

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS IN A BATCH PROCESS

Diana C. Vargas, María B. Alvarez and Daniela Almeida Streitwieser

30.06.2015

Outline

- Background information
- Motivation
- Characterization of waste motor oil
- Previous investigations
- Experimental results
- Conclusions
- Further investigations

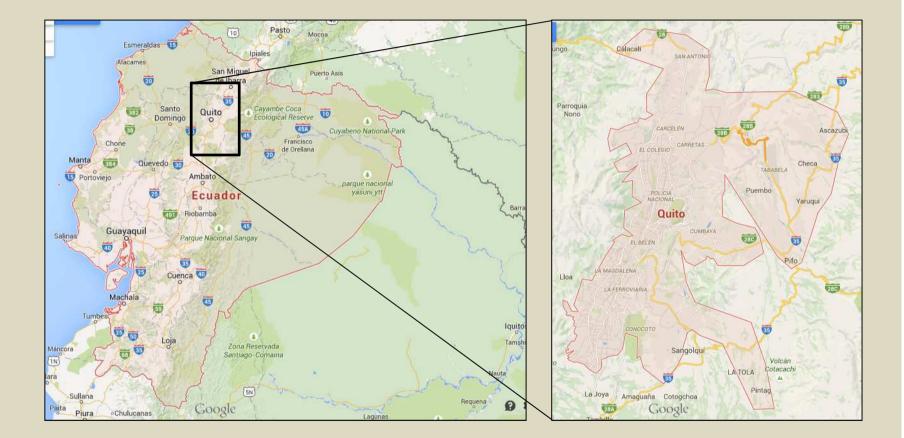
LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

30.06.2015

Diana C. Vargas

Outline

- Background information
- Motivation
- Characterization of waste motor oil
- Previous investigations
- Experimental results
- Conclusions
- Further investigations



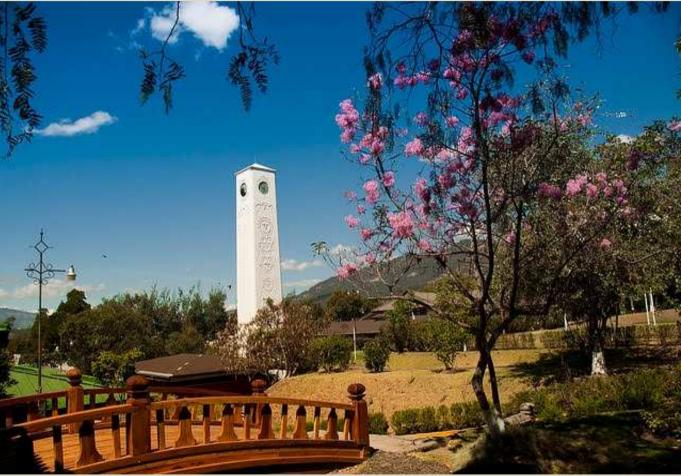
LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

30.06.2015

Diana C. Vargas

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Quito – Ecuador Altitude 2850 m (9350 ft) above sea level



LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Universidad San Francisco de Quito

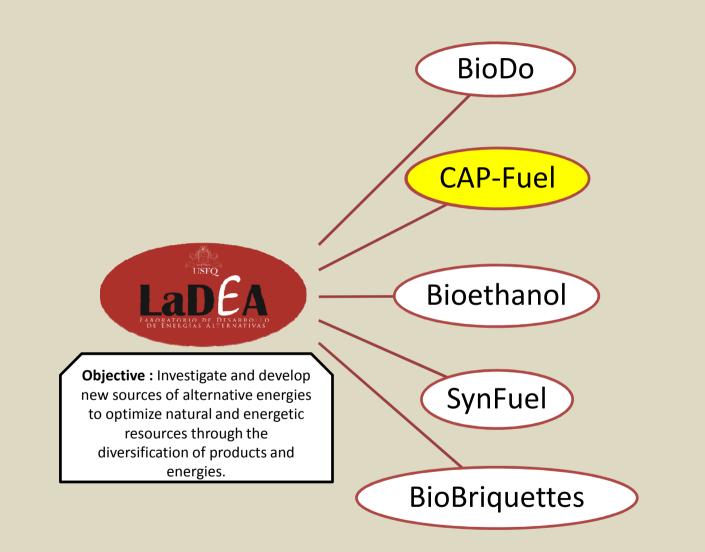
http://at3w.com/upload/imagenes/san_francisco_university.jpg

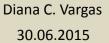
LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Universidad San Francisco de Quito

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Universidad San Francisco de Quito

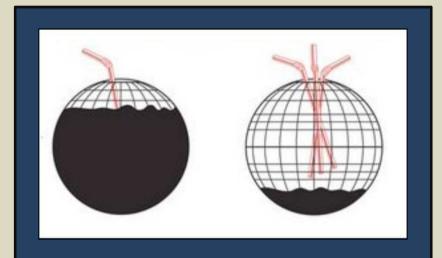



LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS Diana C. Vargas

30.06.2015

Outline

- Background information
- Motivation
- Characterization of waste motor oil
- Previous investigations
- Experimental results
- Conclusions
- Further investigations



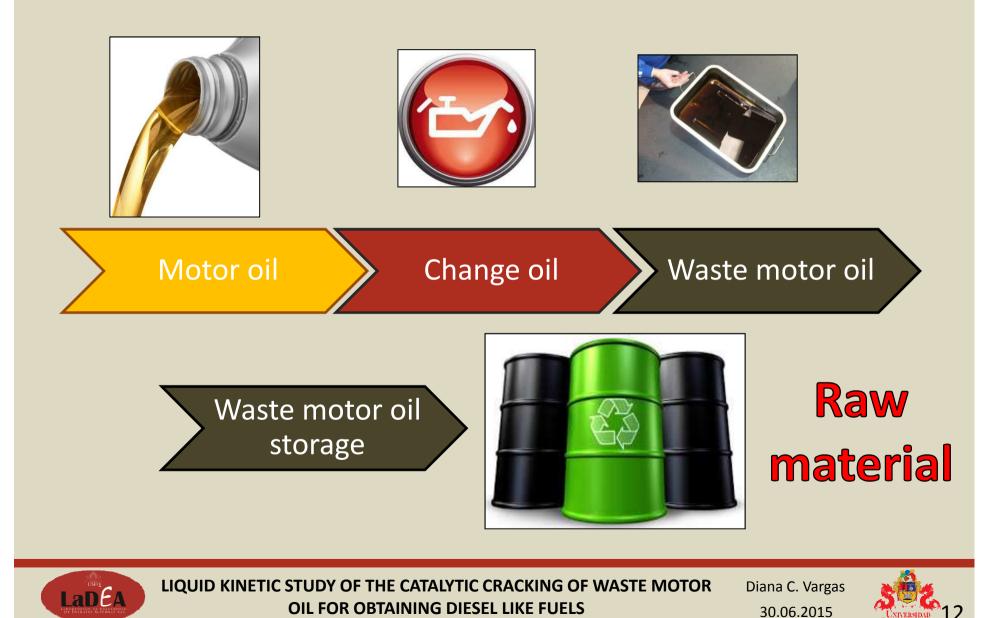
LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

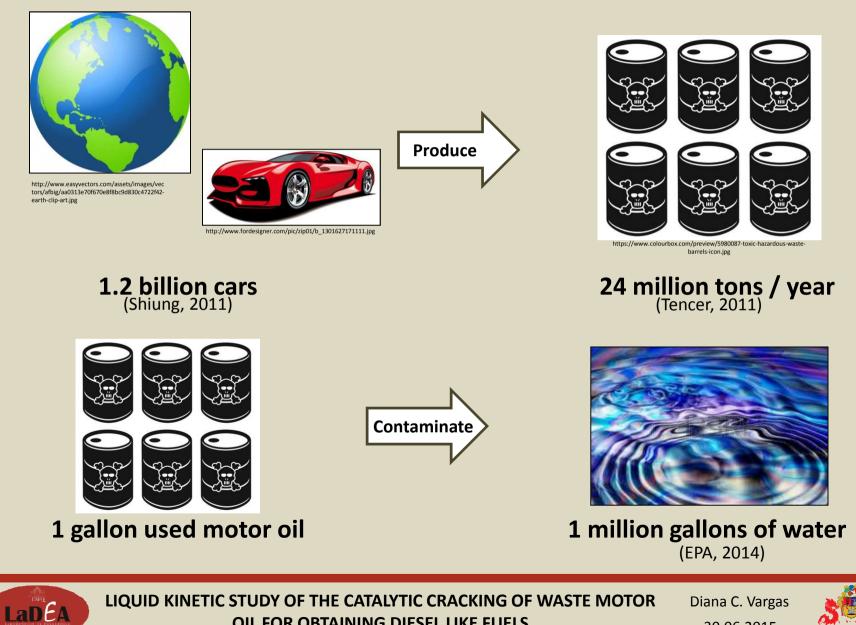
30.06.2015

Diana C. Vargas

Depleting oil reserves

Unstable fuel prices

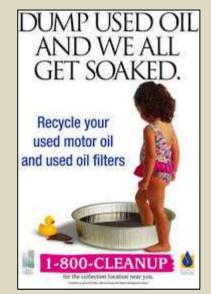



Environmental Awareness

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

OIL FOR OBTAINING DIESEL LIKE FUELS

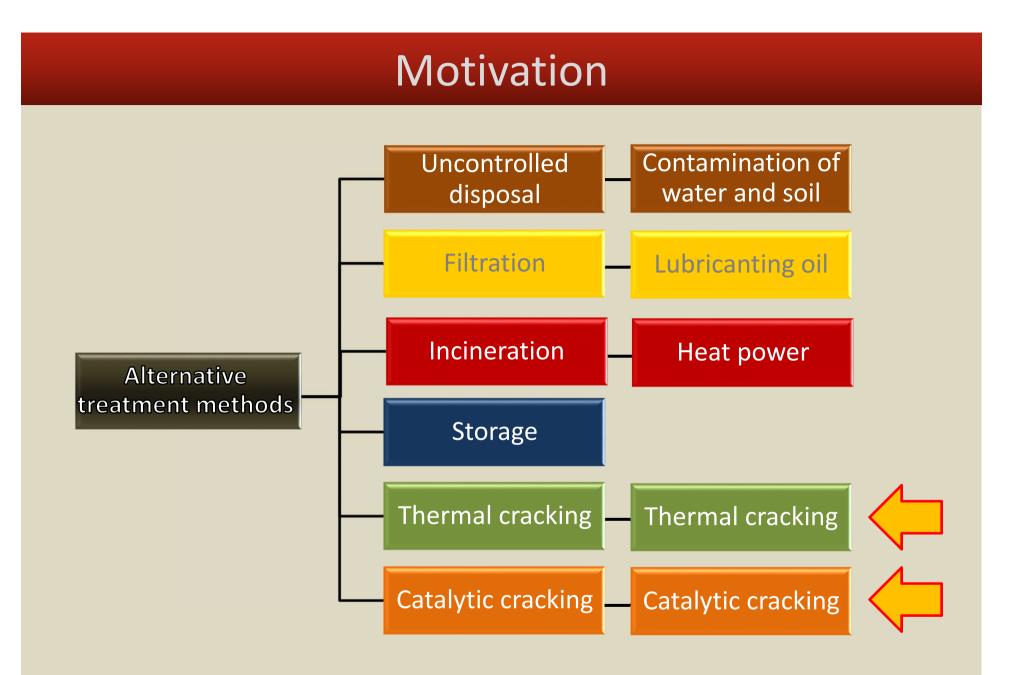
30.06.2015


Waste motor oil is a *hazardous* contaminant

- Lead
- Cadmium
- Arsenic
- Dioxins
- Benzene
- Polycyclic aromatics

Its inappropriate disposal can harm humans, plants, animals, fish and shellfish.

http://www.sfenvironment.org/sites/default/files/editor-uploads/toxics/oil_and_filters.jpg



https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRZvyd0qT7wRF-PGJwm_7NVFqkpTNQ3RlCf_2znDlg42llbTbvrPA

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR Diana C. Vargas **OIL FOR OBTAINING DIESEL LIKE FUELS**

30.06.2015

Outline

- Background information
- Motivation
- Characterization of waste motor oil
- Previous investigations
- Experimental results
- Conclusions
- Further investigations

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Characterization of waste motor oil

Characterization methods - American Society for Testing and Materials (ASTM)

Analysis performed at Laboratory for Quality Control of Clean Products Terminal "El Beaterio"

Table 1 Characterization methods

Norm	Method				
ASTM D56	Standard Test Method for Flash Point by Tag Closed Cup Tester				
ASTM D86	Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure				
ASTM D1298	Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method				
ASTM D2270	Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 and 100ºC				
ASTM D4294 Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy-Dispersive X-Ray Fluorescence					
LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR Diana C. Vargas					

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

30.06.2015

Characterization of waste motor oil

Characterization methods - American Society for Testing and Materials (ASTM)

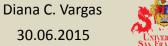
	Flash Point [°C]	Distillation [°C]	API gravity [°API]	Kinematic Viscosity [cS	
Diesel #2	Min 51	Max 360	32-39	2.5-6	Max 0.7
Waste motor oil	69	380	29.6	113.14	0.364

Table 2 Characterization of waste motor oil



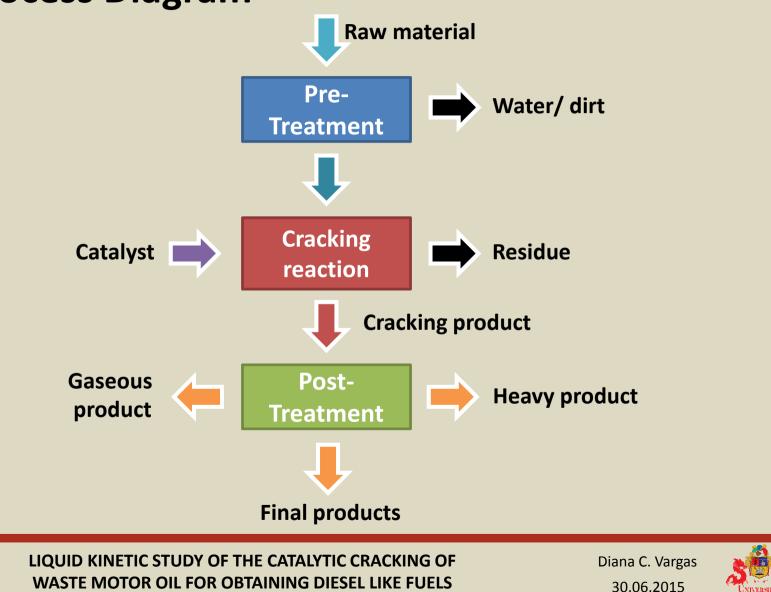
Waste motor oil and cracking products

Determination of sulfur content



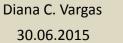
Outline

- Background information
- Motivation
- Characterization of waste motor oil
- Previous investigations
- Experimental results
- Conclusions
- Further investigations

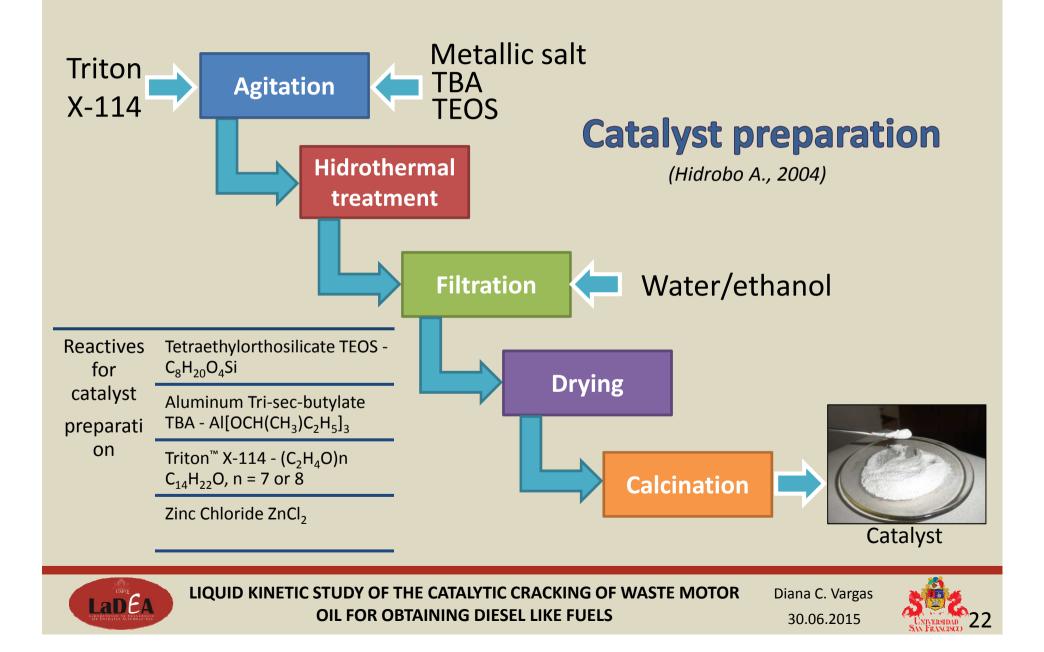


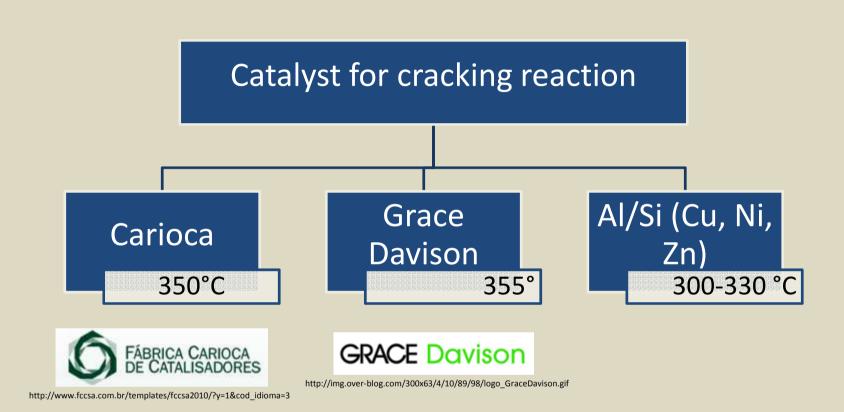
- Process Diagram

Ladea


- Materials

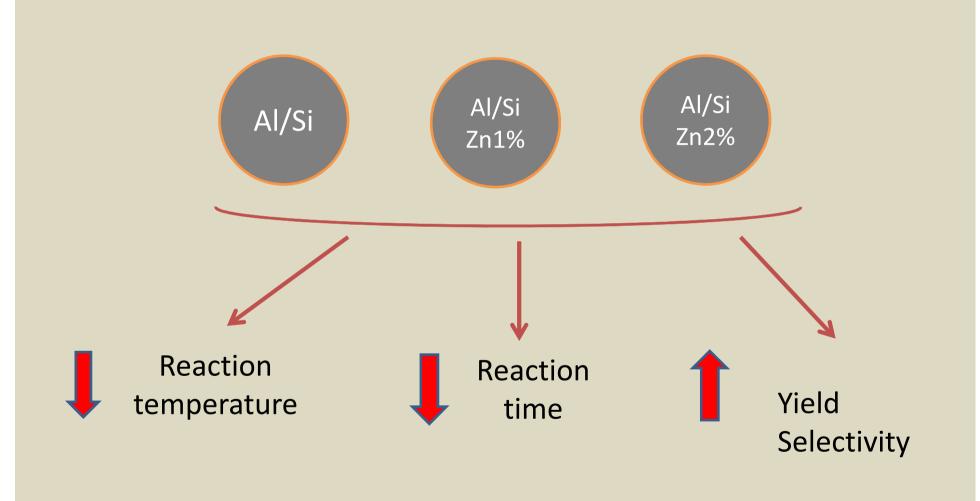
- Glass batch reactor
- Cracking equipment
- Constant parameters
- 100 g of waste motor oil
- 1g of catalyst


- Variables

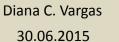

Temperature [C°]	300	310	320	330
Catalyst		Al/Si	Al/Si- Zn 1%	Al/Si- Zn 2%

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS Diana C. Vargas

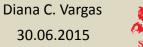
30.06.2015


Table 3 Previous studies on cracking reaction (Benedik S. and Almeida D., in progress)

Abreviation	Impregnated metal	Cracking Temperature [°C]	Yield [%]	
Blank	-	356	57	
Carioca	-	354	60	
Grace Davison	-	355	61	
Al/Si	_	339	62	
Al/Si-Cu1%	Copper	353	62	
Al/Si-Zn 1%	Zinc	333	63	
Al/Si-Zn 2%	Zinc	285	65	
Al/Si-Ni1%pH	Nickel	325	62	

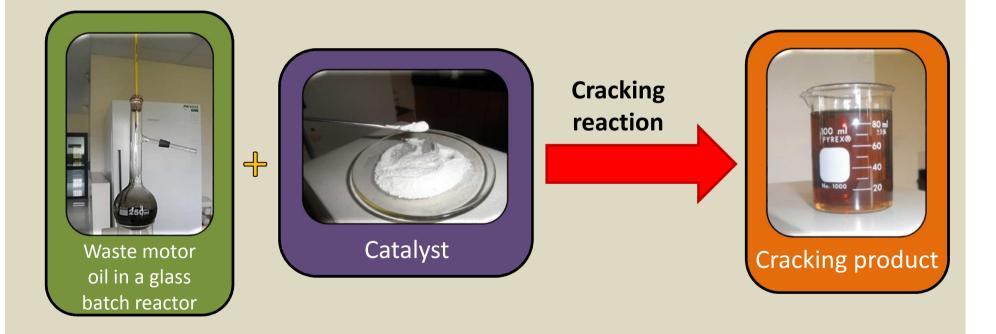


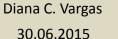
LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS



Outline

- Background information
- Motivation
- Characterization of waste motor oil
- Previous investigations
- Experimental results
- Conclusions
- Further investigations





Cracking reaction

 $A_{(l)} \rightarrow 2B_{(l)} + C_{(g)}$ $C_{30}H_{62} \rightarrow C_{13}H_{28} + C_{12}H_{24} + C_5H_{10}$

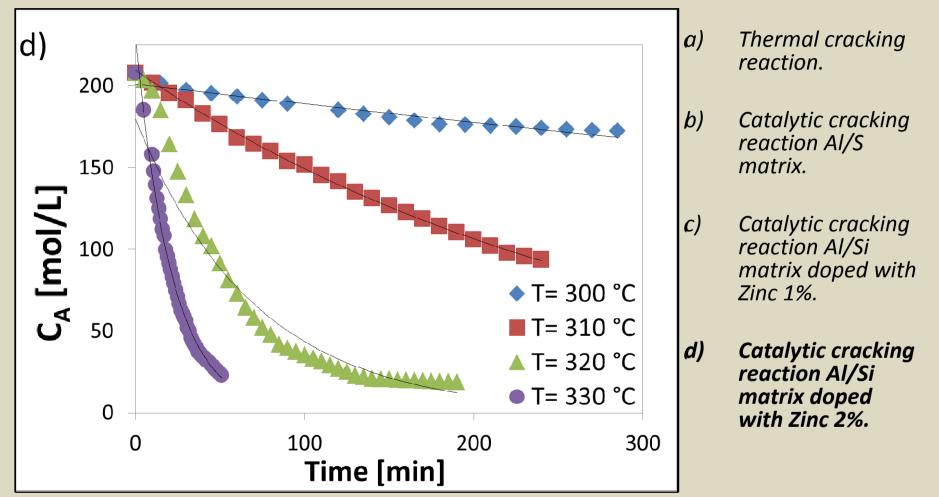
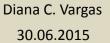



Figure 1 Concentration of waste motor oil during cracking reaction

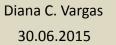


Table 4 Summarized results of exponential regression

Evporimont	Tomporaturo [°C]	Differential analysis			
Experiment	Temperature [°C]	а	b	R ²	
	300	21165	-0.002	0.9814	
Thermal	310	200.7	-0.002	0.9751	
mermai	320	199.59	-0.002	0.9913	
	330	224.5	-0.026	0.9677	
	300	204.02	-0.001	0.8951	
Al/Si	310	207.51	-0.001	0.9935	
AI/ SI	320	202.66	-0.003	0.947	
	330	201.29	-0.033	0.9828	
	300	200.7	-0.0005	0.904	
Al/Si Zn 1%	310	199.78	-0.004	0.9865	
AI/ SI ZII 1%	320	188.31	-0.008	0.9837	
	330	237.88	-0.033	0.9914	
	300	201	-0.0006	0.9452	
Al/Si Zn 2%	310	209.36	-0.003	0.9989	
	320	179.54	-0.014	0.9449	
	330	230.27	-0.047	0.9936	

• Potencial law model $C_{30}H_{62} \rightarrow C_{13}H_{28} + C_{12}H_{24} + C_5H_{10}$ $A_{(l)} \rightarrow 2B_{(l)} + C_{(g)}$ $R_A = [k(T)] [fn(C_A)]$

$$R_A = \frac{dC_A}{dt} = -k \ C_A^n$$

$$\log_{10}\left(-\frac{dC_A}{dt}\right) = \log_{10}k + n \log_{10}C_A$$

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

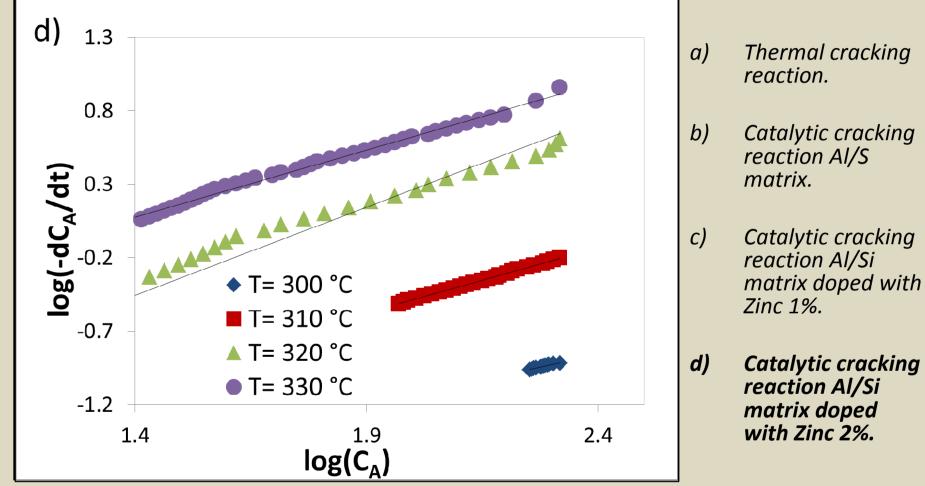
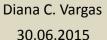



Figure 2 Linear regression for experimental data

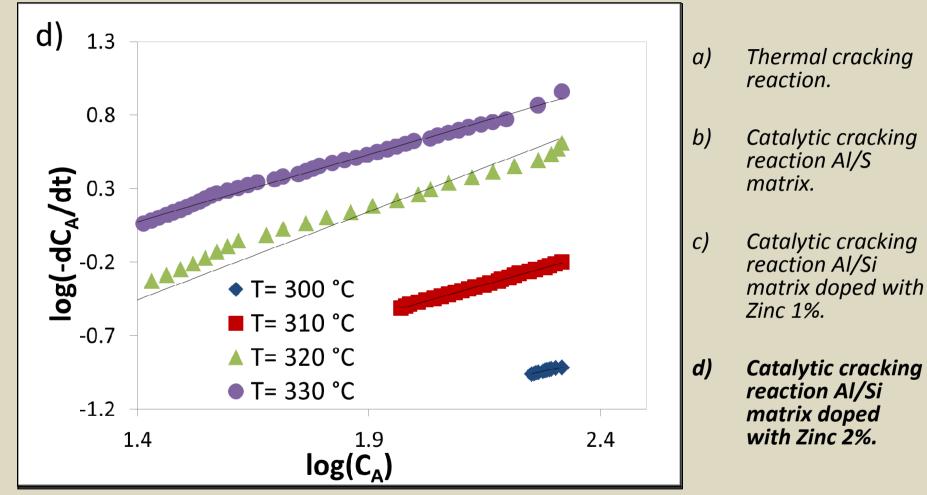


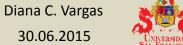
Figure 2 Linear regression for experimental data

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Table 5 Summarized results of exponential regression

Exporimont	Tomporaturo [°C]	Temperature dependence			
Experiment	Temperature [°C]	m	b	R ²	
	300	1.0038	-2.7098	0.9751	
Thermal	310	1.2310	-3.2380	0.9814	
Incina	320	0.8022	-2.2447	0.9913	
	330	0.9859	-1.5738	0.9677	
	300	0.8876	-2.7453	0.8951	
Al/Si	310	0.8188	-2.5823	0.9935	
AI/SI	320	0.7154	-2.3449	0.9962	
	330	0.9906	-1.4698	0.9828	
	300	0.7333	2.6937	0.9821	
AL/Si 7n 10/	310	0.8405	-2.1516	0.9819	
Al/Si Zn 1%	320	0.9946	-2.0923	0.9837	
	330	0.9876	-1.4325	0.9914	
	300	0.7077	2.5536	0.9773	
	310	0.8848	-2.2557	0.9989	
Al/Si Zn 2%	320	1.1992	-2.1346	0.9449	
	330	0.9139	-1.2060	0,9936	

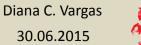
LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS



Tuble 6 Killetic purullieters of crucking reactions					
		Kinetic paramet			
Experiment	Temperatu re [°C]	Reaction order, n[-]	Activation Energy, Ea [kJ/mol]	Reduction of Ea [%]	
	300				
Thermal	310	1.0 ± 0.1	370.39	_	
merman	320	1.0 ± 0.1	370.39	_	
	330				
	300	$1.0\pm~0.1$	304.39	17.82	
A1/Ci	310				
Al/Si	320				
	330				
	300				
Al/Si Zn 1%	310	0.8 ± 0.1	280.71	24.21	
	320	0.8 ± 0.1		24.21	
	330				
	300				
AL/Si 70 20/	310	0.9 ± 0.2	278.37	24.94	
Al/Si Zn 2%	320			24.84	
	330				

Table 6 Kinetic parameters of cracking reactions

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR **OIL FOR OBTAINING DIESEL LIKE FUELS**



30.06.2015

Table 7 Characterization of waste motor oil and product from cracking process

	Flash Poir : [°C]	Distillation [°C]	API gravity [°API]	Kinematic Viscosity [cSt]	Sulfur content [%p/p]
Diesel #2	Min 51	Max 360	32-39	2.5-6	Max 0.7
Waste motor oil	69	380	29.6	113.14	0.364
Thermal cracking	65	354	37.4	4.65	0.1614
Catalytic cracking Al/Si	68	342	38.9	4.67	0.1403
Catalytic cracking Al/Si Zn 1%	69	343	38.5	4.78	0.1305
Catalytic cracking Al/Si Zn 2%	70	345	39.1	4.72	0.1264

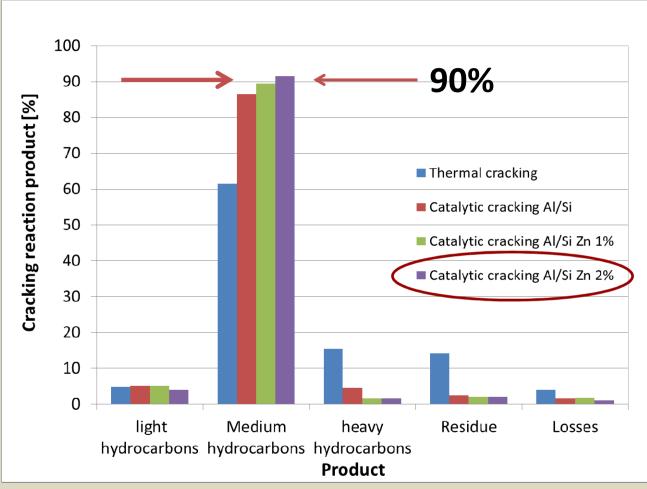
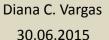



Figure 3 Products of cracking reactions

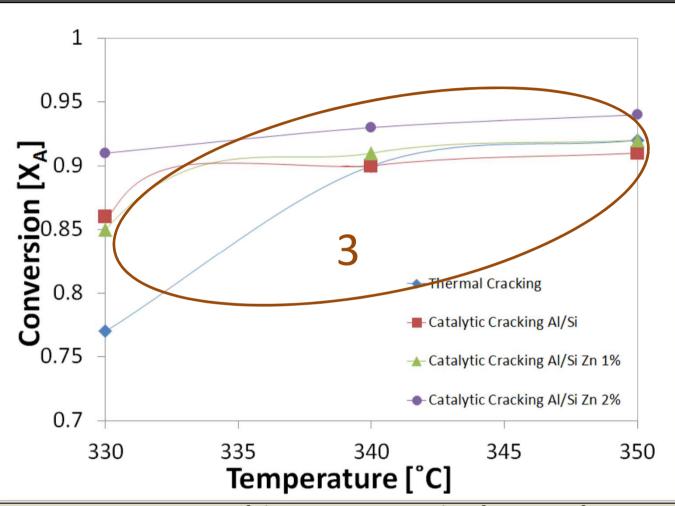
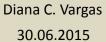



Figure 4 Conversion of the waste motor oil as function of temperature

Outline

- Background information
- Motivation
- Characterization of waste motor oil
- Previous investigations
- Experimental results
- Conclusions

• Further investigations

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

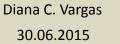

Conclusions

Table 8 Summarized results

Parameter	Thermal cracking	Catalytic cracking Al/Si	Catalytic cracking Al/Si Zn 1%	Catalytic cracking Al/Si Zn 2%
Reaction order, n, [Ea]	1.0 ± 0.1	$1.0\pm\ 0.1$	$1.0\pm\ 0.1$	0.9 ± 0.2
Activation energy Ea [kJ/mol]	370.39	304.39	280.71	278.37
Reduction in activation energy [%]	-	17.82	24.21	24.84
Conversion X _A (T=330°C)	0.77	0.85	0.86	0.9

• The final product of the different processes of thermal and catalytic cracking meets all necessary requirements for diesel # 2.

Outline

- Background information
- Motivation
- Characterization of waste motor oil
- Previous investigations
- Experimental results
- Conclusions
- Further investigations

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Further investigations

Design and construction of a fixed bed reactor for the conversion of waste motor oil into liquid fuels

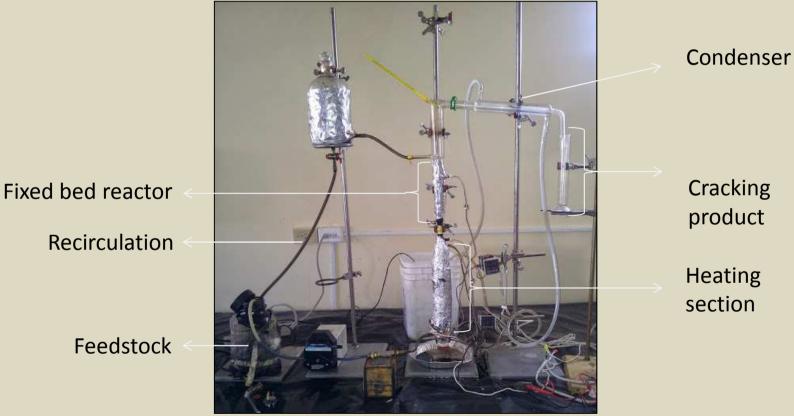


Figure 5 Glass fixed bed reactor

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Further investigations

Design and construction of a fixed bed reactor for the conversion of waste motor oil into liquid fuels.

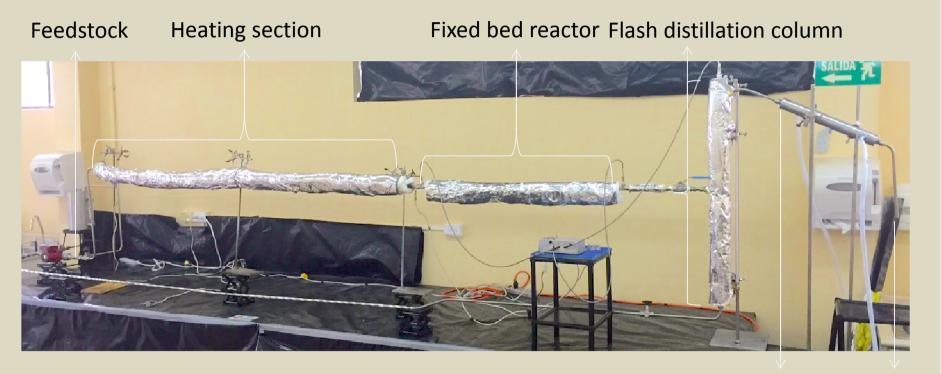


Figure 6 Stainless steel fixed bed reactor

Cracking product

LIQUID KINETIC STUDY OF THE CATALYTIC CRACKING OF WASTE MOTOR OIL FOR OBTAINING DIESEL LIKE FUELS

Diana C. Vargas 30.06.2015

Condenser

Thank you for your attention!

Questions?

Contact information: Dr.-Ing. Daniela Almeida Email: <u>dalmeida@usfq.edu.ec</u> Phone: +(593)2297-1700 ext 1420

