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Abstract—In this paper large full-wave simulations are per-
formed using a parallel Multilevel Fast Multipole Algorithm
(MLFMA) implementation. The data structures of the MLFMA-
tree are partitioned according to the so-called hierarchical
partitioning scheme, while the radiation patterns are partitioned
in a blockwise way. To test the implementation of the algorithm,
a full-wave simulation of a canonical example with more than 50
millions of unknowns has been performed.

I. INTRODUCTION

One of the most popular methods to solve electromagnetic

scattering problems is the use of boundary integral equations,

discretized by means of the Method of Moments (MoM).

This method discretizes the scattering problem into a set of

N linear equations, with N the number of unknowns on

the discretized surface(s) of the scatterer(s). Solving this set

of equations iteratively using Krylov-based methods would

require O(N2) operations for each matrix-vector product.

To lower the complexity of the MoM, the Multilevel Fast

Multipole Algorithm (MLFMA) is applied. Both for memory

and time one obtains a complexity of O(N logN), which

makes it feasible to perform simulations with a large number

of unknowns.

During the past decade the increase of computational power

has mainly been achieved by increasing the number of cores in

a CPU, rather than improving the performance of an individual

CPU-core. Therefore it is important to develop efficient paral-

lel algorithms. Scalability is an important property for parallel

algorithms. Consider an algorithm with a serial complexity

of C(N) and where the number of CPU-cores (P ) grows

proportionally with N , so P = O(N). In that case the

parallel algorithm is scalable if the complexity of none of

the CPU-cores exceeds O(C(N)/P ). For the MLFMA this

means that the complexity of every CPU-core should not

exceed O(logN). In what follows we discuss such a scalable

MLFMA technique.

II. PARTITIONING OF THE MLFMA

In this paper scattering problems are considered for which

the discretization is inversely proportional to the frequency

and not much smaller than the wavelength, e.g. a λ/10-

discretization.

In the MLFMA the unknowns are subdivided in a tree-

like structure of boxes. At the lowest levels there are O(N)
MLFMA-boxes, containing O(1) – i.e. independent of N –

unknowns. The radiation patterns of the boxes at these levels

contain O(1) sampling points. For each level one goes up in

the MLFMA-tree, the number of MLFMA-boxes decreases

approximately by a factor of four, while the number of

sampling points of the radiation patterns increases roughly by

the same factor of four. Consequently, at the top levels there

are O(1) MLFMA-boxes with radiation patterns that have a

size of the order N . Each MLFMA-level has a total number of

O(N) sampling points, and, as there are O(logN) MLFMA-

levels, the total complexity of the MLFMA is O(N logN).

As mentioned before, in order to obtain scalability, for

each CPU-core the complexity must not exceed O(logN) or,

equivalently, the complexity per level should be O(1).

A straightforward way to partition the MLFMA-tree among

the CPU-cores is to assign each MLFMA-box, with its whole

radiation pattern, to a certain CPU-core. This is called spatial

partitioning. At the bottom levels one can subdivide the O(N)
MLFMA-boxes among O(N) CPU-cores. However this is not

possible at the top levels, as there are only O(1) boxes. The

CPU-cores that are attributed an MLFMA-box at a top level

contain O(N) sampling points, violating the condition for

scalability.

To solve the complexity problems for spatial partitioning

at the top levels, hybrid partitioning was introduced, which
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Fig. 1. Stripwise (left) vs. blockwise (right) partitioning of the sampling
points of a radiation pattern (green dots).
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uses k-space partitioning, i.e. the partitioning of the sampling

points of a radiation pattern among the different CPU-cores,

at the top-levels. This way the O(N) sampling points of O(1)
boxes are partitioned among O(N) CPU-cores. However, this

still does not lead to a scalable partitioning as, at the middle

levels, there are O(
√
N) boxes containing O(

√
N) sampling

points. One MLFMA-level before the transition from spatial

to k-space, the O(
√
N) boxes have to be partitioned among

O(N) CPU-cores. This is not possible, so the CPU-cores that

are attributed an MLFMA-box at this level contain O(
√
N)

sampling points, again violating the condition for scalability.

Hierarchical partitioning solves the problem at the middle

levels by using a gradual transition from spatial to k-space

partitioning, which can lead to a scalable partitioning scheme

[1], [2].

Another matter that influences the scalability is how the

radiation pattern is partitioned. Fig. 1 shows two possible ways

to partition a radiation pattern: stripwise (left) and blockwise

(right). The former partitions only the sampling points of the

θ-direction, while for the latter sampling points of both the θ-

and φ-direction are distributed among the different CPU-cores.

The number of sampling points along the θ- and φ-direction

are both of the order
√
N . As the number of CPU-cores grows

according to O(N), the O(
√
N) θ sampling points cannot

be distributed among all the CPU-cores in case of stripwise

partitioning and the CPU-cores that are assigned to a stripwise

partition contain O(
√
N) sampling points. These scalability

problems do not occur when using blockwise partitioning, and

as a result blockwise partitioning is required to obtain a truly

scalable algorithm [1], [2].

III. RESULTS

In this section we consider the scattering of a plane wave by

a PEC sphere, as depicted in Fig. 2(a). This canonical example

is a good test for any MoM-MLFMA-solver, as the results of

the simulation can be compared with the analytical solution,

i.e. the Mie series.

The sphere, with a diameter d of 231λ, was meshed using

a λ/10-discretization, resulting in a problem with 50 032 914
unknowns. The MLFMA-tree contained 12 MLFMA-levels

and the size of the MLFMA-box at the lowest level was 0.2λ.

The simulation was performed in single-precision on a cluster

consisting of 8 machines each containing four 8-core AMD

Opteron 6136 processors (256 CPU-cores in total) and 64
GByte of RAM (or 2 GByte per core).

From Fig. 2 one sees the absolute value of 4

d
fθ(θ, φ = 0),

the θ-component of the normalized radiation pattern in the φ =
0 plane, with d the diameter of the sphere. Fig. 2(a) shows the

whole θ-range, sampled in 4544 points, which corresponds to a

resolution of 0.04◦. Fig. 2(b) depicts the comparison between

the result of the simulation and the analytical solution for the

forward-scattering direction with θ ranging from 0◦ to 4◦. The

error of the radiation pattern is

||fθ(θ, φ = 0)simulation − fθ(θ, φ = 0)analytical||2
||fθ(θ, φ = 0)analytical||2

= 0.0104

which is a typical result for a λ/10-discretization [3].
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(a) Full θ-range (0◦ . . . 180◦) in 4544 sampling points.
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(b) Forward-scattering direction (θ = 0◦ . . . 4◦).

Fig. 2. The absolute value of the normalized radiation pattern 4

d
fθ(θ, φ = 0)

for a PEC sphere with a diameter d = 231λ.

IV. CONCLUSION

In this paper a parallel MLFMA is implemented using

a blockwise hierarchical partitioning scheme. A simulation,

involving more than 50 millions of unknowns, of a plane wave

impinging on a PEC sphere has been performed on 256 CPU-

cores and the results agree with the analytical solution.
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