An application of $\{\delta(q+1), \delta ; n+1, q\}$-minihypers on generalized quadrangles
J. De Beule
(joint work with M. R. Brown and L. Storme)

Abstract

Minihypers in finite projective spaces have been used greatly to study the problem of linear codes meeting the Griesmer bound; thereby showing their importance for coding theory. But they are also important for a great variety of geometrical problems. Using the classification of $\{\delta(q+1), \delta ; n+1, q\}$-minihypers we obtain results on spreads of certain finite generalized quadrangles. We discuss both the application and the result.

1 Introduction

In this section we introduce the concept of a generalized quadrangle, or shortly, a GQ.

Definition 1.1 A (finite) generalized quadrangle ($G Q$) is an incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ in which \mathcal{P} and \mathcal{B} are disjoint non-empty sets of objects called points and lines (respectively), and for which $\mathrm{I} \subseteq(\mathcal{P} \times \mathcal{B}) \cup(\mathcal{B} \times \mathcal{P})$ is a symmetric point-line incidence relation satisfying the following axioms:
(i) Each point is incident with $1+t$ lines $(t \geqslant 1)$ and two distinct points are incident with at most one line.
(ii) Each line is incident with $1+s$ points $(s \geqslant 1)$ and two distinct lines are incident with at most one point.
(iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x \mathrm{I} M \mathrm{I} y \mathrm{I} L$.

The integers s and t are the parameters of the $G Q$ and \mathcal{S} is said to have order (s, t). If $s=t$, then \mathcal{S} is said to have order s.

Examples: Classical examples are the symplectic space $\mathrm{W}_{3}(q)$ in $\operatorname{PG}(3, q)$, the hyperbolic quadric $\mathrm{Q}^{+}(3, q)$ in $\mathrm{PG}(3, q)$, the parabolic quadric $\mathrm{Q}(4, q)$ in $\mathrm{PG}(4, q)$, the elliptic quadric $\mathrm{Q}^{-}(5, q)$ in $\mathrm{PG}(5, q)$, and the Hermitian varieties $\mathrm{H}\left(3, q^{2}\right)$ and $\mathrm{H}\left(4, q^{2}\right)$ in $\mathrm{PG}\left(3, q^{2}\right)$ and $\mathrm{PG}\left(4, q^{2}\right)$, which have respectively order $q,(q, 1), q,\left(q, q^{2}\right),\left(q^{2}, q\right)$ and $\left(q^{2}, q^{3}\right)$. The non-classical examples of Tits are given in the following definition:
Definition 1.2 Let $n=2$ (respectively, $n=3$) and let \mathcal{O} be an oval (respectively, an ovoid) of $\mathrm{PG}(n, q)$. Furthermore, let $\mathrm{PG}(n, q)$ be embedded as a hyperplane in $\mathrm{PG}(n+1, q)$.
Define points as
(i) the points of $\mathrm{PG}(n+1, q) \backslash \mathrm{PG}(n, q)$,
(ii) the hyperplanes X of $\mathrm{PG}(n+1, q)$ for which $|X \cap \mathcal{O}|=1$, and
(iii) one new symbol (∞).

Lines are defined as
(a) the lines of $\mathrm{PG}(n+1, q)$ which are not contained in $\mathrm{PG}(n, q)$ and which meet \mathcal{O} (necessarily in a unique point), and
(b) the points of \mathcal{O}.

Incidence is inherited from $\operatorname{PG}(n+1, q)$, whereas the point (∞) is incident with no line of type (a) and with all lines of type (b).

It is straightforward to show that these incidence structures are GQ's with parameters $s=q, t=q^{n-1}$.

Definition 1.3 A spread of a $G Q \mathcal{S}$ of order (s, t) is a set S of lines such that every point of \mathcal{S} is incident with exactly one element of S. A spread necessarily contains $1+$ st lines. A partial spread is a set S of lines for which every point is incident with at most one line of S. A partial spread is called maximal if S is not contained in a larger partial spread. If the size of a partial spread is $1+s t-\delta$, then δ is said to be the deficiency of the partial spread.

The natural question is whether a partial spread with certain deficiency can be maximal, or, in other words, can a partial spread with small deficiency be extended? Using minihypers we can give answers to this question for partial spreads of the GQ's $T_{2}(\mathcal{O})$ and $T_{3}(\mathcal{O})$.

2 The minihypers

Definition 2.1 An $\{f, m ; N, q\}$-minihyper is a pair (F, w), where F is a subset of the point set of $\operatorname{PG}(N, q)$ and where w is a weight function w : $\mathrm{PG}(N, q) \rightarrow \mathbb{N}: x \mapsto w(x)$, satisfying

1. $w(x)>0 \Longleftrightarrow x \in F$,
2. $\sum_{x \in F} w(x)=f$, and
3. $\min \left\{\sum_{x \in H} w(x) \| H \in \mathcal{H}\right\}=m$, where \mathcal{H} is the set of hyperplanes of $\mathrm{PG}(N, q)$.

Related to certain minihypers are blocking sets of $\operatorname{PG}(2, q)$. The following theorem about blocking sets is used for the final theorem.

Theorem 2.2 (A. Blokhuis, L. Storme, and T. Szőnyi [3]) Let B be a blocking set in $\operatorname{PG}(2, q), q=p^{h}$, p prime, of size $q+1+c$. Let $c_{2}=c_{3}=2^{-1 / 3}$ and $c_{p}=1$ for $p>3$.

1. If $q=p^{2 d+1}$ and $c<c_{p} q^{2 / 3}$, then B contains a line.
2. If $4<q$ and q is a square and $c<c_{p} q^{2 / 3}$, then B contains a line or a Baer subplane.

To establish the connection between blocking sets and certain minihypers we need one more definition.

Definition 2.3 Let \mathcal{A} be the set of all lines of $\operatorname{PG}(N, q)$. A sum of lines is a weight function $w: \mathcal{A} \rightarrow \mathbb{N}: L \mapsto w(L)$. A sum of lines induces a weight function on the points of $\operatorname{PG}(N, q)$, which is given by $w(x)=$ $\sum_{L \in \mathcal{A}, x \in L} w(L)$. In other words, the weight of a point is the sum of the weights of the lines passing through that point. A sum of lines is said to be a sum of n lines if the sum of all the weights of the lines is n.

The connection is finally expressed in the following theorem, which will be of direct use for our application

Theorem 2.4 (Govaerts and Storme [1]) Let (F, w) be a $\{\delta(q+1), \delta ; N, q\}$ minihyper, $q>2$, satisfying $0 \leqslant \delta<\epsilon$, where $q+\epsilon$ is the size of the smallest non-trivial blocking set in $\mathrm{PG}(2, q)$. Then w is a weight function induced on the points of $\mathrm{PG}(N, q)$ by a sum of δ lines.

3 The application

Considering an arbitrary partial spread of $T_{n}(\mathcal{O})$, we will define an $\{\delta(q+$ 1), $\delta ; n+1, q\}$-minihyper.

Definition 3.1 Let S be a partial spread of a $G Q$. A hole with respect to S is a point of the $G Q$ which is not incident with any line of S.

Consider a partial spread S of $T_{n}(\mathcal{O}), n=2$ or $n=3$, of size $q^{n}+1-$ δ. Referring to the definition of the $\mathrm{GQ} T_{n}(\mathcal{O})$, let $\pi_{0}=\mathrm{PG}(n, q)$ which contains \mathcal{O} and which is embedded in $\operatorname{PG}(n+1, q)$ as a hyperplane. We remark that a partial spread contains at most one line of type (b) of the GQ, because all lines of type (b) intersect in (∞).

Definition 3.2 Let S be a partial spread of $T_{n}(\mathcal{O})(n=2$ or $n=3)$. Define $w_{S}: \operatorname{PG}(n+1, q) \rightarrow \mathbb{N}$ as follows:
(i) if $x \in \operatorname{PG}(n+1, q) \backslash \pi_{0}$ and x is a hole with respect to S, then $w_{S}(x)=1$, otherwise $w_{S}(x)=0$,
(ii) suppose $x \in \mathcal{O}$, define $w_{S}(x)=\delta_{x}$, with $q-\delta_{x}$ the number of lines of \mathcal{S} through x.
(iii) $w_{S}(x)=0, \forall x \in \pi_{0} \backslash \mathcal{O}$.

This weight function determines a set F of points of $\operatorname{PG}(n+1, q)$. We will denote the defined minihyper by $\left(F, w_{S}\right)$.

We can now prove
Lemma 3.3 Let S be a partial spread of $T_{n}(\mathcal{O})(n=2$ or 3) which covers (∞) and which has deficiency $\delta<q$. Then w_{S} is the weight function of a $\{\delta(q+1), \delta ; n+1, q\}$-minihyper $\left(F, w_{S}\right)$.

This lemma leads immediately to
Theorem 3.4 (M.R. Brown, J. De Beule and L. Storme [2]) Let S be a partial spread with deficiency δ of $T_{n}(\mathcal{O})$ ($n=2$ or 3) covering (∞). If $\delta<\epsilon$, with $q+\epsilon$ the size of the smallest non-trivial blocking set in $\operatorname{PG}(2, q)$, $q>2$, we can always extend S to a spread.

References

[1] P. Govaerts and L. Storme. On a particular class of minihypers and its applications. I. The result for general q. Des. Codes Cryptogr., accepted.
[2] M.R. Brown, J. De Beule and L. Storme. Partial spreads of $T_{2}(\mathcal{O})$ and $T_{3}(\mathcal{O})$. European J. Combin., accepted.
[3] A. Blokhuis, L. Storme and T. Szőnyi. Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. (2), 60(2):321332, 1999.

Address of the authors: Ghent University, Dept. of Pure Maths and Computer Algebra, Krijgslaan 281, 9000 Gent, Belgium
(M.R. Brown: mbrown@cage.rug.ac.be)
(J. De Beule: jdebeule@cage.rug.ac.be, http://cage.rug.ac.be/~jdebeule)
(L. Storme: ls@cage.rug.ac.be, http://cage.rug.ac.be/~ls)

