ hj(U′
2 ⊗ F∨

2h) + hj(U2h−2 ⊗ F∨
2h)

6 hj(U′
2 ⊗ U′

2
∨
) + hj(U′

2 ⊗ U∨
2h−2) + hj(U2h−2 ⊗ U′

2
∨
) + hj(U2h−2 ⊗ U∨

2h−2),

which are all 0 by induction.
(iv) By specialization, (4.23) and its dual we have

χ(U2h ⊗ U∨
2h) = χ(F2h ⊗ F∨

2h) = χ(U′
2 ⊗ F∨

2h) + χ(U2h−2 ⊗ F∨
2h)

= χ(U′
2 ⊗ U′

2
∨
) + χ(U′

2 ⊗ U∨
2h−2) + χ(U2h−2 ⊗ U′

2
∨
) + χ(U2h−2 ⊗U∨

2h−2).

By induction, this equals (4 + 9e − 6be) + 2(h − 1)(4 + 9e − 6be) + (h − 1)2(4 + 9e − 6be) =
h2(4 + 9e− 6be). �

Proposition 4.10. For all integers h > 1 the scheme M(2h) is nonempty and its general
member U2h is an Ulrich vector bundle w.r.t. ξ which satisfies rk(U2h) = 2h, c1(U2h) =
2hξ + ϕ∗OFe

(h, h(be − e− 2)) and hj(U2h ⊗ U∨
2h) = 0 for j = 2, 3.

Proof. We prove this by induction on h, the case h = 1 being satisfied by the choice of M(2).
Therefore, let h > 2; for general [U2h−2] ∈ M(2h − 2) and [U′

2] ∈ M(2), one has

dim(Ext1(U2h−2,U
′
2)) = h1(U′

2 ⊗ U∨
2h−2).

By Lemma 4.9(i) we have that hj(U′
2 ⊗ U∨

2h−2) = 0, for j = 2, 3. Therefore

χ(U′
2 ⊗ U∨

2h−2) = h0(U′
2 ⊗ U∨

2h−2)− h1(U′
2 ⊗U∨

2h−2)

so, by specialization and invariance of χ in irreducible families, we have

dim(Ext1(U2h−2,U
′
2)) = h1(U′

2 ⊗ U∨
2h−2)(4.26)

= −χ(U′
2 ⊗U∨

2h−2) + h0(U′
2 ⊗ U∨

2h−2)

> −χ(U′
2 ⊗U∨

2h−2)

= −χ(U′
2 ⊗ F∨

2h−2)(4.27)

= (h− 1)(6be − 9e− 4) > 0

the latter equality following from Lemma 4.9-(ii) (with h replaced by h− 1) whereas the last
strict inequality following from h > 2. Hence, by its very definition, one has that M(2h)ext,
and so also M(2h), is not empty.
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The members of M(2h) have rank 2h and first Chern class 2hξ +ϕ∗OFe
(h, h(be − e− 2)) as

in (4.24), since c1(U2h) = c1(F2h) being constant in M(2h). It is immediate that extensions
of Ulrich bundles are still Ulrich, so the general member U2h of M(2h) is an Ulrich bundle. It
also satisfies hj(U2h ⊗ U∨

2h) = 0 for j = 2, 3 by Lemma 4.9-(iii). �

We need to prove that the general member of M(2h) corresponds to a slope–stable vector
bundle, that M(2h) is generically smooth and we need to compute the dimension at its general
point [U2h]. We will again prove all these facts by induction on h.

Similarly as in the case e = 0, we need the following auxiliary result.

Lemma 4.11. Let F2h correspond to a general member of M(2h)ext, sitting in an extension
like (4.23). Assume furthermore that U′

2 and U2h−2 are slope–stable. Let D be a destabilizing
subsheaf of F2h. Then D∗ ∼= U′

2
∨ and (F2h/D)∨ ∼= U∨

2h−2.

Proof. The proof is almost identical to that of Lemma 4.5, so it is left to the reader. �

Proposition 4.12. For all integers h > 1 the scheme M(2h) is not empty, generically smooth
of dimension

dim(M(2h)) = 1 + h2(6be − 12e − 3).

Its general member corresponds to a slope-stable bundle U2h whose slope w.r.t. ξ is µ(U2h) =
8be−ke−12e−3. Furthermore, M(2h) properly contains the locally closed subscheme M(2h)ext,
namely dim(M(2h)ext) < dim(M(2h)).

Proof. We prove this by induction on h, the case h = 1 being satisfied by M(2) as in Theorem
3.2.

Let therefore h > 2 and assume that we have proved the lemma for all positive integers
k 6 h− 1; we will prove it for h.

The slope of the members of M(2) and M(2h − 2) are both equal to 8be − ke − 12e − 3 as
in (4.25). Thus, by [9, Lemma 4.2], the general member [F2h] ∈ M(2h)ext corresponds to a
simple bundle. Hence, by semi-continuity, also the general member U2h of M(2h) is simple
and it also satisfies hj(U2h ⊗ U∨

2h) = 0 for j = 2, 3 by Lemma 4.9-(iii).
Therefore M(2h) is smooth at [U2h] (see, e.g., [9, Prop. 2.10]) with

dim(M(2h)) = h1(U2h ⊗ U∨
2h) = −χ(U2h ⊗ U∨

2h) + h0(U2h ⊗ U∨
2h)(4.28)

= h2(6be − 9e− 4) + 1,

using the facts that h0(U2h⊗U∨
2h) = 1 as U2h is simple, and that χ(U2h⊗U∨

2h) = h2(4+9e−6be)
by Lemma 4.9-(iv). This proves that M(2h) is generically smooth of the stated dimension.

Finally, we prove that U2h general is slope–stable and that dim(M(2h)ext) < dim(M(2h)).
If U2h general is not slope-stable, then as in the proof of Proposition 4.7, we may find a

one-parameter family of bundles {U
(t)
2h} over the disc ∆ such that U

(t)
2h is a general member of

M(2h) for t 6= 0 and U
(0)
2h lies in M(2h)ext, and such that we have a destabilizing sequence

(4.29) 0 → D(t) → U
(t)
2h → G(t) → 0

for t 6= 0, which we can take to be saturated, that is, such that G(t) is torsion free, whence
so that D(t) and G(t) are (Ulrich) vector bundles (see [9, Thm. 2.9] or [5, (3.2)]). The limit

of P(G(t)) ⊂ P(U
(t)
2h) defines a subvariety of P(U

(0)
2h ) of the same dimension as P(G(t)), whence

a coherent sheaf G(0) of rank rk(G(t)) with a surjection U
(0)
2h ։ G(0). Denoting by D(0) its

kernel, we have rk(D(0)) = rk(D(t)) and c1(D
(0)) = c1(D

(t)). Hence, (4.29) specializes to a
destabilizing sequence for t = 0.

Lemma 4.11 yields that D(0)∨ (resp., G(0)∨) is the dual of a member of M(2) (resp., of

M(2h)). It follows that D(t)∨ (resp., G(t)∨) is a deformation of the dual of a member of M(2))
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(resp., of M(2h)), whence that D(t) (resp., G(t)) is a deformation of a member of M(2) (resp.,

M(2h)), as both are locally free. It follows that [U
(t)
2h ] ∈ M(2h)ext for t 6= 0. Thus,

(4.30) M(2h)ext = M(2h).

On the other hand we have

(4.31) dim(M(2h)ext) 6 dim(P(Ext1(U2h−2,U
′
2))) + dim(M(2h − 2)) + dim(M(2)),

for general [U2h−2] ∈ M(2h − 2) and [U′
2] ∈ M(2). As U2h−2 and U′

2 are slope–stable by
induction, of the same slope, we have h0(U′

2 ⊗ U∨
2h−2) = 0. Lemma 4.9-(i), (ii) and (iii) thus

yield

h1(U′
2 ⊗ U∨

2h−2) = −χ(U′
2 ⊗ U∨

2h−2) = (h− 1)(6be − 9e− 4).

Hence, by (4.31) and (4.28) we have

dim(M(2h)ext) 6 (h− 1)(6be − 9e− 4)− 1 +
[

(h− 1)2(6be − 9e− 4) + 1
]

+ (6be − 9e− 3)

= (h2 − h+ 1)(6be − 9e− 4) + 1 < h2(6be − 9e− 4) + 1 = dim(M(2h)),

as it easily follows from the fact that h > 2. The previous inequality shows that dim(M(2h)ext) <
dim(M(2h)), as stated; in particular (4.30) is a contradiction, which forces also U2h general
to be slope-stable. �

The collection of the previous results gives the following

Theorem 4.13. Let (Xe, ξ) ∼= (P(Ee),OP(Ee)(1)) be a 3-fold scroll over Fe, with e > 0 and Ee

as in Assumptions 1.7. Let ϕ : Xe → Fe be the scroll map and F be the ϕ-fibre. Let h > 1
be any integer. Then the moduli space of rank-2h vector bundles U2h on Xe which are Ulrich
w.r.t. ξ and with first Chern class

c1(U2h) = 2hξ + ϕ∗OFe
(h, h(be − e− 2))

is not empty and it contains a generically smooth component M(2h) of dimension

dim(M(2h)) = h2(6be − 9e− 4) + 1.

The general point [U2h] ∈ M(2h) corresponds to a slope-stable vector bundle, of slope w.r.t. ξ
given by µ(Ur) = 8be − ke − 12e− 3.

Proof. It directly follows from Theorem 3.2, (4.24), (4.25) and from Propositions 4.10, 4.12.
�

If in particular we set e = 1, r = 2, be = 5 and k1 = 10, 11 then from Theorem 4.13 one gets

c1(U2) = 2ξ + ϕ∗OF1(1, 5− 1− 2)) = 2ξ + ϕ∗OF1(1, 2))

dim(M(2)) = h2(6be − 9e− 4) + 1 = 12(30 − 9− 4) + 1 = 18

and

µ(U2) = 40− k1 − 12− 3 = 25− k1.

The 3-fold X1 has degree, deg(X1), either 11 or 10 because deg(X1) = 21 − k1, and such
threefolds have been considered in [18, Theorem 5.9] where it was only shown the existence of
rank two Ulrich bundles on them, but nothing was said about their moduli space.
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