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ABSTRACT

In this paper we present a new method for joint denois-
ing of depth and luminance images produced by time-of-flight
camera. Here we assume that the sequence does not contain
outlier points which can be present in the depth images. Our
method first performs estimation of noise and signal covari-
ance matrices and then performs vector denoising. Two ver-
sions of the algorithm are presented, depending on the method
used for the classification of the image contexts. Denoising
results are compared with the ground truth images obtained
by averaging of the multiple frames of the still scene.

Index Terms— Denoising, video, TOF camera, noise es-
timation

1. INTRODUCTION

Object recognition, autonomous navigation of robots, indus-
trial inspection, biometric authentication are complex tasks
which require reliable and clean features in order to be per-
formed successfully. Algorithms which aim to solve these
problems often rely on luminance, color and motion informa-
tion in order to get an interpretation of the scene. The above-
mentioned features are often not sufficient for a valid inter-
pretation of the scene due to the occlusions and the lack of
information needed for a unique interpretation.

Scene interpretation can be significantly improved by in-
troducing range data into the feature set. Depth information
makes the task of the scene interpretation more feasible and
robust. Various range measuring techniques exist which are
based on usage of multiple cameras. These include triangula-
tion systems such as stereo vision (or structured light), depth-
from-focus, depth-from-shape and depth-from-motion. Most
recent depth sensors are based on the measuring of time of
flight of the light beam. This type of depth sensors offers bet-
ter accuracy, higher frame rate and lower computational re-
quirements in order to reconstruct depth image. In Section 2,
we describe noise characteristics of the sensor, and the wayof
getting ground truth images from noisy observations. In the

Section 3, we describe the proposed noise estimation tech-
nique and denoising method. The experimental results are
presented in Section 4, and the conclusions are in Section 5.

2. NOISE BEHAVIOUR OF THE DEPTH SENSOR

Depth resolution of the time-of-flight depth sensors is limited
by a number of factors. The main limitation factor is shot
noise noise present in depth sensor. Amount of shot noise is
determined by an uncertainty in the number of the generated
electrons. Other sources of noise are AD converter quantiza-
tion noise, kT/C reset noise and thermal noise.

Due to the large number of factors, which affect the mea-
sured distance, each range pixel can be modelled as a Gaus-
sian random variable with a mean valueµi and a standard
deviationσi where the mean value corresponds to the actual
range value of pixeli. If we assume that the range value is
constant over a local neighbourhood of pixeli, and that all
pixels can be modelled as Gaussians with meanµi and stan-
dard deviationσi, the range value can be obtained via aver-
aging within a neighbourhood (spatial or temporal) of pixels
around pixeli.

If we define mean value overN time instants asX =
1

N

∑N

k=1
Xk, then the mean value and standard deviation of

the temporal average can be written as:

E(X) =
1

N

∑

k

µk = µi (1)

Std(X) =
1

N
Std(

N∑
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Xk) =
1

N

√
Nσi =

σi√
N
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Thw above expressions show that the signal to noise ra-
tio, and therefore, depth measurements resolution can be in-
creased by a factor of

√
N if the range values are averaged

in a spatial or temporal neighbourhood of N pixels. This is
only valid if the range values are constant in the observed
neighbourhood. Unfortunately, this does not hold in the most
practical cases. A side effect of the averaging either in tempo-
ral or spatial domain is that details such as edges or textures
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are significantly degraded. Temporal averaging creates mo-
tion blur. In order to avoid these effects it is necessary to use
more sophisticated methods for noise removal.

However, in order to evaluate the performance of our de-
noising algorithm we use temporal averaging over 20 frames,
which do not contain significant motion, in order to obtain
ground truth images, since it is not possible to get exact noise-
free depth image. By using temporal averaging we avoid blur-
ring of the edges in the spatial domain.

3. THE PROPOSED ALGORITHM

Although depth images can be observed as ordinary images
and denoised using some of the numerous image or video de-
noising algorithms, such as [1], [2] and [3] better denois-
ing results can be obtained by jointly using of luminance and
depth information, because of the interdependencies between
them.

For example, parts of the objects which are closer to the
light source will be brighter, and the luminance will decrease
with increasing the distance from the light source. Besides
that, in the cases of the missing data points in the depth se-
quence, it is possible to make more reliable interpolation us-
ing both luminance and depth from the surrounding locations.

Features appearing in one image such as edges, lines, tex-
tures etc. will probably appear in the other image, enabling
a more reliable detection of signal in noise, and detection
of false structures generated by noise. By including pixel
neighbourhood, denoising performance can be additionally
improved.

Another important observation is that the luminance se-
quence contains less noise than the depth measurements. It
was estimated that the PSNR of the luminance image was
35,9dB, and the psnr of the depth sequence 14,9dB. This means
that luminance can be used for more reliable segmentation
of the depth sequence, in the case of the higher illumination,
when the depth measurements become more noisy.

In this paper we use Daubechies db4 and db8 wavelet de-
composition of both depth and luminance image. We have
used two levels of decomposition in all experiments, to keep
the computation time at acceptable level, since k-means clus-
tering is performed for each level.

Filtering of vector-valued images has been explored by
several researchers within the frameworks of multispectral
image restoration [4], multichannel image restoration [5]
and multiframe image restoration [6]. Vector image filtering
methods perform filtering on all channels simultaneously.

Proposed method performs filtering using vectors which
include 8 neighbouring and central pixels from both lumi-
nance and depth image, thereby constructing 18 dimensional
noisy vector for each wavelet band and scale:
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]T , (3)

Fig. 1. a.) Noisy range image b.) Noisy luminance image

wheredi, i 6= 5, are the values of neighbouring wavelet
coefficients ,d5 value of the current wavelet coefficient of
the depth image,li, i 6= 5, are the values of neighbouring
wavelet coefficients andl5 value of the current wavelet co-
efficient of luminance image, for the scales and orientation
o. Same processing steps will be performed for all scales and
orientations, so the superscripts denoting scale and orienta-
tion will be omitted. In this paper we assume additive noise
model:

y = x + n, (4)

wheren is Gaussian vector with zero mean and covariance
matrixCn, y is a vector of wavelet coefficients contaminated
by noise andx is a vector with noise-free wavelet cofficients.

Main idea present in our work is to perform segmentation
of image into contexts, where the main criterion for grouping
is the similarity of the 3x3 blocks containing luminance and
depth values. We assume that inside each of these groups sig-
nal vectorsx obbey multivariate Gaussian distribution, with
covariance matrixCx, because of the properties of k-means
algorithm. Similar contexts obtained by segmentation are shown
in Fig. 2. Each color corresponds to the different cluster.

For each spatial location vectorsy are formed. Besides
vectors which contain both luminance and depth, vectors con-
taining only luminance contexts are formed. One way to ob-
tain segmentation is to perform k-means clustering of these
vectors. Optimal number of clusters was determined experi-
mentally as 20. The choice of this value can be justified by
the fact that we have used only one scene configuration. This
number depends on image content. To overcome the problem
of optimal determination of the number of clusters, unsuper-
vised clustering method should be used.

Another way of getting segmentation is to use averaged
sums of absolute values of surrounding pixels. This approach



Fig. 2. a.) LH2 wavelet band of the depth image b.) Quantized valuesof the spatial activity indicator c.) Segmentation of depth
and luminance contexts using k-means d.) Segmentation of luminance contexts using k-means

is much faster than k-means clustering. Spatial indicator value
for the spatial locationl is calculated as:

sl =
∑

i∈Nl

|yi|, (5)

whereNl denotes set of the 9 neighbouring pixels around
spatial location l. Spatial indicator values are then normal-
ized to have values ranging from 1 to the number of clusters
(20). Each of these values is rounded to the first greater inte-
ger value. Values obtained in this way are considered as labels
of image contexts. Once we obtain segment labels it would be
possible to calculate center values for each of the contexts. In
the case of k-means clustering, centroid values are returned
together with labelling. As can be seen in Fig. 2, edges of the
similar orientation and similar image features are groupedin
the segments.

Next step in our algorithm is estimation of parameters for
denoising i.e. noise and signal covariance matrices. Noise
covariance matrix is estimated based on contexts which are
placed closest to the centroid of the biggest segment, since
we assume that those points correspond to the homogenous
regions, which do not contain important image details.

Noise covariance matrix is calculated as follows:

Cn =

N1∑

k=1

(y1k − E(y
1
)) · (y1k − E(y

1
))T , (6)

wherey
1

denotes vectors which belong to the biggest
cluster, andN1 denotes number of vectors from the biggest
cluster used for covariance matrix calculation. Noise covari-
ance matrix estimated in 6 is used for denoising of all clus-
ters. Signal covariance matrix is calculated for each cluster
separately. It was observed that significant image details are
captured in the data points which are on the greatest distance
from the center of the cluster. Based on that we have used
10% of the data points which are on the biggest Euclidean
distance from the centroids to estimate signal covariance ma-
trix for each image segment. Groups which have less than 2
percent of the total number of points are left intact, since it
was observed that they consist of significant details. In this
work, these thresholds are fixed, because of the fixed scene.
In general case, they should be estimated for each image sep-
arately. Signal covariance matrix is estimated similarly as in
6, with the only difference in the sum indexes.

In this paper we use vector Wiener filtering, since it was
assumed that noise-free signal inside each of the clusters obeys
multivariate Gaussian distribution. Wiener filtering yields min-
imum mean square error:

x̂ =
Ĉx

Ĉx + Ĉn

· y, (7)

wherex̂ denotes estimated value of the noise-free vector,
Ĉx and Ĉn are covariance matrices of the signal and noise
respectively andy is noisy vector. As a result we take mem-



Fig. 3. a.) Noisy image b.) Ground truth image c.) Image denoised using method which relies on k-means d.) Image denoised
using method which uses spatial activity indicators

bers of the vector which correspond to middle pixels.Ĉx is
a covariance matrix, and it should be positive semi-definite.
This condition can be enforced by performing singular value
decomposition and setting negative singular values on small
positive values, before matrix reconstruction. This effect oc-
curs rarely, with neglectable influence on the denoising per-
formance.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we will compare performance for two different
versions of algorithms for joint denoising of luminance and
depth images. The proposed algorithms were tested on one
dataset, containing luminance and depth of the fixed scene,
recorded using time-of-flight camera. Noise removal algo-
rithms, provided with the camera were turned off in order to
have realistic noisy sensor data. Since we have used depth im-
ages with real noise, and we had no noise-free images avail-
able, we had to use average of 20 frames of a still scene, as
ground truth image.

Results obtained using k-means segmentation and con-
text modelling are very close to the ground truth images, and
outperforms both visually and in PSNR sense method which
uses spatial indicators and wavelet image denoising method
presented in [2]. PSNR for method which uses k-means is
29.7dB, which is 2.5dB better than the PSNR of the noisy im-
age. Method which uses spatial activity indicators have PSNR
which is 0.8 dB less. Method which uses k-means clustering

preserves significant details in depth image better, compared
with spatial indicator method. Results obtained using pro-
posed denoising methods are shown in Fig. 3.

5. CONCLUSION

In this paper we present method for joint denoising of depth
and luminance images, based on vector Wiener filtering. Pro-
posed method preserves depth image details, because it takes
luminance information into account. The effect of the smooth-
ing of the denoised images on the quality of reconstructed im-
ages has not been investigated. Further improvements will be
possible using estimated motion from depth and luminance.
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