Modelling Indifference with Choice Functions

Arthur Van Camp¹, Gert de Cooman¹, Enrique Miranda² and Erik Quaeghebeur³

¹Ghent University, SYSTeMS Research Group ²University of Oviedo, Department of Statistics and Operations Research ³Centrum Wiskunde & Informatica, Amsterdam

We want to model

indifference

with choice functions.

We want to model

indifference

with choice functions.

Indifference

- reduces the complexity,
- allows for modelling symmetry.

Exchangeability is an example of both aspects.

In [De Cooman & Quaeghebeur 2010, Exchangeability and sets of desirable gambles]: exchangeability for sets of desirable gambles.

Exchangeability is an example of both aspects.

In [De Cooman & Quaeghebeur 2010, Exchangeability and sets of desirable gambles]: exchangeability for sets of desirable gambles.

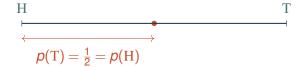
Sets of desirable gambles are very successful imprecise models.

 $\mathscr{X} = \{H, T\}$

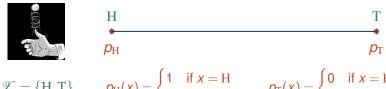
```
H T
```

fair coin

$$\mathscr{X} = \{H, T\}$$



coin with identical sides of unknown type



$$\mathscr{X} = \{H, T\}$$
 $p_H(x) = \begin{cases} 1 & \text{if } x = H \\ 0 & \text{if } x = T \end{cases}$ $p_T(x) = \begin{cases} 0 & \text{if } x = H \\ 1 & \text{if } x = T \end{cases}$

coin with identical sides of unknown type

 $\mathscr{X} = \{H,T\}$

Such an assessment cannot be modelled using sets of desirable gambles!

coin with identical sides of unknown type

 $\mathscr{X} = \{H, T\}$

Such an assessment cannot be modelled using sets of desirable gambles!

 $p_{\rm T}$

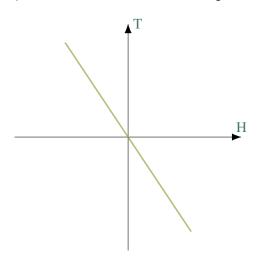
H T

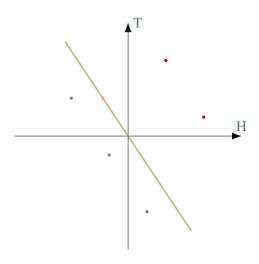
Choice functions

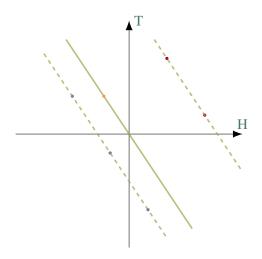
Consider a vector space \mathcal{V} and collect all its non-empty but finite subsets in $\mathcal{Q}(\mathcal{V})$.

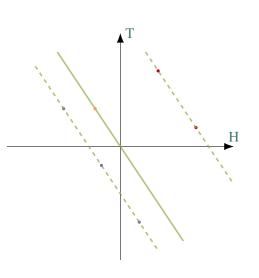
A choice function C is a map

 $C \colon \mathscr{Q}(\mathscr{V}) \to \mathscr{Q}(\mathscr{V}) \cup \{\emptyset\} \colon O \mapsto C(O) \text{ such that } C(O) \subseteq O.$



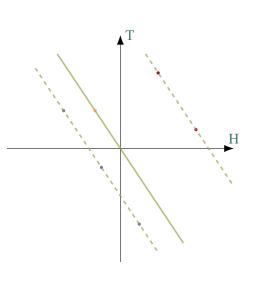






We call a choice function C on $\mathcal{Q}(\mathcal{V})$ indifferent if there is some representing choice function C' on $\mathcal{Q}(\mathcal{V}/I)$ (the equivalence classes of \mathcal{V}), meaning that

$$C(O) = \{u \in O : [u] \in C'(O/I)\}.$$



We call a choice function C on $\mathcal{Q}(\mathcal{V})$ indifferent if there is some representing choice function C' on $\mathcal{Q}(\mathcal{V}/I)$ (the equivalence classes of \mathcal{V}), meaning that

$$C(O) = \{u \in O : [u] \in C'(O/I)\}.$$

C selects either all or none of the options in red, orange, and blue.

Remark the similarity!

Choice functions

We call a choice function C on $\mathcal{Q}(\mathcal{V})$ indifferent if there is some representing choice function C' on $\mathcal{Q}(\mathcal{V}/I)$ (the equivalence classes of \mathcal{V}), meaning that

$$C(O) = \{u \in O : [u] \in C'(O/I)\}.$$

Remark the similarity!

Sets of desirable options

A set of desirable options $D \subseteq \mathcal{V}$ is indifferent if and only if there is some representing set of desirable options $D' \subseteq \mathcal{V}/I$ of equivalence classes, meaning that

$$D = \{u : [u] \in D'\}.$$

Choice functions

We call a choice function C on $\mathcal{Q}(\mathcal{V})$ indifferent if there is some representing choice function C' on $\mathcal{Q}(\mathcal{V}/I)$ (the equivalence classes of \mathcal{V}), meaning that

$$C(O) = \{u \in O : [u] \in C'(O/I)\}.$$

A choice function C on $\mathcal{Q}(\mathscr{V})$ indifferent if there is some representing choice function C' on the equivalence classes of \mathscr{V} , meaning that

$$C(O) = \{u \in O : [u] \in C'(O/I)\}.$$

A choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C' on the equivalence classes of \mathscr{V} , meaning that

$$C(O) = \{u \in O : [u] \in C'(O/I)\}.$$

The representing choice function C' is unique and given by C'(O/I) = C(O)/I for all O in $\mathcal{Q}(\mathcal{V})$

A choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C' on the equivalence classes of \mathscr{V} , meaning that

$$C(O) = \{u \in O : [u] \in C'(O/I)\}.$$

The representing choice function C' is unique and given by C'(O/I) = C(O)/I for all O in $\mathcal{Q}(\mathcal{V})$

C is coherent if and only if C' is coherent.

A choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C' on the equivalence classes of \mathscr{V} , meaning that

$$C(O) = \{u \in O : [u] \in C'(O/I)\}.$$

The representing choice function C' is unique and given by C'(O/I) = C(O)/I for all O in $\mathcal{Q}(\mathcal{V})$

C is coherent if and only if C' is coherent.

Indifference is preserved under arbitrary infima.

MODELLING INDIFFERENCE WITH CHOICE FUNCTIONS Arthur Van Camp, Gert de Cooman, Enrique Miranda and Erik Quaeghebeur

with / if

of indifferent options I, we call D compatible

The vector ordering of

function C we are looking for the one on R1

