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Abstract 

Although the behavior of nanoscopic delivery systems in blood is an important parameter when 

contemplating their intravenous injection, this aspect is often poorly investigated when advancing 

from in vitro to in vivo experiments. In this paper, the behavior of siRNA loaded dextran nanogels in 

human plasma and blood is examined using fluorescence fluctuation spectroscopy, platelet 

aggregometry, flow cytometry and single particle tracking. Our results show that, in contrast to their 

negatively charged  counterparts, positively charged siRNA loaded dextran nanogels cause platelet 

aggregation and show increased binding to human blood cells. Although PEGylating the nanogels did 

not have a significant effect on their interaction with blood cells, single particle tracking revealed that 

it is necessary  to prevent their aggregation in human plasma. We therefore conclude that PEGylated 

negatively charged dextran nanogels are the most suited for further in vivo studies as they do not 

aggregate in human plasma and exhibit minimal interactions with blood cells. 

  

1. Introduction 

Although RNA interference (RNAi) is a promising strategy for treating various disorders [1-3], detailed 

knowledge and new scientific advancements are needed before this form of nucleic acid therapy can 

be applied clinically. Insufficient insights in endogenous gene regulation [4, 5] and especially 

difficulties regarding safe and efficient delivery of RNAi mediators are currently responsible for the 

inability of RNAi to live up to its full potential [6, 7]. Among these mediators, small interfering RNA 

(siRNA) is used the most for down regulation of mRNA in both clinical and research environments. 

Several routes of administration are currently investigated for siRNA [8] and although the advantages 

of local non invasive delivery are clear, many applications will require intravenous injection of 

(nanoscopic) siRNA carriers [9]. As this entails direct contact between these nanocarriers and blood 

components, profound knowledge on their behavior in blood is pivotal for the development of 

formulations which are not only efficient but also safe. Although of fundamental importance, safety 

is often only studied in a later stage of development. 



 

Hemocompatible formulations can be defined as formulations which do not result in any form of 

toxicity and remain efficacious after being exposed to blood. Currently, complement activation, 

blood coagulation and hemolysis assays are the only tests regularly conducted when evaluating the 

hemocompatibility of new nanoformulations [10-13]. However, in addition to blood clotting, 

activation of the complement system and erythrocyte lysis, many other phenomena can occur. High 

salt and protein concentrations in blood, for instance, can destabilize nucleic acid loaded 

nanoparticles and seriously limit their efficacy, as illustrated recently by the disassembly of siRNA 

polyplexes upon contact with serum [14]. The latter can logically be explained by negatively charged 

serum components displacing the (negatively charged) siRNA, hereby exposing it to serum nucleases 

and fast glomerular filtration [15]. It is also common knowledge that nanosized particles in blood can 

be cleared efficiently by the mononuclear phagocyte system (MPS), thereby seriously limiting their 

blood circulation time and extravasation into target tissues [16-18]. Decreasing the susceptibility of 

nanocarriers to recognition by the MPS through coverage of their surface with hydrophilic polymers, 

such as polyethylene glycol (PEG), is an established strategy to prolong the residence time of a 

nanoformulation in the systemic circulation [16]. Aggregation of nanoparticles upon intravenous 

injection can also occur and is considered very important as it influences their clearance, bio-

distribution and toxicity [19-21]. Commonly used methods which study the size and aggregation of 

nanoparticles, e.g. dynamic light scattering (DLS), are however in most cases incompatible with 

complex media such as blood or serum. A recently developed technique based on fluorescence Single 

Particle Tracking (fSPT) allows size measurements of nanosized matter in undiluted human plasma 

[20] and is used in the current study to investigate the aggregation of nanoparticles, in this case 

dextran nanogels, in human plasma.  

 

 



Dextran nanogels have been proposed earlier as a nanocarrier system and have already been shown 

to successfully deliver siRNA in vitro [22, 23]. To further explore the potential of dextran nanogels for 

the intravenous delivery of siRNA, the first aim of this study is to evaluate to which extent siRNA 

loaded dextran nanogels are hemocompatible using several advanced methods that recently became 

available. Secondly, several new approaches which can provide additional information on the 

hemocompatibility of nanoformulations are introduced. In this regard we evaluate what 

aggregometry and flow cytometry can teach us about the interactions between nanogels and blood 

cells, under conditions closely resembling the in vivo situation. 

 

2. Materials and methods 

2.1 Preparation of PEGylated dextran nanogels loaded with siRNA 

Cationic dextran nanogels were prepared from dextran methacrylate (dex-MA), [2- 

(methacryloyloxy)ethyl]trimethylammonium chloride (TMAEMA) and 2-aminoethyl methacrylate 

hydrochloride (AEMA) using inverse mini-emulsion photopolymerization as described earlier [22, 23]. 

The resulting cationic nanogels of about 200 nm were lyophilized and stored in a desiccator at room 

temperature. A weighed amount of the lyophilizate was dispersed in a known volume of 20 mM 

HEPES buffer at pH 7.4 and exposed to a short burst of ultrasound to disintegrate loose particle 

aggregates formed during lyophilization (Branson Tip Sonifier, 10 s, amplitude 10%). The nanogels 

were loaded by adding increasing amounts of Dicer substrate 25/27-mer siRNA (DsiRNA) targeting 

EGFP (IDT, Leuven Belgium) to the initially positively charged nanogels. Increasing the siRNA/nanogel 

ratio resulted in neutral or negatively charged nanogels as described earlier [22, 23] (Figure 1). The 

nanogels were consecutively PEGylated by adding 0, 0.25, 0.5, 1, 2.5 and 5 mg NHS-PEG/mg nanogels 

N-hydroxysuccinimidyl activated methoxypolyethylene glycol 5000 propionic acid (NHS-PEG, Sigma, 

Belgium) for 30 min [23]. The influence of siRNA loading and PEGylation on the zeta potential of the 

nanogels is depicted in Figure S1 (supplementary information). 

 



2.2 Hemolysis assay 

The hemolytic activity of dextran nanogels was investigated using an established method based on 

the release of hemoglobin from damaged erythrocytes. Briefly, human erythrocytes were isolated 

from 5 mL of fresh citrated blood by centrifugation (600 g, 10 min). The erythrocytes were washed in 

PBS until the supernatant was clear and colorless and then diluted to the original volume of 5 mL. 50 

µL aliquots of the erythrocyte suspension were incubated with 50 µL of a nanogel dispersion for 30 

min at 37°C under constant shaking. For this experiment, both positively and negatively charged 

nanogels, with or without a PEG coating, were added in order to achieve final concentrations of 0.05 

to 0.5 mg nanogels/ml. After centrifugation (600 g, 10 min) to pellet the erythrocytes, the 

hemoglobin concentration in the supernatant was quantified using a UV-1800 UV-VIS 

Spectrophotometer (Shimadzu, Belgium) at 541 nm. A 1% triton X-100 solution and pure PBS were 

used as the positive and negative controls respectively and all samples were prepared in triplicate. 

 

2.3 Platelet aggregometry 

The use of blood or blood plasma inadvertently implies the presence of an anticoagulant to prevent 

rapid blood clotting. As high concentrations of negatively charged heparin can have a destabilizing 

effect on the siRNA loaded nanogels and EDTA is known to cause structural, biochemical and 

functional damage to platelets [24], trisodium citrate was used as an anticoagulant in accordance to 

clinical laboratory protocols.  

Fresh citrated blood was drawn from healthy volunteers and subsequently centrifuged at 280 g for 

15 min and 3200 g for 10 min to obtain platelet rich plasma (PRP) and platelet poor plasma (PPP) 

respectively. Using PPP, the platelet concentration of the PRP was adjusted to 3x106 cells per µL 

before pre-incubating 200 µL of this suspension at 37°C. 50 µL of a nanogel dispersion was added to 

the 200 µL of platelet dispersion to investigate nanogel induced platelet aggregation. The turbidity of 

the samples was measured as a function of time using a Chrono-log aggregometer (Kordia, Leiden, 

The Netherlands). 



 

2.4 Fluorescence fluctuation spectroscopy 

The complexation degree of fluorescently labeled siRNA by dextran nanogels with different 

PEGylation degrees was determined in 20 mM HEPES buffer (pH 7.4) using fluorescence fluctuation 

spectroscopy (FFS) as reported before [23, 25]. FFS is a microscopy based technique that monitors 

the fluorescence intensity fluctuations in the focal volume (~1 fL) of a confocal microscope. When a 

solution of uncomplexed (i.e. free) fluorescently labeled siRNA is measured via FFS, a fluorescence 

signal proportional to the concentration of siRNA is obtained. Fluctuations in the fluorescence signal 

are caused by siRNA molecules diffusing in and out of the focal volume and result in a baseline signal. 

When the siRNA is complexed in nanoparticles, this baseline drops and highly fluorescent peaks 

(originating from nanoparticles containing large amounts of siRNA) occur. The shift of this baseline 

can be used to calculate the percentage of unbound siRNA as explained in detail by Buyens et al. 

[25]. 

 

To determine the extent of siRNA displacement from different nanogels by plasma constituents, FFS 

measurements were performed after incubating the siRNA loaded nanogels for 1h in human plasma 

(volume nanogels/plasma = 20/80). The final concentration of the nanogels was 0.068 mg/mL as this 

would be the theoretical concentration needed to deliver 1 mg/kg siRNA to a mouse. The 

experiments were conducted with both positively charged and negatively charged nanogels loaded 

with Alexa Fluor 488-labeled 25/27-mer siRNA (AF488-DsiRNA, IDT, Leuven, Belgium) targeting 

enhanced green fluorescent protein (EGFP). 

2.5 Fluorescence single particle tracking (fSPT) 

Single particle tracking (SPT) is a fluorescence microscopy-based method where the movement of 

individual fluorescently labeled particles or molecules is monitored in time and space. Using an epi-

fluorescence microscope adjusted for widefield laser illumination equipped with a fast and sensitive 

CCD camera, the movement of individual particles in biological fluids can be recorded under the form 



of movies. Particle trajectories subsequently calculated from these movies by specialized algorithms 

can then be used to measure both the size and number concentration of the particles, as recently 

shown by Braeckmans and colleagues [20]. 

 

2.5.1 Aggregation of nanogels in human plasma using fSPT 

Aggregation of negatively charged nanogels was followed as a function of time in both HEPES buffer 

and human plasma. Nanogel dispersions were prepared as described previously and were loaded 

with fluorescently labeled DsiRNA; the zeta potential of the non-PEGylated nanogels was 

approximately -10 mV. 5 µL of a nanogel dispersion was then incubated with 45 µL HEPES buffer or 

PPP at 37°C (0.068 mg nanogels/mL) and diluted 1:10 with buffer and PPP respectively immediately 

before the measurements. This particular concentration was selected as this would be the initial 

nanogel concentration in the blood of a mouse upon intravenous injection of a formulation 

containing 20 µg of siRNA. At each time point, 20 movies of 10 s each were recorded and 

consecutively analyzed to determine the size distribution of the nanogels. Using the nearest neighbor 

algorithm, trajectories were calculated taking into account the maximum distance a particle could 

reasonably have travelled in two consecutive frames. Using an algorithm based on the mean square 

displacement analysis, a mean diffusion coefficient could then be calculated for each trajectory. The 

distribution of these diffusion coefficients could be transformed in a size distribution using the 

Stokes-Einstein equation, provided that both the viscosity and the temperature of the sample were 

known. Both the objective and the sample were kept at 37°C during the measurement using an 

objective heater (Bioptechs, Butler, USA) and a sample heater (Linkam, Surrey, U.K.). During the 

calculations, the viscosity of human plasma was set to 1.35 cP at 37°C in accordance to Braeckmans 

et al [20]. Due to the stochastic nature of Brownian motion, the acquired size distribution was 

convoluted by a gamma distribution. Using a deconvolution algorithm known as the maximal entropy 

method (MEM), the actual size distribution was obtained [20]. 

 



2.5.2 Measuring the concentration of nanogels in human plasma using fSPT 

Although the number of calculated trajectories under 2.5.1 is not equal to the actual number of 

nanogels in a sample, a certain correlation exists between both values. Using additional information 

such as the detection volume, the track length and the diffusion coefficient of each particle, a 

maximum likelihood estimation could be used to determine the particle concentration in a 

dispersion. In this paper, this newly developed method is applied for the first time to estimate the 

number concentration of free nanogels in blood (i.e. non bound to cells). 

 

The experiments were performed as follows: PEGylated negatively charged nanogels were incubated 

with fresh citrated blood in different concentrations at 37°C for 1 hour prior to a short centrifugation 

step (600 g, 60 s) to remove the cell fraction. After the centrifugation step, 5 µL of the supernatant 

was placed on a heated microscopy slide for the collection of at least 20 movies of 10 seconds at 

approximately 22 fps. In order to calculate the fraction interacting with blood cells, the 

measurements were also performed in human plasma instead of full blood. Because the volume 

occupied by cells is not available for diffusing nanogels, the hematocrit value was used to correct the 

total volume of plasma. 

 

2.6 Flow cytometry 

Flow cytometry was used to investigate the adhesion and internalization of nanogels by blood cells. 

In order to compare various formulations, the fluorescence of every nanogel particle has to be 

similar. For this reason, a fixed amount of (green) fluorescently labeled siRNA (10 nmol per mg 

nanogels) was supplemented with unlabeled siRNA (0 to 20 nmol per mg nanogels) to achieve the 

desired siRNA loading and charge of the nanogels. The green fluorescence associated with a cell 

could be attributed to the sum of the adsorbed and internalized nanogels on/by this cell. By 

incubating the samples at 4°C instead of 37°C, active internalization of the nanogels by the cells can 

be inhibited and the green fluorescent signal associated with every cell can in this case be ascribed to 



labeled nanogels adsorbed on the surface. By treating the samples with trypan blue (Sigma Aldrich, 

Belgium) prior to the antibody labeling (see below), fluorescent nanogels attached to the surface of 

the cells are quenched so that only the internalized fraction of the nanogels is measured. Trypan blue 

quenching was performed by adding 25 µL of a trypan blue solution (0.2 %) to 5 µL of sample. After 5 

minutes incubation the trypan blue was subsequently removed by washing three times using PBS. 

The expertiments were performed as follows: 5 µL of a nanogel dispersion containing AF488-DsiRNA 

was incubated with 45 µl fresh citrated blood from healthy volunteers and incubated for 30 min at 

37°C. The final concentration of nanogels in blood was 0.068 mg nanogels/mL and all samples were 

prepared in triplicate. Antibodies against CD61 (platelets) and CD45 (leukocytes) conjugated to 

phycoerythrin (PE) and phycoerythrin-Cy5 (PE-Cy5) respectively were purchased from BD 

Pharmingen (Erembodegem, Belgium) and were used to resolve certain cell populations in blood. The 

scatter plot of the CD45 positive population was used to distinguish granulocytes, monocytes and 

lymphocytes. After 20 min at room temperature, unbound antibodies were washed away using PBS 

and a short centrifugation step (1100 g, 5 min). After discarding the supernatant, all samples were 

measured using a FACSCalibur flow cytometer (BD, Erembodegem, Belgium). The generated data was 

analyzed in SPSS using an ANOVA analysis (p < 0.05). 

 

3. Results and discussion 

3.1 Hemolysis 

With over 4 million cells per microliter, erythrocytes are abundantly present in human blood. As 

damage to erythrocytes and the subsequent release of hemoglobin causes the first symptoms of 

toxicity (e.g. renal failure), hemolysis assays are generally considered valuable in testing the 

hemocompatibility of a drug formulation. A standard hemolysis assay was performed to assess if 

siRNA loaded dextran nanogels induce erythrocyte lysis. Both positively and negatively charged 

nanogels, with different PEGylation degrees, were tested. As shown in Figure 2, the nanogels did not 

cause substantial erythrocyte lysis (< 1%), even not at high concentrations. The osmotic activity of 



nanocarrier dispersions is often neglected although it is known that especially erythrocytes are prone 

to osmotic disruption. Measurements using a freezing point depression osmometer indictated that 

the osmolarity of each nanogel dispersion (in PBS) studied in this paper was within the reference 

range of 275-299 mOsm per kg. A major disadvantage of a standard hemolysis assay is however the 

removal of the plasma components prior to the incubation of the erythrocytes with the nanoparticles 

as adsorption of plasma proteins on the nanoparticle surface can have an important influence on the 

interactions between cells and the nanoparticles [26]. 

 

3.2 Platelet aggregation 

Light transmission aggregometry is currently the standard method in clinical practice to evaluate 

platelet functions. By adding platelet activators to whole blood or platelet-rich plasma (PRP) and 

measuring the turbidity as a function of time, specific information can be obtained on possible 

platelet defects. Platelet clumping will result in a decreased turbidity of the sample due to the 

formation of a single clot. This method was used here to investigate whether nanogels induce 

undesired platelet clumping. Figure 3 shows that the addition of positively charged nanogels to PRP 

causes rapid aggregation of platelets while negatively charged nanogels do not (light transmission is 

~20% and similar to the transmission measured after adding buffer (negative control)). PEGylation of 

the nanogels did not influence the extent of platelet aggregation. While the hemolysis assay (Figure 

2) indicates all nanogel dispersions to be safe for erythrocytes, light transmission aggregometry 

suggests that positively charged nanogels cause extensive platelet aggregation (Figure 3). Based on 

these results, experiments in the continuation of this paper were generally conducted with 

negatively charged nanogels. 

 

3.3 Dissociation of siRNA loaded nanogels in human plasma 

Fluorescence fluctuation spectroscopy (FFS) was performed to measure the siRNA complexation 

efficiency by the nanogels upon contact with human plasma. As described before [25], FFS allows to 



distinguish between free and complexed siRNA in a sample without the need to physically separate 

the free and complexed molecules. Figure 4 shows that approximately 50% of the siRNA is released 

from the nanogels when dispersed in human plasma. PEGylation of the nanogels did not prevent this. 

All FFS experiments were performed at a nanogel concentration of 0.068 mg/ml which is the nanogel 

concentration in blood needed to deliver 1 mg/kg siRNA to a mouse (see 2.4). 

 

3.4 Aggregation of nanogels in human plasma 

Using fluorescent single particle tracking (fSPT), aggregation of nanogels in human plasma was 

studied. The results for negatively charged nanogels are depicted in Figure 5. In HEPES buffer, both 

non-PEGylated and PEGylated negatively charged nanogels were shown to be colloidally stable for at 

least 3 hours (Figure 5 A-D). In contrast, dispersing these nanogels in human plasma causes a marked 

aggregation of the non-PEGylated nanogels (Figure 5 E-H). Their aggregation could however be 

slowed down and even prevented by sufficiently coating the nanogels with PEG. Even for the highest 

PEGylation degree (5 mg NHSPEG/mg nanogel), a low number of aggregates were still detected. This 

is probably caused by a fraction of nanogels which is not sufficiently PEGylated (inhomogeneous 

PEGylation). Preventing nanoparticles from aggregating in blood is important as this will not only 

have an effect on their clearance and biodistribution but also on their toxicity, as illustrated by the 

accumulation of aggregated nanoparticles in lung capillaries upon intravenous injection. 

 

3.5 Adhesion and uptake of nanogels to/by blood cells 

Using flow cytometry, interactions between green fluorescent siRNA loaded nanogels and different 

cell populations in blood were examined. It was possible to measure the amount of nanogels 

internalized by the cells by quenching non internalized nanogels using trypan blue (Supplementary 

information, Figure S2). As shown in Figure 6A, all blood cell populations except erythrocytes show 

an outspoken charge dependent interaction with nanogels. Cationic nanogels clearly bind much more 



to cells than anionic ones. In contrast to surface charge, PEGylation of the nanogels did in most cases 

not influence the binding to the blood cells significantly (p < 0.05). 

 

As far as internalization of the nanogels by blood cells concerns (Figure 6B), monocytes and to a 

limited extent granulocytes, appeared to be the only cell types which efficiently internalize nanogels 

in a charge dependent manner. Although monocytes and neutrophilic granulocytes are both 

considered to be specialized phagocytes, the internalization of nanogels by neutrophils was low. 

These observations were confirmed by investigating the internalization of PEGylated, negatively 

charged nanogels as a function of time (Supplementary information, Figure S3.). In analogy to the 

binding, PEGylation of the nanogels did not influence their internalization by monocytes although it 

did prevent nanogel aggregation in human plasma (Figure 5). This could imply that the stabilizing 

effect of PEG is the primary reason for the longer blood circulation time associated with PEGylated 

formulations. 

 

Flow cytometry data in Figure 6 are in line with the outcome of the hemolysis (Figure 2) and 

aggregometry (Figure 3) assays. Figure 2 showed that nanogels do not cause erythrocytes lysis which 

can be expected as they do not bind to erythrocytes (Figure 6A). In addition, the binding of positively 

charged dextran nanogels to platelets (Figure 6B) support the results of the platelet aggregation 

assay in Figure 3. It seems that platelets do not internalize nanogels (Figure 6B) confirming that 

nanoparticles end up in the surface connected open canalicular system (OCS) of a platelet as 

suggested by Werb et al. [27]. 

 

As shown in Figure 7A, adding increasing amounts of nanogels to a fixed volume of blood revealed 

the saturation of the monocytes with nanogels at nanogel concentrations between 0.05 and 0.1 

mg/mL (which corresponds to ~6 billion and ~11 billion nanogels/mL respectively). It was however 

striking to see that the internalization of nanogels by monocytes decreased significantly at nanogel 



concentrations above 0.068 mg/mL (Figure 7B). A possible explanation is that phagocytosis is 

impaired above a critical nanoparticle concentration due to the large amount of nanogels adsorbed 

on the monocyte surface. This hypothesis is supported by the fact that the number of internalized 

nanogels (Figure 7B) decreases significantly at the concentration which corresponds to the saturation 

of the monocytes (Figure 7A). Interestingly, some early papers showed that monocytes can only 

engulf a finite quantity of particles or microorganism before entering a period of phagocytic inactivity 

[28, 29]. Visualization of the monocytes after incubation with the nanogels indeed revealed a high 

number of nanogels attached to the surface (Supplementary information, Video S1). To what extent 

saturation of the monocytes also influences their biological functions remains to be investigated. 

 

3.6 Interactions between nanogels and blood cells measured by fSPT 

To quantify the fraction of nanogels interacting with blood cells, the concentration of free (i.e. not 

adsorbed to cells) negatively charged PEGylated nanogels in blood was assessed by a method based 

on fSPT which calculates the concentration of fluorescent nanoparticles freely diffusing in a sample. 

As illustrated in Figure 8A, it is possible to calculate the percentage of nanogels bound to or 

internalized by blood cells by comparing the concentration of free nanogels measured in (platelet 

poor) plasma and blood. Figure 8B shows that increasing the number of nanogels added to a fixed 

volume of blood results in a larger fraction of free dextran nanogel suggesting that the blood cells are 

saturated with nanogels. At a nanogel concentration of 0.068 mg/mL (the concentration in blood 

needed to deliver 1 mg/kg siRNA to a mouse) approximately 69% of the nanogels remains free in 

blood while 31% is bound to/internalized by blood cells and is probably not able to extravasate into 

tissues. Flow cytometry data obtained under 3.5 (Figure 6A) were used to specify which of the 

different blood cell types are responsible for this 31% decrease in nanogel concentration (Figure 9). 

 

4. Conclusion 



In the context of developing a safe and efficient nanocarrier for drug delivery, the hemocompatibility 

of siRNA loaded dextran nanogels was investigated in this paper. Although none of the nanogel 

formulations caused significant erythrocyte lysis, positively charged nanogels induced platelet 

aggregation. Flow cytometry data confirmed that nanogels hardly bind to erythrocytes while a clear 

(charge dependent) interaction with platelets and leukocytes was observed. PEGylating the siRNA 

loaded dextran nanogels did not influence their interactions with cells significantly but was shown to 

be required to prevent their aggregation in human plasma. Based on these findings, PEGylated 

negatively charged siRNA loaded dextran nanogels are likely the safest formulation for in vivo siRNA 

delivery. However, the efficacy of this formulation will probably be influenced by the release of a 

significant fraction of the siRNA from the nanogels (approximately 50% in vitro) and their interactions 

with blood cells. 
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