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Abstract— In this work it will be shown that a contrast
for independent component analysis based on prior knowledge
of the source kurtosis signs (ica-sks) is able to extract atrial
activity from the electrocardiogram when a constrained updat-
ing is introduced. A spectral concentration measure is used,
only allowing signal pair updates when spectral concentration
augments. This strategy proves to be valid for independent
source extraction with priors on the spectral concentration.
Moreover, the method is computationally attractive with a very
low complexity compared to the recently proposed methods
based on spatiotemporal extraction of the atrial fibrillation
signal.

I. INTRODUCTION
With a prevalence as high as 10% for people over the age

of 70, atrial fibrillation (AF) and atrial flutter (AFL) are the
most commonly encountered forms of cardiac arrhythmia.
Since the origin and model of AF and AFL are barely
understood until now [14], extraction of the electrical activity
from the electrocardiogram (ECG) attributed to the AF/AFL
is of great value for further understanding its underlying
mechanisms. Therefore we propose a fully automated low
complexity AF extraction technique. Contrary to the majority
of the algorithms which try to unveil the atrial activity (AA)
during AF periods by suppression of the QRS(-T) complex,
the proposed method envisages the isolation of the AA as
has been proposed in [5, and references therein].

However, most signal extraction techniques, whether in
a single stage or in multiple stages are computationally
expensive and are seldom fully automated, leaving the final
component selection to the user. Moreover, there are only
few methods that combine successfully both the spatial
and temporal information without turning to an excessive
computational cost.

The last point to tackle is surely the validation of the algo-
rithms. The extraction of AF from the ECG is essentially an
inverse problem where the unknown source is to be estimated
from the total measurement. Hence, there is no objective
performance index (i.e. based on the original sources or any
a priori information about them) to compare against.
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In this contribution we will compare a spatio-temporal
two stage method for extraction of AA during AF/AFL
episodes [5] against a novel single stage AA extraction
technique based on limited a priori knowledge about its
spectrum and source kurtosis signs (sks). The method is
based on the contrast function in [11] and the adapted version
in [10] to extract AF signals. It uses the prior information
that in the 3-12Hz band the AF is characterised by a single
frequency waveform and its harmonics with slow frequency
and amplitude modulation [13]. Since the AA exhibits quasi-
sinusoidal behaviour, we may thus use the contrast proposed
in [11] with a negative sign for the AA kurtosis and a positive
sign for the other sources.

II. DATA & METHODS

A. Data

For a validation of the results we turned to both sim-
ulations (of which the results are published in [11]) and
real data. The dataset consisted of 51 patients, all being
diagnosed with AF. The recordings were registered with a
standard 12-lead ECG, including the bipolar limb leads I-III,
the augmented unipolar limb leads aVR, aVF and aVL and
the six unipolar chest leads V1-V6. Since there is abundance
in the information in the leads, a second set was constructed
with 8 leads including all six chest leads and recalculations
from the limb leads to the electrode potentials between LL
and LA, respectively RA. The latter set of potentials will be
called the 8-lead system from hereon.

B. Independent Component Analysis

Solving the biomedical inverse problems often relies on
the statistical properties of the underlying sources [9], [1].
Independent Component Analysis (ICA) has already proven
to be an appropriate measure for decomposition of an ECG
dataset into its source contributions according to a linear
model [12]

y = Hx+η , (1)

where the projection of the source activities x ∈ IRn onto
the measurements y ∈ IRm is determined by a linear mixing
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matrix H∈ IRm×n up to some noise η ∈ IRm. To solve Eq. 1,
we need some a priori assumptions on the sources, e.g.
statistical independence. In this paper, the noise η will be
neglected or be taken as a source signal, reducing Eq. 1 to
y = Hx. The system of equations is then solved by searching
for W in x̂ = W−1y 1 which yields estimates x̂ = W−1Hx =
Qx that are as independent as possible. From hereon, x̂ is
considered a decorrelated version of y. Left to estimate is the
rotation matrix Q, since they are the only group of matrices
that preserve orthogonality in x̂. This paper presents the
application of ICA based on sks (ica-sks) constrained in its
updating by spectral concentration.

Any function Ψ(Q) that can be optimised such that (1)
Ψ is invariant under permutation and scaling and (2) it
reaches its maximum if and only if Q yields maximally
independent components x̂ is a contrast for independent
component analysis (ICA) [6].

C. 2×2 Source Separation
For the case of 2 sources and 2 observations, an ICA

contrast can be defined as a single planar rotation of the
prewhitened data x̂. Since any rotation in a two dimensional
plane can be expressed in matrix format as a Givens rotation

x = QT x̂ ,where Q(θ) =
(

cosθ sinθ

−sinθ cosθ

)
, (2)

the estimation is reduced to a single parameter and can be
expressed in analytical form. The contrast that will be used
here is based on independence and prior knowledge of source
kurtosis signs and reads Ψ(Q) = ε1κ1111 + ε2κ2222, where
κiiii =

〈
x̂4

i
〉
/
〈
x̂2

i
〉2− 3 is the standardised kurtosis of x̂i. ε1

is chosen negative and ε2 is chosen positive. This yields as
the solution for θ [11], [16]:

θopt = 0.5arctan2(κ1112 +κ2221)(κ2222−κ1111)
−1 , (3)

where κi j j j is the bivariate moment defined as
〈

x̂ix̂3
j

〉
.

D. Higher Dimensional Data
For higher dimensional data (n > 2), it is possible to ex-

press the orthogonal mixing matrix Q as subsequent Givens
rotations, updating the current source estimate x̂. Since for
plane rotations in higher dimensional data it suffices to
fix all axes but two, we can express the rotation of the
subspace spanned by two components in x̂ by Eq. 2 while
the other components undergo a identity transformation.
Based on the fact that maximal mutual independence of each
pair guarantees maximal independence of the set, pairwise
rotations with a fixed updating order will yield a solution to
ICA [7]. Being interested in a single component only - the
one that contains the atrial fibrillation - we define one sweep
as such that it will compare our best current estimate x̂(k)

i to
every other x̂(k)

j 6=i and process these pairs according to[
x̂(k+1)

i

x̂(k+1)
j

]
= QT

[
x̂(k)

i

x̂(k)
j

]
. (4)

1Since W−1 is defined as the inverse of H, m is limited to be equal to
n, and H and W must be full column rank.

However, there is no guarantee that the source of interest is
the only source with negative kurtosis, nor is it guaranteed
that the algorithm will return the source with a basic
frequency in the 3-12Hz band, the band of interest for AF
signals. Hence the need to use a constrained optimisation
criterion as given in the next paragraph.

E. Constrained Optimisation

To further optimise the algorithm for the extraction of AA
we include a constraint in the update rule in the form of a
decision rule. This decision rule will allow for rotation at
step k + 1 if and only if the rotation augments the spectral
concentration of the best estimate found in iteration k. After
calculating our potential candidates for x̂(k+1)

i and x̂(k+1)
j

we apply a decision rule characterised by the detection of
augmentation in spectral concentration:

max
(

SC
(

x̂?(k)
i

)
,SC

(
x̂?(k)

j

))
> SC

(
x̂(k)

i

)
, (5)

where the function SC calculates the ratio of the power
spectral density (PSD) in the 90-110% range of the frequency
with maximal power in the 3-12Hz band to the PSD of half
the spectrum (i.e. from 0Hz to half the sampling frequency
Fs) given by:

SC(a) =

1.1 fc∫
0.9 fc

Pa (τ)e−2πτ f d f

0.5Fs∫
0

Pa (τ)e−2πτ f d f

. (6)

If the decision rule of Eq. (5) is fulfilled, the new estimate
[x̂(k+1)

i x̂(k+1)
j ]T is replaced by the candidates [x̂?

i x̂?
j ]

T the
component with the highest SC as the new reference. If
not fulfilled the estimates do not get updated and the pair(
x̂i, x̂ j+1

)
is processed. The updating process is finished

when a full sweep has passed without finding candidates
augmenting the spectral concentration, which is generally of
the order of 3 sweeps.

F. Spatio-temporal Source Separation

As a reference technique we will use the technique
proposed by Castells et al. [5] based on spatio-temporal
source decomposition. The algorithm consists essentially
out of an ICA step (FastICA [8]) with elimination of the
components with a kurtosis higher than the threshold of 1.5
followed by a temporal decorrelation step, namely Second
Order Blind Identification (SOBI) [3]. The iterative algorithm
RobustICA [15] was used here as an implementation of
FastICA. SOBI is known to be quite robust to estimation
errors in the used time lags, but there is no rule on how to
choose the optimal set. Therefore we also include a tempo-
ral decorrelation algorithm known as Canonical Correlation
Analysis (CCA) [2] based solely on a single sample shift, to
compare with.
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TABLE I
THE DIFFERENCES IN ESTIMATION OF THE CENTRAL FREQUENCIES FOR

12-LEADS1 , 8-LEADS2 AND 12-LEADS VERSUS 8-LEADS3 .

rICA+SOBI rICA+CCA ica-sks combEML

rICA+SOBI 0.853 1.381 1.091 1.051

rICA+CCA 0.692 0.163 −0.291 −0.321

ica-sks −0.262 −0.952 −0.503 −0.031

combEML −0.322 −1.022 −0.062 −0.533

G. Preprocessing

Having no significant information for AF in the frequency
bands below 0.5Hz and above 30Hz, we apply a 12th order
Butterworth bandpass filter with the specified frequencies as
-3dB points. This has no effect on the end results since
the preprocessing is done before feeding any data to the
algorithms and thus the PSD in the denominator of the
RHS of Eq. 6 does not change by replacing the lower and
upper limits by 0.5Hz and 30Hz respectively. This will only
result in a nonlinear rescaling of all spectral concentration
coefficients due to the nominator, although no large changes
can be noted if AF is extracted because the signal power
linked to AF in the rejected frequencies is negligible.

III. RESULTS

A. Frequency Estimation

As a first evaluation measure the mean of the differences
in estimated central frequencies are presented in table I.
The upper right triangle shows the differences in frequencies
for the estimation of the algorithm given in the top row
versus the one in the left column based on 12 lead ECG
systems, while the lower left triangle gives those values for
the 8-lead (re-referenced) system. Values on the diagonal
compare the results of the algorithms in their 12-lead setting
versus their 8-lead setting. The table compares RobustICA
+ SOBI (rICA+SOBI), RobustICA + CCA (rICA+CCA),
ica-sks and the combined EML (combEML) algorithm as
proposed in [16] but with the decision rule in the update.

B. Spectral Concentration

The spectral concentration measure is the same as in
the updating criterion. The spectral concentration is a valid
measure since it’s value has not directly been used to update
the contrast function, but it has been used as a constraint.
The results in table II show the typical values of spectral
concentration for each of the methods used. The upper row
gives the mean values with standard deviation for the 12
leads system, whereas the lower row show results for the 8
leads system.

C. Computational Complexity

To see the performance of the algorithms against their
computational complexity, we show for each method the
approximate complexity as a function of the number
of samples T , the number of measurements n and the
number of sources to extract m. Given that the EML based

TABLE II
SPECTRAL CONCENTRATION FOR THE SET OF 51 PATIENTS.

12-LEADS (UPPER ROW) AND 8-LEADS (LOWER ROW)

rICA+SOBI rICA+CCA ica-sks combEML

29.80±12.44 43.16±14.99 57.89±11.33 56.12±10.47
40.36±15.66 39.87±14.21 53.72±14.52 51.17±10.29

TABLE III
COMPUTATIONAL COMPLEXITY PER ITERATION AND SOME AVERAGE

NUMBERS OF ITERATIONS NEEDED FOR CONVERGENCE.

computational iterations until
method complexity convergence

rICA O ((5n+12)nT ) 10
SOBI O

(
17n2T +2(n−1)(n−2)

)
1+ b

√
nc

CCA O
(
4nT 2 +4n2T + 62

3 n3) 1
ica-sks O (7(n−1)T ) 5

combEML O (8(n−1)T ) 10

algorithms only need to estimate a single source (m = 1)
and the RobustICA needs to do a full decomposition
before the kurtosis based selection (m = n), the entries for
RobustICA, ica-sks and combEML do not depend on m.
It is worth mentioning that the n for SOBI and CCA is
usually much smaller than the n taken in the other methods,
since there has been done a dimension reduction through
component selection based on kurtosis values. Table III
gives the order of magnitude for each of the methods
with the predefined lags in SOBI taken as in [5], being
17 equally spaced lags of 20ms (i.e. a range of 0 to 320 ms).

D. Graphical Results

In Fig. 1 and Fig. 2 the results are shown for the ica-sks
algorithm for a simulated and a patient dataset, respectively.
The simulated dataset has been constructed as to mimic car-
diac electrical activity based on AF simulations as presented
in [13] and ventricular activity or QRS waveforms based on
a function given in [11].

00:00:01 00:00:03 00:00:05 00:00:07 00:00:09
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0 uV

Sources

Time (hh:mm:ss)

00:00:01 00:00:03 00:00:05 00:00:07 00:00:09
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1

920 uV

Mixture of synthetic signals

Time (hh:mm:ss)

Fig. 1. Separation of a simulated AF signal from a high kurtotic QRS-like
signal.
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Fig. 2. Extraction of the AF from patient ECG using ica-sks.

IV. DISCUSSION
Although comparison of algorithms to solve inverse prob-

lems is not an easy task, results in this paper show that
our method has acceptable results when compared to the
spatiotemporal method presented in [5]. The results in table I
clearly show that the used methods are comparable when the
central frequency has to be estimated. However due to a lack
of an objective measure of performance we do not have the
possibility to make a statement about the accuracy of the
estimate.

Referring to table II, we observe that the EML based
methods using the constrained updating outperform the spa-
tiotemporal methods based on a standard ICA implementa-
tion followed by a second order decorrelation method. We
used the implementation RobustICA for the ICA method
since it generally returned higher SC. To omit the selection
procedure of the time lags introduced in SOBI, we also
compared to the method of CCA, based on a single lag.

From Fig.(1) it is clear that the contrast works well on
two artificial signals without using the constrained updating.
Since the AF signal is generally subgaussian and the ventric-
ular activity supergaussian [4], the contrast based on prior
knowledge of the source kurtosis signs [11] is excellently
suited for the two sources, two observations case. However,
in the higher dimensional ECG subspace the exact prior
knowledge of the sks is absent and thus we need to turn
to constrained updating.

One of the most interesting features, however, is the low
computational complexity of the source extraction methods
based on EML (see table III). Based on a single stage
only, and estimation of a single source, the flops required
per iteration are heavily reduced compared to a dual stage
algorithm yet yielding comparable results.

V. CONCLUSIONS
We presented a new method for extraction and estimation

of the AA from the ECG of AF/AFL patients, namely ica-
sks. The method is based on an ICA contrast exploiting prior

knowledge about the desired source kurtosis signs and the
spectral concentration in the 3-12 Hz band. As opposed to the
method in [5], our method is able to exploit both properties
simultaneously, resulting in an attractively low computational
complexity.
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