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Abstract—In this paper, literature results on the statistical
simulation of lossy and dispersive interconnect networks with
uncertain physical properties are extended to general nonlinear
circuits. The approach is based on the expansion of circuit
voltages and currents into polynomial chaos approximations.
The derivation of deterministic circuit equivalents for nonlinear
components allows to retrieve the unknown expansion coefficients
with a single circuit simulation, that can be carried out via
standard SPICE-type solvers. These coefficients provide direct
statistical information. The methodology allows the inclusion of
arbitrary nonlinear elements and is validated via transmission-
line networks terminated by diodes and driven by inverters.

Index Terms—Circuit simulation, nonlinear, polynomial chaos,
signal integrity, SPICE, statistical Analysis, transmission lines.

I. INTRODUCTION

Signal integrity is becoming increasingly affected by ran-
dom variations in the physical interconnect properties. As
technology scales down, manufacturing tolerances introduce
significant variability in the geometry of printed circuit board
(PCB) interconnects. Standard circuit simulators usually offer
sampling-based (Monte Carlo-like) statistical methods that,
however, require a large number of simulation samples, thus
often being computationally prohibitive.

Alternative simulation strategies were presented [1]–[4] that
are based on the so-called polynomial chaos (PC) frame-
work [5]. According to PC, stochastic voltages and currents
are expressed as expansions of orthogonal polynomials, whose
coefficients directly provide statistical information. The tech-
nique was first applied to the frequency-domain simulation of
on-board interconnects [1]. On the one hand, the derivation of
SPICE-compatible equivalent circuits allowed the time-domain
analysis of arbitrary lossy and dispersive interconnect topolo-
gies [2], but still limited to linear circuits. On the other hand,
the development of a general framework for the inclusion of
arbitrary nonlinear terminations [3] enabled the analysis of
structures that include nonlinear drivers and terminations, but
the implementation was limited to lossless and dispersion-free
lines. Finally, a SPICE integration of the nonlinear device
models has been recently presented [4], easing the simulation
of general nonlinear circuits. In this paper, the aforementioned
approaches [2]–[4] are reviewed, combined and applied to the
analysis of lossy interconnect networks with nonlinear sources
and terminations.

II. THE POLYNOMIAL CHAOS APPROACH

For the sake of simplicity, the method is introduced by
means of a single line and a single random variable (RV).
Fig. 1 illustrates an interconnect section of length L, described
by the pertinent per-unit-length (p.u.l.) resistance R, induc-
tance L, conductance G and capacitance C, possibly depen-
dent on the angular simulation frequency ω. The line is driven
by an inverter and terminated by a diode. Generalization to
multiconductor lines and multiple RVs is straightforward [2],
[3].

L
z = 0 z = L

R(ω, ξ), L(ω, ξ)
G(ω, ξ), C(ω, ξ)

Fig. 1. Pictorial illustration of an interconnect section of length L, with
nonlinear source and termination.

It is convenient to express the random parameter via a
normalized RV. For example, a Gaussian random parameter x
(e.g., the width of a PCB line) with average x̄ and standard
deviation σx, is written as x = x̄+σxξ, where ξ is a standard
normal RV with zero mean and unit variance, i.e. ξ ∼ N (0, 1).
If an interconnect property is random, the p.u.l. parameters
become random themselves and ξ-dependent (e.g., R = R(ξ)).

The signal propagation along the coupled lines is described
by the Telegraphers’ equations [6]:

d

dz
V̂ (z, ω, ξ) = − [R(ω, ξ) + jωL(ω, ξ)] Î(z, ω, ξ), (1a)

d

dz
Î(z, ω, ξ) = − [G(ω, ξ) + jωC(ω, ξ)] V̂ (z, ω, ξ), (1b)

where V̂ and Î are the phasors of the voltage and the
current along the line, respectively. They are also ξ-dependent,
since the uncertain interconnect properties render the circuit
response nondeterministic. In SPICE-type simulators, these
equations are combined with the governing equations of
classical linear elements, like resistors and capacitors, and
nonlinear components via the Kirchhoff current law (KCL),
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and then solved in time domain via convolution techniques
(see, e.g., [7]).

The traditional approach to tackle stochastic circuits and
extract pertinent statistical information is to collect many
samples of the circuit response for different values of the
random parameters. However, when the circuit size grows, this
technique rapidly becomes computationally intractable.

A. The Polynomial Chaos Expansion

The underlying idea of PC is to express stochastic circuit
voltages v and currents i as polynomial expansions, i.e.

v(t, ξ) ≈
P∑

k=0

vk(t)φk(ξ), i(t, ξ) ≈
P∑

k=0

ik(t)φk(ξ), (2)

where the basis functions φk are polynomials satisfying the
orthonormality condition ⟨φk, φj⟩ = δkj (Kronecker’s delta)
with respect to the following inner product:

⟨f, g⟩ =
∫
R
f(ξ)g(ξ)w(ξ)dξ, (3)

with w(ξ) the probability density function (PDF) of ξ [5].
The (deterministic) coefficients vk(t) and ik(t) become the

new circuit unknowns to be determined. These coefficients
provide statistical information. For example, the average volt-
age corresponds to v0(t), whilst the variance is given by∑P

k=1 v
2
k(t). Similar properties hold for the circuit currents.

B. The Stochastic Galerkin Method

The strategy for the determination of the unknown PC co-
efficients is to introduce the PC expansions into the stochastic
governing equations and to manipulate them in order to derive
a new set of deterministic equations in these coefficients.
This task is accomplished by means of a stochastic Galerkin
method (SGM) [5] and is illustrated below for (1).

First, the stochastic p.u.l. parameters are also expressed as
PC expansions (e.g., R(ω, ξ) ≈

∑P
k=0 Rk(ω)φk(ξ), with Rk

known). Substitution of the PC expansions of the voltages,
currents, and p.u.l. parameters into (1), yields:

P∑
k=0

d

dz
V̂k(z, ω)φk(ξ) =

−
P∑

k=0

P∑
j=0

[Rk(ω) + jωLk(ω)] Îj(z, ω)φk(ξ)φj(ξ),

(4a)

P∑
k=0

d

dz
Îk(z, ω)φk(ξ) =

−
P∑

k=0

P∑
j=0

[Gk(ω) + jωCk(ω)] V̂j(z, ω)φk(ξ)φj(ξ),

(4b)

where V̂k and Îk are the phasors of the voltage and current
PC coefficients, respectively.

In the SGM, the obtained equations (4) are now weighted
with the same polynomial basis {φm}Pm=0 and using the inner
product (3):

P∑
k=0

d

dz
V̂k(z, ω) ⟨φk, φm⟩ = d

dz
V̂m(z, ω) =

−
P∑

k=0

P∑
j=0

[Rk(ω) + jωLk(ω)] Îj(z, ω)αkjm,

(5a)

P∑
k=0

d

dz
Îk(z, ω) ⟨φk, φm⟩ = d

dz
Îm(z, ω) =

−
P∑

k=0

P∑
j=0

[Gk(ω) + jωCk(ω)] V̂j(z, ω)αkjm,

(5b)

where we defined αkjm = ⟨φkφj , φm⟩ and we used the
orthonormality condition in the left-hand sides. It should be
noted that αkjm is a deterministic coefficient that can be
analytically computed and that the variability vanished since
ξ was integrated out.

Equations (5) are still in the form of transmission-line
equations like (1). If m is swept from 0 to P , a set of
P + 1 coupled deterministic equations is obtained, that can
be expressed in matrix form as [2]

d

dz
ˆ̃
V(z, ω) = −

[
R̃(ω) + jωL̃(ω)

]
ˆ̃
I(z, ω), (6a)

d

dz
ˆ̃
I(z, ω) = −

[
G̃(ω) + jωC̃(ω)

]
ˆ̃
V(z, ω), (6b)

where ˆ̃
V = [V̂0, . . . , V̂P ]

T collects all the phasor voltage
coefficients, and similarly for ˆ̃I. The new (P + 1)× (P + 1)
p.u.l. matrices have entries given by

R̃mj(ω) =

P∑
k=0

Rk(ω)αkjm, (7)

and similarly for L̃, G̃ and C̃.
In summary, the SGM allows to transform the original,

stochastic system of equations (1) into a larger but determinis-
tic one, i.e. (6), governing the behavior of the PC voltage and
current coefficients. The simulation of the new equations (6)
can be carried out as an augmented transmission line using
standard (e.g., SPICE-type) design software, provided that the
expansion coefficients Rk, Lk, Gk, Ck of the p.u.l. matrices,
which are necessary for the determination of the corresponding
augmented p.u.l. matrices R̃, L̃, G̃ and C̃, are calculated [2].
However, the simulation of a complete electrical network
requires the derivation of similar equations for the other circuit
components. This is discussed in the next section.

C. Terminal Conditions

The terminal (boundary) conditions for the solution of the
differential equations (6) evolve from the governing equations
of the components connected to the line terminations. For the
sake of brevity, we limit ourselves to the case of deterministic



terminations (i.e., the variability affects only the transmission-
line elements). Stochastic lumped components, both linear and
nonlinear, can also be accounted for [4].

Let us consider the diode at the far-end termination (z = L)
in Fig. 1, and assume its I-V relationship is described by a
generic operator F(·). For our purposes, F(·) may be both an
analytical function or a non-explicit characteristic, such as a
complex library model. The terminal equation becomes:

i(L, t, ξ) = F(v(L, t, ξ)), (8)

where the time-domain line voltage and current are considered.
Replacing the stochastic variables with their PC expansions

leads to
P∑

k=0

ik(L, t)φk(ξ) = F

(
P∑

k=0

vk(L, t)φk(ξ)

)
. (9)

Application of the SGM produces

im(L, t) =

⟨
F

(
P∑

k=0

vk(L, t)φk

)
, φm

⟩

=

∫
R
F

(
P∑

k=0

vk(L, t)φk(ξ)

)
φm(ξ)w(ξ)dξ.

(10)

Therefore, (10) represents the new terminal condition for
the mth termination of the augmented line. However, it is
important to note that, the operator F(·) being nonlinear, the
polynomial properties can no longer be used to resolve the
integration in the right-hand side, thus making (10) of little
use in its present form.

The proposed methodology is to discretize the integral using
a quadrature rule [3]. Given a set {ξq} of Q quadrature nodes,
(10) becomes

im(L, t) ≈
Q∑

q=1

F

(
P∑

k=0

vk(L, t)φk(ξq)

)
φm(ξq)wq, (11)

with wq being the weights corresponding to the nodes {ξq}. It
is worth noting that (11) is fully deterministic, since the factors
φk(ξq) and φm(ξq) are merely (precomputable) numbers that
correspond to the value of the polynomials calculated at ξq .
Although (11) involves an approximation, very high accuracy
with a limited number of nodes Q can be achieved by means
of Gaussian quadratures [3], [4]. Similar boundary conditions
are derived for the near-end (i.e., z = 0) terminations.

D. SPICE Implementation of a Diode Termination

In order to allow for the simulation of (11) via SPICE-
type software, an equivalent circuit interpretation is required.
This is provided in [4] and illustrated in Fig. 2 for the
mth termination. For ease of notation, with respect to (11),
we defined akq = φk(ξq), bmq = φm(ξq)wq and jq(t) =

F(
∑P

k=0 vk(L, t)akq). The terminal current is a weighted
combination of Q diode currents jq = F(·), which are in turn
obtained by applying a voltage to the diode that is a weighed
combination of the terminal voltages of the augmented line.
These combinations are obtained using dependent sources, as

shown in Fig. 2. The diode currents jq are sampled by means
of Q auxiliary subcircuits like the one shown in Fig. 2(b). The
diode appearing in the subcircuit is the same as in the original
circuit. It is relevant to point out that the only difference
between the models when m varies resides in the coefficient
bmq appearing in the dependent current source in Fig. 2(a).

0

...
m

...
P

Q∑

q=1

jq(t)bmq

P∑

k=0

vk(t)akq

jq

L

R̃(ω), L̃(ω)

G̃(ω), C̃(ω)

v0

vm

vP

(a) (b)

Fig. 2. Circuit implementation of a diode termination: equivalent circuit for
the mth augmented termination (a) and auxiliary subcircuit that samples the
qth diode current jq (b).

E. Modeling of an Inverter

An analogous approach can be used to model three terminal
devices like transistors [4]. For example, Fig. 3 illustrates the
modeling of a CMOS inverter. Specifically, Fig. 3(a) shows the
original circuit configuration, with p- and n-MOS transistors.
In Fig. 3(b), the equivalent circuit for the mth augmented
termination is depicted. It should be noted that two dependent
current sources are used to model a three-terminal device.
These sources suitably combine p- and n-MOS drain and gate
currents sampled by the auxiliary subcircuits in Fig. 3(c) and
Fig. 3(d), where the following voltages have been defined:

vnGS,k = vIn,k (12a)
vnDS,k = vOut,k (12b)
vpGS,k = vOut,k − vDD,k (12c)

vpDS,k = vIn,k − vDD,k (12d)

The terminal DD,m is to be properly connected to the power
supply.

F. Stochastic Simulation of an Arbitrary Interconnect Network

For the sake of simplicity, so far we focused the discussion
on a single transmission-line segment with a source and a
load termination. However, the outlined approach is readily
extended to a network of arbitrary complexity. An augmented
and deterministic equivalent network is created by replacing
each stochastic transmission line with its (P + 1)-augmented
counterpart described by the p.u.l. matrices R̃, L̃, G̃, and
C̃. These transmission-line sections are connected via the
equivalent models of lumped components, which in the case
of diodes and inverters correspond to the circuits in Figs. 2
and 3, respectively. It suffices to properly connect each line
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Fig. 3. Circuit implementation of an inverter termination: (a) original CMOS
configuration; (b) equivalent circuit for the mth augmented termination; (c)
circuit that samples the qth n-MOS drain and gate currents; (d) circuit that
samples the p-MOS currents.

termination m using the corresponding mth model. On the
other hand, linear lumped elements are simply replicated on
each termination. Finally, independent sources are kept only
on the zeroth termination: all the remaining terminations are in
fact shorted when connected to an independent source [2], [4].
The voltages and currents at the terminations of the created
augmented network correspond to the PC coefficients of the
voltages and currents in the original line. These PC coefficients
are then obtained with a single circuit simulation.

III. VALIDATION AND NUMERICAL RESULTS

This section illustrates the benefits and strength of the
advocated technique by means of two application examples,
consisting of lossy and dispersive PCB interconnect networks
with nonlinear terminations. All the simulations are carried
out in HSPICE [7] on an ASUS U30S laptop with an Intel(R)
Core(TM) i3-2330M and with CPU running at 2.20 GHz and
4 GB of RAM. Reference results are generated via a Monte
Carlo analysis with 1000 samples. The reader is referred to [3],
[4] for a comprehensive discussion about the accuracy and
convergence properties of both Monte Carlo and PC-based
circuit simulations.

A. Example #1

The first example considers the interconnect network of
Fig. 4. It consists of seven transmission-line sections connected
via lumped components and driven by an inverter. All the
far-end terminations contain diodes. The transmission lines
have a microstrip geometry, also shown in Fig. 4, with copper
traces (conductivity: 58 MS/m). All the relevant geometric

and material data, as well as the value of circuit components,
are indicated in the figure. The voltage source is a pulse
of amplitude 5 V, risetime 200 ps, and duration 3 ns. The
inverter is realized in CMOS technology, and described via
level-2 SPICE MOSFET models. The diode is implemented
using a standard library model with a series resistance of 1 Ω,
a junction capacitance of 2 pF, and a saturation current of
50 fA. The variability is due to the substrate parameters, i.e.
thickness, permittivity and loss tangent, assumed to behave as
Gaussian RVs with relative standard deviations of 8%, 5% and
10%, respectively.

75Ω 10nH

1pF

25Ω

6nH

1pF

10nH

0.5pF 5Ω 1pF

25Ω 5nH

1pF
0.5pF
50Ω

1pF

10nH

0.5pF
50Ω

25Ω

5nH

2pF

25Ω
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vA(t)

vB(t)

εr = 4.1
tan δ = 0.02

100 µm

150 µm
20 µm

length=3 cm

length=5 cm

length=3 cm

length=3 cm

length=3 cm

length=4 cm

length=2 cm

Fig. 4. Interconnect network for the first application example.

Figs. 5 and 6 show two of the voltages appearing at the far-
end terminations, i.e. vA(t) and vB(t) indicated in Fig. 4. The
top panels display the average responses, estimated both from
a Monte Carlo analysis (blue line) and with a PC-based simu-
lation (red markers) using P = 9 and Q = 27. The gray areas
correspond to a small set of random responses and provide
a qualitative idea of the spread of the interconnect behavior.
The bottom panels compare the results on the estimation of the
voltage standard deviations. The good accuracy provided by
PC can be appreciated. The Monte Carlo and PC approaches
required 2727 s and 164 s, respectively and therefore, a speed-
up factor of 17× is achieved.

B. Example #2

The second example concerns the interconnect network
depicted in Fig. 7, including three coupled microstrip sections,
with the cross-section given at the top-left corner, as well as
three inverters and two diodes. These nonlinear components
are modeled in HSPICE as in the previous example. The trace
width and separation are considered as RVs here, both with a
relative standard deviation of 10%. The input voltage source
produces a pulse with an amplitude of 5 V, a risetime of 100 ps
and a duration of 4 ns.

The statistical properties of the voltage vC at the inverter
output are collected in Fig. 8. As in the previous example,
average and standard deviation obtained by means of PC
(red markers), with P = 5 and Q = 9, and the reference
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Fig. 5. Statistical assessment of voltage vA(t) in Fig. 4: average (top panel)
and standard deviation (bottom panel). Results from Monte Carlo analysis
(blue lines) are compared against those obtained with the PC approach (red
markers). Some samples of the stochastic voltage are also plotted (gray area)
in the top panel and show the response spread.
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Fig. 6. Statistical assessment of voltage vB(t) in Fig. 4. Curve definition
as in Fig. 5.

Monte Carlo method (blue lines) are compared. Analogous
information pertaining to voltage vD is reported in Fig. 9.
The simulation times are 3087 s and 66 s for the Monte Carlo
and PC-based simulations, respectively. The speed-up factor
for this second example is thus 47×.

Finally, it is worth mentioning that the proposed method-
ology also allows to easily extract statistical functions such
as probability distributions. These are obtained by randomly
sampling the PC expansions (2). As an example, Fig. 10
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Fig. 7. Interconnect network for the second application example.
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Fig. 8. Statistical assessment of voltage vC(t) in Fig. 7. Curve definition
as in Fig. 5.

displays the distribution of voltage vD at 8 ns. The histogram
constructed from the collected Monte Carlo samples (gray
bars) is compared against the PC estimation (red line). The PC
representation (2) allows a better (i.e., smoother) reproduction
of the probability density function.

IV. CONCLUSIONS

This paper addresses the stochastic simulation of lossy,
dispersive and distributed interconnect networks that include
nonlinear components and that are affected by random cross-
sectional variations, e.g. due to process tolerances. The ad-
vocated technique is based on the PC approach, i.e. on the
expansion of circuit variables in term of series of orthonormal
polynomials. For this purpose, recent results on the statistical
analysis of transmission lines and of nonlinear circuits are
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Fig. 10. Probability distribution of vD(t) in Fig. 7 at t = 8 ns. Gray bars:
result from Monte Carlo simulation; red line: PC estimation.

suitably combined.

The PC-expansion coefficients are obtained via a single
deterministic simulation of a modified network that includes
equivalent circuit representations of the stochastic models.
The circuit models are readily implementable in SPICE-type
environments, thus allowing designers to take full advantage
of well-consolidated algorithms and available device models.

The PC coefficients directly provide pertinent statistical
information on the interconnect response such as average,
standard deviation and distributions. Remarkable speed-up
with respect to Monte Carlo analysis is achieved, since a
repeated run is no longer required. Good accuracy is also
established. The benefits of the methodology are validated via
the analysis of two distributed networks containing inverters
and diodes.
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