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Abstract

Decision Support Systems are often used in the area
of system evaluation. The quality of the output of
such a system is only as good as the quality of the
data that is used as input. Uncertainty on data,
if not taken into account, can lead to evaluation
results that are not representative. In this paper,
we propose a technique to extend Generalised Con-
junction/Disjunction aggregators to deal with un-
certainty in Decision Support Systems. We first de-
fine the logic properties of uncertainty aggregation
through reasoning on strict aggregators and after-
wards extend this logic to partial aggregators.
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1. Introduction

Decision support systems (DSS) are software tools
that are generally employed to support organiza-
tional decision making activities. DSS are typically
applied to system evaluation problems with a lot of
systems in order to simplify the task of finding the
best one [1]. Generally, a DSS computes a score for
each system independently . The results can be or-
dered into an easy to interpret list of all evaluated
systems for the decision maker (DM).
In the field of system evaluation, each system

is uniquely identified by the values of its defined
set of attributes. The DSS allows DMs to model
evaluation criteria in the form of requirements on
these attributes to define which properties describe
a preferable system. The DSS uses these criteria
to calculate a set of elementary preferences for each
system. Using a logic interpretation, an elemen-
tary preference is the degree of truth of the state-
ment asserting that that requirement is completely
satisfied. An evaluation criterion is a compound
model that uses elementary preferences to compute
the global preference reflecting the global satisfac-
tion of all requirements. The global preference is
interpreted as the degree of truth of the statement
that a complex system completely satisfies all re-
quirements. Finally, all systems are ranked based
on their global preference and presented to the DM.

The implementation of the evaluation criterion
differentiates the different implementations of DSS
[2]. In Logic Scoring of Preferences (LSP), a pop-
ular and flexible soft-computing method for sys-
tem evaluation [3], this is done by means of Gen-
eralised Conjunction/Disjunction (GCD) aggrega-
tors. These allow a hierarchical construction of con-
ditional statements with a lot of configureability,
which are praised for their capability to accurately
model complex decision logic.

The remainder of the paper is structured as fol-
lows. First, we discuss why uncertainty is a prob-
lem when not taken into account. Then, we ex-
plain the foundation our research is built on, the
Generalised Conjunction/Disjunction. Afterwards,
we introduce a strategy to deal with uncertainty,
including aggregation strategies to combine uncer-
tainty on attributes to a degree of uncertainty on
the system’s overall global preference. Finally, we
summarize our findings in a conclusion.

2. Problem Statement

The quality of output generated by DSS largely de-
pends on the quality of the analysed data, but un-
certainty on attribute values from systems is often
not taken into account. This could lead us to un-
representative results hence wrong decisions being
suggested to the DM.

Uncertainty can stem from different sources. For
example, at the time of considering a system, cer-
tain attribute values could not be properly mea-
sured due to imperfect conditions or inaccurate
tools. It can occur that a system has no data for an
attribute, because it was never measured to begin
with. It is also possible that a certain system has no
measured data at all and obtained its values from
interpolation between other systems. Additionally,
sometimes attribute values are biased by the person
conducting the measurement.

Uncertainty is a broad term that can be inter-
preted probabilistically (variance, standard devia-
tion, interpolation) and possibilistically (vagueness,
impreciseness) [4, 5]. Because of this, DSS are
sometimes accused of pointing out “false positives",
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whereas the problem lies in the fact that uncertainty
on the input data was ignored. It is clear that a con-
cise technique to deal with uncertain data would
prove to be a significant improvement to current
DSS.

3. Related work

Pedrycz, Ekel and Parreiras suggest a generalized
approach of multicriteria decision making under
uncertainty [5, 6, 7] based on a classic approach
for monocriteria decision problems built on payoff-
matrices [8] where the underlying analysis is carried
out for the given solution alternatives or strategies
for certain combinations of initial data or states of
nature. In this technique, the idea is to compose a
matrix that evaluates all possible states the systems
can be in, called the payoff matrix. Then, for each
system, the most optimistic and most pessimistic
estimates are computed by comparing all possible
outcomes for each solution alternative. Based on
these, a risk can be calculated for each combina-
tion of strategy and state of nature, which indicates
the difference between using that specific strategy
compared to the optimal strategy for the specified
certain state of nature. The resulting risk matrix
then depicts how risk-inherent combinations of cer-
tain strategies and states of nature are. This tech-
nique suffers from some drawbacks, however. First,
it relies on the existence and definition of possible
states of nature of a system in combination with
several solution strategies that are to be compared.
Second, it produces an output matrix per system,
making interpretation a tedious job.
Novikova and Pospelova also propose a method

for multicriteria decision making under uncertainty
[9], based on the minimax approach of Danskin and
Germeier, for investigating outer uncertainty, which
happens due to uncontrolled parameters and is as-
sumed has a non-random nature. In their research,
they make the distinction between uncertainty that
is known beforehand and uncertainty that is not
known. This leads to a two-step evaluation pro-
cess which leads to a vector maximinimax problem.
However, their solution does not mention degrees of
simultaneity or replaceability or any reference to a
decision support system in general, so applicability
in the area we are investigating is small.

4. Generalised Conjunction/Disjunction

As defined by Dujmović and Larsen [1, 10], the Gen-
eralised Conjunction/Disjunction is a parametrized
continuous function of at least two inputs which
combines conjunctive and disjunctive properties.
Through calibrating the parameter different degrees
of simultaneity (andness, α) and replaceability (or-
ness, ω) can be achieved [11]. Simultaneity and re-
placeability are two fundamental logic connectives
that are building blocks for many decision models.

Mathematical models of simultaneity and re-
placeability are fundamental components of all sys-
tem evaluation models. Assuming that input vari-
ables reflect the level of satisfaction of some crite-
ria, the simultaneity is a requirement for the co-
incident high level of satisfaction of input criteria.
All mathematical models of simultaneity reward the
concurrence of high inputs, and penalize the lack of
simultaneity. The most frequently used models of
simultaneity are the logic functions of partial and
full conjunction.

Replaceability is the dual of simultaneity. It is
used in cases where any input can compensate insuf-
ficient satisfaction of other inputs. All mathemati-
cal models of replaceability penalize cases where in-
puts are all relatively low, and reward cases where at
least one of them is sufficiently high. Typically, re-
placeability is modelled through the logic functions
of partial and full disjunction.

The GCD comprises five degrees: full conjunction
(∧), partial conjunction (4), arithmetic mean, par-
tial disjunction (5) and full disjunction (∨). There
are several implementations of the GCD [1].

One of them is the Weighted Power Means
(WPM) implementation, as defined in Figure 2,
where the exponent r serves as the parameter of
simultaneity/replaceability. This model also intro-
duces the use of weights assigned to each input.
Choo, Schoner and Wedley have performed a study
on the different ways these weights can be inter-
preted [12]. In our research, we interpret weights to
signify the relative importance of their respective
inputs but further do not investigate their contri-
bution. To that end, the reader may assume all
inputs are given an equal weight.

Dujmović, De Tré and Van de Weghe [13, 14]
have defined 17 levels of simultaneity/replaceability
ranging from the full conjunction to the full dis-
junction. Applied to the WPM model, this trans-
lates into 17 different values of r, which are shown
in Table 1. This table also gives an example of the
behaviour of GCD aggregators when implemented
through WPM.

For inputs 1.0 and 0.0, we can see the degree of
the partial disjunction is “hard" up to the medium
weak conjunction. We say any requirements com-
bined by those aggregators are mandatory. Other
variants of the partial conjunction (the weak par-
tial conjunction and the very weak partial con-
junction) are considered to combine inputs in a
non-mandatory way, while still rewarding situations
where all inputs are high, but all of them being high
is no longer required yet still heavily penalized.

Furthermore, we can see that there is a smooth
gradient of the aggregated global preference that
follows the trend of r. The more we lean towards
the full disjunction, the more orness plays a role
and the more the global preference increases up to
the highest degree of satisfaction among the inputs,
which is finally reached at the full, pure disjunction.
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y = x1♦ . . .♦xm =


x1 ∨ . . . ∨ xm, α = 0, ω = 1
x1 5 . . .5 xm, 0 < α < 0.5, 0.5 < ω < 1
(x1 + . . .+ xm)/m, α = ω = 0.5
x14 . . .4xm, 0.5 < α < 1, 0 < ω < 0.5
x1 ∧ . . . ∧ xm, α = 1, ω = 0

Figure 1: All cases of the GCD, where ♦ is a degree of andness or orness.

y = F (x1, . . . , xm; r) =


(
∑m

i=1 Wix
r
i )1/r

, 0 < |r| < +∞∏m
i=1 x

Wi
i , r = 0

x1 ∧ · · · ∧ xm, r = −∞
x1 ∨ . . . ∨ xm, r = +∞

Figure 2: The simplest implementation of the GCD function, where F is the Weighted Power Means.

5. Extended Generalised
Conjunction/Disjunction

In this section, we propose a strategy to incorpo-
rate uncertainty in the evaluation criterion model
by extending GCD aggregators. Traditionally, a
GCD aggregator is defined as a function of the
form F : [0, 1]n → [0, 1]. Our extension, Ex-
tended GCD (EGCD), is defined as a vector func-
tion U : ([0, 1], [0, 1])n → ([0, 1], [0, 1]), where the
abscissa of an input maps to the original preference
parameter of GCD and the ordinate corresponds to
a degree of uncertainty. During our research, we
paid attention to the fact the global preference cal-
culations are unchanged. Hence, in case there is no
uncertainty on the inputs, the proposed technique is
identical to GCD. As such, GCD can be considered
as a subset of EGCD.
Note that the output of an EGCD function is

again a vector. This implies the results of the sys-
tem evaluation problem can no longer trivially be
ranked from “best" to “worst" solution. Similarly
to the cost/preference model [15], based on cost-
benefit analysis methods, we have deliberately cho-
sen to keep the uncertainty parameter as a separate
output parameter rather than combining it with the
global preference score. Both logically and practi-
cally this makes sense: a single output would no
longer allow a DM to differentiate between a sys-
tem with high uncertainty yet low preference and
vice versa. Furthermore, the output uncertainty
can be seen as a measure of quality of the out-
put preference and as such has meaning on its own.
Finally, this also allows the DM to make a pref-
erence/uncertainty analysis after evaluating all sys-
tems, where the decision can be made to assign more
or less importance to the uncertainty on a system’s
preference, based on the nature of the context of the
problem.

5.1. Expected behaviour

As elementary uncertainty expresses any form of
doubt that exists on its corresponding input’s el-

ementary preference, it follows that the aggregated
global uncertainty expresses doubt on the system’s
global preference. As such, global uncertainty can
be interpreted as a degree of how much doubt that
exists on how representative the global preference
of a system is how well that system satisfies the
evaluation criterion.

To guard that uncertainty can not be lost or cre-
ated through aggregation we define the concept of
preservation of uncertainty. Mathematically this
translates to a property (called “internality") that is
also true for preference aggregation [1, 16], namely
that the global uncertainty can not drop below the
lowest elementary uncertainty nor can it rise above
the highest elementary uncertainty.

Furthermore, the calculation of the global uncer-
tainty output of an EGCD aggregator should not
only depend on the initial elementary uncertainties
of the inputs, but also on their elementary prefer-
ences.

In what follows, we have partitioned GCD ag-
gregators into two categories: strict and partial.
Among the strict aggregators, we distinguish three
special cases: the full conjunction, the arithmetic
mean and the full disjunction. We study these first
as they are intuitive and easy to reason about. The
partial aggregators form the gradient between the
strict cases and are more conceptual. We hence in-
vestigate their properties afterwards by extending
our logic on strict aggregators.

5.2. On strict aggregators

Considering the full, pure disjunction and full, pure
conjunction as aggregators that select a certain in-
put, we expect them to propagate that input’s un-
certainty to the output. As such, a pure aggrega-
tor’s output equals its dominant (i.e., highest for
disjunction and lowest for conjunction) input, for
both preference and uncertainty.

However, if multiple (or all) inputs have an equal
degree of elementary preference, the selection of the
dominant input is no longer trivial. In that case,
we first determine the set of inputs that are equally
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dominant (all inputs with the same elementary pref-
erence) before applying a tiebreaker to select the
best one. In case of a disjunction, this set contains
all inputs with the highest elementary preference.
Dually, in case of a conjunction, the set contains all
inputs with the lowest elementary preference. To se-
lect the dominant input from that set with respect
to the aggregator, we use elementary uncertainties.
In case of a disjunction, we are free to choose the
input with the lowest uncertainty, whereas in case
of a conjunction, we are forced to use the input with
the highest uncertainty. As such, it can be seen that
finding the dominant input in such a set follows the
inverse aggregation rules of the aggregator (lowest
uncertainty for disjunction, highest uncertainty for
conjunction).
The arithmetic mean, on the other hand, is a

weighted combination of all inputs. As such, the
aggregated uncertainty of the average aggregator
should also combine all elementary uncertainties in
a similar fashion. Hence, we define the global uncer-
tainty of the average aggregator as the arithmetic
mean of the elementary uncertainties, with the same
weights that are used to calculate the global prefer-
ence.

5.3. On partial aggregators

We can extend this reasoning to the area of partial
aggregators. Partial aggregators, unlike strict ag-
gregators, do not simply select an input but rather
produce a weighted combination of the inputs (re-
gardless of their implementation model). In the case
of WPM, the exponent r of the aggregator deter-
mines which side of the spectrum the output leans to
and hence which inputs are considered more “dom-
inant" than others. As such, we propose to also
calculate the global uncertainty through a weighted
combination of the elementary uncertainties, with
weights based on the dominance of their correspond-
ing inputs. If an input’s elementary preference is
similar to the global preference (both high or both
low), we say that the aggregator prefers this input
and assigns a high weight to that input’s uncer-
tainty. Dually, if the input and the output are dis-
similar, we say the aggregator does not prefer that
input and consequently assigns a low weight to that
input’s elemental uncertainty. This implies that for
a partial disjunction, the elementary uncertainties
of inputs with high elementary preferences will be
preferred, whereas for a partial conjunction, the ele-
mentary uncertainties of inputs with low elementary
preferences will receive higher weights.
Importantly, the partial aggregation function

should respect the three special cases. They should
be seen as restrictions placed on the mathemati-
cal model that implements the partial aggregation
function. Furthermore, the outputs from the partial
conjunction should form a smooth gradient between
the full conjunction and the average. Similarly, the
outputs from the partial disjunction should form a

gradient between the average and the full disjunc-
tion. Mathematically, this means the partial aggre-
gation function should be smooth.

For binary aggregators (with exactly two inputs),
we can use a simple weighted average. The weight
for each input is calculated as the difference be-
tween its elementary preference and the aggregated
preference, and then normalised. This behaviour
is illustrated in Table 2. The results show us that
the global preference calculation is, as defined, un-
changed by the addition of the uncertainty parame-
ter. Furthermore, we observe the trend of the global
uncertainty meets our expectations: in the case of a
full conjunction, the uncertainty of the lowest input
is taken, whereas in the case of a full disjunction, the
uncertainty of the highest input is propagated. Ad-
ditionally, the global uncertainty of the arithmetic
mean aggregator also produces the average of the el-
ementary uncertainties. In the partial area between,
we observe a gradient proportional to the global
preference, namely that the global uncertainty leans
to the elementary uncertainty of the preferred in-
puts. We also observe that the uncertainty calcula-
tions respect the mandatory behaviour of the forms
of the partial conjunction.

For aggregators that work on more than two in-
puts, such as compound aggregators [17, 18] but
also for general n-ary GCD aggregators, the desired
behaviour could be modelled using splines or nth
order Bézier curves, where the special cases impose
restrictions and all other inputs are used as control
points. Though this is certainly interesting to in-
vestigate in the future, it is not discussed further in
this paper.

6. Example

To demonstrate our approach we give a small, illus-
trative example. Imagine we are going on a holiday
to another country. There are multiple travel op-
tions, such as going by car (system A), by train and
public transportation in general (system B) or by
aeroplane (system C). We distinguish two attributes
for these travel options:

• travel time to reach the destination, and
• comfort of the transportation method.

There are many other attributes but for the example
it suffices to only take these two into account.

Table 3 shows the concrete specifications of the
three systems. The car system shows slight uncer-
tainty on travel time. This uncertainty stems from
the possibility of running into traffic jams or being
rerouted due to road works. The comfort of trav-
elling by car is rated as “high" as it offers a high
level of freedom. It is not only possible to go ex-
actly where you want when you want, but you can
also pack any luggage you want.

The train (and public transportation in general)
system has a higher travel time compared to the
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System Attribute Value Uncert.

Car Travel time 5h 0.2
Comfort High 0.0

Train Travel time 8h 0.3
Comfort Low 0.1

Aeroplane Travel time 3h 0.0
Comfort Medium 0.2

Table 3: Estimated values for the three systems
from the example.

car system. This is mainly because means of pub-
lic transportation are scheduled according to time
tables. Furthermore it is likely to have to trans-
fer multiple times during transit, especially for long
travels, which adds waiting time to the total travel
time. There is some degree of uncertainty, how-
ever, as public transportation is rarely exactly on
time. On top of this, there might be unforeseen cir-
cumstances causing for extra delays. The comfort
level of the train system is considered to be “low",
as the hassle of carrying your luggage around from
one transport to the next and the fact you are lim-
ited in what you can take with you are restricting
factors to your freedom.
It should come as no surprise that the aeroplane

system is the fastest of the three options. For this
attributes there is no uncertainty as aeroplanes are
usually very punctual. The aeroplane system is
rated between the car and the train system for its
comfort level as there are still limits to your free-
dom regarding the amount of luggage you can pack
and the personal freedom during transit, however a
lot of work is done for you during departure, arrival
and the flight itself. There is a certain degree of un-
certainty on this value, however, as there is a chance
your luggage is lost or your seat in the aeroplane is
unfortunately close to a source of nuisance.

Before we can begin evaluating these systems, we
need to define our preferences in the form of an eval-
uation criterion. This criterion is a combination (or
superposition thereof) of elementary criteria on the
attributes. Such an elementary criterion has to ac-
curately reflect our preferences with respect to ac-
ceptable and unacceptable values from the domain
of the corresponding attribute. Because being ac-
ceptable or not is considered to be a matter of de-
gree, a regular fuzzy set that is defined over the set
of valid domain values can be used to represent a
degree of preference. Hereby a membership degree
of 0 means unacceptable and a degree of 1 means
fully acceptable, as demonstrated in Figure 3.

We identify the following set of elementary crite-
ria:

• C1: Travel time is preferably short.
• C2: Comfort should be as high as possible.

Mathematically, C1 translates to a membership
function that prefers low values (the second type in
Figure 3). To define which values we find acceptable

Figure 3: Membershipfunctions with linguistic in-
terpretations.

System Attribute Elem. pref.

Car Travel time 0.833
Comfort 1.000

Train Travel time 0.333
Comfort 0.300

Aeroplane Travel time 1.000
Comfort 0.700

Table 4: Computed elementary preferences for the
three systems.

and unacceptable we further specify our preferences.
For instance, we find that a travel time of at least
10 hours or up unacceptable yet anything below 4
hours is perfectly acceptable. For any amount of
travel time between these two boundaries, we spec-
ify our preference declines linearly proportional to
the amount of hours, which results in a linear down-
ward slope between 4 and 10 hours.

C2 can be defined similarly, though here the do-
main of the attribute is a discrete set of values.
As such, we specify a certain degree of preference
for each value, where 0 denotes unacceptable and
1 indicates highly preferred. In our example, we
say high comfort equals a preference of 1, medium
comfort equals a preference of 0.7 and low comfort
equals a preference of 0.3.

We use these requirements compute elementary
preference scores for the travel time and comfort
attributes of each system. The results of the first
step of system evaluation are shown in Table 4.

In the next step, the elementary preferences with
their corresponding elementary uncertainties are ag-
gregated to a global preference and global uncer-
tainty for each system. To combine these criteria,
we use a linguistic technique proposed by Dujmović
[19]. Therefore, we first need to determine if these
requirements are replaceable or not. As we want
them to be true simultaneously, they are not re-
placeable and we will compute the degree of andness
to find the correct degree of partial conjunction to
combine them. Then, we add a linguistic level of
importance to each requirement. We say the com-
fort requirement is of high importance whereas the
travel time requirement is only considered to be of
medium importance. As such, we find the aggrega-
tor should be a Weak Conjunction [20].

The results are shown in Table 5. From the out-
put we learn the train system is probably the worst
option as its global preference is very poor compared
to the other systems. Additionally, the global un-

1503



System Preference Uncertainty
Car 0.914 0.103
Train 0.316 0.198

Aeroplane 0.840 0.107

Table 5: Computed global preference and uncer-
tainty scores for three sample systems.

certainty is the highest. Given we entered expected
values for the attributes and the interpretation of
uncertainty is a margin for worse cases, this implies
the train system’s satisfaction might be more disap-
pointing than indicated by its global preference indi-
cator. As such, we reject the train system. The car
system scores better than the aeroplane system in
both preference and uncertainty, and is hence likely
the best option, though both are viable alternatives.

7. Future work

In the future, we would like to investigate how to
deal with missing data. The lacking of information
can be seen as a special case of data uncertainty
though we can argue to keep track of this source of
uncertainty through a specific parameter to main-
tain a meaningful result in which it is clearly dis-
tinguishable if data is imprecise or missing. Should
both be treated through the same parameter, there
is no discerning two system ratings from each other,
though the uncertainty might have a completely dif-
ferent interpretation for both systems. Though we
can defend the uncertainty parameter can have mul-
tiple interpretations, it seems wise to uphold the
same interpretation for each system within the same
problem. Extending our research would likely re-
sult in the addition of another parameter to EGCD
functions, of which the properties and the impact
on preference and uncertainty aggregation need to
be examined.
Furthermore, we want to investigate the possibil-

ity of extending the evaluation criterion to be more
than a superposition of independent aggregator ag-
gregators. More specifically, we want to study the
feasibility of the use of contextual aggregator be-
haviour, where conditional executions can be con-
trolled through an external control input.

8. Conclusion

In this research, we have defined a strategy for in-
corporating uncertainties in evaluation criteria by
extending the well-known and widely used GCD
aggregators. We have established a set of proper-
ties that express an intuitive logic interpretation of
uncertainty aggregation. We have translated these
properties into a mathematical model that an imple-
mentation of uncertainty aggregation should adhere
to. For binary aggregators, we have proposed and
demonstrated an implementation thereof through a

weighted average function, and discussed its results.
These results have shown that our model for un-
certainty aggregation produces an intuitive output
that is able to deal with uncertain data and pro-
duce a meaningful and interpretable output. For
other aggregators, we have suggested possible im-
plementations without further investigation, though
it is clear they should also adhere to the same set of
properties. We have illustrated our model through a
small example to show the tangibility of our results.
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Gradient Symbol Exponent r GCD(1.0, 0.0)
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Very Weak Conjunction C−− 0.619 0.326
Neutrality A 1 0.500
Very Weak Disjunction D−− 1.449 0.620
Weak Disjunction D− 2.018 0.709
Medium Weak Disjunction D−+ 2.792 0.780
Medium Disjunction DA 3.929 0.838
Medium Strong Disjunction D+− 5.802 0.887
Strong Disjunction D+ 9.521 0.930
Very Strong Disjunction D++ 20.63 0.967
Strongest Disjunction D +∞ 1.000

Table 1: Gradients of the partial conjunction/disjunction and an example of a GCD aggregator.

r (1.0; 1.0), (0.0; 0.0) (1.0; 0.0), (0.0; 1.0) (0.2; 0.75), (0.7; 0.5)
C 0.000; 0.000 0.000; 1.000 0.200; 0.750
C++ 0.000; 0.000 0.000; 1.000 0.216; 0.742
C+ 0.000; 0.000 0.000; 1.000 0.243; 0.729
C+− 0.000; 0.000 0.000; 1.000 0.283; 0.708
CA 0.000; 0.000 0.000; 1.000 0.326; 0.687
C−+ 0.000; 0.000 0.000; 1.000 0.363; 0.668
C− 0.070; 0.070 0.070; 0.930 0.394; 0.653
C−− 0.326; 0.326 0.326; 0.674 0.421; 0.639
A 0.500; 0.500 0.500; 0.500 0.450; 0.625
D−− 0.620; 0.620 0.620; 0.380 0.481; 0.609
D− 0.709; 0.709 0.709; 0.291 0.516; 0.592
D−+ 0.780; 0.780 0.780; 0.220 0.552; 0.574
DD 0.838; 0.838 0.838; 0.161 0.588; 0.556
D+− 0.887; 0.887 0.887; 0.112 0.621; 0.539
D+ 0.930; 0.930 0.930; 0.070 0.651; 0.525
D++ 0.967; 0.967 0.967; 0.033 0.677; 0.512
D 1.000; 1.000 1.000; 0.000 0.700; 0.500

Table 2: The output of the EGCD function for several binary configurations of inputs.
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