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ABSTRACT

In the last couple of years, the market demandmem®asing
number of product variants. This leads to an irdé rise of
the complexity in manufacturing systems. A modefjtantify

the complexity in a workstation has been developetipart of
the analysis is done manually. Thereto, this pgpesents the
results of an industrial proof-of-concept in whicthe

possibility of automating the complexity analyssing multi-

camera video images, was tested.

INTRODUCTION

Manufacturing plants are constantly pushed towdriggher
quality, lower cost and more product variety. Iraed product
variety is necessary to meet the changing custoarat
sustainability demands, but it also entails andase of the
complexity of (re)designing processes and worksbati
Zeltzer et al. (2012) proposed a clear and objeatiefinition
of the complexity of a workstation. Furthermoreg timain
drivers of complexity were determined and used rialyze
work stations and categorize them as high complejow
complex systems.

Some of the information needed for this compleaggessment
can be captured directly from the Enterprise Reso®anning
(ERP) or Manufacturing Execution System (MES), paitt of
the data capturing is still done manually. Thisgragaresents a
field-test within a company in the automotive sectwhere
multi-camera video footage was used to automate dte
capturing at the workstation. The workstation thags
investigated is part of the rear axle assembly, limhich
produces rear axles for 3 different models.

The paper starts with an introduction to the videwlysis
technology and the explanation of the algorithmeduso
process the images. Further, we clarify how theuwed data
was translated in information that is useful fog tomplexity

model and we present some results. We then fintlizgaper
with the conclusions and future research.

production

LITERATURE REVIEW

Not a lot of research had been done to date orletls of

complexity of a manufacturing system. The firstoefffto

qguantify the effect of complexity on the performanof

automotive plants was made by MacDuffie et al. ¢wihg

their research, the part complexity is the onlyredat that has
a consistent negative effect on the performancesurh a
production system. ElMaraghy et al. (2003) statat tthe
complexity is related directly to the quantity, eligity and
content of the information that is passed to thméuu in the
system. They also captured the complexity of a pectdn

system in an
information needs (ElMaraghy et al, 2004). Zeltzdr al.

(2012) proposed a clear and objective definition thé

complexity of a workstation. They were also thestfito

develop a model that quantifies the relationshigwben
complexity as perceived by the operators and iteh.

The use of video recordings in a manufacturing remment is
not completely new. For years, industrial engineses using
films to perform time studies using Predetermineativh and
Time Systems (PMTS). Video clips are very efficiemot
document the work method (Karger and Hancock 18&2yz

2001), but the inability to derive exact distandesm the
images lead to inaccuracies in the results. Elnelend Gilad
(2006) developed a rapid video-based analysis systat is
able to translate distances accurately from théuggcframe
into real distance values of the workstation byngsdigital

mapping. Dencker et al. (1999) presented a videsedhaystem
which served as a training tool for operators am @¢he hand
and as an information system on operations on tther dvand.
Furthermore questions of ergonomics or health aaigtys
issues at the workstation were taken into acctrilexteer, a
supplier of automotive parts, 2D video analysistwgafe is
used for continuous improvement of their procesdgyg.
overlaying the images of 3 different operators f& same
workstation, differences are demonstrated and tsé@dprove
and standardize the work method.

Although video images are commonly used in indushgre is
to the best of our knowledge no system to dateubes multi-

index, which is primarily based on the
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camera footage to determine the complexity of wiaitkens
and detect waste in assembly processes.

VISUAL HULL EXTRACTION
Position extraction

To calculate the position of the subject on theugtbplane, a
multi-camera setup is utilized. This setup enabies to

approximate the 3D shape of an object in the oppitay field

of view (FOV) of the cameras, otherwise called ¢fsuial hull

(Laurentini, 1994). A visual hull is generated byrstf

constructing, for each camera, a generalized iyfioone in

the 3D space with the camera position being the,aqred the
silhouette in the camera view as the base. Thealisull is

then the intersection of these cones. We approginibé

position of the subject by projecting the visuall’swcenter of

mass onto the ground plane.

Silhouette extr action

The silhouettes, commonly represented as binaryjksnaze
typically produced by foreground/background segutomn

algorithms based on, amongst others, static baokgranodels
(Kim et al., 2007) or motion detection (Zivkovic &t, 2006).
Commonly, such algorithms are only able to provicable
foreground masks when operating in a highly cotddl
environment. The ambient space in a factory haleer, is
largely composed of moving objects. Moreover, mégtory

halls have large north face windows in the roofinging

additional global lighting changes. Therefore, tgbi
foreground/background segmentation methods prowedbet
unsuitable in this application. To overcome thesmiés, we
outfitted the subject with a yellow fluorescent tvékat is
clearly distinguishable from the background. Hentee

segmentation process is primarily based on colmrimation.

We propose to convert the image to YUV color sp&me
enhanced robustness against lighting changes. fideess of
extracting the foreground from the input video s=tes is
explained irFigure 1
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Figure 1: Segmentation algorithm outline

The first stage is to obtain a rough segmentatibnthe
fluorescent vest from the input Figure 2 by using a
empirically defined double threshold in the YUV a@okpace.
This segmentation (V1) is then post processed usng
morphological opening to eliminate noise (V2). Sinthe
fluorescent vest is supplemented with gray horiabstripes,
an additional morphological close operation withlaage
vertical rectangular structuring element is perfedmAt this
stage, a rough segmentation of this vest is atfaif\é3).
Incidentally, this mask is frequently partially daded by the
bare arms of the subject. To incorporate this, ddit@nal
double thresholding step is introduced to obtairroagh
segmentation (Al) of the arms of the subject frdm input
image. Then, V3, and Al are dilated with an ellidab
structuring element, in order to make these maskslap each
other when supplemented on each other (C1). Simigghtb
yellow is far less likely to occur than skin colar,region of
interest is generated by dilating V4, the resultwdfich is
subject to a binary and operation with C1. Anydaal holes
in C2 are filled with a morphological closing opkoa.
Finally, we eliminate any concavities in the resigt
foreground regions by calculating the convex hilieach of
the connected components. This is beneficial inpdimg the
visual hull, as these concavities typically depfa shoulders
of the object. Figure 3 shows the resulting foregmask for
a single camera.

Figure 2: input camera image

Figure 3: final foreground mask of single camera

3D shape reconstruction

In this work, the visual hull is constructed by msaf voxel
carving. First, the 3D space is discretized intxels. Any
voxel is part of the visual hull if its projecti@mto each of the
cameras planes lies inside the respective silheuettessence,
each camera carves away regions of the 3D shapedhaot
project onto its silhouette, resulting in a recagble 3D



shape. Figure 4 shows the generation of the vikubilof a

person for 1, 2, 3 and 4 cameras respectively.

Note that to guarantee a precise visual hull, thedity of both

camera calibration parameters (both intrinsic attdresic) and

the extracted silhouettes are paramount. Furthermtre

visual hull is not necessarily convex, since casitin the

silhouettes are carved out of the 3D shape as wallthe

process of depth carving solely considers lightsréging

blocked by the actual object, concave surfaces henreal

object are represented as planar surfaces on thalvhull.

This problem can be resolved, however partiallyjrttyeasing

the number of distinct viewing angles as this inses the level
of detail of the resulting 3D object, or by changthe position
of the cameras so as to view the concavity from @em
sideways position. Indeed, the visual hull is hyjgiependent
on the camera positions.

Figure 4: Principle of voxel carving with 4 viewpté

DATA PROCESSING

The output of the image processing is a sequelitabf 3-
dimensional coordinates which describe the positiérthe
operator for every frame (20ms) in the video reougs.
Theoretically, three cameras should be sufficientdlculate
these positions. In practice, adding a fourth cantezlps to
eliminate noise in these results. This is showfigure 5 and
Figure 6 in which all positions visited by the ogter during
the recordings are depicted, based on the datanebtdrom
respectively three and four cameras.

Figure 5: Locations visited by the operator (3 ceagp
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Figure 6: Locations visited by the operator (4 cease

Routing diagram

To see how the operator moves through the workstath
routing diagram is constructed. To overcome the&dneacies
in the data, we take the moving average positi@ar @vsecond.
In the routing diagram, these average locationsphotted for
every 0.5 seconds of a total work cycle of 43.50mds. This
results in a routing diagram as shown in Figure 7.
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Figure 7: Routing diagram

Work load variation and fluctuation

Substantial variation in the cycle time can indéctite presence
of high complexity in the work content. To investig the
possibility of deriving the cycle time and the fiuation of this
cycle time, a twofold method was used.

In the first phase, we select a (great) numberarhés in the
recordings and look for frames where the operatsitsvthe
same location he visits in the starting frame. Ttarting
frames are randomly selected from the first mirndtthe video
footage. To decrease the calculation time, we oalgulate the
distance of the operators starting position foegan number
of frames. Therefore, another random number israéted for
every starting location and the method jumps thhotlng data
using this number as a search interval. For thedected
frames, the method calculates the distance of tsitipn in
that frame to the starting position. If this distans less than 3
cm, the frame number is saved in a list togetheth vitis
corresponding starting frame. This list is usedhasinput for
the second part of the method.



The results of the clustering algorithm are showrTable 1.
The calculated cycle time of 43.5 seconds corredporery
well to the theoretical cycle time of 43.4 secotits company
take into account. Also the significant fluctuationthe work
cycle agrees well with the video images.
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Figure 8: Samelocation Algorithm

Figure 8 shows the results of this method. On taxig, the

selected starting frames are shown. The frameshichathe

operator visits the same location again, are showrthe y-

axis. From a quick look at this graph, we learr thare is a
clear pattern arising in these results.

The cycle time and its variation are calculatedha second
phase of the method, by determining the distantedsn the
lines in the graph above. For this, a 1-dimensidaateans
clustering algorithm was implemented. This algamtstarts by
determining the number of clusters in the datasatually. We

can derive from the graph that there are 12 clastethis set.
The starting solution can be constructed by selgctl2

randomly chosen points in the data range. Sinc&mnwev that

in the final solution the centroids of the clustes be more or

less evenly distributed over the data range, wildd/the data
range in 12 intervals and chose a random point ierye
interval. That way we were able to speed up thesteling

algorithm.

The algorithm then calculates the distance of afhgoints to
the centroids and assigns every point in the datatc the

cluster with the closest centroid. Afterwards tlesvrcentroids
of the clusters are calculated. The algorithm wejpeat these
steps until convergence.
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Figure 9: K-means clustering algorithm outline

Cycle time analysis
Average C/T 43,5 set
Standard Deviation 7,9 sgc
57,42 %
Max/Min Ratios 27,05 %

Table 1: Results cycle time analysis

Vehicle zones skipped

Unnecessary large walking distances may be anatidit of a
poorly designed process. To measure this, theisudigided in
zones. Counting the number of times the operatssgsasuch a
zone without performing a value adding activityn deze useful
to calculate the complexity and evaluate the desifrhe
assembly process.

If we take a quick look at the video, we see that dperator
passes the middle section of the axle quite ofemabse a lot
of the work is being done at both sides of the .aklee work
station is divided in 4 zones, as shown in FigWre 1

Figure 10: Vehicle zones skipped

To calculate this, an algorithm was implementedmatlab.
The algorithm starts by determining in which zohe operator
is located for every point in the data set. Theudseode for
this method is written down below. The input foistmethod
is a consecutive list of the x- and y-coordinatethe locations
visited by the operator and a list “zones” thatasistructed as

follows: [Xin,zonel Xout,zone1 Yin,zonet Yout,zonei Xin,zoneZ---]-
function [inout] = ZoneDetect( path, zones )
INITIALIZE table “inout”
CALCULATE a,b and c coefficients for zone borderagigns
FOR length(path)

fill in the points in the equations of the zonedwss to
determine the position of these points to the bsrde

iv



frame theoretical real 1if zoneis
framein out distance timein time out walking time time zone skipped

16963 17167 2.78 339.74 343.82 0J05 4.08 4 0
17168 17245 19.29 343.84 345.38 0|36 1 3 1
17246 17674 30.11 345.40 353.96 0/56 8.56 2 0
17675 17730 8.29 353.98 355.08 0J15 1 3 1
17731 18239 6.6% 355.10 365.26 0J12 10.16 4 0
18240 19026 13.18 365.28 381.p0 0{24 15.72 3 0
19027 19215 0.1( 381.02 384.Y8 0J00 3.76 4 0
19216 19305 19.29 384.80 386.58 0|36 1 3 1
19306 19671 33.84 386.60 393.90 0/63 7.30 2 0
19672 19728 10.99 393.92 395.04 020 1 3 1
19729 20229 5.93 395.06 405.06 011 10.00 4 0
20230 20644 10.46 405.08 413.86 0{19 8.28 3 0
20645 20705 5.24 413.38 414.58 0J10 1,20 4 0

Table 2: results vehicle zones skipped algorithm

FOR number of zones
IF point is in zone
Add to inout

[X-coordinate, Y-coordinate, zone

number]
BREAK;
ENDIF
ENDFOR
ENDFOR

Note that this method is not limited to 4 zones ror
rectangular zones.

To calculate this, the locations where the operatders and
leaves the zone are determined and the distaneed&etthese
two points is calculated. Based on an average nglépeed of
5km/h, the theoretical time the operator needs rassc the
zone, is calculated. We can safely assume thaigheator will

perform some action in a zone, if he stays in #wate for a
time that is significantly longer than that thearaktime.

We noticed that the real time needed to cross a mhigher
than the theoretical time based on an average mepigpeed of
5km/h. This can be explained by the fact that tperator

usually isn't able to walk in a straight line andchuse he
constantly needs to accelerate and decelerateefbnewe say
that the operator skips a zone if:

theoretical walking time.threshhold > real time in zone

An extract from these results (2 work cycles) issgnted in
Table 2. Again these results correspond well to \heo,
where we see that the operator regularly passesnttdle
section of the axle to go from the right hand sméhe left and
back.

CONCLUSIONS

In this paper, we presented an industrial prooaricept in
which we investigated the possibility of automatitige
complexity analysis of an assembly workstation tsing
multi-camera video images. The current image [@siog
technology can help us to automate the complexighyais of
a workstation of an assembly line.

For now, the focus was mainly on the position @& tperator
throughout his work cycle. More research shoulll Isé done
on the recognition of hand motions and the viewdirgction

of the operator. Also linking the information wetdem the
video analysis with other sources of informationtsas MES-
systems, ERP, RIFD tracking,... could be useful smdtate
more of the visual cues to complexity parameters.
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