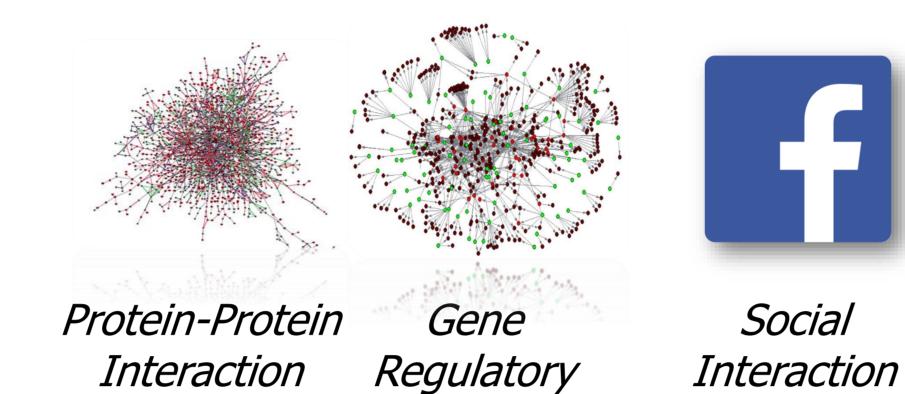


Maarten.Houbraken@intec.ugent.be

ISMAGS: Speeding Up Subgraph Enumeration using Dynamic Node Ordering and Symmetry Analysis

Maarten Houbraken, Pieter Audenaert, Mario Pickavet

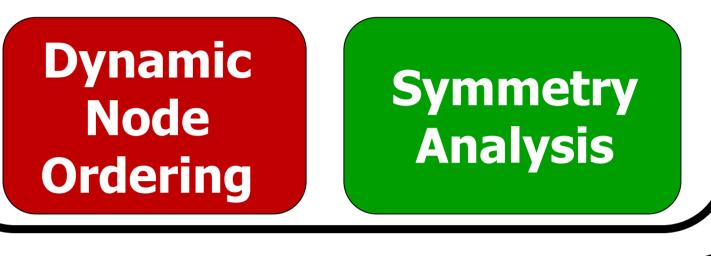

	ISMA	GS		
What is it?	Where car	n we use it?	How does it work?	
The Index-based Subgraph Matching Algorithm with General Symmetries	Biological networks	General networks	ISMAGS Exhaustive recursive search	


Algorium with General Symmetries

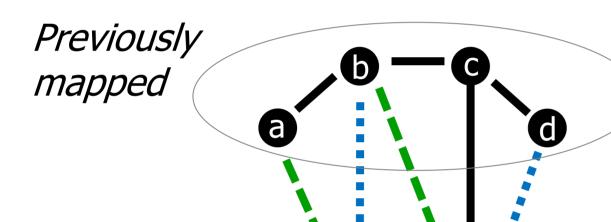
- Subgraph enumeration algorithm
 - Finding all instances of a subgraph in a larger graph
 - Motif detection >>

. . .

Graphlet analysis \geq



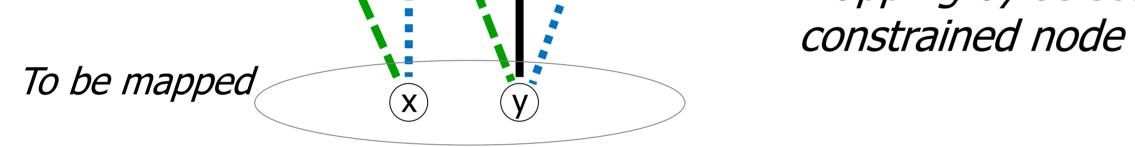
Collaboration


Map each node of graph to node of subgraph & check for possible instance

Pruning search space

Dynamic Node Ordering

Optimised search space traversal during exhaustive search by determining best order of node mapping


- Find subgraph instances by creating partial mappings
- Recursively expand partial mapping by selecting most

Symmetry Analysis

Customised symmetry analysis of the subgraph to avoid examining symmetric instances

- Determine generating permutations P
- Extract stabiliser chains 2)
- Generate node index constraints C 3)

Candidates for x =

{green neighbours of a}
{ blue neighbours of b}

Candidates for y =

{green neighbours of b} **()** { black neighbours of c } blue neighbours of d}

Limiting branching factor in search space

(37)(45)(89)

(26)(38)(45)(79)

(14)(23)(69)(78)

(03142)(58697)

from coset representatives

 $C = \begin{cases} ID_0 < ID_1 & ID_0 < ID_6 & ID_1 < ID_4 \\ ID_0 < ID_2 & ID_0 < ID_7 & ID_1 < ID_5 \\ ID_0 < ID_3 & ID_0 < ID_8 & ID_2 < ID_6 \\ ID_0 < ID_4 & ID_0 < ID_9 & ID_3 < ID_7 \end{cases}$ $(ID_0 < ID_5)$

> Pruning search space by constraints

Results

 $P = \langle$

Comparing ISMAGS to reference algorithms in a biological network (1.2K nodes) and a social network (7K nodes)

Network & subgraphTimeISMAGS	Time Speedup factor per algorithm			per algori	thm	Improvement over G-Trie ?	
	VF2	GK	G-Trie	ISMA	Dynamic node order reduces backtracking Better scaling: larger gains for larger subgraphs		
PI network							
3-clique	8.81 ms	132.79	58.04	0.17	4.48	Improvement over ISMA ?	
9-clique	92.21 ms	14509	41.36	7.28	4.68	Symmetry constraints avoid exploring symmetric parts of search space	
Petersen	733.25 ms	9348	73.11	∞	451.25		
/ikipedia elections							
3-clique	410.19 ms	456.35	68.12	0.22	4.37	Speeding up subgraph enumeration	
Tetrahedron	320.72 ms	47.58	331.66	1.38	3.20	>>> ISMAGS Enabling larger graph analysis	
G4	448.54 ms	18.21	287.23	2.24	1.29	Opening future research possibiliti	

Improvement over VF2 & GK ?

Optimised implementation of partial mapping generation and expansion

M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, M. Pickavet (2014) The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration, PLOS ONE (accepted).

