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Abstract

A second-order imprecise probability model is proposed to generalise
the conjunction rule in case of expert conflict. The essential idea underly-
ing the model is a notion of behavioural trust. A computationally feasible
algorithm for calculating the first-order aggregate is constructed.

1 Introduction

When modelling a system, one must often rely on expert information. From the
modeller’s perspective, one usually wants to aggregate all expert opinions into a
single representative model—a “summary” of all the expert information—which
must then serve as a basis for various kinds of inferences about the system, such
as decision making, estimation, hypothesis testing, etc. The fundamental idea
underlying this approach is that aggregating more expert opinions eventually
leads to a more reliable, and hopefully, also a more informative representative
model. There is however no agreement on how expert opinions should be ag-
gregated. Actually, there is not even a clear agreement on how expert opinions
themselves should be represented.

Recently, the use of imprecise probabilities in representing, manipulating
and aggregating expert information has received an increasing amount of atten-
tion in the literature (see for instance [15, 16, 19, 17, 10, 4, 11, 6, 13, 14, 5] and
many references therein). Some of the main reasons for the increasing popular-
ity of imprecise probabilities in modelling and aggregating expert information
are that they (i) allow for a more reliable representation of expert information
(essentially, they do not force the expert to pinpoint a single probability mea-
sure in order to represent his knowledge), and (ii) provide a natural setting
for modelling conflicting opinions, using imprecision as a means of expressing
disagreement amongst different opinions.
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The main goal of this paper is to provide a transparent, systematic and
computationally feasible way for reconciling conflicting expert opinions. I in-
vestigate how an imprecise second-order hierarchical model can be constructed,
how this model can be given an operational meaning, and last but not least,
I derive an efficient algorithm for calculating a first order aggregate from the
second-order model, but not for all cases. I will show that for some, even
quite simple, second-order models this is not necessarily possible. Throughout
this investigation I shall try to use behavioural arguments only, in particular,
avoiding sure loss, coherence and natural extension, which are the fundamental
concepts of the behavioural theory of imprecise probabilities [18]. The proposed
method generalises a second-order hierarchical model described in [3, 4] and is
mathematically closely related to results presented in [13].

The paper is organised as follows. Section 2 introduces the basic concepts of
the behavioural theory of imprecise probabilities under the form of lower previ-
sions, and their relation to other well-known uncertainty models. In Section 3
I briefly review the problem of aggregating expert opinions, and touch on the
controversy surrounding it. Section 4 explains the conjunction rule. A second-
order imprecise probability model is proposed and discussed in Section 5. In
Section 6 the main results and an example are presented, and I end with a
discussion in Section 7.

2 Lower previsions

In this paper, lower previsions are taken as the fundamental imprecise proba-
bility model. Its behavioural interpretation turns out to be very convenient in
describing the second-order model later on.

Let us consider a subject (which can be an expert, or a modeller) who is
uncertain about something, say, the outcome of some experiment. If the set of
possible outcomes isA, then a gamble X is a bounded mapping fromA to R, and
it is interpreted as an uncertain reward: if a turns out to be the true outcome of
the experiment then the subject receives the amount X(a), expressed in units
of some linear utility. The set of all gambles on A is denoted by L(A).

The information the subject has about the outcome of the experiment will
lead him to accept or reject transactions whose reward depends on this outcome,
and we can formulate a model for his uncertainty by looking at a specific type of
transaction: the buying of gambles. The subject’s lower prevision (or supremum
acceptable buying price) P(X ) for a gamble X is the highest price s such that
he is disposed to buy the gamble X for any price strictly lower than s. If the
subject assesses a supremum acceptable buying price for every gamble X in a
subset K of L(A), the resulting mapping P : K → R is called a lower prevision.

Examples of lower previsions are:

(i) If “a belongs to the set A ⊆ A” then PA(X ) = infa∈A X (a): the lowest
possible reward given that a ∈ A. We call PA the vacuous lower prevision
relative to A.
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(ii) If “a has probability density φ” we should pay P(X ) =
∫
AX (a)φ(a)da,

the expectation w.r.t. φ [7, 8]. This is called the linear prevision induced
by the density φ.

(iii) If “a has a probability density that belongs to the set Φ” we pay at most
P(X ) = infφ∈Φ

∫
AX (a)φ(a)da.

These examples indicate that lower previsions are uncertainty representations
that are expressive enough to capture propositional logic (example (i)), Bayesian
probability theory (example (ii)), and credal sets (example (iii)) (credal sets
are convex sets of probability measures). Actually, they also generalise belief
functions, possibility and necessity measures, Choquet capacities, risk measures,
and many others (for more details see [18]). Lower previsions may therefore be
seen as a unifying imprecise probability framework.

P will denote the conjugate upper prevision of P . It is defined by P(X ) =
−P(−X ) for every X ∈ −K. P(X ) represents the subject’s infimum acceptable
selling price for the gamble X . The difference P(X ) − P(X ) is a measure for
the amount of imprecision in the subject’s behavioural dispositions towards X .

We now introduce a method of inference, associated with lower previsions,
that also generalises the inference methods of, for instance, classical proposi-
tional logic and Bayesian probability theory.

2.1 Inference

Through a procedure called natural extension, we are able to derive from the
assessments embodied in P , a supremum buying price E (X ) for each gamble
X in L(A); E is the smallest (and therefore most conservative) lower prevision
that satisfies, for any gambles X and Y

• E (X ) ≥ inf[X] (accepting sure gain)

• E (λX ) = λE (X ) whenever λ > 0 (scale independence)

• E (X + Y ) ≥ E (X ) + E (Y ) (super-additivity)

• E (X ) ≥ P(X ) (compatibility)

If E exists, P is said to avoid sure loss. It can be easily shown that a lower
prevision avoids sure loss if and only if supa∈A [

∑n
i=1 [Xi(a)− P(Xi)]] ≥ 0 for

any n ∈ N and any X1, . . . , Xn ∈ K; that is, if and only if there is no combination
of transactions—buying gambles for their supremum buying price—that leads
to a sure loss.

The natural extension E (X ) can be easily calculated: assuming K to be
finite, it is equal to the supremum achieved by the free variable α subject to

X (a)− α ≥
∑

Y∈K λY

(
Y (a)− P(Y )

)
for each a ∈ A, with variables λY ≥ 0 for each Y ∈ K—if also A is finite,1 this
is a linear program. If the supremum is α = +∞, then the natural extension

1It happens very often in practice that both K and A are finite.
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does not exist, and hence, P incurs sure loss; this identifies a conflict in the
assessments. If E and P coincide on K, then P is called coherent.

3 Aggregation: a short review

I now give a short non-exhaustive review of different ways to tackle the problem
of aggregating expert opinions. Basically, there are two ways to approach the
problem: axiomatic (also called normative), and ad hoc. No rule is ever purely
axiomatic, or purely ad hoc. Many rules can be given an axiomatic as well as
an ad hoc explanation (such as the conjunction rule and the unanimity rule
described below).

Axiomatic approaches aim at deriving a preferably unique rule of aggrega-
tion from axioms or properties that this rule should satisfy. Typical axioms
are requirements of commutativity of the rule with respect to some other ac-
tion, such as updating (external Bayesianity), marginalisation, permutation of
experts (symmetry) etc.. They can also refer to some other property of the rule,
such as unanimity-preservation (if all experts agree, then the aggregate should
also agree with all experts), invariance with respect to non-informative expert
opinions, independence preservation, etc.

Especially among Bayesians (see [9] for an excellent overview, and references
therein), where expert opinions and the aggregate are to be represented by prob-
ability measures, there still is a lot of controversy about these axioms. Indeed,
imposing even only a few axioms easily leads to contradictions or undesirable
aggregation rules such as so-called dictatorship rules. What counts is how the
rule will eventually be used. From this perspective, it is not always clear what
axioms should be imposed.

In imprecise probability theory, the axiomatic approach is somewhat less
problematic (see [15] for instance). Still, it is not clear how to define a unique
aggregation rule under this uncertainty model. The conjunction rule is defined
as the smallest (and therefore most conservative) coherent lower prevision that
dominates each of the experts’ lower previsions. Conjunction aims at gaining as
much information as possible from each of the experts: the aggregate is at least
as informative as each of the experts’ lower previsions, and it can only become
more informative as more experts enter the scene. The conjunction however does
not always exists, in particular when different experts make conflicting state-
ments. On the other hand, the unanimity rule, defined as the lower envelope of
the experts’ lower previsions, is guaranteed to exist. It aims at reconciling the
experts’ assessments. As a result however, it may lead to extremely imprecise
results: the aggregate will be at least as imprecise as the most imprecise expert,
and its imprecision can only increase as more experts enter the scene. Unanim-
ity certainly leads to a very reliable aggregate. However, it fails completely to
produce also a more informative aggregate as more expert assessments become
available.

One imprecise probability aggregation rule could consist of using the con-
junction rule if the conjunction exists, and the unanimity rule if the conjunction
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does not exist. The problem of this rule is that it is far from stable: a small vari-
ation of an expert’s lower prevision may yield huge differences in the aggregate
lower prevision.

Ad hoc approaches are not as much concerned with axioms: one simply
proposes or derives a mathematical formula, together with some form of justi-
fication. (Afterwards of course, it is usually investigated which of the axioms
it satisfies. This usually provides the ad hoc rule with an additional source for
motivation or criticism.) They generally divide into three sub-categories: hierar-
chical models, weighting schemes, and consensus methods. Consensus methods
are based on expert interaction: before an aggregate is constructed, the experts
are allowed to interact with each other (see [11] for an excellent discussion of
a consensus method using imprecise probabilities). Weighting rules, the linear
opinion pool in Bayesian aggregation being maybe the most prevailing example,
try to take each expert’s expertise into account (a feature lacking most of the
purely axiomatic approaches). The same holds for hierarchical models, and in
fact, hierarchical models may be seen as one attempt to motivate, and gener-
alise, some of the existing weighting schemes (many weighting rules are however
not instances of hierarchical models).

Using probability measures, the most reasonable approach seems to be linear
pooling; taking a convex combination of expert probability measures. It is very
easy to implement, and gives quite good results in practice. Subject of debate
is of course how one should assign the weights.

Concluding, besides theoretical and practical problems associated with each
of these methods separately, any method using single probability distributions
for both the experts and the aggregate fails to model conflict among experts,
and forces experts to pinpoint a single probability, even for those events of
which he does not have much expertise. Imprecise probabilities address both
these problems, because they allow for experts to assess their expertise using
a convex set of probability measures (also called credal sets), a lower previ-
sion, a set of desirable gambles, an ordering on gambles, a possibility measure,
etc.—rather than forcing them to choose a single probability measure. Conse-
quently, it is also easier to avoid conflict when combining imprecise probabilities
because, roughly speaking, experts are not forced to give precise probabilities
on events of which they have only little knowledge—they can simply say they
don’t know. And should there be conflict anyway, imprecision can be used to
reflect it (for instance, using the unanimity rule). These characteristics are the
main motivation for introducing the second-order imprecise probability model
in Section 5.

4 Prelude: the conjunction rule

Suppose there are N (male) subjects, called experts. Suppose that their assess-
ments about the value that a parameter ω assumes in a finite set of possible
values Ω are expressed through coherent lower previsions Pk on some finite
subset Kk of L(Ω), for k = 1, . . . , N . The natural extension of each Pk will
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be denoted by Ek. How can the lower previsions (Pk)N
k=1 be combined into an

aggregate, a single coherent lower prevision defined on the set of gambles L(Ω)?
Consider therefore a new (female) subject, called the modeller. She wishes

to aggregate the expert assessments to a single coherent lower prevision PM

defined on L(Ω). Let us first introduce a notion of behavioural trust.

Definition 1. Let α and β be two subjects. Assume that each of the subjects
models his/her knowledge about ω ∈ Ω through a coherent lower prevision Pα

resp. Pβ on Kα resp. Kβ. Let Eα resp. Eβ denote their natural extension.
The following conditions are equivalent; if any (hence all) of them are satisfied,
we say that α trusts β.

(A) α is willing to accept every decision β makes concerning buying gambles
on Ω, that is, for each gamble X ∈ L(Ω), α is willing to accept β’s price
s < Eβ(X) for buying X as his/her price for buying X.

(B) Eα point-wise dominates Eβ on L(Ω).

The point of the first part of the definition is that any behavioural theory of
uncertainty inherently has a notion of trust in a multi-agent environment and
hence, as I will show now, also notions of conjunction and consistency, which
can be derived from behavioural trust in a straightforward way.

Definition 2. The conjunction of (Pk)N
k=1 is defined as the smallest, and hence

most conservative, lower prevision PM on L(Ω) the modeller can have such that
she still trusts each of the experts. If conjunction exists, then the experts are
said to be consistent, otherwise they are said to be conflicting.

By Definition 1, the conjunction is simply the (point-wise) smallest coherent
lower prevision that dominates all the experts’ natural extensions Ek. The
conjunction of (Pk)N

k=1 be denoted by uN
k=1Pk; the conjunction of two consistent

coherent lower previsions P1 and P2 is also denoted by P1uP2. It is easy to show
that u is an associative and commutative operator on coherent lower previsions
(but the result is only defined in case of consistency). Conjunction can be
calculated through linear programming in a similar way as natural extension.

Proposition 1. Consider the maximum α∗ achieved by the free variable α
subject to the linear constraints

X (a)− α ≥
N∑

k=1

∑
Yk∈Kk

λYk

(
Yk(a)− Pk(Yk)

)
for each a ∈ A, with variables λYk

≥ 0 for each Yk ∈ Kk. If α∗ is finite then the
experts’ assessments (Pk)N

k=1 are consistent and uN
k=1Pk = α∗. If α∗ = +∞,

then the conjunction does not exist: in such a case the assessments (Pk)N
k=1 are

conflicting.

If the assessments (Pk)N
k=1 are conflicting—if no conjunction exists—then

there is no coherent way to accept every decision of every expert, since the
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modeller incurs a sure loss if she would do so. It is easily established that
in case of inconsistency there are gambles Xk ∈ Kk such that (compare with
avoiding sure loss)

sup
ω∈Ω

[
N∑

k=1

[Xk(ω)− Pk(Xk)]

]
< 0, (1)

i.e., the combination of the transactions in which the gambles Xk are bought
for a price Pk(Xk) leads to a loss, whatever the actual value of the parameter
a. Blindly accepting decisions of all the experts (Pk)N

k=1 is clearly unacceptable
in case of inconsistency. The modeller is therefore certain that some of the
experts’ assessments (Pk)N

k=1 cannot be trusted, but she does not necessarily
know which ones.

One solution in case of conflict is to use the unanimity rule. This consists
in choosing the modeller’s lower prevision, the aggregate, such that each of the
experts trust the modeller. This means that each of the experts agrees with
the modeller’s behavioural dispositions (hence the name of the rule). But as we
have already noted before, the resulting aggregate may be too imprecise to be
useful.

It may however happen that the modeller may have actual information about
which of the experts are to be trusted more than others. In the next section I
therefore propose a second-order hierarchical imprecise probability model that
aims at modelling such knowledge. Its interpretation is based on the notion of
behavioural trust.

5 A second-order imprecise probability model

The modeller wishes to recover information regarding ω using the information
revealed by the experts, taking into account that some experts are more trust-
worthy than others. I describe how behavioural trust can be used to aggregate
information revealed by experts.

The modeller first assumes the existence of a so-called true coherent lower
prevision PT on L(Ω), but she is not sure about what it is. PT could refer to the
behaviour of a hypothetical “representative” expert, an operational procedure
designed to measure uncertainty such as an imprecise Dirichlet (or other) model
updated through a contingency table, or even a real system that behaves just
like an expert. The modeller is interested in what the hypothetical expert knows
about ω, or what the result of the operational procedure will be about ω, or how
the system behaves with respect to ω, but, she is only able to infer information
about ω through (Pk)N

k=1. She cannot talk to the hypothetical representative
expert, cannot perform operational procedure, has no access to the system of
interest: it may be too expensive, or she might not have the necessary means.
Her uncertainty thus regards the random variable PT which we assume to take
all values in the set P(Ω) of coherent lower previsions on L(Ω). Her possibility
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space P(Ω) is also called the second-order possibility space.2

Often, even in imprecise probability theory, the second-order possibility
space is restricted to the set of all linear previsions. It is well-known that
this restriction may lead to different results: precision-imprecision equivalence
does not always hold [4]. My main motivation for not restricting to linear pre-
visions is that we should not expect experts to be able to pinpoint a single
probability measure. We want experts to be honest about their information,
so if there really is uncertainty, we sure want them to be able to tell us. This
should hold as well for the “real” experts as for the hypothetical representative
expert, operational procedure, or real system.

5.1 Trust and tsurt

In terms of events on the modeller’s second-order possibility space, she trusts an
expert, with lower prevision Pk, whenever the event M(Ek) is true (remember
that Ek is the natural extension of Pk), with

M(Ek) = {PT ∈ P(Ω): (∀X ∈ L(Ω))(Ek(X ) ≤ PT (X ))}.

Indeed, this event is true exactly when the true lower prevision point-wise dom-
inates Ek; this means that the true behavioural dispositions, implied by PT ,
include at least the behavioural dispositions implied by Ek: no harm is done to
the modeller by being guided by the decisions the expert makes.

Dually, the modeller might think that behavioural dispositions implied by
the expert’s natural extension Ek, include at least the behavioural dispositions
implied by PT . The modeller judges the expert’s assessment to be too precise
(for instance, he might be a Bayesian), but not necessarily contradicting PT .
Let us say in such a case that the modeller is trusted by, or tsurts the expert.3

In terms of events on the modeller’s second-order possibility space, the modeller
tsurts an expert whenever N (Ek) is true, with

N (Ek) = {PT ∈ P(Ω): (∀X ∈ L(Ω))(PT (X ) ≤ Ek(X ))}.

(note that N (Ek) 6= {M(Ek)).4

The modeller assesses a supremum betting rate t`k for the event that she can
trust expert k, i.e., for the event M(Ek) and a supremum betting rate 1 − tuk
for the event that she cannot trust expert k, i.e., for the event {M(Ek). (The
interval [t`k, tuk ] can be interpreted as a probability interval for the trust in expert
k.)

Similarly, the modeller assesses a supremum betting rate v`
k for the event

that expert k trusts her, i.e., for the event N (Ek) and a supremum betting rate
1−vu

k for the event that expert k does not trust her, i.e., for the event {N (Ek).

2The first-order possibility space is Ω, and (Pk)N
k=1 and PT are called first-order models.

3Out of convenience we define the verb to tsurt [somebody] : being trusted [by somebody],
and the noun tsurt : dispositions you have when you tsurt someone.

4The symbol { denotes the complement of a set.
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(The interval [v`
k, vu

k ] can be interpreted as a probability interval for the tsurt
of expert k.)

Define lower & upper trust functions and lower & upper tsurt functions as
follows:

t : Ek 7→ t`k, t : Ek 7→ tuk , v : Ek 7→ v`
k, v : Ek 7→ vu

k .

Without loss of generality we may assume that t, t, v and v are defined on a
common domain {Ek : k ∈ {1, . . . , n}}: the modeller can always choose betting
rate 0 for events of which she is completely ignorant. In terms of probability
intervals this means that lower probabilities can be chosen 0 and the upper
probabilities can be chosen 1 whenever they are unknown.

Obviously it should hold that t`k ≤ tuk and v`
k ≤ vu

k . Extreme choices are
t`k = 1, this corresponds to complete trust, and v`

k = 1, which corresponds to
complete tsurt.

We defined trust and tsurt functions t, t, v and v as specifications of a
supremum betting rate or lower probability Q on particular events in the second
order possibility space P(Ω). In terms of this second order possibility space, the
modeller has specified the following lower prevision:

Q(M(Ek)) = t(Ek), Q({M(Ek)) = 1− t(Ek),

Q(N (Ek)) = v(Ek), Q({N (Ek)) = 1− v(Ek).

It is now convenient to define the mapping δ : P(Ω)× P(Ω) → {0, 1} by

δ
P2
P1

=

{
1, if for each X ∈ L(Ω): P1(X ) ≤ P2(X ),
0, otherwise.

Observe that M(Ek)(P) = δ
P
Ek

and N (Ek)(P) = δ
Ek

P .5

5.2 A first-order aggregate through natural extension

If Q avoids sure loss, that is, if

sup
P∈P(Ω)

{
N∑

k=1

κk

(
δ
P
Ek
− t(Ek)

)
+ λk

(
t(Ek)− δ

P
Ek

)
+ µk

(
δ
Ek

P − v(Ek)
)

+ νk

(
v(Ek)− δ

Ek

P

)}
≥ 0,

for every κk, λk, µk and νk ≥ 0, then the natural extension E of Q exists; it
is a coherent lower prevision on L(P(Ω)). In such a case we say that there is

5We identify a set with its indicator function, for instance, a subset M of P(Ω) is identified

with the mapping M(P) =

{
0, if P 6∈ M,

1, otherwise.
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second-order consistency. If Q does not avoids sure loss, then we say that there
is second-order conflict. The natural extension, if it exists, is given by

E (Z ) = sup

{
α ∈ R : (∃κk, λk, µk, νk ≥ 0)(∀P ∈ P(Ω))

Z (P)− α ≥
N∑

k=1

κk

(
δ
P
Ek
− t(Ek)

)
+ λk

(
t(Ek)− δ

P
Ek

)
+ µk

(
δ
Ek

P − v(Ek)
)

+ νk

(
v(Ek)− δ

Ek

P

)}

for any (second-order) gamble Z ∈ L(P(Ω)).
From the natural extension E , we can, theoretically, deduce lower and upper

trust, and lower and upper tsurt of any coherent lower prevision P :

te(P) = E (M(P)), t
e(P) = 1− E ({M(P)),

ve(P) = E (N (P)), ve(P) = 1− E ({N (P)).

These natural extensions will agree with the original assessments if Q is coherent
(the formula expressing this is rather lengthy). We may also infer supremum
buying prices and infimum selling prices for the supremum buying price and
infimum selling price of a gamble X with respect to true model:

E `(X ) = E (X∗), Eu(X ) = E (X ∗),

E
`
(X ) = E (X∗), E

u
(X ) = E (X ∗),

where X∗ is the lower and X ∗ is the upper evaluation map corresponding to X ,
defined by

X∗ : P(Ω) → R;P 7→ P(X ), X ∗ : P(Ω) → R;P 7→ P(X ).

E `, Eu, E
`
and E

u
are all first-order models, but which one should we choose as

first-order aggregate? Eu and E
`

are not necessarily coherent lower previsions,
but E ` and Eu are. The next proposition shows that it makes sense to take E `

as the first order aggregate.

Proposition 2. E ` is a coherent lower prevision and Eu is a coherent upper
prevision. Moreover, for every gamble X it holds that E `(X ) = −E

u
(−X ).

6 Main result

The following theorem establishes that whenever v is 1, we can efficiently calcu-
late E `(X ) for every gamble X , and te(Q) and ve(Q) for every coherent lower
prevision Q , by taking for Z either X∗, M(Q) or 1−N (Q).
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Theorem 1. Suppose that Z ∈ L(P(Ω)) is monotonically increasing and v(Ek) =
1 for every k ∈ {1, . . . , N}. Then

E (Z ) = sup

{
α ∈ R :

(∃κk, λk, µk ≥ 0)(∀K ⊆ {1, . . . , N})(R = uk∈KPk coherent)

Z (R)− α ≥
N∑

k=1

κk

(
δ
R
Ek
− t(Ek)

)
+ λk

(
t(Ek)− δ

R
Ek

)
+ µk

(
δ
Ek

R − v(Ek)
)}

(where R = uk∈KPk is defined as the vacuous lower prevision infω∈Ω if K = ∅.)

Proof. If v(Ek) = 1 for all k then the supremum will be achieved for νk = 0,
and hence, we may omit these terms.

Next, we show that for any P ∈ P(Ω) we can find a K such that,

Z (R) ≤ Z (P), δ
R
Ek

= δ
P
Ek

, δ
Ek

R ≥ δ
Ek

P ,

for all k ∈ {1, . . . , N}, with R = uk∈KPk. In such a case the inequality for P
is implied by the inequality for R, and hence, we may ‘replace’ P by R in the
inequality.

Choose K = {k : Ek ≤ P}. Observe that R = uk∈KPk is a coherent lower
prevision (if K = ∅ then R is the vacuous lower prevision infω∈Ω).

Also observe that R ≤ P , and hence, it immediately follows that Z (R) ≤
Z (P) since Z is monotone, and δ

R
Ek

≤ δ
P
Ek

and δ
Ek

R ≥ δ
Ek

P for every k ∈
{1, . . . , N}, since

R ≥ Ek =⇒ P ≥ Ek,

Ek ≥ P =⇒ Ek ≥ R.

We are left to show that

P ≥ Ek =⇒ R ≥ Ek,

which would establish δ
R
Ek

= δ
P
Ek

. Indeed, suppose that P ≥ Ek. This means
that k ∈ K. Since R ≥ E ` for all ` ∈ K by definition of R, we find that
R ≥ Ek.

We must require that v is 1 because in general it is impossible to establish
that for every P there is a R, chosen from a finite set constructed from {Pk, k ∈
{1, . . . , N}}, such that

Z (R) ≤ Z (P), δ
R
Ek

= δ
P
Ek

, δ
Ek

R = δ
Ek

P ,
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for all k ∈ {1, . . . , N}. For example, take N = 1 and any P 6≤ P1. For every
reasonable choice of R, that is, R = P1 or R = infω∈Ω, it cannot hold that

P1 ≥ R =⇒ P1 ≥ P .

There does not seem to exist an efficient method for calculating neither Eu,
t
e(Q), nor ve(Q).

6.1 An algorithm for calculating the first-order aggregate

In the following we assume that v is 1, and Rj , j = 0, . . . ,M denotes an enumer-
ation of all possible uk∈KPk, K ⊆ {1, . . . , N}. Without loss of generality we
may assume that R0 = infω∈Ω. Theorem 1 shows that, in some cases the nat-
ural extension can be calculated by solving a finite linear program (an infinite
number of linear inequalities reduces to a finite number of linear inequalities).
In its dual form, this linear program has a very nice form, it is given in the next
theorem.

Theorem 2 (Dual form). Let X ∈ L(Ω) be any (first-order) gamble. Assume
that v is 1, and let Rj, j = 0, . . . ,M denote an enumeration of all possible
uk∈KPk, K ⊆ {1, . . . , N}. Without loss of generality we assume that R0 =
infω∈Ω. Let α0, . . . , αM be non-negative variables that maximize

∑M
j=0 αjRj(X)

subject to ∑M
j=0 αj = 1

∑M
j=0 αjδ

Ek

Ej
≥ v(Ek)∑M

j=0 αjδ
Rj

Ek
≥ t(Ek)

∑M
j=0 αjδ

Rj

Ek
≤ t(Ek)

for all k ∈ {1, . . . ,M}. (Notice that the constraints do not depend on the gamble
X ). Then

E `(X) =
∑M

j=0 αjRj(X).

6.2 Practical setup

We have described one way to formulate and solve the algebraic problem set.
Practically, each problem can be solved using the following strategy. Each expert
k specifies a lower prevision Pk on a finite subset Kk of gambles. The modeller
associates lower trust t`i , upper trust tui , and lower tsurt v`

i with each expert
k. Use Proposition 1 to enumerate all Rk(X ) = uk∈KPk(X ) for any gamble X
of interest. Also determine δ

Rj

Ek
and δ

Ek

Rj
for every k ∈ {1, . . . , N} (point-wise

dominance can also be tested efficiently by means of a linear program). Finally,
use Theorem 2 to calculate E `(X ) = E (X∗) for any gamble X of interest.

6.3 Example: Poincaré’s paradox

Poincaré’s paradox [12] arises when we consider three objects a, b and c, such
that a cannot be distinguished from b, b cannot be distinguished from c, but
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Table 1: δPi
(Rj) for Poincaré’s Paradox

a = b b = c a 6= c
no assessment 0 0 0

a = b 1 0 0
b = c 0 1 0
a 6= c 0 0 1

a = b ∧ a 6= c 1 0 1
b = c ∧ a 6= c 0 1 1
a = b ∧ b = c 1 1 0

clearly a is not equal to c. It thus consists of the assessments a = b, b = c and
a 6= c. We investigate to what extent these assessments are consistent within
the present approach.

To this end, we assign a lower trust t to each assessment. The conjunctions
Rj and the coefficients δPi

(Rj) are listed in Table 1. The corresponding linear
programming problem has a feasible solution only for t ≤ 2

3 . This means that
Poincaré’s paradox can be resolved only if we trust each assessment up to a
degree of 66, 7%. For t = 2

3 the solution is E ` = 1
3 (Pa=b∧a6=c + Pb=c∧a6=c +

Pa=b∧b=c). Since this conclusion only depends on the values of the δPi
(Rj),

any three conflicting assessments that are pair-wise consistent, are actually con-
sistent up to an equally distributed degree of trust of 66, 7%.

7 Discussion and conclusion

A second-order imprecise probability model was proposed based on a behavioural
notion of trust. As most second-order hierarchical models, the interpretation
of this model relies on the existence of a hypothetical “representative” expert.
Unluckily, this leads to philosophical as well as to practical problems. The
second-order gambles that were used to derive the aggregate are defined on
a possibility space that cannot always be sampled in a meaningful way. How
should one deduce the second-order lower and upper trust and tsurt values? One
could argue that the model should only be used in applications where the repre-
sentative expert can be identified (for instance, one choice could be identifying
the representative expert with the modeller itself).

Despite these problems, I think the method is both mathematically simple,
sufficiently general, and practically appealing, especially if only a limited number
of expert opinions need to be aggregated. Theorem 2 shows that the first-
order aggregate can be obtained as a weighting rule: it is a convex combination
of conjunctions of all possible (non-conflicting) combinations of experts. The
weights may still depend on the gamble of interest, however. In the general case
however, the size of the linear program to be solved will grow exponentially in
the number of experts, limiting the applicability of the model. Also, there seems
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to be no efficient method for calculating neither Eu, t
e(Q), nor ve(Q).

Restricting to lower trust only, it is easy to obtain the following results (the
lower trust assignments are assumed to be non-negative):

(i) If lower trust is equal to one for all experts, then the first order aggregate
is equal to the conjunction of all the experts, and second-order consistency
is equivalent with consistency.

(ii) If a lower trust model is second-order consistent, then it will remain so for
any lower assignment of lower trust.

(iii) A lower trust assignment such that
∑N

k=1 t`k ≤ 1 is always second-order
consistent: in that case, a first order aggregate always exists.

(iv) If all experts are pair-wise conflicting, that is, if there are no conjunctions
except for the trivial ones, then any lower trust assignment such that∑N

k=1 t`k > 1 is second-order conflicting. If
∑N

k=1 t`k ≤ 1, then there is
second-order consistency, and the aggregate is given by

E `(X) =
N∑

k=1

t`kEk(X) +
(
1−

N∑
k=1

t`k

)
inf
ω∈Ω

X(ω).

Thus in case of total conflict (which is quite common if all experts use a
single probability measure to represent their knowledge), the model pro-
duces a generalised linear opinion pool.

These results show that the highest possible assignments for lower trust measure
the amount of conflict between the expert assessments. If they can be chosen
maximal, all equal to one, then no conflict is present. If they cannot even be
chosen such that their sum is larger than one, then there is total conflict.
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