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Abstract

We perform a discrete-time analysis of the delay of cus-
tomers in a buffer with batch arrivals. We characterize the
delay of the k-th customer that enters a FIFO buffer. The
numbers of arrivals per slot are independent and identically
distributed stochastic variables. Since the arrivals come in
batches, the delays of the subsequent customers do not con-
stitute a Markov-chain, which complicates the analysis. By
using generating functions and the supplementary variable
technique, moments of the delay of the k-th customer are
calculated.

1 Introduction

The delay experienced by customers is one of the most
important characteristics of a queueing system. While other
characteristics (the queue content, the loss ratio, . . . ) are es-
pecially interesting from the point of view of the system, the
delay is arguably the most important performance measure
from the users’ perspective. This is especially the case for
multimedia applications in current telecommunication net-
works, since timely delivery of their packets is of the utmost
importance for these applications.

It is therefore obviously interesting to analyze the delay
in queueing systems. Subsequently, there is indeed a vast
literature dealing with thesteady-state analysis of the delay
in a broad range of queueing systems. However, only few
research efforts have addressed the derivation of transient
delay measures [3–6].

The mentioned papers all analyzesingle arrival systems.
Their studies are thus not (directly) applicable to queue-
ing systems withbatch arrivals. In this paper, we study
the transient delay in a queueing system with batch ar-
rivals. The batch sizes are independent and identically dis-
tributed (i.i.d.) stochastic variables with an arbitrary dis-
tribution. This batch nature of the arrivals complicates the
analysis since one has to keep track of the ordinal number

of the customers in their arrival batch. The delays of sub-
sequently arriving customers in aGGI/G/1 queue donot
constitute a Markov chain, while the corresponding delays
in theG/G/1 queue do. Note that the aim of the present pa-
per is to present an analytic technique to derive exact time-
dependent delay measures of discrete-time buffer systems
with (generally distributed) batch arrivals. We have there-
fore chosen to analyze the discrete-timeMGI/D/1 queue,
because it is general enough to capture systems with batch
arrivals, and, on the other hand, simple enough to allow a
clear presentation of our method of analysis.

The remainder is organized as follows. The queueing
model is described in more detail in the following section.
The transient delay analysis is summarized in section 3.
Several examples are discussed in section 4, and some fi-
nal comments are given in section 5.

2 Queueing Model

We consider a discrete-time single-server FIFO queueing
system with infinite buffer space. The number of arrivals
during slotl is denoted byal. Theal (l = 0, 1, . . .) are i.i.d.
stochastic variables. We use the notationsa(n) andA(z)
to indicate their common probability mass function (pmf)
and probability generating function (pgf) respectively, i.e.,
a(n) , Prob[al = n], n ≥ 0 and A(z) , E [zal ] =
∑

∞

n=0 a(n)zn. We make no assumptions on the specific
arrival instants within a slot. However, it is implicitly as-
sumed that customers arrive in a certain order within their
arrival slot. This is necessary to make “thek-th arriving
customer” a valid term.

3 Analysis

The delaydk of thek-th arriving customer is defined as
the number of slots between the end of the customer’s ar-
rival slot and the end of his departure slot (thus excluding
his arrival slot and including his departure slot). Becauseof
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the general distribution of the arrival batch sizes, the series
{dk, k ≥ 1} does not constitute a Markov chain. There-
fore we introduce additional stochastic variablesrk (k ≥ 1)
defined as the ordinal number of thek-th arriving customer
in his arrival batch. With this definition,{(rk, dk), k ≥ 1}
is easily seen to constitute a Markov chain. Lettk−1 de-
note the interarrival time (expressed in a number of slots)
between customersk − 1 andk. The following equations
are then established:

rk = rk−11tk−1=0
+ 1, dk = [dk−1 − tk−1]

+ + 1. (1)

Here,1X denotes the indicator function of the eventX.
The next step in the analysis is the introduction of gen-

erating functions and the solution of the model in thez-
domain. The ultimate goal is to find an expression for the
generating function of the sequence of the probability gen-
erating functions

{

E
[

zdk

]

, k ≥ 1
}

with respect to the dis-
crete time parameterk:

D(x, z) ,

∞
∑

k=1

E
[

zdk

]

xk. (2)

Therefore we first condition on the value ofrk and express
the partial pgfD(i)

k
(z) of dk given rk = i (i > 1) as fun-

tions ofD(1)
k

(z) by use of (1) fortk−1 = 0. This expres-
sion permits us to establish a relationship betweenD(x, z)

andD(1)(x, z), defined asD(1)(x, z) ,
∑

∞

k=1 D
(1)
k

(z)xk.
We then first establish a functional equation forD(1)(x, z)
which is then transformed to a functional equation for
D(x, z). The functional equation forD(1)(x, z) is retrieved
by the use of (1) fortk−1 = 0. The final expression for the
functional equation forD(x, z) reads

D(x, z) =
A(xz) − 1

(1 − A(0))(xz − 1)(z − A(xz))

×

(

(z − A(0))xE
[

zd1

]

+ D(x,A(0))

×
z(A(A(0)x) − A(0))(A(0)x − 1)(z − 1)

A(0)(A(A(0)x) − 1)

)

. (3)

In order to determine the boundary functionD(x,A(0)), we
use the analyticity ofD(x, z) in the unit disk{z : |z| < 1},
for all values ofx in {x : |x| < 1} and Rouch́e’s theorem.
V (x), the unique zero ofz − A(xz) inside the unit disk of
thez-plane for all|x| < 1, plays hereby a crucial role. We
finally find

D(x, z) =
x(A(xz) − 1)

(1 − A(0))(xz − 1)(z − A(xz))

(

(z − A(0))

× E
[

zdk

]

−
z(z − 1)(V (x) − A(0))

V (x)(V (x) − 1)
E

[

V (x)dk

]

)

.

(4)
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Figure 1. Transient mean delay for customers
arriving in geometrically sized batches with
mean size 0.3, 0.6 and 0.9 respectively.

It then remains to calculateV (x). In general, it is not possi-
ble to find an explicit expression forV (x). However, we can
calculate this function in each argument numerically as fol-
lows: starting fromi = 0, calculateVi+1(x) asVi+1(x) =
A(xVi(x)). It can be proved thatlimi→∞ Vi(x) = V (x)
[2], regardless of the starting pointV0(x) inside the com-
plex unit disk. From expression (4), various performance
measures can be calculated. In particular, letd̄k denote the
mean delay of thek-th customer. The generating function
of the sequence{d̄k} is given by the partial derivative toz in
1 of D(x, z) and an expression for this generating function
can be thus be found from (4).

Finally, the transforms have to be numerically inverted.
Most mathematical software packages provide procedures
for numerical inversion of transform functions. For more
details on a specific procedure with known error bounds,
we refer to [1]. However, the calculated error bounds are
only practical (i.e. small enough) for stable systems, i.e.,
where the mean delay of thek-th customer goes to a finite
steady-state value fork → ∞.

4 Numerical example

In this section, we show a small example. In Figure 1, we
show the mean delay of customerk as a function ofk. The
batch sizes are geometrically distributed random variables
with meanλ and the buffer is empty at the beginning. It
can be seen from this figure (and other examples) that the
mean transient delays tend to the steady-state values rather
quickly for smallλ while the convergence is much slower
for largerλ.



5 Conclusions

In this paper, we have analyzed the transient delay in a
discrete-timeMGI/D/1 queue by using the supplementary
variable technique and by further making extensive use of
generating functions. A functional equation was obtained
and solved for the transform of the probability generating
functions of the delays of the customers. From this trans-
form various performance measures can be calculated, most
notably the mean transient delay.
Acknowledgment. The first two authors are Postdoctoral
Fellows with the Fund for Scientific Research, Flanders
(F.W.O.-Vlaanderen), Belgium.

References

[1] J. Abate and W. Whitt. Numerical inversion of proba-
bility generating functions. Operations Research Letters,
12(4):245–251, 1992.

[2] J. Abate and W. Whitt. Solving probability transform func-
tional equations for numerical inversion.Operations Re-
search Letters, 12(5):275–281, 1992.

[3] D. Bertsimas and G. Mourtizinou. Transient laws of non-
stationary queueing systems and their applications.Queueing
Systems, 25(1-4):115–155, 1997.

[4] T. Hofkens, K. Spaey, and C. Blondia. Transient analysis of
the D-BMAP/G/1 queue with an application to the dimension-
ing of a playout buffer for VBR video.Lecture Notes in Com-
puter Science, 3042:1338–1343, 2004.

[5] C. Wang. On the transient delays of M/G/1 queues.Journal
of Applied Probability, 36(3):882–893, 1999.

[6] C. Wang. An identity of the GI/G/1 transient delay and its ap-
plications. Probability in the Engineering and Informational
Sciences, 16(1):47–66, 2002.


