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ABSTRACT 1. INTRODUCTION

Nowadays artificial neural networks are widely used to accu-
rately classify and recognize patterns. An interesting appli-
cation area is the Internet of Things (IoT), where physical
things are connected to the Internet, and generate a huge
amount of sensor data that can be used for a myriad of new,
pervasive applications. Neural networks’ ability to compre-
hend unstructured data make them a useful building block
for such IoT applications. As neural networks require a lot
of processing power, especially during the training phase,
these are most often deployed in a cloud environment, or
on specialized servers with dedicated GPU hardware. How-
ever, for IoT applications, sending all raw data to a remote
back-end might not be feasible, taking into account the high
and variable latency to the cloud, or could lead to issues
concerning privacy. In this paper the DIANNE middleware
framework is presented that is optimized for single sample
feed-forward execution and facilitates distributing artificial
neural networks across multiple IoT devices. The modular
approach enables executing neural network components on
a large number of heterogeneous devices, allowing us to ex-
ploit the local compute power at hand, and mitigating the
need for a large server-side infrastructure at runtime.

Categories and Subject Descriptors

C.2 [Computer-communication Networks]: Distributed
Systems— Distributed applications; 1.5 [Pattern Recogni-
tion]: Models—Neural nets
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The Internet of Things (IoT) is a popular paradigm that
refers to the interconnection, wired or wireless, between all
kinds of physical objects or “things”, which generate in-
formation about the environment (sensors) and/or interact
with the environment (actuators), resulting in a plethora of
new applications in the domains of smart cities, healthcare,
transportation, and so forth [1]. In order to create a truly
smart environment, the goal of many IoT applications is to
process these large amounts of sensor data in real-time, clas-
sify this information and come to a set of resulting actions
to execute.

Neural networks lend themselves naturally to process large
amounts of unstructured data and are commonly used for
many classification problems [21] such as recognizing objects
[15], traffic signs [6], speech [10] and handwritten digits [5],
as well as for more complex tasks such as obstacle avoidance
[4] or robot steering [19]. Similarly, neural networks can also
be used for generic IoT applications, in its simplest form
consisting of an input layer that takes various sensor data
as input, one or more hidden layers and an output layer
which maps to a number of concrete actions. For example
setting the temperature of a thermostat, which depends on
humidity, sunlight, room temperature, user preference, etc.

Currently, the Cloud is often the natural choice to train and
evaluate neural networks, benefiting from the huge compute
power and scalability [20]. However, for IoT applications
with sensors sending a continuous stream of data, the Cloud
introduces additional complications. First, a connection to
the Cloud is required at all times, having to deal with limi-
tations in bandwidth and a high and variable latency. Sec-
ond, sending sensor data to the Cloud may introduce secu-
rity holes and privacy issues. Therefore, our approach is to
distribute neural networks on local compute power in the
various devices at hand of the IoT ecosystem.

In this paper the DIANNE middleware framework is pre-
sented, that models, trains and evaluates neural networks
distributed across multiple devices. The framework runs on
a multitude of heterogeneous devices, ranging from small
embedded devices such as the Raspberry Pi, up to enter-
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prise server machines, as well as specialized GPU acceler-
ated hardware such as the NVIDIA Jetson TK1. By split-
ting a neural network into separate functional components,
parts of the neural network can be distributed among mul-
tiple devices at runtime, and one can overcome the memory
and/or processing power limitations of the IoT devices at
hand. While most frameworks are optimized for training
with batches of samples, the DIANNE middleware is opti-
mized for fast execution of one input sample at a time. This
is important in an IoT context where the neural network
continuously has to process incoming sensor data.

The remainder of this paper is organised as follows. The
next section presents the related work in scope of distributed
neural networks and current frameworks for building neural
networks. Section 3 gives an overview of the modular ap-
proach of the DTIANNE middleware. Section 4 and 5 expand
on the design and implementation choices while Section 6
shows the feasibility of this framework by comparing with
existing solutions. Section 7 concludes this paper and pro-
vides pointers for future work.

2. RELATED WORK

Current frameworks for building, training and executing neu-
ral networks mostly focus on running a neural network on a
single machine, often with support for GPU acceleration.

The University of Montreal’s Theano [2] compiler for math-
ematical expressions written in Python is often used for
designing neural networks. The developer defines a neu-
ral network as a set of mathematical expressions written in
a high-level description language, which are then optimized
and translated into native C++ (or CUDA for GPU), and
compiled into dynamic Python libraries and automatically
loaded by the framework. “Lasagne” [11] further enhances
Theano by creating an easy to use library of neural network
layers to build and train neural networks.

The deep learning framework Caffe [12] written in C++ from
UC Berkeley allows neural networks to be defined as plain
text schemas instead of code. It also has interfaces to Python
and Matlab.

NYU’s Torch7 [7] is a scientific computing framework with
wide support for machine learning algorithms and provides
an easy to use interface via the LuaJIT scripting language.
The Torch7 nn package provides modules for building neu-
ral networks, where each neural network layer can be com-
posed of a number of Torch modules. This modular ap-
proach makes it easy to compose and build neural networks.

None of these frameworks support the distribution of a sin-
gle neural network across multiple devices. Software distri-
bution is only used to some extent to speed up the train-
ing phase. Krizhevsky et al. [16] showed how a larger neu-
ral network can be trained by spreading the net across two
GPUs. In [13], the authors show that scaling up further to
8 GPUs can lead to a speed up factor of 6.16. Dean et al. [8]
presented the DistBelief framework for parallel distributed
training of deep neural networks. By adopting new training
algorithms they can distribute the training procedure on a
large number of CPU nodes, for example achieving a speed
up of more than 12 using 81 machines.

For DIANNE, a similar modular approach as Torch7 was
followed, treating a neural network as a composition of in-
dividual modules. However, in addition to Torch?7, a neural
network module in DTANNE is also a unit of deployment,
allowing us to distribute modules of a single neural network
across different devices. Like Caffe, DIANNE also has sup-
port for building neural networks in a declarative way, using
a JSON format. This allows to easily create and import
neural networks using a web UI builder.

3. DIANNE ARCHITECTURE

Typical feed-forward neural networks are composed of an
input layer, one or more hidden layers and a single output
layer. The output layer provides for example a vector clas-
sifying the input data. Such a vector has one value for each
classification class, between 0 and 1, depicting the probabil-
ity that the input can be classified as such.

In DIANNE, each neural network layer is represented by one
or more modules. DIANNE modules are the basic building
blocks of neural networks, which provide two flows of infor-
mation: a forward pass and a backward pass. The forward
pass, required for neural network execution, in which input
data is transformed in some way to give an output. The
backward pass, required for training neural networks, that
takes in the gradient on the output of the previous forward
pass and calculates the corresponding gradient on the input.
Each module can have one (or more) next modules to for-
ward its output to, and one (or more) previous modules to
propagate the gradient on the input to.

A neural network can be constructed by chaining a number
of modules. Starting with a special Input module, which
simply forwards the input data, and ending with another
special Output module, which collects the output. Besides
the Input and the Output module, DIANNE supports a
number of other types to build up neural networks. A Lin-
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Figure 1: A feed-forward fully connected neural net-
work example with a single hidden layer is split up
as a chain of DIANNE modules.
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Figure 2: Each node runs the DIANNE runtime which is able to create and configure module instances from
the centralized DIANNE Repository. This repository is an OSGi service which is deployed on an ATOLOS
node. Datasets can be used to forward samples through the neural network and evaluate or train the network.
AIOLOS and OSGi are used to enable distribution and remote calling of DIANNE modules.

ear module calculates a weighted sum of the input and can
be combined with an activation module (currently Sigmoid,
Tanh and (Parameterized) Rectified Linear Units ((P)ReLU)
modules are supported) to model a fully connected neural
network layer. For classification, a Softmaz module is added
before the Output which converts the output to classifica-
tion probabilities. In Figure 1 we show how a sample fully
connected neural network with one hidden layer is split up
in DIANNE modules.

Besides modules for fully connected neural networks, we
provide Convolution and MazPooling modules which are
frequently used in state-of-the-art convolutional neural net-
works. Various split and combine modules allow to create
parallel paths in a neural network, which makes it more
suitable for offloading parts of the network to other devices.
These special split and combine modules are the only mod-
ules which can have multiple next and prevous modules. An
example of such a distributed network is the cascade of neu-
ral network layers described in [18]. Finally, a number of
preprocessing modules are provided, for example to normal-
ize the input samples.

The DIANNE framework proposes a uniform method for
defining modules with which neural networks can be com-
posed. The framework facilitates the distribution of these
modules, by letting the user choose where to deploy modules
to. Both manual deployment, as well as automatic deploy-
ment using optimisation algorithms are supported.

4. DESIGN AND IMPLEMENTATION

An illustration of a DIANNE deployment is shown in Fig-
ure 2. As is already clear from Section 3, the central entity in
DIANNE is the neural network module. Each device in the
network is provided with the DIANNE runtime. The run-
time is able to create new module instances from a module
configuration description. Each module is uniquely identi-
fied by a 128 bit UUID and also states the identifiers of the
next and previous modules in the neural network. A module

instance is created based on the module type and a set of
module-specific properties depending on that type. A neural
network is then defined as a collection of modules that are
interconnected. The JSON format is used to easily configure
a neural network as shown in Listing 1.

{
"name": "mnist",
"modules": {

"46a5b20b-...": {
"id": "46ab5b20b-...",
Iltypell : IIInput n ,
"next": "3753d189-..."

},

"3753d189-...": {
"id": "3753d189-...",
"type": "Linear",
"next": "£124137f-...",
"prev": "46a5b20b-...",
n Output " : n 20 " s
"il’lput n R |l784|l

"£124137f-...": {
"idq": "£124137f-...",
"type": "Sigmoid",
"next": "bb5ffb82d-...",
"prev": "3753d189-..."

},

}

Listing 1: The partial DIANNE neural network
configuration file of the network shown in Figure 1.
The modules’ UUIDs are shortened for clarity.

These configurations can be stored together with previously
trained parameters in the centralized DIANNE Repository,
such that trained neural networks can be easily (re)deployed.
Note that the configuration file contains duplicate informa-
tion on the next and previous modules. This is done on
purpose, as it allows to deploy a single module on a runtime
without explicit knowledge of the complete neural network




structure. Of course this makes it a tedious task to cre-
ate such a neural network configuration. Therefore, we also
provide a web UI builder that reads or generates a JSON
configuration as explained in Section 5.

To enable distributed module deployment this modular neu-
ral network approach is combined with the OSGi-based plat-
form AIOLOS [23], which allows for transparently deploying
software components on multiple devices. By implementing
the DIANNE runtime as an OSGi bundle, and exposing the
DIANNE modules as OSGi services, modules can be seam-
lessly deployed and redeployed to different devices. AIOLOS
will discover and import remote module services that are re-
quired as next and/or previous modules of the current local
DIANNE module, and make these available through remote
method calls.

For the DIANNE modules, three different implementations
are supported to account for the heterogeneity of devices to
be deployed to. Besides our own pure Java implementation,
there is also support for a native C implementation based on
the Torch tensor library that uses BLAS, as well as a native
GPU accelerated implementation using CUDA via JNI. This
way, although the framework is OSGi and hence Java based,
the middleware performance is on par with existing neural
network frameworks. Consequently, depending on the device
hardware and architecture, the most suitable native library
is automatically loaded at runtime with fall back to the Java
implementation if none apply.

Besides creating, deploying and executing a neural network,
DIANNE also has limited support for training and evalu-
ating a neural network. Commonly used datasets such as
MNIST [17], CIFAR [14] and ImageNet [9] are made avail-
able as an OSGi service. Currently, only a basic stochas-
tic gradient descent training algorithm is implemented, but
more complex training techniques can be easily implemented
using the API exposed by the DIANNE runtime.

5. DIANNE GUI

In order to facilitate the construction and configuration of
neural networks, the DIANNE runtime is equipped with a
web-based GUI as shown on Figure 3. In the build tab, all
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Figure 3: DIANNE GUI for constructing and con-
figuring neural networks. On the left you can find
all supported modules that can be dragged onto the
canvas and connected to create a neural network.
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Figure 4: Double clicking on a module opens a con-
figuration dialog to configure the module.

building blocks are available from a toolbox on the left of
the screen and can be dragged and dropped onto the canvas
and connected to other modules to form a neural network.
Each module can be configured using a configuration dialog
by double clicking on the module, as shown on Figure 4. The
configuration can be saved to a JSON formatted string such
as the one in Listing 1 and will be stored in the DIANNE
repository for later reuse.

The UI has three more tabs: deploy, learn and run. In the
deploy tab, all devices running the DIANNE runtime are
listed and the user can manually select which device each
module should be deployed to. In the learn tab the neu-
ral network can be trained by selecting one of the available
datasets in combination with a suitable trainer (e.g. a basic
stochastic gradient descent). The chosen dataset can also
be dynamically split into a train, validation and test set to
assess the accuracy of the neural network. Finally in the
run tab the user can directly couple the neural network to
actual input and output devices. For example, a camera can
serve as the input for the network, while the output can be
used to open a door.

6. EXPERIMENTAL RESULTS

Our experimental results were conducted on three devices
shown in Table 1 connected with a wired gigabit LAN: a
laptop without GPU support, a Jetson TK1 embedded de-
vice with a specialized low power GPU and a powerful server
from iLab.t [3] equipped with a desktop grade GPU. Take
into account that there is a huge difference between the Ke-
pler GPU of the Jetson TK1, which has 192 CUDA cores,
and the GTX 980 GPU of this server, which has 2048 CUDA
cores with a higher base clock frequency. Each device runs
the CUDA tensor library if possible, otherwise the native C
library is used. The Java library was not used during these
experiments. The pre-trained fast OverFeat [22] network
was used, which classifies an image in 1000 categories with

Table 1: Hardware specifications.

name | arch. | CPU | GPU | RAM
Laptop x86 | i7 4500U NA 4GB
Jetson TK1 | ARM | Cortex-A15 | Tegra K1 | 2GB

iLab.t [3] x86 | E5-2620v3 | GTX 980 | 32GB
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Figure 5: Fast OverFeat [22] network on two deploy-
ment setups. On the left deployed on a single laptop
and on the right the network was partially deployed
on the laptop and partially offloaded to the Jetson.

a classification error of 16.39% on the ImageNet test sample
set. The accurate OverFeat model reaches a classification
error of 14.18% on the same test sample set, but it needs
nearly twice as many connections which results in a longer
execution time.

In a first experiment we compare two deployments of the fast
Overfeat neural network: (1) the complete neural network
deployed on the laptop and (2) the first 5 of the 8 layers
offloaded to the Jetson TK1. Executing OverFeat entirely on
a single Jetson is impossible because the GPU memory is too
limited to fit the complete neural network. In each scenario
samples were randomly selected from the ImageNet dataset
and were one by one executed on the neural network. The
average execution times can be seen in Figure 5. Offloading
convolutional modules to a low power GPU device lowers
the execution time drastically even if the modules need to
communicate over the network. Also note that the biggest
share of the time in the offloading scenario is due to the part
that is still executed on the laptop, so additional speedup
can be achieved when having multiple local GPU devices.

In order to compare DIANNE to the other popular frame-
works depicted in Section 2, we conducted an experiment
on the powerful iLab.t server [3] (see Table 1 for specifica-
tions). During this test we used the same OverFeat network
with ImageNet samples. The results of Figure 6 show that
DIANNE actually performs on par or better than the other
frameworks, while Torch7 with cudnn and Theano perform
roughly the same. This is expected since Torch7 with cudnn
and Theano both use version three of the NVIDIA cudnn
CUDA implementation, while the DIANNE CUDA code is
largely based on cunn, the standard CUDA back-end from
Torch7. Additionally, the other frameworks are optimized
for processing samples in batch in the training phase, instead
of a single sample feed-forward.

Time/Sample (ms)

DIANNE Torch7 Torch7 Theano
Nvidia cunn
cudnn v3

Figure 6: Comparing the single sample feed-forward
time on the DIANNE middleware and popular deep
learning frameworks. All test were conducted on the
iLab.t server with a GTX 980 GPU (Table 1).

The first experiment’s results prove that large neural net-
works, which can not fit on small embedded devices, can
benefit from distributing the slow convolutional modules to
other devices in the IoT environment preferable equipped
with GPU acceleration. The second experiment shows that
the DTANNE middleware performs excellently on GPU ac-
celerated devices, outperforming all tested frameworks when
only a single image is forwarded through the network.

In the future more embedded devices will incorporate low
power cost efficient GPU chips, like the Kepler GPU in the
Jetson TK1. While this would improve the local execu-
tion time of neural networks they still have far less available
memory capacity than their desktop variants, which limits
the neural network size. By using DIANNE middleware we
can distribute large neural networks on a range of devices
without the need for costly infrastructure. Even with pow-
erful cloud infrastructure there is a hard limit to the size
of a neural network on a single device. When we move to
datasets with more input parameters from all kinds of IoT
devices the distribution of neural networks will be a must.

7. CONCLUSION AND FUTURE WORK

In this paper the DIANNE framework is introduced, which
facilitates easily modelling neural networks and deploy them
across multiple devices supporting the DIANNE runtime.
The framework has the following features: (i) model neural
networks as a set of interconnected, modular and config-
urable components, (ii) discover all targetable devices with
a DIANNE runtime, (iii) deploy all or specific modules to
these devices, (iv) connect input data (e.g. camera, dataset
samples, etc.) and execute the neural network, (v) load or
save trained networks from the JSON-format. As an illustra-
tion the pre-trained fast OverFeat neural network was loaded
and deployed on multiple devices, which allows for classifi-
cation of ImageNet samples to 1000 classification classes.



Future work includes designing algorithms to let the frame-
work automatically select and deploy the neural network
modules to the pool of devices according to various met-
rics (such as minimal neural network output latency or spe-
cific interconnection link bandwidth minimization). This
automatic selection could take into account the available
CPU/GPU compute power, memory limitations and net-
work speeds, or even be more dynamic to support on the fly
reorganisation of the neural network when devices connect
or disconnect from the IoT environment.
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