Modelling INDIFFERENCE WITH Choice Functions

Arthur Van Camp ${ }^{1}$, Gert de Cooman ${ }^{1}$, Enrique Miranda² and Erik Quaeghebeur ${ }^{3}$

${ }^{1}$ Ghent University, SYSTeMS Research Group
${ }^{2}$ University of Oviedo, Department of Statistics and Operations Research
${ }^{3}$ Centrum Wiskunde \& Informatica, Amsterdam

We want to model

indifference

with choice functions.

We want to model

indifference

with choice functions.

Indifference

- reduces the complexity,
- allows for modelling symmetry.

Exchangeability is an example of both aspects.

In [De Cooman \& Quaeghebeur 2010, Exchangeability and sets of desirable gambles]: exchangeability for sets of desirable gambles.

Exchangeability is an example of both aspects.
In [De Cooman \& Quaeghebeur 2010, Exchangeability and sets of desirable gambles]: exchangeability for sets of desirable gambles.

Sets of desirable gambles are very successful imprecise models.

Why choice functions?

H
T
$\mathscr{X}=\{\mathrm{H}, \mathrm{T}\}$

Why choice functions?

fair coin

$\mathscr{X}=\{\mathrm{H}, \mathrm{T}\}$

Why choice functions?

coin with identical sides of unknown type

$\mathscr{X}=\{\mathrm{H}, \mathrm{T}\} \quad p_{\mathrm{H}}(x)=\left\{\begin{array}{ll}1 & \text { if } x=\mathrm{H} \\ 0 & \text { if } x=\mathrm{T}\end{array} \quad p_{\mathrm{T}}(x)= \begin{cases}0 & \text { if } x=\mathrm{H} \\ 1 & \text { if } x=\mathrm{T}\end{cases}\right.$

Why choice functions?

coin with identical sides of unknown type

$\mathscr{X}=\{\mathrm{H}, \mathrm{T}\}$

Such an assessment cannot be modelled using sets of desirable gambles!

Why choice functions?

coin with identical sides of unknown type

$\mathscr{X}=\{\mathrm{H}, \mathrm{T}\}$

Such an assessment cannot be modelled using sets of desirable gambles!

H
 T

Choice functions

Consider a vector space \mathscr{V} and collect all its non-empty but finite subsets in $\mathscr{Q}(\mathscr{V})$.

A choice function C is a map

$$
C: \mathscr{Q}(\mathscr{V}) \rightarrow \mathscr{Q}(\mathscr{V}) \cup\{\emptyset\}: O \mapsto C(O) \text { such that } C(O) \subseteq O \text {. }
$$

Indifference

The options are equivalence classes, rather than gambles.

Indifference

The options are equivalence classes, rather than gambles.

Indifference

The options are equivalence classes, rather than gambles.

Indifference

The options are equivalence classes, rather than gambles.

Indifference

We call a choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C^{\prime} on $\mathscr{Q}(\mathscr{V} / I)$ (the equivalence classes of $\mathscr{V})$, meaning that

$$
C(O)=\left\{u \in O:[u] \in C^{\prime}(O / I)\right\} .
$$

Indifference

We call a choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C^{\prime} on $\mathscr{Q}(\mathscr{V} / I)$ (the equivalence classes of \mathscr{V}, meaning that

$$
C(O)=\left\{u \in O:[u] \in C^{\prime}(O / I)\right\} .
$$

C selects either all or none of the options in red, orange, and blue.

Remark the similarity!

Choice functions

We call a choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C^{\prime} on $\mathscr{Q}(\mathscr{V} / I)$ (the equivalence classes of \mathscr{V}), meaning that

$$
C(O)=\left\{u \in O:[u] \in C^{\prime}(O / I)\right\} .
$$

Remark the similarity!

Sets of desirable options

A set of desirable options $D \subseteq \mathscr{V}$ is indifferent if and only if there is some representing set of desirable options $D^{\prime} \subseteq \mathscr{V} / /$ of equivalence classes, meaning that

$$
D=\left\{u:[u] \in D^{\prime}\right\} .
$$

We call a choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C^{\prime} on $\mathscr{Q}(\mathscr{V} / I)$ (the equivalence classes of \mathscr{V}), meaning that

$$
C(O)=\left\{u \in O:[u] \in C^{\prime}(O / I)\right\} .
$$

Some properties

A choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C^{\prime} on the equivalence classes of \mathscr{V}, meaning that

$$
C(O)=\left\{u \in O:[u] \in C^{\prime}(O / I)\right\} .
$$

Some properties

A choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C^{\prime} on the equivalence classes of \mathscr{V}, meaning that

$$
C(O)=\left\{u \in O:[u] \in C^{\prime}(O / I)\right\} .
$$

The representing choice function C^{\prime} is unique and given by $C^{\prime}(O / I)=C(O) / I$ for all O in $\mathscr{Q}(\mathscr{V})$

Some properties

A choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C^{\prime} on the equivalence classes of \mathscr{V}, meaning that

$$
C(O)=\left\{u \in O:[u] \in C^{\prime}(O / I)\right\} .
$$

The representing choice function C^{\prime} is unique and given by $C^{\prime}(O / I)=C(O) / I$ for all O in $\mathscr{Q}(\mathscr{V})$
C is coherent if and only if C^{\prime} is coherent.

Some properties

A choice function C on $\mathscr{Q}(\mathscr{V})$ indifferent if there is some representing choice function C^{\prime} on the equivalence classes of \mathscr{V}, meaning that

$$
C(O)=\left\{u \in O:[u] \in C^{\prime}(O / I)\right\} .
$$

The representing choice function C^{\prime} is unique and given by $C^{\prime}(O / I)=C(O) / I$ for all O in $\mathscr{Q}(\mathscr{V})$
C is coherent if and only if C^{\prime} is coherent.
Indifference is preserved under arbitrary infima.

Modelling Indifference with Choice Functions Arthur Van Camp, Gert de Cooman, Enrique Miranda and Erik Quaeghebeur

CWI

1. INTRODUCTIO

Ww wourteremce?
Why moirtreruce?
Addang imalioronea

 wht ank, exchangazibily br coroke tunctions.

 Scol atroud rosemele the stuarton sepictod on the riger. \qquad $\square T$

2. COHERENT CHOICE FUNCTIONS

Dermition A chdice tinctian Cisa mup
C: $\Psi \rightarrow P \cup\{(0): O \rightarrow C(O)$ sch thanc $C(O) \leq 0$.
antokalitr anous

pan amparosal

 $(\operatorname{liaf} C)(O)-U C(O)$ ba alloin x.

 cormenont chsice tumeton C by
$D_{c}=\left\{a_{i} \in \mathcal{Y} \cdot\{x\}-C\{\{a w)\}\right.$
 $C_{D}(O)-\left\{x \in O:(y v \in O)_{v}-\left.u \ddagger D\right|_{\text {that }} O\right.$ in Ω.

-3. INDIFFERENCE

Wecoliz sotoch
$h T$ and λ in \mathbb{R}
i

Quotient space Wap can ocalies ral opstions that are $[|a|-|v \in y: v-u \in I|-(w)+1$.
The ses of al these oquivalonce dasses is the quationt space $Y / h-\{||| |: ~: ~ \in Y)$. Which s a voctor space with vecker cridaring

boral [a| and [im $\mathrm{h} x / \mathrm{L}$.

$$
\alpha(o)=\langle\omega \in O:[p \mid \in C(O / /)\} \text { brall } O \text { in } S(n) .
$$

 any c/las
Indherence is owsenved under atitiay infm

Set ot indirferent options:

Equivयlence elass:
 tector anterino
$4\left(\mathrm{E}_{1}(\mathrm{a}) \leq \mathrm{E}_{1}(v)\right.$ and $\mathrm{E}_{2}(\mathrm{u}) \leq \mathrm{E}_{2}(\hat{(h)}$
\qquad

