Dynamic Programming for Discrete-Time
Systems with Uncertain Gairt

G.DE COOMAN
Ghent University, Belgium

M. C. M. TROFFAES
Ghent University, Belgium

Abstract

We generalise the optimisation technique of dynamic programming for
discrete-time systems with an uncertain gain function. We assume that un-
certainty about the gain function is described by an imprecise probability
model, which generalises the well-known Bayesian, or precise, models. We
compare various optimality criteria that can be associated with such a model,
and which coincide in the precise case: maximality, robust optimality and
maximinity. We show that (only) for the first two an optimal feedback can be
constructed by solving a Bellman-like equation.
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1 Introduction to the Problem

The main objective in optimal control is to find out how a system can be influ-
enced, or controlled, in such a way that its behaviour satisfies certain require-
ments, while at the same time maximising a given gain function. A very effective
method for solving optimal control problems for discrete-time systems is the re-
cursivedynamic programmingnethod, introduced by Richard Bellman [1].

To explain the ideas behind this method, we refer to Figures 1 and 2. In Fig-
ure 1 we depict a situation where a system can go from atatestatec through
statebin three ways: following the pathe3, ay andad. We denote the associated
gains byJyg, Joy andJys respectively. Assume that patly is optimal:Joy > Jug
andJqy > Jys- Then it follows that patly is the optimal way to go frorb to c. To

*This paper presents research results of project G.0139.01 of the Fund for Scientific Research,
Flanders (Belgium), and of the Belgian Programme on Interuniversity Poles of Attraction initiated by
the Belgian state, Prime Minister’s Office for Science, Technology and Culture.
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Figure 1: Principle of Optimality Figure 2: Dynamic Programming

see this, observe thadg, = J; + Jy forv € {B,y, 6} (gains are assumed to be addi-
tive) and derive from the inequalities above that- J; andJ, > Js. This simple
observation, which Bellman called tipeinciple of optimality forms the basis for
the recursive technique of dynamic programming for solving an optimal control
problem. To see how this is done in principle, consider the situation depicted in
Figure 2. Suppose we want to find the optimal way to go from sidte state

e. After one time step, we can reach the stdies andd from statea, and the
optimal paths from these states to the final stediee known to bex, y andn, re-
spectively. To find the optimal path froato e, we only need to compare the costs
I+ Jo, Ju+Jy andJy + J, of the respective candidate optimal padus py and

vn, since the principle of optimality tells us that the paifis vd andve cannot

be optimal: if they were, then so would be the pgthd ande. This, written down

in a more formal language, is what is essentially knowBeléman’s equationit
allows us to solve an optimal control problem very efficiently through a recursive
procedure, by calculating optimal paths backwards from the final state.

In applications, it may happen that the gain function, which associates a gain
with every control action and the resulting behaviour of the system, is not well
known. This problem is most often treated by modelling the uncertainty about the
gain by means of a probability measure, and by maximisingxpected gainn-
der this probability measure. Due to the linearity of the expectation operator, this
approach does not change the nature of the optimisation problem in any essential
way, and the usual dynamic programming method can therefore still be applied.

It has however been argued by various scholars (see [11, Chapter 5] for a de-
tailed discussion with many references) that uncertainty cannot always be mod-
elled adequately by (precise) probability measures, because, roughly speaking,
there may not be enough information to identify a single probability measure. In
those cases, it is more appropriate to model the available information through an
impreciseprobability model, e.g., by a lower prevision, or by a set of probability
measures. For applications of this approach, see for instance [4, 10].

Two questions now arise naturally. First, how should we formulate the optimal
control problem: what does it mean for a control to be optimal with respect to an
uncertain gain functionwhere the uncertainty is represented through an impre-
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cise probability model? In Section 2 we identify three different optimality criteria,
each with a different interpretation (although they coincide for precise probability
models), and we study the relations between them. Secondly, is it still possible to
solve the corresponding optimal control problems using the ideas underlying Bell-
man’s dynamic programming method? We show in Section 3 that this is the case
for only two of the three optimality criteria we study: only for these a generalised
principle of optimality holds, and the optimal controls are solutions of suitably
generalised Bellman-like equations. To arrive at this, we study the properties that
an abstract notion of optimality should satisfy for the Bellman approach to work.

We recognise that other authors (see for instance [8]) have extended the dy-
namic programming algorithm to systems with imprecise gain and/or imprecise
dynamics. However in doing so, none of them seems to have questioned in what
sense their generalised dynamic programming method leads to optimal paths. In
this article we approach the problem from the opposite, and in our opinion, more
logical side: one shoulfirst define a notion optimality and investigate whether
the dynamic programming argument holds for this notion of optimality, instead
of blindly “generalising” Bellman’s algorithm. In the remainder of this section,
we introduce the basic terminology and notation that will allow us to give a pre-
cise formulation of the problems under study. We have omitted proofs of technical
results that do not contribute to a better understanding of the main ideas.

1.1 Preliminaries
1.1.1 The System

Foraandb in N, the set of natural numbecsthat satisfya < ¢ < b is denoted
by [a,b]. Let x11 = f(Xk, U, K) describe a discrete-time dynamical system with
ke N, x € X andug € U. The setX is the state space (e.&®", n€ N\ {0}), and
the set is the control space (e.®R™, me N\ {0}). Themapf: X x UxN— X
describes the evolution of the state through time: given the gtateX and the
control u, € U at timek € N, it returns the next state.. 1 of the system. For
practical reasons, we impose a final tihdeyond which we are not interested in
the dynamics of system. Moreover, it may happen that not all states and controls
are allowed at all times: we demand tixatshould belong to a set @dmissible
statesXi at every instark € [0,N], and thaty should belong to a set afimissible
controls U at every instank € [0,N — 1], whereX; C X and U C U are given.
The setXy may be thought of as the set we want the state to end up in at\ime

1.1.2 Paths

A pathis a triple (x,k,u.), wherex € X is a statek € [0,N] a time instant, and

u.: [kK,N—1] — U a sequence of controls. A path fixes a unique state trajectory
x.: [k,N] — X, which is defined recursively through = x andxi+1 = f(xi, u;,i)

for everyi € [k,N — 1]. It is said to beadmissibleif x, € X; for every/ € [k,N]
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andu, € U, for every? € [k,N — 1]. We denote the unique map frabrto U by
up. If k=N, the controlu. does nothing: it is equal tay.

The set of admissible paths starting in the state Xk at timek € [O,N] is
denoted byl (x,k), i.e., U(x,k) = {(x,k,u.): (x,k,u.) admissible path For ex-
ample,U(x,N) = {(x,N,up) } whenevex € Xy and U(x,N) = 0 otherwise.

If we consider a path with final tim&1 different from N, then we write
(x,k,u.)m (assumek < M < N). Observe thatx,k,u.)x can be identified with
(x,k,up); it is the unique path (of length zero) starting and ending at tinre
x. Let 0< k < ¢ < m. Two paths(x,k,u.), and(y,¢,v.)m can be concatenated if
y = X¢. The concatenation is denoted byk,u.,¢,v.)m or (X,K,u.); & (Y, 4,V.)m,
and represents the path that starts in staaetimek, and results from applying
controly; for timesi € [k, — 1] and control; for timesi € [¢,m—1]. In particular,

(X, ku)e = (XK u)k® (X ku)e = (XK u)e @ (X, £,u.),.

The set of admissible paths starting in state Xy at timek € [0,N] and ending
at time/ € [k,N] is denoted byu(x,k),. In particular we have thati(x,k)x =
{(x,k,up)k} if x € X, and U(x,k)x = 0 otherwise. Moreover, for anfk,k,u.), €
U(x,k) and any?’ C U(x,, ¢), we use the notatiofx,k,u.), ® ¥ for the set

{06k u) e ® (X, £,V 0 (X, 8,.) € V}

1.1.3 The Gain Function

Applying the control actiom € U to the system in statec X attimek € [0,N — 1]
yields a real-valued gaig(x, u, k, w). Moreover, reaching the final statec X at
time N also yields a gaiin(x, w). The parameten € Q represents the (unknown)
state of the world, used to model uncertainty of the gains. If we knew that the
real state of the world was,, we would know the gains to bgx, u,k, w) and
h(x,uy). As it is, the real state of the world is uncertain, and so are the gains,
which could be considered as random variables. It is important to note that the
parameteiw only influences the gains; it has no effect on the system dynamics,
which are assumed to be known perfectly well.

Assuming gain additivity, we can also associate a gain with a (pakhu.):

J(x.k,u., ) = TN g%, ui,i,00) +h(xn, @),
foranyw e Q. If M < N, we also use the notation
Ik u,)m = M g%, Ui, 0).

It will be convenient to associate a zero gain with an empty control action: for
k € [0,N] we letJ(x,k,u.,w)k = 0.

The main objective of optimal control can now be formulated as follows: given
that the system is in the initial statec X at timek € [O,N], find a control se-
quenceu.: [k,N — 1] — U resulting in an admissible patlx, k,u.) such that the
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corresponding gaid(x, k, u., w) is maximal. Moreover, we would like this control
sequence!. to be such that its valugy at the time instank is a function ofx and
k only, since in that case the control can be realised through state feedback.

If wis known, then the problem reduces to the classical problem of dynamic
programming, first studied and solved by Bellman [1]. We assume here that the
available information about the true state of the world is modelled through a
herent lower prevision Rlefined on the set(Q) of gambles or bounded real-
valued maps, o2. A special case of this obtains whénis a linear prevision
P. Linear previsions are the precise probability models; they can be interpreted as
expectation operators associated with (finitely additive) probability measures, and
they areprevisionsor fair pricesin the sense of de Finetti [6]. We assume that the
reader is familiar with lower previsions and coherence (see [11] for more details).

For a given patlix, k,u.), the corresponding gaif{x, k, u.,w) can be seen as a
real-valued map o, which is denoted by(x k,u.) and called thgyain gamble
associated witlix, k, u.).* In the same way we define the gain gamlges, ux, k),
h(xn) and J(x,k,u.)m. There is gain additivityJ(x,k,u.,£,v.)m = J(x,k,u.); +
J(X¢, 4,V )m for k< £ <m < N, andJ(x,k,u.)x = 0. We denote by (x,k) the set
of gain gambles for admissible paths from initial state X at timek € [0, N]:

J(xK) = {I(xku): (x,ku) e UxK)}.

For fixedk € [0,N — 1] andx € X, the gainJ(x,k, u.,w) can also be interpreted as
a map fromU(x,k) to L(Q); this map is denoted b¥(x, k).

2 Optimality Criteria
2.1 P-Maximality

The lower previsiorP(X) of a gambleX has a behavioural interpretation as a
subject’'s supremum acceptable price for buying the garkbli is the highest
value ofu such that the subject accepts the gamble x (i.e., accepts to bu

for a pricex) for all x < p. The conjugate upper previsi®t{X) = —P(—X) of X

is then the subject’s infimum acceptable price for selkng his way of looking

at a lower previsiorP defined on the sef(Q) of all gambles allows us to define
a strict partial order-p on £L(Q) whose interpretation is that of strict preference.

Definition 1 For any gambles X and Y i6(Q) we say that Xstrictly dominates
Y, or Xis strictly preferred toy (with respect to | and write X>p Y, if

P(X—Y)>0o0r (X>Y and X#Y).

Indeed, ifX > Y andX # Y, then the subject should be willing to exchange
Y for X, since this transaction can only improve his gain. On the other hand,

1To simplify the discussion, we assume this map is bounded.



6 Proceedings in Informatics

P(X—Y) > 0 expresses that the subject is willing to pay a strictly positive price
to exchang& for X, which again means that he strictly preférso Y.

It is clear that we can also use the lower previdibto express a strict pref-
erence between any twpaths (x,k,u.) and (x,k,v.), based on their gains: if
J(x,k,u.) >p J(x,k,Vv.) this means that the uncertain gdifx,k, u.) is strictly pre-
ferred to the uncertain gaii{x,k, v.). We then say that the patlk,k, u.) is strictly
preferred tax, k,v.), and we use the notatigw, k,u.) >p (X, Kk,V.).

>p is anti-reflexive and transitive, and therefore a strict partial ordet (@),
and in particular also ofi(x,k) and on?(x, k). But it is generally not linear: any
two paths need not be comparable with respect to this order, and it does not always
make sense to look for greatest elements, i.e., for paths that strictly dominate all
the others. Rather, we should look for maximal, or undominated, elements: paths
that are not dominated by any other path. Observe that a maximal gahible
a setX with respect ta>p is a maximal element ofC with respect to> (i.e., it
is point-wise undominated) such thatX —Y) > 0 for all Y € K. In caseP is
a linear previsiorP, maximal gambles with respect to- are just the point-wise
undominated gambles whose prevision is maximal; they maximise expected gain.

Definition 2 Let ke [O,N], x € Xk and ¥ C U(x,k). A path (x,k,u*) in 7 is
called Pmaximal or >p-optimal in ¥’ if no path in 4 is strictly preferred to
(% k,u®), i.e., (xku)£p(x ku) for all (x,k,u.) € . We denote the set of the
P-maximal paths inl’ by opt., (7). The operatoopt., is called theoptimality
operator induced by p, associated with(x k). -

The P-maximal paths inl(x,k) are just those admissible paths starting at
time k in statex for which the associated gain gamble is a maximal element of
J(x,k) with respect to the strict partial ordesp. If we denote the set of thesep-
maximal gain gambles ifi(x,k) by opt. | (J(x,k)), thenfor all(x, k, u.) € U(x,k):

(x,k,u) € opt,, (U(x,K)) <= J(x.ku)e€opt,, (7(xK)).

P-maximal paths do not always exist: not every partially ordered set has maximal
elements. A fairly general sufficient condition for the existencB-ofiaximal el-
ements in7(x,k) (and hence irti(x,k)) is that 7(x, k) should be compatt(and

of course non-empty). This follows from a general result mentioned in [11, Sec-
tion 3.9.2]. In fact, Theorem 1 is a stronger result, whose Corollary 1 turns out to
be very important in proving that the dynamic programming approach works for
P-maximality (see Section 3.2). Its proof is based on Zorn's lemma.

Theorem 1 For every element X of a compact subgetof £(Q) that is not a
maximal element of’ with respect ta>p there is some maximal element Y %of
with respect ta>p such that Y>p X.

?In this paper, we always assume thiaQ) is provided with the supremum-norm topology.
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Corollary 1 Let ke [0,N] and let xe X. If J(x,k) is compact then for every
admissible, non-faximal path(x,k,u.) in U(x,k) there is a_Pmaximal path
(x,k,u) in U(x,K) that is strictly preferred to it.

2.2 P-Maximinity

We now turn to another optimality criterion that can be associated with a lower
previsionP. We can usé® to define another strict order ah(Q):

Definition 3 For any gambles X and Y in(Q) we write XJp Y if
P(X) >P(Y) or (X >Y and X#£Y).

Jp induces a strict partial order oti(x,k), since it is anti-reflexive and tran-
sitive on £L(Q). A maximal elemenkK of a subsetX of £(Q) with respect taJp
is easily seen to be a point-wise undominated elemerf dfiat maximises the
lower previsionP(X) > P(Y) forall Y € X.

We can consider as optimal iti(x,k) those admissible path,k,u.) for
which the associated gain gambieg k, u.) is a maximal element of (x, k) with
respect tadp; they are the pathi,k, u.) that maximise the ‘lower expected gain’
P(J(x,k,u.)) and whose gain gambldsgx, k, u.) are point-wise undominated.

Definition 4 Let ke [O,N], x € X and ¥ C U(x,k). A path(x,k,u’) in 7 is
called Pmaximin or Jp-optimal, in ¥ if no path in %/ is strictly preferred to
(xk,u®), i.e., (x,k,u) Zp (x, k,u) for all (x,k,u.) € . We denote the set of the
P-maximin paths inl’ by opt., (V). The operatoopt, is called theoptimality
operator induced bylp, associated withI(x, k). -

Proposition 1 P-maximinity implies Pmaximality. For a linear prevision P, P-
maximinity is equivalent to P-maximality.

The existence of maximal elements with respectitoin an arbitrary set of
gamblesX is obviously not guaranteed. But® is compact, then we may easily
infer from the continuity of any coherent lower previsiBnthat the counterparts
of Theorem 1 and Corollary 1 hold farp.

2.3 M-Maximality

There is a tendency, especially among robust Bayesians, to consider an imprecise
probability model as a compact convex set of linear previsihs 2(Q), where
P(Q) is the set of all linear previsions ai(Q). M is assumed to contain the true,
but unknown, linear previsioRr that models the available information [2, 7].

A gambleX is then certain to be strictly preferred to a gam¥leinder the
true linear previsiorPt if and only if it is strictly preferred under all candidate
modelsP € M. This leads to a ‘robustified’ strict partial order,, on L(Q).
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Definition 5 X >4, Y if X>p Y forallPe 2.

Since M is assumed to be compact and convex, it is not difficult to show
that the strict partial orders,, and>p are one and the same, where the coher-
ent lower previsiorP is the so-called lower envelope 8f, defined byP(X) =
inf {P(X): P€ M} for all X € L(Q).2 Conversely, given a coherent lower previ-
sionP, the strict partial orders»M@ and>p are identical, where

M(P) ={Pe P(Q): (VX € L(Q))(P(X) = P(X))}

is the set of linear previsions that domin&eThese strict partial orders therefore

have the same maximal elements, and lead to the same notion of optimality.
But there is in the literature yet another notion of optimality that can be associ-

ated with a compact convex set of linear previsidisa gambleX is considered

optimal in a set of gambleX if it is a maximal element of with respect to

the strict partial order-p for some Pe 4. This notion of optimality is called

‘E-admissibility’ by Levi [9, Section 4.8]. It does not generally coincide with the

ones associated with the strict partial ordetg and>p, unless the sek is con-

vex [11, Section 3.9]. We are therefore led to consider a third notion of optimality:

Definition 6 Let x€ X, ke [0,N] and ¥ C U(x,k). A path(x, k,u*) € V is said
to beM-maximalin ¥/ if itis P-maximal in? for some P i, or in other words
if itis >-maximal in?” and maximises @(x, k,u.)) over ¥’ for some Pc M. The
set of allM-maximal elements ¥ is denoted bypt,, (7).

Interestingly, for any set of path® C U(x,k):

opta (V) = [J opt., (V). 1)

PeM

3 Dynamic Programming

3.1 A General Notion of Optimality

We have discussed three different ways of associating optimal paths with a lower
previsionP, all of which occur in the literature. We now propose to find out
whether, for these different types of optimality, we can use the ideas behind the
dynamic programming method to solve the corresponding optimal control prob-
lems. To do this, we take a closer look at Bellman'’s analysis as described in Sec-
tion 1, and we investigate which properties a generic notion of optimality must
satisfy for his method to work. Let us therefore assume that there is some prop-
erty, called«-optimality, which a path in a given set of pattfseither has or does

not have. If a path P has this property, we say that it 4soptimal in 2. We

3Since is compact, this infimum is actually achieved.
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Figure 3: A More General Type of Dynamic Programming

shall denote the set of theoptimal elements off by opt, (). By definition,
opt, () C . Further on, we shall apply our findings to the various instances of
x-optimality described above.

Consider Figure 3, where we want to find th@ptimal paths from stata
to statee. Suppose that after one time step, we can reach the stateandd
from statea. The x-optimal paths from these states to the final séeiee known
to bea, y, andd andn, respectively. For the dynamic programming approach to
work, we need to be able to infer from this a generalised form of the Bellman
equation, stating essentially that th@ptimal paths frona to e, a priori given by
opt, ({Aa, AB, uy,vd,ve,vn}), are actually also given by apt{Aa, py,vd,vn}),
i.e., thex-optimal paths in the set of concatenationd ot andv with the respec-
tive x-optimal pathgx, y, andd andn. It is therefore necessary to exclude that the
concatenationif andve with the nonx-optimal path§3 andv can bex-optimal.
This amounts to requiring that the operator,ogtiould satisfy some appropriate
generalisation of Bellmanrinciple of optimalitythat will allow us to conclude
thatAB andve cannot bex-optimal because theande would bex-optimal as
well. Definition 8 below provides a precise general formulation.

But, perhaps surprisingly for someone familiar with the traditional form of
dynamic programming, optshould satisfy amdditional property: the omission
of the nonx-optimal paths\3 andve from the set of candidate-optimal paths
should not have any effect on the actuadptimal paths: we need that

opt, ({Aa,AB, ky,v3,ve,vn}) = opt, ({Aa, py,vd,vn}).

This is obviously true for the simple type of optimality that we have looked at
in Section 1, but it need not be true for the more abstract types that we want to
consider here. Equality will be guaranteed if pjstinsensitive to the omission of
non-«-optimal elements frorAa, AB, by, vd,ve,vn}, in the following sense.

Definition 7 Consider a set $ 0 and anoptimality operator optdefined on the
set](S) of subsets of S such thept, (T) C T forall T C S. Elements adpt, (T)
are calledx-optimal in T. opt, is called insensitive to the omission of non-
optimal elements fror ifopt, (S) = opt, (T) forall T such thabpt, (S)C T CS.
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The following proposition gives an interesting sufficient condition for this in-
sensitivity in case optimality is associated with a (family of) strict partial order(s):
it suffices that every non-optimal path is strictly dominated by an optimal path.

Proposition 2 Let S be a non-empty set provided with a family of strict partial
orders>j, j € J. Definefor TC S,opt, (T)={aeT: (vbeT)(b¥#;a)} asthe
set of maximal elements of T with respecttoand letopt; (T) =Ujc;y0pt. , (T).
Thenopt I j € J andopt; are optimality operators. If for someq J,

(vac S\opt., () (e opt., (S)(b>; a), @)

thenopt, . is insensitive to omission of nar-optimal elements from S. )
holds for all j€ J, thenopt, is insensitive to omission of non-J-optimal elements
from S.

Proof. Considerj in J, and assume that (2) holds for thisLet opt. (S C
T C S then we must prove that op]t(S) =opt,, (T). Firstof all, ifa e opt., (9
thenb #; afor all b in S, anda fortiori for all b in T, so thata € opt>j (T).
Consequently, opt (5 C opt. (T). Conversely, letn € opt,. (T) and assume
ex absurdathat a ¢ opt. (S). It then follows from (2) that there is sonein
opt.; (S) and therefore il such that >; a, which contradicts € opt. | (T).

Next, assume that (2) holds for gl J. Let opt; (S) C T C S, then we must
prove that opt(S) = opt; (T). Consider anyj € J, then opt, (S) Copy(S) C
T C S, so we may infer from the first part of the proof thatpp(tS) =opt., (T).

By taking the union over alj € J, we find that indeed optS) = opt; (T). ]

We are now ready for a precise formulation of the dynamic programming
approach for solving optimal control problems associated with general types of
optimality. We assume that we have some type of optimality, calleptimality,
that allows us to associate with the set of admissible pafixsk) starting at time
K in initial statex, an optimality operator optdefined on the séfl (U(x,k)) of
subsets oft(x, k). For each such subset, opt, () is then the set of admissible
paths that are-optimal in‘//. The principle of optimality states that the optimality
operators associated with the varioli$x, k) should be related in a special way.

Definition 8 (Principle of Optimality) *-optimality satisfies thprinciple of op-
timality if it holds for all ke [O,N], X € X, £ € [k,N] and (X, k,u.) in U(x,K) that
if (x,k,u.) is =-optimal in U(x,k), then(xy, £,u.) is x-optimal in U(X;, £).

This may also be expressed as:

opt, (U(x,k)) € U  xku)e@opt (Ux,0).
(x,k,u.)peU(X.K)¢

The Bellman equation now states that applying the optimality operator to the right
hand side suffices to achieve equality. (Usually this is statednwith+ 1.)
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Theorem 2 (Bellman Equation) Let ke [0,N] and x€ Xi. Assume that-opti-
mality satisfies the principle of optimality, and that the optimality operaijor
for U(x,K) is insensitive to the omission of nemptimal elements frona/(x, k).
Then for all¢ € [k,N]:

opt (U(xk)=opt.  |J  (xkue®opt (Ux,L)),
(xku) e U(x,k),

that is, a path isx-optimal if and only if it is ax-optimal concatenation of an
admissible pathix, k,u.), and ax-optimal path of 1(x, ¢).

Proof. Fixkin[O,N], ¢ € [k,N] andx € Xi. Define

{Vl = U (Xv k7 U)[@Opt*(u(X[j,g)), and,
(xku)peU(xk),
{VZZ U (Xvkvu)f@(‘a(vag)\optk(‘Z’l(xfag)))'

(xku) e U(x,k),

Obviously, U(x,k) = 74U 15 and 741 N 7, = 0. We have to prove that
opt, (U(x,k)) = opt, (741). By the principle of optimality, no path ir% is x-
optimal in U(x, k), so 75 Nopt, (U(x,k)) = 0. This implies that opt(U(x,k)) C

71 C U(x,k), and since optis assumed to be insensitive to the omission of non-
x-optimal elements fronti(x, k), it follows that opf (U(x,k)) = opt, (71). O

3.2 P-Maximality

Let us now apply these general results to the specific types of optimality intro-
duced before. We first consider the optimality operator gphat selects from a

set of gambles (or pathSithose gambles (or paths) that are the maximal elements
of Swith respect to the strict partial orde. The following lemma roughly states
that the preference amongst paths with respectdds preserved under concate-
nation and truncation. It yields a sufficient condition for the principle of optimality
with respect td®>-maximality to hold. Moreover, the lemma, and the principle of
optimality, do not necessarily hold for preference with respeBttoaximinity.

Lemma 1 Let ke [0,N] and? € [k,N]. Consider the pathsx,k,u.), in U(x,K),
and (xg, £,V.), (X¢,£,W.) in U(Xe, £). Then(xg, 4,v.) >p (X, £,w.) if and only if
(kU)o (X, €,v) >p (XK, U)r & (X, €, W),

Proof. LetX,Y andZ be gambles oQ. The statement is proven if we can show
thatY >p Z impliesX+Y >p X +Z. Assume that >p Z. If P(Y —Z) > 0, then
P(X+Y)=(X+2))=P(Y—-2)>0.IfY > Z, thenX+Y > X+2Z, and finally,

if Y £ Z, thenX +Y # X +Z. It follows thatX +Y >p X 4 Z. a
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Proposition 3 (Principle of Optimality) Let ke [0,N], x € Xk and (x,k,u*) €
U(x, k). If (x, k,u*) is P-maximal in?U(x, k) then(x, £, u*) is P-maximal inu(x,, ¢)
forall £ € [k,N].

Proof. If (x,¢,u) is not P-maximal, there is a patfix,¢,u.) such that
(X, 2,u.) >p (X, £,u"). By Lemma 1 we find that

(KU @ (%o, 0, u) >p (XK U) @ (%, £, U7) = (X, k,uf).

This means thatx k,u*), @ (x¢,¢,u.) is preferred to(x,k,u*), and therefore
(x,k,u*) cannot bé®>-maximal, a contradiction. O

As a direct consequence of Corollary 1 and Proposition 2, we see tHat K)
is compact, then the optimality operator gptassociated witht/(x,k) is insen-
sitive to the omission of nop-p-optimal elements. Together with Proposition 3
and Theorem 2, this allows us to infer a Bellman equatiorPfonaximality.

Corollary 2 Letke [0,N] and xe X. If 7(x,k) is compact, then for all € [k,N]

opt., (U(xk)=opt, |J  (xkuroopt, (UXx,Ll)), (3)
B (k) e UXK), B

that is, a path is Pmaximal if and only if it is a Pmaximal concatenation of an
admissible pattix, k,u.), and a Pmaximal path of 1/(x,, ¢).

Corollary 2 results in a procedure to calculateRidnaximal paths. Indeed,
opt.,(U(x,N)) = {up} for everyx € Xy, and opt , (U(x,k)) can be calculated re-
cursively through Eq. (3). It also provides a method for constructiBgr@aximal
feedback: for every € X, choose any(x,k,ur(x,k)) € opt. (U(x,k)). Then
@(x, k) = ug(x,k) realises @-maximal feedback. -

3.3 M-Maximality

We now turn to the optimality operator gpt satisfying (1). By Proposition 2
and (1), it follows that opj, is insensitive to the omission of ndh-maximal
elements oft(x, k) whenever/ (x, k) is compact. By Proposition 3, aptsatisfies
the principle of optimality (indeed, if a path & -maximal, then it must b&-
maximal for someP € M, and by the proposition any truncation of it is also
P-maximal, hence als@/-maximal). This means that the Bellman equation also
holds fora-maximality under similar conditions as fBrmaximality. As already
mentioned in Section 2.3, both types of optimality coincidg(it, k) is convex.

3.4 P-Maximinity

Finally, we come to the type of optimality associated with the strict partial order
Jp. It follows from Proposition 2 and the discussion at the end of Section 2.2
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Figure 4: A Counterexample

that if 7(x,k) is compact, the optimality operator optfor U(x,k) is insensi-

tive to the omission of normsp-optimal paths fromii(x, k). But, as the following
counterexample shows, we cannot guarantee that the principle of optimality holds
for Jp-optimality, and therefore dynamic programming may not work here—not
even with a vacuous uncertainty model. Essentially, this is because the partial or-
derZp is not a vector ordering o (Q)—it is not compatible with gain additivity:
contrary to expected gain, lower expected gains are not additive.

Example 1 Consider the dynamical system depicted in Figure 4.Q.et {#,b},
let P be the vacuous lower prevision @@y and denote the gamble— x,b —y
by (x,y). Assume that@) = (2,0), J(B) = (0,—1) and JXy) = (—2,0) (there is
zero gain associated with the final state). TheghZp ay: indeed,(2,—1) does
not dominate(0,0) point-wise, andnf (2, —1) > inf (0,0) or equivalently(0, 0)
maximises the worst expected gain. Hence, we finddldas P-maximin. But
B Jp V. indeed,(0,—1) dominates0,—2) point-wise, which means thgtis not
P-maximin. Thus the “principle of fnaximin optimality” does not hold here.

3.5 Yet Another Type of Optimality

We end this discussion with another type of optimality associated with a strict par-
tial order, introduced by Harmanec in [8, Definition 3.4]. In our setting (precisely
known system dynamics), its definition basically reduces to

X>pY if P(X) >P(Y) or (X>Y andX #Y).

It can be shown easily that jf(x,k) is compact, the optimality operator induced

by >§ for U(x,K) is insensitive to the omission of nasg-optimal paths from
U(x,k). But, as the following counterexample shows, we cannot guarantee that
the principle of optimality holds for-j-optimality, and therefore the dynamic
programming approach may not work here—not even with a vacuous uncertainty
model. Again, this is because the partial orderis not compatible with gain ad-
ditivity. It also indicates that the solution of the Bellman-type equation advocated
in [8] will not necessarily lead to optimal paths, in the sense we described above.

Example 2 Consider the dynamical system depicted in Figure 4.Q.et {#,b},
let P be the vacuous lower prevision @@y and denote the gamble— x,b +—y
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by (x,y). Assume that(@) = (2,0), J(B) = (0,0) and Jy) = (—1,—1) (there is
zero gain associated with the final state). Tl ay: indeed,(2,0) does not
dominate(1, —1) point-wise, andinf (2,0) # sup(1, —1). Hence, we find thaty

is >5-maximal. Buf3 >} y: indeed,(0,0) dominates—1,—1) point-wise, which
means thay is not>%-maximal. Thus the “principle of-5-maximal optimality”

does not hold for this example. a

4 Conclusion

The main conclusion of our work is that the method of dynamic programming can
be extended to systems with imprecise gain. Our general study of what conditions
a generalised notion of optimality should satisfy for the Bellman approach to work
is of some interest in itself too. In particular, besides an obvious extension of
the well-known principle of optimality, another condition emerges that relates to
the nature of the optimality operatoper se the optimality of a path should be
invariant under the omission of non-optimal paths from the set of paths under
consideration. If optimality is induced by a strict partial ordering of paths, then
this second condition is satisfied whenever the existence of dominating optimal
paths for non-optimal ones is guaranteed.

Another important observation is that, in contradistinctiorPtmaximality
and M -maximality, the dynamic programming method cannot be used to solve
optimisation problems correspondingRemaximinity: for this notion the princi-
ple of optimality does not hold in general.

Throughout the paper we assumed the system dynamics to be deterministic,
that is, independent @b. This greatly simplifies the discussion, still encompasses
a large number of interesting applications, and does not suffer from the compu-
tational issues often encountered when dealing with hon-deterministic dynamical
systems—simply because in general the number of possible (random) paths tends
to grow exponentially with the size of the state spAcélowever, we should note
that dropping this assumption still leads to a Bellman-type equation, connecting
operators of optimality associated widndomstates<: Q — X. A discussion of
these matters has been omitted from the present paper due to limitations of space.
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