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Abstract

Spectrum histograms and fluctuation patterns are rep-

resentations of audio fragments. By comparing these rep-

resentations, we can determine the similarity between the

corresponding fragments. Traditionally, this is done using

the Euclidian distance. We propose fuzzy similarity mea-

sures as an alternative. First we introduce some well-known

fuzzy similarity measures, together with certain properties

that can be desirable or useful in practice. In particular, we

present several forms of restrictability, which allow to re-

duce the computation time in practical applications. Next,

we show that fuzzy similarity measures can be used to com-

pare spectrum histograms and fluctuation patterns. Finally,

we describe some experimental observations for this fuzzy

approach of constructing audio similarity measures.

1. Introduction

Recent portable audio players can store about 20 000

songs, and online music stores currently offer millions of

tracks. This abundance of music drastically increases the

need for applications that automatically analyse, retrieve

or organize audio files. Measures that are able to ex-

press the similarity between two given audio fragments,

are a fundamental component in many of these applications

[1, 2, 6, 7, 8]. Such measures are usually constructed by fol-

lowing a feature-based approach. The audio fragments are

represented by real-valued feature vectors, and the similar-

ity is calculated by comparing these vectors. We consider

two types of feature vectors: spectrum histograms and fluc-

tuation patterns. So far, the Euclidian distance has always

been used to compare feature vectors of these types. In this

paper, however, we identify the feature vectors with fuzzy

sets, such that fuzzy similarity measures can determine the

similarity between them.

2. Preliminaries

2.1. Spectrum histograms

For a given audio segment, the Fourier transform can

be used to calculate the amplitude that corresponds with

each frequency. By dividing an audio fragment in short

subsequent segments and applying the Fourier transform to

each of these segments, we get the amplitude for each time-

frequency pair. Such a representation of an audio fragment

is called a spectrogram. The individual frequencies of a

spectrogram are usually consolidated into frequency bands

to reduce the computation time.

The amplitudes of the spectrogram can be converted to

loudness values. Starting from these values, we can calcu-

late the spectrum histogram (SH) [6, 7] by counting how

many times certain loudness levels are reached or exceeded

in each frequency band. In this way, we get a simple sum-

marization of the spectral shape of the audio fragment. This

summarization is, to some extent, related to the perceived

timbre of the audio fragment.

Our implementation of SHs was written in Matlab, using

the MA toolbox [5]. Each SH is a matrix with 30 rows (fre-

quency bands) and 60 columns (loudness levels). The bark

scale is used for the frequencies, and the sone scale for the

loudness values. We use these scales because they are psy-

choacoustical, i.e., they correspond with human perception.

Figure 1(a) shows an example of a SH.

2.2. Fluctuation patterns

By applying the Fourier transform to the subsequent

loudness values in each frequency band of the spectrogram,

we get the amplitudes that correspond with the loudness

modulation frequencies for each frequency band. A fluc-

tuation pattern (FP) [6, 8] consists of weighted versions of

these coefficients, based on the psychoacoustic model of
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Figure 1. The SH (a) and FP (b) for a fragment

of “Temps pour nous” by Axelle Red. White

depicts zero, and black represents the maxi-
mum value.

fluctuation strength. Hence, fluctuation patterns describe

the loudness fluctuations for each frequency band. This

implies that they are, to some extent, related to the per-

ceived rhythm. Although they are relatively simple, FPs

can be very useful in practice. For instance, they were one

of the representations used for the audio similarity measure

that won the MIREX’06 (Music Information Retrieval eX-

change) audio-based music similarity and retrieval task.1

For implementing FPs, we again used the MA toolbox.

The FPs are, like the SHs, 30 by 60 matrices in which the

rows correspond with frequency bands. In this case, how-

ever, the columns represent modulation frequencies (rang-

ing from 0 to 10 Hz). Figure 1(b) shows an example.

2.3. Fuzzy similarity measures

A fuzzy set A in a universe X is a X → [0, 1] mapping

that associates with each element x from the universe X a

degree of membership A(x). We use the notation F(X) for

the class of fuzzy sets in X . A fuzzy similarity measure M
is a fuzzy set in F(X) × F(X) that expresses the similar-

ity between each pair of fuzzy sets in X , i.e., the degree of

membership M(A,B) of (A,B) ∈ F(X)×F(X) denotes

the similarity between A and B. If A and B are completely

similar then M(A,B) = 1, otherwise M(A,B) < 1.

1http://www.music-ir.org/mirex2006

We consider 12 well-known fuzzy similarity measures [3].

The first ones are based on the fact that fuzzy sets in a fi-

nite universe X can be represented as vectors in [0, 1]|X|.

The other measures are fuzzy generalizations of cardinality-

based similarity measures for crisp sets.

We can determine how similar two vectors are by calcu-

lating the Minkowski distance between them: the smaller

the distance, the greater the similarity. This observation

leads to the following family of fuzzy similarity measures:

M1,n(A,B) = 1 −

(

1

|X|

∑

x∈X

|A(x) − B(x)|n

)
1

n

for all A,B ∈ F(X), with n ∈ N \ {0}. An alternative ap-

proach is to use the cosine between the vectors as similarity

measure:

M2(A,B) =

∑

x∈X (A(x) · B(x))
√

(
∑

x∈X A(x)2
) (
∑

x∈X B(x)2
)

for all A,B ∈ F(X).
For two crisp sets A and B in a finite universe X , i.e.,

A,B ∈ P(X), we can use the following measures to deter-

mine their similarity:

M3(A,B) =
|A ∩ B|

|A|

M4(A,B) =
|A ∩ B|

|B|

M5(A,B) =
|A ∩ B|

|A ∪ B|

M6(A,B) =
|A ∩ B|
√

|A| · |B|

M7(A,B) =
2 |A ∩ B|

|A| + |B|

M8(A,B) =
|A ∩ B|

min(|A|, |B|)

M9(A,B) =
|A ∩ B|

max(|A|, |B|)

M10(A,B) =
min(|A|, |B|)

|A ∪ B|

M11(A,B) =
max(|A|, |B|)

|A ∪ B|

M12(A,B) =
min(|A|, |B|)

max(|A|, |B|)

The classical set-theoretic operations that are used in these

measures, can be generalized to fuzzy sets by means of tri-

angular operations (t-operations). An increasing, associa-

tive and commutative [0, 1]2 → [0, 1] mapping is called a

triangular norm (t-norm) T if it satisfies T (x, 1) = x for all
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