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ABSTRACT 

 

Structural fire safety engineering is increasingly moving away from prescriptive design rules to 

what is generally referred to as Performance Based Design (PBD) in which the structure or 

structural components are designed to satisfy performance requirements. By taking into account the 

specific characteristics of the structure, a PBD can allow for more directed investments in safety, 

resulting in structures which are both more economical and safer compared to designs according to 

traditional prescriptive rules. Although stakeholders mostly agree that the structure should have a 

good fire performance, determining the specific performance requirements can prove difficult, 

especially when the opinions of stakeholders with respect to key design parameters diverge. In this 

paper a decision support tool for investments in Life Safety is introduced and applied to determine 

an Acceptable Range for the structural fire resistance time for concrete slabs. The support tool 

takes into account the uncertainty related to amongst other the fire load density and the mechanical 

properties of the structural element, and can be used as a tool for aligning potentially diverging 

positions of different stakeholders. 
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�

Introduction 

Traditionally structural fire safety is based on prescriptive design rules whichdo not directly relate 

to the probability of a fully developed fire, or the available fire load.Therefore, in situations where 

the probability of fire exposure is very low, or where the fire load is small, prescriptive design rules 

can be overly conservative. On the other hand, it can reasonably be assumed that many situations 

exist where the prescriptive design rules are not severe enough. Considering both types of 

situations, a new design methodology known as ‘Performance-Based Design’ (PBD) has been 

gaining support. As a PBD takes into account the true characteristics of the structure – as for 
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example the probability of fire exposure, the fire load and the ventilation characteristics –a PBD 

results in a more efficient allocation of resources compared to a traditional design. Furthermore, 

PBD should result in more rigorous engineering and the development of innovative design 

solutions since satisfying design requirements no longer relates to the application of prescriptive 

rules, but is associated with the actual (calculated) performance of the structure. 

 

In a PBD, the structure or structural components are designed to satisfy performance requirements. 

These performance requirements have to be determined beforehand taking into account the specific 

needs of both private stakeholders and the general public (SFPE, 2007). However, determining 

these performance requirements can prove difficult as psychological concepts like risk perception, 

availability effects and loss aversion can play an important role in the decision making processes 

(Kahneman, 2011), and the opinions of different stakeholders may diverge.  

 

Nathwani et al. (1997) state that as a general goal, decisions on public expenditures and safety 

should be based on quantitative risk-based considerations, and day-to-day decisions about risk 

should be removed from the political arena. This would imply that the performance requirements 

for PBD should be fully fixed through quantitative risk calculations. In practice however, a full 

depoliticization is not desirable, as a purely technical risk-based determination of performance 

requirements would take away the stakeholders’ experience of control over safety issues and would 

therefore negatively affect the perception of safety. Consequently, a practically feasible decision 

framework necessarily takes into account the risk preferences of the stakeholders, while making 

sure that the final decisions do not differ too much from the theoretical risk-based optimum. 

 

In order to reconcile political risk preferences with reliability-based optimum solutions, a decision 

support tool has been developed in (Van Coile et al., 2015) which aims at narrowing the scope of 

political discussions and guiding decision makers towards optimum investments in safety by 

supplying the decision maker with an Acceptable Range for their final decision. The general 

concept of the proposed decision support tool is introduced in the next section, after which the tool 

is applied to determine the Acceptable Range for the structural fire resistance time tR for a concrete 

slab. The paper ends with a short discussion of further ways in which the proposed methodology 

may support the decision making process for Performance-Based Design. 

 
General concept of the decision support tool 
 

Safety requirements are to a greater or lesser extentpolitical in nature and are based upon an 

implicit or explicit target safety level or target reliability index �t. Due to the inherent uncertainties, 

the practical implementation, the application of partial factors and variationsin the application of 

safety requirements, the reliability index �STD which is actually obtained when applying these 

requirement is uncertain. Consequently, �STD is described by a probability density function (PDF) 

and is function of the target reliability index, i.e.�STD = f(�t).On the other hand for every design 

problem an optimum reliability index can be determined through an optimization of investments in 

203



November 3, 2015 3:53 RPS/Trim Size: 24cm x 17cm for Proceedings/Edited Book driver091

Edoardo Patelli & Ioannis Kougioumtzoglou (editors)

safety, for example by considering the concepts of Lifetime Cost Optimization (LCO). Due to the 

uncertainties inherently associated with the input parameters of an LCO, this optimum reliability 

index �LCO is uncertain as well and can be described by a PDF. 

 

Although political preferences may justify a deviation of �STDaway from the optimum�LCO, an 

unacceptable overinvestment in safetycan be defined by Eq. (1) and an unacceptable 

underinvestment by Eq. (2), with  1 the maximum acceptable deviation factor for overinvestment 

(0 �  1 � 1) and  2 the maximum acceptable deviation factor for underinvestment (0 �  2). 
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The maximum acceptable deviation factor  1 for overinvestment and  2 for underinvestment are 

important parameters which directly indicate an over- or underinvestment at the level of the 

reliability index. Considering over- and underinvestment at the level of the reliability index has the 

advantage that it clarifies to the decision maker and to the public how much safety they accept at 

maximum to overinvest or underinvest for reasons of policy. 

 

As both �LCO and �STD(�t) are described by a PDF, Eq. (1) and (2) can only be evaluated as 

probabilities, i.e. the probability P1 of having an unacceptable overinvestment and the probability 

P2 of having an unacceptable underinvestment.As both situations are undesirable, both probabilities 

P1 and P2should be limited tolimiting acceptable probabilitiesPlimit,1 and Plimit,2, resulting in Eq. (3) 

and (4) with P[.] the probability evaluator.Evaluating Eq. (3) and (4), and determining the value of 

�t for which Plimit is reached, a bounded interval is defined with acceptable values for �t. This 

interval will be denoted as the Acceptable Range. The calculation concept is illustrated in Figure 1. 
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Fig. 1. Concept of P1 (probability of exceeding overinvestment limit) and P2 (probability of 

exceeding underinvestment limit), and visualization of the Acceptable Range for given limiting 

acceptable probabilities Plimit,1 and Plimit,2. 

 

The Acceptable Range can be used to limit the discretionary competence of decision makers 

without taking away the possibility of deviating slightly from technical optimum safety levels for 

reasons of policy. Fixing the values of the maximum acceptable deviation factors  1 and  2, and the 

limiting acceptable probabilities Plimit,1 and Plimit,2could be left to the decision-makers during a 

process by which they voluntarily commit themselves to these limits. 

 

Application to requirements of structural fire resistance for concrete slabs 

 
When assessing the necessity of structural fire resistance in a PBD the different stakeholders may 

have very different motivations and opinions. Although “political” risk preferences should be taken 

into account the final design should not deviate too much from an optimum design solution. Else, 

the fundamental benefit of PBD of obtaining more efficient design solutions with increased safety 

at a reduced cost may be lost. Therefore, it is of special interest to determine what is the Acceptable 

Range for the structural fire resistancetR (as defined by European legislation as the ISO 834 fire 

duration for which the Eurocode load bearing capacity criterion is maintained). 
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On the one hand, the safety level�STD obtained in case of a specified fire resistance tR is 

investigated. Since tR relates to the ISO 834 standard fire, the actual reliability obtained in a more 

realistic natural or parametric fire is not well known. Furthermore, the severity of the natural fire is 

strongly dependent on the fire load density q and the opening factor O. Especially with respect to 

the fire load density very large uncertainties are associated, and thusq is modelled by a Gumbel 

distribution with a coefficient of variation equal to 0.3 (Albrecht & Hosser, 2010).Furthermore, an 

opening factor of 0.04 is considered as this value is seen as realistic for calculations related to 

modern buildings where windows usually do not break during fire.  

 

Considering the EN 1991-1-2 parametric fire curve, and the methodology for reliability 

calculations presented in (Van Coile, 2015), the reliability index �fi,tE is evaluated for the set of one-

way load bearingslab configurations of Table 1 (with � the reinforcement bar diameter) and for a 

load ratio   (the ratio of the characteristic value of the imposed load to the sum of all characteristic 

loads) of 0.5. For each of these slab configurations the structural fire resistance time tR is 

determined in accordance with the advanced calculation method of EN 1992-1-2. The obtained set 

of reliability indices for a given tR is approximated by a Beta distribution. Results for a mean fire 

load density of 780 MJ/m² are visualized in Figure 2. 

 
Table 1.Characteristics of the investigated slab configurations: property description, symbol and 

unit, stochastic distribution, mean value µ and coefficient of variation V. 

Property description, symbol and unit Distribution µ V 

Concrete compressive strength at 20°C fc,20 

[MPa] (fck = 25/30/35/40 MPa) 
Lognormal 

1 2

ck

fc

f

V−
 0.15 

Reinforcement yield stress at 20°C fy,20 [MPa] 

(fyk = 500 MPa) 
Lognormal 

1 2

yk

fy

f

V−
 0.05 

Slab thickness h [mm] Deterministic 
150/200/ 

250/300 
- 

Horizontal reinforcement axis distance s [mm] Deterministic 100/150 - 

Concrete cover c [mm] 
Beta 

[µ-3 ; µ+3 ] 

25/30/35/

40/45 

5

c
µ

 

Reinforcement area As [mm²] Normal 
2

4

b

s

π∅  0.02 
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Fig. 2. Probability density functions (PDF) describing �STD as a function of the target structural fire 

resistance time tR for design according to the advanced calculation method of EN 1992-1-2 

On the other hand, the optimum reliability index �LCO for structural fire safety is evaluated using 

the Lifetime Cost Optimization concepts described (Van Coile et al., 2014). Increasing the concrete 

cover can be considered a cost-effective method for increasing the fire resistance. However, when 

fixing the values of all other design parameters (including the design value of the bending moment 

capacity MRd,20 in normal design situations) the reduction in lever arm associated with an increase 

in concrete cover is necessarily offset by an increase in reinforcement area. As this increase in 

reinforcement area comes at a cost, the cost-optimization methodology balances uncertain future 

gains in structural fire performance with increased initial construction costs. Consequently, the 

failure cost ratio   (total costs in case of structural failure relative to the initial construction cost) 

and the discount rate !are important parameters, as well as the fire ignition frequency "ig and the 

probability psup of successful fire suppression. 
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The LCO is performed for the slab configuration of Table 1 with fck = 30 MPa and h = 200 mm (As 

and c are part of the optimization). Figure 3 gives the calculated optimum concrete cover copt as a 

function of the reinforcement bar cost ratio   (cost of a single reinforcement bar relative to the total 

initial slab construction cost) for different deterministic fire load densities qDET. The grey lines in 

Figure 3 indicate design solutions with the same safety level �min in case of fire exposure.�

Fig. 3. Optimum concrete cover as a function of the reinforcement cost ratio   and the deterministic 

fire load density qDET, discount rate ! = 0.02, failure cost ratio " = 7, #ig = 2.5!10
-3

, psup = 0.9. 

Integrating the optimum reliability indices �min over the Gumbel distribution for the uncertain fire 

load density q (for a given reinforcement cost ratio  ), gives  -dependent distributions for �LCO – 

for amongst others a given failure cost ratio ". Considering the cost parameters of Table 2 and 

dividing the corresponding deterministic value for   by a lognormal model uncertainty KMwith 

mean 1 and coefficient of variation 0.1, an overall distribution for �LCO is obtained. Results are 

visualized in Figure 4 for different failure cost ratio" (#ig = 2.5!10-3 / year and qnom = 780 MJ/m²). 

 

Table 2.Example cost properties for the considered slab configuration 

Property Dimension Value 

reinforcement cost EUR / kg 0.75 

reinforcement weight kg / m³ 7850 

concrete cost EUR / m³ 100 

labour cost EUR / m² 50 

Overhead % 10 
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Fig. 4. Probability density functions (PDF) describing �LCO for different failure cost ratios   (!ig = 

2.5 10
-3

, qnom = 780 MJ/m²) 

 

Having determined distributions describing both �STD and �LCO, the decision support tool can be 

applied to determine the Acceptable Range. The obtained probabilities P1 and P2 are visualized in 

Figure 5, as well as the obtained Acceptable Range (for "1 = "2 = 0.2 and Plimit,1 = Plimit,2 = 0.1). For 

small failure cost ratio   no Acceptable Range is found as the uncertainty with respect to the fire 

load density dominates the utility of investments in structural fire safety, i.e. for any chosen tR-

value there always is an unacceptably probability that the chosentR constitutes either an 

unacceptable underinvestment or an unacceptable overinvestment. Only when   is large an 

Acceptable Range develops, indicating a range for tR for which the criteria for avoiding 

unacceptable underinvestment and overinvestment are compatible. This obtained Acceptable Range 

can be compared with the applicable legal requirements. If these legal requirements indicate a fire 

resistance class below the Acceptable Range, the decision tool strongly recommends to opt for the 

additional investments in structural fire safety. 

 

With respect to the unavailability of an Acceptable Range for low   (i.e. corresponding for example 

with regular residential buildings) multiple options exist to overcome this problem. For example, 

the uncertainty with respect to the fire load density can be reduced by appropriate fire strategy 

measures. Alternatively, one can accept the inability to avoid either underinvestment or 

overinvestment with a large confidence level and a choice can be made with respect to which 

criterion is more important. Then Plimit,1 and Plimit,2 can be chosen accordingly, for example 

accepting a probability of overinvestment of 0.5 or more, which in fact means that the design is 

governed by a large quantile of the fire load density, as is the case in many current design codes. 
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According to the authors, these difficulties do not downgrade the usefulness and value of the 

presented decision support tool as these choices related to over- and underinvestment are now clear 

to the decision makers. 

 

Fig. 5. P1 and P2, and visualization of the Acceptable Range for given limiting acceptable 

probabilities Plimit,1 and Plimit,2, for �STDas illustrated in Figure 2 and �LCOas illustrated in Figure 4. 

 

Note on possible application in case of diverging stakeholder opinions 

 
In principle it is not necessary that different stakeholders agree up front on the limiting parameters. 

In case of disagreement parallel analyses with different sets of limiting parameters can be 

performed. If the corresponding Acceptable Ranges intersect, there is a range of design solutions 

which is acceptable for all stakeholders. 

 

Similarly, it is not necessary that all stakeholders agree up front on the parameters for the design 

calculations and optimization. If different stakeholders insist on fundamentally different failure 

costs or fire load densities, parallel analyses can be performed. In case the respective Acceptable 

Ranges overlap, there exists a set of design solutions which is (implicitly) considered acceptable by 

all stakeholders. 
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Conclusions 

 
A decision support tool for investments in Life Safety has been introduced and applied for 

determining an Acceptable Range for the structural fire resistance time for concrete slabs. The 

proposed tool balances political considerations with the necessity of obtaining societally acceptable 

levels of safety investment, while at the same time resulting in transparent decision parameters. For 

the specific application to structural fire resistance no Acceptable Range is found for small failure 

cost ratios as the uncertainty on the fire load density is too large for a single design to be acceptable 

according to the allowable limiting probabilities considered. However, for large failure cost ratios 

an Acceptable Range develops, indicating that e.g. for critical infrastructure the uncertainty with 

respect to the fire load density is of secondary importance compared to the potential losses in case 

of fire-induced structural failure. It is noted that the proposed tool can be used to find a design 

compromise even when different stakeholders fail to agree on the design parameters. 
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