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Abstract
We replace strong independence in credal networks with
the weaker notion of epistemic irrelevance. Focusing on
directed trees, we show how to combine local credal sets
into a global model, and we use this to construct and jus-
tify an exact message-passing algorithm that computes up-
dated beliefs for a variable in the tree. The algorithm,
which is essentially linear in the number of nodes, is for-
mulated entirely in terms of coherent lower previsions. We
supply examples of the algorithm’s operation, and report
an application to on-line character recognition that illus-
trates the advantages of our model for prediction.

Keywords. Coherence, credal network, epistemic irrelev-
ance, epistemic independence, strong independence, im-
precise Markov tree, separation, hidden Markov chain.

1 Introduction

The last twenty years have witnessed a rapid growth of
graphical models in the fields of artificial intelligence and
statistics. These models combine graphs and probability
to address complex multivariate problems in a variety of
domains, such as medicine, finance, risk analysis, defense,
and environment, to name just a few.

Much has been done also on the front of imprecise probab-
ility. Credal networks [3] have been and still are the sub-
ject of intense research. A credal network creates a global
model of a domain by combining local uncertainty mod-
els using some notion of independence, and then uses this
to do inference. The local models represent uncertainty by
closed convex sets of probabilities, also called credal sets.

The notion of independence used with credal nets in the
vast majority of cases is that of strong independence (with
some exceptions in [6]). Loosely speaking, two variables
X ,Y are strongly independent if the credal set for (X ,Y )
can be regarded as originating from a number of precise
models in each of which X and Y are stochastically inde-
pendent. Strong independence is closely related with the
sensitivity analysis interpretation of credal sets, which re-

gards an imprecise model as arising out of partial ignor-
ance of a precise one. This is a somewhat narrow view,
and it does not apply in general.

An alternative and attractive way to express irrelevance
that is not committed to the sensitivity analysis interpret-
ation is offered by epistemic irrelevance [15]: we say that
X is irrelevant to Y if observing X does not affect beliefs
about Y . Epistemic irrelevance is defined directly in terms
of a subject’s beliefs and is therefore very well suited for
a behavioural theory of imprecise probability. It is also
weaker than strong independence, and it therefore does not
lead to overconfident inferences when the sensitivity ana-
lysis interpretation is not justified.

At this point the question that we address in this paper
should be clear: can we define credal nets based on epi-
stemic irrelevance, and moreover create an exact algorithm
to perform efficient inferences with them? We give a fully
positive answer to this question in the special case that (i)
the graph under consideration is a directed tree, and (ii) the
related variables assume only finitely many values. The in-
tuitions that showed us the way towards this result origin-
ated in previous work done by some of us on imprecise
probability trees [7] and imprecise Markov chains [8].

How do we address this problem? After giving some pre-
liminary notions and introducing the model in Sec. 2, we
discuss in Sec. 3 how to combine marginal models into
joint ones reflecting certain irrelevance assessments, in a
way that is as conservative as possible. We comment on
the graphical separation criteria induced by epistemic ir-
relevance in Sec. 5. We then go on to develop and jus-
tify an inference algorithm for treating the model as an ex-
pert system in Sec. 6. The algorithm is used to update the
tree: it computes posterior beliefs about a target variable
in the tree conditional on the observation of other vari-
ables, that are called instantiated, meaning that their value
is determined. It is based on message passing, as are the
traditional algorithms that have been developed for pre-
cise graphical models, and it has some remarkable prop-
erties: (i) it works in time essentially linear in the size of
the tree; (ii) it natively computes posterior lower and upper
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previsions (or expectations) rather than probabilities; (iii)
it is an algorithm for credal nets developed for the first
time exclusively using the formalism of coherent lower
previsions [15]; and (iv) it is shown to lead to coherent
inferences under mild conditions. We give a step-by-step
example of the way inferences can be done in our frame-
work in Sec. 7, where we also comment on the intriguing
relationship between the failure of certain classical separ-
ation properties in our framework, and dilation [10, 14].
The last part of the paper focuses on numerical simula-
tions. In Sec. 8 we empirically measure the amount of im-
precision introduced by using epistemic irrelevance rather
than strong independence in a credal tree, when propagat-
ing inferences backwards (towards the root) from instanti-
ated nodes to the target node; indeed, it can be shown [7]
that there is no difference between inferences that go for-
ward from instantiated nodes to target under strong inde-
pendence and epistemic irrelevance. In Sec. 9 we present
an application of our algorithm to on-line character recog-
nition. We learn the probabilities from data and compare
the predictions of the our approach with those of its pre-
cise probability counterpart. The results are encouraging:
they show that the tree can be used for real applications,
and that the imprecision it originates is justified.

Due to lack of space, we must assume the reader has a
working knowledge of the basics of Walley’s [15] theory
of coherent lower previsions. We also refrain from giving
proofs of technical results for the same reason, and rather
stress motivation, simple justifications and examples.

2 Credal trees under epistemic irrelevance

Basic notions and notation. We consider a rooted and
directed discrete tree with finite width and depth. We call
T the set of its nodes s, and we denote the root, or initial,
node by �. Consider any node s, then we denote the set of
its parents by P(s). Of course, P(�) = /0, and for s 6=� we
have that P(s) = {m(s)} where m(s) is the mother node of
s. Also, for each node s, we denote the set of its children by
C(s), and the set of its siblings by S(s). Clearly, S(�) = /0,
and if s 6= � then S(s) = C(m(s)) \ {s}. If C(s) = /0, then
we call s a leaf, or terminal node.

For nodes s and t, we write sv t if s precedes t, i.e., if there
is a directed segment in the tree from s to t. The relationv
is a special partial order on the set T . A(s) := {t ∈ T : t @ s}
denotes the set of ancestors of s, and D(s) := {t ∈ T : s@
t} its set of descendants. Here s @ t means that s v t and
s 6= t. We also use ↑s := A(s)∪{s}, ↓s := D(s)∪{s}, ↑S :
=
⋃
{↑s : s ∈ S} and ↓S :=

⋃
{↓s : s ∈ S} for any subset

S⊆ T .

With each node s of the tree, there is associated a vari-
able Xs assuming values in a finite non-empty set Xs. We
denote the set of all real-valued maps (gambles) on Xs
by L (Xs). We extend this notation to more complicated

situations as follows. If S is any subset of T , then we de-
note by XS the tuple of variables whose components are
the Xs for all s ∈ S. This new joint variable assumes val-
ues in the finite set XS :=×s∈SXs, and the corresponding
set of gambles is denoted by L (XS). Generic elements of
Xs are denoted by xs or zs. Similarly for xS and zS in XS.
Also, if we mention a tuple zS, then for any t ∈ S, the cor-
responding element in the tuple will be denoted by zt . We
assume all variables in the tree to be logically independent.

Local uncertainty models. We now add a local uncer-
tainty model to each of the nodes s. If s is not the root node,
i.e., has a mother m(s), then this local model is a (separ-
ately coherent) conditional lower prevision Qs(·|Xm(s)) on
L (Xs): for each possible value zm(s) of the variable Xm(s)
associated with its mother m(s), we have a coherent lower
prevision Qs(·|zm(s)) for the value of Xs, conditional on
Xm(s) = zm(s). In the root, we have an unconditional local
uncertainty model Q

�
for the value of X�; Q

�
is a co-

herent lower prevision on L (X�). We use the common
generic notation Qs(·|XP(s)) for all these local models.

Global uncertainty models. In this and the follow-
ing two sections, we show how all these local models
Qs(·|Xm(s)) can be combined into global uncertainty mod-
els. If we generically denote by the symbol Ps lower pre-
visions on L (X↓s), representing information about X↓s,
then this means we want to end up with an unconditional
joint lower prevision P := P� on L (XT ) for all variables
in the tree, as well conditional lower previsions Ps(·|Xm(s))
on L (X↓s) for all non-initial nodes s. Ideally, we want
these global (conditional) lower previsions to be coherent
with one another, and to reflect the conditional irrelevan-
cies (or Markov-type conditions) that we want the graph-
ical structure of the tree to encode. In addition, we want
them to be as conservative (small) as possible.

The interpretation of the graphical model. Consider
any node s in the tree, and its parent set P(s) [either
empty or equal to {m(s)}]. We also consider the set s :=
T \ [D(s)∪P(s)] of its non-parent non-descendants. Then
conditional on the parent variables XP(s), the non-parent
non-descendant variables Xs are assumed to be epistemic-
ally irrelevant to the variables X↓s associated with s and its
descendants. This interpretation turns the tree into a credal
tree under epistemic irrelevance, and we shall also use the
term imprecise Markov tree (IMT) for it.

In terms of the global models, this means that for all s∈ T ,
for all S⊆ s and for all zS∪P(s) ∈XS∪P(s):

Ps(·|zP(s)) = Ps(·|zS∪P(s)). (1)

We discuss the separation properties that accompany
this interpretation in some detail in Sec. 5. For now,
we focus on one immediate consequence that will help



us go from local to global models in Sec. 4. Con-
sider some non-initial node s. The interpretation of the
graphical structure of the tree tells us that for each
sibling c ∈ S(s) of s, the variable Xc is epistemic-
ally irrelevant to the variable Xs, conditional on Xm(s).

Xm(s)

Xs . . . Xc

It even tells us that for any
non-empty set S ⊆ S(s) of
siblings of s, the variable XS
is epistemically irrelevant to
Xs, conditional on Xm(s). We
conclude that all children of
a node are not just epistem-
ically irrelevant to each other: they are even epistemically
independent [15, Chapter 9], in some very specific sense.

3 Net-independent natural extension

This leads us to the following small digression. We con-
sider the following problem, the solution of which will
help us in our discussion further on. Suppose we have a
number of marginal lower previsions Pn representing be-
liefs about the values that each of a finite number of (lo-
gically independent) variables Xn assume in the respective
finite sets Xn, n ∈ N, where N is some finite set.

Net-independent products. We now want to construct
a joint lower prevision PN on L (XN), where XN =
×n∈NXn, that coincides with the marginals Pn on their re-
spective domains L (Xn), and such that this joint reflects
the following structural assessments: for each o ∈ N and
each non-empty I ⊆ N \{o}, the variables XI are epistem-
ically irrelevant to the variable Xo. In other words, learning
the value of any number of these variables does not affect
beliefs about any single other variable amongst them. We
then call the variables Xn, n ∈ N net-independent.

Such irrelevance assessments are useful because they al-
low us to turn marginal into conditional lower previsions.
Indeed, for each o∈N and each I ⊆N \{o}we can use the
epistemic irrelevance of XI to Xo to infer from the marginal
lower prevision Po a conditional lower prevision Po(·|XI)
on L (Xo) given by:

Po(h|xI) := Po(h) for all gambles h on Xo.

So we can use the assessment of net-independence of the
variables Xn, n ∈ N to infer from the marginals a family of
conditional lower previsions:

N (Pn,n ∈ N) := {Po(·|XI) : o ∈ N and I ⊆ N \{o}}.

Definition 1. A coherent joint lower prevision PN on
L (XN) that coincides with the marginal lower previ-
sions Pn on their domains L (Xn), n ∈ N and that is
coherent with the family of conditional lower previsions
N (Pn,n∈N) is called a net-independent product of these
marginals. If it exists, then the point-wise smallest such

net-independent product is called the net-independent nat-
ural extension of these marginals, and denoted by⊗n∈NPn.

Conditioning factorising lower previsions. The fol-
lowing notion of factorisation is intimately linked with that
of a net-independent product. It will also play a crucial part
in our development of an algorithm for treating an impre-
cise Markov tree as an expert system.

Definition 2. We call a coherent lower prevision PN on
L (XN) factorising if for all o ∈ N and all non-empty I ⊆
N \{o}, all g∈L (Xo) and all non-negative fi ∈L (Xi),
i ∈ I, PN( f g) = PN( f PN(g)), where f := ∏i∈I fi.

As an important example, the so-called strong product [3]
×n∈NPn of the marginal lower previsions Pn is factorising.
But for any coherent factorising joint lower prevision PN ,
we see that for any non-empty subset I of N:

PN(×i∈IAi) = ∏
i∈I

PN(Ai) and PN(×i∈IAi) = ∏
i∈I

PN(Ai),

(2)
where Ai ⊆Xi for all i ∈ I. Let us call any real functional
Φ on L (X) strictly positive if Φ(I{x}) > 0 for all x ∈X.
Then the following result is immediate from Eq. (2).

Proposition 1. A factorising coherent lower prevision PN
on L (XN) is strictly positive if and only if all its mar-
ginals are, and its conjugate upper prevision PN is strictly
positive if and only if all its marginals are.

As a next step, suppose we want to condition a coherent
and factorising joint PN on an observation XI = xI , where
I is some proper subset of N. To this end, we calculate the
regular extension [15, Appendix J]: when PN(I{xI}) > 0,

R(h|xI) := max{µ ∈ R : PN(I{xI}[h−µ])≥ 0},

where h is any gamble on XO and O is any non-empty
subset of N \I. Otherwise R(·|xI) is vacuous. Then because
PN is factorising:

PN(I{xI}[h−µ]) = PN(I{xI}PN(h−µ))

=

{
PN({xI})(PN(h)−µ) if PN(h)≥ µ

PN({xI})(PN(h)−µ) if PN(h)≤ µ,

so we conclude that, quite interestingly,

R(h|xI) = PN(h) as soon as PN({xI}) > 0. (3)

Because we are working in a finitary context [XN is a fi-
nite set], the regular extension R(·|XI) is guaranteed to be
coherent with the joint lower prevision PN [15, Sec. J3].
This, together with an interesting recent coherence result
by Enrique Miranda [11, Theorem 5], leads us to the fol-
lowing conclusion.



Proposition 2. Any coherent joint lower prevision PN on
L (XN) that is factorising and strictly positive,1 is a net-
independent product of its marginals.

As an immediate consequence, the strong product×n∈NPn
of a collection of strictly positive marginals Pn, n ∈ N,
is also a net-independent product of these marginals, and
is therefore coherent with the associated family of condi-
tional lower previsions N (Pn,n ∈ N). So this family is it-
self always guaranteed to be coherent, and because all the
sets Xn are finite, we can invoke Walley’s Finite Exten-
sion Theorem [15, Theorem 8.1.9] to conclude that there
always is a point-wise smallest joint lower prevision that is
coherent with the family N (Pn,n ∈ N). This provides the
most important step in the proof of the following result.
Another crucial step is provided by the fact that, since the
strong product is a net-independent product of the mar-
ginals Pn, n ∈ N, it has to dominate the net-independent
natural extension: ×n∈NPn ≥⊗n∈NPn.

Proposition 3. For any collection of strictly positive and
coherent marginal lower previsions Pn on L (Xn), n ∈
N, their net-independent natural extension ⊗n∈NPn exists,
and it is a factorising and strictly positive coherent lower
prevision on L (XN).

4 Constructing the most conservative joint

We now show how to construct specific global models for
the variables in the tree, and argue that these are the most
conservative coherent models that extend the local models
and express all conditional irrelevancies (1) encoded in the
imprecise Markov tree. In the next section, we will use
these global models to construct and justify an algorithm
for treating the imprecise Markov tree as an expert system.

The crucial step lies in the recognition that any tree can be
constructed recursively from the leaves up to the root, by
using basic building blocks of the following type:

Xm(s)

Xs

Xc1 Xc2
. . . Xcn

Qs(·|Xm(s))

Pck
(·|Xs))

The global models are then also constructed in a recurs-
ive manner, following the same pattern. Consider a node
s and suppose that, in each of its children c ∈ C(s), we
already have a global conditional lower prevision Pc(·|Xs)

1We strongly suspect that this proposition, and a number of further
results that build on it, such as Proposition 3, can be extended to the case
that not PN but PN is strictly positive. We have no proof yet, however.

on L (X↓c). We construct a global conditional lower pre-
vision Ps(·|XP(s)) on L (X↓s) by backwards recursion:

Ps(·|Xs) :=⊗c∈C(s)Pc(·|Xs) (4)

Ps(·|XP(s)) := Qs(Ps(·|Xs)|XP(s))

= Qs(⊗c∈C(s)Pc(·|Xs)|XP(s)), (5)

the conditional lower prevision Ps(·|Xs) on L (X↓C(s)) be-
ing the net-independent natural extension of the condi-
tional lower previsions Pc(·|Xs) on L (X↓c), c ∈ C(s). If
we start in leaves t with the ‘boundary condition’

Pt(·|XP(t)) := Qt(·|XP(t)) for all leaves t, (6)

then the recursion relations (4) and (5) eventually lead to
a global model Ps(·|Xm(s)) in all nodes s of the tree, and
in particular to a joint model P := P� on L (XT ). These
are the global (conditional) lower previsions we have been
looking for, as the following theorem tells us. Its proof
proceeds in a recursive fashion, similar to the construction
of the global models. It relies rather heavily on the fact
that the net-independent natural extension is factorising,
and on the coherence result by Miranda [11, Theorem 5],
already mentioned before Proposition 2.

Theorem 4. If all local models Qs(·|XP(s)) on L (Xs), s∈
T are strictly positive, then the global models Ps(·|XP(s))
on L (X↓s), s ∈ T obtained through Eqs. (4)–(6), con-
stitute the point-wise smallest coherent family of (condi-
tional) lower previsions that (i) extend the local models,
and (ii) satisfy the epistemic irrelevance conditions (1) en-
coded in the graphical structure.

5 Some separation properties

Without going into too much detail, we would like to point
out one of the more striking differences between the separ-
ation properties in imprecise Markov trees under epistemic
irrelevance, and the more usual ones for Bayesian nets [12]
and credal nets under strong independence [3].

It is clear from the interpretation of the graphical model
described in Sec. 2 that we have the following simple sep-
aration results:

Xi1 Xi2 Xt Xi2Xi1 Xt

where in both cases, Xi2 separates Xt from Xi1 : when the
value of Xi2 is known, additional information about the
value of Xi1 does not affect beliefs about the value of Xt . In
this figure, between i1 and i2, and between i2 and t, there
may be other nodes, but the arrows along the path segment
through these nodes should all point in the indicated dir-
ections. The underlying idea is that t is a (descendant of
some) child c of i2, and conditional on the mother i2 of
c, the non-parent non-descendant i1 of c is epistemically
irrelevant to c and all of its descendants.



On the other hand, and in contradistinction with what we
are used to in Bayesian nets, we will not generally have
separation in the following configuration:

Xi1 Xi2 Xt

where Xi2 does not necessarily separate Xt from Xi1 . We
will come across a simple counterexample in Sec. 7.
Where does this difference with the case of Bayesian nets
originate? It is clear from the reasoning above that Xi2
separates Xi1 from Xt : conditional on Xi2 , Xt is epistemic-
ally irrelevant to Xi1 . For precise probability models, irrel-
evance generally implies symmetrical independence, and
therefore this will generally imply that conditional on Xi2 ,
Xi1 is epistemically irrelevant to Xt as well. But for impre-
cise probability models no such symmetry is guaranteed
[2], and we therefore cannot infer that, generally speak-
ing, Xi2 will separate Xi1 from Xt . As a general rule, we
can only infer separation if the arrows point from the ‘sep-
arating’ variable Xi2 towards the ‘target’ variable Xt .

6 Algorithm for treating the imprecise
Markov tree as an expert system

We now consider the case where the imprecise Markov
tree is treated as an expert system: we are interested in
making inferences about the value of the variable Xt in
some target node t, when we know the values xE of the
variables XE in a set E ⊆ T \{t} of evidence nodes.

The formulation of the problem. If we assume that the
values of the remaining variables are missing at random,
then we can do this by conditioning the joint P obtained
above on the available evidence ‘XE = xE ’. We will ad-
dress this problem by updating the lower prevision P to
the lower prevision Rt(·|xE) on L (Xt) using regular ex-
tension [15, Appendix J]:

Rt(g|xE) = max{µ ∈ R : P(I{xE}[g−µ])≥ 0} (7)

for all gambles g on Xt , assuming that P({xE}) > 0.
Consider the map ρg : R→ R : µ 7→ P(I{xE}[g− µ]). By
coherence of P, |ρg(µ1)− ρg(µ2)| ≤ |µ1 − µ2|P({xE}),
which implies that ρg is continuous. Coherence of P also
guarantees that ρg is concave and non-increasing. Hence
{µ ∈ R : ρg(µ) ≥ 0} = (−∞,Rt(g|xE)], which shows that
the supremum that we should have a priori used in (7)
is indeed a maximum. Rt(g|xE) is the right-most zero of
ρg, and it is, again by coherence of P, guaranteed to lie
between infg and supg. If moreover P({xE}) > 0, then it
is the unique zero. It appears that any algorithm for cal-
culating Rt(g|xE) will benefit from being able to calculate
the values of ρg, or at least check their signs, efficiently.

Calculating the values of ρg recursively. Recall that
the joint P can be constructed recursively from leaves to

root. The idea we now use is that calculating ρg(µ) =
P(I{xE}[g−µ]) becomes easier if we graft the structure of
the tree onto the argument gµ := I{xE}[g− µ] as follows.
Define gµ

e := I{xe} for all e ∈ E, gµ

t := g− µ , and gµ
s := 1

for s ∈ T \ (E ∪{t}), whence gµ = ∏s∈T gµ
s . Also define,

for any s ∈ T , the gamble φ
µ
s on X↓s by φ

µ
s := ∏u∈↓s gµ

u .
Then φ

µ

� = gµ , φ
µ
s ≥ 0 if s 6v t, and for any s ∈ T :

φ
µ
s = gµ

s ∏
c∈C(s)

φ
µ
c , (8)

where we use the convention that ∏u∈ /0 αu = 1. Eq. (8) is
the argument counterpart of Eq. (5). Also, if s 6v t then gµ

s
and φ

µ
s do not depend on µ , nor on g.

First, let us consider any node s 6v t. We define the mes-
sages πs and πs recursively by

πs := Qs

(
gµ

s ∏
c∈C(s)

πc|Xm(s)

)
πs := Qs

(
gµ

s ∏
c∈C(s)

πc|Xm(s)

)
,

(9)
summarised by the self-explanatory shorthand notation:
πs = Qs(g

µ
s ∏c∈C(s) πc|Xm(s)). There are two possibilities:

πs =


Qs

(
{xs}|Xm(s)

)
∏

c∈C(s)
πc(xs) if s ∈ E

Qs

(
∏

c∈C(s)
πc|Xm(s)

)
if s /∈ E.

The messages πs and πs can be seen as tuples of real num-
bers, with as many components as there are elements in
Xm(s): one for each of the possible values of Xm(s). As
their notation suggests, they do not depend on the choice
of g or µ , but only (at most) on which nodes are instan-
tiated, i.e., belong to E, and on which values xE the vari-
ables for these instantiated nodes assume. It then follows
from Eqs. (5) and (8) and the factorisation property2 of the
local product lower previsions that:

Ps(φ
µ
s |Xm(s)) = πs and Ps(φ µ

s |Xm(s)) = πs. (10)

Next, we turn to nodes sv t. Define the messages π
µ
s by

π
µ
s := Qs(ψ

µ
s |XP(s)), (11)

where the gambles ψ
µ
s on Xs are given by the recursion

relations:

ψ
µ

t := max{g−µ,0}∏
c∈C(t)

πc +min{g−µ,0}∏
c∈C(t)

πc, (12)

and for each � 6= sv t, so m(s) exists,

ψ
µ

m(s) := gµ

m(s)

[
max{πµ

s ,0}∏
c∈S(s)

πc +min{πµ
s ,0}∏

c∈S(s)
πc

]
.

(13)
2This shows that the results of updating the tree (and the algorithm we

are deriving) in this way will be exactly the same for any way of forming
a product of the local models for the children of s, provided only that
this product is factorising. For instance, using the strong product and the
net-independent natural extension will lead to the same inferences.



The messages π
µ
s are again tuples of real numbers, with

one component for each of the possible values of Xm(s).3

They depend on the choice of g or µ , as well as on which
nodes are instantiated and on which values xE the variables
for these instantiated nodes assume. It then follows from
Eqs. (5) and (8) and the factorisation property that

Ps(φ
µ
s |XP(s)) = π

µ
s , (14)

and of course ρg(µ) = π
µ

�. We conclude that we can find
the value of ρg(µ) by a backwards recursion method con-
sisting in passing messages up to the root of the tree, and
in transforming them in each node using the local uncer-
tainty models; see Eqs. (9) and (11)–(13).

There is a further simplification, because we are not ne-
cessarily interested in the actual value of ρg(µ), but rather
in its sign. It arises whenever there are instantiated nodes
above the target node: E ∩A(t) 6= /0. Let in that case et be
the greatest element of the chain E ∩A(t), i.e., the instan-
tiated node closest to t, and let st be its successor in the
chain ↑t. If we let λg(µ) be the real number

max{πµ
st (xet ),0}∏

c∈S(st )
πc(xet )+min{πµ

st (xet ),0}∏
c∈S(st )

πc(xet ),

then it follows from Eq. (12) that ψ
µ
et = I{xet }λg(µ). If we

now continue to use Eqs. (12) and (13) until the root of the
tree, we eventually find that

ρg(µ) =

{
P(I{xet })λg(µ) if λg(µ)≥ 0
P(I{xet })λg(µ) if λg(µ)≤ 0.

Since we assumed that P(I{xE}) > 0, it readily follows that
P(I{xet }) > 0, so we gather from Eq. (7) that Rt(g|xE) =
max{µ ∈ R : λg(µ) ≥ 0}. In fact, under the assumption
that P(I{xE}) > 0, λg(µ) ≥ 0 can be replaced in this ex-
pression by π

µ
st (xet ) ≥ 0. We conclude that in order to do

expert system inference of the type described above, we
can perform all calculations on the subtree ↓st , where the
new root st has local model Qst

(·|xet ). This is also borne
out by the discussion of the separation properties in Sec. 5.

An algorithm. We now convert these observations into a
workable algorithm. Using regular extension and message
passing, we are able to compute Rt(g|xE); we (i) choose
a µ ∈ [ming,maxg]; (ii) calculate the value of λg(µ) by
sending messages from the terminal nodes towards the
root; and (iii) look for the maximal µ that will make this
λg(µ) zero. But we have seen above that this naive ap-
proach can be sped up by exploiting the separation proper-
ties of the tree, and the independence of µ for some of the
messages. For a start, as we are only interested in the sign
of ρg(µ), which is determined by π

µ
st (xet ), we only have to

take nodes into consideration that strictly follow et .
3Of course, if s is the root node, then P(s) = /0 and π

µ
s is just a single

real number, which by Eq. (14) is equal to ρg(µ).
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The next thing a smarter implementation of the algorithm
can do is determine the trunk T̃ of the tree: those nodes that
precede the queried node t and strictly follow the greatest
observed element et preceding t. For the tree above for in-
stance, where X13 (in grey) is the queried node and the
light grey nodes {X2,X4,X14,X15,X17,X19,X20,X21,X23}
are instantiated, the trunk consists of T̃ = {X5,X12,X13}.

The start of the algorithm can be implemented with
the piece of pseudo-code on the left. Here, the queried

st := t
T̃ := {t}

while m(st) 6∈ E
do:

T̃ := T̃ ∪m(st)
st := m(st)

end while
et := m(st)

node t is known in advance and be-
sides the trunk T̃ , also the nodes st
and et are computed. We are espe-
cially interested in the nodes that
constitute the trunk, because only
these nodes will send messages to
their parents that depend on µ . As
a consequence, we can summarise
all the µ-independent messages by
propagating all messages until they

reach the trunk, which means that they have to be calcu-
lated only once.

The following piece of pseudocode does the trick. Both πc

for n ∈ T̃ do:
for c ∈C(n) do:

if c 6∈ T̃ then:
calculate πc

end if
end for
Πn := ∏

c∈C(s)\T̃
πc

end for

and πc can be calculated in
the recursive manner outlined in
Eq. (10), where the recursion
starts at the leaves and moves
up to (but stops right before) the
trunk. In the leaves, the local
lower and upper previsions of the
indicator of the evidence are sent
upwards if the leaf is instantiated;
if not the constant 1 is sent up,



which is equivalent to deleting the node from the tree. We
could envisage removing barren nodes (all of whose des-
cendants are uninstantiated, such as X6, . . . , X11, X16, X18,
X22 in the example tree above) from the tree beforehand,
but we believe the computational overhead created by the
search for them will void the gain.

At this point we can calculate π
µ
st (et). If we assume that

t, st , g, Πn and Πn for n ∈ T̃ are stored as global vari-
ables, the following function will do the job. Now that

function getJoint(µ)
s := t
while s 6= st do:

calculate ψ
µ
s

π
µ
s := Qs(ψ

µ
s |Xm(s))

s := m(s)
end while
calculate ψ

µ
st

π
µ
st (et) := Qst

(ψµ
st |xet )

return π
µ
st (et)

we have the code to calcu-
late π

µ
st (et), we can tackle

the final problem: find
the maximal µ for which
π

µ
st (et) = 0. In principle, a

secant root-finding method
could be used, but consid-
ering the computational
complexity of the getJoint
function, and using that
π

µ
st (et) is concave, we can

speed up the calculation of
the maximal root drastically as shown in the figure below.

If a, b, c, and d are distributed in such a way that ρg(a)≥
ρg(b) ≥ 0 ≥ ρg(c) ≥ ρg(d), then the root of ρg is in the
interval [smin,smax] := [p,min{p,r}].

µ

Rt(g|xE)

a b

c

d

p q r

function concaveRoot(a,b,c,d,smin,smax)
µ := 1

2 (smin + smax)
f (µ) := getJoint(µ)

if f (µ) > 0 then:
a := b
b := (µ, f (µ))
smax = min{bx− bx−ax

by−ay
by,smax}

else
d := c
c := (µ, f (µ))
smax = min{dx− dx−cx

dy−cy
dy,smax}

end if
smin = bx− bx−cx

by−cy
by

if smax− smin < tolerance then:
return smin

else
return concaveRoot(a,b,c,d,smin,smax)

end if
Here, smin is prefered over smax as return value to stay on
the conservative (small) side. If by−ay = 0, then we define
min{bx− bx−ax

by−ay
by,smax} to be equal to smax and similarly

for dy− cy = 0. Keeping this in mind, we can finalise our
algorithm by invoking a call to the following function.

function getLowerPrevisionGivenEvidence(g)
a := (min(g), getJoint(ax))
dx := (max(g), getJoint(ad))
return concaveRoot(a,a,d,d,ax,dx)

The complexity of our algorithm is something that should
be investigated further. But we can say something tak-
ing into account that for a fixed µ each node makes a
single local computation and then propagates the result to
the mother node: this implies that, with µ fixed, the al-
gorithm is linear in the number of nodes. The iterations
on µ create some additional complexity, but the number
of iterations is usually small: a quick graphical investiga-
tion shows that the computational complexity of our root-
finding algorithm must be lower than for the secant and
bisection algorithms. We even have some experimental
evidence that our root finder can outperform the Newton-
Raphson method. Therefore, we can reasonably take the
number of iterations to be a small constant for all prac-
tical applications, and conclude that the complexity of the
algorithm is essentially linear in the number of nodes.

7 A simple example involving dilation

We present a very simple example that allows us to (i) fol-
low the expert system inference method discussed above
in a step-by-step fashion; (ii) see that there are separation
properties for credal nets under strong independence that
fail for credal trees under epistemic irrelevance; and (iii)
see that in that case we will typically observe dilation.

Consider the following imprecise Markov chain:

X1 X2 X3

? x2 x3

To make things as simple as possible, we suppose that
X1 = {a,b} and that Q1 is a linear model Q1 with mass
function q. We also assume that Q2(·|X1) is a linear model
Q2(·|X1) with conditional mass function q(·|X1). We make
no such restrictions on the local model Q3(·|X2). We also
use following simplifying notational device: if we have
three real numbers κ , κ and γ , we let

κ〈γ〉 := κ max{γ,0}+κ min{γ,0}.

We observe X2 = x2 and X3 = x3, and want to make in-
ferences about the target variable X1: for any g ∈L (X1),
we want to know R1(g|x{2,3}). Letting r := R1({a}|x{2,3})
and r := R1({a}|x{2,3}), we infer from coherence that it
suffices to calculate r and r, because

R1(g|x{2,3}) = g(b)+ r〈g(a)−g(b)〉.

We let gµ = [I{a} − µ]I{x2}I{x3}, and apply the approach
of the previous section. We see that the trunk T̃ = {1},
and the instantiated leaf node 3 sends up the messages
π3 = Q3({x3}|X2) to the instantiated node 2, who trans-
forms them into the messages

π2 = Q2({x2}|X1)π3(x2) = q(x2|X1)q.



These are sent up to the (target) root node t = 1, which
transforms them into the message π

µ

1 = Q1(ψ
µ

1 ) with
ψ

µ

1 = q(x2|X1)q〈I{a}− µ〉. If we also use that 0 ≤ µ ≤ 1,
this leads to

P1(g
µ) = π

µ

1 = q(a)q(x2|a)q[1−µ]+q(b)q(x2|b)q[−µ],

so we find after applying regular extension that

r = R1({a}|x{2,3}) =
q(a)q(x2|a)q

q(a)q(x2|a)q+q(b)q(x2|b)q

r = R1({a}|x{2,3}) =
q(a)q(x2|a)q

q(a)q(x2|a)q+q(b)q(x2|b)q
.

When q = q, which happens for instance if the local model
for X3 is precise, then we see that, with obvious notations,

r = r =
q(a)q(x2|a)

q(a)q(x2|a)+q(b)q(x2|b)
=: p(a|x2) (15)

and therefore X2 indeed separates X3 from X1. But in gen-
eral, letting α := q(a)q(x2|a) and β := q(b)q(x2|b), we get

r− r =
αβ (q2−q2)

(α2 +β 2)qq+αβ (q2 +q2)

r− p(a|x2) =
αβ

α +β

q−q
αq+βq

p(a|x2)− r =
αβ

α +β

q−q
αq+βq

.

As soon as q > q, X2 no longer separates X3 from X1, and
we witness dilation [10, 14] because of the additional ob-
servation of X3!

8 Numerical comparison

Strong independence implies epistemic irrelevance, but
the converse does not generally hold. This implies that in-
ferred probability intervals for epistemic irrelevance will
generally include the ones for strong independence [3].
Here, we report on results of a number of numerical
tests involving updating the tree. As noted in Sec. 5, the
two models have different separation properties: this is
particularly important when evidence is back-propagated
from leaves to root. For this reason, we compare posterior
(lower and upper) probabilities for the root variable of a
chain when the leaf node variable is instantiated.

We have used the algorithm in Sec. 6 to compute pos-
terior probability intervals in the irrelevance case, while
the procedure in [5] is employed in the strong independ-
ence case. Inferred intervals for the former turn out to be
clearly wider, and a mean square difference of about .2 is
observed when considering 100 chains with three or four
ternary variables and credal sets with three randomly gen-
erated extreme points. For longer chains, the updating with

strong independence is too slow and no comparison can be
made. Yet, similar results are observed in binary chains,
for which the 2U algorithm [9] can be used for efficient
update in the strong independence case. In summary, there
is a non-negligible difference between inferences based on
the two notions of ‘independence’.

9 An application: imprecise HMMs

Hidden Markov models (HMMs, [13]) are popular tools
for modelling generative sequences, characterised by an
underlying process generating an observable sequence.
They have applications in many areas of signal processing,
and more specifically in speech and text processing.

Both the generative and the observable sequence are de-
scribed by sets of variables over the same domain X, de-
noted respectively by Xs1 , . . . , Xsn and Xo1 , . . . , Xon . The
independence assumptions between these variables, which
characterise HMMs, are those corresponding to the tree
structure below. Informally, this topology states that every
element of the generative sequence depends only on its
predecessor, while each observation depends only on the
corresponding element of the generative sequence.

Xs1 Xs2
. . . Xsn

Xo1 Xo2
. . . Xon

observable sequence

generative sequence

A local uncertainty model should be defined for each vari-
able. In the more usual case of precise probabilistic assess-
ments, this corresponds to linear versions of the local mod-
els Qs1

, Qsk+1
(·|Xsk) and Qok

(·|Xsk), k = 1, . . . ,n, where the
conditional models are assumed to be stationary, i.e., in-
dependent of k. These model, respectively, beliefs about
the first state in the generative sequence, the transitions
between adjacent states, and the observation process.

Bayesian techniques for learning from multinomial data
are usually employed for identifying these models. But,
especially if only few data are available, other methods
leading to imprecise assessments, such as the imprecise
Dirichlet model (IDM, [16]), might offer a more realistic
model of the local uncertainty. For example, for the un-
conditional local model Qs1

, applying the IDM leads to
the following simple identification:

Qs1
({x1}) =

ns1
x1

s+ ∑
x∈X

ns1
x

Qs1
({x1}) =

s+ns1
x1

s+ ∑
x∈X

ns1
x

,

(16)
where ns1

x1 counts the units in the sample for which Xs1 =
x1, and s is a hyperparameter that expresses the degree of
caution in the inferences. For the conditional local models,
we can proceed similarly. This leads to the identification of



an imprecise HMM, a special credal tree under epistemic
irrelevance, like the ones introduced in Sec. 2.

Generally speaking, the algorithm described in Sec. 6 can
be used for computing inferences with such imprecise
HMMs. Below, we address the more specific problem of
on-line recognition, which consists in the identification of
the most likely value of Xsn , given the evidence for the
whole observational sequence Xo1 = xo1 , . . . , Xon = xon .
For precise local models, this problem requires the compu-
tation of the state x̃sn := argmaxxsn∈X P({xsn}|xo1 , . . . ,xon)
that is most probable after the observation. For impre-
cise local models different criteria can be adopted. We
consider maximality: we order the states by xsn > zsn iff
P(I{xsn}− I{zsn}|xo1 , . . . ,xon) > 0, and we look for the un-
dominated or maximal states under this order. This may
produce indeterminate predictions: the set of the undom-
inated states can have more than one element.

Online character recognition by imprecise HMMs.
As a very first application of the imprecise HMM, we have
considered a character recognition problem. A written text
was regarded as a generative sequence, while the observ-
able sequence was obtained by artificially corrupting the
text. This is a model for a not perfectly reliable observation
process, such as the output of an OCR device. The local
models were identified using the IDM, as in (16), by count-
ing the occurrences of single characters and the “trans-
itions” from one character to another in the generative se-
quence, and by matchings between the elements of the two
sequences. By modelling text as a generative sequence, we
obviously ignore any correlation there might be between a
character and its nth predecessor (with n ≥ 2). A better,
albeit still not completely realistic, model would resort to
using n-grams (i.e., clusters of n characters with n≥ 2) in-
stead of monograms. Such models might lead to higher
accuracy, but they need larger data sets for their quan-
tification, because of the exponentially larger number of
possible transitions for which probabilities have to be es-
timated. The figure below depicts how on-line recognition
through HMM might apply to this setup.

Original text:

OCR output:

. . .

. . .

V

V

Xs1

I

Xs2

T

Xs3

A

Xo1

I

Xo2

T

Xo3

O

The performance of the precise model can be character-
ised by its accuracy (the percentage of correct predictions)
alone. The imprecise HMM requires more indicators. We
follow [1] in using determinacy (percentage of determin-
ate predictions), set-accuracy (percentage of indetermin-
ate predictions containing the right state), single accuracy
(percentage of correct predictions computed considering

only determinate predictions), and indeterminate output
size (average number of states returned when the predic-
tion is indeterminate).

Accuracy 93.96% (7275/7743)
Accuracy (if imprecise indeterminate) 64.97% (243/374)

Determinacy 95.17% (7369/7743)
Set-accuracy 93.58% (350/374)
Single accuracy 95.43% (7032/7369)
Indeterminate output size 2.97 over 21

Table 1: Precise vs. imprecise HMMs. Test results ob-
tained by twofold cross-validation on the first two chants
of Dante’s Divina Commedia and n = 2. Quantification is
achieved by IDM with s = 2 and Perks’ prior (with the
modification suggested in [17]). The single-character out-
put by the precise model is then guaranteed to be included
in the set of characters the imprecise HMM identifies.

The recognition using our algorithm is fast: it never takes
more than one second for each character. Table 1 reports
descriptor values for a large set of simulations, and a
comparison with precise model performance. Imprecise
HMMs guarantee quite accurate predictions. In contrast
with the precise model, there are ‘indeterminate’ instances
for which they do not output a single state. Yet, this hap-
pens rarely, and even then we witness a remarkable reduc-
tion in the number of undominated states (from the 21 let-
ters of the Italian alphabet to less than three). Interestingly,
the instances for which the imprecise probability model
returns more than a single state appear to be “difficult”
for the precise probability model: the accuracy of the pre-
cise models displays a strong decrease if we focus only on
these instances, while the imprecise models here display
basically the same performance as for other instances, by
returning about three characters instead of a single one.

10 Conclusions

We have defined credal trees using Walley’s epistemic ir-
relevance and have developed an efficient exact algorithm
for updating beliefs on the tree. Like the algorithms de-
veloped for precise graphical models, our algorithm works
in a distributed fashion by passing messages along the tree.
This leads to computing lower and upper conditional pre-
visions (expectations) with a complexity that is essentially
linear in the number of nodes in the tree.

It has been unclear until recently whether an algorithm
with the features described above was at all feasible. Epi-
stemic irrelevance is most easily formulated using coher-
ent lower previsions, which have never been used before
in the context of credal networks. Moreover, epistemic ir-
relevance is not as “well-behaved” as strong independence
is with respect to the graphoid axioms for propagation of



probability in graphical models [4]. Our results are there-
fore very encouraging, and they have the potential to open
up new avenues of research in credal nets. This is import-
ant because strong independence is not always the most
suitable notion of independence in an imprecise probabil-
ity context, and epistemic irrelevance has wider scope, as
well as a natural behavioural interpretation.

There is one more issue we would like to clarify at this
point. While our algorithm clearly is fully functional as
soon as all observations have positive upper probability,
we have only proved that it produces coherent inferences
when their lower probability is positive; see Theorem 4. At
the time of writing this, we have strong indications that our
coherence results can be extended to include observations
with zero lower but positive upper probability.

Avenues for future research seem to be many. It would
be important to extend the algorithm at least to so-called
polytrees, which are substantially more expressive graphs
than trees are. It would be interesting also to study in more
detail the separation properties induced by epistemic ir-
relevance on a graph. For applications, it would be very
important to develop statistical methods specialised for
credal nets under irrelevance that avoid introducing ex-
cessive imprecision in the process of inferring probabil-
ities from data. This could be achieved, for instance, by
using a single global IDM over the variables of the tree
rather than many local ones, as in our experiments.
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