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Abstract

The roll-out of AR solutions in industrial environments
goes beyond technical requirements and involves
challenges regarding software deployment, management
and maintenance. In this paper we present a lightweight
runtime environment for AR applications, using a
component-based management platform providing easy
deployment, updates and reuse of software components.
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Introduction

Augmented Reality (AR) is a promising driver for
industrial applications. Already in the early nineties, AR
technology was being considered at Boeing to aid factory
workers in manufacturing airplanes [6]. Nowadays AR is
still a hot research topic for industrial applications, for
example using head-up devices for assistance in
automotive assembly [5], order picking [11], etc. Despite
continuous advances in hardware miniaturization, wearable
displays, tracking technologies, etc. many challenges still
remain in an industrial setting. For example, adopting an



AR order picking solution within a large company, results
in a large amount of head-up display devices, that have to
be manually installed, configured and maintained over
time. However, current AR platforms such as Metaio's
Unifeye [1], Artoolworks’ ARToolkit [2], Qualcomm'’s
Vuforia [3] only offer an SDK, but no dedicated runtime
environment. Also, the solutions at hand are offered as
monolithic libraries difficult to integrate with other code.

In this paper, we present two contributions to leverage
industrial AR. First, we present a lightweight runtime
environment based on the Linux kernel, avoiding common
operating system services that are not used in a dedicated
AR device, such as a window manager. Second, we
propose a component-based management platform that
takes care of runtime management of applications,
enabling easy deployment, updating and reusing of
software components.

Platform Architecture

The overall architecture of our platform is presented in
Figure 1. As the platform has to run on mobile, embedded
devices, we chose to build it from scratch based on a bare
Linux kernel, using the Buildroot build system, which is
based on the uClibC, a C library for embedded devices [4].
Together with the kernel we provide some core native
libraries required for AR applications such as:

BusyBox a collection of many common UNIX utilities for
embedded systems.

libDRM library that directly interfaces with the video
hardware using the Linux kernel's Direct Rendering
Manager (DRM).

Mesa3D an implementation of the OpenGL (ES) APIs
for rendering 3D to the video hardware.

v412 library for interfacing with camera devices, enabling
to capture video frames.
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Figure 1: Overview of the platform: on top of a minimal Linux
platform we deploy the OSGi service component runtime,
providing reusable software components for AR applications.

In order to facilitate runtime management of applications,
we adopted the OSGi service platform [9], a module
system for Java that implements a complete and dynamic
component model. Application components, called
bundles, can be remotely installed, started, stopped,
updated, and uninstalled without requiring a reboot, and
dependencies between bundles are resolved and handled at
runtime. OSGi incorporates semantic versioning, which



facilitates the management of software updates.

In order to support the OSGi module system, a Java
runtime environment is required, as well as an
implementation of the OSGi specification:

JamVM a lightweight Java runtime environment with a
very small footprint and support for various
architectures.

Concierge a highly optimized OSGi runtime targetted for
embedded devices.

On top of the OSGi runtime then application specific
bundles can be deployed. Many of these components can
be reused in different applications, such as components
for accessing hardware, rendering, tracking algorithms,
etc. The OSGi platform can be used in conjunction with
other underlying systems, for example a fully fledged
Linux distribution or an Android kernel with a Dalvik VM.
In the next section we will discuss an example
component-based AR application.

Component-based AR Applications

We implemented a sample AR application on top of our
platform, based on the Parallel Tracking and Mapping
(PTAM) algorithm proposed by Klein et al. [7]. In order
not to sacrifice performance, many of the computer vision
algorithms are still implemented in optimized native code,
which is accessed from within the OSGi bundles using the
Java Native Interface (JNI). We identified the following
key components, as illustrated in Figure 2:

VideoSource The VideoSource fetches video frames from
the camera hardware. These frames are analyzed by
the Tracker, and rendered with an augmented
reality overlay by the Renderer.
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Figure 2: Overview of PTAM components.

Tracker The Tracker searches map points in video frames
and calculates the new camera pose. When a new
keyframe should be added to the map, this keyframe
is sent to the Mapper.

Relocalizer When not enough map points are found in
the video frame, the Tracker calls the Relocalizer,
that estimates the camera position using the small
blurry image approach.

Mapper The Mapper receives keyframes from the
Tracker, that are used to initialize and extend the
map. The Mapper also performs the bundle
adjustment to optimize the map points. The
Tracker and Relocalizer receive notifications when
the map is updated.

Model Contains the model of possibly virtual items that
have to be displayed as an overlay.

Controller Handles user input and updates the Model.



Renderer Each camera frame is rendered on screen
together with an overlay of 3D objects specified in
the Model. These 3D objects are aligned according
to the camera pose given by the Tracker.

Adopting the component-based approach offers a lot of
advantages over a monolithic implementation. First,
software components can be automatically fetched over
the network and installed on all devices usign the OSGi
Bundle Repository (OBR) [8]. Second, this approach
enables easy component upgrades, and even the
implementation of components can be changed, i.e. the
PTAM Tracker component can easily be exchanged with a
marker based tracker without changing other application
functionality. Finally, the framework can be used for
offloading components to server infrastructure as
proposed in [10].

Prototype implementation

We have a prototype implementation of the proposed
platform running on an embedded PC equipped with an
Intel Atom D525 dual core CPU clocked at 1.8 GHz. To
asses the overhead of the Java platform we compared the
cost of a method call in Java via JNI versus a pure C
implementation. For each JNI call an extra cost of 120 ns
has to be taken into account. However, this cost is very
small as processing one camera frame can easily take up
to 50 ms.

Conclusion

In this paper we presented a lightweight runtime
environment and OSGi-based management framework for
industrial AR applications. The component-based
approach enables efficient deployment, updating and reuse
of application components. First experimental results
show that the overhead of the component layer is
negligible compared to frame processing times.
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