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Abstract

We present four training and prediction sched-
ules from the same character-level recurrent neu-
ral network. The efficiency of these schedules is
tested in terms of model effectiveness as a func-
tion of training time and amount of training data
seen. We show that the choice of training and
prediction schedule potentially has a consider-
able impact on the prediction effectiveness for a
given training budget.

1. Introduction
Recurrent neural networks (RNNs) are able to take a data
sequence of arbitrary length as input, map it to a hidden
state, and then use this hidden state to make a prediction.
This prediction can be a single value, but it can also be a en-
tire new sequence. In this paper we will study a ‘character-
level RNN’, i.e. a language model that learns to predict the
next character of a text given the history of characters seen.
At every time step a new character is fed into the RNN,
which then transforms its hidden state to be able to pre-
dict the next character. Such a type of RNN is also used
in applications such as speech to text translation (Graves &
Jaitly, 2014) and video frame tagging (Pigou et al., 2015).
In the next section will illustrate how such a model can be
learned using different training and prediction schedules,
and how this affects the model efficiency.

2. Experimental setup
In all experiments from this section we will use the follow-
ing neural network architecture:

Input (65 dimensions) – LSTM layer (50 dimensions, in-
put/output/forget gate non-linearity: sigmoid, cell non-
linearity: tanh) – Dense layer (65 dimensions, softmax non-
linearity).
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The number of input and output dimensions is 65, since
there are 65 different characters in our text corpus, and we
encode every character in a one-hot representation. We
choose to use a Long Short-Term Memory (LSTM) layer
above a simple recurrent connection as this is currently
state of the art in many text mining tasks (Greff et al.,
2015).

To train this neural network we use Truncated Backpro-
gratation Through Time (TBPTT). Every k1 time steps
the gradients are backpropagated for k2 time steps in the
past (we use the same parameter notation as in (Sutskever,
2013)). To allow for temporal dependencies in the input se-
quence between every gradient update, we can additionally
ensure that k1 ≤ k2. The choice of these parameters can be
a trade-off between computation time and model effective-
ness. To calculate the gradients in the TBPTT, we use the
categorical cross entropy as loss function.

Apart from choosing these parameters, there is a choice of
how to implement the training and prediction procedures,
which can influence both model effectiveness and train-
ing speed. Below we list four different schedules for the
character-level RNN. A visualization of each of the sched-
ules is shown in Figure 1.

Schedule 1 – In this schedule we take sequences of fixed
length k2 as input for training, and for every input character
in such a sequence we predict the next character. This leads
to k2 losses that we backpropagate through the network.
The hidden and cell states in the LSTM layer are reset to
their initial values for every input sequence. These initial
states are learned through backpropagation. At test time,
we take an entire sequence of length k2 as input, and we
ask to predict the single next character.

Schedule 2 – This schedule is similar to the first one, but
instead of making a prediction for every input character at
train time, we now only predict the final next character. We
therefore only have a single loss that is backpropagated. At
test time, the procedure is the same as in schedule 1.

Schedule 3 – Here, the training procedure is the same as
in the first schedule. At test time we start predicting using
the learned initial hidden state. After that the subsequent
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Figure 1. Four different schedules of training and predicting from a character-level RNN.
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Figure 2. Perplexity as a function of number of input train sequences and elapsed training time. Blue: schedule 1; red: schedule 2; green:
schedule 3; yellow: schedule 4.

character is predicted for every input character, after which
the hidden state is updated to be used in the next prediction.

Schedule 4 – At train time, the initial hidden state for a new
input sequence is reused from the previous input sequence.
More specifically, as initial hidden state for the input char-
acter at time t we use the hidden state produced by input
character at time t − 1 from the previous input sequence.
The prediction procedure in this final schedule is the same
as in schedule 3.

To evaluate the predictive capacity of a character-level
RNN, we use the perplexity measure, traditionally used
to measure the effectiveness of language models. We will
evaluate the four schedules explained above in terms of per-
plexity vs. training time and training input sequences: the
most efficient implementations should reach a lower per-
plexity faster than the other ones. Every implementation is
run a 100 times with random settings for the k2 and k1
parameters: 5 ≤ k1 ≤ k2 ≤ 50. This is all done on
the same hardware, and for a total of 500,000 input train
sequences. We employ Adam gradient updates (Kingma
& Ba, 2015) with a batch size of 50 across all experi-
ments, and we use the Lasagne implementation framework
(github.com/Lasagne/Lasagne). Our dataset con-
sists of excerpts from Shakespearian plays; the train set
has around 1,100,000 characters, and the test set around
11,000.

It is clear from the figures that all settings for schedules 1
and 2 converge smoothly towards an optimum, but schedule
1 is more efficient. Schedules 3 and 4 have noisy behaviour
in the beginning of the training phase. After that all settings
for schedule 4 seem to converge to the same optimum, but
some parameter settings for schedule 3 continue to behave
very noisily. Schedule 1, however, seems to be performing
best and most consistently. We observe that the settings for
which the lowest perplexity is reached the fastest, all have
a small k2 < 10. Since k1 ≤ k2, this means that frequent
model updates over short input sequences are preferred.

Experimental code and data can be found on: https://
github.com/cedricdeboom/CharRNN.

3. Conclusion
We tested the efficiency of multiple training and prediction
schedules of a character-level recurrent neural network,
in terms of model effectiveness as a function of training
time and the number of training input sequences. We ob-
served that the choice of a particular schedule can consid-
erably impact the efficiency of the model. It also turns out
that training over short input sequences and with frequent
model updates is most efficient. Further research is how-
ever required to verify if these conclusions hold for more
complex models and other datasets.

github.com/Lasagne/Lasagne
https://github.com/cedricdeboom/CharRNN
https://github.com/cedricdeboom/CharRNN
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