Flocks and locally hermitian 1-systems of Q(6,q)

Deirdre Luyckx¹ Joseph A. Thas

Ghent University Department of Pure Mathematics and Computer Algebra Galglaan 2, B-9000 Ghent Belgium dluyckx@cage.rug.ac.be jat@cage.rug.ac.be

A flock of a quadratic cone LQ(2,q), with line vertex L, of $\mathsf{PG}(4,q)$ is a partition of $LQ(2,q) \setminus L$ in q^2 mutually disjoint conics such that any two distinct conics generate $\mathsf{PG}(4,q)$. If q is odd and the planes π_1, \ldots, π_{q^2} of the elements of the flock pairwise intersect in internal, resp. external, points of LQ(2,q), then we speak of an i-flock, resp. e-flock. It is shown that to every i-flock of LQ(2,q), a locally hermitian 1-system of Q(6,q) is associated and conversely.

Next, the i-flock associated with the unique semi-classical non-hermitian spread $S_{[9]}$ of the hexagon H(q), q odd and $q \equiv 1 \mod 3$ (which is locally hermitian at some line L) is studied. This yields a geometric construction of $S_{[9]}$ starting from a rational normal cubic scroll \mathcal{R}^3 having L as directrix line: the conics on \mathcal{R}^3 determine the q^2 conic planes of the i-flock and hence the iflock can be reconstructed from the rational normal cubic scroll. Surprisingly this geometric construction not only yields the 1-system $S_{[9]}$; it turns out that different cubic scrolls may give rise to non-isomorphic locally hermitian 1-systems of Q(6, q). In particular, there are $\frac{q-3}{2}$ orbits in the set of all nonhermitian locally hermitian 1-systems of Q(6, q).

Finally it is shown that a locally hermitian non-hermitian 1-system of Q(6,q), q odd, is semi-classical if and only if it arises from a rational normal cubic scroll \mathcal{R}^3 with directrix line $L \subseteq Q(6,q)$ and with the property that all points of $\mathcal{R}^3 \setminus L$ are internal points of Q(6,q). As it is possible to determine all such cubic scrolls, this yields a complete characterization and determination of locally hermitian semi-classical 1-systems of Q(6,q).

¹The first author is Research Assistant of the Fund for Scientific Research – Flanders (Belgium) (F.W.O.)