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ABSTRACT an image. This relatively new class of denoising methods
originates from the Non-Local Means (NLMeans), intro-

Recently, the NLMeans filter has been proposed by .
Buades et al. for the suppression of white Gaussian noise.leCeOI by Buades at al. [10, 11]. Basically, the NLMeans

This filter exploits the repetitive character of structures filter estimates a naise-free pixel infensity as a weighted

in an image, unlike conventional denoising algorithms, average of al plxgl Intensities .'”.‘h.e image, and the
which typically operate in a local neighbourhood. Even we|gth are proportional to.the S"T‘"a”‘y between the lo-
though the method is quite intuitive and potentially very cal neighbourhood of the pixel being processed and local

powerful, the PSNR and visual results are somewhat infe_ge@hb_ourhoo?]s (;)f surroundmglg plg(els.d Oég}gloi‘;l
rior to other recent state-of-the-art non-local algorighm enoising methods are exemplar-based ( ) [12], or

like KSVD and BM-3D. In this paper, we show that the group similar blocks by plock-matching anq then ap-
NLMeans algorithm is basically the first iteration of the ply 3D transform-domain filtering to the obtained stacks
Jacobi optimization algorithm for robustly estimating the (BM-3D) [13].
noise-free image. Based on this insight, we present ad- The NLMeans filter, despite being intuitive and po-
ditional improvements to the NLMeans algorithm and tentially very powerful, has two limitations at this mo-
also an extension to noise reduction of coloured (corre-ment: first, both the objective quality and visual quality
lated) noise. For white noise, PSNR results show that are somewhat inferior to the other recent non-local tech-
the proposed method is very competitive with the BM-3D niques and second, the NLMeans filter has a complexity
method, while the visual quality of our method is better that is quadratic in the number of pixels in the image,
due to the lower presence of artifacts. For correlated noisewhich makes the technique computationally intensive and
on the other hand, we obtain a significant improvement in even impractical in real applications. For this reason, im-
denoising performance compared to recent wavelet-basegrovements for enhancing the visual quality and for re-
techniques. ducing the computation time have been proposed by dif-
ferent researchers. Some authors investigate better sim-
1. INTRODUCTION ilarity measures [14-16], use adaptive local neighbour-
Digital imaging devices inevitably produce noise, origi- hoods [17], or refine the similarity estimates in different
nating from the analog circuitry in these devices. Noise iterations [18]. Other authors propose algorithmic aaeele
suppression by means of digital post-processing is oftenation techniques [16,19-21], based for example on neigh-
desirable, but also very challenging. In this paper, we fo- bourhood preclassification [16,19] and FFT-based compu-
cus on the design of a noise reduction method for station-tation of the neighbourhood similarities [20].

ary Gaussian noise, that preserves original image details | this paper, we show the connection between the
and that has a high visual quality. _  NLMeans filter and robust estimation techniques, simi-
~ During the past decade, numerous and diverse denoisygy o the connection made for the bilateral filter in [12].
ing methods have been proposed to this end. Manyt tyrns out that the NLMeans filter is the first iteration
methods, like total var!ation [1], bilat_eral filtering [2] of the Jacobi algorithm [12] (also known as the Diagonal
or wavelet-based techniques [3-9] estimate the denoised\ormalized Steepest Descent algorithm) for robustly esti-
pixel intensities based on the information provided in a mating the noise-free image using the Leclerc loss func-
limited surrounding neighbourhood. These methods only tion, By this observation, it becomes possible to investi-
exploit the spatial redundancy in a local neighbourhood gate other robust cost functions that are commonly used
and are therefore referred tolasal methods. for robust estimation. Also, this suggests that applying
Recently, a number afon-localmethods have beende-  {he NLMeans algorithm iteratively in a specific way, fur-
veloped. These methods estimate every pixel intensity her decreases the cost function. Another problem noted
based on information from thetholeimage thereby ex-  py Buades et al. is that the NLMeans filter is not able to
ploiting the presence of similar patterns and features in suppress any noise for non-repetitive neighbourhoods. In
A. Pizurica is a postdoctoral researcher of the Fund for dierffic this work, we keep track of the local noise variance during
Research in Flanders (FWO) Belgium. NLMeans filtering and we apply Bcal post-processing




filter afterwards, to remove remaining noise in regions iih ly: —v;l = \/(Yi —y)" (y; — y;) the Euclidean
with non-repetitive structures. Furthermore, we presenta yistance betjvveen the vectc];rgandy N Zl'he bilateral fil-
extension of the NLMeans filter to correlated noise and we ter [2] is closely related to the NLl\j/Ieans filter. For the

also present a new acceleration technique that computes)jjateral filter, the weighting function is given by:
the Euclidean distance by a recursive moving average fil-

ter. The proposed modifications significantly improve the L
Prop J Yo N G e 1) G-\
(17]) = exp 2h2 ( )

NLMeans filter, bothin PSNR as in computationtime,and w 5
make the filter competitive to (or even better than) recent d
non-localmethods such as BM-3D of Dabov et al. [13].
The remainder of this article is as follows: in Section 2, Where the first factor (called photometric distance) is in-
the NLMeans algorithm is briefly presented. In Section 3, versely proportional to the Euclidean distance between
we investigate the choice of the similarity weighting func- the pixel intensitiesY; and Y; and the second factor
tions, on probabilistic reasoning and within the robustest  (called geometric distance), measures the Euclidean dis-
mation framework. In Section 4, we present our improve- tance between the center sampland thej-th sample.
ments to the NLMeans algorithm. We discuss how the The NLMeans weighting function can be interpreted as
computation time of the filter can be further reduced in & vector-extension of the bilateral filter weighting func-
Section 5. Numerical results and visual results togethertion, omitting a geometric distance factor. In [2, 11], the
with a discussion, are given in Section 6. Finally, Sec- Weighting functions as given in equations (5) and (4) are

tion 7 concludes this paper. defined on intuition. However it is not guaranteed that

these choices are optimal for a given criterion. In [12F it
2. NON LOCAL MEANS shown that equation (5) emerges from optimizing a robust

Suppose an unknown signl, i = 1,..., N is corrupted M-function. In the next Section, we will derive expres-

by an additive noise process, i — 1, ., N, which re-  SIONS forw(i, j) based on probabilistic reasoning and we

sults in the observed signal: T will further extend the result from [12] to the NLMeans
filter.

Yi=X;+V; 1)
In this work, we stick to definitions for 1-d signals for 3. COMPUTING SIMILARITY WEIGHTS

simplicity of the notations. An extension to 2-d images
is straightforward. The denoised valug of the pixel
intensity at position is computed as the weighted average
of all pixels in the image:

One of the key elements for designing a high performance
NLMeans filter, is the selection of the similarity weights.
Clearly, the similarity weights should be adapted to the
image in order to achieve maximal improvement. Be-

R ZN—1 w(i, §)Y; cause only a noisy version of the image is available, the
X, =—% — 2 weights should also take the noise properties into account;
> =1 w(i, j) the presence of noise generally degrades the estimate of

We will refer to this filter as thepixelbased NLMeans.  the similarity between two neighbourhoods in the image.
Alternatively, avector (or block)-based NLMeans filter The question now becomes: how to determine the simi-
does also exist [10]. Here overlapping blocks are used, re-larity weights in arfoptimal” sense for a given criterion?
sulting in multiple estimates for each pixel in a block. To Luckily, estimation theory can give an answer to this prob-
aggregate the different estimates, an additional weightin lem.

functionb(k) determines the weight contribution of cen-

tral pixel to its neighbour at relative positidn 3.1. Best Linear Unbiased Estimator (BLUE)
N K . . We now only consider the estimation of the noise-free
N . b(k k k)Y; . i X
i Zﬂjvl Z’“; i bR+ kg + k)Y 3) patchx; as a function of surrounding noisy patches . To
Z_j:l Yo b(R)w(i +k,j + k) take the correlation between differegtinto account, we

model the residual; ; between patches (centered at posi-

The weightsw(i, j) depend on the similarity between the
g (i, j) dep Y tioni andj) as:

neighbourhoods centered at positianand j. In this

paper, neighbourhoods of fixed predefined size are used X; = X5 + T (6)
(.9.9 x 9). Letus denotex; = (X;—xk,..., Xitk), ) ) ) )
vi = Yi_x,...,Yix) andv; = (Vi_g,...,Visx)as  With r;; a zero-mean Gaussian random variable with

vectors containing pixel intensities of the local neighbou POsition-dependent covariance mair I (the disadvan--
hood centered at positiar(where for example symmetri-  {ages of this choice will be discussed further on) and with
cal boundary reflection is used at the signal/image bound-:.i = 0- Due to the additivity of the noise, we have:
aries). In the original NLMeans algorithm [10, 11], the

weighting function is defined as follows: Yi=%X;+rij+Vi (1)

w(i, j) = exp [ — lyi — Yj||2 4) For white Gaussian noise; ~ N(0,021). The Best Lin-
’ 2h? ear Unbiased Estimator (BLUE) for this problem is given



by: The minimum can be found iteratively, e.g. by gradient
descent. Applying only one iteration of this algorithm

N H .
. . yields:
X, = arg m}gnz —log fy(y;;x) (8) N
=1 Xi=yi— XNy 0 (yi—y)) (14)
N 2 j=1
. 1 Yji—X
= argmin » - |—2—vx (9)  with p/(x) the gradient ofp(x). An interesting case is
x £ 2 0.2 + 0.2 . . . . . . .
j=1 w T 0 obtained by considering a robust function with derivative
N 1 of the form:
Z]—:1 2402 Vi ) —
_ wtoi (10) p'(x) = xg(x),
Yt
3=1 o3, +o7 In this case, equation (14) becomes:
which here also corresponds to the maximum likelihood N
(ML) estimator. The variances? ;, i # j are unknown Xi = yi— N\ Z 9(yi—y;) (yi —¥;)
and need also to be estimated. Noting that from: j=1,j#i
N
(v; —yi) = (x5 —1ig) + (v; — vi) = 1—X Z 9(yi—y;) | vi+
. =157
it follows that Var [y; — yi] = (202, + 207,) I, the fol- N =7
lowing estimate can be obtained:
AN Y g(yi—y)y; (15)

—

j=1,j#i
2

1 9 9
955 = max <0’ 2 (QK ¥ 1) ”yZ - YJH - Jw) (11)

This solution suggests the use of the following weight ma-

To speed up the first iteration, the step-sigecan be
adapted based on the Jacobi algorithm. Analogousto [12],

. this leads to:
trix:
lyi—y; 2 A ! (16)
AK+2 Yi—Yi 2 i = N
w(i,j) = lyi—y;ll® AK+2 = Ow (12) 1+ ijl,#i 9(yi —y;)
1 lyi=yill” - ;2
T iK+2 = e Equation (15) becomes:
This means that foi # j the weights are inversely pro- 3 Vi —v,) s
portional to the Euclidean distance between the vectors % = Yi Jilv#ig Vi~ Yi)¥s (17)
at positioni and j. Unfortunately, the Gaussian distri- T+>0,29 (i —v5)

bution for modeling the residuals is not a good choice:
for natural images we may expect that for each Vegtor which is the NLMeans filter with Welght function giVen
there are many other vectoxs that are very similar to ~ bY:
x;. The residual or difference between andx; would . g(yi—y;) i1#7J
from this perspective rather have a Laplacian distribution w(i,j) = ;
than a Gaussian distribution. Moreover, dissimilar pagche

x; tend to cluster, which causes multiple modes in the Example: for the Leclerc robust function defined by:
histogram of the residual. One possibility is e.g. to use T

a better suited multivariate (multimodal) distributiorr fo p(r) = h% — k% exp <£> (19)
r; ; that also incorporates correlations between the com- 2h?

ponents of; ;. Because the estimators for such a distribu-

1 1= (18)

tion are much more complicated and the model training is we have: T
computationally more intensive, an attractive alterretiv p'(r) =rexp <2—h?) (20)
is to use robust statistics instead and to treat the dewmstio
from the model as outliers. and ,
- ly: — il
3.2. Robust M-estimator w(i, j) = exp <T (21)

The Robust M-estimator is derived from the ML estima- pence, the Leclerc robust function leads us to the weight-
tor by replacing the quadratic term in the negative 1og- ing function from equation (4). Interestingly, the weight
likelihood functional by a multivariate robust loss fursti function (12) derived in Section (3.1) can also be inter-

p(x), as follows: preted to be associated to a robust function:

N )
- . 5 +1 >h
X; = argmin g p(x—y;) (13) p(r) = {Qrﬁ; ogrll il (22)

Il <



This interpretation makes it easier to compare the prop-each estimated vector, based on equations (15) and (17):
erties of the resulting estimator with other robust estima-

tors. Note that the robust estimation framework gives us 092,;,1- = Var[x]
a much wider variety of weighting functions. Different N
robust functions will be compared more in detail in Sec- = Z (Nig (yi —y;))* Var[y,] +
tion 4.3. j=1,ji
A} Var [y;]

4. IMPROVEMENTS TO THE NLMEANS FILTER N

2142 2
Based on the theoretical framework explained in Section 2 T | Z 9 (yi—y;)+1| (23)
and Section 3, we are now able to present a number of J=Li#i
improvements for the NLMeans algorithm:

with \; given by equation (16). Clearly, the noise variance

depends on the position in the image, which means that

e If only one iteration of the NLMeans filter is ap- we are dealing with non-stationary noise. In theory, any
plied, the solution has generally not converged to a algorithm for non-stationary noise can be used, such as the
(local) optimum. Practically, local neighbourhoods ones presented in [6,22]. Because before the aggregation,
that only have few similar neighbourhoods may still the output of the NLMeans filter is a set of vectors, it is
contain noise after one iteration (unlgsés chosen  peneficial to use a vector-based denoising algorithm and
large enough; but this would cause oversmoothing to aggregate afterwards. In this paper, we adopt a locally
in other regions). In this paper, we propose to keep adaptive basis of Principle Components, as in [23]. This
track of the noise variance at every location in the method assumes that the Gaussian noise is stationary, but
image and to remove the remainder of the noise asan extension to non-stationary noise is straightforwasd, a
a post-processing step using a local filter (see Sec-we will show next. First, we defin€,, ; as the local co-

tion 4.1). variance matrix of;, estimated as follows
e As discussed in Section 3.2, the NLMeans algorithm R 1 i T
can be considered to be the first iteration of the Ja- ~ Cvwi = 5p 7 D it = ) (Yirn — i)
cobian optimization algorithm for the cost function n=-
in equation (13). This would suggest that applying . . 1 R
the NLMeans algorithm iteratively would further de- With /1 = SR+ 1 Z Yitn
n=—R~R

crease the cost function.

To find the PCA basis, we apply the diagonalization:
e The choice of the Leclerc robust function is some-

what arbitrary. We will see that further improve- C,.=UAUT (24)
ments can be achieved by using the Bisquare robust
function. The local covariance matrix of;, denoted a€, ; can be

estimated as follows:
e The existing NLMeans algorithms assume that the .

a 2
image noise is white (uncorrelated), while in most Coi = (Cw- - au,I)+
practical denoising applications the noise is corre- — U (A —o21) UT 25
lated. In this case, computation of the similarity i(Ai—oy )+ ’ (25)

based on the Euclidean distance is hampered whichWhere
eventually leads to a poor denoising performance.
By extending the reasoning from Section 3, it now
becomes possible to devise a NLMeans filter for
coloured(correlated) noise.

(1)+ replaces possible negative eigenvalues by a
small positive number, such that the resulting matrix is
positive definite (due to estimation errors@j@ itis pos-
sible that the differencéyyi — 021 has negative eigenval-
ues). The linear MMSE estimator is given by:

These modifications will be described more in detail in the i - 4O (C 2 I)_l 0 i)
remainder of this Section. X = K ei{(Mai T O X M

4.1. Localfiltering of remaining noise

—1
. y with A; = (A; — 021 (A-fIQ 2.1) a

In some circumstances (e.g. non-repetitive structureg), 0 ¢ ( ! l,jw )+ ( o J“’)+ +JI7? )
iteration of the NLMeans filter may not remove all of d|agonal (Wiener filter) matrix. Because & _d|rect imple-
the noise. Theoretically, an infinite number of neigh- Mentation of the above formulas has a high computa-
bourhoods is required in order to completely suppress thetional cost (the diagonalization in equation (24) needs to
noise, Whiph is not _possible for finite image dime_nSionS- IThis expressions given here are for 1-d signals, but can &ityea
However, it is possible to compute the noise variance of extended to images by using a double summation.




(c) NLMeans-W without
post-processing filter
(29.18dB)

(d) NLMeans-W with
post-processing filter
(30.53dB)

Figure 1. Denoising example of Barbara: the effect of
using the proposed post-processing filter (a) Crop out of
the original image (b) Image with white Gaussian noise
(o = 25). (c) The result of the NLMeans filtexithout
post-processing filter (d) The result of the NLMeans fil-
ter with post-processing filter. PSNR values are between
parentheses.

be performed for every pixel in the image), we only esti-
mate the covariance matri¥, ; at subsampled positions

1 and assume this covariance matrix is piecewise constant.

Also, for neighbourhoods with a sufficient number of sim-
ilar blocks, the variance? ; will be very small after the
NLMeans filtering stage. In this case do not apply the lo-
cal filtering step. An example for the Barbara image is
given in Figure 1. It can be seen that the NLMeans filter
removes most of the noise, except in regions with lim-
ited repetitivity. In this regions, the post-processintgfil
works excellent in removing the remainder of the noise in
Figure 1c, while retaining the stripes.

4.2. An iterative NLMeans filter

An iterative NLMeans filter can be obtained by perform-
ing the optimization in equation (13) iteratively. There-
fore, we choose the observed image as an initial estimate
i.e. &50) v, j = 1,..,N. For then-th iteration

(n > 0), we find:

)A{En) )A{(n—l) B

3

N
)\Z(n) Zg ()A{l(n—l) B Xgn—l)) ()A(Z(n—l) _ ﬁ§n—1))
j=1

with, following the Jacobi algorithm for determining the
step size:

1
1+ Zj‘v:m;éi g (f((-n_l) - fc(-n_l))

T J

Implementation of this estimate is analogous to the im-
plementation of (17), except that the estimates from the
previous iterations are used as input. At first sight, the
reader may incorrectly have the impression that the iter-
ative NLMeans filter increases the computational cost by
the number of iterations. Instead, the iterative filter isffe

a number of advantages:

AW = 27)

e A small search window (e.g1 x 31) can be used
instead of the whole image, which dramatically re-
duces the computation time. When applying more
iterations, information from outside the search win-
dow will also be used, resulting in a completen-
local denoising technique.

Potentially a better end solution can be found, be-
cause the cost function is further reduced.

A limitation of the non-iterative NLMeans filter is
that the weights are computed directly based on the
observed noisy image. As a result, the weights are
very sensitive to the image noise. In [13], this prob-
lem is avoided by applying a rough denoising pre-
processing step before selecting similar neighbour-
hoods. However, this technique has the problem that
by rough denoising, some details may be lost, poten-
tially resulting in an incorrect selection of dissimilar
blocks. In the iterative NLMeans algorithm, every
iteration reduces the average noise variance, result-
ing in better weight estimates, thereby increasing the
overall denoising performance.

4.3. The choice of the robust loss function

As said before, the NLMeans algorithm proposed in
[10,11] can be interpreted as the first Jacobian iteration
of a robust estimation method, that uses the Leclerc loss
function. In our earlier work [16] we noted that the expo-
nential form ofg(x) still assigns positive weights tis-
similar neighbourhoods. Even though these weights are
very small, the estimated pixel intensities can be severely
biased due to many small contributions. We therefore pro-
posed a preclassification based on the first three statistica
moment to exclude dissimilar blocks [16]. An alternative
is to change the shape of the robust function. An overview
of somerelevantrobust functions are given in Table 1. We
will now look at the characteristics of the robust weighting
functions more in detail.

e The weighting function associated with tigd UE
estimator derived in Section 3.1 and t@auchy
weighting function have a very slow decay (see Fig-
ure 2a). They assign larger weights to dissimilar
blocks than the Leclerc robust function, which will
eventually lead to oversmoothing.



e The Leclerc weighting function has a faster decay,
but still assigns positive weights to dissimilar blocks.

A\ 4

e The Andrewsweighting function imposes a hard Yi Prewhitening— Weight functior

threshold to compare neighbourhoods (the weight is
0 as soon as a given threshold is exceeded), while the
TukeyandBisquareweighting functions rather use a
soft threshold (Figure 2b). Experimentally we found w(i, 5)
that applying a soft threshold often improves the vi-
sual quality, in analogy to wavelet thresholding.

prewhit
Y;

v
NLMeans —» x.

7

\ 4

e To further improve upon the Tukey and Bisquare
weighting functions, we also modified the Bisquare
robust function in order to have a steeper slope (see
Table 1 and Figure 2b). In Section 6 we will report Figure 3. Block diagram for the suppressiorcofrelated
the improvementin PSNR by using this robust func- Noise
tion.

5. SPEEDING UP THE NLMEANS FILTER

Because the algorithmic complexity of the brute force

NLMeans filter on images i©®(N?(2K + 1)?), with N
4.4. NLMeans filter for correlated noise the number of pixels in the image, an efficient implemen-

tation is desirable. Our previous analysis in [16] revealed

In the previous Sections, we assumed that the Gaussiafhat the main part of the computation time is taken by the
noise isuncorrelated(white). Applying the NLMeansfil-  \yejght computation.

ter without modifications to images corrupted withr-
related noise often yields a poor denoising performance 5.1. Exploiting weight symmetry
(see Section 6). Fortunately, a robust estimator for cor-
related noise can be obtained by replacing the Euclid-
ean distancelly; —y;|| by the Mahalanobis distance

As in [16], we reduce the computation time by approxi-
mately a factoR by exploiting the fact that weight func-
tions are symmetrical (i.ew(i, j) = w(j,4)). Therefore,
\/(Yi - y]—)T Co' (yi — y;) that takes the noise covari- we keep track of a weight normalization matrix and a ac-
ance matrixC,, into account (see e.g. [24]), giving the cumulated contribution matrix (both of the same size as

following estimator: the input image), and at the beginning of the algorithm,
initialized with zeros. When processing a pixalith the
= arg mmz ( 1/2 Yj)) contribution of a pixelj, we add the products(i, j)Y;

andw(i, j)Y; to the accumulated contribution matrix at
_ o - o ~ the pixel positiong andi respectively. The weight nor-
with (-)!/? the square root of a positive definite matrix. malization matrix is also accumulated at the same pixel

The weight function becomes: positions withw(i, 7). As a result, we only need to
C_l/g( v g compute w_eights of neighbourhoods fpl>z Final!y, .

w(i,j) = g\ w  WYiTYi J (28) we normalize the accumulated contribution matrix via

1 1= element-wise division by the weight normalization matrix,

in order to obtain the estimated image. These concepts
can also be applied to theectorbased NLMeans filter:

* here the products (i, j)b(k)Yi+r and w(i, 5)b(k)Y 1k

are added to the accumulated contribution matrix at po-
sitionsj + k andi + k respectively, fok = — K, ..., K.

At the same positions, the produetsi, j)b(k) are added

to weight normalization matrix.

Clearly, the correlatedness of the noise only affects the
weight function and not the final averaging. However
the matrix multiplication in equation (28) is still compu-
tationally expensive, given the large number of weights
to be computed. Therefore, we apply a prewhitening lin-
ear filter operation to the noisy image. If the noise Power
Spectral Density is given uyi(l)|2, then we compute the

prewhitened imag&” """ i = 1,..., N as: 5.2. Fast computation of the weight functions based
~ . ~ 1 on the Euclidean distance
Yprewhlt(l) :Y(l)i . ) o )
max(e, |H(1)]) For the robust functions in Table (7, j) is a function
of the Euclidean distancgy; — y;||. When considering
a constant position differencdi (i.e. j = i + Ai), the
function

with YPrewhit(1y 'y"(]) the discrete Fourier transform of
respectivelyy,”" """ andY;, ande a small positive num-

ber to ensure stability (for the results in Sectionc6+ T 2
10~%). Next, this prewhitened image is used to compute BG) = llyi = yirail

the weights based on the Euclidean distance (see also Figean be practically implemented using a moving average
ure 3). filter applied to the squared difference between the signals
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verview of multivariate robust M-functions fortemding the NLMeans algorithm, with a smoothing para-
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Figure 2. Comparison of the weighting functiof3) for commonly used robust functions. Here= |y; —
Euclidean distances between two vectpyrsindy ;




Y; andY;; a4, requiring only2 pixel accesses instead of
2K +1(in 1-d). Forimages, we use the straightforward 2-
d extension of the moving averaging filter. Together with
the weight symmetry, this brings the complexity down to
approximatelyO(2N?), yielding a speed up of a factor
(2K + 1)® /2. When considering square neighbourhoods
of sizell x 11, K = 5 and the overall speedup is a factor
121/2 compared to our previous NLMeans filter in [16].

5.3. Limited search window

The limited search window strategy assigns zero weights
to neighbourhoods that are too far away from each other,
i.e. w(i,j) = 01if |i —j| > N,. This technique may
decrease the strength of the NLMeans, especially for im-
ages with many repetitive structures, but for many real
images, the denoising performance is not significantly af-
fected. This stems from the fact that masignilar blocks

can be found in théocal neighbourhood. In this paper,
we use a limited search window 8t x 31 pixels, in or-

der to keep the computational cost of the algorithm low.
We remark again that in combination with the iterative
approach from Section 4.2, theffectivesearch window

is extended byV,, — 1 in each dimension, hence when
running at leas{ N/ (N,, — 1)] iterations, the complete
image will be searched.

5.4. Pseudo-code

For illustrative purposes, the pseudo-code of the pixel-
based 1-d implementation is shown in Figure 4. In the
pseudo-code, the boundary handling is omitted for clar-
ity, as well as the initialization (warm-up) operations of
the moving average filter. The algorithm uses two IGops
the first loop iterates or\i in a limited search window,
the second loop runs over the whole signal. The similar-
ities corresponding to zero displacements (= 0) are

% outer loop (limted search wi ndow)
wei ght _cum = zeros(1,N);
wei ght _norm = zeros(1,N);

for di=1:Nw
% some initialization of the
% novi ng aver age operation

% i nner | oop

for j=1:N
i=j+di;
% novi ng average (sunm) based conputation
% of the Euclidean distance
eucl _di st =eucl _di st+(y(i +K)-y(j +K))"2;
eucl _di st=eucl _dist-(y(i-K-1)-y(j-K-1))"2;

% wei ght conput ation
wei ght =g(eucl _di st);

% wei ght accunul ati on

wei ght _cun(i) = weight _cun(i)+wei ght+y(j);
wei ght _norn(i) = wei ght_norn(i)+wei ght;

% symmetry

wei ght _cun(j) = weight_cun(j)+wei ght+y(i);
wei ght _norn(j) = wei ght_norn{(j)+wei ght;
end,
end;

di =0; % zero di spl acenent

for i=1:N
wei ght =1;
wei ght _cun(i ) =wei ght _cun{i ) +wei ght*y(i);
wei ght _nor (i ) =wei ght _nor (i ) +wei ght ;

end;
% final estimte
x_hat = wei ght _cum ./ weight_norm

Figure 4. Pseudo-code for the improved NLMeans algo-
rithm in 1-d (pixekbased implementation)

average, the improvement is approximatelydB. How-

treated differently, because the weights are easier to COMyer the gain depends both on the image as on the noise
pute in this case. It can be seen that the three acceleratiofeyel, and is maximal for 1) images with many structures
techniques proposed in this Section, can be elegantly andyr strong edges, such @arbara and houseand 2) for
efficiently combined in this algorithm. We further remark |5rge noise levels (e.g: ~ 60). Because of the vast im-

additional changes are required: a different weight accu-yrther use the Bisquare cost function.

mulation matrix needs to be used for each position in the

The results for the proposed NLMeans filter are gener-
local neighbourhood. prop g

ated using a neighbourhood sizeldfx 11 (i.e. K = 5),

a search window df1 x 31 (i.e. N,, = 15). The Bisquare
cost function is used and theparameter of the robust
function is selected experimentally as: = 2.10. The

) ) ) _ post-processing filter uses a subsampling fagtiorthe x

To assess the improvement gained by using the modifiedyq,, direction for estimating the local covariance matrix
Bisquare cost function over the Leclerc cost function (see (see Section 4.1). To further save computation time and
Table 1), we set up a denoising experiment with 8 images , improve the numerical stability, the post-processing is
and 9 noise levels. All images are corrupted with artifi- 4one on neighbourhoods of sizex 5, selected from the
cially generated white Gaussian noise _vvith varying noise center of thell x 11 neighbourhood (hence the aggre-
I_evels_, and gubsequently the npn-lteratlve NLMean_s a'go'gation weighting functiom(k) = I(|k| < 2)/5 is used,
rithm is applied to them (including the post-processingfil- ith 1(.) the indicator function). In Table 2, the denois-
ter). In Figure 5, we report the PSNR improvement by us- jng performance of the proposed method for white noise
ing the modified Bisquare cost function. We note that on (NLMeans-W) is compared to BLS-GSM [5] (a state-of-
the-art wavelet denoising technique) and BM-3D (a state-
of-the-art non-local denoising technique) [13]. We give

6. RESULTS AND DISCUSSION

2For images, four loops are needed (two outer loops and twer inn
loops for thex andy-directions).
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Figure 5. Comparison of using the Leclerc cost function

Table 2. PSNR [dB] results for white noise

7. CONCLUSION

versus the modified Bisquare cost function, for a denois- By exploiting the repetitivity of structures in an image,

ing experiment on a set of 8 imag&atbara Leng boats
couple hill, man peppers housg. The values are the

a significant gain in denoising performance is obtained
compared to purely local methods. We have shown that

average (over the test set), maximal and minimal gain in the NLMeans algorithm is the first iteration of the Jacobi
PSNR by using the modified Bisquare cost function com- optimization algorithm for robustly estimating the noise-

pared to the Leclerc cost function, for different noise lev- free image, based on the Leclerc loss function. Next, we
elso. have proposed several improvements to the NLMeans fil-
ter that affect both the visual quality and the computation
time. Our proposed method now compares favourably to
results for both the non-iterative NLMeans (i.e. only one giate-of-the-art non-local denoising techniques in PSNR
iteration) and the iterative NLMeans filter as presented in 3nd even offers a superior visual quality: the denoised
Section 4.2, with25 iterations. The iterative NLMeans images contain less artifacts without sacrificing sharp-
filter brings an additional improvement compared to the ness. The proposed improvements can also be applied to
non-iterative NLMeans. This is because the similarity gther image processing tasks such as intra-frame super-

weights are refined iteratively, eventually resulting in a resolution, non-local demosaicing and deinterlacing.

cleaner image with more details. The iterative NLMeans
algorithm clearly outperforms the BLS-GSM filter and
seems competitive to the BM-3D method.

The visual performance of these methods is compared
in Figure 6-Figure 9. Here, the difference is astonishing:
the NLMeans filter reconstructs smoother images with re-
markably less artifacts than the other methods. Some de-
tails are better reconstructed, such as the fine stripes in
the hat of Lena and the feathers, even though the PSNR
of the NLMeans filter is slightly lower compared to BM-
3D. Further investigation revealed that the inferior PSNR
is caused by the reduced contrast (or oversmoothing) of
fine structures, that are usually visually hardly noticeabl
(for example, the thick stripes in the hat of Lena located
above the feathers in Fig.6f).

We also compared the denoising performance of the
NLMeans extension to correlated noise (NLMeans-C) to
recent techniques for correlated noise: BLS-GSM [5] and
our recently proposed MP-GSM [25]. The NLMeans fil-
ter brings a significant improvement both visually as in
PSNR: there are almost no ringing artifacts and obviously
no wavelet artifacts. We also compare to NLMeans-W
(that is not adapted to the correlated noise), just to illus-
trate that the NLMeans filter, that uses weighting func-
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(a) Original

(d) MP-GSM [25] (31.81dB)

(e) BM-3D [13] (32.06dB) (f) NLMeans-W (31.74dB)

Figure 6. Visual results for the Lena image corrupted wittite noise ¢ = 25)
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(c) BM-3D [13] (26.47dB) (d) NLMeans-W (26.59dB)

Figure 7. Visual results for the peppers image corruptel witite noise ¢ = 80)
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Figure 8. Visual results focorrelatednoise: two different crop-outs of theouseimage. PSNR values are between
parentheses.
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(d) NLMeans-W (22.51dB)
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Figure 9. Visual results fotorrelatednoise: two different crop-outs of tHéinstonesmage. PSNR values are between
parentheses.



