Fill the Void: Improved Scheduling
for Optical Switching

Kurt Van Hautegem, Wouter Rogiest and Herwig Bruneel
SMACS Research Group
Department of Telecommunications and Information Processing (TELIN); Ghent University
St.-Pietersnieuwstraat 41; B-9000 Ghent, Belgium
Email: {kurt.vanhautegem =, wouter.rogiest, hb} @telin.ugent.be

Abstract—With ever-increasing demand for bandwidth, op-
tical packet/burst switching is proposed to utilize more of the
available capacity of optical networks in the future. In these
packet-based switching techniques, packet contention on a single
wavelength is resolved effectively by means of Fiber Delay Lines.
The involved scheduling algorithms are typically designed to
minimize packet loss and/or packet delay. By filling so-called
voids, void-filling algorithms are known to outperform their
non-void-filling counterparts. This however comes at a large
computational cost as the void-filling algorithms have to keep
track of beginnings and endings of all voids. This is opposed
to the non-void-filling algorithms which only have to keep track
of a single system state variable. We therefore propose a new
type of algorithm that selectively creates voids that are larger
than strictly needed, only when these will likely be filled. Results
obtained by Monte Carlo simulation show that selective void
creation can jointly reduce packet loss by 50% and packet delay
by 18%, without imposing a high computational cost.

I. INTRODUCTION

Growing trends in cloud computing and streaming media
services are expected to increase the demand for bandwidth
vastly. With dazzling bandwidths of up to 43 Terabit/s
with a single laser [1], optical fiber seems the answer to
all of our craving for data. In optical networks, however,
capacity is not limited by the connections (links) but by the
intersections (nodes). Currently circuit switching is used to
establish a dedicated communication channel between two
communicating nodes. This guarantees packet arrival but also
reduces the available capacity due to inflexibility.

Promising solutions to address the rising demand in
bandwidth are the packet-based switching techniques optical
packet/burst switching (OPS/OBS) in which network links can
be shared among communication sessions, thereby increasing
the usage of the available fiber capacity. Although there has
been a lot of criticism concerning the feasibility of OPS/OBS
[2], the technology remains a future-proof alternative to slow
and power-consuming electronic switching in the backbone
[3]. In packet-based switching contention may arise in the
network nodes when more than one packet heads for the same
output port at the same time. As a solution temporary buffering
is currently implemented with Fiber Delay Lines (FDLs) [4] in
which the optical signals are sent through long pieces of coiled
fiber to delay them for a certain time. As the number of FDLs
is strictly limited, it is necessary to schedule arriving packets
as efficiently as possible in order to reduce the probability of
unresolved contention, and thus packet loss probability (LP).

In [5], [6] we proposed new cost-based scheduling algo-
rithms, both in a related setting with wavelength converters
present. There, we were able to validate the usefulness of a
cost-based approach and achieved an increased performance
(decreased LP). Although these algorithms can improve the
performance significantly, their structure is very similar to
existing algorithms [7]. Indeed, they can also be split up in
two big categories: void-filling and non-void-filling algorithms.
In contrast to the latter, the former allow packets to be
scheduled before already scheduled packets, filling the so-
called voids (unscheduled periods between already scheduled
packets), thereby improving the performance (in terms of LP)
significantly. As these void-filling algorithms keep track of
all voids, also those that are not likely to be filled, this
performance improvement comes at the cost of an increased
computational complexity. As no trade-off between perfor-
mance and computational complexity is possible in these
algorithms, this is especially an issue in a typical setting with
small FDLs (to minimize the packet delay and/or the footprint
of the buffer) in which voids are unlikely to be filled or even
unfillable. We therefore propose a new type of algorithm that
selectively creates larger voids only when they will likely be
filled in the future. This type of algorithm does not only fill
the available voids, it also, based on the system conditions,
controls the creation of the voids, making it more powerful,
enabling better switch performance.

II. BACKGROUND
A. Assumptions

Throughout the paper a continuous-time setting is
supposed. Fig. 1 shows the assumed K x M optical switch
configuration. Packets arrive on a finite number of incoming
ports K, on c different wavelengths A1, ..., A., also called
channels. Each packet arrives on a certain wavelength and is
switched (still on this wavelength) to one of the M output
ports according to the packet header destination information.
Each output port thus accepts packets from K ports, on c
wavelengths. The output port is connected to a single fiber
with the same c different wavelengths.

In this paper an arbitrary single output port is analyzed,
marked by the dashed-line box in Fig. 1. We assume no
wavelength converters are present at the output port. While
other wavelengths may be used for packet switching within
the same switch, they operate independently of each other
and all packets are processed on the same wavelength upon

SPATIAL
SWITCH

Fig. 1: The modelled output port (in dashed-line box) as part
of a K x M optical switch.

which they arrive. We can thus confine our analysis of
the output port to a single wavelength A; (Fig. 2). Each
output port has an optical buffer in which N 4+ 1 FDLs are
available to schedule incoming packets. The lengths of the
FDLs are consecutive multiples of a basic value D called the
granularity. This is called a degenerate delay buffer [8], in
which incoming packets sent through the j-th (j = 0...N)
delay line encounter a delay of j - D.

We assume packets arrive at the output port on wavelength
A1 according to a Poisson process, with exponentially
distributed inter-arrival times 7" and average E[T]. The length
of the arriving packets is assumed a fixed length B equal to
the granularity, B = D. While matching the granularity and
the packet size is a natural choice in view of performance
(see [9]), it also enables to devise an intuitive void-creating
scheduling algorithm, as argued below. Algorithms with a
similar scheduling strategy for other values of D of course can
be thought of, but are considered out of the scope of this paper.

The overall incoming traffic load at the output port is
fixed and given by p = B/E[T). Further, the nature of the
Poisson arrival process implies possible overlap of distinct
packets at the entrance of the output port. This overlap causes
contention, which has to be resolved before the packets exit
the output port, also on the single wavelength A;.

This contention is resolved by sending one of the
contenting packets through one of the FDLs, if available. As
the number of FDLs is always limited, a contenting packet is
lost if all FDLs are occupied upon its arrival. It is therefore
necessary to schedule packets as wisely as possible in the
FDLs. In general, LP is the main performance measure for
which the scheduling is optimized. Besides LP, we will also
consider the packet delay as a second performance measure.

B. Scheduling basics

At the output port under study, scheduling is done
separately for each packet upon its arrival. In this setting
this amounts to assigning a single variable (j) to the packet,
corresponding to the delay line (j = 0...N) the packet is

_ O
A 0.b M
4| }7
N-D

Fig. 2: The modelled output port as analyzed: with FDLs and
a single wavelength A;.

void1 void 2 gap
0 1 2 3 ‘ 4 5(=N-D)
<>
- —&
! time
horizon

Fig. 3: An example of a provisional schedule.

scheduled on. This is done by means of a provisional schedule,
of which an example is given in Fig. 3, showing the already
scheduled packets (grey boxes) upon arrival of an arbitrary
packet that is yet to be scheduled (and is thus not displayed
on the provisional schedule). The arrival instant of a packet
corresponds to the zero delay reference line. The provisional
schedule is represented horizontally and the vertical lines
represent the delays of the FDLs (j = 0...N = 5). The
granularity in the example is assumed as unity (D = 1) to
ease notation. In this representation, the provisional schedule
evolution can be seen as a choppy (observed from arrival to
arrival) but uniform (all packets move alike) movement of
all packets to the left, with packets disappearing (because
they are being transmitted) when crossing the zero delay
reference line. The provisional schedule, although similar
at first sight, should not be confused with a slotted arrival
process. The inter-arrival times are distributed continuously
and the vertical lines represent the delays of the FDLs and
not some slot boundaries. A packet has to be scheduled on
an FDL (® or A) without overlapping with any of the already
present packets. If no such FDL is available, the packet is lost.

Scheduling is done according to a scheduling algorithm, of
which most, as said, are designed purely to achieve minimal
LP. Regardless of their exact design aim, existing scheduling
algorithms can be split up in two main categories:

e void-filling algorithms allow packets to be scheduled
on any suitable FDL. This implies the possibility
of filling up voids, defined as unscheduled periods
followed by one or more packets scheduled beyond
it. Here, only voids overlapping an FDL more than
a packet length to the right of this FDL on the
provisional schedule are fillable.

e non-void-filling algorithms only allow packets to join
at the back and voids can not be filled. In this way
the algorithm is not obliged to keep track of all voids
but merely of the horizon, defined as the latest time
at which the output is currently scheduled to be in
use. Graphically, this corresponds to the right edge of
the rightmost packet. Related the gap is defined as
the length of the void in front of a packet when it is
assigned to an FDL. For the first FDL to the right of

S b0

(a) A scheduling dilemma: ® or A

delay = 4 for packet (1)

/ gapy
,

time

c}élay = 5 for pé\cket (Zj
1 / L ! L |} !
L
At — 7
K K K <—/r> K g =4
S Jogapy gap;
/'packet (3) lost

O

(b) Three packets scheduled without void creation

SV

delay = 5 for packet (1)

, gap;
(/iélay = 3 for packet (2)

|

:

I W - W .
Voo " — / time

) gAps gaps
packet/:(f’,) not]i;st («éelay =5)

o S —

(c) Three packets scheduled with void creation

time

Fig. 4: Evolution of the provisional schedule for the considered
example of three arriving packets.

the horizon this becomes:

horizon
ap = —_—
gap D

Where [z] is the so-called ceil of x, the smallest
integer greater than or equal to x. For each FDL
further to the right the gap increases with a value of D.

-‘ - D — horizon.

As D = B in the example of Fig. 3 no voids equal to or
larger than the packet length (fillable voids) are created and
thus none can be filled. Only voids smaller than the packet
length (unfillable voids) are created. In this setting of a single
wavelength, and D = B, all void-filling and non-void-filling
algorithms schedule the packet on the first FDL to the right of
the horizon. This is unless the horizon is larger than N - D,
in which case the packet is lost. Performance (in terms of LP
and packet delay) will thus be the same for all void-filling and
non-void-filling algorithms in this setting. Needless to say that
the implemented algorithm is thus always non-void-filling, as
it only keeps track of the horizon.

III. VOID-CREATING SCHEDULING ALGORITHM

In order to improve the performance of this system,
fillable voids are created by scheduling the packet on the

second FDL (triangle in Fig. 3) instead of the first FDL
(dot in Fig. 3) to the right of the horizon. As D = B this
creates voids larger than B (fillable voids) which, if favorably
positioned with respect to an FDL, can be filled. A favorable
position occurs when the void overlaps the FDL at least a
packet length to the right of the FDL, i.e. the (fillable) void is
reachable. Analogously, a (fillable) void that is not positioned
favorably with respect to an FDL is called unreachable.
Note that an unfillable void can never be reachable. When
a fillable void created by a first packet can be filled by any
subsequent packet the average gap as well as the average
delay encountered per packet will typically be lower than in
the case when a fillable void was never created.

This is illustrated by means of an example in Fig. 4 in
which the same scenario of three subsequent packet arrivals
is analyzed. Fig. 4 compares the evolution of the provisional
schedules from arrival to arrival without (Fig. 4b) and with
(Fig. 4c) void creation. Packet (1) (diagonally hatched) arrives
at time = 0 (reference time). Packet (2) (checkerboarded)
and packet (3) (horizontally hatched) arrive a time of 0.44
and 1.19 respectively hereafter (assuming D = B = 1).
These arrival instants again coincide with the zero reference
time in the matching provisional schedule (second provisional
schedule for packet (2) and third provisional schedule for
packet (3) in both Fig. 4b and Fig. 4c), as this is how the
provisional schedule works.

Without void creation, Fig. 4b: In Fig. 4b both
packet (1) and (2) are scheduled on the first FDL to the
right of the horizon of their specific provisional schedule,
corresponding to the strategy used by the existing algorithms
(both void-filling and non-void-filling) in this setting. This
results in an average delay of 4.5 for packets (1) and (2)
(delay of 4 for packet (1) and 5 for packet (2)). The total gap
assigned to packets (1) and (2) equals gap; + gaps. Moreover
at the arrival instant of packet (3) (third provisional schedule
in Fig. 4b) there is no FDL available to schedule packet (3),
which thus results in a lost packet.

With void creation, Fig. 4c: In Fig. 4c packet (1) is
scheduled on the second FDL to the right of the horizon, in
this way creating a fillable void. Upon its arrival packet (2) is
able to fill this fillable void as it is reachable (it overlaps the
FDL that corresponds with a delay of 3 in a favorable way).
The scenario with void creation has two clear benefits:

e Lower delays: the average delay for packets (1) and
(2) equals 4 (delay of 5 for packet (1) and 3 for packet
(2)) as opposed to an average delay of 4.5 for packets
(1) and (2) without void creation.

e Reduced Loss: the total gap assigned to packets (1)
and (2) equals gaph + gaps which equals gap; and
thus is always smaller than in the case without void
creation: (gaph + gaps = gaps — D = gap1) <
(gap1+gaps). Because of this, the stacking of packets
(1) and (2) is more dense in Fig. 4c and the last FDL
is available to schedule packet (3) when it arrives. In
this example no packet is thus lost when void creation
is used.

It is clear from the above example that filling a fillable
void lowers the average delay of the packets and the average
gap size. Moreover the example shows that reducing the
average gap size mitigates the number of packets lost as
it makes the stacking of the packets dense and reduces the
chance the horizon exceeds N - D, the only case in which a
packet that arrives is lost. On the other hand creating but not
filling voids is disadvantageous for the performance as the
stacking becomes less dense. The chance the horizon exceeds
N - D (and, likewise, the average packet delay) increases.
Whether a void is reachable, depends on the choppy evolution
of the provisional schedule and thus on the stochastic arrival
process. We can however maximize the chance that a void is
reachable by creating only voids that are likely to be filled.
As a first condition, we only allow a single fillable void to be
present in the system. As soon as the ending of the fillable
void is lower than B = D it is smaller than the packet length
B = D. It will never be reachable again in the future and
the fillable void expires. An expired void is thus a void that
was fillable but is now unfillable. Because it is unfillable, it
is omitted and a new fillable void is allowed to be created.
A fillable void can of course also disappear because it is
reachable the moment a new packet arrives. This packet will
then fill this void, and a next arrival may be used to create a
new fillable void. Besides allowing only a single fillable void
in the provisional schedule we demand for two additional
conditions to be met before creating a fillable void:

e A first condition relates to the size of the created
fillable voids. As the void-creating algorithm chooses
the second FDL to the right of the horizon, the created
fillable voids will have a length between D and 2- D.
A void only slightly larger than D will have a small
chance of being reachable. To fill a void, it indeed
has to overlap an FDL at least a length of D = B to
the right of the FDL on a set of future, yet unknown,
arrival instances. For a void almost equal to 2 - D it
is very likely to have a long period of reachability,
although it is still possible an unfavorable arrival
pattern occurs. The first condition therefore states that
the created void has to be larger than a certain value
D+y, D,ie. D+vy, D < fillable void. Here
Yn, is called the gap threshold, an algorithm parameter
varied in simulations (0 < ¥, < 1 in steps of 0.01)
with n the horizon index (see next).

e A second condition to create a fillable void states
that the horizon has to be between two specific and
consecutive FDLs: (n — 1) - D < horizon < n-D in
which n is called the horizon index and is varied in
simulations (n = 1...N — 1). With this condition
we want to investigate the effect of the position
of void creation. Fillable voids created when n is
closer to N — 1 will stay longer in the system and
thus given the Poisson arrival process, have a higher
chance of being filled. This condition is used to create
auxiliary results that allow us to obtain the optimal
gap thresholds of the actual algorithm in which void
creation is allowed for all horizon indexes (see next
section).

If one of these conditions is not met or another fillable void
is already present in the provisional schedule, the packet
is used to fill this void or otherwise is scheduled on the
first FDL to the right of the horizon, creating an unfillable void.

Similar to regular void-filling algorithms, this void-creating
algorithm allows packets to be scheduled out of order. The
consequences of this for the upper network layers however is
out of the scope of this paper.

IV. SIMULATION: ITERATIVE APPROACH

To evaluate the performance (LP and packet delay)
of the void-creating algorithm proposed in Sect. III, we
employ Monte Carlo simulation. Specifically, the algorithm
is programmed in Matlab using a discrete event simulation
(DES) in a similar way as in [5], [6]. In a DES, the system is
modelled as a sequence of events marked by their particular
instant in time, i.e. the simulation is event-based. The system
state changes from one event to the next and does not change
in-between events. This is as opposed to continuous simulation
in which time is broken into small pieces called time slices.
At each ending of a time slice the system state is (possibly)
changed based on the events happened in the last time slice.
Because DES simulations do not simulate every time slice,
they are far more efficient in terms of computational resources.

For the void-creating algorithms the system state includes
the value of the horizon and the beginning and ending of the
fillable void (if present). This is opposed to the non-void-filling
algorithm, that only has to keep track of the horizon. As the
regular void-filling algorithm (i.e. without creating voids) has
the same behavior as the non-void-filling algorithm in this
setting of D = B, it is not simulated separately. Note that
allowing more than one fillable void in the system (in a smart
way) could result in even better performance. This however is
outside the scope of this paper and part of future work.

To obtain the LP and packet delay of the void-creating
algorithm, the following method is used. A first and auxiliary
set of simulations only allows to create a void when both
the conditions are met, i.e. D + y,, - D < fillable void and
(n—1)-D < horizon < n - D. By varying y, (0 <y, <1
in steps of 0.01) for a fixed n we determine the optimal
gap threshold when voids are only allowed to be created on
horizon index n. This is done separately for each value of n
(n=1...N —1) and gives us two sets (one for LP and one
for packet delay) of both N — 1 optimal gap threshold values
for which either LP or packet delay is minimized. These are
called the single creation point thresholds.

The actual void-creating algorithm allows voids to be
created on all horizon indexes but still optimizes the gap
threshold y,, for each horizon index: i.e. depending on the
position of the horizon the condition on the gap size can
either be more or less strict. Note that the restriction of only
one fillable void is maintained. Allowing void creation for
each horizon index results in a very large parameter space
for optimization. With 0 < y, < 1 in steps of 0.01 and
N — 1 different horizon indexes the parameter space contains

Optimal gap threshold for loss probability

1,0

09 \ —e—|0ad=0.8, single
0,8 \ creation point
07 \R --e--load=0.6, single
0,6 N creation point
0,5 N

> —a&—|o0ad=0.8, second

04 '\ \:—-\---- ----- - iteration
03 S g
02 \'\‘\\:\: --m--|0ad=0.6, second

7 ° iteration
0,1
0,0 T T T T T T 1 Horizon index

1 2 3 4 5 6 7 8

Fig. 5: Gap threshold optimized for loss probability.

Relative loss probability

100% =
90% \‘*_ —e—1l0ad=0.8, single
e . — creation point
—— o~ -
80% --e--10ad=0.6, single
creation point
70%
—a—|o0ad=0.8, second
60% iteration
50% --m--|0ad=0.6, second
iteration
40% T T T T T T 1 Horizon index

1 2 3 4 5 6 7 8

Fig. 6: The optimized relative loss probability.

100¥ 1 combinations. Even for a small value of N this
results in an unreasonable long simulation time.

We therefore use the following iterative approach to ap-
proximate the behavior of the actual void-creating algorithm.
In a first iteration the fillable void (only one allowed) can
be created on all horizon indexes, with all gap thresholds
but one fixed to the optimal single creation point thresholds
(auxiliary set of simulations). The one gap threshold that is
not fixed is varied and optimized (0 < y, < 1 in steps of
0.01). Consecutively this is done once for each horizon index
(n=1...N —1) in a different simulation trace. In this way
the gap threshold of each horizon index is optimized, with the
other thresholds fixed. This gives us a set of NV —1 new optimal
gap thresholds which are called the first iteration thresholds.
In a second iteration we fix all gap thresholds but one to these
first iteration thresholds and again optimize the one that is
not fixed. Again only the gap threshold that is optimized is
varied (n = 1...N — 1). This results in a set of N — 1
second iteration thresholds. These iterations can be repeated
as many times as desired until an acceptable convergence
is noticed in the iteration thresholds and their corresponding
performance, marking a good approximation of the actual void-
creating algorithm. This iterative approach is used for both the
LP and delay thresholds.

V. PERFORMANCE RESULTS

To compare the implementation complexity of the
algorithms we simulate the arrival of 10 - 10* packets using
stripped-down versions of the algorithms, i.e. without keeping
track of any performance measures as LP or packet delay.
The algorithms thus only decide on which FDL each packet
is scheduled, just like a switch-level implementation would.

TABLE I: Comparison of simulation times of different algo-
rithms under equal conditions.

Type of algorithm | Average simulation time for 10% arrivals (s)

Non-void-filling 0.1921
Void-creating 0.2974
Void-filling 3.8644

All simulations were carried out on the same PC (Intel Core
i7, CPU @ 2.40 GHz) under the same circumstances and
with all algorithm parameters equal (i.e. the parameters used
for Fig. 5-6, load=0.8, second iteration). Table I clearly shows
that keeping track of all the voids in the void-filling algorithm
is, apart from useless (since no void can be filled), also very
costly in terms of computation. The void-creating algorithm
on the other hand is nearly as fast as the non-void-filling
algorithm as it only keeps track of one extra void besides the
horizon.

As in the given setting of D = B the void-filling algorithms
perform exactly the same as the non-void-filling algorithm, we
only use the latter as a comparison for the performance of
the void-creating algorithm. We thus first simulate the system
without void creation, i.e. all packets are scheduled on the first
FDL to the right of the horizon. If the horizon is larger than
N - D on arrival of a packet, it is lost. The number of FDLs
was assumed ten (N + 1 = 10) and D = B = 1. For a fixed
load p of 80 % this gives an LP of 14.46 % of the arriving
packets. When the load is fixed to 60 % the LP is 2.08 %. The
average packet delay under this algorithm is 6.69 time units
for a load of 80 % and 2.98 time units for a load of 60 %. The
number of simulated packets is 10 - 10° for a load of 80 %
and 10- 107 for a load of 60 %. For all simulations this yields
confidence intervals too narrow to be displayed on the figures.

A. Optimized for loss probability

The results of the auxiliary set of simulations, i.e. the single
creation point thresholds and their corresponding performance,
are shown in Fig. 5 and 6. The curves marked as ‘single
creation point’ in Fig. 5 show the optimal gap thresholds
for the different horizon indexes, when void creation is only
allowed for that index and the LP is minimized. For example
when a fillable void is allowed to be created if (and only if)
D < horizon < 2 - D, then the void has to be larger than
1.6 - D (y > 0.6) for a load of 60 % to achieve the largest
reduction in LP. The LPs with the threshold values of Fig. 5
are shown in Fig. 6. The LPs are shown relative to the LPs
when no void creation is allowed, i.e. 2.08 % and 14.46 % for
a load of 60 % and 80 % respectively. The graphs marked as
‘second iteration’ on Fig 5 and 6 show the second iteration
thresholds and the corresponding relative LPs obtained in the
second iteration when the LP is optimized. Again the LPs
are shown relative to the LPs when no void creation is allowed.

Looking at Fig. 5 we can see that for equal horizon index,
the single creation point threshold is larger, and thus stricter,
for the lower load. This is because for lower load the number
of expected packets to arrive, before the void disappears by
crossing the zero delay line, is lower. This lack of high arrival

density thus has to be compensated by a larger size of the
created void. When the fillable void is only allowed to be
created when n = 1 (i.e. the horizon is between 0 and D on
the provisional schedule), no improvement in LP is achieved,
and this for both loads. This is indicated by a single creation
point threshold of 1 for n = 1, as this never occurs. For
both loads the single creation point threshold decreases as
the horizon index increases. As the horizon index on which
fillable voids are allowed to be created increases, the created
void stays longer in the system and thus given the Poisson
arrival process, has a higher chance of being filled. For equal
chance of being filled, smaller voids may be created as the
horizon index increases.

Still on Fig. 5 we can see that for the second iteration
the optimal gap thresholds are higher, and thus stricter, than
for the corresponding ‘single creation point’ graphs. As void
creation is also allowed for other positions of the horizon,
a stricter policy can indeed be applied. In general these
second iteration thresholds also decrease with increasing
horizon index (for the same reason as above). For a horizon
index n = 8 and a load of 60 % however an inversion
is spotted in the second iteration threshold. This inversion
possibly relates to the inversion found in the LP reduction
for a single creation point and a load of 60 % (discussed next).

Fig. 6 shows that for a single creation point the lower
load allows for a bigger relative reduction in LP. For a load
of 80 % the optimal LP monotonically decreases with an
increasing horizon index. Opposed to this, for a load of 60 %
less improvement in LP is possible when fillable voids are
created when n = 8 than when n = 7. A possible explanation
is that when the load is ‘low’ (60 %), the probability of
finding a horizon index n = 8 is smaller than for higher load
(80 %), thus reducing the number of instances fillable voids
can be created and the LP is reduced. The load for which
this inversion is observed may be linked to the critical load
of 69.3 % for which the infinite system without void creation
becomes unstable (p = In(2), see [9]), i.e. for load values
higher than this critical load the number of packets in the
system with an infinite numbers of FDLs grows unboundedly.

As the ‘second iteration’ curves in Fig. 6 illustrate, a lower
load also allows for a bigger reduction in LP when voids are
allowed to be created on all horizon indexes. For a load of
60 % there is reduction in LP of more than 50 %. For a load
of 80 % a reduction of about 32 % is achieved. This reduction
is practically the same for all values of n as for all these
simulation points void creation is allowed for all positions of
the horizon, each with their distinct gap threshold.

B. Optimized for packet delay

Similarly to Fig. 5 the curves marked as ‘single creation
point’ in Fig. 7 show the optimal gap thresholds for the
different horizon indexes, when void creation is only allowed
for that index and the packet delay is minimized. Fig. 8 shows
the corresponding packet delays relative to the delay when no
void creation is allowed, i.e. 2.98 and 6.69 for a load of 60 %
and 80 % respectively.

Optimal gap threshold for packet delay

1,0
0o 1% 4

), \;\\ —e—0ad=0.8, single
08 \\ S creation point
07 A\

), \& N --e--|0ad=0.6, single
06 X S creation point
05 R
o - . - —a—load=0.8, second

), SN N iteration
03 \‘\\\“:?‘ >
02 \':‘ N, --m--load=0.6, second

), _\= iteration
01 \Q!

0,0 Horizon index
1 2 3 4 5 6 7 8

Fig. 7: Gap threshold optimized for packet delay.

Relative packet delay
100%

I S o —*—l0ad=0.8, single
creation point

95% $oocco -

--o--|0ad=0.6, single
creation point
90%
—a— |oad=0.8, second
iteration

85% --m--load=0.6, second

iteration

80% Horizon index
1 2 3 4 5 6 7 8

Fig. 8: The optimized relative packet delay.

Comparing Fig. 5 and Fig. 7 it is clear that the optimal
thresholds are impacted by the optimization criterion (LP or
delay), for both single creation point and second iteration.
Despite this, similarities can be seen: the optimal threshold
decreases with both increasing horizon index and increasing
load. Also for a horizon index » = 1, no improvement in
packet delay is possible by creating a void. This again is
indicated by a single creation point threshold of 1 for n = 1.
The inversion spotted for the second iteration thresholds for a
load of 60 % when n = 8 no longer occurs when optimizing
for packet delay, as all optimal thresholds decrease with
increasing horizon.

Looking at Fig. 8 we see that the achievable improvements
in packet delay are smaller than the corresponding achievable
improvements in LP in Fig. 6. Similar to Fig. 6, for a load
of 80 % the optimal delay monotonically decreases with an
increasing horizon index. The inversion spotted for a load of
60 % is spotted for a lower horizon index than in Fig. 6, i.e.
n = 6 in Fig. 8 and n = 8 in Fig. 6. For n = 8 in Fig. §
the inversion stops, and the achievable delay for n = 8 is
smaller again than the achievable delay for n = 7. Despite
this inversion stop, for both n = 7 and n = 8 the optimal
delay is higher for a load of 60 % than for a load of 80 %.
Again this inversion might be linked to the critical load of
69.3 % of the infinite system. When void creation is allowed
for all horizon indexes a lower load still allows for a bigger
reduction in packet delay. For a load of 60 % there is an
achievable reduction in delay of about 18 %. For a load of
80 % the achievable reduction is limited to 14 %.

VI. CONCLUSIONS

In this paper we proposed a new type of algorithm
called void-creating algorithm which, based on the current
system state, decides to create a fillable void or not. Using
Monte Carlo simulation, this algorithm was validated for a
single-wavelength, fixed packet length and fixed load setting.
It was shown that by selectively creating larger voids than
strictly necessary, this algorithm can achieve performance
improvements in both loss probability and packet delay.
Improvements in loss probability of up to 30 % for a high
load (80 %) and 50 % for a lower load (60 %) are achievable.
The achievable improvements for packet delay are smaller
with an achievable reduction of 14 % for a load of 80 % and
18 % for a load of 60 %. The optimal algorithm parameter
values for which these improvements in loss probability and
packet delay are achieved, though not identical, are in close
proximity and can be determined by an iterative approach.

The improvements in these performance measures are
achieved without a large increase in computational complexity,
as in our implementation only one void is part of the system
state. As opposed to existing algorithms, in this algorithm
a simple trade-off between performance and computational
complexity could be possible by keeping track of more voids.
These results open opportunities to analyze a generalization
of this approach with more fillable voids and in more complex
settings with, e.g., variable packet length and other values of
the granularity. Besides this, analyzing the optimal algorithm
parameters in a more mathematical way can provide more
insight in the void creating mechanism.

ACKNOWLEDGMENT

Part of this research has been funded by the Interuniversity
Attraction Poles Programme initiated by the Belgian Science
Policy Office. The second author is Postdoctoral Fellow with
the Research Foundation Flanders (FWO-Vlaanderen).

REFERENCES

[1] “New world record in data transfer,” 2014. [Online]. Available:

http://www.technologist.eu/new-world-record-in-data-transfer/

[2] R. Tucker, “Scalability and energy consumption of optical and electronic
packet switching,” Journal of Lightwave Technology, vol. 29, no. 16, pp.
2410-2421, Aug 2011.

[3] H.-L. To, S.-H. Lee, and W.-J. Hwang, “A burst loss probability model
with impatient customer feature for optical burst switching networks,”
International Journal of Communication Systems, 2014.

[4] E. Burmeister, D. Blumenthal, and J. Bowers, “A comparison of optical
buffering technologies,” Optical Switching and Networking, vol. 5, no. 1,
pp- 10 — 18, 2008.

[5S] K. Van Hautegem, W. Rogiest, and H. Bruneel, “OPS/OBS scheduling
algorithms: Incorporating a wavelength conversion cost in the per-
formance analysis,” in Proceedings of the 32nd IEEE International
Performance, Computing, and Communication Conference (IPCCC), San
Diego,California,USA, December 2013.

, “Scheduling in optical switching: deploying shared wavelength
converters more effectively,” in Proceedings of the 2014 IEEE Inter-
national Conference on Communications (ICC), Sydney,Australia, june
2014.

[71 E Callegati, W. Cerroni, and G. S. Pavani, “Key parameters for con-
tention resolution in multi-fiber optical burst/packet switching nodes,” in
Proceedings of Broadnets 07, Raleigh, North Carolina, USA, September
2007.

(6]

(8]

[9]

L. Tancevski, L. Tamil, and F. Callegati, “Nondegenerate buffers: an ap-
proach for building large optical memories,” IEEE Photonics Technology
Letters, vol. 11, pp. 1072-1074, Aug. 1999.

W. Rogiest, J. Lambert, D. Fiems, B. V. Houdt, H. Bruneel, and
C. Blondia, “A unified model for synchronous and asynchronous FDL

buffers allowing closed-form solution,” Performance Evaluation, vol. 66,
no. 7, pp. 343 — 355, 2009.

