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ABSTRACT

Recently, the NLMeans filter has been proposed by
Buades et al. for the suppression of white Gaussian noise.
This filter exploits the repetitive character of structures
in an image, unlike conventional denoising algorithms,
which typically operate in a local neighbourhood. Even
though the method is quite intuitive and potentially very
powerful, the PSNR and visual results are somewhat infe-
rior to other recent state-of-the-art non-local algorithms,
like KSVD and BM-3D. In this paper, we show that the
NLMeans algorithm is basically the first iteration of the
Jacobi optimization algorithm for robustly estimating the
noise-free image. Based on this insight, we present ad-
ditional improvements to the NLMeans algorithm and
also an extension to noise reduction of coloured (corre-
lated) noise. For white noise, PSNR results show that
the proposed method is very competitive with the BM-3D
method, while the visual quality of our method is better
due to the lower presence of artifacts. For correlated noise
on the other hand, we obtain a significant improvement in
denoising performance compared to recent wavelet-based
techniques.

1. INTRODUCTION

Digital imaging devices inevitably produce noise, origi-
nating from the analog circuitry in these devices. Noise
suppression by means of digital post-processing is often
desirable, but also very challenging. In this paper, we fo-
cus on the design of a noise reduction method for station-
ary Gaussian noise, that preserves original image details
and that has a high visual quality.

During the past decade, numerous and diverse denois-
ing methods have been proposed to this end. Many
methods, like total variation [1], bilateral filtering [2]
or wavelet-based techniques [3–9] estimate the denoised
pixel intensities based on the information provided in a
limited surrounding neighbourhood. These methods only
exploit the spatial redundancy in a local neighbourhood
and are therefore referred to aslocal methods.

Recently, a number ofnon-localmethods have been de-
veloped. These methods estimate every pixel intensity
based on information from thewhole image thereby ex-
ploiting the presence of similar patterns and features in
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an image. This relatively new class of denoising methods
originates from the Non-Local Means (NLMeans), intro-
duced by Buades at al. [10, 11]. Basically, the NLMeans
filter estimates a noise-free pixel intensity as a weighted
average of all pixel intensities in the image, and the
weights are proportional to the similarity between the lo-
cal neighbourhood of the pixel being processed and local
neighbourhoods of surrounding pixels. Othernon-local
denoising methods are exemplar-based (KSVD) [12], or
group similar blocks by block-matching and then ap-
ply 3D transform-domain filtering to the obtained stacks
(BM-3D) [13].

The NLMeans filter, despite being intuitive and po-
tentially very powerful, has two limitations at this mo-
ment: first, both the objective quality and visual quality
are somewhat inferior to the other recent non-local tech-
niques and second, the NLMeans filter has a complexity
that is quadratic in the number of pixels in the image,
which makes the technique computationally intensive and
even impractical in real applications. For this reason, im-
provements for enhancing the visual quality and for re-
ducing the computation time have been proposed by dif-
ferent researchers. Some authors investigate better sim-
ilarity measures [14–16], use adaptive local neighbour-
hoods [17], or refine the similarity estimates in different
iterations [18]. Other authors propose algorithmic acceler-
ation techniques [16,19–21], based for example on neigh-
bourhood preclassification [16,19] and FFT-based compu-
tation of the neighbourhood similarities [20].

In this paper, we show the connection between the
NLMeans filter and robust estimation techniques, simi-
lar to the connection made for the bilateral filter in [12].
It turns out that the NLMeans filter is the first iteration
of the Jacobi algorithm [12] (also known as the Diagonal
Normalized Steepest Descent algorithm) for robustly esti-
mating the noise-free image using the Leclerc loss func-
tion. By this observation, it becomes possible to investi-
gate other robust cost functions that are commonly used
for robust estimation. Also, this suggests that applying
the NLMeans algorithm iteratively in a specific way, fur-
ther decreases the cost function. Another problem noted
by Buades et al. is that the NLMeans filter is not able to
suppress any noise for non-repetitive neighbourhoods. In
this work, we keep track of the local noise variance during
NLMeans filtering and we apply alocal post-processing



filter afterwards, to remove remaining noise in regions
with non-repetitive structures. Furthermore, we present an
extension of the NLMeans filter to correlated noise and we
also present a new acceleration technique that computes
the Euclidean distance by a recursive moving average fil-
ter. The proposed modifications significantly improve the
NLMeans filter, both in PSNR as in computation time, and
make the filter competitive to (or even better than) recent
non-localmethods such as BM-3D of Dabov et al. [13].

The remainder of this article is as follows: in Section 2,
the NLMeans algorithm is briefly presented. In Section 3,
we investigate the choice of the similarity weighting func-
tions, on probabilistic reasoning and within the robust esti-
mation framework. In Section 4, we present our improve-
ments to the NLMeans algorithm. We discuss how the
computation time of the filter can be further reduced in
Section 5. Numerical results and visual results together
with a discussion, are given in Section 6. Finally, Sec-
tion 7 concludes this paper.

2. NON LOCAL MEANS

Suppose an unknown signalXi, i = 1, ..., N is corrupted
by an additive noise processVi, i = 1, ..., N , which re-
sults in the observed signal:

Yi = Xi + Vi (1)

In this work, we stick to definitions for 1-d signals for
simplicity of the notations. An extension to 2-d images
is straightforward. The denoised valuêXi of the pixel
intensity at positionj is computed as the weighted average
of all pixels in the image:

X̂i =

∑N
j=1 w(i, j)Yj
∑N

j=1 w(i, j)
(2)

We will refer to this filter as thepixel-based NLMeans.
Alternatively, avector (or block)-based NLMeans filter
does also exist [10]. Here overlapping blocks are used, re-
sulting in multiple estimates for each pixel in a block. To
aggregate the different estimates, an additional weighting
functionb(k) determines the weight contribution of cen-
tral pixel to its neighbour at relative positionk:

X̂i =

∑N
j=1

∑K
k=−K b(k)w(i + k, j + k)Yj

∑N
j=1

∑K
k=−K b(k)w(i + k, j + k)

(3)

The weightsw(i, j) depend on the similarity between the
neighbourhoods centered at positionsi and j. In this
paper, neighbourhoods of fixed predefined size are used
(e.g. 9 × 9). Let us denotexi = (Xi−K , . . . , Xi+K),
yi = (Yi−K , . . . , Yi+K) andvi = (Vi−K , . . . , Vi+K) as
vectors containing pixel intensities of the local neighbour-
hood centered at positioni (where for example symmetri-
cal boundary reflection is used at the signal/image bound-
aries). In the original NLMeans algorithm [10, 11], the
weighting function is defined as follows:

w(i, j) = exp

(
−
‖yi − yj‖

2

2h2

)
(4)

with ‖yi − yj‖ =

√
(yi − yj)

T
(yi − yj) the Euclidean

distance between the vectorsyi andyj . The bilateral fil-
ter [2] is closely related to the NLMeans filter. For the
bilateral filter, the weighting function is given by:

w(i, j) = exp

(
−

(Yi − Yj)
2

2h2

)
exp

(
−

(i − j)2

d2

)
(5)

where the first factor (called photometric distance) is in-
versely proportional to the Euclidean distance between
the pixel intensitiesYi and Yj and the second factor
(called geometric distance), measures the Euclidean dis-
tance between the center samplei and thej-th sample.
The NLMeans weighting function can be interpreted as
a vector-extension of the bilateral filter weighting func-
tion, omitting a geometric distance factor. In [2, 11], the
weighting functions as given in equations (5) and (4) are
defined on intuition. However it is not guaranteed that
these choices are optimal for a given criterion. In [12], it is
shown that equation (5) emerges from optimizing a robust
M-function. In the next Section, we will derive expres-
sions forw(i, j) based on probabilistic reasoning and we
will further extend the result from [12] to the NLMeans
filter.

3. COMPUTING SIMILARITY WEIGHTS

One of the key elements for designing a high performance
NLMeans filter, is the selection of the similarity weights.
Clearly, the similarity weights should be adapted to the
image in order to achieve maximal improvement. Be-
cause only a noisy version of the image is available, the
weights should also take the noise properties into account;
the presence of noise generally degrades the estimate of
the similarity between two neighbourhoods in the image.
The question now becomes: how to determine the simi-
larity weights in an“optimal” sense for a given criterion?
Luckily, estimation theory can give an answer to this prob-
lem.

3.1. Best Linear Unbiased Estimator (BLUE)

We now only consider the estimation of the noise-free
patchxi as a function of surrounding noisy patches . To
take the correlation between differentxi into account, we
model the residualri,j between patches (centered at posi-
tion i andj) as:

xi = xj + ri,j (6)

with ri,j a zero-mean Gaussian random variable with
position-dependent covariance matrixσ2

i,jI (the disadvan-
tages of this choice will be discussed further on) and with
σi,i = 0. Due to the additivity of the noise, we have:

yi = xj + ri,j + vi (7)

For white Gaussian noise,vi ∼ N(0, σ2
wI). The Best Lin-

ear Unbiased Estimator (BLUE) for this problem is given



by:

x̂i = argmin
x

N∑

j=1

− log fy(yj ;x) (8)

= argmin
x

N∑

j=1

1

2

∥∥∥∥∥∥
yj − x√
σ2

w + σ2
i,j

∥∥∥∥∥∥

2

(9)

=

∑N
j=1

1
σ2

w+σ2

i,j

yj

∑N
j=1

1
σ2

w+σ2

i,j

(10)

which here also corresponds to the maximum likelihood
(ML) estimator. The variancesσ2

i,j , i 6= j are unknown
and need also to be estimated. Noting that from:

(yj − yi) = (rj,j − ri,j) + (vj − vi)

it follows thatVar [yj − yi] =
(
2σ2

w + 2σ2
i,j

)
I, the fol-

lowing estimate can be obtained:

σ̂2
i,j = max

(
0,

1

2 (2K + 1)
‖yi − yj‖

2
− σ2

w

)
(11)

This solution suggests the use of the following weight ma-
trix:

w(i, j) =





4K+2
‖yi−yj‖

2

‖yi−yj‖
2

4K+2 > σ2
w

1
σ2

w

‖yi−yj‖
2

4K+2 ≤ σ2
w

(12)

This means that fori 6= j the weights are inversely pro-
portional to the Euclidean distance between the vectors
at positioni and j. Unfortunately, the Gaussian distri-
bution for modeling the residuals is not a good choice:
for natural images we may expect that for each vectorxi

there are many other vectorsxj that are very similar to
xi. The residual or difference betweenxj andxi would
from this perspective rather have a Laplacian distribution
than a Gaussian distribution. Moreover, dissimilar patches
xi tend to cluster, which causes multiple modes in the
histogram of the residual. One possibility is e.g. to use
a better suited multivariate (multimodal) distribution for
ri,j that also incorporates correlations between the com-
ponents ofri,j . Because the estimators for such a distribu-
tion are much more complicated and the model training is
computationally more intensive, an attractive alternative
is to use robust statistics instead and to treat the deviations
from the model as outliers.

3.2. Robust M-estimator

The Robust M-estimator is derived from the ML estima-
tor by replacing the quadratic term in the negative log-
likelihood functional by a multivariate robust loss function
ρ(x), as follows:

x̂i = argmin
x

N∑

j=1

ρ (x − yj) (13)

The minimum can be found iteratively, e.g. by gradient
descent. Applying only one iteration of this algorithm
yields:

x̂i = yi − λi

N∑

j=1

ρ′ (yi − yj) (14)

with ρ′(x) the gradient ofρ(x). An interesting case is
obtained by considering a robust function with derivative
of the form:

ρ′(x) = xg(x),

In this case, equation (14) becomes:

x̂i = yi − λi

N∑

j=1,j 6=i

g (yi − yj) (yi − yj)

=


1 − λi

N∑

j=1,j 6=i

g (yi − yj)


yi +

λi

N∑

j=1,j 6=i

g (yi − yj)yj (15)

To speed up the first iteration, the step-sizeλi can be
adapted based on the Jacobi algorithm. Analogous to [12],
this leads to:

λi =
1

1 +
∑N

j=1,j 6=i g (yi − yj)
(16)

Equation (15) becomes:

x̂i =
yi +

∑N
j=1,j 6=i g (yi − yj)yj

1 +
∑N

j=1,j 6=i g (yi − yj)
(17)

which is the NLMeans filter with weight function given
by:

w(i, j) =

{
g (yi − yj) i 6= j

1 i = j
(18)

Example: for the Leclerc robust function defined by:

ρ(r) = h2 − h2 exp

(
−

rT r

2h2

)
(19)

we have:

ρ′(r) = r exp

(
−

rT r

2h2

)
(20)

and

w(i, j) = exp

(
−
‖yi − yj‖

2

2h2

)
(21)

Hence, the Leclerc robust function leads us to the weight-
ing function from equation (4). Interestingly, the weight
function (12) derived in Section (3.1) can also be inter-
preted to be associated to a robust function:

ρ(r) =

{
1
2 + log ‖r‖ ‖r‖ > h
‖r‖2

2h2 ‖r‖ ≤ h
(22)



This interpretation makes it easier to compare the prop-
erties of the resulting estimator with other robust estima-
tors. Note that the robust estimation framework gives us
a much wider variety of weighting functions. Different
robust functions will be compared more in detail in Sec-
tion 4.3.

4. IMPROVEMENTS TO THE NLMEANS FILTER

Based on the theoretical framework explained in Section 2
and Section 3, we are now able to present a number of
improvements for the NLMeans algorithm:

• If only one iteration of the NLMeans filter is ap-
plied, the solution has generally not converged to a
(local) optimum. Practically, local neighbourhoods
that only have few similar neighbourhoods may still
contain noise after one iteration (unlessh is chosen
large enough; but this would cause oversmoothing
in other regions). In this paper, we propose to keep
track of the noise variance at every location in the
image and to remove the remainder of the noise as
a post-processing step using a local filter (see Sec-
tion 4.1).

• As discussed in Section 3.2, the NLMeans algorithm
can be considered to be the first iteration of the Ja-
cobian optimization algorithm for the cost function
in equation (13). This would suggest that applying
the NLMeans algorithm iteratively would further de-
crease the cost function.

• The choice of the Leclerc robust function is some-
what arbitrary. We will see that further improve-
ments can be achieved by using the Bisquare robust
function.

• The existing NLMeans algorithms assume that the
image noise is white (uncorrelated), while in most
practical denoising applications the noise is corre-
lated. In this case, computation of the similarity
based on the Euclidean distance is hampered which
eventually leads to a poor denoising performance.
By extending the reasoning from Section 3, it now
becomes possible to devise a NLMeans filter for
coloured(correlated) noise.

These modifications will be described more in detail in the
remainder of this Section.

4.1. Local filtering of remaining noise

In some circumstances (e.g. non-repetitive structures), one
iteration of the NLMeans filter may not remove all of
the noise. Theoretically, an infinite number of neigh-
bourhoods is required in order to completely suppress the
noise, which is not possible for finite image dimensions.
However, it is possible to compute the noise variance of

each estimated vector, based on equations (15) and (17):

σ2
x,i = Var [x̂i]

=

N∑

j=1,j 6=i

(λig (yi − yj))
2
Var [yj ] +

λ2
i Var [yi]

= σ2
wλ2

i




N∑

j=1,j 6=i

g2 (yi − yj) + 1


 (23)

with λi given by equation (16). Clearly, the noise variance
depends on the position in the image, which means that
we are dealing with non-stationary noise. In theory, any
algorithm for non-stationary noise can be used, such as the
ones presented in [6,22]. Because before the aggregation,
the output of the NLMeans filter is a set of vectors, it is
beneficial to use a vector-based denoising algorithm and
to aggregate afterwards. In this paper, we adopt a locally
adaptive basis of Principle Components, as in [23]. This
method assumes that the Gaussian noise is stationary, but
an extension to non-stationary noise is straightforward, as
we will show next. First, we defineCy,i as the local co-
variance matrix ofyi, estimated as follows1:

Ĉy,i =
1

2R + 1

R∑

n=−R

(yi+n − µi)(yi+n − µi)
T

with µ̂i =
1

2R + 1

R∑

n=−R

yi+n

To find the PCA basis, we apply the diagonalization:

Ĉy,i = UiΛiU
T
i (24)

The local covariance matrix ofxi, denoted asCx,i can be
estimated as follows:

Ĉx,i =
(
Ĉy,i − σ2

wI
)

+

= Ui

(
Λi − σ2

wI
)
+
UT

i (25)

where (·)+ replaces possible negative eigenvalues by a
small positive number, such that the resulting matrix is
positive definite (due to estimation errors ofĈy,i, it is pos-
sible that the differencêCy,i−σ2

wI has negative eigenval-
ues). The linear MMSE estimator is given by:

ˆ̂xi = µ̂i + Ĉx,i

(
Ĉx,i + σ2

x,iI
)−1

(x̂i − µ̂i)

= µ̂i + UiAiU
T
i (x̂i − µ̂i) (26)

with Ai =
(
Λi − σ2

wI
)
+

((
Λi − Iσ2

w

)
+

+ σ2
x,iI
)−1

a

diagonal (Wiener filter) matrix. Because a direct imple-
mentation of the above formulas has a high computa-
tional cost (the diagonalization in equation (24) needs to

1This expressions given here are for 1-d signals, but can be easily
extended to images by using a double summation.



(a) Original (b) Noisy (20.16dB)

(c) NLMeans-W without (d) NLMeans-W with
post-processing filter post-processing filter

(29.18dB) (30.53dB)

Figure 1. Denoising example of Barbara: the effect of
using the proposed post-processing filter (a) Crop out of
the original image (b) Image with white Gaussian noise
(σ = 25). (c) The result of the NLMeans filterwithout
post-processing filter (d) The result of the NLMeans fil-
ter with post-processing filter. PSNR values are between
parentheses.

be performed for every pixel in the image), we only esti-
mate the covariance matrix̂Cy,i at subsampled positions
i and assume this covariance matrix is piecewise constant.
Also, for neighbourhoods with a sufficient number of sim-
ilar blocks, the varianceσ2

x,i will be very small after the
NLMeans filtering stage. In this case do not apply the lo-
cal filtering step. An example for the Barbara image is
given in Figure 1. It can be seen that the NLMeans filter
removes most of the noise, except in regions with lim-
ited repetitivity. In this regions, the post-processing filter
works excellent in removing the remainder of the noise in
Figure 1c, while retaining the stripes.

4.2. An iterative NLMeans filter

An iterative NLMeans filter can be obtained by perform-
ing the optimization in equation (13) iteratively. There-
fore, we choose the observed image as an initial estimate,
i.e. x̂

(0)
j = yj , j = 1, ..., N . For then-th iteration

(n > 0), we find:

x̂
(n)
i = x̂

(n−1)
i −

λ
(n)
i

N∑

j=1

g
(
x̂

(n−1)
i − x̂

(n−1)
j

)(
x̂

(n−1)
i − x̂

(n−1)
j

)

with, following the Jacobi algorithm for determining the
step size:

λ
(n)
i =

1

1 +
∑N

j=1,j 6=i g
(
x̂

(n−1)
i − x̂

(n−1)
j

) (27)

Implementation of this estimate is analogous to the im-
plementation of (17), except that the estimates from the
previous iterations are used as input. At first sight, the
reader may incorrectly have the impression that the iter-
ative NLMeans filter increases the computational cost by
the number of iterations. Instead, the iterative filter offers
a number of advantages:

• A small search window (e.g.31 × 31) can be used
instead of the whole image, which dramatically re-
duces the computation time. When applying more
iterations, information from outside the search win-
dow will also be used, resulting in a completenon-
local denoising technique.

• Potentially a better end solution can be found, be-
cause the cost function is further reduced.

• A limitation of the non-iterative NLMeans filter is
that the weights are computed directly based on the
observed noisy image. As a result, the weights are
very sensitive to the image noise. In [13], this prob-
lem is avoided by applying a rough denoising pre-
processing step before selecting similar neighbour-
hoods. However, this technique has the problem that
by rough denoising, some details may be lost, poten-
tially resulting in an incorrect selection of dissimilar
blocks. In the iterative NLMeans algorithm, every
iteration reduces the average noise variance, result-
ing in better weight estimates, thereby increasing the
overall denoising performance.

4.3. The choice of the robust loss function

As said before, the NLMeans algorithm proposed in
[10, 11] can be interpreted as the first Jacobian iteration
of a robust estimation method, that uses the Leclerc loss
function. In our earlier work [16] we noted that the expo-
nential form ofg(x) still assigns positive weights todis-
similar neighbourhoods. Even though these weights are
very small, the estimated pixel intensities can be severely
biased due to many small contributions. We therefore pro-
posed a preclassification based on the first three statistical
moment to exclude dissimilar blocks [16]. An alternative
is to change the shape of the robust function. An overview
of somerelevantrobust functions are given in Table 1. We
will now look at the characteristics of the robust weighting
functions more in detail.

• The weighting function associated with theBLUE
estimator derived in Section 3.1 and theCauchy
weighting function have a very slow decay (see Fig-
ure 2a). They assign larger weights to dissimilar
blocks than the Leclerc robust function, which will
eventually lead to oversmoothing.



• The Leclerc weighting function has a faster decay,
but still assigns positive weights to dissimilar blocks.

• The Andrewsweighting function imposes a hard
threshold to compare neighbourhoods (the weight is
0 as soon as a given threshold is exceeded), while the
TukeyandBisquareweighting functions rather use a
soft threshold (Figure 2b). Experimentally we found
that applying a soft threshold often improves the vi-
sual quality, in analogy to wavelet thresholding.

• To further improve upon the Tukey and Bisquare
weighting functions, we also modified the Bisquare
robust function in order to have a steeper slope (see
Table 1 and Figure 2b). In Section 6 we will report
the improvement in PSNR by using this robust func-
tion.

4.4. NLMeans filter for correlated noise

In the previous Sections, we assumed that the Gaussian
noise isuncorrelated(white). Applying the NLMeans fil-
ter without modifications to images corrupted withcor-
related noise often yields a poor denoising performance
(see Section 6). Fortunately, a robust estimator for cor-
related noise can be obtained by replacing the Euclid-
ean distance‖yi − yj‖ by the Mahalanobis distance√

(yi − yj)
T

C−1
w (yi − yj) that takes the noise covari-

ance matrixCw into account (see e.g. [24]), giving the
following estimator:

x̂i = arg min
x

N∑

j=1

ρ
(
C−1/2

w (x− yj)
)

with (·)1/2 the square root of a positive definite matrix.
The weight function becomes:

w(i, j) =

{
g
(
C

−1/2
w (yi − yj)

)
i 6= j

1 i = j
(28)

Clearly, the correlatedness of the noise only affects the
weight function and not the final averaging. However,
the matrix multiplication in equation (28) is still compu-
tationally expensive, given the large number of weights
to be computed. Therefore, we apply a prewhitening lin-
ear filter operation to the noisy image. If the noise Power
Spectral Density is given by|H(l)|

2, then we compute the
prewhitened imageY prewhit

i , i = 1, ..., N as:

Ỹ prewhit(l) = Ỹ (l)
1

max(ǫ, |H(l)|)

with Ỹ prewhit(l), Ỹ (l) the discrete Fourier transform of
respectivelyY prewhit

i andYi, andǫ a small positive num-
ber to ensure stability (for the results in Section 6,ǫ =
10−4). Next, this prewhitened image is used to compute
the weights based on the Euclidean distance (see also Fig-
ure 3).

Yi Weight functionPrewhitening

w(i, j)

NLMeans X̂i

Y prewhit
i

Figure 3. Block diagram for the suppression ofcorrelated
noise

5. SPEEDING UP THE NLMEANS FILTER

Because the algorithmic complexity of the brute force
NLMeans filter on images isO(N2(2K + 1)2), with N
the number of pixels in the image, an efficient implemen-
tation is desirable. Our previous analysis in [16] revealed
that the main part of the computation time is taken by the
weight computation.

5.1. Exploiting weight symmetry

As in [16], we reduce the computation time by approxi-
mately a factor2 by exploiting the fact that weight func-
tions are symmetrical (i.e.w(i, j) = w(j, i)). Therefore,
we keep track of a weight normalization matrix and a ac-
cumulated contribution matrix (both of the same size as
the input image), and at the beginning of the algorithm,
initialized with zeros. When processing a pixeli with the
contribution of a pixelj, we add the productsw(i, j)Yi

andw(i, j)Yj to the accumulated contribution matrix at
the pixel positionsj andi respectively. The weight nor-
malization matrix is also accumulated at the same pixel
positions withw(i, j). As a result, we only need to
compute weights of neighbourhoods forj > i. Finally,
we normalize the accumulated contribution matrix via
element-wise division by the weight normalization matrix,
in order to obtain the estimated image. These concepts
can also be applied to thevector-based NLMeans filter:
here the productsw(i, j)b(k)Yi+k and w(i, j)b(k)Yj+k

are added to the accumulated contribution matrix at po-
sitionsj + k andi + k respectively, fork = −K, ..., K.
At the same positions, the productsw(i, j)b(k) are added
to weight normalization matrix.

5.2. Fast computation of the weight functions based
on the Euclidean distance

For the robust functions in Table 1,w(i, j) is a function
of the Euclidean distance‖yi − yj‖. When considering
a constant position difference∆i (i.e. j = i + ∆i), the
function

β(i) = ‖yi − yi+∆i‖
2

can be practically implemented using a moving average
filter applied to the squared difference between the signals
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Table 1. Overview of multivariate robust M-functions for extending the NLMeans algorithm, withh a smoothing para-
meter.
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Figure 2. Comparison of the weighting functionsg(r) for commonly used robust functions. Here,r = ‖yi − yj‖ is the
Euclidean distances between two vectorsyi andyj



Yi andYi+∆i, requiring only2 pixel accesses instead of
2K+1 (in 1-d). For images, we use the straightforward 2-
d extension of the moving averaging filter. Together with
the weight symmetry, this brings the complexity down to
approximatelyO(2N2), yielding a speed up of a factor
(2K + 1)

2
/2. When considering square neighbourhoods

of size11× 11, K = 5 and the overall speedup is a factor
121/2 compared to our previous NLMeans filter in [16].

5.3. Limited search window

The limited search window strategy assigns zero weights
to neighbourhoods that are too far away from each other,
i.e. w(i, j) = 0 if |i − j| > Nw. This technique may
decrease the strength of the NLMeans, especially for im-
ages with many repetitive structures, but for many real
images, the denoising performance is not significantly af-
fected. This stems from the fact that manysimilar blocks
can be found in thelocal neighbourhood. In this paper,
we use a limited search window of31 × 31 pixels, in or-
der to keep the computational cost of the algorithm low.
We remark again that in combination with the iterative
approach from Section 4.2, theeffectivesearch window
is extended byNw − 1 in each dimension, hence when
running at least⌈N/ (Nw − 1)⌉ iterations, the complete
image will be searched.

5.4. Pseudo-code

For illustrative purposes, the pseudo-code of the pixel-
based 1-d implementation is shown in Figure 4. In the
pseudo-code, the boundary handling is omitted for clar-
ity, as well as the initialization (warm-up) operations of
the moving average filter. The algorithm uses two loops2:
the first loop iterates on∆i in a limited search window,
the second loop runs over the whole signal. The similar-
ities corresponding to zero displacements (∆i = 0) are
treated differently, because the weights are easier to com-
pute in this case. It can be seen that the three acceleration
techniques proposed in this Section, can be elegantly and
efficiently combined in this algorithm. We further remark
that for thevector-based implementation (see Section 2),
additional changes are required: a different weight accu-
mulation matrix needs to be used for each position in the
local neighbourhood.

6. RESULTS AND DISCUSSION

To assess the improvement gained by using the modified
Bisquare cost function over the Leclerc cost function (see
Table 1), we set up a denoising experiment with 8 images
and 9 noise levels. All images are corrupted with artifi-
cially generated white Gaussian noise with varying noise
levels, and subsequently the non-iterative NLMeans algo-
rithm is applied to them (including the post-processing fil-
ter). In Figure 5, we report the PSNR improvement by us-
ing the modified Bisquare cost function. We note that on

2For images, four loops are needed (two outer loops and two inner
loops for thex andy-directions).

% outer loop (limited search window)
weight_cum = zeros(1,N);
weight_norm = zeros(1,N);

for di=1:Nw
% some initialization of the
% moving average operation
...
% inner loop
for j=1:N

i=j+di;
% moving average (sum) based computation
% of the Euclidean distance
eucl_dist=eucl_dist+(y(i+K)-y(j+K))^2;
eucl_dist=eucl_dist-(y(i-K-1)-y(j-K-1))^2;

% weight computation
weight=g(eucl_dist);

% weight accumulation
weight_cum(i) = weight_cum(i)+weight*y(j);
weight_norm(i) = weight_norm(i)+weight;
% symmetry
weight_cum(j) = weight_cum(j)+weight*y(i);
weight_norm(j) = weight_norm(j)+weight;

end;
end;

di=0; % zero displacement
for i=1:N

weight=1;
weight_cum(i)=weight_cum(i)+weight*y(i);
weight_norm(i)=weight_norm(i)+weight;

end;

% final estimate
x_hat = weight_cum ./ weight_norm;

Figure 4. Pseudo-code for the improved NLMeans algo-
rithm in 1-d (pixel-based implementation)

average, the improvement is approximately0.1dB. How-
ever the gain depends both on the image as on the noise
level, and is maximal for 1) images with many structures
or strong edges, such asBarbara and houseand 2) for
large noise levels (e.g.σ ≈ 60). Because of the vast im-
provement for most images and/or noise levels, we will
further use the Bisquare cost function.

The results for the proposed NLMeans filter are gener-
ated using a neighbourhood size of11 × 11 (i.e. K = 5),
a search window of31×31 (i.e. Nw = 15). The Bisquare
cost function is used and theh-parameter of the robust
function is selected experimentally as:h = 2.1σ. The
post-processing filter uses a subsampling factor8 in thex
andy direction for estimating the local covariance matrix
(see Section 4.1). To further save computation time and
to improve the numerical stability, the post-processing is
done on neighbourhoods of size5 × 5, selected from the
center of the11 × 11 neighbourhood (hence the aggre-
gation weighting functionb(k) = I(|k| ≤ 2)/5 is used,
with I(·) the indicator function). In Table 2, the denois-
ing performance of the proposed method for white noise
(NLMeans-W) is compared to BLS-GSM [5] (a state-of-
the-art wavelet denoising technique) and BM-3D (a state-
of-the-art non-local denoising technique) [13]. We give
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Figure 5. Comparison of using the Leclerc cost function
versus the modified Bisquare cost function, for a denois-
ing experiment on a set of 8 images (Barbara, Lena, boats,
couple, hill , man, peppers, house). The values are the
average (over the test set), maximal and minimal gain in
PSNR by using the modified Bisquare cost function com-
pared to the Leclerc cost function, for different noise lev-
elsσ.

results for both the non-iterative NLMeans (i.e. only one
iteration) and the iterative NLMeans filter as presented in
Section 4.2, with25 iterations. The iterative NLMeans
filter brings an additional improvement compared to the
non-iterative NLMeans. This is because the similarity
weights are refined iteratively, eventually resulting in a
cleaner image with more details. The iterative NLMeans
algorithm clearly outperforms the BLS-GSM filter and
seems competitive to the BM-3D method.

The visual performance of these methods is compared
in Figure 6-Figure 9. Here, the difference is astonishing:
the NLMeans filter reconstructs smoother images with re-
markably less artifacts than the other methods. Some de-
tails are better reconstructed, such as the fine stripes in
the hat of Lena and the feathers, even though the PSNR
of the NLMeans filter is slightly lower compared to BM-
3D. Further investigation revealed that the inferior PSNR
is caused by the reduced contrast (or oversmoothing) of
fine structures, that are usually visually hardly noticeable
(for example, the thick stripes in the hat of Lena located
above the feathers in Fig.6f).

We also compared the denoising performance of the
NLMeans extension to correlated noise (NLMeans-C) to
recent techniques for correlated noise: BLS-GSM [5] and
our recently proposed MP-GSM [25]. The NLMeans fil-
ter brings a significant improvement both visually as in
PSNR: there are almost no ringing artifacts and obviously
no wavelet artifacts. We also compare to NLMeans-W
(that is not adapted to the correlated noise), just to illus-
trate that the NLMeans filter, that uses weighting func-
tions based on the Euclidean distance, does not perform
well in the presence of correlated noise. The computa-
tion time for the non-iterative NLMeans filter is approxi-
mately20s. on a Pentium IV processor and for a512×512
grayscale image. The iterative filter takes approximately
8 minutes, when25 iterations are used.

Noise standard deviation
10 25 35 50 100

LENA
BLS-GSM [5] 35.59 31.58 30.05 28.45 25.49
BM-3D [13] 35.89 32.04 30.52 28.79 25.49

NLMeans-W (non-it) 35.55 31.70 30.03 28.26 24.72
NLMeans-W (25 it) 35.53 31.74 30.40 28.64 25.73

BARBARA
BLS-GSM [5] 34.51 29.30 27.44 25.58 22.82
BM-3D [13] 35.38 30.93 29.13 27.25 23.53

NLMeans-W (non-it) 35.01 30.56 28.62 26.57 22.95
NLMeans-W (25 it) 34.91 30.59 28.82 26.99 23.40

Table 2. PSNR [dB] results for white noise

7. CONCLUSION

By exploiting the repetitivity of structures in an image,
a significant gain in denoising performance is obtained
compared to purely local methods. We have shown that
the NLMeans algorithm is the first iteration of the Jacobi
optimization algorithm for robustly estimating the noise-
free image, based on the Leclerc loss function. Next, we
have proposed several improvements to the NLMeans fil-
ter that affect both the visual quality and the computation
time. Our proposed method now compares favourably to
state-of-the-art non-local denoising techniques in PSNR
and even offers a superior visual quality: the denoised
images contain less artifacts without sacrificing sharp-
ness. The proposed improvements can also be applied to
other image processing tasks such as intra-frame super-
resolution, non-local demosaicing and deinterlacing.
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(a) Original (b) Noisy (20.19dB)

(c) SV-GSM [9] (31.59dB) (d) MP-GSM [25] (31.81dB)

(e) BM-3D [13] (32.06dB) (f) NLMeans-W (31.74dB)

Figure 6. Visual results for the Lena image corrupted withwhitenoise (σ = 25)



(a) Original (b) Noisy (10.10dB)

(c) BM-3D [13] (26.47dB) (d) NLMeans-W (26.59dB)

Figure 7. Visual results for the peppers image corrupted with whitenoise (σ = 80)



(a) Original (b) Noisy (18.95dB) (a) Original (b) Noisy (18.95dB)

(c) BLS-GSM [5] (29.33dB) (d) NLMeans-W (28.51dB) (c) BLS-GSM [5] (29.33dB) (d) NLMeans-W (28.51dB)

(e) MP-GSM [25] (30.02dB) (f) NLMeans-C (30.74dB) (e) MP-GSM [25] (30.02dB) (f) NLMeans-C (30.74dB)

Figure 8. Visual results forcorrelatednoise: two different crop-outs of thehouseimage. PSNR values are between
parentheses.



(a) Original (b) Noisy (16.09dB) (a) Original (b) Noisy (16.09dB)

(c) BLS-GSM (24.76dB) (d) NLMeans-W (22.51dB) (c) BLS-GSM (24.76dB) (d) NLMeans-W (22.51dB)

(e) MP-GSM (25.10dB) (f) NLMeans-C (25.44dB) (e) MP-GSM (25.10dB) (f) NLMeans-C (25.44dB)

Figure 9. Visual results forcorrelatednoise: two different crop-outs of theflinstonesimage. PSNR values are between
parentheses.


