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Abstract

Currently many service providers offer their services us-
ing a private and proprietary hard- and software infrastruc-
ture. These infrastructures often share many similarities.
Hence we believe a generic service delivery architecture,
that allows service providers to offer a large array of differ-
ent services on a shared infrastructure, would provide many
advantages over current silo-based approaches.

In this paper we propose the first step towards such
an architecture, namely several algorithms for dynamically
allocating server and network resources to a set of ser-
vices and selecting a suitable service instance for each
client. Service instances are placed on a set of servers, tak-
ing into account network resources (available bandwidth),
server resources (CPU and memory) and service Quality
of Service (QoS) demands (maximum transmission delay
and bandwidth requirements). The optimization goal is
to maximize the percentage of satisfied demand (answered
requests) and minimize the total number of used servers
for service hosting. Each service has a relative priority,
which can be manually adjusted to influence the placement
scheme.

1 Introduction

The exponential growth of the Internet allows an ever-
growing number of service providers to reach more and
more users. Many services require a similar hard- and
soft-ware infrastructure that offers scalability, resilience,
QoS, multicast, lifecycle management, etc. Currently most
providers maintain a private and proprietary infrastructure
specifically designed for a single service. As an alternative
we propose a generic service delivery architecture. Such
an architecture would allow many service providers to of-
fer their services on a single, shared infrastructure. This

approach has several advantages for both service providers
and users. First, the investment threshold to start offering
services will be much lower for both new providers and pri-
vate users. Second, providers will be able to focus their
efforts on designing and implementing the service logic in-
stead of the service delivery platform. And finally, a dis-
tributed and shared infrastructure would span a much larger
area, allowing service providers to offer their services closer
to their users, thus improving transmission delays.

In this paper we discuss the first step towards such an
architecture, namely offline, centralized algorithms for ser-
vice placement and server selection. The algorithms take
into account two server resources, one load-dependent (in
this case CPU) and one load-independent (in this case mem-
ory). We treat memory as being independent of the cur-
rent load because many applications consume a concider-
able amount of their memory even if they are not processing
requests. Also current memory usage may depend on past
load because of caching.

Unlike many existing service placement algorithms,
ours also use network-related factors when making service
placement decisions. These factors include available edge
bandwidth and transmission delay.

Currently many networks offer no end-to-end support for
QoS demands, resilience and multicasting (e.g. the Inter-
net). They can nevertheless be offered by defining and ad-
justing routing paths. On a network such as the Internet
routing cannot be directly controlled, but limited control can
be obtained by using an overlay network [4]. The overlay
network consists of a set of overlay servers (OS) which are
linked together in a topology consisting of virtual overlay
edges. Each such edge corresponds to the path in the un-
derlying physical network. Although the mapping between
overlay edges and underlying paths is determined by the
routing policies of the traversed autonomous systems (AS),
the routing path on the overlay layer can be controlled. In
the past this technique has already been used to offer re-
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silience [3], improved QoS [7] and overlay multicasting [5].
In Section 5 we study the effect of randomly gener-

ated overlay topologies of different sizes on the algorithms.
We will use these results as a basis for intelligent over-
lay topology construction and adaptation algorithms in fu-
ture work. It should be noted that many current overlay-
based approaches lack scalability, and use a static topology.
Therefore much work remains to be done in this area.

The rest of this paper is structured as follows. We discuss
related work in Section 2. The service placement and server
selection problems are formally described in Section 3. Sec-
tion 4 gives a summary of the designed algorithms. They are
evaluated using simulation results in Section 5. And finally,
conclusions are drawn and future work is briefly discussed
in Section 6.

2 Related Work

Karve et al. [6] designed a centralized application place-
ment middleware. Their heuristic maximizes satisfied de-
mand and minimizes total number of placement changes
compared to a previous placement scheme. They only take
into account server resources, namely CPU and memory.

Adam et al. argued that any centralized service place-
ment scheme has a limited scalability and created a decen-
tralized variant of [6]. In [1] they propose an application
placement middleware that constructs overlays, places ser-
vices, selects service instances for clients and routes the
client requests to the correct instance. Their service place-
ment heuristic maximizes satisfied demand, also taking into
account only CPU and memory constraints. In [2] the scal-
ability of the design in [1] was improved. Here every node
requires knowledge on only a limit number of other nodes,
instead of global knowledge on all nodes in the network.

Although these designs take into account several server
resources, none of them consider network related resources
and limitations. We argue that in this age, where many ap-
plications require large amounts of bandwidth (e.g. video
streaming, IPTV) and guarantees concerning transmission
delay (e.g. online gaming, video/audio conferencing) these
are just as important as server resources. Therefore our al-
gorithms also concider bandwidth and transmission delay.

3 Problem Formulation

The service placement and server selection problems can
be described as follows. Given a directed graph G(N,E)
denoting the overlay topology, with N a set of overlay
nodes (both servers and clients) and E a set of directed over-
lay edges. M denotes the set of available services. Every
service m ∈ M has a set Nm ⊆ N of nodes which have
requests for it (clients). The two dimensional matrix R is

called the request-matrix, R(m, c) gives the number of re-
quests per second of client c ∈ Nm for service m ∈ M .

Every node n ∈ N has a memory capacity Γn and a CPU
capacity Ωn. Every edge e ∈ E has a bandwidth capacity
Be and transmission delay ∆e. Every service m ∈ M has
a memory requirement γm per instance, CPU requirement
ωm per request, bandwidth requirement βi

m per request and
βo

m per reply, a maximum allowed transmission delay δm,
and a priority πm.

In a heterogenous environment, such as the Internet, not
every server is able to run every service. Individual services
might have extra requirements, such as a certain operating
system, or software library. These extra requirements are
modelled using a capabilities-matrix C. C(m,n) = 1 if
node n ∈ N is capable of running service m ∈ M .

Service placement entails deciding on which nodes to
place instances of which services, while satisfying several
constraints. Server selection comes down to selecting which
instance of a service to use to answer a given client’s re-
quests, while satisfying a number of constraints.

Before listing the constraints we define a few extra deci-
sion variables. sm,n = 1 if node n ∈ N hosts an instance of
service m ∈ M , 0 otherwise. am,n,c defines whether or not
the instance of service m ∈ M on node n ∈ N answers the
requests of client c ∈ Nm. pi

m,n,e,c = 1 if edge e ∈ E is
part of the routing path from client c ∈ Nm to server n ∈ N
for service m ∈ M . po

m,n,e,c has the same meaning, but for
the path from the server to the client. un = 1 if node n ∈ N
hosts 1 or more services, 0 otherwise. Using these decision
variables the constraints are

∀e ∈ E :
∑

m∈M

∑

n∈N

∑

c∈Nm

(pi
m,n,e,c · βi

m+

po
m,n,e,c · βo

m) · R(m, c) ≤ Be

(1)

∀m ∈ M,∀n ∈ N,∀c ∈ Nm :
∑

e∈E

(pi
m,n,e,c+

po
m,n,e,c) · ∆e ≤ δm

(2)

∀n ∈ N :
∑

m∈M

∑

c∈Nm

am,n,c · ωm · R(m, c) ≤ Ωn (3)

∀n ∈ N :
∑

m∈M

sm,n · γm ≤ Γn (4)

∀m ∈ M,∀n ∈ N : sm,n ≤C(m,n) (5)

Equation 1 stipulates that the total used bandwidth on
every edge cannot exceed the available bandwidth on that
edge. Equation 2 stipulates that the delay of the path from
a client to the server hosting its instance of a specific ser-
vice and back cannot exceed the delay bound of that ser-
vice. Equation 3 denotes that the total CPU used to answer
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all requests for the service instances on a node, cannot ex-
ceed the available CPU on that node. Equation 4 denotes
the same for the memory used by all service instances on
a node. Finally Equation 5 stipulates that a node can only
host services if it meets all requirements of that service.

The objective function, which the algorithms attempt to
optimize is given as follows

max
∑

n∈N

((
∑

m∈M

∑

c∈Nm

α1 ·πm ·am,n,c ·R(m, c))−α2 ·un)

The α1 and α2 parameters denote the relative importance
of both objectives. The first objective, which is maximized,
equals the total satisfied demand, multiplied by the priority
of each service. This effectively prioritizes services with a
higher priority. The second objective, which is minimized,
equals the total number of servers used to host services. We
believe it is important to use as few resources (in this case
servers) as possible, while still optimizing the main objec-
tive. This allows us to use these nodes for other purposes,
or switch them off.

4 Service Placement Algorithms

We have designed 3 algorithms that solve the problem
described in Section 3. The first algorithm is based on
the Integer Linear Programming (ILP) [10] formulation and
finds the optimal solution. The problem can be formulated
as a variant of the Class Constrained Multiple-Knapsack
Problem, which has been shown to be NP-hard [8]. There-
fore this algorithm scales very poorly in terms of number
of servers, users and services. To improve scalability we
devised two heuristics, which find a sub-optimal solution in
polynomial time.

4.1 ILP Algorithm (ILP)

The ILP formulation is based on the formal description
of the problem given in Section 3. The algorithm maxi-
mizes the given objective function by selecting suitable val-
ues for the decision variables, using branch and bound tech-
niques. For the implementation we used the ILOG CPLEX
10.0 software package. Note that not all constraints needed
for a correct ILP formulation are given in the problem de-
scription. Due to space limitations, constraints defining the
relationship between different decision variables have been
omitted.

4.2 Greedy Heuristic (Gr)

As its name implies this heuristic is based on the greedy
principle. It is greedy in the way that it will seperately place

instances of each service, without taking into account ser-
vices that have not been placed yet (it does however take
into account resources used by already placed services).

Before executing the algorithm, the services should be
sorted from small to large according to a certain metric.
Experimentation showed that sorting services from most to
least requests multiplied by priority (πm ·∑c∈Nm

R(m, c)),
performed well. The algorithm can be described as follows

1. Select the next service m in the sorted list of services.
2. For each client c ∈ Nm create a list of possible can-

didate servers to host an instance of m for it. Only
include servers that are capable of running service m,
have enough available CPU and memory, and have an
overlay path to and from c with enough available band-
width and a low enough delay (do not take into account
resources potentially used by other clients of m).

3. Sort the servers from most to least possible clients (the
server that occurs on the most candidate lists comes
first). Also include clients of previously placed ser-
vices in this count. Sort the clients from least to most
candidate servers (this will also give clients with only
few possible candidates a chance).

4. Select the next server s in the sorted list.
5. For each client c in the sorted list for which no candi-

date has been selected yet. Check if s has enough re-
maining memory and CPU and if a path can be found
from c to s and back with a low enough delay and
enough remaining bandwidth (take into account re-
sources used by previously placed clients for service
m now). If any clients remain without candidate and
not all servers have been checked yet, return to step 4.

6. If any services remain, goto step 1, otherwise finish.

It can be easily shown that this algorithm has a worst-
case time complexity of O(m · c · n3). With m the number
of services, c the maximum number of clients for a single
service, and n the number of overlay nodes.

4.3 Selective Greedy Heuristic (SGr)

Because of its design, it would be very difficult to use the
standard greedy heuristic in a decentralized architecture. To
solve this problem we have designed another heuristic, also
based on the greedy principles. Before running the algo-
rithm, services are sorted using the same metric as used for
Gr. The algorithm can be described as follows

1. Select the next service m in the sorted list of services.
2. Select the next client c ∈ Nm.
3. Select the K servers with shortest delay to c. If one

or more of these servers are already running an in-
stance of m, then prioritize them over the others. Se-
lect the server which is the candidate for most clients
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already and has enough CPU and memory resources.
Make sure the path from c to the server and back has
enough available bandwidth and low enough delay. If
any clients for service m remain, goto step 2.

4. If any services remain goto step 1, otherwise finish.

This algorithm has two advantages, which make it easier
to convert to a decentralized form. First, for each client it
checks only those servers nearest to it. And second, when
selecting a candidate for a client, only past placement infor-
mation is used. Gr uses information about all clients of a
service, even when their candidate has not yet been chosen.

It can easily be shown that SGr has a worst-case time
complexity of O(m · c · K · n2). This is better than the
complexity of Gr when K < n.

5 Evaluation

In this section we evaluate the performance and scalabil-
ity of the heuristics. Performance is measured by compar-
ing the percentage of satisfied demand and number of used
servers to the optimal (calculated using the ILP algorithm).
Scalability is evaluated by comparing results for different
sized networks and service sets. Additionally we have per-
formed a third simulation to examine the influence of the
overlay topology on the solution.

When relevant we used the S-PLUS 8.0 software pack-
age to statistically interpret simulation results. All statistical
tests were performed using a 5% significance level. We used
the one-way analysis of variance (ANOVA) test to compare
several levels of a single factor. If an effect of the factor was
found, we used a Tukey test to detect differences between
individual averages.

5.1 Simulation Setup

The tests were performed on randomly generated net-
work topologies. The physical underlays were created us-
ing Waxman’s algorithm [9]. For the first 2 tests no overlay
network was needed, here the overlay topology was identi-
cal to the generated underlay. For the third test an overlay
network was generated on top of the underlay. The overlay
nodes were randomly selected among the underlying net-
work nodes. Overlay edges were then generated to connect
these nodes, until a predefined average node degree was
reached. For each overlay edge the corresponding under-
lying path was set to the shortest hop-count path. Clients
were selected at random out of the set of overlay nodes.

5.2 Performance of the Heuristics

The goal of this test is to compare the solution of the
heuristics to the global optimum. This optimum was calcu-
lated using the ILP algorithm. The test was performed on

networks with 30 nodes (of which 10 acted as clients) with
an average in- and outdegree of 3. The clients had requests
for 3 different randomly generated services.

Fig. 1 shows the results as a function of available CPU
(%) and service delay bound (db). Each client is connected
to a single server via a zero-delay edge, all other edges have
delay 1. By limiting the delay bound to 0, clients can thus
only be served by the server they are connected to directly.

As expected the available CPU is directly proportional
to the satisfied demand (%) (measured as percentage of an-
swered requests). Up to about 40% available CPU also in-
fluences the number of used servers to host instances. This
is most likely because at lower values, some servers do not
have enough CPU available to serve even a single client.

The service delay bound is inversely proportional to the
number of used servers. As the figure shows, delay bound
has only a limited influence on the percentage of satisfied
demand. Statistical analysis showed that there is no signifi-
cant difference between satisfied demands for delay bounds
2 and 4, for any available CPU percentage, except for 40
and 80%. Satisfied demand for delay bound 0, on the other
hand, is significantly different from results for delay bounds
2 and 4 (for all algorithms and any available CPU percent-
age, except 100%).

Statistical analysis showed that there are no significant
differences between the 3 algorithms, in terms of number
of used servers, for any available CPU percentage or any
service delay bound. For satisfied demand there are only
significant differences between SGr and ILP for avail-
able CPU percentage 90% (delay bound 4) and 100% (delay
bounds 2 and 4). Between Gr and ILP there is only a sig-
nificant difference for 100% available CPU (delay bound
2).

5.3 Scalability

In this section we study the scalability of the heuristics,
both in terms of satisfied demand and execution time. Tests
were performed using different sizes networks. For net-
works with x nodes, 2x

3 of them acted as clients and x
6 ser-

vices were randomly generated. We also varied the maxi-
mum number of candidate servers K of the SGr algorithm.
This allows us to study the trade-off between solution qual-
ity and execution time, for varying K. From here on we
denote the K value used for SGr between brackets. So
SGr(n) means SGr with K = n.

Fig. 2 shows the results as a function of network (and
service set) size. Fig. 2(a) shows clearly that the satisfied
demand (%) of Gr, SGr(n), and SGr(2log(n)) (n being
the network size), degenerates only slowly. This is not the
case for SGr(log(n)). Statistical analysis showed that re-
sults for SGr(log(n)) are significantly different from the
other algorithms starting at 120 nodes. There are no sig-
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Figure 1: Performance of the heuristics compared to the optimal algorithm as a function of available CPU (%) and service delay
bound, in terms of satisfied demand (%) (left graph) and servers used to host services (right graph)
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Figure 2: Scalability of the heuristics as a function of the overlay network size, in terms of satisfied demand (%) (left graph) and
execution time (s) (right graph)

nificant differences between results for node counts 90 to
270 for Gr, SGr(2log(n)), and SGr(n), and results for
node count 300 are only significantly different from those
for node counts 30 to 180.

Fig. 2(b) shows scalability in terms of execution time. It
is obvious that Gr and SGr(n) scale poorly compared to
SGr(log(n)) and SGr(2log(n)). This is in accordance to
the theoretical time complexity, which is respectively pro-
portional to O(m · c · n3) for the first two algorithms and
O(m · c · log(n) · n2) for the other two.

Looking at both figures SGr(2log(n)) seems to be the
best choice in terms of scalability. Its solution quality (in
terms of satisfied demand) is not significantly different from
that of Gr and SGr(n), while it is almost 15 times faster
than Gr (in terms of execution time) for larger networks.

5.4 Overlay-awareness

As stated in Section 1 overlay networks have several use-
ful advantages for a generic service delivery architecture.
In this section we will study the effect of random overlay
topologies on the service placement heuristics. The gener-
ated physical networks contain 100 nodes. On top of these
networks overlay topologies of different sizes were created

by selecting from 10 up to 100 nodes at random and adding
them to the overlay.

Fig. 3 shows the results. Fig. 3(a) shows the satisfied
demand (%) for both heuristics as a function of amount of
used overlay servers. We define an overlay server as being
used if it is used on the path from 1 or more clients to their
candidate server or back for 1 or more services, that does
not equal the shortest hopcount path. We use this definition
because if the shortest hopcount path is used, this is most
likely equal to the routing path that would be used if no
overlay was present. As expected, satisfied demand is di-
rectly proportional to the size of the overlay network. This
is because a larger overlay means more available server and
network resources. What is interesting is that the effect of
the overlay size on satisfied demand is only minor. Statis-
tical analysis also showed that there are no significant dif-
ferences between the algorithms for any overlay size. Also
there are no significant differences between results for over-
lay sizes 40 to 100.

Fig. 3(b) shows the number of used overlay servers as a
function of available overlay servers. The figure shows sev-
eral interesting things. First, SGr uses less overlay servers
than Gr. This is because SGr will search for its K pos-
sible server candidates via the shortest delay paths starting
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Figure 3: Performance of the heuristics using a 100 node underlay, the left graph shows satisfied demand (%) as a function of used
overlay servers, and the right graph shows used overlay servers as a function of available overlay servers

from the client. Therefore it will more likely select the un-
derlay path. Gr will potentially select a server far away,
lessening the chances it will select the shortest hopcount
path. Second, even when 100 overlay servers are available
all algorithms will use on average less than 50.

Statistical analysis showed that in terms of used overlay
servers SGr(log(n)) performs significantly better than Gr
and SGr(n), for all overlay sizes. SGr(2log(n)) performs
significantly better aswell, but only for overlay sizes 40 and
upward. Starting at overlay size 70, SGr(n) performs sig-
nificantly better than Gr.

From these results we can conclude that even when all
servers are available to be used in the overlay network only
a portion of them is actually used. Intelligently selecting
these overlay servers would allow us to satisfy more de-
mand with only a portion of all available overlay servers.

6 Discussion and Future Work

In this paper we proposed an optimal algorithm and two
heuristics to solve the service placement and server selec-
tion problems. These form the first step towards an overlay
based generic service delivery architecture. Such an archi-
tecture could provide several advantages to current and fu-
ture service providers and end-users compared to existing
practices where the hard- and software infrastructure is pri-
vate and mostly used to offer only a single or a few services.

We showed that in many situations the optimal algorithm
does not perform significantly better than our heuristics.
Additionally our results show that intelligent overlay topol-
ogy construction could prove benificial.

In future work we are planning to design an online, de-
centralized variant of the selective greedy heuristic to im-
prove scalability and reliability. We will also incorporate
intelligent overlay topology construction into our design.
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