OSGi Service Layer Enhancements

Nico Goeminne, Gregory De Jans, Jan Hollez,
Bart Dhoedt, Filip De Turck, Frank Gielen
Ghent University - IBBT - IMEC
Department of Information Technology
Gaston Crommenlaan §, bus 201
9050 Gent, Belgium

Abstract — In recent vears software development design
shifted from the art of crafting a home tailored solution 1o the
art of component composition. These components are offered
in various formats, such as software libraries (Java Archives,
-NET Assemblies) or web services and are provided by many
different vendors. In these multi-vendor environments there is
a genuine need for integration and interoperability. Integration
and interoperability is a first step, once this is achieved com-
ponents can seamlessly use services from different providers,
and that is when service policies come into play. A policy
mechanism allows fine grained control over the service usage.
The OSGi Service Platform is a service container which
allows seamless integration of components and services but
its service layer lacks a well defined mechanism Jor dynamic
service policy management. Two approaches are presented for
enhancing the service layer with policies. The first approach
extends the platform while the second one adapts the plug-in
components. Finally they are compared and evaluated against
multiple requirements; usability, performance, transparency
and backward compatibility.

Keywords: OSGi, Service Policies

1 Introduction

Integration and interoperability are the most important factors
to make a multi-vendor component model successful. New
design philosophies and concepts are built around these values
such as the Service Oriented Architecture (SOA) and the
Enterprise Service Bus (ESB). Within the service oriented
architecture a service is an entity that performs some function-
ality and which can be shared among multiple components.
Whenever services are exposed or shared, there is a need for
service policy management. The top level of that mechanism
is the policy decision logic, which is the place where rules
are imposed on service use. These rules can be defined in
various formats and implemented using different languages
and libraries or by rule engines. Once the rules are defined
they need to be enforced within the lower layer. This paper
presents the components needed in OSGi Service Platform [1]
[2] to support the lower layer of the policy mechanism.

The OSGj Service Platform technology allows integration of
components and services from different vendors or service
providers and is focused on home networks but can be used

in a broader environment. The OSGi Specifications (R4) are
gaining momentum being a core technology for the eclipse
IDE and several JSRs [3]. The unit of deployment is a
component called a bundle. A bundle is a Java archive(jar)
file, and the code inside can be activated by the framework
through the bundle’s activator class. A bundle may contain
multiple services, which are plain old java objects that are
registered within the platform’s service registry. Each of those
services can be used by other bundles, thus creating some kind
of dependency among each other.

There are several approaches to help the bundle developer
manage those dependencies. For example use the Service-
Tracker, Service Binder [4] [5] [6], or Declarative Services I7]
[8] to reduce the impact of service dependencies. Releasing
a service and in particular a java object may prove to be
more difficult than one would think as pointed out by [9],
but solutions are in development [10].

Bundles can compete for the service usage, and when two
bundles wish to use the same service a policy mechanism
needs to be in place that handles granting or revoking actions
based on priority rules. This work enables policies within the
service layer of the OSGi Service Platform.

Paragraph 2 outlines a use cases which shows the need
for service policy management and introduces two models,
the Framework Extensions model and the Bundle Adaptation
model that could be used to support service policies within
the OSGi Service Platform. The Framework Extensions model
adds interfaces and behaviour definitions to the OSGi R3
specifications. The Bundle Adaptation model implements the
same behaviour outside the OSGi core framework. It requires
some modifications to bundles who wish to participate. Para-
graphs 3 and 4 describe the models in detail. Paragraph §
describes how to build a policy enforcement component using
the models. Their performance is analyzed in paragraph 6 and
the remaining conclusions are in paragraph 7.

2 Service Policy Management

The following use case clearly show the need for some kind
of service policy management.

A use case: Appliance Control. When both a power saving
service and a home surveillance service use a lighting service,
some rules should be in place to govern the priorities. We
do not want the power saving service turning off the lights

Policy Enforcement Component | OBTAINING

— | Notifies service d

Plugable § .) LeiiCulies service an
bur?dies : Policy Decision Logic f | usage } RELEASED

— | f events

Uses ~Manages service | Eventing mechanism |
visibility | g i
T 1 H
OSGi Service i |
Piatform I ServiceAdmin ! |
P Service | ;
| Service Registry |

i

Fig. 1. Global decomposition and operation of model 1: Framework
extensions. The Eventing mechanism, the Service Admin and the Policy
Enforcement Component work together extending the OSGi Service Platform
with service policy capabilities

when the home surveillance service detects some suspicious
activities and tries to turn the lights on.

The current OSGi Specifications are not sufficient to support
the use case. They do not allow fine grained service manage-
ment and only support a flat view on the Service Registry
also pointed out by [11]. A service exported by a bundle can
be used by all bundles. The Permissions Admin Specification
(R3) and the Conditional Permission Admin Specification
(R4), provide means of managing access to a service, but do
not define a model of behaviour. What should happen when
the usage of a service is prohibited for a specific bundle?
Furthermore their management capabilities do not correspond
with the dynamic nature of the Service Platform. In order
to support fine grained service management two models are
proposed and implemented.

Model 1: Framework Extensions. In this model bundles are
unaffected, yet the OSGi framework is slightly extended. Great
care should be taken to make the extensions as ‘natural’ as
possible, meaning the extensions follow the design philosophy
of the service platform.

Model 2: Bundle Adaptations. In this model the OSGi
Service Platform is not affected, allowing the model to be
implemented as a set of bundles that are backward compatible
with any OSGi R3 platform. Yet in this model the bundles
that wish to support policies are adapted.

3 Model 1: Framework Extensions

The model as shown in Fig. 1 contains three separate com-
ponents, their roles, implications and implementations are
discussed below.

Eventing mechanism. The subsystem gives notifications when
aservice is being obtained or released. The subsystemn can only
be implemented as a direct hook into the OSGi framework.
ServiceAdmin Service. The ServiceAdmin service is a system
service that offers an interface to manage the visibility of a
service toward a bundle. The service can only be implemented
as a direct hook into the OSGi framework.

Policy Enforcement Component (PEC). The PEC processes
the information provided by the eventing mechanism and
makes decisions based on that information to adjust the ser-
vice’s visibility towards the bundles. The PEC is a standalone

bundle and does not need framework modification, it just
uses the newly provided capabilities and is common for both
models as described in paragraph 5.

3.1 Service Event Extensions

The OSGi specification (R3-R4), currently offers three kinds
of service events. A bundle may wish to register a ServiceLis-
tener and act on those events.

ServiceEvent. REGISTERED. When a bundle offers a service
to the platform, it registers the service in the platform’s service
registry. A registered service event is issued.

ServiceEvent. MODIFIED. When the properties of the service
are changed by the owning bundle, a modified service event
is sent.

ServiceEvent. UNREGISTERING. An unregistering service
event is generated when a service is about to be removed from
the service registry.

Yet two other major service related ‘actions’, the obtaining
and the releasing of a service, have no corresponding event,
although they are indicated by the getService and the unget-
Service API method calls. When investigating the service
usage one must always use the request response pattern (active
polling) instead of the event driven model. Therefore the OSGi
eventing mechanism should be extended with two new event
types:

ServiceEvent. OBTAINING. Before a service object is deliv-
ered to the requesting bundle, a service event should be sent
to all interested listeners, indicating which service (by means
of the service reference) is requested by which bundle.
ServiceEvent. RELEASED. After a bundle released a certain
service object, all interested listeners should be notified. Again
the service event should denote which bundle is releasing the
service.

It should be noted that the OSGi spec had foreseen future
additions to the service event types (used in R4). The class
org.osgi.framework.ServiceEvent was adjusted to handle the
two new event types.

An obvious choice for listening to these new service events
would be the existing ServiceListener interface. That approach
has three disadvantages. First, there is no control over which
listener will be notified first. In some cases one wishes to
create some kind of manager that reacts upon an obtaining
request. They would prefer to get notified before other bundles
are notified.

As a second disadvantage, each time a service is requested
or released all listeners are notified. This means a big per-
formance loss, since services are obtained and released a lot,
especially at peak moments during bootstrap or shutdown and
to a lesser extent at bundle deployment time. Besides those
moments the service platform is rather stable. The performance
impact of having many listeners is analysed in paragraph 6.
The third disadvantage: bundles that erroneously rely on the
fact that there are only three service event types are broken.
To solve all three disadvantages a new interface that extends
ServiceListener was defined: the SynchronousServiceListener

f m Using Bundle] | Qther Bundle i
| i
' |

!

L T ; | Servicelistoner 08Gi § || Owning Bundle
‘ z socSarvnmoner | g g
; adoSercet istenar |
. > Croate Servics
' B rogister Sorvice | |
b i REGISTERED evemt .
[s LA P
i H N H H H
b TS s : L
[REGISTERED el Lo
Lot - L
; o e i
{ satSemice :
i i
| OBTANEDevert | |
Lo |
| > acion i ; {
; H | :
! ServiceRoferance | ; 1[;
S H OO /eI 4 i
L H : I ;
: |

Fig. 2. Sequence diagram showing the actions following registration or
obtaining a service. Note that the SynchronizedServiceListener is notified first
and the plain old service listener is not notified in case of the obtaining event.

(cf. SynchronousBundleListener). All notifications are handled
by the inherited serviceChanged method. The service platform
delivers both the existing and the newly added event types
to the SynchronousServiceListener, whereas ServiceListeners
only receive the old service events and never receives the OB-
TAINING or RELEASED events. This solves the performance
and the legacy listener problem in one effort. Furthermore
all events are delivered to the SynchronousServiceListeners
before they are delivered to the ServiceListeners. Both listeners
can be added to the framework the same way using the bundle
context; no new API method is required and the same filter
rules can be applied to both synchronous and non-synchronous
service listeners. The difference in operation is shown in Fig.
2. Now, the three disadvantages are resolved.

An extra advantage, using the new service event types one
can observe and profile the service usage of a bundle or of
a service, making it easier to debug. For example one could
build a debug tool, where authorized service usage (per bundle)
is logged and unauthorized or unpredicted usage is reported.
Furthermore one could build watches on services.

3.2 Service Registry Extensions

In order to support service policies, we need more control over
which bundle may use which service. The security facilities
within the OSGi platform offer some control, but are rather
static. In fact once a service usage is granted it is hard to
return on that decision, because security checks are only done
when the service is first requested. Denying access afterwards
comes only in effect when the service is released and requested
a second time. The model clearly lacks essential functionality
if one wishes to revoke a service from a using bundle.

In this proposal, a bundle gets a filtered view on the service
registry. A management interface called the ServiceAdmin
service is available for fine-tuning that view and is listed
below.

public interface ServiceAdmin [

i Bundie A BundiQB] ‘ BundleContext] =
1| Acivator | T @ || and Servico Registry [[psiaa] |
H p 1 i T i [| .and Service Admin || i |
rﬂ{mw‘;] "‘{ ; }t F OSGi E I | Ownmé Bundle !

addServicetiztenar)

addServiceListener ;
— : i : . e Creaite Sarvice X

[i : register Service X

i REGISTERED event

S TS T

: :> action
REGISTERED event
> action :
setServiceVisibity(Service X, Bunde . faise] |
| . UMREGISTERED event : i
D action :
; changePropertios Service X |
| MODIFIED event frT———
> acton | i
l L
:E : getéewsceRezarences

all services excopt Service X

setServiceVisibiiity(Service X, Bundle B, trus)]
J———

REGISTERED event | : ;

e

i i

i

Fig. 3. Sequence diagram showing the actions and consequences when using
the ServiceAdmin service

public void setServiceVisibility(
ServiceReference serviceReference,
Bundle bundle, boolean visible);

public ServiceReference []
getInvisibleServices (Bundle bundle);

public boolean isVisible(
ServiceReference serviceReference,
Bundle bundle) ;
}

A service can be made invisible for a bundle by using
the setServiceVisibility method. The service visibility status
towards a bundle can be analyzed by the two other methods.
Bundles that are blocked from seeing certain services will
not see them when invoking a getServiceReference on the
BundleContext, and ServiceListeners registered by that Bundle
will not be notified. As far as the blocked service concerns the
owning bundle has unregistered the service (cf. Fig. 3).

The concept of filtering has already been used in the OSGi
platform R3, when a bundle does not have the i ght permission.
Or in release R4, where due to the support of multiple pack-
ages, service requests by interface name may cause returning a
non class compatible service, which is thus filtered out. Where
the standard OSGi frameworks just do filtering, our adaptation
sends events, notifying bundles that the service they are using
has been unregistered. That event is only delivered to the one
blocked bundle. In fact that bundle thinks the service is no
longer available, and thus releases the service, while other
bundles do not receive the unregistered event, and are stll
using the service. When the service gets unblocked for our
blocked bundle, a registered event is sent towards the blocked
bundle, which thinks the service is newly available and can
start using it. As mentioned before while being in blocked

- e |
Policy Decision . i
Logic Other {service) bundles ;
g 5 ey Usual service
o & gses | Acts as a BC but fiters Events AND
g 2 | ServiceReforences | OBTAINING AND
' RELEASED events
i . sends S
\ | iServiceAdmin] | PEC [OBTAINING, . Eventing
Bundle \ ; Service | 9™ gC [RELEASED™ mechanism |
Adaptation \' i events -
Component \| Policy Enforcement Component

Usual setvice
avants

H

i Adapts BC of each | | Acts as a Listener Registry
newly installed Burdie E l but fiters Service Events

OSGi Service Platform

Fig. 4. Global decomposition and operation of model 2: bundle adaptations,
All components that were placed inside the OSGi Service Platform are now
placed in separate bundles

state, the bundle does not receive any event notification of the
service (As far as the blocked bundle is concerned the service
does not exist).

4 Model 2: Bundle Adaptations

The functional requirements for this model are exactly the
same as for model 1. Interested bundles should still be notified
of the service usage behaviours, as well as they should be
able to manage the service visibility. Therefore the three main
components, the Eventing mechanism, the Service Admin
service and the Policy Enforcement Component stay exactly
the same. Two non functional requirements are added, firstly
the model should not require any OSGi framework exten-
sions (should run on every OSGi framework) and secondly,
the model should support legacy bundles (bundles and their
developers are unaware of the policy management component).
The model is shown in Fig. 4. When shifting these components
out of the OSGi framework some problems arise.

Eventing mechanism. Two problems are manifested, firstly
how can this subcomponent discover the exact time a service
is obtained or released? And secondly, how can it filter out
events for invisible services?

ServiceAdmin Service. Again there are two problems to deal
with. How can it send the unregistered event for a service
towards a bundle and thus making the service invisible for
that bundle? And how can it filter out invisible services when
a bundle issues the getServiceReferences method on the bundle
context?

Policy Enforcement Component. The PEC is already a
standalone bundle and is common for both models as described
in paragraph 5.

A solution to all of those problems can be found by wrapping
the bundle context and providing the bundle with a special
bundle context. The bundle context is the bundle’s interface
towards the framework. When a bundle requests or releases
a service it will invoke the getService or ungetService on the
bundle context. The wrapping bundle context intercepts those
calls and this solves the first problem.

Service listeners are registered with the OSGi framework by
invoking the registerServiceListener method on the bundle
context. At that time the wrapping bundle context can choose
to add the listener to the eventing mechanism instead of
adding it to the framework. The eventing mechanism now
has full control over all service listeners, which solves the
second problem. It listens to the framework and filters out
service events before delivering the events to the service
listeners. As a surplus it can send specialized events towards
a certain service listener, which solves the first problem of
the Service Admin. Furthermore the wrapping bundle context
can filter out invisible services when a bundle invokes the
getServiceReferences method on the bundle context, which
solves the last problem,

By wrapping the bundle context all framework extensions are
eliminated, but at a price. The policy enforcement framework
now has to manage and maintain all service listeners and the
bundles need to be adapted so that they are provided with the
wrapping bundle contexi.

5 A Policy Enforcement Component

The policy enforcement component is a separate bundle and
is common for both models. The proposed models provide a
sufficient toolset to implement any kind of service policy man-
agement component. In fact, the PEC’s decision logic could
be provided and implemented by third parties using different
technologies, e.g. hard coded rules, XML configuration, rule
based, etc.

A simple PEC implementation for the use case could look like

the code below.

public class SynchronousServicelListenerTmpl implements
SynchronousServicelistener {

private Bundle surveillance, powersaving;
private ServiceAdmin admin;

public SynchronousServiceListenerImpl (Bundle surveillance,
Bundlie powersaving, Serviceadmin admin) {
this.surveillance = surveillance;
this.powersaving = powersaving:
this.admin = admin;
H

public void serviceChanged(ServiceEvent event) {
ServiceReference ref = event.getServiceReferencel();
switch(event.getType()){
case ServiceEvent.OBTAINING:
if (surveillance.getBundleId() ==
event.getBundle() .getBundleId{}) {
admin.setServiceVisibility (ref, powersaving, false) ;
}
break;
case ServiceBEvent . RELEASED:
if (surveillance.getBundleId() ==
event.getBundle (} .getBundleid () {
admin.setServiceVisibility (ref, powersaving, true);
}
reak;

¥

The listener uses the ServiceAdmin service to control the
visibility of the lighting service towards the powersaving bun-
die. When the lighting service is obtained by the surveillance
bundle the visibility for the powersaving bundle is turned off.

The overall operation is shown in Fig. 5. Furthermore an OSGi
filter makes sure the listener only receives events related to the
lighting service.

— o — reeilian BundeConion ! !
Activalgr bundis # WI bundie ‘ and Service Registr ; Activator | PEC [Acivater §
P ! H Y and Service Admin f | |
eRr— Sl i i
- Sopdesbitener ||| —{Sensealisona | | LS | L3S Ughting Bund |
register fighting sefvice :
acdSynchios igel xéner
qv?(Scmz»
Eicfm‘ngfse!vk:a abject
gaGenvice
OBTAINING event {from s\;rvemame;
I M
sexServicaVisivitiy{powersaving bundie, lighting service, laise)
svent
: UngotServica
ing service objact
Fig. 5. Sequence diagram showing how the policy enforcement reacts when

the surveillance bundle is requesting the lighting service

6 Performance

In paragraph 3 the SynchronousServiceListener was intro-
duced as a way to reduce the performance impact of the
models. Having obtaining and released events delivered to
more listeners would result in a reduced overall performance
as shown in Fig. 6, so delivering to a reduced set of specialized
listeners performs better.

A second series of test (cf. Fig. 7, Fig. 8) were performed
to analyze the impact of changing the visibility of a service.
In the test setup a bundle is measuring the downtime of a
service. (The time in ms it cannot use the service). A service
is brought down and up by changing the visibility using the
ServiceAdmin service (a cycle). The two models are compared
against each other. Furthermore they are compared against the
situation where the bundle owning the service, unregisters and
reregisters the service by using the ServiceRegistration object
and the bundle context.

As expected the standard third method, which does not al-
low service policies, performs worst. When the service was

3000
= = = 300 Events .
’g 2500 4~ e =200 Events G
L4
g 2000 100 Events o *
= -
D 1500 =l T
& P -
-4 N — -
2 1600 - e
Q - ——
2 PR
a 500 PRdpe
et B
4

O 10 20 30 40 50 60 YO 80 8O 100 110 120 130 140 150 160 170 180 180 200
Mumber of registered fisteners

Fig. 6. Measured times needed for the delivery of 100, 200 and 300 obtaining
and released events. The actual event handling is not included. The information
from table 2 shows that the delivery of 100 events is a realistic amount of
events during a peak moment. Furthermore delivery to all listeners is not very
scalable

0,5

0.45 = = = Registration Object
v N = == Bundie Adaptations
E 04 L A e + e Eramework Extensions
@ 0,35 —v — R —
E .*) T -
= 03 - == -
E o
é 0,25
o 92
g 0,15 <o
; 0,1 v
0,05 +—p S =T S
o ’ :

100 200 300 400 500 600 700 800 900
Number of cycles

1000

Fig. 7. Average downtime

500
— 450 = = = Registration Object
w - =~Bundie Adaptations
E 400 Framework Extensions |
OE) 350
"é 300
§ 250 ST
e 200 Pl -
2 150 N
2 -
2 100 PrEEE
< 50 9 v = — ;o ——

0 Lo = e T:“:.———___:——"___—_

100 200 300 400 500 600 700 800 900
Number of cycles

1000

Fig. 8. Absolute downtime

brought down and up a 1000 times, the absolute downtime
is more then 250 ms. The average downtime for the standard
method is about 0.3 ms. The same test for the bundle adap-
tations model results in an absolute downtime of 62 ms and
an average downtime of 0.05 ms. And finally the best results
were obtained using the framework extension model where an
absolute downtime of 32 ms and an average downtime of 0.03
ms.

7 Conclusions

This paper indicated the need for component and service
integration frameworks in a multi-vendor environment. Fur-
thermore, as shown in the use case, service policy management
should not be neglected if one wishes to avoid inconsistent
overall system behaviour. The OSGi Service Platform was
chosen for its capabilities to integrate components and services
from different providers. The platform was analyzed and found
insufficient to support dynamic service policies. Therefore two
models were presented and evaluated.

Although framework extensions model is more feasible in
terms of architectural design, capabilities, performance, trans-
parency and backward compatibility support for legacy bun-
dles, it has one major setback; it requires modifications to the
core platform. The proposed extensions to the platform are still
within the design philosophy of the OSGi Service Platform
and great care is being taken to avoid changes in the OSGi
programming model. This approach results in extensions that

do not have any impact on the development of bundles. In
fact these extensions are completely transparent to both the
providing and the using bundles.

The key requirement that needed to be fulfilled in the bundle
adaptations model was backward compatibility with existing
platforms. The model was defined as a pluggable set of bundles
and can run on any R3 compatible platform. Achieving this
goal created a trade-off and resulted in slightly reduced perfor-
mance, a more complex architecture and the need for bundles
to be adapted. Luckily the adaptation can be automated by a
tool.

Both models offer a complete set of capabilities to implement
a policy management component as demonstrated in paragraph
5. Finally we propose to incorporate the framework extensions
within a future release of the OSGi Service Platform.

Acknowledgment

This research has been partly funded by the IBBT-TCASE
project [13] which focuses on service delivery to the end-
user environment, service and business logic execution and
common service capabilities.

References

[1] The Open Services Gateway Initiative, OSGi Service Platform Re-
lease 3, I0S Press, Amsterdam, The Netherlands, March 2003.
hitp://www.osgi.org/

The OSGi Alliance, OSGi Service Platform Core Specification Release

4, October 2003, http://www.osgi.org/

The Java Community Process,

JSR 277: JavaTM Module System,

JSR 291: Dynamic Component Support for JavaTM SE,

http://www.jep.org/

[4] Oscar - An OSGi framework implementation http://oscar.objectweb.org/

[5] Apache Felix Project http://incubator.apache.org/felix/

[6] Humberto Cervantes, Richard S. Hall, Service Binder,
http://gravity.sourceforge.net/servicebinder

[7] The OSGi Alliance, OSGi Service Platform Service Compendium Release
4, October 2005. http://www.osgi.org/

[8] Humberto. Cervantes and Richard .S. Hall. Automating Service Depen-
dency Management in a Service-Oriented Component Model, Proceedings
of the Sixth Component-Based Software Engineering Workshop, May
2003, pp. 91-96.

[9] Almut Herzog, Nahid Shahmehri, Problems Running Untrusted Services
as Java Threads, In Certification and Security in Inter-Organizational E-
Services. E. Nardelli, M. Talamo (eds). Pages: 19-32. Springer Verlag.
2005.

[10] The Java Community Process,

JSR 121: Application Isolation API Specification,
JSR 278: Resource Management API for Java ME,
JSR 284; Resource Consumption Management API,
http://www jcp.org/

{111 Richard .S. Hall and Humberto. Cervantes. An OSGi Implementation
and Experience Report, Proceedings of the IEEE Consumer Communi-
cations and Networking Conference, January 2004.

[12] The Knopflerfish Project,
hitp://www.knopflerfish.org/

[13] IBBT, The Interdisciplinary institute for BroadBand Technology,
http://www.ibbt.be/

[2

fulnt

3

foeeig

SERP'06

The 2006 International Conference on Software
Engineering Research &Practice

Eoreword Author's Index

Session: SOFTWARE TESTING AND QUALITY ASSURANCE
A Framework for Automatic Testing of Industrial Controller Code

Dag Kristiansen, Karl—Petter Lindegaard

Agile Test—based Modeling
Bernhard Rumpe

Statistical Analysis and Enhancement of Random Testing Methods also under
Constrained Resources

Johannes Mayer, Christoph Schneckenburger

DPTModel: The Defect Prevention and Traceability — Driven Model for Software
Engineering

Jay Xiong, Jonathan Xiong

Selecting Effective Test Messages
Len Gebase, Roch Bertucat, Robert Snelick

Distributed Tool for Performance Testing

nenad stankovic

Dae~Woo Kim, Hyun—Min Lim, Sang—Kon Lee

Generation of Test Scenarios from Use Cases

Stephane Some

Restricted Adaptive Random Testing by Random Partitioning

Johannes Mayer

DPTMethodology: The Defect Prevention and Traceability — Driven Methodology for
Software Engineering

Jay Xiong, Jonathan Xiong
The DPTSystem: The Defect Prevention and Tr. ility — Driven System for Softwar

Engineering
Jay Xiong, Jonathan Xiong

Robert Snelick, Len Gebase, Sydney Henrard

Adapting Structural Testing to Functional Progsrammin

Manfred Widera

Critical Svstems and Software Risk to Public Safetv: Issues and Research Direction

Shreedevi Inamdar, Hisham Haddad

Software Quality and Testing

Hassan Pournaghshband, Asaleh Sharifi, Shahriar Movafaghi

A Method for Generating a Minimal Functional Set of Test—Cases for
Software—Intensive Systems

Joerg Gericke, Matthias Wiemann

in mparisons of Resressi nd Analogy~ fiware Proj ost
Prediction

Carolyn Mair, Martin Shepperd

An Efficient Slicing Approach for Test Case Generation

Durvasula V L N Somayajulu, Ajay Kumar Bothra, Prashant Kumar, Pratyush Pratyush
Im f Using Test—Driven Development; A

Sumanth Yenduri, Louise Perkins

Multi Dimension Quality Model of MA

Punam Bedi, Vibha Gaur

Session: SOFTWARE REUSE

Reusing Families Design

Virginia de Paula

Reuse an mponent Based Devel nt (CBD

Rizwan Jameel

Retrieval of Most Relevant R I mponent Usi netic Algorithm
Rajesh Bhatia, Mayank Dave, RC Joshi

A Reuse—QOriented Process Component Representation Framework
Xiaohong Yang, Jing Lu, Ruzhi Xu, Guangfeng Pan, Jin Liu

Effective Reuse Procedure for Open Source Software

Doo Yeon Kim, Jong Bae Kim, Sung Yul Rhew

R = A nagement Vi

Danny Ho

Study of Information Retrieval Systems and Software Reuse Libraries

Usa Rungratchakanon, Hisham Haddad

Session: SOFTWARE METHODOLOGIES, PROCESS, AND
MODEL ORIENTED DESIGN
An Object—Oriented Framework for Predicting Student Competency Level in an

Incoming Class
Suresh Kalathur

An Experience Report of Applving the Personal Software Process Methodolgsy

Wen—Hsiang Shen, Nien—Lin Hsueh, Peng—Hua Chu
Automatic Code Generation: Model-Code Semantic Consistenc

Andrew Kornecki, Sona Johri

A Graph-B Representation of Object—Oriented Designs
Wei Li, Huaming Zhang, Raed Shatnawi

Modeling Timed Automata Theory in PVS

Qingguo Xu, Huatkou Miao

Model-B XML Edi neration

Jong—Myung Choi, Soo~Lyul Oh, Dong—Soon Ahn, Jong—Hwa Kim, Kyung—Woo
Park, Han—Suk Choi, Hea—Sang Shin

A Feature QOriented Approach to Mapping from Domain Requirements to Product Line
Architecture

Chongxiang Zhu, Yugin Lee, Wenyun Zhao, Jingzhou Zhang

Adapter Pattern in Component and Service Levels vs. Class and Object Levels

Kai Qian, Larry Wang, Subramanian Ananthram

Success Factors of Agile Software Development

Subhas Misra, Vinod Kumar, Uma Kumar
SEMZXPDIL.: Towards SPEM Model Enactment
Feng Yuan, Mingshu Li, Zhigang Wan

Software Process Improvement In Bangladesh

Bernard Wong, Sazzad Hasan

Analysis of Object—Oriented Numerical Libraries
Kostas Zoros, George Stephanides

Session: SOFTWARE REQUIREMENT ANALYSIS
Reguirements Engineering for E—Voting Systems

Kevin Daimi, Katherine Snyder, Robert James

Automati mprehension of T 1 r Reguirements and their Static and Dynami
Modeling

Olga Ormandjieva, Magda llieva

A Muiti-Role Collaborative Method and Platform for Developing Software

Requirements
Chin—Yi Tsai, Chua—Huang Huang

A I ign and Implementation Experience on Agi re Development
Methodologies

Hongxing Lu, Xiaohong (Sophie) Wang

Software Development with Automatic Code Generation: Observations from Novice
Developer Vi in

Farahzad Behi, Andrew Kornecki

TheF rs of Softwar tems th ntribute to Reguirements Elicitation

Allison Scogin

Session: SOFTWARE ARCHITECTURE, DESIGN

PATTERNS, AND FRAMEWORKS
EIB Performance Measurement Framework

Denis Gefter, Robert Chun
Analvzing Communication Patterns in Software Engineering Projects
H. Keith Edwards, Robert R. Puckett, Art Jolly
A SOA-Based IA Asset Management Architecture Using XML in E~-Government
Namho Yoo, Hyeong—Ah Choi
ervice Laver En men
Nico Goeminne, Gregory De Jans, Jan Hollez, Bart Dhoedt, F zlzp De Turck, Frank Gielen

EvaluathZB Interactlon ‘
Andreas Schionberger, Guido Wirtz

dating Software Architectures: A Style—Based Approach
Dalila Tamzalit, Mourad Oussalah, Olivier Le Goaer, Abdelhak~Djamel Seriai
Towards a Lavered Architectural Design of a Persistence Framework
Sai Peck Lee, Tong Ming Lim, Ho—Jin Choi
Pattern—Oriented Design for Multi—Agent Svystem: A Process Framework
Radziah Mohamad, Safaai Deris, Hany Ammar
The Role of Model-Oriented Software Architecture in Safety Engineering

Hassan Reza, Emanuel Grant

Session: DISTRIBUTED AND REAL TIME SYSTEMS

Application Platforms for Em ms: Suitability of J2MFE an ET Com
Framework
Koen Victor, Yves Vandewoude, Yolande Berbers

Practical Technologies for Implementing Distributed Applications as Evolvable
ftwar st E

Kendall Conrad, Vincent Schmidt

mparison of Obj riented Technology Automati d rating Tool
f ritical Real—-tim ftwar

Farahzad Behi, Daniel Penny II1

Experiences in Distri ftware Development with

Khalid Al-asmari, Liguo Yu

Interlecutor System

Edson Barros, Roseli Lopes
mpositional A ction for Concurrent Progr.

Junyan Qian, Baowen Xu

Transformati the Ravenscar Profile B Ada Real-time Application to th
Verification—ready Statecharts : Reverse Engineering and Statemate approach

Chang Jin Kim, Jin—Young Choi

Session: SOFTWARE MAINTENANCE

An Effort Estimation by UML Points in Early Stage of Software Development

SangEun Kim, William Lively, Dick Simmons

Predicting Error Pr ility in the Eclipse Proj
Raed Shamawi, Wei Li, Huaming Zhang
re the Changes Ind he Defect Reports in th r ftwar
Maintenance?
Timo Koponen, Heli Lintula
A Model of Maintainability — Suggestion for Future Research

Mira Kajko—Mattsson, Gerardo Canfora, Dan Chiorean, Arie van Deursen, Tuomas Thme, Meir
M Lehman, Rupert Reiger, Torsten Engel, Josef Wernke

An Entropv—Based Approach to Assessin ject~Oriente ftware Maintainabili
nd Degr ion —— A Meth n se Stud

Hector Olague, Letha Etzkorn, Glenn Cox

A Software Traceability Validation For Change Impact Analysis of Object Oriented
Software

Suhaimi Ibrahim, Norbik Idris, Malcolm Munro, Aziz Deraman

A Comparison of the Efficiencies of Code Inspections in Software Development and

Maintenance

Liguo Yu, Robert Batzinger, Srini Ramaswamy

Session: SOFTWARE METRICS, CONFIGURATION AND
PROJECT MANAGEMENT

Virus Removal Cost (VRC) Metric
Kuangnan Chang, Bobby Adkins
T rds an Extendable Softwar stem for Information Integration
Paul Whimey, Christian Posse, Xingye Lei
A Workbench for Learning Enterprise Patterns
Paulo Sousa
Metrics: The f improvement of lity of Non -b stem
Shazia Arshad, Muhammad Shoaib, Abad Shah
Effect of Human Behavior in SI)
Ashmeet Kaur, Ritu Soni
On the Role of Software Metrics in Applying Design Patterns
Niloofar Khedri, Masoud Rahgozar, Mahmoud Reza Hashemi
A Qualitative Study on PATT — A Project Assessment and Tracking Tool
Fabio Marzullo, Geraldo Xexéo

Computations with [arge Numbers
Wethu Hong, Mingshen Wu

Session: UML, MDA, ...

he Effectiv f I e Transf tions for Binary Obf i

Matias Madou, Bertrand Anckaert, Bruno De Bus, Koen De Bosschere, Jan Cappaert, Bart
Preneel

fodel Driven Development with Interactive Use Cases and UMI. Models

Paul Nguyen, Robert Chun
Medical Informatics and Medical Databases Approach in Modeling Healthcare

E ti m wi i Modeli L
Anil Khatri, Azene Zenebe, David Anyiwo
Model Transformation Based on Met i
Hongming Liu, Lizhang Qin, Xiaoping Jia, Adam Steele
ing UML, to Develop Verifiable Reacti 11}

S. Fatemeh Alavizadeh, Marjan Sirjani
Developing Medical Information Svstem with MDA and b Services
Simone A. B. Melo, Denivaldo Lopes, Zair Abdelouahab

UML Analysis Using State Diagrams

Mohammad Alanazi, Jason Belt, David Gustafson

Session: COMPONENT ORIENTED SOFTWARE
DEVELOPMENT
Plugin—Based Systems with Self-Organized Hierarchical Presentation

Boto Bako, Andreas Borchert, Norbert Heidenbluth, Johannes Mayer
Alsorithms for Optimally Tracing Time Critical Programs

Sergej Alekseev

Assessment of Com nt—B tems with Distri ject Technologi

Jiang Guo, Yuehong Liao, Xichun Pei

A Java Instrumentation— Analysis Approach for the Dynamic Behaviors of J2EE
Applications

Yuehong Liao, Jiang Guo, Xichun Pei

EMo-COTS: A Sof Economic Model for mercial Off-the—shelf T
Based Software Development
Sana Ben Abdallah Ben Lamine, Lamia Labed Jilani, Henda Hajjami Ben Ghezala

nee 1 Model for Integration of COT mpon
James Tollerson, Hisham Haddad
Pr s Component Plug—-in Appr
Jin Myung Choi, Sung Yul Rhew

Session: FORMAL METHODS AND SPECIFICATION
LANGUAGES, AND LANGUAGE DESIGN

Inspection of Concurrent Svstems: Combining Tables, Theorem Proving and Model

Checking
Vera Pantelic, Xiao~Hui Jin, Mark Lawford, David Parnas

n i— d Editor for ification i ication
Hiroshi Ishikawa
Formallv Verified Geometric Modelling Core

Catherine Dubois, Jean—Marc Mota

rmal ification imple Autom tiation Pro 1
George Dimitoglou, Okan Duzyol, Lawrence Owusu

Re~Engineering BL Financi tem Using Round—-Tri ineering an
Language Conversion Assistant

Salem Al-Agtash, Tamer Al-Dwairy, Adnan EL—Nasan, Bruce Mull, Mamdouh Barakat, Anas
Shqair
A Base for Achievin ntics for Prol i t for Corr rvables
Lingzhong Zhao, Tianlong Gu, Junyan Qian, Guoyong Cai
omparison of the Modeling Lan All I L
Yujing He
Supporting Separation of Concerns to Automation of Code Generation
Paniti Netinant
A Software Specification Language for RNA Pseudoknots
Keum—Young Sung
The Intelligent C Language Debugger
Ming Wang, Robert Chun

Session: CASE STUDY, USABILITY ENGINEERING, AND
EDUCATION

Intesrating User Centered Design in a Product Development Lifecycle Process: A Case
tud

Karsten Nebe, Lennart Groetzbach, Ronald Hartwig

Learner—centered Technical Review in Programming Courses

Hongxing Lu, Xiaohong (Sophie) Wang

Development of an Ant Script Builder with Thought to Usability and Best Practices
Kalyana Gundamaraju, Michael Wainer

Service Learning, Software Engineering, and Hurricane Katrina — A Case Study

Donald Schwartz, Jonathan Spencer, Adam Huffman

Podcasts: Changing the Face of e-Learning
Saby Tavales, Sotirios Skevoulis

Session: SOFTWARE RELIABILITY MODELS AND RISK
ANALYSIS

Supporting Software Fault Tree Analysis Using a Key Node Metric

Donald Needham, Sean Jones
Metrics in Risk Determinati
Maureen Raley, Letha Etzkorn

Session: STH INTERNATIONAL WORKSHOP ON

SYSTEM/SOFTWARE ARCHITECTURES, IWSSA'06
Ontology—Driven Middleware for Next—-Geperation Train Backbones

Stijn Verstichel, Sofie Van Hoecke, Matthias Strobbe, Steven Van den Berghe, Filip De
Turck, Frederik Vermeulen, Piet Demeester

stem Modeling for tematic Development of Gr re Application

Manuel Noguera, Miguel Gonzdlez, José Luis Garrido, Maria Visitacién Hurtado, Maria Luisa
Rodriguez

reanization Modelling to Support Access Control for Collaborative Systems

Francisco Luis Gutierrez, Jose Luis Isla, Patricia Paderewski, Miguel Sanchez

An NFR-Based Framework for Aligning Software Architectures with Svstem
Architectures

Nary Subramanian, Lawrence Chung
Architecture—Centric Program Transformation for Distribute s}
Chung—Horng Lung, Jianning Liu, Xiaoli Ling, Dan Jiang
mponent—Aware m Architecting: A Software Interoperabilit
Weimin Ma, Kendra Cooper, Lawrence Chung
Position Paper: From Enterprise Archi r ftware Archi res usin

Regquirements Engineering
Matthias Galster, Armin Eberlein, Mahmood Moussavi

Helpin M he Securit f Enterprises: Using FDAF to Build RBAC in

Software Architectures
Lirong Dai, Kendra Cooper
Modeling of Evolution t ure Application m: from Reguirements Model

Software Architecture
Michael Shin

An Enterprise Architecture Process Model
Frangois Coallier, Roger Champagne
A Model of A nirol for Data Materials B n Ambi lcul

Masaki Murakami

Session: PROCEEDINGS OF PLC'06 — DATA-FLOW
ANALYSIS

Fine—~Grained Analvsis of the Performance and Power Benefits of Compiler

imizations for K Devi
Jason W.A. Selby, Mark Giesbrecht
mplexity of Flow Analysis for Non— rable Fr. work

Bageshri Sathe, Uday Khedker

Session: PROCEEDINGS OF PLC'06 — CODE
OPTIMIZATION AND COMPILER GENERATION
TECHNIQUES

Experience in Testing Compniler Optimizers Using Comparison Checkin

Masataka Sassa, Daijiro Sudosa

Deterministically Ex in ncurrent Programs for Testing an in
Steve MacDonald, Jun Chen, Diego Novillo
Compiler Generator for Creating MOF—compliant Source Code Models

Zoltan Laszld, Tibor Sulydan
An Embedded Haskell t Implementation
Ian Lewis
r—Friendly Methodol for Automatic Exploration of Compiler ions: A

Study on the Intel XScale Microarchitecture
Haiping Wu, Eunjung Park, Long Chen, Juan del Cuvillo, Guang R. Gao

A r—Friendly Methodology for Automatic Exploration of Compiler Option.
Haiping Wu, Long Chen, Joseph Manzano, Guang R. Gao

Session: PROCEEDINGS OF PLC'06 — LOGIC,
FUNCTIONAL, MODELING, NEW PROGRAMMING
PARADIGMS

Implementation of Repres ion in Prolog Virtual hin
Guillaume Autran, Xining Li

XML Markup Languages Framework for Programming in 21st Century towards
Managed Software Engineering
Khubaib Ahmed Qureshi, M Zeeshan Ali Ansari

Improved Graph-Based Lambda Lifting
Marco T. Morazan, Barbara Mucha

On Petri Nets and Predicate—Transition Nets
Andrea Rick, Ray Kresman

IncH: An Incremental Compiler for a Functional Language
James Gil de Lamadrid, Jill Zimmerman

Extensible and A 1 m Softwar

Paniti Netinant

Session: PROCEEDINGS OF PLC'06 — REGISTER
ALLOCATION, MEMORY MANAGEMENT, AND OO
TECHNIQUES

Efficient an peral On— k Replacement for Aggressi rogr ialization
Sunil Soman, Chandra Krintz

Java Virtual Machine: the key for accurated memory prefeiching

Yolanda Becerra, Jordi Garcia, Toni Cortes, Nacho Navarro

Evaluation Issues in Generic Programming with Inheritance and Templates in Crt

Emil Vassev, Joey Paquet
Strine Concatenation Optimization on Java Bytecode

Ye Henry Tian

Aspects of Memor 0
Emil Vassev, Joey Paquet

ment in

++

The 2006 World Congress in Computer Science,
Computer Engineering, and Applied Computing

Monte Carlo Resort, Las Vegas, Nevada, USA
June 26-29, 2006

Conferences:

The 2006 International Conference on Bioinformatic omputational Biolo

The 2006 International Conference on Computer Design & International Conference

n Computing in N chno

The 2006 International Conference on Computer Graphics & Virtual Realit
The 2006 International Conference on Communications in Computing

The 2 international Conference o ientifi tin

The 2 International Conference on Data Minin

The 2006 International Conference on e-Learning, e-Business, Enterprise Information
stems, e~-Government tsourcin

The 2006 International Conference on Engineering of Reconfigurable Systems &
Algorithm

The 2 international Conference on E d tem Applicati

The 2006 International Conference on Foundations of Computer Science

The 2 International Conference on Frontiers in Education: Com uter Science
Computer Engineering

The 2006 International Conference on Grid Computing & Applications

The 2006 International Conference on Artificial intelligence

The 2006 International Conference on Internet Computing & International Conference
on Computer Games Development

The 2006 International Conference on Wireless Networks

The 2006 International Conference on Information & Knowled e Engineerin

The 2 International Conference on Image Processin ter Vision, & Patier
Recognition

The 2 International Conference on Machine Learning: Models, Techn logies
Applications

The 2006 International Conference on Modelin imulation & Visualization Methods

The 2006 International Conference on Parallel & Distributed Processing Technigues &
Applications & International Conference on Real-Time Computin stems

Applications
The 2 International Conference on Pervasive Systems & Com utin
The 2006 International Conference on Security & Management

The 2 International Conference on Software Engineering R rch & Practice
International Conference on Programming Languages and Compilers

The 2006 International Conference on Semantic Web & Web Services

Editor H.R. Arabnia
University of Georgia, GA, USA
Copyright by CSREA Press
ISBN: 1-932415-99-8

